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Abstract. We define a generalized Springer correspondence for the group GL(n) over any field.
We also determine the cuspidal pairs, and compute the correspondence explicitly. Finally we define
a stratification of the category of equivariant perverse sheaves on the nilpotent cone of GL(n) satis-
fying the ‘recollement’ properties, and with subquotients equivalent to categories of representations
of a product of symmetric groups.
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1. Introduction

1.1.
This paper is the first in a series devoted to constructing and describing a modular gen-
eralized Springer correspondence for reductive algebraic groups, with a view to a future
theory of modular character sheaves. In this part we lay the foundations of our approach,
and we construct and describe explicitly the correspondence in the case G = GL(n).

1.2.
Let G be a connected complex reductive group with Weyl group W , and let k be a
field. The Springer correspondence over k is an injective map from the set of isomor-
phism classes of irreducible k[W ]-modules to the set of isomorphism classes of simple
G-equivariant perverse k-sheaves on the nilpotent cone NG for G:

Irr(k[W ]) ↪→ Irr(PervG(NG,k)). (1.1)
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For k of characteristic zero, this correspondence was effectively defined by Springer [Sp].
For k of positive characteristic, this modular Springer correspondence was defined by the
third author [J1]; see also [AHJR, Corollary 5.3].

In general, the map (1.1) is not surjective, and one may seek to understand the objects
missing from its image. For k of characteristic zero, a uniform explanation was given by
Lusztig [Lu1]. His generalized Springer correspondence is a bijection⊔

L ⊂ G a Levi subgroup
F ∈ Irr(PervL(NL,k)) cuspidal

Irr(k[NG(L)/L]) ↔ Irr(PervG(NG,k)). (1.2)

(Here, the disjoint union is over G-conjugacy classes of pairs (L,F). The definition of
‘cuspidal’ simple perverse sheaf will be recalled in §2.1.) The original Springer corre-
spondence (1.1) is the part of (1.2) where L = T is a maximal torus. The generalized
Springer correspondence was described explicitly for all groups by combining works of
Alvis, Hotta, Lusztig, Shoji, Spaltenstein and Springer; see [Sh, §6.7 and §12] for ex-
amples and references.

It is natural to ask whether a bijection such as (1.2) still holds when k has positive
characteristic, that is, whether there is a modular generalized Springer correspondence. In
the main results of this paper, Theorems 3.3 and 3.4, we prove this property for the group
G = GL(n) and give an explicit combinatorial description of the bijection in that case.

1.3.

The main reason for treating the case of GL(n) separately is that this case avoids most
of the technicalities related to nonconstant local systems and bad primes (cf. the different
behaviour of the modular Springer correspondence for other classical groups in character-
istic 2 [JLS]). Nevertheless, it still displays the key features of the more general situation.

When G = GL(n), the set Irr(PervG(NG,k)) is essentially independent of k (it is in
bijection with the set of partitions of n). In contrast, the Weyl group Sn and the other finite
groups NG(L)/L may have fewer irreducible representations in positive characteristic
than in characteristic zero. Our results mean that this is exactly compensated for by the
existence of more cuspidal simple perverse sheaves. Indeed, when k has characteristic
zero, the only Levi subgroups of GL(n) admitting a cuspidal simple perverse sheaf are the
maximal tori, and (1.1) is already a bijection. When k has characteristic ` > 0, any Levi
subgroup of GL(n) isomorphic to a product of groups of the form GL(`k) (with k ≥ 0)
admits a unique cuspidal simple perverse sheaf up to isomorphism (see Theorem 3.1).

1.4.

A striking new phenomenon in the modular case is that the disjoint union in (1.2) is
related to a nontrivial stratification, or more precisely an iterated ‘recollement’, of the
category PervG(NG,k). This stratification generalizes the fact that the category of finite-
dimensional k[W ]-modules can be realized as a quotient of PervG(NG,k) (see [Ma]
and [AHJR, Corollary 5.2]). More generally, larger Levi subgroups in (1.2) correspond to
lower strata in the stratification; for a precise statement, see Theorem 4.1.
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Note that this property is invisible when k has characteristic 0 because of the semisim-
plicity of the category PervG(NG,k). However, a more subtle property holds in this case,
resembling the stratification statement: if two simple perverse sheaves correspond un-
der (1.2) to nonconjugate pairs (L,F), then there are no nontrivial morphisms between
them (of any degree) in the derived category of sheaves on NG (see [Lu2, Theorem
24.8(c)]).

1.5.

In [Lu1], Lusztig was able to define the generalized Springer correspondence before clas-
sifying cuspidal simple perverse sheaves. His construction made use of the decomposition
theorem, which is not available in the modular case. Our approach is therefore different:
we classify cuspidal simple perverse sheaves and prove the correspondence at the same
time, deducing the existence of certain cuspidal objects from Lusztig’s characteristic-zero
classification by modular reduction.

A further difference is that Lusztig worked on the unipotent variety in the group G
rather than on the nilpotent cone NG, and allowed G to be defined over a field of charac-
teristic p (with k = Q` for ` 6= p). In this paper the group G is over C, so its unipotent
variety and nilpotent cone are (G-equivariantly) isomorphic. Following [Lu3, Mi], we use
the nilpotent cone because a crucial role in our arguments is played by the Fourier–Sato
transform on the Lie algebra g.

From [J1] and [Ma], one knows that an object in Irr(PervG(NG,k)) belongs to the
image of the Springer correspondence (1.1) if and only if its Fourier–Sato transform has
dense support in g; if so, this Fourier–Sato transform is the intersection cohomology ex-
tension of a local system on the regular semisimple set, namely the local system deter-
mined by the corresponding irreducible k[W ]-module. Our generalization, carried out
in this paper when G = GL(n), amounts to describing the Fourier–Sato transform of
a general object in Irr(PervG(NG,k)) similarly, as the intersection cohomology exten-
sion of a local system on a stratum in the Lusztig stratification of g. The partition of
Irr(PervG(NG,k)) according to which stratum occurs is what corresponds to the disjoint
union on the left-hand side of (1.2), and what gives rise to the stratification of the category
PervG(NG,k).

1.6.

After this work was completed we learnt that Mautner has a program of conjectures and
partial results describing some properties of the equivariant derived categoryDb

G(NG,k)
and its subcategory PervG(NG,k), which also adapts some aspects of Lusztig’s gener-
alized Springer correspondence to the modular setting. These results are quite different
from ours; however, they lead to an alternative proof of the classification of cuspidal
simple perverse sheaves for GL(n) (Theorem 3.1). We thank Carl Mautner for explaining
these results to us.

Finally, let us note that, as was pointed out to us by M. Geck and G. Malle, the combi-
natorics of our modular generalized Springer correspondence for GL(n) is reminiscent of
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the partitioning into Harish-Chandra series of irreducible unipotent representations of the
finite group GL(n, q) in characteristic `, where q ≡ 1 (mod `). This could be regarded as
evidence for a theory of modular character sheaves.

1.7. Organization of the paper

We begin in Section 2 with a review of relevant background on such topics as cuspidal
perverse sheaves, induction and restriction functors, Fourier–Sato transform, and modu-
lar reduction. In Section 3 we prove the existence of the bijection (1.2) for G = GL(n)
and give an explicit combinatorial description of it. The main results are stated as The-
orems 3.1, 3.3, and 3.4. Finally, the aforementioned stratification of PervG(NG,k) is
proved in Section 4.

2. General background

Let k be a field of characteristic ` ≥ 0. We consider sheaves with coefficients in k, but our
varieties are over C (with the strong topology). For a complex algebraic group H acting
on a variety X, we denote by Db

H (X,k) the constructible H -equivariant derived category
defined in [BL], and by PervH (X,k) its subcategory ofH -equivariant perverse k-sheaves
on X. The constant sheaf on X with value k is denoted by kX, or simply k.

The cases we consider most frequently areX = h (the Lie algebra ofH ) andX = NH

(the nilpotent cone of H ). We usually make no notational distinction between a perverse
sheaf on a closed subvariety Y ⊂ X and its extension by zero to X; however, it is helpful
to distinguish between F ∈ PervH (NH ,k) and (aH )!F ∈ PervH (h,k), where aH :
NH ↪→ h is the inclusion.

2.1. Cuspidal pairs

Throughout the paper, G denotes a connected reductive complex algebraic group. Recall
that G has finitely many orbits in NG, and that every simple object in PervG(NG,k) is
of the form IC(O, E) where O ⊂ NG is a G-orbit and E is an irreducible G-equivariant
k-local system on O . Such local systems on O correspond to irreducible representations
of the component group AG(x) := Gx/G◦x on k-vector spaces, where x is any element
of O .

Let P ⊂ G be a parabolic subgroup with unipotent radical UP , and let L ⊂ P

be a Levi factor. Then one can identify L with P/UP through the natural morphism
L ↪→ P � P/UP , and thus define the diagram

NL
iL⊂P
←−−− NP

pL⊂P
−−−→ NG. (2.1)

Consider the functors

RGL⊂P := (pL⊂P )∗ ◦ (iL⊂P )
!
: Db

G(NG,k)→ Db
L(NL,k),

′RGL⊂P := (pL⊂P )! ◦ (iL⊂P )
∗
: Db

G(NG,k)→ Db
L(NL,k).



Modular generalized Springer correspondence I 1409

By [AHR, Proposition 4.7] and [AM, Proposition 3.1], these functors restrict to exact
functors

RGL⊂P ,
′RGL⊂P : PervG(NG,k)→ PervL(NL,k).

We also define the functor

IGL⊂P := γ
G
P ◦ (iL⊂P )! ◦ (pL⊂P )

∗
: Db

L(NL,k)→ Db
G(NG,k).

(Here γGP is the left adjoint to the forgetful functor ForGP ; see e.g. [AHR, §B.10.1] for a
precise definition.) Then IGL⊂P is left adjoint to RGL⊂P and right adjoint to ′RGL⊂P , and it
also restricts to an exact functor (see [AM, Proposition 3.1])

IGL⊂P : PervL(NL,k)→ PervG(NG,k).

Proposition 2.1. Let F be a simple object in PervG(NG,k). The following conditions
are equivalent:

(1) for any parabolic subgroup P ( G and Levi factor L ⊂ P we have RGL⊂P (F) = 0;
(1′) for any parabolic subgroup P ( G and Levi factor L ⊂ P we have ′RGL⊂P (F) = 0;
(2) for any parabolic subgroup P ( G and Levi factor L ⊂ P , and for any object G in

PervL(NL,k), F does not appear in the head of IGL⊂P (G);
(2′) for any parabolic subgroup P ( G and Levi factor L ⊂ P , and for any object G in

PervL(NL,k), F does not appear in the socle of IGL⊂P (G).
Proof. It is clear by adjunction that (1) is equivalent to (2) and that (1′) is equivalent
to (2′). Hence we have only to prove that (1) and (1′) are equivalent. Choose a maximal
torus T ⊂ L. Let P ′ ⊂ G be the parabolic subgroup opposite to P , i.e. the parabolic sub-
group whose Lie algebra has T -weights opposite to those of P . Then by [Br, Theorem 1],
the functors RGL⊂P and ′RG

L⊂P ′
are isomorphic, and similarly for RG

L⊂P ′
and ′RGL⊂P . (Here

we consider our functors as functors from PervG(NG,k) to PervL(NL,k).) The equiva-
lence of (1) and (1′) follows. ut

Definition 2.2. (1) A simple object F in PervG(NG,k) is called cuspidal if it satisfies
one of the conditions of Proposition 2.1.

(2) A pair (O, E), where O ⊂ NG is a G-orbit and E is an irreducible G-equivariant
k-local system on O is called cuspidal if the perverse sheaf IC(O, E) is cuspidal.

Remark 2.3. (1) From the equivalence of conditions (1) and (1′) in Proposition 2.1 we
deduce in particular that a simple perverse sheaf is cuspidal if and only if its Verdier dual
is cuspidal.

(2) One can easily check from the proof of Proposition 2.1 that in conditions (2)
and (2′) one can equivalently require G to be simple.

(3) Mimicking terminology in other contexts, it is natural to call a simple perverse
sheaf supercuspidal if it does not appear as a composition factor of any perverse sheaf of
the form IGL⊂P (G) with P ( G. (Note that in this condition again one can equivalently
require G to be simple.) Then of course supercuspidal implies cuspidal. If k has charac-
teristic zero, the decomposition theorem implies that any perverse sheaf IGL⊂P (G) with G
simple is semisimple. Hence, in this case any cuspidal simple perverse sheaf is supercus-
pidal. We will see in Remark 3.2 that this is false when k has positive characteristic.
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2.2. Lusztig’s original definition of cuspidal pairs

The above definition of cuspidal perverse sheaves on the nilpotent cone follows [Lu3] (see
also [Mi]). Lusztig’s original definition of cuspidal pairs [Lu1] was in the setting of Q`-
sheaves (in the étale sense) on isolated classes in G. A direct translation of this definition
into our setting would be to call a pair (O, E) cuspidal if it satisfies the following condition
for any parabolic subgroup P ( G, any Levi factor L ⊂ P , any L-orbit C ⊂ NL and
any x ∈ C :

Hdim(O)−dim(C )
c (p−1

L⊂P (x) ∩ O, E) = 0. (2.2)

In the k = Q` case, Lusztig showed using the theory of weights that the two notions of
cuspidal pair agree (see [Lu6, proof of 23.2(b)]. In the present more general setting, we
have an implication in one direction only.

Proposition 2.4. Let (O, E) be a pair consisting of a G-orbit O ⊂ NG and an irre-
ducible G-equivariant k-local system E on O . Let P ⊂ G be a parabolic subgroup and
L ⊂ P a Levi factor. If (O, E) satisfies condition (2.2) for any L-orbit C ⊂ NL and any
x ∈ C , then ′RGL⊂P (IC(O, E)) = 0.

Proof. Since ′RGL⊂P (IC(O, E)) belongs to PervL(NL,k), it vanishes if and only if for
any L-orbit C ⊂ NL and any x ∈ C we have

H− dim(C )(′RGL⊂P (IC(O, E))x) = 0. (2.3)

By definition of ′RGL⊂P , this condition can be rewritten as

H− dim(C )
c

(
p−1
L⊂P (x) ∩ O, IC(O, E)

)
= 0. (2.4)

Now the decomposition O = O t (O r O) gives us an exact sequence

H− dim(C )−1
c

(
p−1
L⊂P (x) ∩ (O r O), IC(O, E)

)
→ Hdim(O)−dim(C )

c (p−1
L⊂P (x) ∩ O, E)

→ H− dim(C )
c

(
p−1
L⊂P (x)∩O, IC(O, E)

)
→ H− dim(C )

c

(
p−1
L⊂P (x)∩ (O rO), IC(O, E)

)
.

(2.5)

We claim that the fourth term in this exact sequence is zero. To prove this, it suffices to
prove that for any G-orbit O ′ ⊂ O r O we have

H− dim(C )
c

(
p−1
L⊂P (x) ∩ O ′, IC(O, E)

)
= 0. (2.6)

However, by definition of the IC sheaf, the restriction IC(O, E)|O ′ is concentrated in
degrees ≤ − dim(O ′)− 1. So (2.6) follows from the dimension estimate

dim(p−1
L⊂P (x) ∩ O ′) ≤ 1

2 (dim(O ′)− dim(C )), (2.7)

proved by Lusztig in [Lu1, Proposition 2.2]. Consequently, we have a surjection

Hdim(O)−dim(C )
c (p−1

L⊂P (x) ∩ O, E)� H− dim(C )
c

(
p−1
L⊂P (x) ∩ O, IC(O, E)

)
, (2.8)

which implies the result. ut
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Lusztig [Lu1] classified the cuspidal pairs in the k = Q` case. As observed in [Lu4,
§2.2], when the groupG is defined over C, the classification is unchanged if one considers
nilpotent orbits rather than unipotent classes. Moreover, by general results, it makes no
difference to consider Q`-sheaves for the strong topology rather than the étale topology,
or to replace Q` with another field k of characteristic 0 over which all the irreducible
representations of the finite groupsAG(x) for x ∈ NG are defined. Hence we can consider
the classification of cuspidal pairs, as defined in Definition 2.2, to be known when k is
such a field. As we will see, the classification when k has characteristic ` > 0 is quite
different.

Remark 2.5. Consider the case G = GL(2) when k has characteristic 2. We will see
in Proposition 2.25 below that the pair (O(2),k) is cuspidal, where O(2) = NG \ {0}.
For B a Borel subgroup and T a maximal torus we have p−1

T⊂B(0) ∩ O(2) ∼= C×. In
particular H2

c(p
−1
T⊂B(0) ∩ O(2),k) 6= 0, so this cuspidal pair does not satisfy condition

(2.2). Note that the first term of the exact sequence (2.5) is nonzero in this case; in other
words, the stalk of IC(O(2),k) at 0 has nonzero H−1. This example shows that cuspidal
perverse sheaves in positive characteristic need not be clean, in contrast with the case of
characteristic 0. Moreover, they need not satisfy parity vanishing.

2.3. Transitivity

Take L ⊂ P ⊂ G as above. Suppose that Q is a parabolic subgroup of G containing P ,
with Levi factor M ⊂ Q containing L. Then L is also a Levi factor of the parabolic sub-
group P ∩M of M . We have the following well-known result expressing the transitivity
of restriction and induction.

Lemma 2.6. With notation as above, we have isomorphisms of functors

RGL⊂P ∼= RML⊂P∩M ◦ RGM⊂Q : D
b
G(NG,k)→ Db

L(NL,k),
′RGL⊂P ∼=

′RML⊂P∩M ◦
′RGM⊂Q : D

b
G(NG,k)→ Db

L(NL,k),

IGL⊂P ∼= IGM⊂Q ◦ IML⊂P∩M : D
b
L(NL,k)→ Db

G(NG,k).

Proof. These are deduced from the basic base change and composition isomorphisms
by standard arguments. In the present setting of equivariant derived categories, diagrams
expressing these arguments may be found in [AHR, (7.1)] (for R, and equivalently for ′R)
and [AHR, (7.8)] (for I). ut

Corollary 2.7. Every simple object F of PervG(NG,k) appears in the head of IGL⊂P (G)
for some parabolic subgroup P of G, Levi factor L ⊂ P , and cuspidal simple perverse
sheaf G ∈ PervL(NL,k).

Proof. We use induction on the semisimple rank of G. If F is cuspidal, the conclusion
holds with L = P = G and G = F . In the base case of the induction, when G is a torus,
the unique simple object of PervG(NG,k) is certainly cuspidal (since there are no proper
parabolic subgroups). So we may assume that G is not a torus and that F is not cuspidal.
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By condition (2) in Proposition 2.1 and Remark 2.3(2), there is some parabolic subgroup
Q ( G, Levi factor M ⊂ Q, and simple object H of PervM(NM ,k) such that IGM⊂Q(H)
surjects to F . By the induction hypothesis applied toM , there is some parabolic subgroup
P ′ ⊂ M , Levi factor L ⊂ P ′, and cuspidal simple perverse sheaf G ∈ PervL(NL,k) such
that IM

L⊂P ′
(G) surjects to H. Let P = P ′UQ where UQ is the unipotent radical ofQ; then

P is a parabolic subgroup of G with Levi factor L such that P ′ = P ∩ M . Using the
exactness of IGM⊂Q and Lemma 2.6, we conclude that IGL⊂P (G) surjects to F as required.

ut

Remark 2.8. A crucial point in Lusztig’s proof of the generalized Springer correspon-
dence in the k = Q` case is that the pair (L,G) in Corollary 2.7 is uniquely determined
up to G-conjugacy by F ; thus, the simple objects of PervG(NG,k) are partitioned into
‘induction series’ indexed by the cuspidal pairs of Levi subgroups of G. In Theorem 3.3
below, we will show that this remains true in the modular setting for G = GL(n).

2.4. Fourier–Sato transform

Let us fix a nondegenerate G-invariant symmetric bilinear form on the Lie algebra g
of G, and use it to identify g and its dual. As in [AHJR, §2.7], we define the Fourier–
Sato transform Tg = q̌! ◦ q

∗
[dim(g)], where q, q̌ : Q → g are the first and second

projections from a certain G-stable closed subset Q ⊂ g × g. We regard this functor as
an autoequivalence

Tg : Perv
con
G (g,k) ∼−→ Pervcon

G (g,k),

where Pervcon
G (g,k) is the full subcategory of PervG(g,k) consisting of conic objects.

Notice that, for any F ∈ PervG(NG,k), (aG)!F belongs to Pervcon
G (g,k), where aG :

NG ↪→ g is the inclusion.
Let P ⊂ G be a parabolic subgroup, and let L ⊂ P be a Levi factor. Let p and l be the

Lie algebras of P and L, respectively. Then, instead of diagram (2.1), one can consider
the diagram

l
jL⊂P
←−−− p

qL⊂P
−−−→ g, (2.9)

and set
′RGL⊂P := (qL⊂P )! ◦ (jL⊂P )

∗
: Db

G(g,k)→ Db
L(l,k),

IGL⊂P := γ
G
P ◦ (jL⊂P )! ◦ (qL⊂P )

∗
: Db

L(l,k)→ Db
G(g,k).

Using the base change theorem one can easily construct isomorphisms of functors

′RGL⊂P ◦ (aG)! ∼= (aL)! ◦
′RGL⊂P ,

IGL⊂P ◦ (aL)! ∼= (aG)! ◦ IGL⊂P .
(2.10)

The identification g∗ ∼= g considered above induces an identification of subspaces
(g/uP )

∗ ∼= p (where uP is the nilpotent radical of p), and of their quotients l∗ ∼= l. In
particular, one can then consider the Fourier–Sato transform Tl. The following lemma is
easily checked (cf. [Mi, Lemma 4.2]).



Modular generalized Springer correspondence I 1413

Lemma 2.9. There are isomorphisms of functors

′RGL⊂P ◦ Tg
∼= Tl ◦

′RGL⊂P , IGL⊂P ◦ Tl
∼= Tg ◦ IGL⊂P .

Corollary 2.10. There are isomorphisms of functors

′RGL⊂P ◦ Tg ◦ (aG)! ∼= Tl ◦ (aL)! ◦
′RGL⊂P , IGL⊂P ◦ Tl ◦ (aL)! ∼= Tg ◦ (aG)! ◦ IGL⊂P .

Proof. Combine Lemma 2.9 with (2.10). ut

The following result was shown by Lusztig for k = Q` [Lu3]. The argument below, which
works for general k, is due to Mirković [Mi].

Proposition 2.11. Assume G is semisimple. If F is a cuspidal simple object of the cat-
egory PervG(NG,k), then Tg((aG)!F) is supported on NG. If F ′ is the unique simple
object of PervG(NG,k) such that Tg((aG)!F) = (aG)!F ′, then F ′ is cuspidal.

Proof. We observe that for any parabolic P ( G and Levi factor L ⊂ P we have

′RGL⊂P (Tg((aG)!F))
Cor. 2.10
∼= Tl((aL)!

′RGL⊂P (F)),

which is 0 by assumption. Then the first claim follows from [Mi, Lemma 4.4]. The second
claim also follows from this observation and the isomorphism (2.10). ut

Corollary 2.12. Drop the assumption that G is semisimple, and let zG denote the centre
of g. For any cuspidal pair (O, E), there is a unique cuspidal pair (O ′, E ′) such that

Tg((aG)!IC(O, E)) ∼= IC(O ′ + zG, E ′ � kzG).

Proof. The semisimple groupG/Z(G)◦ has Lie algebra g/zG, which we can identify with
the orthogonal complement of zG for our bilinear form on g (i.e., the derived subalgebra
of g). With this identification, the nilpotent cone and the set of cuspidal pairs forG/Z(G)◦

are the same as those for G. By Proposition 2.11, for any cuspidal pair (O, E) there is a
unique cuspidal pair (O ′, E ′) such that

Tg/zG((aG/Z(G)◦)!IC(O, E)) ∼= (aG/Z(G)◦)!IC(O
′, E ′).

Applying [AHJR, (2.14)] to the inclusion of g/zG in g, we deduce the isomorphism in the
statement. ut

Remark 2.13. In the k = Q` case, Lusztig deduced from his classification of cuspidal
pairs that one always has (O ′, E ′) = (O, E) (see [Lu3, Theorem 5(b)]). For general k, the
classification of cuspidal pairs is different, and Lusztig’s argument applies only in some
cases. However, we do not yet know an example where (O ′, E ′) 6= (O, E). This issue
does not arise when G = GL(n), because we will see in Theorem 3.1 that GL(n) has at
most one cuspidal pair.
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2.5. Equivalent definitions of induction

Let L ⊂ P ⊂ G be as above. It is sometimes more convenient to use alternative descrip-
tions of the induction functors IGL⊂P and IGL⊂P . In the setting of (2.1) and (2.9), we factor
the inclusions iL⊂P : NP ↪→ NG and jL⊂P : p ↪→ g as the compositions

NP
� � kL⊂P // G×P NP

µL⊂P // NG,

p
� � lL⊂P // G×P p

πL⊂P // g,

where µL⊂P and πL⊂P are the morphisms induced by the adjoint action of G on g.

Lemma 2.14. There are isomorphisms of functors

IGL⊂P ∼= (µL⊂P )! ◦ Ind
G
P ◦ (pL⊂P )

∗
[2 dim(G/P )],

IGL⊂P ∼= (πL⊂P )! ◦ Ind
G
P ◦ (qL⊂P )

∗
[2 dim(G/P )],

where IndGP : D
b
P (X,k)→ Db

G(G×
P X, k) is the induction equivalence of [BL, §2.6.3],

for X = NP or p.

Proof. The first isomorphism follows from

γGP ◦ (iL⊂P )!
∼= γ

G
P ◦ (µL⊂P )! ◦ (kL⊂P )!

∼= (µL⊂P )! ◦ γ
G
P ◦ (kL⊂P )! (by [AHR, §B.10.1])

∼= (µL⊂P )! ◦ Ind
G
P [2 dim(G/P )] (by [AHR, §B.17]).

The second is proved similarly. ut

Recall that if O is an L-orbit in NL, the G-orbit in NG induced by O is the unique dense
G-orbit in G · (O + uP ), where uP denotes the nilpotent radical of p.

Corollary 2.15. Let F ∈ PervL(NL,k).

(1) If the support of F is contained in the closure of the L-orbit O , then the support of
IGL⊂P (F) is contained in the closure of the induced G-orbit.

(2) If F is nonzero, then IGL⊂P (F) is nonzero.

Proof. We use the description of IGL⊂P given in Lemma 2.14. For part (1), we see imme-
diately that the support of IGL⊂P (F) is contained in µL⊂P ((pL⊂P )−1(O)) = G·(O+uP ),
as required. Since IGL⊂P is exact, it suffices to prove part (2) in the case that F = IC(O, E)
is a simple object. We have

(pL⊂P )
∗IC(O, E) ∼= IC(O + uP , E � kuP )[− dim(uP )].

Denote by E ′ the unique G-equivariant local system on G×P (O + uP ) whose pull-back
to G× (O + uP ) is kG � (E � kuP ). Then

IndGP (IC(O + uP , E � kuP )) ∼= IC(G×P (O + uP ), E ′)[−dim(G/P )].
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Let ν(L,O) : G×P (O + uP )→ G · (O + uP ) be the restriction of µL⊂P . Then we obtain
an isomorphism

IGL⊂P (IC(O, E)) ∼= (ν(L,O))!IC(G×
P (O + uP ), E ′). (2.11)

Let OG
⊂ G · (O + uP ) be the induced orbit. Then dim OG

= dimG ×P (O + uP )
by [CM, Theorem 7.1.1], so the restriction of ν(L,O) to ν−1

(L,O)(O
G) is a finite covering.

Hence the restriction of IGL⊂P (IC(O, E)) to OG is (up to shift) the push-forward of E ′
through this finite covering, which is nonzero. ut

2.6. Induction of some simple perverse sheaves

Let us fix some nilpotent orbit O ⊂ NL and some L-equivariant local system E on O .
Let zL be the centre of l, and set

z◦L := {x ∈ zL | G
◦
x = L}.

In this subsection we recall, following arguments of Lusztig [Lu1] adapted to our
Lie algebra setting by Letellier [Le], how one can describe the perverse sheaf
IGL⊂P (IC(O + zL, E � kzL)).

We set

Y(L,O) := G · (O + z◦L), X(L,O) := G · (O + zL + uP ).

The subsets Y(L,O) are the strata in Lusztig’s stratification of g. Recall that Y(L,O) is a
locally closed smooth subvariety of g and X(L,O) = Y(L,O) is a union of strata (see [Lu5,
Lemma 6.2, Proposition 6.5, Proposition 6.6]). We also set

Ỹ(L,O) := G×
L (O + z◦L), X̃(L,O) := G×

P (O + zL + uP ),

and let $(L,O) : Ỹ(L,O)→ Y(L,O) be the morphism induced by the adjoint G-action, and
π(L,O) : X̃(L,O) → X(L,O) be the restriction of πL⊂P , so that we obtain the following
cartesian square:

Ỹ(L,O)
� � //

$(L,O)

��

X̃(L,O)

π(L,O)

��
Y(L,O)

� � // X(L,O)

(2.12)

Here the upper horizontal map is induced by the natural morphism G ×L l → G ×P p,
and is an open embedding with image

π−1
(L,O)(Y(L,O)) = G×

P (O + z◦L + uP ),

by [Le, Lemma 5.1.27]. We denote by Ẽ the uniqueG-equivariant local system on Ỹ(L,O)
whose pull-back to G×

(
O + z◦L

)
is kG � (E � kz◦L). Let

NG(L,O) := {n ∈ NG(L) | n · O = O}.
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Lemma 2.16 ([Le, proof of Lemma 5.1.28]). The morphism$(L,O) is a Galois covering
with Galois group NG(L,O)/L.

Consequently, given any irreducible k[NG(L,O)/L]-module E, we can form the corre-
sponding irreducible G-equivariant local system on Y(L,O):

LE := (($(L,O))∗k⊗ E)NG(L,O)/L. (2.13)

The object ($(L,O))∗Ẽ is also aG-equivariant local system on Y(L,O), so that one can
consider IC

(
Y(L,O), ($(L,O))∗Ẽ

)
∈ PervG(g,k).

Proposition 2.17. There exists a canonical isomorphism

IGL⊂P (IC(O + zL, E � kzL)) ∼= IC(Y(L,O), ($(L,O))∗Ẽ).

Proof. Using the description of IGL⊂P given in Lemma 2.14, and calculating as in the
proof of Corollary 2.15, we obtain a canonical isomorphism

IGL⊂P (IC(O + zL, E � kzL)) ∼= (π(L,O))!IC(G×
P (O + zL + uP ), E), (2.14)

where E is the uniqueG-equivariant local system onG×P
(
O+zL+uP

)
whose pull-back

to G× (O + zL + uP ) is kG � (E � kzL � kuP ). So we need an isomorphism

(π(L,O))!IC(G×P (O + zL + uP ), E) ∼= IC(Y(L,O), ($(L,O))∗Ẽ). (2.15)

The isomorphism (2.15) is proved in [Le, Proposition 5.1.33] for k = Q`. The proof
works for arbitrary coefficients; for completeness we briefly recall the main steps.

We first observe that the left-hand side of (2.15) is supported on X(L,O) = Y(L,O).
To prove that it is isomorphic to the right-hand side we need to check that it satisfies the
conditions defining intersection cohomology sheaves (see e.g. [Le, §4.1.1]).

Using the cartesian square (2.12), one can easily check that the restriction of the left-
hand side of (2.15) to Y(L,O) is isomorphic to ($(L,O))∗Ẽ[dim(Y(L,O))] (see [Le, p. 76]).
The other conditions that have to be checked concern the dimension of the support of the
(ordinary) cohomology sheaves of (π(L,O))!IC(G ×P (O + zL + uP ), E). They follow
from results on the dimension of the fibres of π(L,O) as in the case k = Q` (see [Le,
p. 77]). ut

Corollary 2.18. Suppose that (O, E) is a cuspidal pair for L. Then with (O ′, E ′) defined
as in Corollary 2.12, we have a canonical isomorphism

Tg

(
(aG)!IGL⊂P (IC(O, E))

)
∼= IC(Y(L,O ′), ($(L,O ′))∗Ẽ ′).

Proof. Using Corollary 2.10 and Corollary 2.12 (applied to L), we find that the left-
hand side is isomorphic to IGL⊂P (IC(O

′
+ zL, E ′ � kzL)). So the result follows from

Proposition 2.17. ut
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Remark 2.19. In particular, it follows from Proposition 2.17 (respectively, Corollary
2.18) that IGL⊂P (IC(O + zL, E � kzL)) (respectively, IGL⊂P (IC(O, E))) does not depend
on P , up to canonical isomorphism.

We conclude this subsection by recalling some results about cuspidal pairs in characteris-
tic 0 due to Lusztig. Note that [Lu1] only treats the case of Q`-sheaves in the étale setting;
however, one can easily check that the proofs adapt directly to our setting.

Proposition 2.20 (Lusztig). Assume that k has characteristic 0, and let (O, E) be a cus-
pidal pair such that E is absolutely irreducible. Then:

(1) NG(L,O) = NG(L). Moreover, the isomorphism class of E is preserved by the action
of NG(L)/L.

(2) There is a unique irreducible summand SE of the local system ($(L,O))∗Ẽ on Y(L,O)
such that the cohomology sheaf H− dim(Y(L,O))IC(Y(L,O), SE) has nonzero restriction
to the orbit in NG induced by O . The local system SE is absolutely irreducible, its
multiplicity in ($(L,O))∗Ẽ is 1, and moreover ($(L,O))∗SE ∼= Ẽ .

(3) There is a k-algebra isomorphism End(($(L,O))∗Ẽ) ∼= k[NG(L)/L] such that the
resulting bijection{

isomorphism classes of irreducible
summands of ($(L,O))∗Ẽ

}
↔ Irr(k[NG(L)/L])

associates toE ∈ Irr(k[NG(L)/L]) the local system LE⊗SE , where LE is as in (2.13).

Proof. Part (1) is [Lu1, Theorem 9.2(b)]. Part (2) is all contained in [Lu1, Theorem 9.2(c)]
except for the statement that ($(L,O))∗SE ∼= Ẽ , which follows (by standard Clifford the-
ory) from the multiplicity-1 statement in view of part (1). The projection formula gives
us an isomorphism ($(L,O))∗Ẽ ∼= ($(L,O))∗k⊗ SE , and part (3) follows. ut

Remark 2.21. The k-algebra isomorphism End(($(L,O))∗Ẽ) ∼= k[NG(L)/L] defined in
Proposition 2.20(3) is the same as that defined in [Lu1, Theorem 9.2(d)], by the unique-
ness part of the latter statement.

2.7. Modular reduction

Let K be a finite extension of Q`, O its ring of integers, and let F be its residue field. We
will refer to such a triple (K,O,F) as an `-modular system. Assume that for any x ∈ NG

the irreducible representations of the finite group AG(x) are defined over K. For E = F
or K, we denote byKG(NG,E) the Grothendieck group of the categoryDb

G(NG,E). It is
a free Z-module with basis {[F]} indexed by the isomorphism classes of simple objects F
in PervG(NG,E).

Recall [J2, §2.9] that there is a Z-linear modular reduction map

d : KG(NG,K)→ KG(NG,F)
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which has the following property. Let F be an object in PervG(NG,K), and let FO be a
torsion-free object in PervG(NG,O) such that F ∼= K⊗OFO; then d([F]) = [F⊗LOFO].
By abuse of terminology, we say that a simple object G in PervG(NG,F) occurs in the
modular reduction of F if [G] appears with nonzero multiplicity in d([F]). Note that
if F = IC(O, E) for some G-orbit O ⊂ NG and some irreducible G-equivariant local
system E on O , then by our assumption on K there exists a G-equivariant O-free local
system EO on O such that E ∼= K⊗O EO. In this situation we can take FO = IC(O, EO);
hence d([F]) = [F⊗LO IC(O, EO)]. In particular we deduce that if E ′ is any composition
factor of the G-equivariant local system F⊗LO EO, then IC(O, E ′) occurs in the modular
reduction of F .

The following proposition is a crucial tool for identifying modular cuspidal pairs.

Proposition 2.22. Let G be a simple object in PervG(NG,F) that occurs in the modular
reduction of a cuspidal simple object F of PervG(NG,K). Then G is cuspidal.

Proof. Let P ( G be a parabolic subgroup, and let L ⊂ P be a Levi factor. Let FO be a
torsion-free object in PervG(NG,O) such that F ∼= K ⊗O FO; then G is a composition
factor of F⊗LO FO.

Recall (see e.g. [J2, §2.1]) that Verdier duality does not preserve PervG(NG,O). Ra-
ther, it takes PervG(NG,O) to the heart of a different t-structure onDb

G(NG,O), denoted
Perv+G(NG,O). An object in PervG(NG,O) is torsion-free if and only if it also lies in
Perv+G(NG,O).

Consider the functors RGL⊂P ,
′RGL⊂P : D

b
G(NG,O) → Db

L(NL,O), defined by the
same formulas as in §2.1. By [AHR, Proposition 4.7], RGL⊂P sends PervG(NG,O) to
PervL(NL,O). It follows that ′RGL⊂P sends Perv+G(NG,O) to Perv+L (NL,O). On the
other hand, the same argument as in the proof of [AHR, Proposition 4.7] shows that
′RGL⊂P sends PervG(NG,O) to PervL(NL,O). In particular, the object ′RGL⊂P (FO) of
PervL(NL,O) is torsion-free.

As explained in Remark 2.23 below, we have natural isomorphisms

F
L
⊗O
′RGL⊂P (FO) ∼=

′RGL⊂P (F
L
⊗O FO),

K⊗O
′RGL⊂P (FO) ∼=

′RGL⊂P (K⊗O FO) ∼=
′RGL⊂P (F).

(2.16)

Since F is cuspidal, the second isomorphism in (2.16) gives K ⊗O ′RGL⊂P (FO) = 0,
which implies, by torsion-freeness, that ′RGL⊂P (FO) = 0. Hence the first isomorphism
in (2.16) gives ′RGL⊂P (F⊗

L
O FO) = 0, which implies that ′RGL⊂P (G) = 0. ut

Remark 2.23. In (2.16) we used the fact that if R and S are noetherian commutative
rings of finite global dimension, if φ : R → S is a ring morphism and if f : X → Y is
a morphism of locally compact topological spaces, then there exist natural isomorphisms
of functors

(S
L
⊗R ·) ◦ f! ∼= f! ◦ (S

L
⊗R ·), (S

L
⊗R ·) ◦ f

∗ ∼= f
∗
◦ (S

L
⊗R ·). (2.17)



Modular generalized Springer correspondence I 1419

The first isomorphism follows from [KS, Proposition 2.6.6], and the second from [KS,
Proposition 2.6.5]. These isomorphisms imply that any operation on the derived cate-
gories Db

G(NG,k) that is obtained by composing functors of the form f! and f ∗ com-
mutes with modular reduction.

2.8. An example of modular reduction

In this subsection, k has characteristic ` > 0. Let K be a finite extension of Q` containing
all the n-th roots of unity, and let (K,O,F) be the resulting `-modular system.

Consider the group SL(n), and its principal nilpotent orbit O(n). The component group
ASL(n)(x) of the centralizer of any element x ∈ O(n) is isomorphic to the group µn of
complex n-th roots of unity; hence its group of characters with values in K is (noncanon-
ically) isomorphic to the group of n-th roots of unity in K.

Lemma 2.24. Let E be a rank-one SL(n)-equivariant K-local system on O(n) associated
with a primitive n-th root of unity in K. Then (O(n), E) is a cuspidal pair for SL(n).

Proof. This is one direction (in fact, the easy direction) of Lusztig’s classification of
cuspidal pairs for SL(n) in characteristic zero [Lu1, (10.3.2)]. ut

Now consider GL(n). We have NGL(n) = NSL(n), and the orbits are the same; however,
for x ∈ O(n), the component group AGL(n)(x) is trivial. So the only irreducible GL(n)-
equivariant k-local system on O(n) is the constant sheaf k.

Proposition 2.25. If n is a power of `, then (O(n),k) is a cuspidal pair for GL(n).

Proof. The conclusion does not depend on the choice of the field of characteristic `, so it
is enough to prove it when k = F. Let E be as in Lemma 2.24. The modular reduction of
E is F (since 1 is the only n-th root of unity in F), so IC(O(n),F) occurs in the modular
reduction of IC(O(n), E). By Proposition 2.22, we deduce that (O(n),F) is a cuspidal pair
for SL(n). However, it is also a pair for GL(n), and the property of being cuspidal is
the same whether we consider the pair for SL(n) or for GL(n) (see e.g. condition (1) in
Proposition 2.1). ut

3. Generalized Springer correspondence for GL(n)

For the remainder of this paper, we set G = GL(n) and assume that ` > 0.

3.1. Combinatorics for the general linear group

In this subsection, we fix notation for partitions, representations, and nilpotent orbits.

3.1.1. Compositions and partitions. Let N∞ denote the set of sequences of nonnegative
integers with finitely many nonzero terms. Elements of N∞ are sometimes called compo-
sitions. For a = (a1, a2, . . .) ∈ N∞, let ‖a‖ =

∑
∞

i=1 ai . Given a, b ∈ N∞ and k ∈ N, we
can form the sum a+ b and the product ka.
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For m ∈ N, let Part(m) denote the set of partitions of m. We identify Part(m) with
the subset of N∞ consisting of decreasing sequences λ with ‖λ‖ = m. For λ ∈ Part(m),
µ ∈ Part(m′) and k ∈ N, the sum λ+ µ and the product kλ are defined as above, via this
identification. For λ ∈ Part(m), let m(λ) = (m1(λ),m2(λ), . . .) be the composition in
which mi(λ) is the multiplicity of i in λ. We write λt for the transpose partition, defined
by the property that λt

i − λ
t
i+1 = mi(λ) for all i.

Let Part`(m) ⊂ Part(m) be the set of `-regular partitions, i.e., partitions in which
mi(λ) < ` for all i. On the other hand, let Part(m, `) ⊂ Part(m) be the set of partitions
all of whose parts are powers of `; that is, mi(λ) = 0 unless i = `j for some j ≥ 0. For
a ∈ N∞, we define

Part(a) =
∏
i≥1

Part(ai) and Part`(a) =
∏
i≥1

Part`(ai).

Finally, let [a] ∈ Part(a) be the element whose i-th component is the partition (ai) ∈
Part(ai).

3.1.2. Representations of symmetric groups. Next, consider the symmetric group Sm.
For λ ∈ Part(m), let Sλ denote the Specht module for k[Sm] corresponding to the par-
tition λ. If λ ∈ Part`(m), we also let Dλ denote the unique irreducible quotient of Sλ.
Recall that every irreducible k[Sm]-module arises in this way. The partition (m) is al-
ways `-regular, and D(m) is the trivial representation.

More generally, for a ∈ N∞, let Sa =
∏
i≥1 Sai . For λ = (λ(1), λ(2), . . .) in Part(a)

(resp. Part`(a)), we can form the k[Sa]-module

Sλ
= Sλ

(1)
� Sλ

(2)
� · · · resp. Dλ

= Dλ
(1)

�Dλ
(2)

� · · · .

When λ ∈ Part`(a), D
λ is the unique irreducible quotient of Sλ, and every irreducible

k[Sa]-module arises in this way. The trivial representation is D[a].

3.1.3. Levi subgroups. For each ν ∈ Part(n), let Lν denote the conjugacy class of Levi
subgroups of G that are isomorphic to

GL(ν1)× GL(ν2)× · · · .

We will sometimes choose a representative Levi subgroup L ∈ Lν , and then consider the
‘relative Weyl group’

Wν := NG(L)/L ∼= Sm(ν).

The last isomorphism depends on the choice of L, but only up to an inner automorphism.
Thus, the set Irr(k[Wν]) does not depend on the choice of L, and we have canonical
bijections

Irr(k[Wν]) = Irr(k[Sm(ν)]) = Part`(m(ν)). (3.1)



Modular generalized Springer correspondence I 1421

3.1.4. Nilpotent orbits. Let us label nilpotent orbits in NG by the set Part(n) of partitions
of n in the standard way, so that the partition (n) corresponds to the principal nilpotent
orbit, and (1, . . . , 1) corresponds to the trivial orbit. If λ ∈ Part(n), we denote by Oλ the
corresponding orbit. It is well known that every G-equivariant local system on any Oλ is
constant, so we have a canonical bijection

Irr(PervG(NG,k)) = Part(n). (3.2)

For simplicity, we write ICλ for IC(Oλ,k).
More generally, given ν ∈ Part(n) and a representative L ∈ Lν , we can identify the

set of nilpotent orbits in NL with Part(ν), and hence obtain a bijection

Irr(PervL(NL,k)) = Part(ν). (3.3)

For λ ∈ Part(ν), the corresponding orbit and perverse sheaf are denoted by Oλ and ICλ,
respectively. In particular, O[ν] is the principal orbit in NL. Note that the bijection (3.3)
is not canonical: it depends on a choice of isomorphism L ∼= GL(ν1) × GL(ν2) × · · · .
However, if λ ∈ Part(ν) satisfies the condition νi = νj ⇒ λ(i) = λ(j) (e.g. if λ = [ν])
then Oλ ⊂ L is canonically defined. This is the only case we will consider.

3.2. Statements of the main results

Our first main result is a classification of the modular cuspidal pairs in GL(n).

Theorem 3.1. The group GL(n) admits a cuspidal pair if and only if n is a power of `.
In that case, there exists a unique cuspidal pair, namely (O(n),k).

Remark 3.2. Theorem 3.1 provides the classification of cuspidal simple perverse
sheaves in PervGL(n)(NGL(n),k). The classification of supercuspidal simple perverse
sheaves (in the sense of Remark 2.3(3)) is different and much simpler: in fact there is no
supercuspidal simple perverse sheaf in PervGL(n)(NGL(n),k) unless n = 1. Even more is
true: every simple object of PervGL(n)(NGL(n),k) appears as a composition factor of the
Springer sheaf Spr := IGT⊂B(kNT

). (Here T is a maximal torus and B a Borel subgroup in
G = GL(n).) Indeed, it is sufficient to prove this property when k = F`. Now, the mod-
ular reduction (in the sense of §2.7) of the class of the Springer sheaf [SprQ` ] over Q` is
the class of the Springer sheaf [SprF` ] over F`. On the other hand, every simple object
IC(Oλ,Q`) in PervGL(n)(NGL(n),Q`) is a direct summand of SprQ` ; hence IC(Oλ,F`)
occurs in the modular reduction of SprQ` .

Let L = {Lν | ν ∈ Part(n, `)}. An immediate consequence of Theorem 3.1 is that L is
precisely the set of conjugacy classes of Levi subgroups admitting a cuspidal pair, and
the unique cuspidal perverse sheaf for L ∈ Lν is IC[ν]. In view of this observation,
the following theorem can be regarded as a modular analogue of Lusztig’s generalized
Springer correspondence [Lu1].

In this statement, for each ν ∈ Part(n, `) we choose some L ∈ Lν and some parabolic
subgroup P ofG having L as a Levi factor, and set Iν = IGL⊂P (IC[ν]). We will see in the
course of the proof that this object does not depend (up to isomorphism) on the choice
of L or of P .
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Theorem 3.3. For any λ ∈ Part(n), the perverse sheaf ICλ appears in the head of Iν
for a unique ν ∈ Part(n, `). Moreover, for any ν ∈ Part(n, `), we have a natural bijection

ψν : Irr(k[Wν])
∼
−→

{
isomorphism classes of
simple quotients of Iν

}
.

In this way we obtain a bijective map

9 =
⊔

Lν∈L
ψν :

⊔
Lν∈L

Irr(k[Wν])
∼
−→ Irr(PervG(NG,k)).

The map ψν will be defined intrinsically using the Fourier–Sato transform Tg (see Lem-
ma 3.8 below). The following result determines ψν explicitly in terms of the combina-
torial parameters, and thus effectively computes Tg((aG)!ICµ) for every simple ICµ ∈
PervG(NG,k) (see (3.7)).

Theorem 3.4. In the notation of Theorem 3.3, the map ψν is given explicitly by

ψν(D
λ) = IC∑

i≥0 `
i (λ(`

i ))t
(3.4)

for λ = (λ(1),∅, . . . ,∅, λ(`),∅, . . . ,∅, λ(`
2),∅, . . .) ∈ Part`(m(ν)).

See Figure 1 for an example of the map 9. (In that figure, elements of Irr(k[Wν]) and
Irr(PervG(NG,k)) are represented by their combinatorial labels in diagrammatic form.)

3.3. Proofs of Theorems 3.1 and 3.3

These two theorems will be proved simultaneously by induction on n, the base case n = 1
being trivial.

Given ν ∈ Part(n), recall that we have chosen a representativeL ∈ Lν , and a parabolic
subgroup P ⊂ G containing L. We will use the results of §2.6 for L, P , the L-orbit O[ν],
and the constant local system k on O[ν]. We simplify the notation by setting Y[ν] :=
Y(L,O[ν]), X[ν] := X(L,O[ν]), Ỹ[ν] := Ỹ(L,O[ν]), X̃[ν] := X̃(L,O[ν]), $[ν] := $(L,O[ν]),
π[ν] := π(L,O[ν]). As a special case of Lemma 2.16 we have:

Lemma 3.5. The morphism $[ν] is a Galois covering with Galois group Wν .

Remark 3.6. The varieties Y[ν], X[ν], Ỹ[ν], X̃[ν] can be described very concretely in our
case where g = gl(n). The subset Y[ν] ⊂ g consists of matrices whose generalized
eigenspaces have dimensions ν1, ν2, . . . and which have a single Jordan block on each
generalized eigenspace. Its closure X[ν] consists of matrices for which the multiset of
dimensions of generalized eigenspaces can be obtained from the multiset ν1, ν2, . . . by
adding together some subsets. The variety Ỹ[ν] can be identified with the variety of pairs
((Ui), x), where (Ui) is an ordered tuple of subspaces of Cn such that Cn =

⊕
i Ui and

dimUi = νi , and x ∈ Y[ν] has the subspaces Ui as its generalized eigenspaces, in such
a way that $[ν]((Ui), x) = x. The parabolic subgroup P is the stabilizer of a partial
flag in Cn with subspaces of dimensions νσ(1), νσ(1) + νσ(2), νσ(1) + νσ(2) + νσ(3), . . .
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ν ∈ Part(6, 2)
Lν ∈ L

λ ∈ Part2(m(ν)) ψν(λ) ∈ Part(6)

(1, 1, 1, 1, 1, 1)
GL(1)6

λ(1) ∈ Part2(6)

(2, 1, 1, 1, 1)
GL(2)× GL(1)4

(λ(1), λ(2)) ∈ Part2(4)× Part2(1)

,

,

(2, 2, 1, 1)
GL(2)2 × GL(1)2

(λ(1), λ(2)) ∈ Part2(2)× Part2(2)

,

(2, 2, 2)
GL(2)3

λ(2) ∈ Part2(3)

(4, 1, 1)
GL(4)× GL(1)2

(λ(1), λ(4)) ∈ Part2(2)× Part2(1)

,

(4, 2)
GL(4)× GL(2)

(λ(2), λ(4)) ∈ Part2(1)× Part2(1)

,

Fig. 1. The bijection 9 for n = 6 and ` = 2.
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where σ is some permutation of the indices. Then X̃[ν] can be identified with the variety
of pairs ((Vi), x), where (Vi) is a partial flag with subspaces of these dimensions and
x ∈ X[ν] stabilizes each Vi and has a single eigenvalue on each Vi/Vi−1, in such a way
that π[ν]((Vi), x) = x.

Lemma 3.7. Let ν ∈ Part(n, `), and assume that ν 6= (n). Then IC[ν] is the unique
cuspidal perverse sheaf in PervL(NL,k). Moreover,

Tl((aL)!IC[ν]) ∼= IC(O[ν] + zL,k).

Proof. The fact that IC[ν] is the unique cuspidal perverse sheaf for L follows from The-
orem 3.1, which is known for each GL(νi) by the induction hypothesis. The claim about
Fourier transform then follows from Corollary 2.12. ut

The following result, which generalizes facts shown by Lusztig in the k = Q` case, is
our main technical step. The ν = (1, . . . , 1) case of this statement is a particular case
of [AHJR, Proposition 5.4].

Lemma 3.8. Let ν ∈ Part(n, `), and assume that ν 6= (n). Then the induced perverse
sheaf Iν = IGL⊂P (IC[ν]) enjoys the following properties:

(1) Up to isomorphism, Iν is independent of the choice of P or L.
(2) There is a canonical isomorphism End(Iν) ∼= k[Wν].
(3) Each indecomposable summand of Iν has a simple head.
(4) There is a bijection

ψν : Irr(k[Wν])
∼
−→

{
isomorphism classes of
simple quotients of Iν

}
defined uniquely by the property that, for any E ∈ Irr(k[Wν]),

Tg((aG)!ψν(E)) ∼= IC(Y[ν], E)

where E is the irreducible G-equivariant local system on Y[ν] corresponding to E as
in (2.13). In particular, ψν is independent of the choice of L.

Proof. To prove these assertions, we will translate them into equivalent statements about
the Fourier–Sato transform Tg((aG)!Iν). By Corollary 2.18 and Lemma 3.7, we have a
canonical isomorphism

Tg((aG)!Iν) ∼= IC(Y[ν],L[ν]), (3.5)

where L[ν] is the local system ($[ν])∗k on Y[ν]. Since Y[ν] and ($[ν])∗k are independent
of P and L (up to isomorphism), part (1) follows. By Lemma 3.5, we have End(L[ν]) ∼=
k[Wν]. We deduce part (2) from the fact that the functor IC(Y[ν], ·) is fully faithful.

Since L[ν] is the local system on Y[ν] corresponding to the regular representation
of Wν as in (2.13), the indecomposable summands of L[ν] correspond to the indecom-
posable projective k[Wν]-modules, and they have simple heads corresponding to the
irreducible k[Wν]-modules. Parts (3) and (4) then follow from the fact that the func-
tor IC(Y[ν], ·) preserves indecomposable summands and heads (see e.g. [J2, Proposition
2.28]). ut
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We now need a combinatorial statement concerning the map which, according to the as-
yet-unproved Theorem 3.4, computes the bijection ψν introduced in Lemma 3.8(4). We
temporarily introduce a new notation for this map:

ψco
ν : Part`(m(ν))→ Part(n) : λ 7→

∑
i≥0

`i(λ(`
i ))t.

Lemma 3.9. The following map is a bijection:

9co
=

⊔
ν∈Part(n,`)

ψco
ν :

⊔
ν∈Part(n,`)

Part`(m(ν))→ Part(n).

Proof. For µ ∈ Part(n), we can define integers bi,j (µ) uniquely by

µj − µj+1 =
∑
i≥0

bi,j (µ)`
i, 0 ≤ bi,j (µ) < `.

Then 9co(λ) = µ if and only if bi,j (µ) = mj (λ
(`i )) for all i, j , which clearly holds for a

unique λ ∈ Part`(m(ν)) for a unique ν ∈ Part(n, `). ut

Recall that an example of 9co was given in Figure 1.
We can now complete the proof of Theorems 3.1 and 3.3. Suppose that n is not a

power of `, so that (n) /∈ Part(n, `). Assembling the bijections ψν we obtain a map

9 =
⊔

Lν∈L
ψν :

⊔
Lν∈L

Irr(k[Wν])→ Irr(PervG(NG,k)).

Now the images of the various ψν are disjoint by Lemma 3.8(4), because the various
subsets Y[ν] are disjoint. (This is clear from Remark 3.6; alternatively, it follows from
the general result [Lu5, §6.1].) Hence 9 is injective. From Lemma 3.9 we know that the
domain and codomain of 9 have the same cardinality, so 9 is a bijection. Thus every
simple perverse sheaf in PervG(NG,k) arises as a quotient of a sheaf induced from a
proper Levi subgroup, meaning that there are no cuspidal perverse sheaves for G.

Suppose that n is a power of `. Assembling the bijections ψν for ν 6= (n) we obtain a
map

9 ′ =
⊔

Lν∈L
Lν proper

ψν :
⊔

Lν∈L
Lν proper

Irr(k[Wν])→ Irr(PervG(NG,k)),

which is injective as before. SinceW(n) is the trivial group, the domain here has cardinal-
ity one less than the codomain. On the other hand, we already know from Proposition 2.25
that IC(n) is cuspidal, so it must be the unique element of the codomain not appearing
in the image of 9 ′. Hence it is the unique cuspidal perverse sheaf for G, and we can
complete 9 ′ to the desired bijection 9 by defining ψ(n)(k) = IC(n), where k denotes the
unique element of Irr(k[W(n)]). This completes the proof of Theorems 3.1 and 3.3. ut

Note that the assumption ν 6= (n) in Lemma 3.7 was needed solely in order to apply the
induction hypothesis to each factor of L. So the same proof now applies to the ν = (n)
case also (when n is a power of `), showing that

Tg((aG)!IC(n)) ∼= IC(O(n) + zG,k) = IC(Y(n),k). (3.6)

Thus the intrinsic definition of ψν given in Lemma 3.8(4) is valid also for ν = (n).
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3.4. Proof of Theorem 3.4

Identifying the domain and codomain of 9 with their respective sets of combinatorial
parameters, we can interpret 9 as a bijection

9 =
⊔

ν∈Part(n,`)

ψν :
⊔

ν∈Part(n,`)

Part`(m(ν))→ Part(n).

Theorem 3.4 asserts that this bijection equals the combinatorially defined bijection 9co

of Lemma 3.9. Equivalently, it says that for any ν ∈ Part(n, `) and λ ∈ Part`(m(ν)),

Tg((aG)!ICψco
ν (λ)

) ∼= IC(Y[ν],Dλ), (3.7)

where Dλ is the irreducible G-equivariant local system on Y[ν] associated to the irre-
ducible representation Dλ

∈ Irr(k[Wν]) as in (2.13). Note that the ν = (1, . . . , 1) case of
this statement is exactly the determination of the modular Springer correspondence given
in [J1, §7.1]; in fact the general proof will use a similar idea. (In view of (3.7), Figure 1
can be interpreted as recording the Fourier–Sato transforms of all simple perverse sheaves
in PervGL(6)(NGL(6),k) where k has characteristic 2.)

We will prove Theorem 3.4 by induction on n, the base case n = 1 being trivial. Since
we know that 9 (interpreted as above) and 9co are bijections with the same domain and
codomain, it suffices to prove that for each ν ∈ Part(n, `) we have

ψν(λ) ≤ ψ
co
ν (λ) for all λ ∈ Part`(m(ν)), (3.8)

where ≤ denotes the usual dominance partial order on partitions, corresponding to the
closure order on nilpotent orbits. (However, our induction hypothesis will still have the
equality ψν = ψco

ν rather than this inequality.)

Lemma 3.10. Assume that n = m`i for some m ≥ 1 and i ≥ 0. Then (3.8) holds for the
partition ν = (`i, . . . , `i).
Proof. Since the bijection 9 does not depend on which field of characteristic ` we use,
we can assume for this proof that k = F where (K,O,F) is an `-modular system as
in the proof of Proposition 2.25. We will deduce the result from the known description
of the generalized Springer correspondence for the group G′ = SL(n) over the field K
of characteristic zero [LS]. To be precise, [LS] treats the unipotent variety in SL(n), for
Q`-sheaves in the étale setting; but the same arguments can be carried out in our setting.

LetL′ = G′∩L ∼= S(GL(`i)×· · ·×GL(`i)) be the Levi subgroup ofG′ corresponding
to L, and let l′ denote its Lie algebra. Let AG′ (resp. AL′ ) denote the component group
of the centre of G′ (resp. L′). Then AG′ (resp. AL′ ) is cyclic of order n (resp. `i). Fix
a generator z ∈ AG′ , and let z̄ denote its image in AL′ . Define Y ′

[ν] = Y(L′,O[ν]) =

Y[ν] ∩ g′ and Ỹ ′
[ν] = Ỹ(L′,O[ν]), which we can obviously identify with Ỹ[ν] ∩ (G ×L l′).

Then $[ν] restricts to the Galois covering $ ′
[ν] = $(L′,O[ν]) : Ỹ

′

[ν] → Y ′
[ν] with Galois

group Wν
∼= Sm.

Fix a primitive `i-th root of unity ζ in K, and let Eζ
[ν] be the unique irreducible

L′-equivariant K-local system on O[ν] on which z̄ ∈ AL′ acts by ζ . Then (O[ν], Eζ[ν]) is a
cuspidal pair for L′, by the classification of cuspidal pairs in characteristic zero (see [Lu1,
§10.3]).
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We associate to (O[ν], Eζ[ν]) a G′-equivariant local system Ẽζ
[ν] on Ỹ ′

[ν] as in §2.6, and

a G′-equivariant local system SEζ
[ν] on Y ′

[ν] as in Proposition 2.20(2). For any λ ∈ Part(m),
we have an irreducible K[Sm]-module SλK and a corresponding local system SλK on Y ′

[ν],
defined as in (2.13). By Proposition 2.20(3), the irreducible summands of the semisimple
perverse sheaf IC(Y ′

[ν], ($
′

[ν])∗Ẽ
ζ
[ν]) are of the form IC(Y ′

[ν],S
λ
K ⊗
SEζ
[ν]). For brevity, we

set Sλ,ζK = SλK ⊗ SE
ζ
[ν].

According to [Lu1, Theorem 6.5(c)] and [LS, Proposition 5.2], we have

(aG′)
∗IC(Y ′

[ν],S
λ,ζ

K ) ∼= IC(O`iλ, E
ζ

`iλ
)[dim(Y ′

[ν])− dim(O`iλ)], (3.9)

where Eζ
`iλ

is the unique irreducible G′-equivariant K-local system on O`iλ on which
z ∈ AG acts by ζ . On the other hand, by [EM, §3.7 and Theorem 3.8(c)], we have

IC(Y ′
[ν],S

λ,ζ

K ) ∼= Tg′
(
(aG′)!(aG′)

∗IC(Y ′
[ν],S

λt,ζ
K )[− dim(Y ′

[ν])+ dim(O`iλt)]
)
. (3.10)

We conclude that

IC(Y ′
[ν],S

λ,ζ

K ) ∼= Tg′((aG′)!IC(O`iλt , Eζ
`iλt)). (3.11)

From now on we assume that λ ∈ Part`(m). We have already defined (after (3.7)) the
F-local system Dλ

F on Y[ν]; let (Dλ
F)
′ denote its restriction to Y ′

[ν], which is again the local
system corresponding to the irreducible F[Sm]-module DλF, but now for the restricted
covering map $ ′

[ν]. By definition of ψν we have

IC(Y[ν],Dλ
F)
∼= Tg((aG)!IC(Oψν (λ),F)), (3.12)

which implies that

IC(Y ′
[ν], (D

λ
F)
′) ∼= Tg′((aG′)!IC(Oψν (λ),F)). (3.13)

Now we want to consider the ‘modular reduction’ of (3.11). We have not defined
modular reduction for general perverse sheaves on g′, only for those in PervG′(NG′ ,K).
However, the left-hand side of (3.11) is of a form that we can treat merely by consider-
ing local systems with finite monodromy (effectively, representations of finite groups).
Choose torsion-free O-forms SλO and SEζ

[ν],O of SλK and SEζ
[ν], respectively, and let Sλ,ζO =

SλO ⊗ SE
ζ

[ν],O, a torsion-free O-form of Sλ,ζK . Since SEζ
[ν] has rank 1 and order a power of `,

we see that F⊗O SEζ[ν],O ∼= k. In particular,

F⊗O Sλ,ζO
∼= F⊗O SλO. (3.14)

It follows that (Dλ
F)
′ is a constituent of F⊗O Sλ,ζO . Hence IC(Y ′

[ν], (D
λ
F)
′) is a constituent

of F ⊗LO IC(Y ′
[ν],S

λ,ζ

O ). Since Fourier–Sato transform is an equivalence and commutes
with change of scalars by (2.17), we conclude from (3.11) and (3.13) that IC(Oψν (λ),F)
occurs in the modular reduction of IC(O`iλt , Eζ

`iλt). In particular, Oψν (λ) is contained in
the closure of O`iλt = Oψco

ν (λ)
, which gives the desired inequality. ut

The proof of Theorem 3.4 is completed by
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Lemma 3.11. If ν ∈ Part(n, `) is not of the form (`i, . . . , `i), then (3.8) holds.

Proof. Let mi = m`i (ν), and let ν̂ be the partition whose parts are of the form mi`
i ,

i ≥ 0. We can assume that the representatives L ∈ Lν and M ∈ Lν̂ are such that L ⊂ M ,
and the inclusion L ↪→ M is compatible with the direct product decompositions of those
groups in the following way:

L = GL(1)× · · · × GL(1)︸ ︷︷ ︸
m0 copies

× GL(`)× · · · × GL(`)︸ ︷︷ ︸
m1 copies

× GL(`2)× · · · × GL(`2)︸ ︷︷ ︸
m2 copies

× · · ·

↓ ↓ ↓ ↓

M = GL(m0) × GL(m1`) × GL(m2`
2) × · · ·

We can also assume that the corresponding parabolic subgroups P ⊃ L and Q ⊃ M are
such that P ⊂ Q. Let IMν = IML⊂P∩MIC[ν].

By assumption, M is a proper subgroup of G, so we can apply the induction hypoth-
esis to each factor of M . Notice that the relative Weyl group NM(L)/L is the same as
NG(L)/L, namely it equals Wν = Sm0 × Sm1 × Sm2 × · · · . By Lemma 3.8 applied
to each factor of M , the simple quotients of IMν are canonically indexed by Part`(m(ν));
let Fλ,M denote the simple quotient corresponding to λ ∈ Part`(m(ν)). The induction
hypothesis tells us that

Fλ,M ∼= IC(λ(1))t � IC`·(λ(`))t � IC
`2·(λ(`

2))t
� · · · . (3.15)

By Corollary 2.15(1), the support of IGM⊂QF
λ,M is contained in the closure of the or-

bit in NG induced by the orbit O(λ(1))t × O`·(λ(`))t × O
`2·(λ(`

2))t
× · · · in NM . By [CM,

Lemma 7.2.5], that induced orbit is Oψco
ν (λ)

. So to prove (3.8), it suffices to prove that

IGM⊂QF
λ,M surjects to ICψν (λ) for all λ ∈ Part`(m(ν)). (3.16)

Let Gλ denote the projective cover of Dλ as a k[Wν]-module, and let Gλ denote
the corresponding local system on Y[ν]. As mentioned in the proof of Lemma 3.8, the
indecomposable direct summands of the perverse sheaf IC(Y[ν],L[ν]) are of the form
IC(Y[ν],Gλ) for λ ∈ Part`(m(ν)), and the head of IC(Y[ν],Gλ) is IC(Y[ν],Dλ). Since
IC(Y[ν],L[ν]) ∼= Tg((aG)!Iν) and Tg is an equivalence, the indecomposable summands
of Iν are also indexed by Part`(m(ν)): if Qλ denotes the indecomposable summand of Iν
such that Tg((aG)!Qλ) ∼= IC(Y[ν],Gλ), then the head of Qλ is ICψν (λ).

We have analogous statements for M . Let YM
[ν] = M · (O[ν] + zM,◦L ) be the vari-

ety analogous to Y[ν] for the group M and let LM
[ν] be the local system ($M

[ν])∗k com-

ing from the map $M
[ν] : M ×

L (O[ν] + zM,◦L ) → YM
[ν]. Let Gλ,M be the local system

on YM
[ν] corresponding to Gλ. Then the indecomposable summands of IMν are also in-

dexed by Part`(m(ν)): if Qλ,M denotes the indecomposable summand of IMν such that
Tm((aM)!Qλ,M) ∼= IC(YM

[ν],G
λ,M), then the head of Qλ,M is Fλ,M .

Since IGM⊂Q is exact, to prove (3.16) it suffices to prove that

IGM⊂QQ
λ,M ∼= Qλ for all λ ∈ Part`(m(ν)). (3.17)
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By Lemma 2.6 we have IGM⊂QI
M
ν
∼= Iν , and the indecomposable summands of IMν and

Iν are indexed by the same set Part`(m(ν)), so (using Corollary 2.15(2)) we know that
IGM⊂QQ

λ,M ∼= Qf (λ) for some permutation f of Part`(m(ν)). We need to show that f is
the identity.

Via Corollary 2.10, the isomorphism IGM⊂QI
M
ν
∼= Iν induces an isomorphism on the

Fourier transform side:

IGM⊂Q(IC(Y
M
[ν],L

M
[ν]))
∼= IC(Y[ν],L[ν]). (3.18)

Likewise, on the indecomposable summands, for any λ we have IGM⊂Q(IC(Y
M
[ν],G

λ,M))

∼= IC(Y[ν],Gf (λ)) for f as above, and we need to show that f is the identity.
We have already seen that the group Wν acts on L[ν] and hence on IC(Y[ν],L[ν]),

since L[ν] is the local system on Y[ν] corresponding to the regular representation of Wν .
Similarly, it acts on IC(YM

[ν],L
M
[ν]) and hence on the left-hand side of (3.18). We claim

that the isomorphism (3.18) is Wν-equivariant. This claim is closely analogous to a state-
ment proved in [AHR, §7.6], concerning the Weyl group equivariance of an induction
isomorphism of Grothendieck sheaves. The triple T ⊂ L ⊂ G of loc. cit. is here replaced
by L ⊂ M ⊂ G (so that we have a relative Weyl group rather than a Weyl group), and
the Galois coverings on the regular semisimple sets are replaced by Galois coverings on
more general strata of the Lusztig stratification, but it is easy to check that each step of
the proof of equivariance can be carried out in this new context.

We therefore have a commutative diagram:

k[Wν]

o

��

k[Wν]

o

��
End(IC(YM

[ν],L
M
[ν]))

IGM⊂Q // End(IGM⊂Q(IC(Y
M
[ν],L

M
[ν])))

∼ // End(IC(Y[ν],L[ν]))

and we conclude that the left-hand map on the bottom line is an isomorphism. Splitting
IC(YM

[ν],L
M
[ν]) and IC(Y[ν],L[ν]) into their direct summands, it follows that the map

Hom
(
IC(YM

[ν],L
M
[ν]), IC(Y

M
[ν],G

λ,M)
)
→ Hom

(
IC(Y[ν],L[ν]), IC(Y[ν],Gf (λ))

)
(3.19)

induced by IGM⊂Q is also an isomorphism, and is Wν-equivariant if we define the Wν-
action on each side using the Wν-actions on IC(YM

[ν],L
M
[ν]) and IC(Y[ν],L[ν]). But since

IC is fully faithful, the left-hand side of (3.19) is isomorphic to

Hom(LM
[ν],G

λ,M) ∼= Homk[Wν ](k[Wν],G
λ) ∼= G

λ,

and the right-hand side is similarly isomorphic to Gf (λ). So f must be the identity, as
desired. ut
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4. Recollement

We retain the convention that G = GL(n) and ` > 0. In this section, we will show that
PervG(NG,k) exhibits a ‘recollement’ structure, generalizing [AHJR, Corollary 5.2].
(The meaning of ‘recollement’ will be recalled after Theorem 4.1.) In this section, for
brevity, we will write a for aG : NG ↪→ g and T for Tg : Perv

con
G (g,k)→ Pervcon

G (g,k).

4.1. Notation and statement of the result

Recall from §3.2 that L denotes the set of conjugacy classes of Levi subgroups admitting a
cuspidal pair. We equip L with a partial order by declaring that L ≤ L′ if and only if there
exist representatives L ∈ L and L′ ∈ L′ such that L ⊂ L′. We choose an enumeration
L1, . . . ,Lr of L such that

Li ≤ Lj ⇒ i ≤ j.

(For example, when n = 6 and ` = 2, one could enumerate the elements of L in the order
in which they are listed in Figure 1.) In particular, L1 is the class of maximal tori, and if
n is a power of `, then Lr = {G}.

For i = 1, . . . , r we choose some representative Li for Li , and some parabolic sub-
group Pi ⊂ G containing Li as a Levi factor. Let Wi := NG(Li)/Li . Recall (see §3.1)
that this group is isomorphic to a product of symmetric groups. Let Rep(Wi,k) denote
the category of finite-dimensional k[Wi]-modules.

Next, let Yi = Y(Li ,Oi ) (see §2.6), where Oi is the principal nilpotent orbit in NLi .
Explicit descriptions of these subsets Yi were given in Remark 3.6. Note that Y1 = g, and
that

Li ≤ Lj ⇔ Yi ⊃ Yj . (4.1)

Let ICi = IC(Oi,k). This is the unique cuspidal simple object in PervLi (NLi ,k). Fi-
nally, let Ii = IGLi⊂PiICi . With this notation, Theorem 3.3 tells us that for each simple
object F of PervG(NG, k) there exists a unique i such that Ii surjects to F .

Let Fi =
⋃
j≥i Yj , and let Ai be the following full subcategory of PervG(NG,k):

Ai = {F ∈ PervG(NG,k) | T(a!F) is supported on Fi ⊂ g}.

In particular, A1 = PervG(NG,k). We also let Ar+1 = {0}. The main result of this
section is the following.

Theorem 4.1. For i = 1, . . . , r there exists a recollement diagram

Ai+1 si // Ai

sRi

hh

sLivv
ei // Rep(Wi,k)
eRi

gg

eLiww

such that si is the natural inclusion.

This means that the following properties hold [BBD, Ku]:
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(1) si is right adjoint to sLi and left adjoint to sRi .
(2) ei is right adjoint to eLi and left adjoint to eRi .
(3) si is fully faithful, and ei(M) = 0 if and only if M ∼= si(N) for some N ∈ Ai+1.
(4) The adjunction morphisms eieRi → id and id→ eie

L
i are isomorphisms.

Remark 4.2. Recall that by [Ma] the category PervG(NG,k) is equivalent to the cat-
egory of finite-dimensional modules over the Schur algebra Sk(n, n). Hence our de-
scription of the category PervG(NG,k) via successive recollements of the categories
Rep(Wi,k) can be considered as a geometric analogue of a similar result for the cat-
egory of modules over Sk(n, n), obtained as a special case of a more general result in
[Ku] (see Examples 1.2, 1.5, 1.6, and 1.7 in loc. cit., the last of which corresponds to the
example illustrated in our Figure 1). We do not address the question of comparing these
constructions.

4.2. Preliminary results

We begin with a few alternative descriptions of Ai .

Lemma 4.3. The following three subcategories of PervG(NG,k) coincide:

(1) the category Ai;
(2) the Serre subcategory generated by the simple quotients of the Ij for j ≥ i;
(3) the Serre subcategory generated by the Ij for j ≥ i.

Proof. We begin by noting that Ai is indeed a Serre subcategory of PervG(NG,k). This
follows from the observation that in PervG(g,k), the property of being supported on the
closed set Fi is stable under extensions and subquotients.

Let A ′i and A ′′i denote the categories described in (2) and (3) above, respectively. It
is obvious that A ′i ⊂ A ′′i . Next, Proposition 2.17 tells us that T(a!Ij ) is supported on Yj ,
so Ij ∈ Ai if j ≥ i, and hence A ′′i ⊂ Ai .

Now consider a simple perverse sheaf F ∈ Ai . By Theorem 3.3, there is a unique
integer k such that F appears in the head of Ik . By Lemma 3.8, the restriction of T(a!F)
to Yk is not zero, hence we must have k ≥ i, so F ∈ A ′i . We conclude that Ai ⊂ A ′i . ut

Lemma 4.4. We have Ext1PervG(NG,k)(IC(n), IC(n)) = 0.

This lemma is an immediate consequence of [Ma, Theorem 4.1] and general facts about
modular representations of algebraic groups. However, the following self-contained proof
is perhaps easier to understand.

Proof. Let j(n) : O(n) ↪→ NG denote the inclusion, and set

1′(n) := (j(n))!k[dim(O(n))], 1(n) :=
p(j(n))!k[dim(O(n))].

First we claim that
Ext1PervG(NG,k)(1(n), IC(n)) = 0. (4.2)
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By [BBD, Remarque 3.1.17(ii)], we have

Ext1PervG(NG,k)(1(n), IC(n)) = HomDb
G(NG,k)(1(n), IC(n)[1]),

so it is enough to prove that the right-hand side vanishes. Now consider the truncation
triangle

M→ 1′(n)→ 1(n)
+1
−→ .

As M is concentrated in perverse degrees ≤ −1, the induced morphism

HomDb
G(NG,k)(1(n), IC(n)[1])→ HomDb

G(NG,k)(1
′

(n), IC(n)[1])

is injective, so it is enough to prove that the right-hand side vanishes. Now by adjunction,

HomDb
G(NG,k)(1

′

(n), IC(n)[1]) ∼= HomDb
G(O(n),k)

(k[dim(O(n))], j !(n)IC(n)[1])
∼= H1

G(O(n),k) = 0.

For the last assertion, we have H1
G(O(n),k) ∼= H1

Gx
(pt,k) for any x ∈ O(n). The equiv-

ariant cohomology group H1
Gx
(pt,k) vanishes because Gx is the product of C× and a

unipotent group. This finishes the proof of (4.2).
Now consider the exact sequence ker ↪→ 1(n) � IC(n), and the induced exact se-

quence
Hom(ker, IC(n))→ Ext1(IC(n), IC(n))→ Ext1(1(n), IC(n)).

We have checked in (4.2) that the third term in this sequence is trivial. The same is true
for the first term since ker is supported on N rO(n). Hence the middle term is also 0. ut

Proposition 4.5. The perverse sheaf Ii is a projective object in Ai .

Proof. By Lemma 4.3, Ii is in Ai . Now we must prove that the functor

HomPervG(NG,k)(I
G
Li⊂Pi

(ICi), ·) ∼= HomPervLi (NLi
,k)(ICi,RGLi⊂Pi (·))

is exact when restricted to Ai . We claim that any composition factor of a perverse sheaf
of the form RGLi⊂Pi (F) for some F ∈ Ai is isomorphic to ICi . This will imply the result
in view of the exactness of the functor RGLi⊂Pi and Lemma 4.4 (applied to Li , which is a
product of GL(m)’s).

To prove the claim, we can assume that F is simple. Since ICi is the unique cuspidal
simple perverse sheaf in PervLi (NLi ,k), it is enough to prove that for any parabolic
subgroup Q ( Li and any Levi factor M of Q we have

RLiM⊂Q(R
G
Li⊂Pi

(F)) = 0.

However, by transitivity of restriction (Lemma 2.6) we have

RLiM⊂Q(R
G
Li⊂Pi

(F)) ∼= RGM⊂QUPi (F)
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where UPi is the unipotent radical of Pi . Let us assume for a contradiction that the restric-
tion RGM⊂QUPi (F) is nonzero, so it has some simple subobject F ′. By adjunction, there is
a nonzero morphism

IGM⊂QUPi (F
′)→ F ,

which must be surjective since F is simple. By Corollary 2.7, there exists a parabolic
subgroup Q′ ⊂ Q ( Li , a Levi factor M ′ of Q′ and a cuspidal simple perverse sheaf F ′′
on NM ′ such that F ′ is a quotient of IM

M ′⊂Q′∩M
(F ′′). Then by exactness and transitivity

of induction (see Lemma 2.6) we obtain a surjection

IGM ′⊂Q′UPi (F
′′)� F .

But M ′ belongs to some G-conjugacy class Lj for some j < i. By Lemma 3.8, the
existence of a surjection Ij → F contradicts the fact that F is in Ai . ut

4.3. Proof of Theorem 4.1

First we define the functors ei . In fact, the functor e1 is constructed in [Ma]; the general
construction will be very similar.

Choose a base point in the stratum Yi . Then the fundamental group Bi of the stratum
for this choice of base point surjects to Wi . We denote by ji : Yi ↪→ g the inclusion, and
consider the functor

αi := j
∗

i ◦ T ◦ a! : Ai → PervG(Yi,k).

This functor is exact since Yi is open in the support of T(a!F) for any F ∈ Ai .

Lemma 4.6. For any F in Ai , the object αi(F) is a shifted G-equivariant local system
on Yi . Moreover, the corresponding representation of Bi factors through Wi .

Proof. Suppose first that F is simple. If F actually lies in the smaller category Ai+1,
then αi(F) = 0. Otherwise, by Lemma 4.3, F is a quotient of Ii , and the claim follows
from Lemma 3.8(4).

For general F , the preceding paragraph already implies that αi(F) is a shifted local
system. Now, choose F ′ ⊂ F minimal with αi(F/F ′) = 0. Then by exactness αi(F) ∼=
αi(F ′), so it is enough to prove the claim for F ′. By minimality, no simple summand
in the head of F ′ is annihilated by αi . Thus, every such summand lies in Ai , but not
in Ai+1. Invoking Lemma 4.3 again, we see that there is an m ≥ 1 and a surjection
I⊕mi � F ′/ radF ′. Proposition 4.5 then implies that this morphism lifts to a surjection
I⊕mi � F ′. By exactness, αi(F ′) is a quotient of a direct sum of copies of αi(Ii), which
is the shifted local system corresponding to the regular representation of Wi . The lemma
follows. ut

Note that the functors

Hom(($(Li ,Oi ))∗k, ·) and L′i = (($(Li ,Oi ))∗k⊗ ·)
Wi
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induce quasi-inverse equivalences of categories between the category of k-local systems
on Yi such that the associated representation of Bi factors through Wi , and the category
Rep(Wi,k). Using Lemma 4.6 we can define the exact functor

ei : Ai → Rep(Wi,k), F 7→ Hom
(
($(Li ,Oi ))∗k, j

∗

i Ta!F[− dim(Yi)]
)
.

We also define the functors ẽLi , ẽ
R
i : Rep(Wi,k)→ PervG(NG,k) by the formulas

ẽLi :=
pa∗ ◦ T−1

◦
p(ji)! ◦ Li, ẽRi :=

pa! ◦ T−1
◦
p(ji)∗ ◦ Li,

where Li(V ) = L′i(V )[dim(Yi)] for any V in Rep(Wi,k). (Note that these definitions are
again direct generalizations of some constructions of [Ma, §7].)

Lemma 4.7. The functors ẽLi and ẽRi factor through functors

eLi , e
R
i : Rep(Wi,k)→ Ai .

Moreover, eLi is left adjoint to ei , and eRi is right adjoint to ei .

Proof. We prove both claims for ẽLi ; the case of ẽRi is similar. To prove the first claim
it is enough to check that T(a!ẽLi (V )) is supported on Yi for any V in Rep(Wi,k). But
a!ẽ

L
i (V ) is a quotient of T−1(p(ji)!Li(V )), so T(a!ẽLi (V )) is a quotient of p(ji)!Li(V ) in

the category of perverse sheaves on g. Thus, it is indeed supported on Yi . The adjointness
statement is proved by the following computation:

HomAi
(eLi (V ),F) ∼= HomPervG(NG,k)

(
pa∗T−1(p(ji)!Li(V )),F

)
∼= HomPervG(g,k)

(
p(ji)!Li(V ),T(a!F)

)
∼= HomPervG(Yi ,k)

(
Li(V ), j∗i T(a!F)

)
∼= HomRep(Wi ,k)(V , ei(F)),

which finishes the proof. ut

Lemma 4.8. The adjunction morphisms

ei ◦ e
R
i → id and id→ ei ◦ e

L
i

are isomorphisms.

Proof. When i = 1, this statement is [Ma, Proposition 7.2]. In fact, the argument given
there establishes the result for general i. We omit further details. ut

Now we need to define the functors sLi , si and sRi . The functor si is simply the natural
inclusion. To define sLi and sRi , consider the closed inclusion

ki : Fi ↪→ g.

Then we define the functors s̃Li , s̃
R
i : Ai → PervG(NG,k) by the formulas

s̃Li :=
pa∗◦T−1

◦(ki+1)∗◦
p(ki+1)

∗
◦T◦a!, s̃Ri :=

pa!◦T−1
◦(ki+1)∗◦

p(ki+1)
!
◦T◦a!.
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Lemma 4.9. The functors s̃Li and s̃Ri factor through functors

sLi , s
R
i : Ai → Ai+1.

Moreover, sLi is left adjoint to si , and sRi is right adjoint to si .

Proof. We consider only the case of s̃Li ; the case of s̃Ri is similar. We have to prove that
if F is in Ai , then

s̃Li (F) =
pa∗T−1((ki+1)∗

p(ki+1)
∗T(a!F)

)
is in Ai+1, i.e. T(a!s̃Li (F)) is supported on Fi+1. However, a!s̃Li (F) is a quotient of
T−1(ki+1)∗

p(ki+1)
∗T(a!F), whose image under T is clearly supported on Fi+1. Hence

the same is true for a!s̃Li (F).
We now turn to the adjunction statement. For F in Ai and F ′ in Ai+1, we have

HomAi+1(s
L
i (F),F

′) = HomAi+1

(
pa∗T−1(ki+1)∗

p(ki+1)
∗T(a!F),F ′

)
∼= HomPervG(g,k)

(
(ki+1)∗

p(ki+1)
∗T(a!F),T(a!F ′)

)
∼= HomPervG(Fi+1,k)

(
p(ki+1)

∗T(a!F), p(ki+1)
!T(a!F ′)

)
∼= HomPervG(g,k)

(
T(a!F), (ki+1)∗

p(ki+1)
!T(a!F ′)

)
.

By definition of F ′, the perverse sheaf T(a!F ′) is supported on Fi+1, so we have an
isomorphism (ki+1)∗

p(ki+1)
!T(a!F ′) ∼= T(a!F ′). Hence we obtain

Hom
(
T(a!F), (ki+1)∗

p(ki+1)
!T(a!F ′)

)
∼= Hom

(
T(a!F),T(a!F ′)

)
∼= Hom(F ,F ′),

which concludes the proof. ut

We have checked conditions (1), (2) and (4) in the definition of a recollement diagram.
Condition (3) is obvious from definitions, so the proof of Theorem 4.1 is complete. ut
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