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Abstract. We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure
and bounds for the order of growth, of all the nonlinear twists with exponents ≤ 1/d of the L-
functions of any degree d ≥ 1 in the extended Selberg class. In particular, this solves the resonance
problem in all such cases.
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1. Introduction

Statement of results. Given an L-function F(s) of positive degree d in the extended
Selberg class S] (the class of Dirichlet series with meromorphic continuation and func-
tional equation; see below for definitions and notation), in [7] we considered the standard
twist

F(s, α) =

∞∑
n=1

a(n)e(−αn1/d)

ns
, α ∈ R, α 6= 0, e(x) = e2πix, (1.1)

and obtained its main analytic properties; see [7, Theorems 1 and 2]. Precisely, writing

Spec(F ) = {α > 0 : a(nα) 6= 0}where nα = qd−dαd and a(nα) =

{
0 if nα 6∈ N,
a(nα) if nα ∈ N

(here q = qF is the conductor of F(s), see below), we proved that F(s, α) is an entire
function if |α| 6∈ Spec(F ), while F(s, α) is meromorphic over C if |α| ∈ Spec(F ). In the
latter case, F(s, α) has at most simple poles at the points

sk =
d + 1

2d
−
k

d
− iθF , k = 0, 1, . . . , (1.2)
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and

ress=s0F(s, α) =
c0(F )

qs0

a(n|α|)

n
1−s0
|α|

, (1.3)

where c0(F ) 6= 0 is a certain constant depending only on F(s), and θF is the internal
shift of F(s) (see below, and note a slight change in the definition of θF with respect to
our previous papers). Moreover, in all cases F(s, α) has polynomial growth on vertical
strips.

Remark 1. Actually, in [7] we considered only the case with α > 0, but F(s,−α) =
F(s, α) (see below for notation) and hence the case with α < 0 follows at once, since
θF = −θF and c0(F ) = c0(F ).

The standard twist F(s, α) plays a relevant role in the Selberg class theory, and moreover
is a new object in the theory of classical L-functions (i.e. the L-functions associated
with algebraic, geometric and automorphic structures). For example, the properties of the
standard twist were crucial in the classification of the degree 1 functions obtained in [4]
and in the proof of the degree conjecture for 1 < d < 2 given in [8]. In the latter paper
we also studied the general nonlinear twist

F(s; f ) =

∞∑
n=1

a(n)e(−f (n,α))

ns
(1.4)

with functions f (n,α) of type

f (n,α) =

N∑
j=0

αjn
κj , 0 < κN < · · · < κ1 < κ0, αj ∈ R, (1.5)

in the case κ0 > 1/d and α0 > 0. In [8] we could not get a full description of the ana-
lytic properties of such twists, but we obtained a useful transformation formula relating
F(s; f ) to its dual twist F(s;−f ∗). See [8, Theorem 1.1] for the precise statement, and
see below for notation; again, note a slight difference in notation with respect to [8], this
time concerning F(s; f ).

The properties we prove in this paper for twists of type (1.4) allow us to solve, with a
certain degree of generality, the resonance problem for the L-functions from the class S].
Indeed, the resonance problem may be stated in general terms as describing under what
circumstances the coefficients of an L-function, once suitably twisted and averaged, show
cancellation (no resonance case) or an asymptotic behavior (resonance case). In an essen-
tially equivalent form, the resonance problem may be stated as describing the evolution
of meromorphic continuation, polar structure and order of growth of an L-function under
a suitable set of twists. This is the form of the problem we deal with in this paper, and it
is well known that results of the previous form can be deduced by standard methods. We
shall discuss the problem in greater detail after the statement of our results.

In this paper we study the nonlinear twist (1.4) for functions of type (1.5) in the
remaining cases, i.e. when κ0 = 1/d and at least one αj is nonzero. For completeness,
we also study the simpler case where all the exponents κj are negative. It turns out that
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a technique different from the one we used in [7] yields a rather complete description of
the analytic properties of F(s; f ) in these cases. The technique is closer to the one we
made use of in [10] to deal with the linear twists in degree d = 2. Moreover, our present
results provide further information in the special case (1.1) as well. We start with the new
theorems in the special case, namely with general bounds on the growth of F(s, α) for
s ∈ C (not only for s in vertical strips as in [7]), since these results will be needed in
the proof of the general case. For completeness, in the statements of Theorems 1 and 2
below we also recall some of the properties already established in [7]. Since we deal with
functions of degree d > 0, and it is known that there are no functions in S] with degree
0 < d < 1 (see Conrey–Ghosh [1], and [4]), we may assume that d ≥ 1. Denoting by S]d
the set of functions in S] with degree d, we have the following results.

Theorem 1. Let F ∈ S]d with d ≥ 1 and let α 6= 0, |α| /∈ Spec(F ). Then F(s, α) is
entire of order ≤ 1. Moreover, for every 0 < δ < 1 there exist A,B,C > 0, depending
on F(s) and δ, such that for every s ∈ C,

F(s, α)� A|σ |(1+ |s|)d|σ |/δ+BeC|s|
δ′

,

where δ′ = max(0, 2− 1/δ) and the�-constant may depend on F(s), α and δ.

Theorem 2. Let F ∈ S]d with d ≥ 1 and let α 6= 0, |α| ∈ Spec(F ). Then F(s, α) is
meromorphic on C with at most simple poles at the points sk in (1.2), and residue at s0
given by (1.3) for α > 0. Moreover, for every δ0 > 0, 0 < δ < 1 and η > 1/δ there exist
A,B,C > 0, depending on F(s), δ0, δ and η, such that for |s − sk| ≥ δ0,

F(s, α)� A|σ |(1+ |s|)ηd|σ |+BeC(|s|
δ′
+|s|(3−ηδ)/2),

where δ′ = max(0, 2− 1/δ) and the�-constant may depend on F(s), α, δ0, δ and η.

Remark 2. Note that, if we choose e.g. δ = 1/2 and η = 6, the bounds in Theorems 1
and 2 imply that F(s, α) has polynomial growth on vertical strips. However, the resulting
bounds are essentially qualitative, although explicit values can be obtained for the con-
stant B. In this paper we are not looking for sharp results in this respect; for example,
one can immediately get sharper bounds by convexity. We refer to [7, Theorem 2] for
α-uniform polynomial bounds, again quantitatively not sharp.

The proof of Theorems 1 and 2 forms the bulk of the paper. Indeed, the theorems together
with Remark 5 below contain the basic bounds on the growth of F(s, α) needed to trigger
a kind of iterative process (see Theorem 5 below), leading to the following general result.

Theorem 3. Let F ∈ S]d with d ≥ 1 and let f (n,α) be as in (1.5) with κ0 = 1/d and
α1 6= 0. Then the nonlinear twist F(s; f ) in (1.4) is entire of order ≤ 1. Moreover, there
exist A,B,C > 0 and 0 ≤ δ < 1, depending on F(s), such that for every s ∈ C,

F(s; f )� A|σ |(1+ |s|)|σ |/κ1+BeC|s|
δ

,

where the�-constant may depend on F(s) and f (n,α).

Remark 3. At present we cannot prove in general that the twists F(s; f ) in Theorem 3
have polynomial growth on vertical lines; see the discussion below about the resonance
problem for further information on this point.
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Theorem 3 is a consequence of Theorems 1, 2 and 5, and its proof is given after the
statement of Theorem 5. For completeness we state and prove a simpler and more general
result concerning the nonlinear twists with negative exponents. We present this result
in a form suitable to be coupled with the previous results by an iterative argument (see
Remark 7 below). Let F(s) be an absolutely convergent Dirichlet series for σ > 1, with
meromorphic continuation to C and singularities contained in a horizontal strip of finite
height. Moreover, let

f (n,α) =

N∑
j=0

αjn
−κj , 0 < κ0 < · · · < κN , αj ∈ R.

Denote by µF (σ ) (resp. µF (σ ; f )) the Lindelöf µ-function of F(s) (resp. F(s; f )), if it
exists.

Theorem 4. Let F(s) and f (n,α) be as above. Then the twist F(s; f ) in (1.4) is mero-
morphic on C with singularities in the same horizontal strip as for F(s), and F(s; f ) is
entire if F(s) is entire. Moreover

µF (σ ; f ) = µF (σ )

for σ in any right half-line where µF (σ ) exists.

Remark 4. From the proof of Theorem 4 it is easy to detect the location of the poles of
F(s; f ) from the location of the poles of F(s) (see (4.1)).

In order to state the results allowing the iterative process leading to Theorem 3, we need
to introduce further notation. For ρ ≥ 1 and τ ≥ 0 let M(ρ, τ) be the class of Dirichlet
series F(s), absolutely convergent for σ > 1, admitting holomorphic continuation to
|t | ≥ τ and for which there exist A,B,C > 0 and 0 ≤ δ < 1, all depending on F(s),
such that for |t | ≥ τ ,

F(s)� A|σ |(1+ |s|)ρ|σ |+BeC|s|
δ

, (1.6)

where the �-constant may depend on F(s), ρ and τ . Moreover, we denote simply by
M(ρ) the class M(ρ, 0) and write for λ > 0 and α ∈ R,

F λ(s, α) =

∞∑
n=1

a(n)e(−αnλ)

ns
;

thus in particular F(s, α) = F 1/d(s, α). The relevance of the class M(ρ, τ) is clarified
by Theorems 1 and 2, and by the following

Remark 5. If F ∈ S]d then F ∈ M(d, τ) for every τ > 0. In fact, F(s) is holomorphic
except possibly at s = 1 (thus the entire functions F ∈ S]d belong to M(d)). Moreover
F(s) is bounded for σ ≥ 2, is of polynomial growth (in particular) for −1 ≤ σ ≤ 2 and
for σ ≤ −1 satisfies

F(s)� A|σ |(1+ |s|)d(|σ |+1/2),

thanks to the functional equation and Stirling’s formula; see e.g. [10, Lemma 2.1].
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Theorem 5. If F ∈ M(ρ, τ) with τ > 0, and if 0 < λ < 1/ρ and α 6= 0, then F λ(s, α)
belongs to M(1/λ). Moreover, if F ∈ M(ρ) and 0 < λ < 1/ρ, then F λ(s, α) belongs to
M(ρ) for every α ∈ R.

Remark 6. When F ∈ M(ρ) and 0 < λ < 1/ρ, the entire function F λ(s, α) has the
representation

F λ(s, α) =

∞∑
k=0

(−1)k

k!
F(s − λk)(2πiα)k,

the series being absolutely and uniformly convergent for s in compact subsets of C; see
the proof of Theorem 5.

Proof of Theorem 3. As we already noticed, Theorem 3 is a direct consequence of The-
orems 1, 2 and 5. Indeed, if α0 6= 0 we start with F(s, α0). Then we choose δ (and η) in
Theorems 1 or 2, depending on |α0| 6∈ Spec(F ) or |α0| ∈ Spec(F ), in such a way that
F(s, α0) belongs to M(ρ, τ) for some τ > 0 and d < ρ < 1/κ1. If α0 = 0 we use
Remark 5, asserting that F ∈ M(d, τ) for every τ > 0. Thus, for any α0 ∈ R the function
F(s, α0) belongs to M(ρ, τ) with some τ > 0 and d ≤ ρ < 1/κ1. Then we apply the
first part of Theorem 5 with λ = κ1 to F(s, α0), thus deducing that

∞∑
n=1

a(n)

ns
e(−α0n

1/d
− α1n

κ1)

belongs to M(1/κ1). Now we apply iteratively the second part of Theorem 5 with λ =
κ2, κ3, . . . , and Theorem 3 follows.

Remark 7. Thanks to Theorem 4, a similar, but simpler, iterative argument may be ap-
plied to any of the twists F(s, α) or F(s; f ) considered in Theorems 1–3, thus giving
meromorphic continuation and polar structure (see Remark 4) of any twist of type (1.4)
with

f (n,α) =

N∑
j=0

αjn
κj

with αj ∈ R and κN < · · · < κ1 < κ0 = 1/d .

Remark 8. We finally remark that, as far as we know, the results in Theorems 1–3 are
new also in the case of classical L-functions. It is interesting to note how the behavior
in s of the functions involved, essentially as σ → −∞, appears to be critical in order
to deduce the properties of their nonlinear twists. This complements the well known im-
portance of the behavior of L-functions on vertical strips. A similar phenomenon already
arises in [10], where the behavior of the linear twists as σ →−∞ is shown to give control
on the shape of the Euler product; see [10, Theorem 1].

The resonance problem. Theorems 1–3 provide the basic analytic properties of the non-
linear twists F(s; f ) in all cases where f (n,α) has positive exponents ≤ 1/d . Actually,
the same holds if all exponents are ≤ 1/d thanks to Theorem 4 (see Remark 7), but in
what follows we restrict to positive exponents for simplicity. In particular, the polar struc-
ture and the order of growth of F(s; f ) are determined by the above theorems for any
function F ∈ S]d in the following form:
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(i) if f (n,α) = α0n
1/d with |α0| ∈ Spec(F ), then F(s; f ) has a simple pole at s = s0,

possible simple poles at s = sk with k ≥ 1 (see (1.2)) and polynomial growth on
vertical lines;

(ii) if f (n,α) = α0n
1/d with 0 6= |α0| 6∈ Spec(F ), then F(s; f ) is entire and has

polynomial growth on vertical lines;
(iii) if f (n,α) = α0n

1/d
+ α1n

κ1 + · · · with any α0 ∈ R, α1 6= 0 and κ1 < 1/d , then
F(s; f ) is entire, and on any fixed vertical strip,

F(s; f )� exp(|t |δ) (1.7)

with some δ < 1.

These results solve the resonance problem, in the second form stated above, for all nonlin-
ear twists with exponents ≤ 1/d of any function of degree d ≥ 1 from S]. Moreover, in
cases (i) and (ii) standard techniques can be used to describe the behavior of the smoothed
nonlinear exponential sums

SF (x; f, φ) =

∞∑
n=1

a(n)e(−f (n,α))φ(n/x), (1.8)

where φ(u) is a smooth function on (0,∞) with compact support. More precisely, we
have

SF (x; f, φ) =
∑
k≤K

ck(F ; f )φ̃(sk)x
sk +O(x(d−1)/2d−K/d), x →∞, (1.9)

for any fixedK ≥ 0, where φ̃(s) is the Mellin transform of φ(u), c0(F ; f ) 6= 0 in case (i)
and ck(F ; f ) = 0 for k ≥ 0 in case (ii). Interesting applications would follow from
suitable uniform bounds in α, but at present such bounds are definitely weak; see e.g. [7,
Theorem 2]. Formula (1.9) follows from the estimate

φ̃(s)� |t |−h, |t | → ∞, (1.10)

for every fixed h > 0, uniformly on any fixed vertical strip. In turn, (1.10) can be obtained
from the definition of φ̃(s) by repeated partial integrations:

φ̃(s) =
(−1)h

s(s + 1) · · · (s + h− 1)

∫
∞

0
φ(h)(u)us+h−1 du.

In case (iii), when only (1.7) is available, (1.10) is too weak to deal with the sums (1.8).
However, in this case we can describe, again by standard techniques, the behavior of
smoothed nonlinear exponential sums

SF (x; f, r) =

∞∑
n=1

a(n)e(−f (n,α))e−(n/x)
r
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with r > 0 arbitrary. In this case, for any fixed K ≥ 0 we have

SF (x; f, r) =
∑
k≤K

(−1)k

k!
F(−kr; f )x−kr +O(x−(K+1)r), x →∞.

This is due to the fact that the Mellin transform of e−u
r

is (1/r)0(s/r), and by Stirling’s
formula

0(s/r)� e−π |t |/2r |t |c(a,b)

uniformly for |t | ≥ 1 and a < σ < b.

We omit explicit examples for Theorems 1 to 5 since one may easily construct such ex-
amples starting with any classical L-function. In a forthcoming paper [11] we shall study
the properties and resonance of nonlinear twists of type (1.4) and (1.5) with κ0 > 1/d .

Definitions and notation. Given a function f (s) we write f (s) = f (s); in particular,
if f (s) is a Dirichlet series then f (s) is the Dirichlet series with conjugate coefficients,
called the conjugate of f (s). However, when dealing with the twists of a function F(s)
we write

F(s; f ) =

∞∑
n=1

a(n)e(−f (n,α))

ns
,

i.e. F(s; f ) is the twist of the conjugate of F(s). A completely analogous notation is used
in the case of F λ(s, α). A function F(s) belongs to the Selberg class S if

(i) F(s) is an absolutely convergent Dirichlet series for σ > 1;
(ii) (s − 1)mF(s) is an entire function of finite order for some integer m ≥ 0;

(iii) F(s) satisfies a functional equation of type 8(s) = ω8(1− s), where |ω| = 1 and

8(s) = Qs
r∏

j=1

0(λj s + µj )F (s)

with r ≥ 0, Q > 0, λj > 0, <µj ≥ 0;
(iv) the Dirichlet coefficients a(n) of F(s) satisfy a(n)� nε for every ε > 0;
(v) logF(s) is a Dirichlet series with coefficients b(n) satisfying b(n) = 0 unless

n = pm, m ≥ 1, and b(n)� nϑ for some ϑ < 1/2.

The extended Selberg class S] consists of the nonzero functions satisfying only axioms
(i)–(iii). The degree, conductor and ξ -invariant of F ∈ S] are defined respectively by

dF = 2
r∑

j=1

λj , qF = (2π)dFQ2
r∏

j=1

λ
2λj
j , ξF = 2

r∑
j=1

(µj − 1/2) = ηF + iθF dF ;

note the slight change in notation for θF , the internal shift of F(s), with respect to our
previous papers. We refer to Selberg [16] and Conrey–Ghosh [1], to our survey papers
[5], [3], [13], [14], [15] and to our forthcoming book [12] for the basic information and
results on the Selberg class.
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In the next sections, the constants A,B,C > 0 are sufficiently large and may depend
on F(s) and on the parameters specified in the theorems. Moreover, such constants may
also depend on other parameters appearing in the lemmas below; if this happens, it will
be explicitly stated. The same applies to the constants implicit in the O- and�-notation,
as well as to the constants c, c1, . . . > 0. In all cases, the value of such constants may not
be the same at each occurrence. If F ∈ S]d , d ≥ 1, and α > 0 are fixed we write

FX(s, α) =

∞∑
n=1

a(n)

ns
e−zXn

1/d

where X ≥ X0 > 0 is an integer, X0 is sufficiently large and may depend on F(s) and
other parameters, as for the above constants A,B,C, and

zX = 2παωX, ωX = 1/X + i.

Clearly, FX(s, α) converges for every s ∈ C and hence FX(s, α) is an entire function,

lim
X→∞

FX(s, α) = F(s, α), σ > 1,

and by Mellin’s transform we have

FX(s, α) =
1

2πi

∫
(c)

F(s + w/d)0(w)z−wX dw, c > max(0, d(1− σ)), (1.11)

where w = u + iv, z−wX = e−w log zX and log zX is meant to be the principal value. Let
σ ≤ 3/2, c = d(3− σ),

MF = max
1≤j≤r

(1+ |µj |)2/λj , K = [3d(2+MF )] + 1/2

and V ≥ V0 > 0 be a parameter to be chosen in the proofs, where V0 is sufficiently
large and may depend on F(s) and other parameters, as for the above constants A,B,C.
Finally, let

L−∞ = (d(2− σ)− i∞, d(2− σ)+ iV ],
LV = [d(2− σ)+ iV ,−K + iV ],
L∞ = [−K + iV ,−K + i∞).

Outline of the proofs. To prove Theorems 1 and 2 we start with (1.11), with the aim
of letting X → ∞. The integral over the negative part of the line σ = c has good
convergence properties. Hence we deform the integration as in (2.1), thus avoiding the
poles of the integrand and preparing for the use of the functional equation. The first two
terms in (2.1) are dealt with by Lemma A in Section 2, which holds for every α > 0
and whose proof is based on a direct application of Stirling’s formula. In the integral
over L∞ we apply the functional equation and expand F(1−s−w/d), thus getting (2.4).
The integral IX(s, y) in (2.4) depends on the data of F(s) and is close to an incomplete
hypergeometric function. We refer to [7, Section 2] for an analysis of such functions
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(see Theorem 2.1 there). In particular, it turns out that the limit as X → ∞ of such
hypergeometric functions is meromorphic in s for every y > 0; moreover, it has a simple
pole at s = s0 (and possibly at the points s = sk with k ≥ 1) for y = d/β1/d (see
(2.3)), and is holomorphic otherwise. This behavior gives rise to the notion of Spec(F ),
and clarifies why the treatment of the function F (3)X (s) in (2.1) is different depending on
whether |α| ∈ Spec(F ) or not. As already remarked, in this paper we follow a different
approach to the study of IX(s, y), leading to the new estimates in Theorems 1 and 2
required by Theorems 3 and 5. In view of Remark 1 we deal only with the case α > 0.

When 0 < α 6∈ Spec(F )we have a(nα) = 0, and we deal separately with the integrals
IX(s, yn) in (2.4) with n < nα and n > nα . In both cases the treatment is based on a
change of the path of integration and on a careful application of the uniform version of
Stirling’s formula proved in [9]; see Lemma D in Section 2. This leads to Lemma B in
Section 2. In turn, Lemmas A and B allow the use of Vitali’s convergence theorem when
X→∞, and Theorem 1 follows; see the proof of Theorem 1 in Section 2.

When α ∈ Spec(F ) we have the additional term n = nα , and the corresponding inte-
gral IX(s, d/β1/d) requires a deeper analysis. The starting point is Lemma 3.1, where the
0-factors coming from the functional equation are transformed to a single 0-factor plus
smaller order terms. Then in a series of lemmas (from 3.2 to 3.8) we study and transform
the expression of IX(s, d/β1/d) coming from Lemma 3.1, finally getting Lemma E in
Section 3, where the remainder term is of the required form. Next we borrow some argu-
ments from our previous treatment of the standard twist in [4] and [7], giving the explicit
expression in (3.29) and describing the polar structure of the limit as X→∞ of the inte-
grals IX,ν(s) in Lemma E. Theorem 2 then follows from Vitali’s convergence theorem as
before, and from bounds of the required form for the expression in (3.29), away from its
poles.

We already proved Theorem 3, and the proof of Theorem 4 follows by the Taylor
expansion of e(−f (n,α)) and the good convergence properties of the resulting series.
The proof of Theorem 5 is simpler than the proof of Theorems 1 and 2 thanks to the good
convergence properties of the integral in (1.11), due to the choice λ < 1/ρ. Indeed, when
F(s) is entire and belongs to M(ρ), we shift the line of integration in (1.11) to the left,
thus getting a sum over the residues of 0(w) (see (5.13)). Thanks to λ < 1/ρ, asX→∞
we obtain an expression of F λ(s, α) as a series (see (5.14)), which is nicely convergent
over C. Moreover, the required bound for F λ(s, α) follows by plugging in the bound for
F(s−λk) into (5.14). The case of meromorphic F(s) is technically more delicate, but the
good convergence properties of the integrals under consideration, again due to the choice
λ < 1/ρ, are decisive in this case as well.

2. Proof of Theorem 1

We follow the notation at the end of Section 1 and suppose that F(s) and α are as in
Theorem 1. In view of Remark 1 of Section 1 we may assume that α > 0. Thanks to the
polynomial growth of F(s + w/d) and the decay of 0(w) on vertical strips, and to the
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location of their poles, we have

FX(s, α) =
1

2πi

∫
L−∞∪LV ∪L∞

F(s+w/d)0(w)z−wX dw = F
(1)
X (s)+F

(2)
X (s)+F

(3)
X (s),

(2.1)
say. Recalling that δ′ = max(0, 2− 1/δ) we have

Lemma A. Let σ ≤ 3/2 and V ≥ V0(1 + |s|). Under the hypotheses of Theorem 1 and
with the notation of Section 1 we have

|F
(1)
X (s)| + |F

(2)
X (s)| � A|σ |V d|σ |+5d

uniformly for X ≥ X0.

Lemma B. Let σ ≤ 3/2 and V ≥ V0(1 + |s|)1/δ . Under the hypotheses of Theorem 1
and with the notation of Section 1 we have

|F
(3)
X (s)| � A|σ |V d|σ |+BeC(|s|

δ′
+|s|V δ−1)

uniformly for X ≥ X0.

Before proving Lemmas A and B we recall Vitali’s convergence theorem (see Titchmarsh
[17, Section 5.21]), and show that Theorem 1 in an immediate consequence of Lemmas
A, B and Vitali’s theorem.

Lemma C (Vitali’s convergence theorem). Let fX(z) be a sequence of holomorphic func-
tions on a region D and let |fX(z)| ≤ M for every X ≥ X0 and z ∈ D. Suppose that
fX(z) tends to a limit, as X→∞, on a set of points having an accumulation point in D.
Then fX(z) tends to a limit uniformly in any domain D′ whose closure is contained in D,
and hence the limit is holomorphic and bounded by M on D′.
Proof of Theorem 1. The result is obvious for σ ≥ 5/4, while for σ < 5/4 we re-
call that FX(s, α) is holomorphic and we apply Lemmas A and B with the choice V =
V0(1+ |s|)1/δ to get

FX(s, α)� A|σ |(1+ |s|)d|σ |/δ+BeC|s|
δ′

(2.2)

uniformly for X ≥ X0. Given any s = σ + it with σ < 5/4 we consider the region

Ds = {z = x + iy ∈ C : σ − 1/10 < x < 3/2, |y| < |t | + 1/10}

and apply Lemma C with the choice fX(z) = FX(z, α) and D = Ds . Thanks to (2.2) and
since |z| ≤ |s| + c, |x| ≤ |σ | + c, we may choose

M = KA|σ |(1+ |s|)d|σ |/δ+BeC|s|
δ′

with a suitable constant K > 0. Recalling that limX→∞ FX(z, α) = F(z, α) for every z
with x > 1, since s ∈ Ds we deduce from Lemma C that F(s, α) has holomorphic
continuation to the half-plane σ < 5/4 and

F(s, α)� A|σ |(1+ |s|)d|σ |/δ+BeC|s|
δ′

.

Theorem 1 is thus proved. ut
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Proof of Lemma A. We start with the estimation of F (1)X (s). For w = u+ iv ∈ L−∞ we
have u = d(2 − σ), hence <(s + w/d) = 2 and therefore F(s + w/d) � 1. Moreover,
by Stirling’s formula we have

0(w)� A|σ |(1+ |w|)d(2−σ)−1/2e−v argw,

and since v argw = v arctan v
d(2−σ) = |v|

(
π/2+O((1+ |σ |)/|v|)

)
, we get

0(w)� A|σ |(1+ |w|)d(2−σ)−1/2e−π |v|/2.

Further we have

|z−wX | = e
−d(2−σ) log |zX |+v arg zX � A|σ |ev(π/2−O(1/X)).

Therefore for V ≥ V0(1+ |s|) and X ≥ X0 we obtain

F
(1)
X (s)� A|σ |

∫ V

−∞

e−π |v|/2+v(π/2−O(1/X))
(
1+ d(2+ |σ |)+ |v|

)d(2+|σ |)
dv

� A|σ |
(∫ V

−V

V d(2+|σ |) dv +

∫
−V

−∞

e−|v|(π−O(1/X))(1+ |v|)d(2+|σ |) dv
)

� A|σ |V d|σ |+2d+1
+A|σ |0(d(2+|σ |)+1)� A|σ |

(
V d|σ |+2d+1

+ (1+|σ |)d|σ |
)

uniformly in X, and the first assertion of Lemma A follows.
In order to estimate F (2)X (s) we recall the estimate for F(s) in Remark 5 of the Intro-

duction, which we recall in the form

F(s)�

{
A|σ |(1+ |s|)d(|σ |+1/2) if σ ≤ −1,
(1+ |s|)3d/2 if σ ≥ −1.

Accordingly, we split the path of integration into

[−K + iV ,−d(1+ σ)+ iV ] ∪ [−d(1+ σ)+ iV , d(2− σ)+ iV ],

thus getting

F
(2)
X (s)� A|σ |

∫
−d(1+σ)

−K

V d(|σ+u/d|+1/2)
|0(u+ iV )z−u−iVX | du

+ V 3d/2
∫ d(2−σ)

−d(1+σ)
|0(u+ iV )z−u−iVX | du.

Arguing as before and taking into account the definition of V and K we have

|0(u+ iV )z−u−iVX | � A|σ |V u−1/2

uniformly in X, hence

F
(2)
X (s)� A|σ |

(∫
−d(1+σ)

−K

V d(|σ+u/d|+1/2)+u−1/2 du+

∫ d(2−σ)

−d(1+σ)
V (3d+2u−1)/2 du

)
� A|σ |V d|σ |+5d

since σ + u/d < 0 in the first integral, and Lemma A follows. ut
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Remark. Note that the proof of Lemma A does not depend on the hypothesis that α /∈

Spec(F ), hence Lemma A holds for any α > 0. The proof of Lemma B is definitely more
delicate, and condition α /∈ Spec(F ) becomes crucial.

The following uniform version of Stirling’s formula (see [9]) will be repeatedly used in
this paper, hence for convenience we state it as

Lemma D. Let N ≥ 0 be an integer, D ≥ 1 and let z, a ∈ C satisfy

<(z+ a) ≥ 0, |a| ≤ 3
5 |z|, N ≤ 2D|z|.

Then

log0(z+ a) =
(
z+ a −

1
2

)
log z− z+

1
2

log 2π

+

N∑
j=1

(−1)j+1Bj+1(a)

j (j + 1)
1
zj
+O

(
1
|z|N+1

((
N +

|a|2

(N + 1)2

)
|a|N +DNN !

))
.

Proof of Lemma B. For w ∈ L∞ we have <(s + w/d) = σ −K/d ≤ 3/2− 6+ 1/2d
≤ −4. Hence, writing

h(w, s) =

r∏
j=1

0(λj (1− s)+ µj − λjw/d)
0(λj s + µj + λjw/d)

0(w),

applying the functional equation and using the Dirichlet series expansion of
F̄ (1− s − w/d) we get

F
(3)
X (s) =

ωQ1−2s

2πi

∫
L∞

F̄ (1− s − w/d)h(w, s)Q−2w/dz−wX dw

� A|σ |
∞∑
n=1

|a(n)|

n1−σ

∣∣∣∣∫
L∞

h(w, s)

(
Q2/dzX

n1/d

)−w
dw

∣∣∣∣.
Recalling that zX = 2παωX and ωX = 1/X + i, for convenience we write

IX(s, y) =
1

2πi

∫
L∞

h(w, s)(yωX)
−w dw, y > 0,

hence recalling the definition of nα in the Introduction and letting

β =

r∏
j=1

λ
2λj
j , yn =

(
nα

n

)1/d
d

β1/d , (2.3)

we have

F
(3)
X (s)� A|σ |

∞∑
n=1

|a(n)|

n1−σ |IX(s, yn)|. (2.4)
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Since α 6∈ Spec(F ) we may assume that n 6= nα always. In the rest of the proof we obtain
suitable bounds for IX(s, yn) in the two cases n > nα and n < nα , which, once inserted in
(2.4), will prove Lemma B. Actually, in what follows we deal with IX(s, y) in the general
cases 0 < y < d/β1/d and y > d/β1/d .

Case 0 < y < d/β1/d . In this case we change the path of integration from L∞ to the
half-line L′∞ where w = u+ iV , −∞ < u ≤ −K , and consider the 90-degree sector R
formed by L∞ and L′∞. Thanks to the choice of K , the function h(w, s) is holomorphic
on R, as also is (yωX)−w. Moreover, by Cauchy’s theorem applied to that sector and the
arc γR of the circle |w| = R inside the sector, as R→∞ we obtain

IX(s, y) =
1

2πi

∫
L′∞

h(w, s)(yωX)
−w dw.

Indeed, a standard application of the Stirling formula with |w| = R shows that the con-
tribution of the integral over the arc γR tends to 0 as R→∞.

We first deduce from Lemma D the following useful uniform bound for |0(z + a)|.
Let 0 < δ < 1 and

<(z+ a) ≥ 0, |a| ≤ min
(
|z|δ, 3

5 |z|
)
, |z| ≥ 1/2. (2.5)

Then for δ′ = max(0, 2− 1/δ) we have

|0(z+ a)| = e−=(z+a) arg z−<z
|z|<(z+a)−1/2eO(1+|a|

δ′ ). (2.6)

Indeed, from Lemma D with N = 0 and D = 1 we get

log |0(z+ a)| = <{(z+ a − 1/2)(log |z| + i arg z)− z} +O(|a|2/|z| + 1),

and (2.6) follows since the last O-term is O(1+ |a|δ
′

).
Now we proceed with the estimation of h(w, s) for w ∈ L′∞. First we use the reflec-

tion formula for the 0 function to write

h(w, s)=π−rS(w, s)

r∏
j=1

0(λj (1−s)+µj−λjw/d)0(1−λj s−µj−λjw/d)0(w) (2.7)

with

S(w, s) =

r∏
j=1

sinπ(λj s + µj + λjw/d).

In order to estimate the first 0-factor in the product in (2.7), we choose z = −λjw/d =
(λj/d)(|u| − iV ) and a = λj (1 − s) + µj and note that conditions (2.5) are satisfied
thanks to the choice of K , provided

V ≥ c(1+ 1/γ )1/δ(1+ |s|)1/δ, where γ = |log(yβ1/d/d)| (2.8)



1362 Jerzy Kaczorowski, Alberto Perelli

and c = c(F, δ) > 0 is sufficiently large. Indeed, simple computations show that |z| ≥
λjK/d ≥ 3, and

|z| ≥ λjV/d ≥
λj c

d
(1+ |s|)1/δ ≥ max

(
|a|1/δ, 5

3 |a|
)
,

<(z+ a) = λj |u|/d + λj (1− σ)+<µj ≥ λjK/d − λj/2− |µj | ≥ 3.

Hence we may apply (2.6). With the above choice of z and a we have

=(z+ a) = −λj (V/d + t)+O(1), arg z = − arctan(V/|u|),
<z = λj |u|/d, <(z+ a) = λj (|u|/d + |σ |)+O(1),

hence from (2.6) we obtain

0(λj (1− s)+ µj − λjw/d)

� e−λj (V/d+t) arctan(V/|u|)−λj |u|/d |λjw/d|
λj (|u|/d+|σ |)+BeC(1+|s|

δ′ ). (2.9)

To estimate the second 0-factor in the product in (2.7) we choose again z = −λjw/d and
a = 1 − µj − λj s. As before, simple computations show that (2.6) is applicable and the
same formulae hold for the quantities involved. Therefore,

0(1− λj s − µj − λjw/d)

� e−λj (V/d+t) arctan(V/|u|)−λj |u|/d |λjw/d|
λj (|u|/d+|σ |)+BeC(1+|s|

δ′ ). (2.10)

The third 0-factor in (2.7) is estimated by first applying the reflection formula and then
(2.6) (although the standard Stirling formula would suffice here) with the choice z =
|u| − iV and a = 1, thus obtaining

0(w)�
e−πV

|0(1+ |u| − iV )|
� e−πV+V arctan(V/|u|)+|u|

|w|−|u|−1/2. (2.11)

Further we have
S(w, s)� e

π
2 d(t+V/d), (2.12)

and hence from (2.7) and (2.9)–(2.12), under (2.8) and recalling (2.3), we obtain

h(w, s)� A|σ |e−d(V/d+t) arctan(V/|u|)−|u|
|w|d(|u|/d+|σ |)+Be

π
2 d(t+V/d)β |u|/dd−|u|

× e−πV+V arctan(V/|u|)+|u|
|w|−|u|−1/2eC(1+|s|

δ′ )

� A|σ |edt (π/2−arctan(V/|u|))e−πV/2|w|d|σ |+Bβ |u|/dd−|u|eC(1+|s|
δ′ ). (2.13)

In order to estimate IX(s, y) we observe that, for w ∈ L′∞,

|(yωX)
−w
| � |yωX|

|u|eπV/2,
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and hence from (2.13) we get

IX(s, y)� A|σ |eC(1+|s|
δ′ )

∫
∞

K

(
β1/d

d
y|ωX|

)u
edt (π/2−arctan(V/u))

|w|d|σ |+B du

= A|σ |eC(1+|s|
δ′ )

(∫ V δ

K

+

∫
∞

V δ

)(
β1/d

d
y|ωX|

)u
edt (π/2−arctan(V/u))

|w|d|σ |+B du

= I
(1)
X (s, y)+ I

(2)
X (s, y), (2.14)

say; note that (β1/d/d)y < 1 in this case. We deal first with I (1)X (s, y), observing that for
0 < u < V δ we have arctan(V/u) = π/2 + O(V δ−1). Therefore, if X > c/γ with a
suitable c > 0 then (β1/d/d)y|ωX| < 1 and hence

I
(1)
X (s, y)� A|σ |eC(1+|s|

δ′
+|s|V δ−1)V d|σ |+B

∫
∞

K

e−γXu du

� A|σ |eC(1+|s|
δ′
+|s|V δ−1)V d|σ |+ByK/γX, (2.15)

where γX =
∣∣log

(β1/d

d
y|ωX|

)∣∣.
Concerning I (2)X (s, y), again for X > c/γ we have

I
(2)
X (s, y)� A|σ |eC(1+|s|

δ′ )edπ |t |/2
(∫
∞

V δ
e−γXuud|σ |+B du+ V d|σ |+B

∫
∞

V δ
e−γXu du

)
,

(2.16)
and we use the following general result: for 1 ≤ ξ ≤ Y we have∫

∞

Y

e−uuξ du ≤ e−YY ξ (1+ ξ2/Y ). (2.17)

Indeed, integrating by parts twice we have∫
∞

Y

e−uuξ du ≤ e−YY ξ + ξe−YY ξ−1
+ ξ(ξ − 1)

∫
∞

Y

e−uuξ
du

u2 .

But the function u 7→ e−uuξ is decreasing for u ≥ ξ and hence∫
∞

Y

e−uuξ
du

u2 ≤ e
−YY ξ

∫
∞

Y

du

u2 = e
−YY ξ−1,

therefore ∫
∞

Y

e−uuξ du ≤ e−YY ξ
(

1+
ξ

Y
+
ξ(ξ − 1)

Y

)
and (2.17) follows. We use (2.17) in the first integral in (2.16) after the change of variable
γXu→ u, hence with the choice Y = V δγX and ξ = d|σ | + B. Recalling (2.8) and the
definition of γX after (2.15) we see that

Y ≥ cδ(1+ |s|)γX/γ ≥ cδ(1+ |s|) ≥ d|s| + B = ξ
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if cδ is large enough, hence∫
∞

V δ
e−γXuud|σ |+B du =

1

γ
d|σ |+B+1
X

∫
∞

V δγX

e−uud|σ |+B du

�
e−V

δγX (V δγX)
d|σ |+B

γ
d|σ |+B+1
X

(1+ |σ |) = e−V
δγXV δ(d|σ |+B)

1+ |σ |
γX

.

Therefore, recalling that δ′ < 1, (2.16) becomes

I
(2)
X (s, y)� A|σ |eC(1+|s|)

(
e−V

δγXV δ(d|σ |+B)
1+ |σ |
γX

+ V d|σ |+B
e−V

δγX

γX

)
�

1
γX
eC(1+|s|)−V

δγXV d|σ |+B .

But, as before, if cδ is large enough we have

1
2
V δγX ≥

1
2
cδ(1+ |s|) ≥ C(1+ |s|) and

1
2
V δ ≥

cδ

2γ
(1+ |s|) ≥ K,

hence, recalling the definition of γX after (2.15) and (β1/d/d)y|ωX| < 1 for X > c/γ ,
we obtain

I
(2)
X (s, y)�

1
γX
V d|σ |+ByK . (2.18)

Gathering (2.14), (2.15) and (2.18) we finally obtain, in the case under consideration,
that uniformly for X > c/γ ,

IX(s, y)� A|σ |eC(|s|
δ′
+|s|V δ−1)V d|σ |+ByK/γ , (2.19)

since 1/γX � 1/γ for X > c/γ (and the �-constant has the same features as the
constant C).

Case y > d/β1/d . In this case we change the path of integration L∞ to the half-line L′′∞
where w = u+ iV , −K ≤ u <∞, and arguing as in the previous case we obtain

IX(s, y) =
1

2πi

∫
L′′∞

h(w, s)(yωX)
−w dw.

Moreover, writing d0 = d max1≤j≤r |µj |/λj we find that for −K ≤ u < −dσ − d0
(recall that σ ≤ 3/2)

<(λj s + µj + λjw/d) < 0 and <(λj (1− s)+ µj − λjw/d) > 0,

and we split the integral over L′′∞ as

IX(s, y) =
1

2πi

(∫
−dσ−d0+iV

−K+iV

+

∫ V δ+iV

−dσ−d0+iV
+

∫
∞+iV

V δ+iV

)
h(w, s)(yωX)

−w dw

= I
(3)
X (s, y)+ I

(4)
X (s, y)+ I

(5)
X (s, y), (2.20)

say.
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The treatment of I (3)X (s, y) is similar to the treatment of the previous case, in the sense
that we start from (2.7) and use (2.6) to estimate the first two 0-factors in the product (with
the choice z = −λjw/d and a = λj (1 − s) + µj or a = 1 − λj s − µj , respectively). A
computation shows that, assuming (2.8), for w ∈ L′′∞ the conditions in (2.5) are satisfied,
and

0(λj (1− s)+µj − λjw/d)� eλj (V/d+t) arg(−w)+λju/d |λjw/d|
−λj (σ+u/d)+BeC(1+|s|

δ′ )

0(1− λj s −µj − λjw/d)� eλj (V/d+t) arg(−w)+λju/d |λjw/d|
−λj (σ+u/d)+BeC(1+|s|

δ′ ).

Moreover
S(w, s)� e

π
2 d(V/d+t)

and by Stirling’s formula

|0(w)| � e−V argw−u
|w|u−1/2.

Therefore, similarly to (2.13) and observing that arg(−w)− arg(w) = −π , we obtain

h(w, s)� A|σ |eC(1+|s|
δ′ )edt (π/2+arg(−w))e−πV/2|w|−dσ+B(d/β1/d)u,

and hence, since |(yωX)−w| ≤ (y|ωX|)−ueπV/2, we get

I
(3)
X (s, y)� A|σ |eC(1+|s|

δ′ )

∫
−dσ−d0

−K

edt (π/2+arg(−w))
|w|−dσ+B

(
d

β1/dy|ωX|

)u
du.

But, thanks to (2.8), |w| � V and arg(−w) = −π/2 + O(V δ−1). Thus, recalling the
definition of γX after (2.15) and that y > d/β1/d in this case (and so d/(β1/dy|ωX|) < 1),
we have

I
(3)
X (s, y)� A|σ |eC(1+|s|

δ′
+|s|V δ−1)V d|σ |+B

∫
∞

−K

e−γXu du

� A|σ |eC(1+|s|
δ′
+|s|V δ−1)V d|σ |+ByK/γX. (2.21)

In order to treat I (4)X (s, y) we use the reflection formula for the 0 function to write

h(w, s) = π r0(w)S̃(w, s)

r∏
j=1

1
0(λj s + µj + λjw/d)0(1− λj (1− s)− µj + λjw/d)

with

S̃(w, s) =

r∏
j=1

1
sinπ(λj (1− s − w/d)+ µj )

.

By the factorial formula for the 0 function we rewrite h(w, s) as

h(w, s)=π r0(w)S̃(w, s)P (s +w/d)

r∏
j=1

1
0(aj (s)+λjw/d)0(bj (s)+λjw/d)

(2.22)
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where P ∈ C[z] has degP = 2rν0,

aj (s) = λj s + µj + ν0, bj (s) = 1− λj (1− s)− µj + ν0,

and ν0 = ν0(F ) ∈ N is such that for u ≥ −dσ − d0,

<(aj (s)+ λjw/d),<(bj (s)+ λjw/d) ≥ 0.

Now we apply (2.6) with z = λjw/d and a = aj (s), bj (s) respectively. A computation
shows that conditions (2.5) are satisfied thanks to (2.8) and to the choice of ν0, and

0(aj (s)+ λjw/d)� e−λj (t+V/d) argw−λju/d
∣∣λjw/d∣∣λj (σ+u/d)+BeC(1+|s|δ′ ),

0(bj (s)+ λjw/d)� e−λj (t+V/d) argw−λju/d |λjw/d|
λj (σ+u/d)+BeC(1+|s|

δ′ ).

Moreover, thanks to (2.8) and to Stirling’s formula we have

S̃(w, s)� e−
π
2 d(V/d+t), P (s + w/d)� |w|B , 0(w)� e−V argw−u

|w|u−1/2,

hence from (2.22) we obtain

h(w, s)� A|σ |eC(1+|s|
δ′ )e−πV/2+dt (argw−π/2)

|w|−dσ+B(d/β1/d)u.

As before we have |(yωX)−w| ≤ (y|ωX|)−ueπV/2, thus for u ≥ −dσ − d0,

h(w, s)(yωX)
−w
� A|σ |eC(1+|s|

δ′ )edt (argw−π/2)
|w|−dσ+B(β1/dy|ωX|/d)

−u. (2.23)

But for −dσ − d0 ≤ u ≤ V
δ we have argw = π/2+O(V δ−1) and |w| � V , therefore

recalling the definition of γX after (2.15) and that y > d/β1/d we obtain

I
(4)
X (s, y)� A|σ |eC(1+|s|

δ′
+|s|V δ−1)V d|σ |+B

∫
∞

−K

e−uγX du

� A|σ |eC(1+|s|
δ′
+|s|V δ−1)V d|σ |+ByK/γX. (2.24)

Finally, since argw ≤ π/2+O(V δ−1) for u ≥ V δ , from (2.23) we get

I
(5)
X (s, y)� A|σ |eC(1+|s|

δ′
+|s|V δ−1)

∫
∞

V δ
e−uγX (ud|σ |+B + V d|σ |+B) du,

and by the same argument used to estimate I (2)X (s, y) we obtain

I
(5)
X (s, y)� A|σ |eC(1+|s|

δ′
+|s|V δ−1)V d|σ |+ByK/γX. (2.25)

From (2.20), (2.21), (2.24) and (2.25) we deduce, in the case under consideration, that
uniformly for X > c/γ (see after (2.19)),

IX(s, y)� A|σ |eC(|s|
δ′
+|s|V δ−1)V d|σ |+ByK/γ , (2.26)

and in view of (2.19) we infer that (2.26) holds for every y > 0.
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We are now ready to conclude the proof of Lemma B. From (2.3), (2.4), (2.8) and
(2.26) we have, uniformly for X > c/γ ,

F
(3)
X (s)� A|σ |eC(|s|

δ′
+|s|V δ−1)V d|σ |+B

∞∑
n=1

|a(n)|

n1−σnK/d |log(nα/n)|
.

Lemma B follows since n 6= nα and the series is convergent for every σ ≤ 3/2.

3. Proof of Theorem 2

In this section we follow the notation of Section 1 and suppose that F(s), α, δ0, δ, η are
as in Theorem 2. Moreover, we always assume (including in the statement of the lem-
mas) that σ ≤ 3/2 and |s| ≤ R with an arbitrary R ≥ 1. The initial steps of the proof of
Theorem 2 are identical to those of Theorem 1. Indeed, we borrow Lemma A, whose con-
clusions remain unchanged under the hypotheses of Theorem 2; see the remark after the
proof of Lemma A. Moreover, the conclusions of Lemma B also remain unchanged under
the hypotheses of Theorem 2, provided we replace F (3)X (s) by F̃ (3)X (s), where, recalling
(2.3) and the definition of IX(s, y) before (2.3),

F̃
(3)
X (s) = ωQ1−2s

∑
n6=nα

a(n)

n1−s IX(s, yn).

Therefore, with the notation of Section 2 we have, for σ ≤ 3/2,

FX(s, α) = F
(1)
X (s)+ F

(2)
X (s)+ F̃

(3)
X (s)+ ωQ1−2s a(nα)

n1−s
α

IX(s, d/β
1/d) (3.1)

and, provided V ≥ V0(1+ |s|)1/δ ,

F
(1)
X (s)+ F

(2)
X (s)+ F̃

(3)
X (s)� A|σ |V d|σ |+BeC(|s|

δ′
+|s|V δ−1) (3.2)

uniformly for X ≥ X0. The rest of the proof is devoted to the evaluation and estimation
of IX(s, d/β1/d), which for convenience we denote simply by IX(s).

For w ∈ L∞, as in (2.7) we write

h(w, s) = S(s + w/d)0(w)

r∏
j=1

0(aj − λjw/d)0(bj − λjw/d)

with

S(z) = π−r
r∏

j=1

sinπ(λjz+ µj ), aj = λj (1− s)+ µj , bj = 1− µj − λj s.

We first note that a standard calculation based on the expression sin z = eiz−e−iz

2i gives for
w ∈ L∞ (recall that v ≥ V ≥ |s|)

S(s + w/d) =
1

(2π)r
e−i

π
2 ξF e−id

π
2 (s+w/d)(1+O(e−λ0v)) (3.3)
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with some 0 < λ0 ≤ 1. We recall that the H -invariants of a function F ∈ S] are defined
as

HF (n) = 2
r∑

j=1

Bn(µj )

λn−1
j

, n = 0, 1, . . . ,

whereBn(x) is the n-th Bernoulli polynomial; see [6] for the properties of such invariants.
Denoting by Rν(s) the polynomials

Rν(s) = 2ν(Bν+1(a + 1/2)− Bν+1(1/2− b))

+
dν

2

ν+1∑
k=0

(
ν + 1
k

)(
(−1)νHF (k)sν+1−k

−HF (k)(1− s)ν+1−k), (3.4)

where a = a(s) = d
2 (1− s)+

1
2ξF and b = b(s) = d

2 s +
1
2ξF , we have

Lemma 3.1. Let w ∈ L∞, |s| ≤ R, σ ≤ 3/2, 1 ≤ M ≤ DR and V ≥ (c1R)
1/δ , where

D > 0 is arbitrary and c1 may depend also on D. Then

h(w, s) = c0(F )
0(a + 1/2− w/2)
0(b + 1/2+ w/2)

0(w)

(
d

2β1/d

)ds+w
exp

( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν
+ ρM

)

with

ρM � cM2
RM+2

|w|M+1 + e
−λ0v,

where c0(F ) 6= 0, λ0 > 0 is a certain constant, c2 may depend also on D, and we may
assume that c1 ≥ c2.

Proof. We use Lemma D of Section 2 with z = −λjw/d, a = aj or a = bj and N = M
to get an asymptotic expansion of 0(aj − λjw/d)0(bj − λjw/d). Since u = −K and
σ ≤ 3/2, and thanks to the restrictions on V and M , for w ∈ L∞ the hypotheses of
Lemma D are satisfied, hence

log0(aj − λjw/d)0(bj − λjw/d) = (λj − 2λj (s + w/d)− 2i=µj ) log(−w/2d)

+ (λj − 2λj (s + w/d)− 2i=µj ) log 2λj + 2λjw/d + log 2π

−

M∑
ν=1

dν
Bν+1(aj )+ Bν+1(bj )

ν(ν + 1)
1

λνjw
ν
+O(ρM,j )

where, thanks to the restriction on V ,

ρM,j �

(
d

λj |w|

)M+1((
M +

(λj |s| + B)
2

M2

)
(λj |s| + B)

M
+ BMM!

)
� cM

RM+2

|w|M+1 .
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Therefore, summing over j = 1, . . . , r we obtain

log
r∏

j=1

(0(aj − λjw/d)0(bj − λjw/d)) = (d/2− ds −w − idθF ) log(−w/2)+ c1(F )

+ (ds + w) log
d

2β1/d + w −

M∑
ν=1

R̃ν(s)

ν(ν + 1)
1
wν
+O

(
cM

RM+2

|w|M+1

)
(3.5)

with a certain c1(F ) and

R̃ν(s) = d
ν

r∑
j=1

Bν+1(aj )+ Bν+1(bj )

λνj
.

Now we note that

0(a + 1/2− w/2)
0(b + 1/2+ w/2)

=
sin(π(b + 1/2+ w/2))

π
0(a + 1/2− w/2)0(1/2− b − w/2),

and, since w ∈ L∞ and hence =(b + 1/2+ w/2) > 0,

sin(π(b + 1/2+ w/2)) = −
1
2i
e−iπ(b+1/2+w/2)(1+O(e−v))

=
1
2
e−i

π
2 ξF e−i

πd
2 (s+w/d)(1+O(e−v)).

Moreover, arguing as before, from Lemma D we get

log0(a+1/2−w/2)0(1/2−b−w/2) = (d/2−ds−w−idθF ) log(−w/2)+w+log 2π

−

M∑
ν=1

2ν
(
Bν+1(a + 1/2)− Bν+1(1/2− b)

)
ν(ν + 1)

1
wν
+O

(
cM

RM+2

|w|M+1

)
.

Hence, with a certain c2(F ),

log
0(a+1/2−w/2)
0(b+1/2+w/2)

= −i
πd

2
(s+w/d)+(d/2−ds−w−idθF ) log(−w/2)+w+c2(F )

−

M∑
ν=1

2ν
(
Bν+1(a + 1/2)− Bν+1(1/2− b)

)
ν(ν + 1)

1
wν
+O

(
cM

RM+2

|w|M+1 + e
−v

)
. (3.6)

Recalling the definition of h(w, s) and (3.3), comparing (3.5) and (3.6) we obtain

logh(w, s) = c3(F ) log
0(a + 1/2− w/2)
0(b + 1/2+ w/2)

log0(w)(ds + w) log
d

2β1/d

+

M∑
ν=1

R∗ν (s)

ν(ν + 1)
1
wν
+O

(
cM

RM+2

|w|M+1 + e
−λ0v

)
(3.7)
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with a certain c3(F ) and

R∗ν (s) = 2ν(Bν+1(a+ 1/2)−Bν+1(1/2− b))− dν
r∑

j=1

Bν+1(aj )+ Bν+1(bj )

λνj
; (3.8)

Lemma 3.1 follows from (3.7) as soon as we prove that R∗ν (s) = Rν(s). But from the
properties of the Bernoulli polynomials (see [2, Section 1.13], we have

r∑
j=1

Bν+1(aj )+ Bν+1(bj )

λνj
=

r∑
j=1

Bν+1(λj (1− s)+ µj )+ (−1)ν+1Bν+1(λj s + µj )

λνj

=

r∑
j=1

ν+1∑
k=0

(
ν+1
k

)
λν+1−k
j Bν+1(µj )(1−s)ν+1−k

+(−1)ν+1(ν+1
k

)
λν+1−k
j Bν+1(µj )s

ν+1−k

λνj

=

ν+1∑
k=0

(
ν+1
k

)( 1
2HF (k)(1−s)

ν+1−k
+(−1)ν+1 1

2HF (k)s
ν+1−k)

= −
1
2

ν+1∑
k=0

(
ν+1
k

)(
(−1)νHF (k)sν+1−k

−HF (k)(1−s)ν+1−k),
hence R∗ν (s) = Rν(s) in view of (3.4) and (3.8); see also [10, Lemma 3.3]. ut

The treatment of exp
(∑M

ν=1
Rν (s)
ν(ν+1)

1
wν
+ ρM

)
in Lemma 3.1 is partly similar to the ar-

guments in [10, Section 3], but the differences are such that we cannot simply quote the
results. However, we will be a bit more sketchy in our treatment, and we shall refer to [10]
whenever possible.

Lemma 3.2. Let Rν(s) be as in (3.4) and 1 ≤ ν ≤ DR, where D > 0 is arbitrary. Then

Rν(s)� (c3R)
ν+1

where c3 may depend also on D.

Proof. For d = 2 this is essentially [10, Lemma 3.8] (notice the slightly different defini-
tion of Rν(s) in [10]), and the proof in the general case is similar. ut

Lemma 3.3. Under the hypotheses and with the notation of Lemma 3.1, and assuming
in addition that 2δ−1

1−δ ≤ M , we have

h(w, s) = c0(F )
0(a + 1/2− w/2)
0(b + 1/2+ w/2)

0(w)

(
d

2β1/d

)ds+w
exp

( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)

+O

(
A|σ |eO(R

2/V ) c
M
4 R

M+2
|0(w)|

|w|M+dσ−K−d/2+1

)
,

where A and c4 may also depend on D.
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Proof. By Lemma 3.1 we have

ρM �
(c2R)

M+2

(c1R)(M+1)/δ + e
−λ0v � RM+2−(M+1)/δ

+ e−λ0v,

and thanks to the restriction 2δ−1
1−δ ≤ M we see that the exponent of R is negative. There-

fore ρM � 1 and hence exp(ρM) = 1+O(ρM). Moreover, for w ∈ L∞ we have

e−λ0v � e−λ0|w| �
(M + 1)!
(λ0|w|)M+1 �

(
M + 1
λ0|w|

)M+1

�
(cR)M+2

|w|M+1 .

Hence in order to prove the lemma we have to show that∣∣∣∣0(a + 1/2− w/2)
0(b + 1/2+ w/2)

(
d

2β1/d

)ds+w
exp

( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)∣∣∣∣� A|σ |
eO(R

2/V )

|w|dσ−K−d/2
.

(3.9)
But from (3.6) with M = 1 we obtain∣∣∣∣0(a + 1/2− w/2)

0(b + 1/2+ w/2)

∣∣∣∣� A|σ ||w|d/2−dσ+KeO(R
2/V ), (3.10)

(
d

2β1/d

)ds+w
� A|σ | and from Lemma 3.2 (observing that we may choose c1 ≥ c3) we

have
M∑
ν=1

|Rν(s)|

ν(ν + 1)
1
|w|ν
� R

M∑
ν=1

1
ν(ν + 1)

(
c3R

v

)ν
�
R2

V
+ 1.

Therefore (3.9) follows and the proof of Lemma 3.3 is complete. ut

With the notation of Lemma 3.1 and writing

h∗M(w, s) =
0(a + 1/2− w/2)
0(b + 1/2+ w/2)

0(w) exp
( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)
,

I ∗X.M(s) =
1

2πi

∫
L∞

h∗M(w, s)(2ωX)
−w dw,

(3.11)

from Lemma 3.3 we get

IX(s) = c0(F )

(
d

2β1/d

)ds
I ∗X.M(s)+O(A

|σ |eO(R
2/V )(cR)M+2) (3.12)

uniformly for X ≥ X0, provided V ≥ (c1R)
1/δ and max

( 2δ−1
1−δ , d|σ |+d/2

)
≤ M ≤ DR.

Indeed, for w ∈ L∞ we have

0(w)� e−πv/2|w|−K−1/2 and
∣∣(dωX/β1/d)−w

∣∣� eπv/2,
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hence replacing h(w, s) in IX(s) by its main term in Lemma 3.3 we get an error of size

� A|σ |eO(R
2/V )cMRM+2

∫
∞

V

dv

vM+dσ−d/2+3/2 � A|σ |eO(R
2/V )(cR)M+2

since M ≥ d|σ | + d/2, and (3.12) follows.
In order to study h∗M(w, s) we write V0(s) = 1 identically and for µ ≥ 1,

Vµ(s) =
∑

1≤m≤µ

1
m!

∑
ν1≥1,...,νm≥1
ν1+···+νm=µ

m∏
j=1

Rνj (s)

νj (νj + 1)
. (3.13)

Lemma 3.4. Under the hypotheses and with the notation of Lemma 3.1 we have

exp
( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)
=

M∑
µ=0

Vµ(s)

wµ
+O

(
(c5R)

M

|w|δM
eO(RV

δ−1)

)
,

where c5 may also depend on D.

Proof. Expanding the exponential and recalling (3.13) we have

exp
( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)
=

M∑
µ=0

Vµ(s)

wµ
+ E

with

E =
∑
µ>M

Vµ,M(s)

wµ
, Vµ,M(s) =

∑
1≤m≤µ

1
m!

∑
1≤νj≤M

ν1+···+νm=µ

m∏
j=1

Rνj (s)

νj (νj + 1)
.

By Lemma 3.2 we obtain

Vµ,M(s)�
∑

1≤m≤µ

1
m!

∑
1≤νj≤M

ν1+···+νm=µ

(cR)µ+m
m∏
j=1

1
νj (νj + 1)

� (cR)µ
µ∑
m=0

(cR)m

m!
,

hence for µ ≤ 3
2cR we have

Vµ,M(s)� (cR)2µ/µ! (3.14)

thanks to [10, Lemma 3.6], while for µ > 3
2cR we get

Vµ,M(s)� (cR)µecR.

Therefore

E �
∑

M<µ≤3cR/2

(cR)2µ

|w|µµ!
+

∑
µ>3cR/2

(cR)µecR

|w|µ
= 61 +62,
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say. But, thanks to the restrictions on w and V ,

61 �
∑
µ>M

(cR)µ

|w|δµ

(cR)µ

µ!V (1−δ)µ
�
(cR)M

|w|δM
eO(RV

δ−1),

62 � ecR
∑

µ>3cR/2

(cR/|w|)µ � ecR(cR/|w|)3cR/2 � (cR/|w|)M

since M < 3
2cR. Lemma 3.4 is thus proved. ut

Now we transform the sum over µ in Lemma 3.4 by arguments similar to those in [10,
Section 3]; see Lemmas 3.11–3.18. We start with the following variant of [10, Lemma
3.13], asserting that for |w| ≥ 2M and 1 ≤ µ ≤ M ,

1
wµ
=

M∑
`=µ

Cµ,`

(w − 1) · · · (w − `)
+O

(
4MM!
(µ− 1)!

1
|w|M+1

)
, (3.15)

where the coefficients Cµ,` satisfy

|Cµ,`| ≤
(`− 1)!
(µ− 1)!

(
`− 1
µ− 1

)
(3.16)

by [10, Lemma 3.12]. Indeed, [10, Lemma 3.13] gives (3.15) with an error term

�
2MM!
(µ− 1)!

1
|w(w − 1) · · · (w −M)|

,

and |w(w − 1) · · · (w −M)| ≥ (|w| −M)M+1
≥ (|w|/2)M+1, which yields (3.15). Let

Aµ,`(s) =

`−µ∑
k=0

(−1)µ+`+kCµ+k,`

(
−µ

k

)
(s + 1)k. (3.17)

Lemma 3.5. Let 1 ≤ M ≤ DR with arbitrary D ≥ 1, 1 ≤ µ ≤ M and |w| ≥
max(2M, 3R + 4). Then with the above notation,

1
(w + s)µ

=

M∑
`=µ

Aµ,`(s)

w(w + 1) · · · (w + `− 1)
+O

(
24M

(DR)M−µ+1

|w|M+1

)
.

Proof. From (3.15) we have

(−1)µ

wµ
=

1
(−w)µ

=

M∑
`=µ

(−1)`Cµ,`
(w + 1) · · · (w + `)

+O

(
4MM!
(µ− 1)!

1
|w|M+1

)
,

hence
1

(w − 1)µ
=

M∑
`=µ

(−1)`+µCµ,`
w · · · (w + `− 1)

+O

(
8MM!
(µ− 1)!

1
|w|M+1

)
. (3.18)
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Since
∣∣ s+1
w−1

∣∣ ≤ R+1
|w|−1 ≤

1
3 thanks to the hypothesis |w| ≥ 3R+4, arguing as in [10, proof

of Lemma 3.14] and starting with (3.16) there, we have

1
(w + s)µ

=
1

(w − 1)µ
(
1+ s+1

w−1

)µ
=

M−µ∑
k=0

(
−µ

k

)
(s + 1)k

(w − 1)µ+k
+O

(
4M

(R + 1)M−µ+1

|w|M+1

)
.

Inserting (3.18) in the last equation and recalling (3.17) we obtain

1
(w+s)µ

=

M∑
`=µ

Aµ,`(s)

w(w+1) · · · (w+`−1)

+O

(M−µ∑
k=0

∣∣∣∣(−µk
)∣∣∣∣(R+1)k

8MM!
(k+µ−1)!

1
|w|M+1

)
+O

(
4M

(R+1)M−µ+1

|w|M+1

)
;

we denote by E1 and E2 the two error terms in the last equation. Since
∣∣(−µ

k

)∣∣ = (µ+k−1
k

)
,

using [10, Lemma 3.6] we obtain

E1 �
6MM!
|w|M+1

M−µ∑
k=0

(k + µ− 1)!
k!(µ− 1)!

(R + 1)k

(k + µ− 1)!
�

9MM!
|w|M+1(µ− 1)!

M−µ∑
k=0

(DR)k

k!

�
12MM!
|w|M+1

(DR)M−µ

µ!(M − µ)!
� 24M

(DR)M−µ

|w|M+1 .

The lemma follows by recalling the bound for E2. ut

Under the hypotheses of Lemma 3.5, but with |w| ≥ max(2M + R, 4(R + 1)), we also
have

1
wµ
=

M∑
`=µ

Aµ,`(−s)

(w + s) · · · (w + s + `− 1)
+O

(
50M

(DR)M−µ+1

|w|M+1

)
. (3.19)

Indeed, we apply Lemma 3.5 with w + s in place of w and −s in place of s, thus getting
the main term in (3.19) plus an error satisfying (since |w + s| ≥ |w| − |s| ≥ |w|/2)

� 25M
(DR)M−µ+1

|w + s|M+1 � 50M
(DR)M−µ+1

|w|M+1 .

Recalling (3.4), (3.17) and the definition of b = b(s) before Lemma 3.1, writing for
ν ≥ 0,

Qν(s) =

ν∑
µ=0

1
2µ
Vµ(s)Aµ,ν(−b − 1/2), (3.20)

and observing that Q0(s) = 1 identically, we have
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Lemma 3.6. Under the hypotheses and with the notation of Lemma 3.1 we have

exp
( M∑
ν=1

Rν(s)

ν(ν + 1)
1
wν

)
= 1+

M∑
ν=1

Qν(s)

(b + 1/2+ w/2) · · · (b + 1/2+ w/2+ ν − 1)

+O

(
(c6R)

M

|w|δM
eO(RV

δ−1)

)
,

where c6 may also depend on D.

Proof. From (3.19) applied to 1
wµ
=

1
2µ

1
(w/2)µ (changing ` to ν) and recalling (3.20) we

get

M∑
µ=0

Vµ(s)

wµ
=

M∑
µ=0

Vµ(s)

2µ

M∑
ν=µ

Aµ,ν(−b − 1/2)
(w/2+ b + 1/2) · · · (w/2+ b + 1/2+ ν − 1)

+O

(
cM

M∑
µ=0

|Vµ(s)|

2µ
(DR)M−µ+1

|w|M+1

)

= 1+
M∑
ν=1

Qν(s)

(b + 1/2+ w/2) · · · (b + 1/2+ w/2+ ν − 1)
+ E,

say. In view of the restriction on M , for 1 ≤ µ ≤ M from (3.14) we have

Vµ(s)� (cR)2µ/µ!;

hence, since w ∈ L∞,

E � cM
(cR)M+1

|w|M+1

M∑
µ=0

(cR)µ

µ!
� cM

(c2R)M

|w|δM

M∑
µ=0

Rµ

µ!V (1−δ)µ
� cM

RM

|w|δM
eO(RV

δ−1),

and the lemma follows. ut

Since Q0(s) = 1 identically, writing

h∗∗M (w, s) =
0(a + 1/2− w/2)
0(b + 1/2+ w/2)

0(w)

×

(
1+

M∑
ν=1

Qν(s)

(b + 1/2+ w/2) · · · (b + 1/2+ w/2+ ν − 1)

)

=

M∑
ν=0

Qν(s)
0(a + 1/2− w/2)

0(b + 1/2+ w/2+ ν)
0(w),

I ∗∗X.M(s) =
1

2πi

∫
L∞

h∗∗M (w, s)(2ωX)
−w dw,
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from (3.11), (3.12) and Lemma 3.6 we obtain

IX(s) = c0(F )

(
d

2β1/d

)ds
I ∗∗X.M(s)+O(A

|σ |eO(R
2/V+RV δ−1)(cR)M+2) (3.21)

uniformly for X ≥ X0, provided V ≥ (c1R)
1/δ and max

( 2δ−1
1−δ ,

1
δ
(d|σ | + d/2 + 2)

)
≤

M ≤ DR. Indeed, by Lemma 3.6 we have

h∗M(w, s) = h
∗∗

M (w, s)+O

(
(cR)MeO(RV

δ−1)

∣∣∣∣0(a + 1/2− w/2)
0(b + 1/2+ w/2)

0(w)

∣∣∣∣ 1
|w|δM

)
and, for w ∈ L∞, 0(w)� e−πv/2|w|−K−1/2 and |(2ωX)−w| � eπv/2. Hence, thanks to
(3.10), replacing h∗M(w, s) by h∗∗M (w, s) in I ∗X,M(s) causes an error of size

� A|σ |(cR)MeO(R
2/V+RV δ−1)

∫
∞

V

v−(δM−d|σ |−d/2) dv � A|σ |(cR)MeO(R
2/V+RV δ−1)

since the integral is convergent under the above conditions on M . Therefore, (3.21) fol-
lows from (3.12).

Lemma 3.7. Let Qν(s) be as in (3.20) and 1 ≤ ν ≤ DR, where D ≥ 1 is arbitrary. Then

Qν(s) ≤ (c7R)
2ν/ν!,

where c7 may also depend on D.

Proof. From (3.17), (3.20) and the definition b = b(s) = ds/2+ ξF /2 we have

Qν(s)� cν
ν∑

µ=0

1
2µ
|Vµ(s)|

ν−µ∑
k=0

|Cµ+k,ν |

∣∣∣∣(−µk
)∣∣∣∣(R + 1)k.

Recalling that in the proof of Lemma 3.4 we have Vµ,M(s) = Vµ(s) for µ ≤ M and that
M ≤ DR, from (3.14) we have

Vµ(s)� (cR)2µ/µ!.

Hence by (3.16) and |
(
−µ
k

)
| =

(
µ+k−1
k

)
we get

Qν(s)� cν
ν∑

µ=0

ν−µ∑
k=0

(ν − 1)!
µ!(µ+ k − 1)!

(
ν − 1

µ+ k − 1

)(
µ+ k − 1

k

)
(cR)2µ+k

� cν
ν∑

µ=0

ν−µ∑
k=0

ν!

µ!(µ+ k)!
2ν2µ+k−1(cR)2µ+k � cνν!

ν∑
µ=0

ν−µ∑
k=0

(cR)2µ+k

µ!(µ+ k)!

� cνν!

ν∑
k=0

(cR)k

k!

ν−k∑
µ=0

(
(cR)µ

µ!

)2

� cνν!

ν∑
k=0

(cR)k

k!

(ν−k∑
µ=0

(cR)µ

µ!

)2
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thanks to (µ + k)! ≥ µ!k!. Since ν ≤ DR and since the last constant c may clearly be
chosen larger than D, we may apply [10, Lemma 3.6], thus getting (recall that the value
of c is not necessarily the same at each occurrence!)

Qν(s)� cνν!

ν∑
k=0

(cR)k

k!

(
1+

(cR)2(ν−k)

((ν − k)!)2

)
,

and by repeated application of [10, Lemma 3.6] we have

Qν(s)� cνν!

(
1+

(cR)ν

ν!
+

ν∑
k=0

(cR)2ν−k

k!(ν − k)!(ν − k)!

)

� cνν! + (cR)ν + (cR)ν
ν∑
k=0

(
ν

k

)
(cR)ν−k

(ν − k)!

� cνν! + (cR)ν + (cR)ν
ν∑
k=0

(cR)ν−k

(ν − k)!

� cνν! + (cR)ν + (cR)ν(1+ (cR)ν/ν!)� (cR)2ν/ν!

since ν ≤ DR. Lemma 3.7 is thus proved. ut

For z ∈ C and integer ν ≥ 1 we define

Pν(z) =
∏

0≤j≤ν−1
|z+j |≥1/2

(z+ j). (3.22)

Lemma 3.8. With the above notation we have |Pν(z)| ≥ 2−ν(ν − 1)!.

Proof. By induction. For ν = 1 the right hand side equals 1/2, while the left hand side is
at least 1/2. Since ν = |z− (z+ ν)| ≤ |z| + |z+ ν|, we have |z| ≥ ν/2 or |z+ ν| ≥ ν/2.
Hence

Pν+1(z) =

{
zPν(z+ 1) if |z| ≥ ν/2,
(z+ ν)Pν(z) if |z+ ν| ≥ ν/2.

Therefore, for the appropriate ε = 0 or 1, from the inductive hypothesis we get

|Pν+1(z)| ≥
ν

2
|Pν(z+ ε)| ≥

ν

2
(ν − 1)!

2ν
=

ν!

2ν+1 ,

and the lemma follows. ut

The proof of Theorem 2 is based on the following lemma, which summarizes the results
obtained so far in this section. Let (recall the definition of a and b after (3.4))

IX,ν(s) =
1

2πi

∫
(−K)

0(a + 1/2− w/2)
0(b + 1/2+ w/2+ ν)

0(w)(2ωX)−w dw. (3.23)
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Lemma E. Let −L ≤ σ ≤ 3/2 with L ≥ 3/2, |s| ≤ R with R ≥ 1, 0 < δ < 1, ηδ > 1,
δ′ = max(0, 2− 1/δ), andM = [dL/δ]+H where H = H(F, δ, η) > 0 is a sufficiently
large integer. Then, under the hypotheses of Theorem 2 and with the notation in (2.3),
(3.20) and (3.23), we have

FX(s, α) = c(F )
a(nα)

n1−s
α

q−sF (πd)ds
M∑
ν=0

Qν(s)IX,ν(s)+O(A
LRηdL+BeC(R

δ′
+R(3−ηδ)/2))

uniformly for X ≥ X0, where c(F ) 6= 0.

Proof. We have to estimate the contribution to IX(s) of the part (−K − i∞,−K + iV )
of the line of integration in the integrals IX,ν(s) (see (3.23)). Recalling (3.22), by the
factorial formula we have

0(b+1/2+w/2+ν) = 0(b+1/2+w/2)Pν(b+1/2+w/2)(b+1/2+w/2+j0), (3.24)

where 1 ≤ j0 ≤ ν−1 is such that |b+1/2+w/2+j0| < 1/2, if it exists. If such a j0 does
not exist, then the factor b + 1/2+ w/2+ j0 is not present in (3.24). Let w = −K + iv
with v < V . By Lemma 3.8, the reflection formula for the 0 function, the inequality
|z/sin(z− πj0)| � exp(−|z|) for |z| < 1/2 and the definition of b after (3.4) we get

|0(b + 1/2+ w/2+ ν)| �
1

|0(1/2− b − w/2)|
(ν − 1)!

2ν
|b + 1/2+ w/2+ j0|

|sin(π(b + 1/2+ w/2))|

�
1

|0(1/2− b − w/2)|
ν!

ν2ν
e−π |dt+v|/2. (3.25)

Moreover, recalling also the definition of a after (3.4), from Stirling’s formula we have

0(w)� e−π |v|/2|w|−K−1/2,

0(a + 1/2− w/2)� (1+ |dt + v|/2)d|σ |/2+Be−π |dt+v|/4,

0(1/2− b − w/2)� (1+ |dt + v|/2)d|σ |/2+Be−π |dt+v|/4.

Hence, since |(2ωX)−w| = |2ωX|Kev argωX , we obtain

∫
−K+iV

−K−i∞

0(a + 1/2− w/2)
0(b + 1/2+ w/2+ ν)

0(w)(2ωX)−w dw

�
ν2ν

ν!
A|σ |

∫ V

−∞

(1+ |dt + v|)d|σ |+B

(1+ |v|)K+1/2 e−π |v|/2+v argωX dv

�
ν2ν

ν!
A|σ |V d|σ |+B +

ν2ν

ν!
A|σ |

∫
∞

V

e−vvd|σ |+B dv

�
ν2ν

ν!
A|σ |V d|σ |+B

{
1+ e−V

(
1+

1+ |σ |2

V

)}
�
ν2ν

ν!
A|σ |V d|σ |+B (3.26)
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from (2.17) and the fact that V ≥ (c1R)
1/δ . Thanks to (3.26), to the choice of M and to

Lemma 3.7, the contribution of the left hand side of (3.26) to IX(s) is

� A|σ |V d|σ |+BM2M
M∑
ν=0

|Qν(s)|

ν!
� ALV d|σ |+B

M∑
ν=0

(CR)2ν

(ν!)2

� ALV d|σ |+c
M∑
ν=0

(CR)(3−ηδ)ν+(ηδ−1)ν

(ν!)2

� ALV d|σ |+c(cR)(ηδ−1)M
( ∞∑
ν=0

(CR)ν(3−ηδ)/2

ν!

)2

� ALV d|σ |+c(cR)(ηδ−1)MeCR
(3−ηδ)/2

. (3.27)

If we now recall that qF = (2π)dQ2β and write c(F ) = ωQc0(F ), then Lemma E
follows from (3.1), (3.2), (3.21), (3.23) and (3.27), by choosing V = (cR)1/δ . ut

Now we show how Theorem 2 follows from Lemma E and some of the arguments in our
previous treatment of the standard twist in [4] and [7]. Under the hypotheses of Lemma E
and with the notation there we write

HX(s, α) = FX(s, α)− c(F )
a(nα)

n1−s
α

q−sF (πd)ds
M∑
ν=0

Qν(s)IX,ν(s)

and note that for σ > 1 the limit

lim
X→∞

HX(s, α) = H(s, α)

exists. Indeed, clearly FX(s, α) tends to F(s, α) for σ > 1, while the treatment of the
limit of the integrals IX,ν(s) as X → ∞ is borrowed from our previous papers on this
subject; see in particular [4, Theorem 5.1] in the case d = 1, and [7, Lemma 2.4] in the
general case. Note, however, that [7, Lemma 2.4] deals with a normalized situation where
s, λj and µj mean, in our present notation,

ds −
d − 1

2
,

λj

d
, µj +

λj

2
(1− 1/d),

respectively (see [7, discussion before and after (2.2) and (2.3), pp. 320–321]). As a
consequence we have

H(s, α) = F(s, α)− c(F )
a(nα)

n1−s
α

q−sF (πd)ds
M∑
ν=0

Qν(s)Iν(s), (3.28)

where, recalling that a = a(s) = d
2 (1 − s) +

1
2ξF and b = b(s) = d

2 s +
1
2ξF (see after

(3.4)),
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Iν(s) = −

K∑
k=0

1
k!

0(a + 1/2+ k/2)
0(b + 1/2− k/2+ ν)

(
i

2

)−k
+
√
π
0(a + 1/2)0(b − a − 1/2+ ν)
0(−a)0(b + ν)0(1/2+ b + ν)

− i
√
π

0(a + 1)0(b − a − 1/2+ ν)
0(1/2− a)0(b + ν)0(1/2+ b + ν)

= −I (1)ν (s)+
√
πI (2)ν (s)− i

√
πI (3)ν (s), (3.29)

say. [4, Theorem 5.1] deals only with I0(s), while [7, Lemma 2.4] deals with all Iν(s), de-
noted by 0K,ν(s) there. From Lemma E and Vitali’s convergence theorem (see Lemma C
and the proof of Theorem 1 in Section 2), we therefore infer that the limit functionH(s, α)
exists and is holomorphic for |s| ≤ R and −L ≤ σ ≤ 3/2, and satisfies

H(s, α)� ALRηdL+BeC(R
δ′
+R(3−ηδ)/2). (3.30)

Since R and L are arbitrary, from (3.28) and (3.29) we see in particular that F(s, α) has
meromorphic continuation to C. Moreover, from [7, Lemma 2.5] (recall the normalization
there), F(s, α) is holomorphic over C except possibly for simple poles at the points sk in
(1.2) satisfying (1.3), coming from the term 0(b − a − 1/2+ ν) in (3.29). Our next goal
is therefore estimating the last term in (3.28) away from such poles.

Before starting the estimation of such a term, we remark that we shall always assume
that s is δ0-away from any pole which might arise during the estimation. We call such
poles potential poles, and we shall deal with them at the end of the proof. Moreover, we
always assume that 0 ≤ k ≤ K and |s| ≤ R. We deal first with I (1)ν (s), in a similar way
to the proof of Lemma E. Indeed, following (3.24) we have

0(b+ 1/2− k/2+ ν) = 0(b+ 1/2− k/2)Pν(b+ 1/2− k/2)(b+ 1/2− k/2− j0(k)),

where 1 ≤ j0(k) ≤ ν − 1 is such that |b + 1/2−w/2− j0(k)| < 1/2, if it exists. Hence
similarly to (3.25) we get

|0(b + 1/2− k/2+ ν)| �
1

|0(1/2− b + k/2)|
ν!

ν2ν
e−πd|t |/2,

and so

I (1)ν (s)�
ν2ν

ν!

K∑
k=0

1
k!
|0(a + 1/2+ k/2)0(1/2− b + k/2)|eπd|t |/2.

Using (2.6), away from the potential poles we have

|0(a + 1/2+ k/2)0(1/2− b + k/2)| � ALRdL+Be−πd|t |/2,

therefore under the above mentioned assumptions we have

I (1)ν (s)�
AL

ν!
RdL+B . (3.31)
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In order to estimate I (2)ν (s) we apply the duplication formula, the factorial formula and
recall (3.22), thus getting

0(b + ν)0(1/2+ b + ν) =
2−ds−ξF−2ν
√
π

0(ds + ξF + 2ν)

=
2−ds−ξF−2ν
√
π

0(ds + ξF + ν)Pν(ds + ξF + ν)(ds + ξF + j0(ν)),

where ν ≤ j0(ν) ≤ 2ν− 1 is such that |ds+ ξF + j0(ν)| < 1/2, if it exists. Hence by the
reflection formula we obtain

I (2)ν (s) =
√
π 2ds+ξF+2ν sin(π(ds/2− d/2− ξF /2))

(ds + ξF + j0(ν))Pν(ds + ξF + ν)

×
0((d+1)/2−ds/2+ ξF /2)0(1+d/2−ds/2+ ξF /2)0(ds− (d+1)/2+ idθF +ν)

0(ds+ ξF +ν)
,

(3.32)

and by Lemma 3.8 we get, away from potential poles,

I (2)ν (s)�
ALcν

ν!
eπd|t |/2|0((d + 1)/2− ds/2+ ξF /2)0(1+ d/2− ds/2+ ξF /2)|

×

∣∣∣∣0(ds − (d + 1)/2+ idθF )
0(ds + ξF )

∣∣∣∣ ν−1∏
j=0

∣∣∣∣ds − (d + 1)/2+ idθF + j
ds + ξF + j

∣∣∣∣.
Since each factor of the last product is bounded away from the potential poles we have

ν−1∏
j=0

∣∣∣∣ds − (d + 1)/2+ idθF + j
ds + ξF + j

∣∣∣∣� cν,

and by Stirling’s formula

|0((d + 1)/2− ds/2+ ξF /2)0(1+ d/2− ds/2+ ξF /2)| � e−πd|t |/2RdL+B .

Moreover, by the reflection formula and Stirling’s formula we get∣∣∣∣0(ds − (d + 1)/2+ idθF )
0(ds + ξF )

∣∣∣∣� ∣∣∣∣ 0(1− ds − ξF )
0((d + 3)/2− ds − idθF )

∣∣∣∣� RB .

Therefore, from (3.32) and the above bounds we conclude that under the above assump-
tions

I (2)ν (s)�
cν

ν!
ALRdL+B . (3.33)

Similar computations show that the same bound holds for I (3)ν (s) as well, hence from
(3.29), (3.31) and (3.33) we obtain

Iν(s)�
cν

ν!
ALRdL+B
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for 0 ≤ ν ≤ M and s as in Lemma E, away from the potential poles. Therefore from
Lemma 3.7 we have

c(F )
a(nα)

n1−s
α

q−sF (πd)ds
M∑
ν=0

Qν(s)Iν(s)� ALRdL+B
M∑
ν=0

(CR)2ν

(ν!)2

� ALRηdL+B
M∑
ν=0

(CR)2ν−(η−1)dL

(ν!)2
,

and since (η − 1)dL ≥ (η − 1)(δM − c) ≥ δ(η − 1)ν − c we obtain
M∑
ν=0

(CR)2ν−(η−1)dL

(ν!)2
� Rc

M∑
ν=0

(CR)(2−(η−1)δ)ν

(ν!)2
� Rc

( ∞∑
ν=0

(CR)(1−(η−1)δ/2)ν

(ν!)2

)2

� RceCR
1−(η−1)δ/2

� RceCR
(3−ηδ)/2

,

in view of 1− (η−1)δ/2 ≤ (3−ηδ)/2. As a consequence, away from the potential poles
we have

c(F )
a(nα)

n1−s
α

q−sF (πd)ds
M∑
ν=0

Qν(s)Iν(s)� ALRηdL+BeCR
(3−ηδ)/2

. (3.34)

Hence from (3.28), (3.30) and (3.34) we finally obtain

F(s, α)� ALRηdL+BeC(R
δ′
+R(3−ηδ)/2) (3.35)

away from the potential poles, provided |s| ≤ R and −L ≤ σ ≤ 3/2. However, we
already know from [7, Theorem 1] that F(s, α) is holomorphic over C except possibly at
s = sk , k = 0, 1, . . . . Hence, thanks to the maximum modulus principle, the bound (3.35)
holds for every s outside discs of radius δ0 around the points sk , and Theorem 2 follows.

4. Proof of Theorem 4

Let f (n,α) be as in Theorem 4 and define

Af =
{
ω =

N∑
ν=0

mνκν : mν ∈ Z, mν ≥ 0
}
,

A(ω) =
∑

m0≥0,...,mN≥0∑N
ν=0 mνκν=ω

∏N
ν=0(−2πiαν)mν

m0! · · ·mN !
;

note that Af has no accumulation points in R. We have

Lemma 4.1. We have the bounds∑
ω∈Af , ω≤x

1� xN+1 and A(ω)� e−cω logω with c = c(f ) > 0,

and the series
∑
ω∈Af A(ω) is absolutely convergent.
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Proof. The first bound is trivial, since for every ν we have mν ≤ 1 + x/κν , and hence
the number of possible ω ∈ Af up to x is �

∏N
ν=0(1 + x/κν) � xN+1. To prove the

second bound we write r(ω) for the number of representations
∑N
ν=0mνκν = ω, and Mν

for the maximum of the mν occurring in such representations. Recalling that the value of
the constants c may not be the same at each occurrence we have

A(ω)�
r(ω)

∏N
ν=0(2π |αν | + 1)Mν

[ω/κN ]!
�
ωN+1∏N

ν=0(2π |αν | + 1)ω/κν

[ω/κN ]!

�
ωN+1cω

[ω/κN ]!
�

cω

ωω/κN
,

and the second bound follows. Finally, the absolute convergence of the series follows by
partial summation from the first two bounds. ut

Let now F(s) be as in Theorem 4. Then, expanding the exponential, thanks to the good
convergence properties of the series involved we get, for σ > 1,

F(s; f ) =

∞∑
n=1

a(n)

ns
e(−f (n,α)) =

∞∑
n=1

a(n)

ns

N∏
ν=0

e−2πiανn−κν

=

∞∑
n=1

a(n)

ns

∑
m0≥0,...,mN≥0

∏N
ν=0(−2πiανn−κν )mν

m0! · · ·mN !

=

∑
m0≥0,...,mN≥0

∏N
ν=0(−2πiαν)mν

m0! · · ·mN !

∞∑
n=1

a(n)

ns+
∑N
ν=0 mνκν

=

∑
ω∈Af

A(ω)F (s + ω), (4.1)

the last series being clearly absolutely convergent for σ > 1 thanks to Lemma 4.1. More-
over, for any given s ∈ C we have σ + ω ≥ 2 for all but finitely many values of ω ∈ Af ,
hence such a series is absolutely and uniformly convergent on compact subsets of C, ex-
cept at the points s = s0−ω where s0 is a pole of F(s) and ω ∈ Af is such thatA(ω) 6= 0.
Therefore F(s; f ) is meromorphic on C, its poles are contained in the same horizontal
strip of F(s), and F(s; f ) is entire if F(s) is entire. Further, let σ be fixed and note that
by the above observation we may clearly write

F(s; f ) = F(s)+
∑
ω∈Af

0<ω≤ω0

A(ω)F (s + ω)+ B(s) (4.2)

where ω0 = ω0(σ ) is such that σ + ω0 ≤ 3/2 and B(s) is bounded as |t | → ∞. Thanks
to the properties of the Lindelöf µ-function of Dirichlet series, in particular the fact that
it is strictly decreasing on any interval where it is positive, (4.2) immediately shows that
µF (σ ) = µF (σ ; f ), and Theorem 4 is proved.
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5. Proof of Theorem 5

Suppose first that F ∈ M(ρ, τ), τ > 0, and 0 < λ < 1/ρ. As in Sections 2 and 3, we may
assume that α > 0 and σ ≤ 3/2; we deal first with the case t > 0. Let u0 = (2 − σ)/λ,
v0 = τ/λ,

L−∞ = (u0 − i∞, u0 + iv0), Lv0 = (u0 + iv0,−∞+ iv0),

and, using the notation in the proof of Theorem 1, write

F λX(s, α) =

∞∑
n=1

a(n)

ns
e−zXn

λ

.

Since F(s) is holomorphic for |t | ≥ τ , and =(s + λw) > τ when v ≥ v0, by Mellin’s
transform and arguments already used in the proof of Theorem 1 we have

F λX(s, α) =
1

2πi

∫
(u0)

F(s + λw)0(w)z−wX dw

=
1

2πi

(∫
L−∞
+

∫
Lv0

)
F(s + λw)0(w)z−wX dw = F

(1)
X (s)+ F

(2)
X (s), (5.1)

say. Clearly,

F
(1)
X (s)�

∫ v0

−∞

|0(u0 + iv)z
−u0−iv
X | dv

and for w ∈ L−∞ we have

log |0(w)| = <((w − 1/2) logw − w)+O(1)

= (u0 − 1/2) log |w| − v arctan
λv

2− σ
+O(1+ |σ |)

= (u0 − 1/2) log |w| − |v|
(
π/2+O

(
|σ | + 1
|v|

))
+O(1+ |σ |)),

therefore
0(w)� A|σ ||w|u0−1/2e−π |v|/2.

Moreover |z−wX | = |zX|
−u0ev arg zX � A|σ |ev(π/2+O(1/X)), hence

F
(1)
X (s)� A|σ |

∫ v0

−∞

|w|u0−1/2e−π |v|/2+πv/2+O(|v|/X) dv

� A|σ | + A|σ |
∫
∞

0
|u0 + iv|

u0−1/2e−v(π+O(1/X)) dv

� A|σ | + A|σ |(1+ |σ |)|σ |/λ+B + A|σ |
∫
∞

0
(1+ v)u0−1/2e−v(π+O(1/X)) dv

� A|σ | + A|σ |(1+ |σ |)|σ |/λ+B + A|σ |0(|σ |/λ+ B)� A|σ |(1+ |s|)|σ |/λ+B (5.2)

uniformly for X ≥ X0.
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Recalling (1.6), for w ∈ Lv0 we have

F(s + λw)� A|σ+λu|(1+ |s + λw|)ρ|σ+λu|+BeC|s+λw|
δ

� A|σ |+|λu|(1+ |s + λw|)ρ|σ |−λρu+BeC(|s|
δ
+|u|δ),

and also, thanks to the reflection formula and Stirling’s formula,

0(w)�
1

|0(1− w)|
� A|u|(1+ |u|)−|u|, z−wX � A|u|.

Therefore

F
(2)
X (s)� A|σ |eC|s|

δ

∫ u0

−∞

A|u|(1+ |s + λw|)ρ|σ |−λρu+B(1+ |u|)−|u| du

� A|σ |eC|s|
δ

∫
−|s|

−∞

A|u|(1+ |u|)−(1−λρ)|u|+ρ|σ |+B du

+ A|σ |eC|s|
δ

(1+ |s|)ρ|σ |+B
∫ u0

−|s|

A|u|
(1+ |s|)−λρu

(1+ |u|)|u|
du

� A|σ |eC|s|
δ

(1+ |s|)ρ|σ |+B
(

1+
∫
|s|

1
Au
(1+ |s|)λρu

uu
du

)
� A|σ |(1+ |s|)ρ|σ |+BeC(|s|

δ
+|s|λρ ) (5.3)

uniformly forX ≥ X0, since the integrand in the last but one row is maximal (essentially)
when u = c|s|λρ . Hence from (5.1)–(5.3) we find that for σ ≤ 3/2 and t > 0,

F λX(s, α)� A|σ |(1+ |s|)|σ |/λ+BeC(|s|
δ
+|s|λρ ) (5.4)

uniformly for X ≥ X0.
The case t ≤ 0 is partly similar to the previous case, thus we will be more concise;

all the estimates below hold uniformly for X ≥ X0. Given F ∈ M(ρ, τ) we write u0 =

(2− σ)/λ, v0 = (τ − t)/λ and consider again the half-lines L−∞ and Lv0 (with the new
value of v0). Since =(s + λw) ≥ τ for v ≥ v0, as in the previous case we have

F λX(s, α) =
1

2πi

(∫
L−∞
+

∫
Lv0

)
F(s + λw)0(w)z−wX dw = F

(3)
X (s)+ F

(4)
X (s), (5.5)

say, and a similar argument gives, uniformly for X ≥ X0,

F
(3)
X (s)� A|σ |(1+ |s|)|σ |/λ+B . (5.6)

Recalling again (1.6), for w ∈ Lv0 we have

F(s + λw)� A|σ |+|λu|(1+ |σ + λu|)ρ|σ+λu|+BeC|σ+λu|
δ

.
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Moreover, for w ∈ Lv0 with u ≥ 0 from Stirling’s formula we get

|0(w)z−wX | � A|σ |(1+ |s|)ue−ue−v0 argwev0 arg zX

� A|σ |(1+ |s|)ue−v0(u/v0+arctan(v0/u))eπv0/2 � A|σ |(1+ |s|)u

since x + arctan(1/x) ≥ π/2 for x > 0. Hence the contribution to F (4)X (s) coming from
the part of Lv0 with u ≥ 0 is

� A|σ |
∫ u0

0
(1+ |s|)ρ|σ |+u(1−λρ)+B du� A|σ |(1+ |s|)|σ |/λ+B . (5.7)

For w ∈ Lv0 with u < 0 we have, again by the reflection and Stirling formulae,

|0(w)z−wX | � e−πv0
1

|0(1− w)|
A|u|eπv0/2 � |w|uA|u|.

Hence the contribution to F (4)X (s) coming from the part of Lv0 with −c(1+ |σ |) ≤ u ≤ 0
(here c > 1 is an arbitrary constant) is

� Ac|σ |(1+ |s|)ρ|σ |+B
∫ c(1+|σ |)

0

(1+ |σ |)λρu

|w|u
du

� Ac|σ |(1+ |s|)ρ|σ |+B max
0≤u≤c(1+|σ |)

(1+ |σ |)λρu

|w|u
� Ac|σ |(1+ |s|)ρ|σ |+B , (5.8)

since (recall that λ < 1/ρ)

max
0≤u≤c(1+|σ |)

(
(1+ |σ |)λρ

|w|

)u
≤ 1+ max

0≤u≤(1+|σ |)λρ

(
(1+ |σ |)λρ

|w|

)u
� (1+ |σ |)λρ(1+|σ |)

λρ

� A|σ |.

Finally, the contribution to F (4)X (s) coming from the part of Lv0 with u < −c(1+ |σ |) is

� A|σ |
∫
∞

c(1+|σ |)
Auuρ|σ |+(λρ−1)u+B du = A|σ |

∫
∞

c(1+|σ |)
ef (u)

du

u2 ,

where f (u) = u logA + (ρ|σ | + B) log u − (1 − λρ)u log u + 2. But then f ′(u) =
−(1− λρ) log u+O(1), therefore f ′(u) < 0 for u > c(1+ |σ |) if c is large enough, and
hence this contribution is

� A|σ |ef (c(1+|σ |)) � A|σ |(1+ |s|)ρ|σ |+B , (5.9)

with such a choice of c. From (5.7)–(5.9) we obtain

F
(4)
X (s)� A|σ |(1+ |s|)|σ |/λ+B , (5.10)

hence from (5.5), (5.6) and (5.10) we conclude that for σ ≤ 3/2 and t ≤ 0,

F λX(s, α)� A|σ |(1+ |s|)|σ |/λ+B (5.11)

uniformly for X ≥ X0.
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From (5.4) and (5.11) we get, for σ ≤ 3/2,

F λX(s, α)� A|σ |(1+ |s|)|σ |/λ+BeC(|s|
δ
+|s|λρ ) (5.12)

uniformly for X ≥ X0. Hence the argument based on Vitali’s convergence theorem in
the proof of Theorem 1 shows that F λ(s, α) is entire and satisfies the bound in (5.12),
therefore F λ(s, α) belongs to M(1/λ) and the first part of Theorem 5 is proved.

Suppose now that F ∈ M(ρ) and 0 < λ < 1/ρ; again we may assume that α > 0. In
this case F(s) is entire, and the argument is simpler. Starting with the usual integral rep-
resentation of F λX(s, α) (recall thatX is a large integer) and shifting the line of integration
to u = −X − 1/2, thanks to the decay of the 0 function on vertical strips we obtain

F λX(s, α) =
1

2πi

∫
(u0)

F(s + λw)0(w)z−wX dw

=

X∑
k=0

(−1)k

k!
F(s − λk)zkX +O

(∫
(−X−1/2)

|F(s + λw)0(w)z−wX dw|

)
. (5.13)

Next we show that, as X → ∞, the last integral tends to 0 and the resulting series
is suitably convergent, thus it represents an entire function. This provides the analytic
continuation and series representation of F λ(s, α) over the whole complex plane, since
F λX(s, α)→ F λ(s, α) for σ > 1. Moreover, we get suitable bounds for that series, show-
ing that F λ(s, α) belongs to M(ρ) and thus closing the proof of Theorem 5.

Once again thanks to (1.6), for u = −X − 1/2 we have

F(s + λw)� A|σ |+λ(X+1/2)(|s| + λ|w|)ρ(|σ |+λX)+BeC(|s|+λ|w|)
δ

,

and moreover (reflection and Stirling formulae)

0(w)� e−π |v|
1

|0(1− w)|
� e−π |v|+|v| |arg(−w)|

|w|−X−1eX,

z−wX � |zX|
X+1/2ev arg zX .

Hence

F(s + λw)0(w)z−wX � A|σ |+X(|s| + λ|w|)ρ(|σ |+λX)+B |w|−X−1eC(|s|+λ|w|)
δ

e−c(X)|v|

where c(X) � 1/X. Let K ⊂ C be compact, s ∈ K and X ≥ X0(K, F, ρ, λ). Then the
above bound becomes

F(s + λw)0(w)z−wX � AX|w|−(1−λρ)X+BeC|w|
δ
−c(X)|v|

� AXX−(1−λρ)XeC|v|
δ
−c|v|/X

uniformly for s ∈ K (constants may now also depend on K), and therefore∫
(−X−1/2)

|F(s + λw)0(w)z−wX dw| � AXX−(1−λρ)X → 0
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as X→∞ since λ < 1/ρ. Finally, we show that the series

∞∑
k=0

(−1)k

k!
F(s − λk)(2πiα)k, (5.14)

obtained from (5.13) as X→∞, is absolutely and uniformly convergent for s ∈ K and,
at the same time, we give the required bounds to show that F λ(s, α) belongs to M(ρ).
Indeed, from (1.6) we get

∞∑
k=0

1
k!
|F(s − λk)|(2πα)k �

∞∑
k=0

1
k!
A|σ |+λk(|s| + λk)ρ(|σ |+λk)+BeC(|s|+λk)

δ

(2πα)k,

(5.15)
which proves the absolute and uniform convergence since the term k! dominates the terms
in the numerator, again thanks to the fact that λ < 1/ρ. Moreover, for |s| sufficiently large
we split the series in the right hand side of (5.15) into S1 + S2, where S1 is the sum with
k ≤ |s|/λ and S2 with k > |s|/λ. But since λ < 1/ρ,

S1 � A|σ |eC|s|
δ

(1+ |s|)ρ|σ |+B
∑

k≤|s|/λ

(C|s|ρλ)k

k!
≤ A|σ |(1+ |s|)ρ|σ |+BeC(|s|

δ
+|s|λρ )

� A|σ |(1+ |s|)ρ|σ |+BeC|s|
δ

with a suitable δ < 1, and

S2 � A|σ |
∑

k>|s|/λ

ek

kk
AkkρλkeCk

δ

� A|σ |
∑

k>|s|/λ

Ak

k(1−λρ)k
� A|σ |,

and the result follows.
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