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Abstract. We prove almost sharp upper bounds for the Lp norms of eigenfunctions of the full
ring of invariant differential operators on a compact locally symmetric space, as well as their re-
strictions to maximal flat subspaces. Our proof combines techniques from semiclassical analysis
with harmonic theory on reductive groups, and makes use of new asymptotic bounds for spherical
functions that are of independent interest.
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1. Introduction

IfM is a compact Riemannian manifold of dimension n and ψ is a Laplace eigenfunction
on M satisfying 1ψ = λ2ψ , it is a well studied problem to investigate the asymptotic
behaviour of the Lp norms of ψ as λ → ∞. The fundamental upper bound for these
norms was established by Sogge [18] (see also Avakumović [1] and Levitan [13] in the
case p = ∞), who proves that

‖ψ‖p � λδ(n,p)‖ψ‖2 (1.1)

where δ(n, p) is the piecewise linear function of 1/p given by

δ(n, p) =


n

(
1
2
−

1
p

)
− 1/2, 0 ≤

1
p
≤

n− 1
2(n+ 1)

,

n− 1
2

(
1
2
−

1
p

)
,

n− 1
2(n+ 1)

≤
1
p
≤

1
2
.

(1.2)

Moreover, these bounds were shown by Sogge [18] to be sharp when M is the round
n-sphere Sn.

It is sometimes possible to improve the upper bound in (1.1) by assuming that M
has additional symmetry, or that ψ is an eigenfunction of extra differential operators that
commute with1. In the extreme case of the flat torus T n, for instance, if one assumes that
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ψ is an eigenfunction of all the translations {i∂/∂xj } then ψ is a complex exponential,
and so we have ‖ψ‖p ≤ C‖ψ‖2 for all p and some C depending only on T n. A more
interesting example of this phenomenon is given by Sarnak in his letter to Morawetz [15].
He proves that if X is a compact locally symmetric space of dimension n and rank r ,
and ψ is an eigenfunction of the full ring of differential operators on X with Laplace
eigenvalue λ2, then

‖ψ‖∞ � λ(n−r)/2‖ψ‖2. (1.3)

(Notations are standard and given in §2.1.) Note that (1.3) represents an improvement in
the exponent of (1.1) from (n− 1)/2 to (n− r)/2. This upper bound is also sharp in the
case when X is of compact type, and Sarnak states that it should be considered as the
‘local bound’ for the sup norm of a higher rank eigenfunction.

The goal of this paper is to derive the correct local bound for all Lp norms of an
eigenfunction in higher rank, by combining real interpolation with an analysis of spherical
functions. Our main result in this direction is stated below, which in the compact case
differs from the sharp bound only by a factor of (log t)1/2 at the kink point.

Theorem 1.1. Let X be a compact locally symmetric space of dimension n and rank r
that is a quotient of the globally symmetric space S = G/K , and assume that S is irre-
ducible and not Euclidean. Let a0 be a real Cartan subalgebra of G, and let a∗0 and a∗

be its real and complex dual respectively. If f ∈ C∞(X) is an eigenfunction of the ring
of invariant differential operators, we say f has spectral parameter ν ∈ a∗ if it has the
same eigenvalues as the function exp((ρ + iν)(A(x))) on S.

Let B∗ ⊂ a∗0 be a compact set that is bounded away from the singular set. Let ψ ∈
C∞(X) be an eigenfunction of the full ring of invariant differential operators on X, with
‖ψ‖2 = 1 and spectral parameter tλ where t > 0 and λ ∈ B∗. We have

‖ψ‖p �B∗,p


(log t)1/2t rδ(n/r,p), p =

2(n+ r)
n− r

,

t rδ(n/r,p), p 6=
2(n+ r)
n− r

,

(1.4)

where the function δ is as in (1.2). Moreover, these bounds are sharp up to the logarithmic
factor in the case when X is of compact type.

A similar result was obtained in the Euclidean case by Mockenhaupt [14]. It will be
apparent in the course of the proof of Theorem 1.1 that whenX is the quotient of a product
S = S1×· · ·×Sd of irreducible symmetric spaces, the Lp norm of an eigenfunction onX
is bounded by the product of the functions (1.4) for each irreducible factor of S. Moreover,
in the compact case this will again be sharp up to the logarithmic factors at the kink points.

To give an example comparing the bound produced by Theorem 1.1 with the classical
bound (1.1), let X be a quotient of the globally symmetric space SL(3,R)/SO(3). It
was proven by Selberg [16] that the ring R of invariant differential operators on X is
isomorphic to the free polynomial ring C[1,D], where D is an operator of degree 3. Let
ψ be an eigenfunction of R, and assume that the spectral parameter of ψ is restricted as
in Theorem 1.1. The two exponents δ(5, p) and 2δ(5/2, p) appearing in Sogge’s bound
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Fig. 1. Comparison of the two exponents δ(5, p) and 2δ(5/2, p) appearing in Sogge’s bound and
Theorem 1.1 in the case G = SL(3,R).

and in Theorem 1.1 are graphed together in Figure 1. We see that by using the symmetry
of X in the form of its extra differential operators, we are able to significantly strengthen
the bounds for ‖ψ‖p.

Let us take a moment to discuss the significance of the exponent in Theorem 1.1, and
hopefully convince the reader that it is natural. Suppose that r | n, and let X be a product
of r compact manifolds X1 × · · · ×Xr of dimension n/r . Let 1i be the Laplacian of Xi ,
and let ψ = ψ1 × · · · × ψr be a joint eigenfunction of the Laplacians 1i on X. Let
1iψ = λ2

iψ , and assume that the ratios λi/λj are all bounded by some constant. By
applying Sogge’s bound (1.1) to each ψi , we may show that

‖ψ‖p � λrδ(n/r,p)‖ψ‖2,

where λ2
= λ2

1 + · · · + λ
2
r . We may therefore summarize Theorem 1.1 by saying that,

from the point of view of the convex bound for Lp norms of eigenfunctions, a locally
symmetric space of dimension n and rank r whose universal cover is irreducible behaves
like the product of r general Riemannian manifolds of dimension n/r .

It would be interesting to know in which other cases this product behaviour occurs,
that is, when the Lp bounds of Theorem 1.1 hold for a more general compact manifoldM
of dimension n with r commuting differential operators that are ‘independent’ in some
sense. There are no nontrivial examples of this in the completely integrable case, as it was
proven by Toth and Zelditch [20] that if M is a quantum completely integrable manifold
and all joint eigenfunctions on M are uniformly bounded then M is a flat torus.

In proving Theorem 1.1, we shall in fact show that the same bounds hold for the
L2
→ Lp norm of a spectral projector onto a ball of fixed radius about λ. With this

formulation, our bounds will be sharp up to the log in the case of both compact and
noncompact type. The fact that this bound is sharp for individual eigenfunctions in the
compact case is due to the high multiplicity of the spectrum, so that by choosing the
radius of our spectral projector to be sufficiently small we know that it will always pick
out exactly one eigenvalue of high multiplicity.
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In both cases, the bounds of Theorem 1.1 are realised by simple wave packets which
are the higher rank analogues of the zonal functions and Gaussian beams on a general
Riemannian manifold. We shall describe these packets on the globally symmetric space
S = G/K , their analogues on X being similar. The cotangent bundle T ∗S of S is isomor-
phic to the K-principal bundle G×K p∗, which we recall is defined to be the quotient of
the trivial bundle G× p∗ by the action

(g, v)k = (gk,Ad−1
k v).

If λ ∈ a∗, we define T ∗λ S ⊂ T
∗S by

T ∗λ S = {(g, v) ∈ G×K p∗ | v ∈ AdK(λ/‖λ‖)}.

Saying that ψ ∈ C∞(S) is an approximate eigenfunction of the ring of invariant differ-
ential operators on S with parameter λ then implies that the microlocal support of ψ is
concentrated on T ∗λ S; see [17, §5.4].

Let o ∈ S correspond to the identity coset of K , and let A be a maximal flat subspace
containing o. Define T ∗λ A = A × λ/‖λ‖ ⊂ T

∗
λ S, and let Lλ ⊂ T ∗λ S be the orbit of T ∗λ A

under rotation by K about o. The K-biinvariant functions kt constructed in §2 and §6.4
saturate the Lp norms on S for p above the kink point, and we believe that these functions
should be microlocally concentrated on Lλ. The fibre of the projection map π : Lλ → S

at s ∈ S can be identified with StabK(s), so that this fibre is identified withM for generic s
and with K at s = o, and correspondingly ψ will be strongly peaked at o so that we may
think of ψ as an analogue of the usual zonal function on a Riemannian manifold. Note
that in the case of compact type we can prove that the spherical functions ϕλ also saturate
the Lp bounds of Theorem 1.1 for large p.

For p below the kink point, the Lp norms on S are saturated by the higher rank ana-
logue of a Gaussian beam, which is simply a wave packet concentrated on a maximal flat
subspace, and whose microlocal support is concentrated on the set T ∗λ A. These functions
will be described more thoroughly in the case of compact type in §5.3.

The methods we develop to prove Theorem 1.1 also allow us to deduce the following
result on the restrictions of eigenfunctions to flats in X. We hope to extend this theorem
to more general locally symmetric submanifolds in future.

Theorem 1.2. With notation as in Theorem 1.1, let E be an open ball in a maximal flat
subspace of X.

(a) If n > 3r , the Lp norms of ψ |E satisfy

‖ψ |E‖p �B∗ t
(n−r)/2−r/p.

(b) If n = 3r , the Lp norms of ψ |E satisfy

‖ψ |E‖p �B∗,p t
(n−r)/2−r/p, p > 2,

‖ψ |E‖2 �B∗ (log t)1/2tn/2−r .



Lp norms of higher rank eigenfunctions 1441

(c) If n < 3r , the Lp norms of ψ |E satisfy

‖ψ |E‖p �B∗,p


(log t)1/2tδ(p), p =

4r
n− r

,

tδ(p), p 6=
4r
n− r

,

where δ(p) is the piecewise linear function

δ(p) =


n− r − 2r/p, 0 ≤

1
p
≤
n− r

4r
,

(n− r)/2,
n− r

4r
≤

1
p
≤

1
2
.

All of these bounds are sharp up to the logarithmic factor in the case of compact type.

When r = 1, this is a slight weakening of a theorem of Burq, Gérard and Tzvetkov [3]. We
note that there are only finitely many globally symmetric spaces that fall under cases (b)
and (c) of Theorem 1.2. In case (b), these are the spaces associated to SO(3, 1), SO(3, 2),
SO(3, 3), SL4(R), and their compact duals, and in case (c) these are the spaces associated
to SL2(R), SL3(R), and their compact duals. Theorem 1.2 will be proven in §3.

1.1. Asymptotics for spherical functions

In the course of proving Theorem 1.1 we have found it necessary to develop sharp asymp-
totics for spherical functions of large eigenvalue on G, which we state here as separate
theorems. First let us assume thatG is semisimple and noncompact with finite centre. For
λ ∈ a∗0, let ϕλ denote the standard spherical function with parameter λ, normalised so that
ϕλ(e) = 1. If α is a nonzero root of a in g, let m(α) denote its multiplicity. Our result is
the following:

Theorem 1.3. Let B ⊂ a0 and B∗ ⊂ a∗0 be compact sets, with B∗ bounded away from
the singular set. Then

ϕtλ(exp(H))�B,B∗

∏
α∈1+

(1+ t |α(H)|)−m(α)/2 (1.5)

for H ∈ B and λ ∈ B∗.

Theorem 1.3 is the strongest upper bound that can be given for ϕtλ(exp(H)) when H
and λ are bounded and t grows, at least under the regularity assumption on λ that we have
made. We have attempted to remove this assumption, but so far only have an approach
to this in the case of rank 2. We hope to carry this out in a future paper, and to use it to
remove the regularity condition in Theorem 1.1 in some cases.

Theorem 1.3 is similar to results of Duistermaat, Kolk, and Varadarajan [4, Cor. 9.3
and Thm. 11.1], and Blomer and Pohl [2, Thm. 2]. The result of Blomer and Pohl gives
a bound for ϕtλ(exp(H)) which is not generally sharp, but which is uniform as H and λ
vary in any compact subsets of a0 and a∗0. The results of Duistermaat, Kolk, and Varadara-
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jan are only uniformly sharp if H is restricted to a compact equisingular set, but [4,
Thm. 11.1] is uniformly sharp for λ in any compact set. In some sense, [4, Thm. 11.1]
is complementary to Theorem 1.3, which requires λ to be regular but is uniformly sharp
in H . Our proof of Theorem 1.3 is similar to the proof of [4, Thm. 11.1], with the main
difference being that the phase function φ(k,H, λ) that appears in the oscillatory inte-
grals is linear in λ, but nonlinear in the variable H that we are allowing to degenerate.
Theorem 1.3 will be derived from an analysis of stationary phase integrals in §4.

Our methods also allow us to strengthen the asymptotic formula for ϕtλ(exp(H))
given in [4, equation (9.10)]. Let Vol0(K) and Vol0(M) be the volumes of K and M with
respect to the metric induced from minus the Killing form on k, and for anyw ∈ W define

σw(H, λ) = −
∑
α∈1+

m(α) sgn(〈λ, α〉α(wH)). (1.6)

Theorem 1.4. Let ar and a∗r denote the regular sets in a0 and a∗0 respectively. Let B ⊂ a0
and B∗ ⊂ a∗r be compact sets. If H ∈ a0, let ‖H‖s denote the Killing distance from H to
the singular set. There are functions fw ∈ C∞(ar × a∗r × R>0) for w ∈ W such that(

∂

∂H

)a
fw(H, λ, t)�B,B∗,a

1

t‖H‖a+1
s

∏
α∈1+

(t |α(H)|)−m(α)/2,

and

ϕtλ(exp(H))

=

∏
α∈1+

∣∣∣∣ 〈α, tλ〉2π
sinhα(H)

∣∣∣∣−m(α)/2 Vol0(M)
Vol0(K)

∑
w∈W

exp(itλ(wH)+ iπσw(H, λ)/4)

+

∑
w∈W

exp(itλ(wH))fw(H, λ, t)+OB,B∗,A((t‖H‖s)−A)
∏
α∈1+

(t |α(H)|)−m(α)/2

(1.7)

for H ∈ B ∩ ar and λ ∈ B∗.

We also have the following asymptotic, which is weaker than Theorem 1.4 but seems to
be the most useful for our planned applications.

Theorem 1.5. Let ar and a∗r denote the regular sets in a0 and a∗0 respectively. Let B ⊂ a0
and B∗ ⊂ a∗r be compact sets. If H ∈ a0, let ‖H‖s denote the Killing distance from H to
the singular set. There are functions fw ∈ C∞(ar × a∗r × R>0) for w ∈ W such that(

∂

∂H

)a
fw(H, λ, t)�B,B∗,a ‖H‖

−a
s

∏
α∈1+

(t |α(H)|)−m(α)/2,

and

ϕtλ(exp(H))

=

∑
w∈W

exp(itλ(wH))fw(H, λ, t)+OB,B∗,A((t‖H‖s)−A)
∏
α∈1+

(t |α(H)|)−m(α)/2

for H ∈ B ∩ ar and λ ∈ B∗.
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We have a result analogous to Theorem 1.3 in the case of compact type, but which is
weakened by the requirement that the group variable be constrained to a small ball about
the origin. Let U be a compact semisimple Lie group, and K a subgroup with the prop-
erty that (U,K) is a Riemannian symmetric pair. If µ is a spherical weight (defined
in §5.1), we let ϕµ be the K-spherical function on U with parameter µ, normalised so
that ϕµ(e) = 1.

Theorem 1.6. There exists a ball B ⊂ ia0 about the origin such that for all compact sets
B∗ ⊂ a∗0 that are bounded away from the singular set, we have

ϕtµ(exp(H))�B∗

∏
α∈1+

(1+ t |α(H)|)−m(α)/2

for H ∈ B and µ ∈ B∗.

Theorem 1.6 will be proved in §6.3.

2. Bounds for Lp norms in noncompact type

We shall first prove Theorem 1.1 in the case when X is of noncompact type. The proof in
the case of compact type is similar, and we shall make the modifications to our argument
that are required to treat it in §6.4.

2.1. Notation

2.1.1. Lie algebras. We shall denote real Lie algebras with a subscript 0, and denote
their complexifications by dropping this subscript. Let G be a connected noncompact
semisimple real Lie group with finite centre and Lie algebra g0. In §§2–3 we shall further
assume that G is almost simple, in the sense that g0 is simple over R, or that G does
not factor after an isogeny. Note that we shall only use this assumption when summing
the bounds we obtain for truncated kernels. We denote the Killing form on g by 〈 , 〉. Let
g0 = k0+p0 be a Cartan decomposition of g0, and θ the corresponding Cartan involution.
Let K be the compact connected subgroup of G with Lie algebra k0, so that S = G/K is
a globally symmetric space of noncompact type. Let

G = NAK, g = n(g) exp(A(g))k(g), g = k+ a+ n

be an Iwasawa decomposition of G. Let M ′ and M be the normaliser and centraliser of a
inK , let m be the Lie algebra ofM , and letW be the Weyl groupM ′/M . We let1 denote
the set of roots of g with respect to a. If α ∈ 1 we denote the corresponding root space
by gα .

Remark 2.1. Note that we shall include 0 in1, which is not standard notation, but it will
be convenient for us. In particular, gα = a+m when α = 0. To avoid confusion with the
real Lie algebra g0, the expression gα with α = 0 will only appear implicitly when we
index over root spaces.
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We let m(α) = dim gα when α 6= 0, and when α = 0 we let m(α) = dimm. We
let 1+ be the set of positive roots corresponding to n, and let a+0 be the associated
positive Weyl chamber. We let a∗0,+ denote the dual positive Weyl chamber. We define
ρ = 1

2
∑
α∈1+ m(α)α. If ν ∈ a∗, Hν ∈ a will be the vector dual to ν under the Killing

form. We emphasise the following piece of notation, as it is nonstandard and will be used
frequently.

Definition 2.2. We let 1̃ denote the multiset on 1 in which every α ∈ 1 appears with
multiplicity m(α). If R ⊆ 1, we let R̃ denote the corresponding subset of 1̃.

2.1.2. The Harish-Chandra transform. If λ ∈ a∗, we let ϕλ denote the spherical function
with parameter λ, defined by

ϕλ(x) =

∫
K

exp
(
(ρ + iλ)(A(kx))

)
dk.

If f ∈ C∞0 (S), we define its Harish-Chandra transform by

f̂ (ν) =

∫
S

f (x)ϕ−ν(x) dx.

If f is K-biinvariant, we have the inversion formula

f (x) =

∫
a∗0/W

f̂ (ν)ϕν(x)|c(ν)|
2 dν,

where c(ν) is Harish-Chandra’s c-function. See [6] for more information about this trans-
form.

2.2. An outline of the proof

We shall assume that B∗ is contained in the positive dual Weyl chamber a∗0,+. We shall
approach Theorem 1.1 by the standard method of constructing a family of approximate
spectral projectors Tt onto a ball of radius 1 about tλ, and bounding the norms of Tt from
L2 to Lp. Note that all bounds we state will depend on X and B∗ from now on, but will
be uniform in λ ∈ B∗.

We shall construct Tt using the Harish-Chandra transform, which will allow us to gain
good control over the behaviour of the integral kernel of this operator. Choose a function
h ∈ S(a∗0) of Paley–Wiener type that is real-valued and ≥ 1 in a ball of radius 1 about the
origin. Let

ht (ν) =
∑
w∈W

h(wν + tλ),

and let k0
t be the K-biinvariant function on S with Harish-Chandra transform ht . It is of

compact support independent of tλ by the Paley–Wiener theorem of [5]. Define K0
t to be

the point pair invariant kernel on S associated to k0
t , given by K0

t (x, y) = k
0
t (x
−1y) for

x, y ∈ G. Let Tt be the operator on X with integral kernel

Tt (x, y) =
∑
γ∈0

K0
t (x, γy). (2.1)
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As Ttψ = ht (−tλ)ψ and ht (−tλ) ≥ 1, it will suffice to prove bounds for ‖Ttψ‖p of the
form (1.4), uniformly for λ ∈ B∗. As is common, we shall approach this by forming the
adjoint square operator TtT ∗t and proving the bounds

‖TtT
∗
t f ‖p �p


log t · t2δ(p)‖f ‖p′ , p =

2(n+ r)
n− r

,

t2δ(p)‖f ‖p′ , p 6=
2(n+ r)
n− r

,

(2.2)

for the operator norms of TtT ∗t using real interpolation. Here, p′ and p are dual exponents
and f ∈ C∞(X). Note that Tt is actually self-adjoint because ht is real, and so if we define
theK-biinvariant function kt = k0

t ∗k
0
t , then TtT ∗t is associated to kt as in (2.1). We define

B ⊂ a0 to be a ball about the origin such that supp(kt ◦ exp) ⊆ B.

2.3. The case of rank one

We begin by outlining the real interpolation argument used to prove (2.2) when r = 1,
in which case it consists of a dyadic decomposition of kt in terms of its radial support.
Choose g ∈ C∞0 (R) to be a real, nonnegative, even function that is identically 1 in a
neighbourhood of 0, and for m ∈ Z≥0 let

ft,m(x) =

{
g(tx), m = 0,
g(te−mx)− g(te−m+1x), m > 0.

Fix an isomorphism between a0 and R, and pull the functions ft,m back to βt,m on a0. De-
fine the K-biinvariant function kt,m by kt,m(exp(H)) = βt,m(H)kt (exp(H)), let Kt,m be
the associated point pair invariant, and Tt,m the integral operator onX associated toKt,m.
It may be shown that

‖Tt,mf ‖∞ � tn−1e−m(n−1)/2
‖f ‖1, (2.3)

‖Tt,mf ‖2 � t−1em‖f ‖2. (2.4)

By interpolating between (2.3) and (2.4) we may prove the bound

‖Tt,mf ‖p � tn(1−2/p)−1 exp
(
m

(
n+ 1
p
−
n− 1

2

))
‖f ‖p′ , 2 ≤ p ≤ ∞, (2.5)

and because the supports of kt were uniformly compact there is C > 0 such that kt,m = 0
for m > log t + C. Summing over m then gives

‖TtT
∗
t f ‖p � tn(1−2/p)−1

∑
0≤m≤log t+C

exp
(
m

(
n+ 1
p
−
n− 1

2

))
‖f ‖p′ , 2 ≤ p ≤ ∞.

The sum is a geometric progression of length log t with extremal terms 1 and
t (n+1)/p−(n−1)/2. The bounds of Theorem 1.1 follow immediately from this and the ob-
servation that

2δ(p) = n(1− 2/p)− 1+max
{

0,
n+ 1
p
−
n− 1

2

}
.
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2.4. Partitions of unity

Our proof for higher rank groups works by applying a similar decomposition in terms of
the Cartan a0 coordinate to kt . We begin by defining the partition of unity that we shall
use.

Consider a partition of 1 into three sets R0 and R±, and define C to be the cone

C = {v ∈ a0 | α(v) = 0, α ∈ R0} ∩ {v ∈ a0 | α(v) > 0, α ∈ R+}
∩ {v ∈ a0 | α(v) < 0, α ∈ R−}.

We let C be the collection of nonempty cones obtained in this way, which form a partition
of a0. We choose a point pC in the interior of every cone C. We define a flag to be a
sequence {C0, C1, . . . , Cr} of elements of C such that Ci ⊂ Ci+1 and dimCi = i, and
let the set of flags be F . If F = {C0, C1, . . . , Cr} ∈ F , and 1 ≤ i ≤ r , define 1i,F
to be the set of roots that vanish on Ci−1 but not on Ci . For every F ∈ F we define
the closed cone S(F ) to be the positive linear span of the set {pC | C ∈ F }, so that
a0 =

⋃
F∈F S(F ). We may assume without loss of generality that wS(F) = S(wF) for

all w ∈ W .
Let F = {C0, C1, . . . , Cr} ∈ F , and let φF be the linear isomorphism φF : a0 ' Rr

such that φF (pCi ) is the vector with i 1’s followed by r−i 0’s. We see that φF maps S(F )
onto the cone S0 = {x1 ≥ · · · ≥ xr ≥ 0}, and that φF (Ci) ⊂ {(x1, . . . , xi, 0, . . . 0) |
xj ∈ R}. If α ∈ 1 is a root, we let φ∗Fα be the pushforward of α to Rr .

Lemma 2.3. Let {ej | 1 ≤ j ≤ r} be the standard basis of Rr . We may choose the
points pC so that for all α ∈ 1 and F ∈ F , φ∗Fα is either nonpositive or nonnegative on
the positive quadrant Rr+, and if α ∈ 1i,F we have φ∗Fα(ej ) = 0 iff j < i.

Proof. Let F = {C0, C1, . . . , Cr}. We may assume without loss of generality that α is
positive on Cr , and let α ∈ 1i,F . We define a new collection of points p′C ∈ C by setting
p′C = A

dimCpC for some large A > 1 to be chosen later. It is equivalent to show that our
new collection of points satisfies the condition φ∗Fα(ej ) ≥ 0 with equality iff j < i. As
ej = φF (p

′

Cj
)− φF (p

′

Cj−1
), we have

φ∗Fα(ej ) = α(p
′

Cj
)− α(p′Cj−1

) = Ajα(pCj )− A
j−1α(pCj−1).

Our assumptions on α imply that α(pCk ) ≥ 0 with equality iff k < i, and so by choosing
A large enough we see that the same will be true for φ∗Fα(ej ). As there are only finitely
many choices for F and α, some A will work for all of them. ut

Define
Mt = {m ∈ Zr | log t + 1 ≥ m1 ≥ m2 ≥ · · · ≥ 0}.

Choose a small δ > 0. We define an equivalence relation on Mt by setting m ∼ m′ if
and only if m1 = m

′

1, and for all i with mi 6= m′i we have max{mi, m′i} ≤ δm1. If we set

Mt,δ = {m ∈Mt | mi = 0 or mi > δm1, ∀ i },

then Mt,δ contains a representative for every equivalence class in Mt .
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Let g ∈ C∞0 (R) be a real-valued function supported in [−e, e] such that g(x) = 1
for x ∈ [−1, 1], and both g(x) and g(x) − g(ex) are nonnegative. For m ∈ Mt,δ and
1 ≤ i ≤ r , define fm,i ∈ C

∞

0 (R) by

fm,i(x) =

{
g(te−bδm1c−ixi) if mi = 0,
χ[0,∞)(xi)[g(te

−mi−ixi)− g(te
−mi+1−ixi)] if mi > bδm1c,

(2.6)

and define fm ∈ C
∞

0 (R
r) by

fm(x) =
r∏
i=1

fm,i(xi) ≥ 0.

Let S0 ⊂ S0 be the set {1 ≥ x1 ≥ · · · ≥ xr ≥ 0}.

Lemma 2.4. We have ∑
m∈Mt,δ

fm(x) = 1 when x ∈ S0.

Proof. When r = 1, the result is obvious. Assume r > 1, and define

Nt = {n ∈ Zr−1
| log t + 1 ≥ n1 ≥ n2 ≥ · · · ≥ 0},

Nt,δ = {n ∈ Nt | ni = 0 or ni > δn1, ∀ i }.

If m ∈Mt,δ , let m ∈ Nt,δ be its first r − 1 entries. We may define the function fn,i for
n ∈ Ntδ and 1 ≤ i ≤ r − 1 as in (2.6), and write

∑
m∈Mt,δ

fm(x) =
∑

n∈Nt,δ

∑
m∈Mt,δ

m=n

fm(x) =
∑

n∈Nt,δ

r−1∏
i=1

fn,i(xi)
∑

m∈Mt,δ

m=n

fm,r(xr). (2.7)

If nr−1 > δn1, we have∑
m∈Mt,δ

m=n

fm,r(xr) = g(te
−bδn1c−rxr)+

∑
δn1<mr≤nr−1

[g(te−mr−rxr)− g(te
−mr+1−rxr)]

= g(te−nr−1−rxr),

while if nr−1 = 0 we have ∑
m∈Mt,δ

m=n

fm,r(xr) = g(te
−bδn1c−rxr).

We may assume without loss of generality that fn,r(xr−1) 6= 0 in (2.7). If nr−1 > δn1,
this implies that

0 ≤ te−nr−1−r+1xr−1 ≤ e.
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Our assumption that x ∈ S0 implies that xr−1 ≥ xr ≥ 0, so that 0 ≤ te−nr−1−rxr ≤ 1
and g(te−nr−1−rxr) = 1. Likewise, when nr−1 = 0 we also have g(te−bδn1c−rxr) = 1.
Applying this to (2.7) gives ∑

m∈Mt,δ

fm(x) =
∑

n∈Nt,δ

r−1∏
i=1

fn,i(xi),

and proceeding inductively completes the proof. ut

We now pull the functions fm back to a0 under φF , and let the collection of func-
tions we obtain be {fm,F | m ∈ Mt,δ}. We may assume without loss of generality
that the set of functions we generate in this way is invariant under the Weyl group, i.e.
fm,wF (wH) = fm,F (H) for w ∈ W . By scaling the points pC if necessary we may
assume that φF (2B) ⊆ [−1, 1]r for all F , and it follows from this and Lemma 2.4 that∑

F∈F

∑
m∈Mt,δ

fm,F (H) ≥ 1

for H ∈ 2B. If we choose f∞ to be a smooth Weyl-invariant function that vanishes on B
and is equal to 1 outside 2B, then

G(H) = f∞(H)+
∑
F∈F

∑
m∈Mt,δ

fm,F (H) ≥ 1 (2.8)

for all H ∈ a0. We define the partition of unity {βm,F | m ∈Mt,δ, F ∈ F} ∪ {β∞} on a0
by setting

βm,F (H) = fm,F (H)/G(H), β∞(H) = f∞(H)/G(H).

We have introduced the parameter δ so that we may prove the following lemma, which
will allow us to prove that the Harish-Chandra transforms of our truncated kernels decay
near the walls of a∗0,+.

Lemma 2.5. If ∂α is a product of derivatives in the coordinate directions on a0, we have

∂αβm,F �α t
|α|e−δm1|α|. (2.9)

Proof. Each of the functions fm,F clearly satisfies the bound (2.9), and because there is
some N > 0 independent of t such that each H ∈ a0 lies in the support of at most N of
the functions fm,F , we see that the functionG(H) in (2.8) also satisfies (2.9). The lemma
follows from this and the bound G(H) ≥ 1. ut

2.5. Bounds for truncated kernels

We shall now use our partition of unity to decompose the K-biinvariant function kt , and
give bounds for the norms of the operators constructed from the truncated pieces. For
m ∈ Mt,δ and F ∈ F , the function βm,[F ](H) =

∑
w∈W βm,F (wH) is Weyl-invariant

and so we may define a K-biinvariant function β̃m,F by setting

β̃m,F (exp(H)) = βm,[F ](H)
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for H ∈ a0. We then define km,F = β̃m,F kt . Clearly km,F = km,wF , and the condition
that β∞ vanishes on B implies that

kt =
∑

F∈F/W

∑
m∈Mt,δ

km,F .

As before, we let Km,F and Tm,F be the point pair invariant and integral operator associ-
ated to km,F . Let L(F, p) be the linear functional

L(F, p)(x) =

(
1

2p
−

1
4

) r∑
i=1

xi |1̃i,F | +
2
p

r∑
i=1

xi .

We shall require the following bounds on Tm,F .

Proposition 2.6. There is a constantN depending only onG, and a constant C1 depend-
ing on φ, such that if we define χ(m) by

χ(m) =
{ 1 if mr < δm1 + C1,

0 otherwise,

then

‖Tm,Ff ‖p �δ t
n(1−2/p)−r exp(L(F, p)(m)+ χ(m)Nδm1)‖f ‖p′ (2.10)

for all p ≥ 2 and f ∈ C∞(X). The implied constant is uniform in m.

Proof of Proposition 2.6 assuming Theorem 1.3. We begin by establishing the following
bounds for the values taken by the roots on the support of βm,F .

Lemma 2.7. If α ∈ 1i,F , then

sup{|α(H)| | H ∈ supp(βm,F )} � t−1 max{emi , eδm1}, (2.11)

and there are positive constants C1 and C2 such that if mi ≥ δm1 + C1, then

inf{|α(H)| | H ∈ supp(βm,F )} ≥ C2t
−1emi . (2.12)

Proof. Let H ∈ supp(βm,F ), so that x = φF (H) ∈ supp(fm) and α(H) = φ∗Fα(x),
and assume without loss of generality that α is positive on Cr ∈ F . We know that all
x ∈ supp(fm) satisfy

|xi | ≤ t
−1ebδm1c+r+1 if mi = 0, (2.13)

t−1emi−r−1
≤ xi ≤ t

−1emi+r+1 otherwise. (2.14)

By Lemma 2.3, if we let the standard basis vectors of Rr be ei as before, we have

φ∗Fα(x) =

r∑
j=i

φ∗Fα(xj ej ).
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This implies that

|φ∗Fα(x)| ≤ r max
j≥i
{|φ∗Fα(ei)|}max

j≥i
{|xj |} � max

j≥i
{|xj |},

and the bound (2.11) now follows from (2.13) and (2.14). To prove (2.12), let q be the
smallest number such that mq = 0. If q ≤ i then mi = 0 and there is nothing to prove.
Otherwise, the inequalities φ∗Fα(ej ) ≥ 0 from Lemma 2.3 and xj ≥ 0 for j < q from
(2.14) give

φ∗Fα(x) ≥ φ
∗

Fα(eixi)+

r∑
j=q

φ∗Fα(xj ej ).

Applying (2.13) and (2.14) gives a constant C3 > 0 such that

φ∗Fα(x) ≥ e
−r−1
|φ∗Fα(ei)|t

−1emi − C3t
−1eδm1 .

If we assume that mi ≥ δm1 +C1 for C1 satisfying e−r−1
|φ∗Fα(ei)| −C3e

−C1 > 0, then
we have φ∗Fα(x)� t−1emi as required. ut

The second input we shall need is a bound on the pointwise norm of kt .

Lemma 2.8. We have

kt (exp(H))� tn−r
∏
α∈1̃+

(1+ t |α(H)|)−1/2

for H ∈ a0 and λ ∈ B∗.

Proof. The Harish-Chandra transform of kt is equal to

k̂t (ν) = h
2
t (ν) =

(∑
w∈W

h(wν + tλ)
)2

=

∑
w∈W

h(wν + tλ)2 +
∑
w1 6=w2

h(w1ν + tλ)h(w2ν + tλ)

=

∑
w∈W

h(wν + tλ)2 + s(ν, tλ),

where s(ν, tλ) satisfies

‖(1+ |ν|)ks(ν, tλ)‖L1(a∗0)
�k,A t

−A (2.15)

as a function of ν for all λ. It suffices to bound |kt (exp(H))| with H ∈ B. Inverting the
Harish-Chandra transform as in §2.1.2 gives

kt (exp(H)) =
∫
W\a∗0

k̂t (ν)ϕν(exp(H))|c(ν)|2 dν

=

∫
a∗0

h(ν + tλ)2ϕν(exp(H))|c(ν)|2 dν

+

∫
W\a∗0

s(ν, tλ)ϕν(exp(H))|c(ν)|2 dν.
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By combining the bounds |ϕν(exp(H))| ≤ 1, |c(ν)|2 � 1 + |ν|n−r , and (2.15), we may
estimate the second integral by∫

W\a∗0

s(ν, tλ)ϕν(exp(H))|c(ν)|2 dν �h,A t
−A.

Let B∗1 ⊂ a∗0,+ be a precompact open set that contains B∗ and is bounded away from the
walls. We divide the domain of the first integral into −tB∗1 and a∗0 \ −tB

∗

1 . We know that
h(ν+tλ) is rapidly decaying in ν and t for ν /∈ −tB∗1 , and together with |ϕν(exp(H))| ≤ 1
this gives ∫

a∗0\−tB
∗

1

h(ν + tλ)2ϕν(exp(H))|c(ν)|2 dν �A t
−A,

so that

kt (exp(H)) =
∫
−tB∗1

h(ν + tλ)2ϕν(exp(H))|c(ν)|2 dν +OA(t−A). (2.16)

When ν ∈ −tB∗1 , we apply Theorem 1.3 to the set −B∗1 and B as chosen here to obtain

ϕν(exp(H))�B,B∗1

∏
α∈1̃+

(1+ t |α(H)|)−1/2.

Combining this with (2.16) gives

kt (exp(H))�
∏
α∈1̃+

(1+ t |α(H)|)−1/2
∫
−tB∗1

h(ν + tλ)2|c(ν)|2 dν +OA(t
−A),

and the bound |c(ν)|2 � 1+ |ν|n−r completes the proof. ut

We shall prove (2.10) by interpolating between the cases p = ∞ and p = 2. To begin
with the case p = ∞, proving a bound for the L1

→ L∞ norm of Tm,F is the same as
proving a bound for ‖Tm,F (·, ·)‖∞. If we assume that B is sufficiently small that there is
at most one nonzero term in the sum

Tm,F (x, y) =
∑
γ

Km,F (x, γy)

for all x and y, then ‖Tm,F (·, ·)‖∞ = ‖km,F ‖∞. By Lemma 2.8, we have

‖km,F ‖∞ ≤ sup{|kt (exp(H))| | H ∈ supp(βm,F )}

� tn−r sup
{ ∏
α∈1̃+

(1+ t |α(H)|)−1/2
∣∣∣ H ∈ supp(βm,F )

}
.

If α ∈ 1i,F andmi ≥ δm1+C1, we may apply Lemma 2.7 to obtain 1+ t |α(H)| � emi ,
while if mi < δm1 + C1 we have the trivial bound 1 + t |α(H)| ≥ 1 � emi−δm1 .
Combining these, we obtain∏

α∈1̃+

(1+ t |α(H)|)−1/2
� exp

(
−

1
4

r∑
i=1

mi |1̃i,F | + δm1η(m)/4
)
,
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where η(m) is given by

η(m) =
∑

mi<δm1+C1

|1̃i,F | ≤ |1̃|. (2.17)

The bound (2.10) with p = ∞ follows if we choose N ≥ |1̃|/4.
To prove the case p = 2, we first note that the L2

→ L2 norm of Tm,F is equal to
sup{|̂km,F (−ν)| | ν ∈ S}, where S ⊂ a∗/W is the set of spectral parameters of the joint
eigenfunctions in L2(X). It is known that if ν ∈ S, then either ν ∈ a∗0, or Re(ν) is singular
and ‖Im(ν)‖ ≤ ‖ρ‖ (see [10, Thm. 8.1, §8, Ch. IV] or [12, Thm. 16.6 and §16.5, ex. 7]).
Let B∗1 and B∗2 be compact sets such that B∗ ⊂ B∗1 ⊂ B

∗

2 ⊂ a∗0,+, each set contains an
open neighbourhood of the one preceding it, and B∗2 is bounded away from the walls. The
following two results allow us to reduce to the case in which ν ∈ tB∗2 .

Lemma 2.9. If ν ∈ a∗0,+ \ B
∗

2 and κ ∈ a∗0 satisfies ‖κ‖ ≤ ‖ρ‖, then k̂m,F (−tν − iκ)

�δ t
−r . The implied constant is uniform in m.

Proof. We have

k̂m,F (−tν − iκ) =

∫
S

km,F (x)ϕtν+iκ(x) dx =

∫
S

β̃m,F (x)kt (x)ϕtν+iκ(x) dx.

As in the proof of Lemma 2.8, we may invert the Harish-Chandra transform of kt to obtain

k̂m,F (−tν−iκ) =

∫
−tB∗1

∫
S

β̃m,F (x)ϕµ(x)ϕtν+iκ(x) dxh(µ−tλ)
2
|c(µ)|2dµ+OA(t

−A).

The lemma now follows from Proposition 2.10 below and |c(µ)|2 � 1+ |µ|n−r . ut

Proposition 2.10. If µ ∈ −B∗1 and ν ∈ a∗0,+ \ B
∗

2 , then∫
S

β̃m,F (x)ϕtµ(x)ϕtν+iκ(x) dx �δ t
−n,

where the implied constant is uniform in m.

Proof. Unfolding the integrals over K used to define ϕtµ and ϕtν+iκ , we have∫
S

β̃m,F (x)ϕtµ(x)ϕtν+iκ(x) dx =

∫
K

∫
S

β̃m,F (x) exp
(
(itµ+ ρ)(A(x))

+ (itν − κ + ρ)(A(kx))
)
dx dk

=

∫
K

∫
S

β̃m,F (x)a(k, x) exp
(
it (ν(A(kx))+ µ(A(x)))

)
dx dk,

where a(k, x) = exp(ρ(A(x))+(ρ−κ)(A(kx))). There is a natural identification of T ∗S
with the principal bundle G ×K p∗0. We let Cν ⊂ T ∗S be the set of points of the form
(G, v), where v is conjugate to ν under K , and define Cµ similarly. We know that the
differentials of ν(A(kx)) and µ(A(x)) with respect to x lie in Cν and Cµ respectively,
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and our assumption that ν ∈ a∗0,+ \ B
∗

2 and −µ ∈ B∗1 were separated implies that
‖∇ν(A(kx))+∇µ(A(x))‖ ≥ ε for some ε > 0 depending on B∗1 and B∗2 .

We shall apply integration by parts with respect to ∇ν(A(kx)) + ∇µ(A(x)). All
derivatives of ∇ν(A(kx)) + ∇µ(A(x)) and a(k, x) are bounded above. It follows from
Lemma 2.5 that the K-biinvariant function β̃m,F satisfies the analogous bound to (2.9),
i.e. for any linear differential operator D of degree d on S with continuous coefficients,
we have

Dβ̃m,F �D t
de−δm1d .

To calculate the bound obtained by integration by parts, we shall begin by estimating the
volume of the support of β̃m,F on S. If we define V (H) =

∏
α∈1̃+ |α(H)|, the Weyl

integration formula gives

Vol(supp(β̃m,F ))�

∫
supp(βm,F )

V (H) dH.

On the support of βm,F , Lemma 2.7 implies (as in the proof of our bound for ‖km,F ‖∞)
that

V (H)� t−(n−r) exp
(

1
2

∑
mi |1̃i,F | + δm1η(m)/2

)
, (2.18)

with η(m) as in (2.17). It follows from our construction of βm,F that

Vol(supp(βm,F ))� t−r exp
(∑

mi + δm1q(m)
)
, (2.19)

where q(m) is the number of zero entries in m, and combining these gives∫
S

β̃m,F (x)a(k, x)e
it (ν(A(x))+µ(A(x))) dx � Vol(supp(β̃m,F ))

� t−n exp
(∑

mi(1+ |1̃i,F |/2)+ δm1η(m)/2+ δm1q(m)
)
.

Each partial integration produces a factor of t−1, and a factor of te−δm1 from differ-
entiating β̃m,F . Performing this A times therefore gives∫

S

β̃m,F (x)a(k, x) exp
(
it (ν(A(x))+ µ(A(x)))

)
dx

�A t
−n exp

(∑
mi(1+ |1̃i,F |/2)+ δm1(−A+ η(m)/2+ q(m))

)
.

If we choose A to be large enough, the exponential expression will be less than 1. We
therefore have∫

S

β̃m,F (x)a(k, x) exp
(
it (ν(A(x))+ µ(A(x)))

)
dx �δ t

−n

as required. ut
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We now estimate k̂m,F (−ν) for ν ∈ tB∗2 . The Weyl integration formula gives

k̂m,F (−ν) =

∫
S

β̃m,F (x)kt (x)ϕν(x) dx

�

∫
a0

βm,F (H)|kt (exp(H))ϕν(exp(H))|V (H) dH,

where V (H) is as above. If we assume that H ∈ supp(βm,F ), then reasoning as in the
proof of our bound for ‖km,F ‖∞ gives

kt (exp(H))ϕν(exp(H))� tn−r exp
(
−

1
2

∑
mi |1̃i,F | + δm1η(m)/2

)
,

and combining this with (2.18) we have

k̂m,F (−ν)� eδm1η(m)
∫
a0

βm,F (H) dH.

Equation (2.19) then gives

k̂m,F (ν)� t−r exp
(∑

mi + δm1q(m)+ δm1η(m)
)
.

If we choose N ≥ r + |1̃|, this completes the proof of (2.10) when p = 2, and of
Proposition 2.6 with C1 as in Lemma 2.7. ut

2.6. Summation of Lp bounds

We now sum the bound of Proposition 2.6 over m and F to obtain a bound for TtT ∗t . We
begin with summation over m. Define

TF =
∑

m∈Mt,δ

Tm,F .

We have

‖TFf ‖p≤
∑

m∈Mt,δ

‖Tm,Ff ‖p�‖f ‖p′ t
n(1−2/p)−r

∑
m∈Mt,δ

exp
(
L(F, p)(m)+χ(m)Nδm1

)
.

Dividing the sum into the terms with χ(m) equal to 0 and 1 gives

‖TFf ‖p � ‖f ‖p′ t
n(1−2/p)−r

∑
m∈Mt,δ

χ(m)=0

eL(F,p)(m)

+ ‖f ‖p′ t
n(1−2/p)−r

∑
m∈Mt,δ

χ(m)=1

eL(F,p)(m)+Nδm1 . (2.20)
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We define M0
t to be the subset of Mt with mr = 0, and let π : {Mt,δ | χ(m) = 1} →

M0
t be the projection obtained by setting mr = 0. If χ(m) = 1, there are constants N ′

and D such that (
1

2p
−

1
4

)
mr |1̃r,F | +

(
2−

2
p

)
mr ≤ N

′δm1 +D.

Because the fibres of π have at most C1 + 2 elements, we may restrict the second sum in
(2.20) from {Mt,δ | χ(m) = 1} to M0

t (while increasing N if necessary) and enlarge the
first sum to Mt to obtain

‖TFf ‖p � ‖f ‖p′ t
n(1−2/p)−r

∑
m∈Mt

eL(F,p)(m)

+ ‖f ‖p′ t
n(1−2/p)−r

∑
m∈M0

t

eL(F,p)(m)+Nδm1 . (2.21)

If Cj ∈ F is a cell, we define the function L(Cj , p) by

L(Cj , p) =

(
1

2p
−

1
4

)∑
i≤j

|1̃i,F | +
2
p
j =

(
1

2p
−

1
4

)
(|1̃| − |1̃Cj |)+

2
p
j,

where 1Cj is the set of roots that vanish on Cj . The function L(Cj , p) is the value of
L(F, p)(x) at the vertex of S0 corresponding to Cj . Note that L(Cj , p) depends only
on the Weyl orbit of Cj , and not on F . The first sum in (2.21) is the generalised geo-
metric progression obtained by summing eL(F,p)(x) over the integer points in the simplex
(log t + 1)S0, and the second sum is (up to the Nδm1 term) the sum over one of its
boundary faces. The following proposition will allow us to estimate these sums.

Proposition 2.11. Define

M(p) = max{L(Cr , p), L(C0, p)} = max{(n+ r)/p − (n− r)/2, 0}.

If C ∈ C is a cone with dimC /∈ {0, r}, then L(C, p) < M(p) for all p ≥ 2.

Proof. It suffices to prove the analogous statement for the linear functions K(C, x) =
(1/4− x/2)|1̃C | + 2x dimC for x ∈ [0, 1/2]. For 0 ≤ s ≤ r , define

D(s) = max{|1̃C | | dimC = s} and K0(s, x) = (1/4− x/2)D(s)+ 2sx.

Then K(C, x) ≤ K0(dimC, x). The linear function K0(s, x) interpolates between the
points (0,D(s)/4) and (1/2, s), and to show that this collection of functions is dominated
byK0(0, x) andK0(r, x), it suffices to show thatD(s) is strictly concave up as a function
of s.

The cones C are in bijection with Levi subgroups M of G satisfying A ⊆ M , in such
a way that exp(C) generates a maximal R-split torus in the centre of M , and 1C are
the restricted roots of M . Using our assumption that g0 was simple over R, and Cartan’s
classification of globally symmetric spaces, it is then easy to check that D(s) is concave
up as required. ut
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Note that M(p) is a piecewise linear function of 1/p, with a kink point at p =
2(n + r)/(n − r). Proposition 2.11 implies that the function L(F, p)(x) attains its
maximum on S0 at either (0, . . . , 0) (if p > 2(n + r)/(n − r)), (1, . . . , 1) (if p <

2(n+ r)/(n− r)), or on the edge joining them (if p = 2(n+ r)/(n− r)). It follows that
the first sum in (2.21) satisfies the estimate∑

m∈Mt

eL(F,p)(m) � (log t)tM(p)

uniformly for p ≥ 2, and that if p 6= 2(n+ r)/(n− r) we have∑
m∈Mt

eL(F,p)(m) �p t
M(p).

To estimate the second sum, let ∂S0 be the boundary face of S0 on which xr = 0. If δ is
chosen sufficiently small, Proposition 2.11 implies that there will be an ε > 0 such that
the linear functional L(F, p)(x) + Nδx1 attains its maximum on ∂S0 at x = (0, . . . , 0)
for all p > 2(n + r)/(n − r) − ε. Moreover, for p ≤ 2(n + r)/(n − r) − ε and δ small
we will have

sup{L(F, p)(x)+Nδx1 | x ∈ ∂S0} < M(p).

Combining these gives ∑
m∈M0

t

eL(F,p)(m)+Nδm1 � tM(p).

If we observe that n(1− 2/p)− r +M(p) = 2δ(p), then we have

‖TFf ‖p � (log t)t2δ(p)‖f ‖p′ ,

‖TFf ‖p �p t
2δ(p)
‖f ‖p′ for p 6= 2(n+ r)/(n− r).

Theorem 1.1 now follows by summing over F .

3. Restrictions to maximal flat subspaces

Theorem 1.2 may be proven using a slight modification of the method used to prove
Theorem 1.1. We shall assume that we are in the case of noncompact type. The proof for
compact type is similar, and may be deduced from the results of §5 and §6.

We continue to use the notation of §2, including the K-biinvariant kernel kt , opera-
tor Tt , and the collection of flags F and simplices S(F ). We define R to be the operator of
restriction to E, and let a ∈ C∞0 (E) be a real-valued cutoff function. It suffices to bound
the operator norms of

aRTt : L
2(X)→ Lp(E),

and if we let φ1 ∈ C∞0 (E) and φ2 ∈ C∞(X) be arbitrary functions with ‖φ1‖p′ =

‖φ2‖2 = 1, it suffices to bound 〈φ1, aRTtφ2〉. By taking adjoints and applying Cauchy–
Schwarz, we have the inequality

〈φ1, aRTtφ2〉 ≤ 〈aφ1, RTtT
∗
t R
∗aφ1〉.
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EmbedE isometrically inside a0, and let Pt be the integral operator on a0 with translation-
invariant kernel

Pt (H1, H2) = kt (exp(H1 −H2)).

If we assume that the supports of a and kt are small enough, we have RTtT ∗t R
∗aφ1 =

Ptaφ1. Therefore
〈aφ1, RTtT

∗
t R
∗aφ1〉 = 〈aφ1, Ptaφ1〉,

and so it suffices to estimate the Lp
′

→ Lp norms of Pt .
We do this by combining a dyadic decomposition of the kernel Pt with an interpola-

tion between L2
→ L2 and L1

→ L∞ bounds as before. The decomposition we make is
simpler in this case, as we do not need to introduce the modified index set Mt,δ . If g is
as in §2.4, and m ∈Mt and 1 ≤ i ≤ r , we therefore define fm,i ∈ C

∞

0 (R) by

fm,i(x) =

{
g(te−ixi), mi = 0,
χ[0,∞)(xi)[g(te

−mi−ixi)− g(te
−mi+1−ixi)], mi > 0,

and define fm ∈ C
∞

0 (R
r) by

fm(x) =
r∏
i=1

fm,i(xi).

We let {βm,F | m ∈Mt , F ∈ F} ∪ {β∞} be the partition of unity on a0 derived from the
functions fm as in §2.4, define km,F ∈ C

∞

0 (a0) by

km,F (H) = kt (exp(H))βm,F (H),

and let Pm,F be the operator with kernel Pm,F (H1, H2) = km,F (H1 −H2) so that

Pt =
∑

m∈Mt
F∈F

Pm,F .

The L1
→ L∞ and L2

→ L2 norms of Pm,F are bounded by

‖Pm,Ff ‖∞ ≤ ‖km,F ‖∞‖f ‖1, ‖Pm,Ff ‖2 ≤ ‖km,F ‖1‖f ‖2.

If we define J (F, p)(x) to be the linear functional

J (F, p)(x) = −
1
4

r∑
i=1

xi |1̃i,F | +
2
p

r∑
i=1

xi,

then we may prove the following bound for the Lp → Lp
′

norm of Pm,F by bounding
‖km,F ‖1 and ‖km,F ‖∞ using Theorem 1.3 as in §2.5.

Proposition 3.1. We have the bound ‖Pm,Ff ‖p � tn−r−2r/p exp(J (F, p)(m))‖f ‖p′ .

If Cj ∈ F is a cell, we define

J (Cj , p) = −
1
4

∑
i≤j

|1̃i,F | +
2j
p
,

which is the value of J (F, p)(x) at the vertex of S0 corresponding to Cj . The conclusion
of Theorem 1.2 in the case n > 3r may be deduced from the following lemma as in §2.6.
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Lemma 3.2. If n > 3r , we have J (C0, p) > J (Cj , p) for all j > 0 and p ≥ 2.

Proof. It is clear that J (C0,∞) > J (Cj ,∞) for j > 0, so it suffices to show the same
for p = 2. Because

−|1̃|/4+D(j)/4+ j ≥ −
1
4

∑
i≤j

|1̃i,F | + j = J (Cj , 2),

where D(j) is as in the proof of Proposition 2.11, it suffices to show that

J (C0, 2) ≥ −|1̃|/4+D(j)/4+ j (3.1)

with equality iff j = 0. We know that D(j) is concave up as a function of j , and so
D(j)/4+ j is also. We know that equality holds in (3.1) when j = 0, and so it suffices to
prove that strict inequality holds when j = r . However, this is equivalent to our assump-
tion that n > 3r . ut

In cases (b) and (c), Theorem 1.2 follows by examining the functions J (Cj , p) for the
finite number of globally symmetric spaces to which these cases apply. The sharpness of
the upper bounds in the case of compact type follows from the remarks of §5.4.

4. Bounds for spherical functions on noncompact groups

We shall prove Theorems 1.3 and 1.4 by studying the expression

ϕtλ(exp(H)) =
∫
K

exp
(
(ρ + itλ)(A(k exp(H)))

)
dk (4.1)

for ϕλ as an oscillatory integral over K . We define

φ(k,H, λ) = λ(A(k exp(H)))

to be the phase of this integral, so that we may rewrite (4.1) as

ϕtλ(exp(H)) =
∫
K

b(k,H)eitφ(k,H,λ) dk (4.2)

where b(k,H) = exp(ρ(A(k exp(H)))) is a function with all derivatives uniformly
bounded. We shall prove a uniformisation theorem for φ in §4.3, which will reduce The-
orems 1.3 and 1.4 to an application of stationary phase to the integral (4.2) in §4.4.

4.1. The critical set of φ

We begin by recalling some properties of the critical point set of φ, taken from [4]. Note
that we shall always talk about the critical points of φ with respect to the variable k only.
Let 1+0 = 1+ ∪ {0}, and for every α ∈ 1̃+0 , choose a vector Yα ∈ (gα + g−α) ∩ k0

so that {Yα | α ∈ 1̃+0 } is an orthonormal basis of k0 with respect to −〈 , 〉. Note that
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when α = 0, we are chosing a basis for m0. We also let Yα denote the corresponding
left-invariant vector fields on K . Fix a point l ∈ K , and define V ⊆ a0 to be the subspace

V = Ad−1
l a0 ∩ a0.

We recall that a Levi subgroup of G is called semistandard if it contains A.

Lemma 4.1. There is a semistandard Levi subgroupA ⊆ L ⊆ G with real Lie algebra l0
such that V is the centre a0,L of l0.

Proof. Pick H ∈ V generic, in the sense that if α(H) = 0 then α(V ) = 0 for α ∈ 1. Let
L be the connected centraliser of H in G, which is a semistandard Levi subgroup whose
Lie algebra l0 is the centraliser of H in g0. We have

l0 =
⊕
α∈1

α(H)=0

g0,α, a0,L =
⋂
α∈1

α(H)=0

kerα,

so that V ⊆ a0,L. As l0 is stable under θ we may decompose l0 as (p0 ∩ l0)+ (k0 ∩ l0) =
p0,L + k0,L. The group KL = K ∩ L is maximal compact in L, as it is compact with
Lie algebra k0,L. The subspaces a0 and Ad−1

l a0 ⊆ Zg0(H) = l0 are maximal abelian
in p0,L, and so there exists l0 ∈ KL such that Adl0 Ad−1

l a0 = a0. This implies that
Ad−1

l a0 = Ad−1
l0

a0, so that a0,L ⊆ Ad−1
l a0 and a0,L ⊆ V , completing the proof. ut

Definition 4.2. It follows from the proof of Lemma 4.1 that l ∈ M ′KL, and we fix a
decomposition l = wl0 with w ∈ M ′ and l0 ∈ KL for the remainder of §4.

We define Xα = Ad−1
l Yα for α ∈ 1̃+0 , and also let Xα denote the corresponding left-

invariant vector field on K . Decompose a as an orthogonal direct sum a = aL + aL. We
let 1L be the set of roots that vanish on aL, which is exactly the root system of L, and let
1L = 1 \1L be its complement. We let 1+L = 1L ∩1

+ and 1L+ = 1
L
∩1+.

Proposition 4.3 ([4, Proposition 5.4]). Fix H ∈ a0 and regular λ ∈ a∗0, and let KH be
the stabiliser of H in K . The function φ(k,H, λ) is right-invariant under KH , and its
critical point set is equal to M ′KH .

Lemma 4.4. If λ ∈ a∗0 is regular, l is a critical point of φ(k,H, λ) if and only ifH ∈ a0,L.

Proof. As l ∈ M ′KL, we clearly have l ∈ M ′KH if H ∈ a0,L. For the converse, suppose
that H ∈ a0 is such that l = w′kH for w′ ∈ M ′ and kH ∈ KH . Then Ad−1

l w′H =

Ad−1
kH
H = H , so that H ∈ Ad−1

l a0 ∩ a0 = a0,L. ut

Although the following result is stated as Proposition 6.5 of [4], we have included a
derivation to avoid any possible error in converting the result to our notation.

Proposition 4.5. When H ∈ a0,L, the Hessian of φ with respect to the vector fields
{Xα | α ∈ 1̃

+

0 } at l is diagonal, and satisfies

(Dφ)αα =
1
2 〈λ, α〉(1− e

2α(wH)). (4.3)
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Proof. We have
l exp(tXα) exp(H) = exp(tYα) exp(wH)l,

and so if we consider the Iwasawa decomposition

exp(tYα) exp(wH) = n(t) exp(V (t))k(t)

then X2
αφ(l,H, λ) = λ(V

′′(0)). As n(0) = k(0) = e and V (0) = wH , we may write

n(t) = exp(tN1 + t
2N2 +O(t

3)), k(t) = exp(tK1 + t
2K2 +O(t

3)),

so that

exp(tYα) exp(wH) = exp(tN1+t
2N2) exp(wH+t2V ′′(0)/2) exp(tK1+t

2K2)+O(t
3),

exp(tYα) = exp(tN1+t
2N2) exp(t2V ′′(0)/2) (4.4)

· exp(t Adexp(wH)K1+t
2 Adexp(wH)K2)+O(t

3).

Equating first order terms gives

Yα = N1 + Adexp(wH)K1,

and if we write Yα = Vα + V−α with V±α ∈ g0,±α we may solve this to obtain

N1 = (1− e2α(wH))Vα, K1 = e
α(wH)Yα.

Applying the Baker–Campbell–Hausdorff formula in (4.4) and equating second order
terms gives

0 = N2 + V
′′(0)/2+ Adexp(wH)K2 + [N1,Adexp(wH)K1]/2.

Because N2 + Adexp(wH)K2 ∈ a⊥, this implies that

V ′′(0) = −proja[N1,Adexp(wH)K1] = (e
2α(wH)

− 1)〈Vα, V−α〉Hα.

Our assumption that 〈Yα, Yα〉 = −1 implies that 〈Vα, V−α〉 = −1/2, so that

X2
αφ(l,H, λ) = λ(V

′′(0)) = 1
2 〈λ, α〉(1− e

2α(wH))

as required. The proof that the off-diagonal terms vanish is similar, and omitted. ut

4.2. Notation for complexifiying φ

When uniformising φ, we will use different methods in the cases l ∈ M ′ and l /∈ M ′. Both
cases involve analytically continuing φ into a complex domain, but the second case also
involves blowing up the a-coordinate of this domain along the edges of a flag. We treat
the case l /∈ M ′ first, as it is the more difficult of the two. We establish the notation used
for doing this here. By passing to an isogenous group if necessary, we may assume thatG
is an analytic subgroup of a complex Lie groupGC with real Lie algebra g, and that there
is a closed complex subgroup KC ⊂ GC with real Lie algebra k such that K = KC ∩G.
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4.2.1. Generalities on complex germs. We shall use the language of local complex spaces
and holomorphic germs, for which we refer to [7] for definitions. All local complex spaces
we shall work with will be regular, and we shall denote them by (M, p), where M is a
complex manifold and p ∈ M is a point. We denote the ring of holomorphic germs on
(M, p) by O(M, p). All the local complex spaces we work with will have a natural com-
plex conjugation, which we will denote by c in all cases. If f is a holomorphic function
we let Zf denote its zero divisor.

4.2.2. Blowing up a. Let F = {C0, . . . , Cr} be a flag as in §2.4. Choose points pi ∈ Ci
for each i, and let J be the nonnegative linear span of the pi . Let Vi ⊆ a be the complex
subspace spanned by Ci . Let {xi | 0 ≤ i ≤ r−1} be the unique linear functions on a such
that xi(pj ) = 0 if i ≥ j and 1 otherwise, which form a coordinate system. We define A to
be Cr with the standard linear coordinates {zi | 0 ≤ i ≤ r − 1}, and define πA : A→ a
to be the blowdown map given by

π∗Axj =
∏
i≤j

zi .

Then A is a Zariski-open subset of the blowup of a along the subspaces V0, . . . , Vr−2. If
we denote the interior of J by J 0 it may be seen that

π−1
A (J 0) = {(0,∞)× (0, 1)r−1

⊂ Rr ⊂ A},

and we define
J = π−1

A (J 0) = {[0,∞)× [0, 1]r−1
⊂ Rr ⊂ A}.

4.2.3. Blowing up KC × a× a∗. Define the complex manifolds

S = A× a∗, X = KC × S.

We shall denote points in S by s′ = (u′, λ′). We shall think of all roots α ∈ 1 as holo-
morphic functions on A by pullback, and let αX denote the pullback of α to a function
on X under the natural projection. We let πS : X → S and πλ : X → a∗ be the natural
projections. We let X+α and X−α be the unique holomorphic and antiholomorphic vector
fields on X such that X+α + X

−
α = Xα on the real submanifold K × Rr × a∗0 of X, and

likewise for Yα .

4.2.4. Germs of φ. We define AL = π
−1
A (aL) and SL = AL × a∗. Let p be the largest

integer such that Vp ⊆ aL. We see that Q = z0 . . . zp is a defining function for AL. We
let QX denote the pullback of Q to X.

We choose a point s = (u, λ) ∈ (J ∩AL)× a∗0 with λ regular. We let x = (l, s) ∈ X.
As φ is an analytic function on K × a0 × a∗0, we may complexify it and pull it back to
obtain a germ in O(X, x). It follows from Lemma 4.4 that (l, u′, λ′) ∈ (X, x) is a critical
point of φ exactly when u′ ∈ AL.
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4.2.5. Divisors. We let Di = {z ∈ A | zi = 0} for 0 ≤ i ≤ r − 1 be the coordinate
divisors on A, and define Si = Di × a∗ for 0 ≤ i ≤ p. We have πA(Di) ⊂ Vi and
AL =

⋃
0≤i≤pDi . Let q be the largest integer with q ≤ p and u ∈ Dq . We shall think of

the divisors Di as subspaces of (A, u) from now on, so that Di is empty if u /∈ Di (and
in particular if i > q).

Lemma 4.6. Recall that 1j,F = {α ∈ 1 | α|Vj 6= 0, α|Vj−1 = 0} for 1 ≤ j ≤ r . If
α ∈ 1j,F , we have (Zα, u) =

∑
0≤i≤j−1Di .

Proof. Assume without loss of generality that α is nonnegative on J . If α vanishes
on Cj−1 but not on Cj , then α/xj−1 must satisfy C > α/xj−1 > c > 0 on J 0.
After pulling back to A, we see that the function (z0 . . . zj−1)

−1α(z) satisfies C >

(z0 . . . zj−1)
−1α(z) > c > 0 on J 0, and so it extends to an invertible function in O(A, u).

The result now follows. ut

4.3. Uniformisation of φ

The uniformisation theorem for φ that we shall use is as follows. We define 6i =
{α ∈ 1+ | w−1α|Vi 6= 0}. Let d = |6̃q | and d ′ = dimK − d, and identify Cd with C6̃q
so that {zα | α ∈ 6̃q} form a system of coordinates on this space.

Theorem 4.7. There is an isomorphism f

(X, x)
f

//

πS
##

(Cd × Cd ′ , 0)× (S, s)

0×id
vv

(S, s)

a function φS ∈ O(S, s), and a nonconstant affine-linear map L : Cd ′ → C, such that
f , φS and L all commute with c, and

f∗φ(z, z
′, s′) = φS(s

′)−
∑
α∈6̃q

〈λ′, α〉w−1α(u′)z2
α +Q(u

′)L(z′).

In other words, this expresses φ as the sum of a quadratic form on Cd , and a linear func-
tion on Cd ′ that is zero exactly when z′ ∈ AL. Proposition 4.9 and Corollary 4.15 below
carry out the uniformisation in the first set of coordinates Cd . They work by constructing a
smooth subspace (Y, x) ⊂ (X, x) that projects regularly to (S, s) (see [7, Def. 1.112]), so
that the fibres Ys′ are smooth, and performing a change of variables that fixes Ys′ and con-
verts φ to a quadratic form transversally to Ys′ . Proposition 4.9 builds (Y, x) by induction
on its codimension, and Corollary 4.15 summarises the end result.

The main idea of the induction is as follows. Let α ∈ 6̃q . The derivative X+α φ van-
ishes onZw−1α , and so we may divide to obtain the holomorphic function (w−1α)−1X+α φ.
The divisor of this function gives us our first submanifold (Y, x), and we may repeat this
process to decrease its dimension.
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Remark 4.8. The argument we use does not require complexification. We have written
it in this way because we originally thought it was necessary in order to apply complex
stationary phase in §6.1, and because we felt the constructions were more familiar in a
complex setting.

For 0 ≤ i ≤ p, let Ki be the centraliser of Vi in K . Because Vi ⊆ aL for 0 ≤ i ≤ p, we
have KL ⊆ Ki . Moreover

Lie(Ki) = span{Yα | α ∈ 1̃+0 , α|Vi = 0} = span{Xα | α ∈ 1̃+0 \ 6̃i}, (4.5)

where the second equality follows from the fact that l0 ∈ KL ⊆ Ki .

Proposition 4.9. Let 6̃j−1 ⊆ R ⊂ 6̃j with 1 ≤ j ≤ q be given, and suppose that there
exists a subspace (Y, x) ⊂ (X, x) and an isomorphism

(X, x)
f

//

πS
##

(Y, x)× (CR, 0)

πS×0
ww

(S, s)

with the following properties:

(a) f |Y is the identity.
(b) (Y, x) is invariant under c, and f commutes with c.
(c) The projection (Y, x)→ (S, s) is regular (see [7, Def. 1.112]).
(d) Ys′ ⊆ lKi,C when s′ ∈ Si with 0 ≤ i < j , and lKi,C ⊆ Ys′ when s′ ∈ Si with

j ≤ i ≤ q, where Ys′ is the fibre of Y above s′ ∈ S.
(e) When s′ ∈ Si with j ≤ i ≤ q, we have l ∈ Ys′ and

T
(1,0)
l Ys′ = span{X+α | α ∈ 1̃

+

0 \ R}.

(f) We have
f∗φ(y, z) = φ(y)−

∑
α∈R

〈πλ(y), α〉w
−1αX(y)z

2
α. (4.6)

Then if β ∈ 6̃j \ R, there exists a subspace (Y ′, x) and an isomorphism f ′ having the
same properties with respect to R ∪ {β}.

Proof. We first note that property (c) and the regularity of (S, s) imply that both (Y, x)
and (Ys, l) are regular. Let R′ = R∪{β}. Define φ1 = f∗φ, and push the vector fieldsX±α
forward under f to obtain fields on Y ×CR , which we also denote by X±α . Let V ±α be the
vector fields on Y obtained by applying the natural projection T Y × TCR → T Y to X±α .
Hypothesis (e) implies that when s′ ∈ Si with j ≤ i ≤ q, and α ∈ 1̃+0 \ R, we have

V +α = X
+
α ∈ T(l,s′)Y, (4.7)

and (4.6) implies that when y ∈ Y and α ∈ 1̃+0 we have

V +α φ1(y, 0) = X+α φ(y). (4.8)
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Lemma 4.10. If y ∈ Y and w−1βX(y) = 0, we have X+β φ(y) = 0.

Proof. Our assumption that β ∈ 6̃j \6̃j−1 implies thatw−1β ∈ 1̃j,F . Ifw−1βX(y) = 0,
Lemma 4.6 implies that πS(y) ∈

⋃
0≤i≤j−1 Si . It follows that the image of y under

projection to A and then blowdown by πA lies in Vj−1. Proposition 4.3 implies that φ is
right-invariant under Kj−1, and the lemma follows from (4.5). ut

Lemma 4.10 and (4.8) imply that we also have V +β φ1(y, 0) = 0 when w−1βX(y) = 0.
We can therefore define an analytic function ψ ∈ O(Y, x) by ψ = (w−1βX)

−1V +β φ1,
and define Y ′ to be the zero locus of ψ .

We now establish (d) for Y ′. The first inclusion Y ′
s′
⊆ lKi,C for s′ ∈ Si and 0 ≤ i < j

follows from Y ′ ⊂ Y . To establish the second inclusion, let j ≤ i ≤ q and assume that
(Si, s) is nonempty. Proposition 4.3 and the inclusion πA(Di) ⊆ Vi imply that lKi,C lies
in the critical locus of φ when s′ ∈ Si , so that V +β φ1 vanishes on lKi,C×Si . It follows that
lKi,C ⊆ Y ′s′ when s′ ∈ Si and w−1β(u′) 6= 0, and because j ≤ i and Si is irreducible,
w−1β(u′) is nonzero on an open dense subset of Si . The result then follows by continuity.
In particular, x ∈ Y ′ and so (Y ′, x) is a subspace of (Y, x). The following lemma implies
that (Y ′, x) and (Y ′s , l) are both regular, and that

T
(1,0)
l Y ′s′ = span{X+α | α ∈ 1̃

+

0 \ R
′
}

for s′ ∈ Si with j ≤ i ≤ q so that Y ′ satisfies (e). Moreover, we see that Y ′ satisfies (c)
by combining the regularity of the fibre Y ′s with [7, Prop. 1.85 and Thm. 1.115].

Lemma 4.11. We have V +β ψ(l, s) 6= 0, and V +α ψ(l, s
′) = 0 for all α ∈ 1̃+0 \R

′ and all
s′ ∈ Si with j ≤ i ≤ q.

Proof. Let α ∈ 1̃+0 \R, choose j ≤ i ≤ q with (Si, s) nonempty, and assume that s′ ∈ Si
with w−1β(u′) 6= 0. Equation (4.8) implies that

V +α ψ(l, s
′) = (w−1β(u′))−1V +α V

+

β φ1(l, s
′) = (w−1β(u′))−1V +α X

+

β φ1(l, s
′),

and (4.7) then gives

V +α ψ(l, s
′) = (w−1β(u′))−1X+α X

+

β φ(l, s
′).

We may apply Proposition 4.5 to obtain

V +β ψ(l, s
′) = −〈λ′, β〉ew

−1β(u′) sinh(w−1β(u′))

w−1β(u′)
,

and V +α ψ(l, s
′) = 0 for α 6= β, and the result follows by continuity and the fact that

w−1β is nonzero on an open dense subset of Si . ut

Lemma 4.11 implies that the vector field V +β is transverse to Y ′. Integrating along the
flow of V +β gives the following.
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Lemma 4.12. There is a unique isomorphism

(Y, x)
g

//

πS
##

(Y ′, x)× (C, 0)

πS×0
ww

(S, s)

with the properties that g|Y ′ is the identity, and if we let (y′, z) be the coordinates on
Y ′ × C then g∗V +β = ∂/∂z.

We let φ2 = g∗φ1, and define φ′2(y
′, z) = φ2(y

′, z) − φ2(y
′, 0). We know that φ′2(y

′, z)

vanishes to second order along Y ′ × 0 by the definition of Y ′, and we have ∂φ′2/∂z =
V +β φ1 = X+β φ so that φ′2(y

′, z) vanishes identically when w−1βX(y
′) = 0 by Lemma

4.10. We can therefore define ψ0(y
′, z) = (w−1βX(y

′))−1φ′2(y
′, z) ∈ O(Y ′ ×C, (x, 0)),

which also vanishes to second order on Y ′ × 0 by continuity.

Lemma 4.13. We have ∂2ψ0/∂z
2(x, 0) 6= 0.

Proof. As in Lemma 4.11, we may calculate ∂2ψ0/∂z
2 at (l, s′, 0) ∈ Y ′ × 0 for s′ ∈ Sq .

When w−1β(u′) 6= 0 we have

∂2ψ0

∂z2

∣∣∣∣
(l,s′,0)

= (w−1β(u′))−1 ∂
2φ′2
∂z2

∣∣∣∣
(l,s′,0)

= (w−1β(u′))−1(V +β )
2φ1|(l,s′,0).

By combining (4.7) and (4.8) as before we may rewrite this as

∂2ψ0

∂z2

∣∣∣∣
(l,s′,0)

=(w−1β(u′))−1(X+β )
2φ|(l,s′)=−〈λ

′, β〉ew
−1β(u′) sinh(w−1β(u′))

w−1β(u′)
, (4.9)

and continuity gives the result. ut

We may therefore define zβ =
√
−ψ0/〈πλ(y′), β〉, which is an element of

O(Y ′ × C, (x, 0)) that satisfies zβ(y′, 0) = 0 and ∂zβ/∂z(y′, 0) 6= 0 for all y′ ∈ (Y ′, x).
We define g′ to be the automorphism

(Y ′, x)× (C, 0)→ (Y ′, x)× (C, 0), (y′, z) 7→ (y′, zβ),

and let φ3 = g
′
∗φ2. The definitions of ψ0 and zβ imply that

φ3(y
′, zβ) = φ2(y

′, z) = φ2(y
′, 0)+ w−1βX(y

′)ψ0(y
′, z)

= φ3(y
′, 0)− 〈πλ(y′), β〉w−1βX(y

′)z2
β . (4.10)

We define f ′ to be the composition f ◦ g ◦ g′. Equations (4.6) and (4.10) imply that φ
satisfies (f) with respect to f ′ and R′, and f ′ clearly acts as the identity on Y ′.

It remains to establish (b). We first show that the function ψ commutes with c.
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Lemma 4.14. We have ψ(y) = ψ(y).

Proof. We have c∗(X+β ) = X
−

β and c∗(V +β ) = V
−

β , which implies that

V +β φ(y) = V
−

β φ(y) = V
−

β (φ ◦ c)(y) = (c∗(V
−

β )φ)(y) = V
+

β φ(y),

and this implies the lemma. ut

It follows that Y ′ is invariant under c. It can be shown that the conditions that define
the map g are also satisfied by g(y), and so by uniqueness we must have g(y) = g(y).
This implies that φ2 and ψ0 commute with c, and because 〈πλ(y′), β〉 does also, we have
zβ ◦ c = ±zβ . Equation (4.9) implies that ∂zβ/∂z(x) is real and nonzero, which means
that in fact zβ ◦ c = zβ . This completes the proof. ut

Applying Proposition 4.9 inductively, we obtain

Corollary 4.15. There exists a subspace (Y, x) ⊂ (X, x) and an isomorphism

(X, x)
f

//

πS
##

(Y, x)× (Cd , 0)

πS×0
xx

(S, s)

(4.11)

with the following properties:

(a) f |Y is the identity.
(b) (Y, x) is invariant under c, and f commutes with c.
(c) The projection (Y, x)→ (S, s) is regular.
(d) Ys′ = lKq,C when s′ ∈ Sq , and Ys′ ⊆ lKi,C when s′ ∈ Si with 0 ≤ i < q.
(e) We have

f∗φ(y, z) = φ(y)−
∑
α∈6̃q

〈πλ(y), α〉w
−1αX(y)z

2
α. (4.12)

Proof. We only need to describe how to change indices from j to j + 1 in the induction
argument. The only thing that requires explanation is how to pass from the inclusion
lKj,C ⊆ Ys′ when s′ ∈ Sj and R ⊂ 6̃j to Ys′ ⊆ lKj,C when s′ ∈ Sj and 6̃j ⊆ R. In
the boundary case when R′ = 6̃j , the subspace Y ′ produced by Proposition 4.9 satisfies
lKj,C ⊆ Y ′

s′
when s′ ∈ Sj , and because dimY ′

s′
= dimK − |6̃j | = dimKj,C and both

spaces are smooth we must in fact have lKj,C = Y ′s′ when s′ ∈ Sj . ut

Proof of Theorem 4.7. Because Y is regular over S, there is a commutative diagram

(Y, x)
i //

πS
##

(Ys, l)× (S, s)

0×id
xx

(S, s)
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with i an isomorphism. It may be seen that we can choose i to commute with c, for
instance by choosing the generators ti of O(Ys, l) and their lifts hi to be real in [7, proof
of Thm. 1.115]. Moreover, by condition (d) of Corollary 4.15 and the fact that (Ys, l) is
smooth, we may choose i to satisfy

i(l, s′) = (l, s′) for s′ ∈ Sq . (4.13)

We define ξ : (S, s) → (Y, x) by setting ξ(s′) = i−1(l × s′), and define φ0(y) =

φ(y) − φ(ξ ◦ πS(y)) ∈ O(Y, x). Proposition 4.3 implies that φ is right-invariant under
Ki when s′ ∈ Si , and it follows from this and condition (d) of Corollary 4.15 that φ0(y)

vanishes when s′ ∈ SL. We may therefore define ψ = Q−1
X φ0 ∈ O(Y, x), so that φ(y) =

φ(ξ ◦ πS(y)) +QX(y)ψ(y). Transfer the fields {Y+α | α ∈ 1̃
+

L } to Y × Cd via the map
f of Corollary 4.15, and let W+α be the projections of Y+α to T Y along Y . We wish to
show that ∇Ysψ |l 6= 0, where ∇Ys denotes the gradient along Ys , and this will follow
from knowing that W+α ψ(x) 6= 0 for some α ∈ 1̃+L . We begin with the following lemma.

Lemma 4.16. There exist HL ∈ a0,L and HL
∈ a0 \ a0,L such that for all α ∈ 1̃+L ,

W+α ψ(x) =
∂

∂t
Y+α φ(l,HL + tH

L, λ)

∣∣∣∣
t=0
. (4.14)

Remark 4.17. The vectors HL and HL in a0 need not be orthogonal for the rest of §4.3.

Proof of Lemma 4.16. Let α ∈ 1̃+L . We have

W+α (QXψ) = W
+
α φ ∈ O(Y, x), ψW+α QX +QXW

+
α ψ = W

+
α φ,

and because W+α QX = 0 this gives QXW
+
α ψ = W

+
α φ. Let u = (u0, . . . , ur−1) ∈ Dq be

a generic point near u, so that ui = 0 iff i = q, and let s′(t) = (u+ teq , λ). Substituting
ξ(s′(t)) into QXW

+
α ψ = W

+
α φ gives

t
∏
i≤p
i 6=q

uiW
+
α ψ(ξ(s

′(t))) = W+α φ(ξ(s
′(t))),

and because W+α φ(y) = Y
+
α φ(y) for y ∈ Y by (4.12), we may rewrite this as

t
∏
i≤p
i 6=q

uiW
+
α ψ(ξ(s

′(t))) = Y+α φ(ξ(s
′(t))).

Taking ∂/∂t of both sides and setting t = 0, and noting that ξ(s′(0)) = (l, s′(0)) by (4.13)
and our assumption that u ∈ Dq , we obtain∏

i≤p
i 6=q

uiW
+
α ψ(l, s

′(0)) =
∂

∂t
Y+α φ(ξ(s

′(t)))

∣∣∣∣
t=0
.
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We have (∂/∂t)ξ(s′(t))|t=0 = ∂s
′/∂t |t=0+V ∈ T(l,s′(0))X for some V ∈ TlKC. Because

α ∈ 1̃+L , Proposition 4.3 implies that Y+α φ(y, s
′) vanishes for all y when s′ ∈ SL, and

because s′(0) ∈ SL, we have V Y+α φ(l, s
′(0)) = 0. Therefore∏

i≤p
i 6=q

uiW
+
α ψ(l, s

′(0)) =
(
∂s′

∂t

∣∣∣∣
t=0
+ V

)
Y+α φ(l, s

′(0)) =
∂

∂t
Y+α φ(l, s

′(t))

∣∣∣∣
t=0
.

We may rewrite this and let u→ u to obtain

W+α ψ(x) = lim
u→u

lim
t→0

Q−1(u+ teq)Y
+
α φ(l, u+ teq , λ).

As Y+α φ(l, u
′, λ) ∈ O(A, u) vanishes on AL, we know that Q−1(u′)Y+α (l, u

′, λ) extends
to a function in O(A, u) so that we may rewrite the limit more simply as

W+α ψ(x) = lim
u′→u

Q−1(u′)Y+α φ(l, u
′, λ).

Let A1 be Cr with the standard linear coordinate functions w0, . . . , wr−1, and define
the maps A π1

−→ A1 π2
−→ a by

π∗1wj =

{∏
i≤j zi, j ≤ p,∏
p<i≤j zi, p < j,

π∗2 xj =

{
wj , j ≤ p,

wpwj , p < j.

Then πA = π2◦π1 and π∗1wp = Q. We may naturally think of A1 as a Zariski-open set in
the blowup of a along aL. The function w−1

p (w′)Y+α φ(l, w
′, λ) extends to a holomorphic

germ in O(A1, π1(u)), and we have

Q−1(u′)Y+α φ(l, u
′, λ) = π∗1 (w

−1
p (w′)Y+α φ(l, w

′, λ)) ∈ O(A, u).

Write u = (u0, . . . , ur−1). Define HL = πA(u) ∈ a0,L, and HL
∈ a0 by

xj (H
L) =


0, j ≤ p,

1, j = p,∏
p<i≤j uj , p < j.

We then have HL
∈ a0 \ a0,L and π2(π1(u)+ tep) = HL + tH

L. As uq = 0 we have

wp(π1(u)+ tep) = wp(tep) = t,

so that

W+α ψ(x) = lim
u′→u

Q−1(u′)Y+α φ(l, u
′, λ) = lim

w′→π1(u)
w−1
p (w′)Y+α φ(l, w

′, λ)

= lim
t→0

t−1Y+α φ(l, π1(u)+ tep, λ) = lim
t→0

t−1Y+α φ(l,HL + tH
L, λ)

=
∂

∂t
Y+α φ(l,HL + tH

L, λ)

∣∣∣∣
t=0
. ut

We now have to prove that the RHS of (4.14) is nonzero for some choice of α ∈ 1̃+L . We
begin by simplifying the expression as follows. If α ∈ 1̃+L , we write Yα = Vα+V−α with
V±α ∈ g±α .
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Lemma 4.18. Let α ∈ 1̃+L , HL ∈ a0,L, and HL
∈ a0 \ a0,L. Then

∂

∂t
Yαφ(l,HL + tH

L, λ)

∣∣∣∣
t=0
= α(HL)〈Ad−1

l Hλ, V−α − Vα〉,

where Hλ ∈ a0 is dual to λ under the Killing form.

Proof. For t ∈ R, we have the Iwasawa decomposition l exp(HL + tHL) =

n(t)a(t)k(t). If we write the first-order approximation to the Iwasawa decomposition of
l exp(sYα) exp(HL + tHL) as

l exp(sYα) exp(HL + tHL) = n(t) exp(sN1 +O(s
2))

· a(t) exp(sA1 +O(s
2))k(t) exp(sK1 +O(s

2)),

then Yαφ(l,HL+ tHL, λ) = λ(A1). Moving the terms involving s to the right and equat-
ing first order parts gives

e−tα(H
L)Vα + e

tα(HL)V−α = Ad−1
a(t)k(t)N1 + Ad−1

k(t)A1 +K1,

Adk(t)(e−tα(H
L)Vα + e

tα(HL)V−α) = Ad−1
a(t)N1 + A1 + Adk(t)K1.

We have Ad−1
a(t)N1 + Adk(t)K1 ∈ a⊥, and so

λ(A1) = 〈Hλ,Adk(t)(e−tα(H
L)Vα + e

tα(HL)V−α)〉,

Yαφ(l,HL + tH
L, λ) = 〈Ad−1

k(t)Hλ, e
−tα(HL)Vα + e

tα(HL)V−α〉.

Differentiating at t = 0 gives

∂

∂t
Yαφ(l,HL + tH

L, λ)

∣∣∣∣
t=0
=
∂

∂t
〈Ad−1

k(t)Hλ, Yα〉

∣∣∣∣
t=0
+ α(HL)〈Ad−1

k(0)Hλ, V−α − Vα〉.

Because Ad−1
k(t)Hλ ∈ p and Yα ∈ k, the first term vanishes. Because l exp(HL) =

exp(w−1HL)l, we have k(0) = l, which completes the proof. ut

Lemma 4.19. There is α ∈ 1̃+L such that α(HL)〈Ad−1
l Hλ, V−α − Vα〉 6= 0.

Proof. The Lie algebra ofL is given by l =
⊕

α∈1L
gα , and our choice of Yα = Vα+V−α

implies that the Cartan −1-eigenspace pL ⊂ l is given by

pL = span{Vα − V−α | α ∈ 1̃+L } ⊕ a. (4.15)

Suppose that α(HL)〈Ad−1
l Hλ, V−α − Vα〉 = 0 for all α ∈ 1̃+L . Because Ad−1

l Hλ ∈ pL,
(4.15) implies that

Ad−1
l Hλ ∈

⊕
α∈1L

α(HL)=0

gα.

The RHS is the Lie algebra l′ of a semistandard Levi subgroup L′ ⊂ L, where the in-
clusion is proper because HL /∈ a0,L. We let KL′ = K ∩ L′, which is maximal compact
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in L′. Let a0,L′ be the centre of l′0. There is l′ ∈ KL′ such that Adl′ Ad−1
l Hλ ∈ a0, and

because Hλ is regular this implies that l ∈ M ′l′ ⊂ M ′KL′ . It follows that Ad−1
l a0 ∩ a0

contains a0,L′ , which contradicts Lemma 4.1. ut

Combining Lemmas 4.18 and 4.19 and applying the holomorphy of φ, we see this also
implies that there is α ∈ 1̃+L such that

∂

∂t
Y+α φ(l,HL + tH

L, λ)

∣∣∣∣
t=0
6= 0,

and by Lemma 4.16 this gives W+α ψ(x) 6= 0 as required.
We have φ(y) = φ(ξ ◦ πS(y)) + QX(y)ψ(y), so that i∗φ(ys, s′) = i∗φ(l, s

′) +

Q(u′)i∗ψ(ys, s
′). Because ∇Ysψ(l, s) 6= 0 and ψ commutes with c, there is an isomor-

phism

(Ys, l)× (S, s)
i′ //

0×id
&&

(Cd ′ , 0)× (S, s)

0×id
xx

(S, s)

such that (i′ ◦ i)∗ψ is a nonconstant affine-linear function L, and i′ and L both also
commute with c. Defining φS(s′) = i∗φ(l, s′) completes the proof. ut

4.4. Proof of Theorem 1.3

We now use Theorem 4.7 to bound the contribution to the integral (4.2) from points away
from M ′. Throughout §4.4, H = HL +HL will denote the orthogonal decomposition of
H corresponding to the decomposition a = aL + aL associated to a semistandard Levi
subgroup L.

Proposition 4.20. Let B and B∗ be as in the statement of Theorem 1.3. Let l ∈ K with
l /∈ M ′. Recall the notation of §4.1 associated to l, including the Levi L and decomposi-
tionH = HL+HL. There is an open setU ⊂ K with l ∈ U such that for all b0 ∈ C

∞

0 (U)

and all (H, λ) ∈ B × B∗, we have∫
K

b0(k)b(k,H)e
itφ(k,H,λ) dk � (1+ ‖tHL

‖)−A
∏
α∈1̃+

(1+ t |α(H)|)−1/2. (4.16)

The implied constant depends on A, B, B∗, l, and b0.

Proof. Assume that the collection of cones J (F ) associated to F ∈ F in §4.2.2 satisfies
a0 =

⋃
F∈F J (F ). Choose F ∈ F , and recall the notation associated to F in §4.2.

Define B = π−1
A (B) ∩ J and BL = π−1

A (B) ∩ J ∩ AL, so that πA(B) = B ∩ J and
πA(BL) = B ∩ J ∩ aL. For each s′ ∈ BL × B∗, let Vs′ ⊂ KC and Ws′ ⊂ A × a∗

be open neighbourhoods of l and s′ respectively such that Us′ = Vs′ × Ws′ realises the
isomorphism f of Theorem 4.7. We also assume that Ws′ intersects only the divisors Si
that contain s′. Let V 0

s′
⊂ Vs′ and W 0

s′
⊂ Ws′ be smaller open neighbourhoods such that
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V 0
s′
⊂ Vs′ and W 0

s′
⊂ Ws′ . By compactness, there exists a finite collection {si} of points

such thatW 0
si

cover BL×B∗. We define U =
⋂
si
V 0
si
∩K , and let UB ⊂ B be a relatively

open neighbourhood of BL in B such that UB × B∗ ⊂
⋃
si
W 0
si

.
Fix a point si = (ui, λi). Let q be the largest integer such that ui ∈ Dq as in §4.2, and

let 6q be as in §4.3. Fix s′ = (u′, λ′) ∈ (UB×B∗)∩W 0
si

, and let H = πA(u′). Applying
Theorem 4.7 and restricting to the fibre above s′, we obtain an open set U ′ ⊂ Rd × Rd ′

and a real analytic diffeomorphism f : U → U ′ such that

f∗φ(x, x
′, s′) = φS(s

′)−
∑
α∈6̃q

〈λ′, α〉w−1α(H)x2
α +Q(u

′)L(x′).

Making this change of coordinates in the integral of (4.16) gives∫
K

b0(k)b(k,H)e
itφ(k,H,λ′) dk = eitφS (s

′)

∫
U ′
c(x, x′)

· exp
(
it

[
−

∑
α∈6̃q

〈λ′, α〉w−1α(H)x2
α +Q(u

′)L(x′)

])
dx dx′,

where c ∈ C∞0 (U
′) is the product of b0, b, and the determinant of the Jacobian of f .

Because f extends to a complex analytic function on the set Usi , which contains U×W 0
si

,
all derivatives of c with respect to x and x′ are bounded for (x, x′) ∈ U ′, uniformly for
s′ ∈ (UB × B∗) ∩W 0

si
. Application of van der Corput and the bound |Q(u′)| � ‖HL

‖

therefore gives∫
U ′
c(x, x′) exp

(
it

[
−

∑
α∈6̃q

〈λ′, α〉w−1α(H)x2
α +Q(u

′)L(x′)

])
dx dx′ (4.17)

�A,B∗ (1+ t |Q(u′)|)−A
∏
α∈6̃q

(1+ t |w−1α(H)|)−1/2

�A,B∗ (1+ t |Q(u′)|)−A
∏
α∈1̃+

α|Vq 6=0

(1+ t |α(H)|)−1/2. (4.18)

We now pass from (4.18) to the RHS of (4.16). We first apply the following lemma.

Lemma 4.21. If u′ ∈ B and H = πA(u′), we have |Q(u′)| ∼ ‖HL
‖.

Proof. We haveQ = π∗Axp, where xp is as in §4.2.2. Because a0,L∩J = Cp andH ∈ J ,
we also have |xp(H)| ∼ ‖HL

‖. ut

It remains to enlarge the product in (4.18) to one over 1̃L+, and then over 1̃+. If α ∈ 1̃L+
satisfies α|Vq = 0, our assumption on Wsi intersecting only those divisors Sj that contain
si implies that α/Q is holomorphic onWsi . This implies that |α(u′)| � |Q(u′)| � ‖HL

‖,
and so (1+ t |α(H)|)−1/2

� (1+ ‖tHL
‖)−1/2. We may therefore enlarge the product in

(4.18) to one over 1̃L+, which is the same as the bound

(4.17)�A,B∗ (1+ ‖tHL
‖)−A

∏
α∈1̃L+

(1+ t |α(H)|)−1/2.
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If α ∈ 1̃+L , we have α(H) � ‖HL
‖ and so we are free to enlarge the product further

to 1̃+. Applying this bound for each set W 0
si

, we obtain the inequality (4.16) for all
s′ ∈ UB × B∗.

We may therefore assume that s′ ∈ (B \ UB) × B∗, which is equivalent to assuming
that |Q(u′)| > δ > 0, or that ‖HL

‖ > δ > 0. After possibly shrinking U , this implies
that ‖∇kφ‖ > ε > 0 on U , and so∫

K

b0(k)b(k,H)e
itφ(k,H,λ′) dk �A,B,B∗ t

−A.

As πA(B) = J ∩ B, applying this argument for every F ∈ F completes the proof. ut

We now bound the contribution to the integral (4.2) from a neighbourhood of M ′. It will
be convenient to reduce the integral to one over R = M\K , which may be done as φ
and b0 are both left-invariant under M . We shall use the uniformisation of φ at the points
W ∈ R given by Proposition 4.22 below, which may be proved in exactly the same way
as Proposition 4.9.

Let RC = MC\KC be the complexification of R, and let S = a × a∗ and X =
RC × a × a∗. Let πS : X → S be the natural projection. Choose w ∈ W , H ∈ B and
λ ∈ B∗, and let s = (H, λ) ∈ S and x = (w, s) ∈ X. We extend φ to a holomorphic germ
in O(X, x).
Proposition 4.22. There is an isomorphism

(X, x)
f

//

πS
##

(Cn−r , 0)× (S, s)

0×id
ww

(S, s)

which commutes with c and satisfies

f∗φ(z,H
′, λ′) = φ(w,H ′, λ′)−

∑
α∈1̃+

〈λ′, α〉α(wH ′)z2
α. (4.19)

As in the proof of Proposition 4.20, Proposition 4.22 implies that there is a neighbourhood
U ⊂ R with W ⊂ U such that for all b ∈ C∞0 (U) and all (H, λ) ∈ B × B∗, we have∫

R

b(r)b0(r,H)e
itφ(r,H,λ) dr �B,B∗

∏
α∈1̃+

(1+ t |α(H)|)−1/2.

Combined with Proposition 4.20, this completes the proof of Theorem 1.3.

4.5. Proof of Theorems 1.4 and 1.5

We prove Theorems 1.4 and 1.5 by a more detailed analysis of the contribution to the
integral

ϕtλ(exp(H)) =
∫
R

b0(r,H)e
itφ(r,H,λ) dr (4.20)

from the Weyl points. We begin with four lemmas that provide a form of the stationary
phase asymptotic adapted to the integrals we wish to study.
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Lemma 4.23. Let b ∈ C∞0 (R× R 6=0), and define f ∈ C∞(R 6=0 × R>0) by∫
b(x, y)e−ityx

2
dx = b(0, y)π1/2

|ty|−1/2 exp(−iπ sgn(y)/4)+ f (y, t). (4.21)

If g ∈ C∞0 (R) and k ≥ 0, define

‖g‖Ck = sup{|g(j)(x)| | x ∈ R, 0 ≤ j ≤ k}.

Then
∂kf

∂yk
(y, t)� |ty|−3/2

∑
i+j=k

|y|−i‖(∂jb/∂yj )(·, y)‖Ck+3 (4.22)

for all k ≥ 0 and all (y, t) ∈ R 6=0 × R>0, where the implied constant depends only on k
and a bound for the support of b in the x-variable.

Proof. We use induction. Suppose that (4.22) is known for some k ≥ 0 and all b ∈
C∞0 (R×R 6=0). Note that the base case k = 0 is given by the stationary phase asymptotic
(see for instance [11, Lemma 7.7.3]). Differentiating the LHS of (4.21) and integrating
by parts gives

∂

∂y

∫
b(x, y)e−ityx

2
dx =

∫
∂b

∂y
(x, y)e−ityx

2
dx +

∫
b(x, y)(−itx2)e−ityx

2
dx

=

∫ (
∂b

∂y
(x, y)−

∂

∂x

xb(x, y)

2y

)
e−ityx

2
dx.

Comparing this with the derivative of the RHS of (4.21) gives∫ (
∂b

∂y
(x, y)−

∂

∂x

xb(x, y)

2y

)
e−ityx

2
dx

=

(
∂b

∂y
(0, y)−

b(0, y)
2y

)
π1/2
|ty|−1/2 exp(−iπ sgn(y)/4)+

∂f

∂y
(y, t).

Applying the inductive hypothesis to the two functions ∂b/∂y and (∂/∂x)(xb(x, y))/2y
separately gives the result. ut

The following lemma may be proved just as Lemma 4.23, with the base case provided by
van der Corput’s Lemma (see for instance [19, Ch. VIII, §1.2, Corollary]).

Lemma 4.24. Let b ∈ C∞0 (R× R 6=0), and define f ∈ C∞(R 6=0 × R>0) by∫
b(x, y)e−ityx

2
dx = f (y, t).

Then
∂kf

∂yk
(y, t)� |ty|−1/2

∑
i+j=k

|y|−i‖(∂jb/∂yj )(·, y)‖Ck+1

for all k ≥ 0 and all (y, t) ∈ R 6=0 × R>0, where the implied constant depends only on k
and a bound for the support of b in the x-variable.
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We recall the definition of ar and a∗r as the regular sets in a0 and a∗0, and ‖H‖s as the
distance from H ∈ a0 to the singular set.

Lemma 4.25. Let b ∈ C∞0 (R
n−r
× a0 × a∗r ). Let R ⊂ 1̃+, and let d = |1̃+ \ R|. We

define
σw(R, λ,H) = −

∑
α∈R

sgn(〈λ, α〉α(wH)).

If x ∈ Rn−r , we write x = (xR, xR) with xR ∈ Rn−r−d ' RR and xR ∈ Rd ' R1̃+\R .
Suppose that there exists a function f ∈ C∞(Rd × ar × a∗r × R>0) with the following
properties.

(a) If H ∈ ar , λ ∈ a∗r , and t > 0, we have∫
b(xR, x

R, H, λ) exp
(
−it

∑
α∈1̃+

〈λ, α〉α(wH)x2
α

)
dxR

= exp
(
−it

∑
α∈1̃+\R

〈λ, α〉α(wH)x2
α

)
·

(
π |R|/2

∏
α∈R

(t |〈α, λ〉α(wH)|)−1/2 exp(iπσw(R, λ,H)/4)b(0, xR, H, λ)

+ f (xR, H, λ, t)
)
.

(b) The function f satisfies(
∂

∂xR

)p(
∂

∂H

)q
f �

∏
α∈R

(t |α(wH)|)−1/2 1

t‖H‖
q+1
s

,

where the implied constant depends on p, q, and b.
(c) There is a compact set B ⊂ Rd × a0 × a∗r such that supp(f ) ⊂ B × R>0.

If β ∈ 1̃+ \R and we define R′ = R ∪ {β}, there exists f ′ satisfying the same conditions
with respect to R′.

Proof. We write x = (xR′ , x
R′) in the same way as x = (xR, x

R). If we apply prop-
erty (a), we see that∫

b(xR′ , x
R′ , H, λ) exp

(
−it

∑
α∈1̃+

〈λ, α〉α(wH)x2
α

)
dxR′

is the sum of

exp
(
−it

∑
α∈1̃+\R′

〈λ, α〉α(wH)x2
α

)
π |R|/2

·

∏
α∈R

(t |〈α, λ〉α(wH)|)−1/2 exp(iπσw(R, λ,H)/4)

·

∫
b(0, xβ , xR

′

, H, λ) exp(−it〈λ, β〉β(wH)x2
β) dxβ (4.23)
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and

exp
(
−it

∑
α∈1̃+\R′

〈λ, α〉α(wH)x2
α

) ∫
f (xβ , x

R′ , H, λ, t) exp(−it〈λ, β〉β(wH)x2
β) dxβ .

(4.24)

We deal with (4.23) by writing a0 as a direct sum of the kernel of w−1β and any
transverse subspace, and applying Lemma 4.23 with y = 〈λ, β〉β(wH). Note that we
are free to truncate the support of b away from the set β(wH) = 0 to ensure that the
hypotheses of Lemma 4.23 are satisfied. This implies that∫

b(0, xβ , xR
′

, H, λ) exp(−it〈λ, β〉β(wH)x2
β) dxβ

= b(0, xR
′

, H, λ)(t |〈λ, β〉β(wH)|/π)−1/2 exp(−iπ sgn(〈λ, β〉β(wH))/4)

+ f ′1(x
R′ , H, λ, t),

where f ′1 satisfies(
∂

∂xR
′

)p(
∂

∂H

)q
f ′1 � (t |β(wH)|)−3/2

|β(wH)|−q � (t |β(wH)|)−1/2t−1
‖H‖

−q−1
s .

(4.25)
To deal with (4.24), we define

f ′2(x
R′ , H, λ, t) =

∫
f (xβ , x

R′ , H, λ, t) exp(−it〈λ, β〉β(wH)x2
β) dxβ .

We may show that f ′2 satisfies (b) with respect to R′ in the same way as we proved (4.25),
by truncating f away from the singular set in H , and applying Lemma 4.24 and the
assumption that f satisfied (b). If we define

f ′(xR
′

, H, λ, t)

= π |R|/2
∏
α∈R

(t |〈α, λ〉α(wH)|)−1/2 exp(iπσw(R, λ,H)/4)f ′1(x
R′ , H, λ, t)

+ f ′2(x
R′ , H, λ, t),

it may be seen that f ′ satisfies the conditions of the lemma with respect to R′. ut

As the conditions of Theorem 4.25 with R = ∅ are satisfied, by induction we obtain

Lemma 4.26. Let b∈C∞0 (R
n−r
×a0×a

∗
r ). There exists a function f ∈C∞(ar×a∗r×R>0)

with the following properties.

(a) If H ∈ ar , λ ∈ a∗r , and t > 0, we have∫
b(x,H, λ) exp

(
−it

∑
α∈1̃+

〈λ, α〉α(wH)x2
α

)
dx

= π (n−r)/2 exp(iπσw(H, λ)/4)b(0, H, λ)

·

∏
α∈1̃+

(t |〈α, λ〉α(H)|)−1/2
+ f (H, λ, t). (4.26)
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(b) The function f satisfies(
∂

∂H

)p
f �

∏
α∈1̃+

(t |α(H)|)−1/2 1

t‖H‖
p+1
s

, (4.27)

where the implied constant depends on p and b.

Proof of Theorem 1.4. Let b ∈ C∞(R) be supported in a neighbourhood ofW , and equal
to 1 on a smaller neighbourhood of W . We write

ϕtλ(exp(H)) =
∫
R

b(r)b0(r,H)e
itφ(r,H,λ) dr +

∫
R

(1− b(r))b0(r,H)e
itφ(r,H,λ) dr.

Proposition 4.20 implies that the second term may be absorbed into the error term in (1.7).
By applying a partition of unity in the variables (H, λ) and shrinking the support of b,
we may use Proposition 4.22 to write the first term as a finite sum of integrals of the
form (4.26) multiplied by exp(itλ(wH)) for some w ∈ W . Applying Lemma 4.26 gives
functions {cw ∈ C∞(a × a∗r ) | w ∈ W } and {fw ∈ C∞(ar × a∗r × R>0) | w ∈ W }

satisfying (4.27) such that∫
b(r)b0(r,H)e

itφ(r,H,λ) dr = π (n−r)/2
∏
α∈1̃+

(t |〈α, λ〉α(H)|)−1/2

·

∑
w∈W

exp(itλ(wH)+ iπσw(H, λ)/4)cw(H, λ)+
∑
w∈W

exp(itλ(wH))fw(H, λ, t)

forH ∈ B and λ ∈ B∗. This gives an asymptotic for ϕtλ of the same type as Theorem 1.4,
but with the presence of factors cw(H, λ) ∈ C∞(a × a∗r ) in the main terms. These may
be calculated by comparison with [4, formula (9.10)] when H ∈ B and λ ∈ B∗, which
completes the proof. ut

The proof of Theorem 1.5 follows from a similar induction, with Lemma 4.24 used instead
of Lemma 4.23.

5. Symmetric spaces of compact type

We now consider the case in which X is a locally symmetric space of compact type. We
assume without loss of generality that X is a simply connected globally symmetric space
S = U/K . As in the noncompact case, most of the work in proving Theorem 1.1 lies in
establishing a sharp pointwise bound for the kernel of an approximate spectral projector,
and the bound we shall use is exactly that of Theorem 1.6 for the spherical function ϕµ
on S. We shall prove this bound using the method of the previous sections, after first
deriving an expression for ϕµ as an average of plane waves which is an analogue of the
usual expression for ϕλ as a K-integral in the noncompact case.
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5.1. Notation

Let (u0, θ) be a semisimple orthogonal symmetric Lie algebra of compact type. Let
u0 = k0 + ip0 be the associated Cartan decomposition. Let (U,K) be the unique Rie-
mannian symmetric pair associated to (u0, θ) with U simply connected and K the con-
nected subgroup with Lie algebra k0. Let g be the complexification of u0. Let (g0, s) be
the orthogonal symmetric Lie algebra dual to (u0, θ), so that g0 ⊂ g is a real form of g
and s is the restriction of θ to g0, and the Cartan decomposition of g0 is k0 + p0. Let G
be a connected Lie group with real Lie algebra g0 and finite centre. After an isogeny, we
may assume that U andG are both analytic subgroups of the simply connected groupGC
with real Lie algebra g. We denote the Killing form on g by 〈 , 〉. Let q0 be the orthogonal
complement of a0 in p0 with respect to the Killing form, so that

g0 = k0 + p0 = k0 + a0 + q0.

Let

G = NAK, g = n(g) exp(A(g))k(g), g = k+ a+ n

be an Iwasawa decomposition of G. Let M ′ and M be the normaliser and centraliser of
a in K , and let W be the Weyl group M ′/M . We let M0 be the connected component
of the identity in M , and m be its Lie algebra. Let 1 denote the set of roots of g with
respect to a. Note that we assume that 0 ∈ 1 as in §2.1.1. We let1+ be the set of positive
roots corresponding to n, and let a+0 be the associated positive Weyl chamber. We let a∗0,+
denote the positive dual Weyl chamber. We shall let 1̃ denote the multiset on 1 in which
each root is counted with multiplicity m(α), with m(α) as in §2.1.1, and likewise for any
subset of1. We let 1+0 = 1

+
∪ {0}, and for every α ∈ 1̃+0 choose Yα ∈ (gα + g−α)∩ k0

so that {Yα | α ∈ 1̃+0 } is an orthonormal basis of k0 with respect to −〈 , 〉. Extend a0 to a
Cartan subalgebra h0 of g0. Define T to be the connected subgroup of U with Lie algebra
ia0, and let T be the image of T in S so that T is a maximal flat subspace of S.

5.1.1. Spherical functions. Define

3 =

{
µ ∈ a∗

∣∣∣∣ 〈µ, α〉〈α, α〉
∈ Z+ for α ∈ 1+

}
.

For each µ ∈ 3, we extend µ to a linear functional on h that is 0 on h∩k, and let (πµ, Vµ)
denote the irreducible representation of GC with highest weight µ. By [9, Thm. 4.12,
Ch. II], the set of irreducible representations of GC whose restriction to G is spherical
(that is, has a K-fixed vector) is exactly {πµ | µ ∈ 3}. Let 〈 , 〉π be a πµ(U)-invariant
Hermitian inner product on Vµ, and let d(µ) be the dimension of Vµ. We let s∗ be the au-
tomorphism of a∗ such that πµ and πs∗µ are contragredient, which is given by composing
the map µ 7→ −µ with the long element of the Weyl group.

Let eµ ∈ Vµ belong to the weight µ and let vµ ∈ Vµ be a unit vector fixed under K .
We define ϕµ, bµ ∈ C∞(GC) by

ϕµ(g) = 〈πµ(g
−1)vµ, vµ〉π , bµ(g) = 〈πµ(g

−1)eµ, vµ〉π .
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The restriction of ϕµ toU is the spherical function with spectral parameterµ, and we shall
see in §5.3 that the restriction of bµ to U may be thought of as a higher rank Gaussian
beam.

If f ∈ C∞(U) is a K-biinvariant function, we define its spherical transform f̂ by

f̂ (µ) =

∫
U

f (u)ϕs∗µ(u) du, µ ∈ 3.

The following inversion formula for the spherical transform is a consequence of the Peter–
Weyl theorem (see for instance [9, Prop. 9.1, Ch. III]).

Proposition 5.1. We have

f (u) =
∑
µ∈3

ϕµ(u)f̂ (µ)d(µ).

5.1.2. Complex Iwasawa coordinates. The mapping

(X,H, J ) 7→ expX expH exp J (X ∈ n, H ∈ a, J ∈ k)

is a holomorphic diffeomorphism of a neighbourhood of 0 in g onto a neighbourhood
U0
C of e in GC. We can therefore analytically continue the map A : G → a0 to a map

U0
C→ a by defining

A : expX expH exp J 7→ H.

As bµ is holomorphic on GC, N -invariant on the left and K-invariant on the right, we
have

bµ(expX expH exp J ) = bµ(expH) = e−µ(H)bµ(e).
It follows that bµ(e) 6= 0, and we shall always normalise bµ by bµ(e) = 1 so that

bµ(u) = e
−µ(A(u)), u ∈ U0

C. (5.1)

We shall need the following invariance property of A.

Lemma 5.2. If u ∈ U0
C and m ∈ M0 satisfy mu ∈ U0

C, then A(u) = A(mu).

Proof. Because eµ is fixed by M0, we have bµ(mu) = bµ(u) for all µ and m ∈ M0. If
we define the lattice a3 = {H ∈ ia0 | µ(H) ∈ 2πiZ for all µ ∈ 3}, this implies that
A(mu)− A(u) ∈ a3. By shrinking U0

C if necessary, the lemma follows. ut

The following lemma allows us to extend the representation (5.1) to T U0
C.

Lemma 5.3. We may extend A to a function A : T U0
C→ a/a3.

Proof. If g = exp(H)u ∈ T U0
C with H ∈ ia0 and u ∈ U0

C, we define A(exp(H)u) =
H + A(u) ∈ a/a3. To show that this is well defined, assume that g = exp(H1)u1 =

exp(H2)u2. We have

bµ(g) = e
−µ(H1+A(u1)) = e−µ(H2+A(u2)),

so that
µ(H1 + A(u1))− µ(H2 + A(u2)) ∈ 2πiZ.

As this holds for all µ ∈ 3, we have H1 + A(u1)−H2 + A(u2) ∈ a3 as required. ut
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5.2. Approach to proving Theorem 1.6

Let B∗ ⊂ a∗0,+ be a compact set that is bounded away from the singular set, and assume
that µ ∈ B∗ and t > 0 satisfy tµ ∈ 3. We have

ϕtµ(exp(H)) =
∫
K

btµ(k exp(H)) dk, H ∈ ia0. (5.2)

We see from (5.1) that there is a strong formal analogy between this expression for ϕtµ
and the standard representation of ϕλ as a K-integral in the noncompact case, and so one
would hope to be able to prove Theorem 1.6 by applying the techniques of §4 to this
integral. This works when H is regular, and we use this approach to prove an asymptotic
expansion for ϕtµ in Lemma 6.3. However, the fact that btµ is sharply concentrated along
a flat subspace (in particular, that its absolute value has large derivatives) makes it difficult
to prove bounds for ϕtµ(exp(H)) using the representation (5.2) that are uniform as H
degenerates. We get around these difficulties by observing that the terms in the expansion
of Lemma 6.3 behave much more like plane waves on G/K than the function btµ, as
their absolute values are not changing rapidly. As a result, we may prove Theorem 1.6 by
first averaging btµ under the action of a small open neighbourhood of the identity in K
to generate a plane wave on some open set in S, and then expressing ϕtµ as an average of
the plane wave under rotation about a point in this set.

5.3. The structure of Gaussian beams

To begin this approach, we shall prove that btµ is localised around T at scale t−1/2,
making it a higher rank analogue of a Gaussian beam. By Lemma 5.3, we may define

A0
: T U0

C→ a0, g 7→ Re(A(g)).

It follows from Lemma 5.3 that A0 is left-invariant under T , so that VA0(e) = 0 for
V ∈ ia0, and it may likewise be seen that VA0(e) = 0 for V ∈ iq0. This implies that
when we restrict µ ◦A0 to S it has a critical point at e, and hence along T . The following
lemma shows that this critical point is negative definite transversally to T .

Lemma 5.4. There are positive constants C1 and C2 depending only on B∗ such that for
all V ∈ iq0, we have

−C1〈V, V 〉 ≥
d2

dt2
µ(A0(exp(tV )))

∣∣∣∣
t=0
≥ −C2〈V, V 〉 ≥ 0.

Proof. Let

V =
∑
α∈1+

icα(Xα −X−α) ∈ iq0, V ± =
∑
α∈1+

icαX±α,

where cα ∈ R, X±α ∈ g0,±α and X−α = θXα . Write the second order approximation to
the Iwasawa decomposition of exp(tV ) in terms of unknowns V1, V2 and V3 as

exp(tV ) = exp(2tV + + t2V1) exp(t2V2) exp(−t (V + + V −)+ t2V3)+O(t
3).

After applying the Baker–Campbell–Hausdorff formula to the RHS we have

exp(tV ) = exp(tV − t2[V +, V −] + t2(V1 + V2 + V3))+O(t
3).
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Equating coefficients gives V1 + V2 + V3 = [V
+, V −], so that V2 is the projection of

[V +, V −] to a. Calculating this projection using the formula [Xα, X−α] = 〈Xα, X−α〉Hα
gives

V2 = −
∑
α∈1+

c2
α〈Xα, X−α〉Hα.

It follows that

d2

dt2
µ(A0(exp(tV )))

∣∣∣∣
t=0
= −2

∑
α∈1+

c2
α〈Xα, X−α〉〈µ, α〉,

and our assumption that µ ∈ B∗ implies that 〈µ, α〉 ∼B∗ 1. Combining this with

〈V, V 〉 = 2
∑
α∈1+

c2
α〈Xα, X−α〉

completes the proof. ut

It follows from Lemma 5.4 that btµ has Gaussian decay at scale t−1/2 transversally to T ,
which implies that btµ ∈ L2(S) has norm ‖btµ‖2 � t−(n−r)/4. We next show that btµ
decays rapidly in sets that are bounded away from T by an argument involving pseudo-
differential operators.

Proposition 5.5. If D ⊂ S is any compact set that does not intersect T , we have

|btµ(x)| �D,A t
−A, x ∈ D.

Proof. Let1 be the positive Laplacian on S associated to the metric−〈 , 〉 on ip0, which
is equal to the restriction of the Casimir operator on U to the space of right K-invariant
functions. Let µ0 = µ/〈µ,µ〉

1/2, and let ∂Hµ be the vector field on S whose value at uK
is (∂/∂t) exp(itHµ0)uK|t=0. Under the isomorphism T S ' U ×K ip0, ∂Hµ is given by
(u, projip(Ad−1

u iHµ0)). The actions of 1 and i∂Hµ on btµ are

1btµ = 〈tµ, tµ〉, i∂Hµbtµ = 〈tµ, µ0〉,

and we shall prove the proposition by comparing these. As we have already established
that ‖btµ‖2 � t−(n−r)/4, it suffices to prove the proposition after first rescaling btµ to
have L2 norm one.

Lemma 5.6. The principal symbol p0(x, ξ) of the operator P0 = 1− (i∂Hµ)
2 satisfies

p0(x, ξ) ≥ 0, and if p0(x, ξ) = 0 then x ∈ T or ξ = 0.

Proof. We shall denote the principal symbols of the operators1 and i∂Hµ by p1 and pµ.
Under the isomorphism T ∗S ' U ×K ip

∗

0, the formulas for p1 and pµ are

p1 : (u, V ) 7→ −〈V, V 〉, pX : (u, V ) 7→ V (projip(Ad−1
u iHµ0)) = 〈V,Ad−1

u iµ0〉.

We then have

p0(u, V ) = −〈V, V 〉 − 〈V,Ad−1
u iµ0〉

2,
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so that Cauchy–Schwarz implies that p0(u, V ) ≥ 0 with equality iff V = cAd−1
u iµ0 for

some c. Suppose that p0(u, V ) = 0, and assume that 0 6= V ∈ ia∗0 so that Ad−1
u iµ ∈ ia∗0.

By following [8, proof of Prop. 8.8(ii), Ch. VII], and observing that the torus T ⊂ P∗
introduced there must be contained in our torus T as µ is regular, we see that we must
have u = kt for k ∈ K and t ∈ T . Then Ad−1

k iµ ∈ ia∗0, so that k ∈ M ′ and u = kt ∈ TK
as required. ut

As P0btµ = 0 and P0 is elliptic away from T , it is a general principle of semiclassical
analysis that btµ is rapidly decaying away from T as t → ∞. We shall give a quick
proof of this fact. Let D ⊂ U1 ⊂ U2 be open neighbourhoods of D with U1 ⊂ U2 and
U2 ∩ T = ∅, and choose nonnegative functions a1 and a2 in C∞(S) satisfying

a1(x) = 1, x ∈ T ,

a2(x) = 1, x ∈ U2,

a1a2 ≡ 0.

Define
P = (1+ a1)1− (i∂Hµ)

2

so that P is elliptic on S. If we define P(a2btµ) = ρ then supp(ρ) ∩ U2 = ∅. As P is
an elliptic differential operator, it has a parametrix E such that EP = I + S for some
smoothing operator S [19, VI §4, 3.5], and applying EP to a2btµ gives

Eρ = a2btµ + S(a2btµ). (5.3)

As E is also a pseudodifferential operator it is local up to smoothing, and because
supp(ρ) ∩ U2 = ∅ this means there is a second smoothing operator S1 such that
Eρ(x) = S1ρ(x) for x ∈ U1. Combining this with (5.3) for x ∈ U1 gives

(a2btµ)(x) = Eρ(x)− S(a2btµ)(x),

btµ(x) = S1P(a2btµ)(x)− S(a2btµ)(x) = (S1Pa2 − Sa2)(btµ)(x).

As S1Pa2−Sa2 is a smoothing operator, this implies that the L2 norm of btµ restricted to
U1 is rapidly decaying. The standard methods of bounding L∞ norms of Laplace eigen-
functions in terms of their L2 norms then imply that |btµ(x)| �D,A t−A for x ∈ D,
which concludes the proof of Proposition 5.5. ut

Combining Lemma 5.4 and Proposition 5.5 on U ∩ T U0
C, we obtain

Corollary 5.7. We have µ(A0(u)) ≤ 0 on U ∩ T U0
C, with equality iff u ∈ TK .

5.4. Sharpness of Theorem 1.1 in the compact case

We may now prove that Theorem 1.1 is sharp up to the logarithmic factor in the case of
compact type.
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The spherical function ϕtµ saturates the Lp bounds for p above the kink point. To see
this, first observe that btµ is roughly constant in a ball of radius� t−1 about the identity
in S by (5.1), and so the expression (5.2) for ϕtµ implies that |ϕtµ(s)| � 1 in the same
ball. Moreover, the Weyl dimension formula implies that ‖ϕtµ‖2 ∼ t−(n−r)/2. These two
facts imply that t (n−r)/2ϕtµ has L2 norm ∼ 1, and has absolute value� t (n−r)/2 on a set
of measure� t−n, so that ‖t (n−r)/2ϕtµ‖p � tn(1/2−1/p)−r/2 as required.

Lemma 5.4 and Proposition 5.5 imply that the functions t (n−r)/4btµ saturate the
bounds of Theorem 1.1 for p below the critical point. Indeed, by Proposition 5.5 it suf-
fices to understand the behaviour of btµ in the open neighbourhood U ∩ T U0

C of T ,
and Lemma 5.4 implies that |btµ| is essentially the characteristic function of a ball of
radius t−1/2 around T in S. It easily follows that the Lp norm of t (n−r)/4btµ is approxi-
mately t (n−r)(1/2−1/p)/2.

6. Bounds for spherical functions on compact groups

In this section we shall derive Theorem 1.6 from the results of §5.3, before using Theorem
1.6 to prove Theorem 1.1.

6.1. Plane waves and integral representations

We begin by averaging btµ over rotations by a small neighbourhood of the identity in K
to generate a plane wave on S. Let B1 ⊂ B ⊂ K be two open balls around e that satisfy
B1 = B−1

1 and B1 ⊂ B. Let b1 ∈ C
∞

0 (B) be a nonnegative function that is equal to 1
on B1, and define ϕ0

tµ ∈ C
∞(U) by

ϕ0
tµ(u) =

∫
K

b1(k)btµ(ku) dk.

To state the asymptotic we require for ϕ0
tµ, we introduce Cartan coordinates on S. We

define

8 : K/M × ia0 → S, (kM,H) 7→ k exp(H).

Define the diagram D(U,K) and the regular set ar by

D(U,K) = {H ∈ ia0 | α(H) ∈ πiZ for some α ∈ 1+}, ar = ia0 \D(U,K).

The regular set ar is a union of open simplices, and we choose one such simplex
P0 whose closure contains the origin. It is known (see [8, Thm. 3.3, Ch. VII]) that
8(K/M,D(U,K)) is an analytic set of codimension at least 2 in S, and we define the
regular set Sr to be S \8(K/M,D(U,K)).

Proposition 6.1. We have 8(K/M,P0) = Sr , and the map 8 : K/M × P0 → Sr is a
covering map. Moreover, if

u = k1 exp(H1)k2 = l1 exp(H2)l2 (6.1)

with Hi ∈ P0 and ki, li ∈ K , then H1 = H2, k1M
′
= l1M

′, and M ′k2 = M
′l2.
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Proof. The assertions that 8(K/M,P0) = Sr , 8 is a covering map, and H1 = H2 in
(6.1) are proven in [8, Lemma 8.1 and Thm. 8.6, Ch. VII]. To prove that k1M

′
= l1M

′,
consider

u(θu)−1
= k1 exp(2H1)k

−1
1 = l1 exp(2H1)l

−1
1 ,

so that if we let k = l−1
1 k1 then we have k exp(2H1)k

−1
= exp(2H1) = s. Following [8,

proof of Lemma 8.7, Ch. VII], we let Zs be the centraliser of s in U . Our assumption that
H1 was in ar implies that the Lie algebra of Zs is exactly m0 + ia0, and so reasoning as
in the proof of that lemma we see that k ∈ M ′ as required. The claim that M ′k2 = M

′l2
follows in the same way. ut

Proposition 6.1 implies that we may define the Cartan A-coordinate ρ : Sr → P0 by
k exp(H) 7→ H . Assume that BB1 ∩M

′
⊆ M0. If we choose B and B1 to be sufficiently

small, there exists an open set Q0 ⊂ P0 such that BB1 exp(Q0) ⊂ U0
C. Define V =

8(B1,Q0) ⊂ Sr . We may assume that B1 and B are small enough that 8 provides a
diffeomorphism V ' B1M/M ×Q0.

Lemma 6.2. There is a function a ∈ C∞(R× V × B∗) with an asymptotic expansion

a(t, s, µ) ∼

∞∑
i=0

t−iai(s, µ)

that converges locally uniformly, with ai ∈ C∞(V ×B∗) and a0 nonvanishing, such that

ϕ0
tµ(s) = t

−(n−r)/2a(t, s, µ)e−tµ(ρ(s)), s ∈ V. (6.2)

Proof. Our asumption that BB1 exp(Q0) ⊂ U0
C implies that we may define φ ∈

C∞(BB1 × Q0 × B
∗) by φ(k,H,µ) = −µ(A(k exp(H))). Corollary 5.7 implies that

Reφ ≤ 0 with equality iff k exp(H) ∈ T . Now [8, Thm. 8.3(iii), Ch. VII] shows that
T = 8(M ′, P0), and Proposition 6.1 and our assumption that BB1 ∩ M

′
⊆ M0 then

imply that k exp(H) ∈ T iff k ∈ M0. If k1 ∈ B1 and H ∈ Q0, we may write

ϕ0
tµ(k1 exp(H)) =

∫
K

b1(k)e
−tµ(A(kk1 exp(H))) dk =

∫
K

b1(kk
−1
1 )etφ(k,H,µ) dk.

It will be convenient to reduce this integral to one with a single critical point. Lemma 5.2
implies that φ is left-invariant underM0, so that we may define R = M0\K and reduce φ
to a function on M0\M0BB1 ⊂ R, which we continue to denote by φ. We also define
b′1 : R→ R by

b′1(M0k) =

∫
M0

b1(mk) dm.

The support of b′1 is contained in M0\M0B, and our assumption that b1 equals 1 on
B1 = B

−1
1 implies that b′1(M0k

−1
1 ) > 0 for all k1 ∈ B1. We have

ϕ0
tµ(k1 exp(H)) =

∫
R

b′1(rk
−1
1 )etφ(r,H,µ) dr. (6.3)
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If Dφ is the Hessian of φ at e, we may calculate Dφ with respect to the basis {Yα |
α ∈ 1̃+} of TeR as in Proposition 4.5 to be the diagonal matrix

(Dφ)αα =
1
2 〈µ, α〉(e

2α(H)
− 1).

We have α(H) ∈ iR \ πiZ for all α when H ∈ ar , so that Re(Dφαα) < 0 on Q0 × B
∗.

We may apply the stationary phase method for complex phases (see for instance [11,
Thm. 7.75]) to obtain a function a ∈ C∞(R × B1 × Q0 × B

∗) with an asymptotic
expansion

a(t, k,H,µ) ∼

∞∑
i=0

t−iai(k,H,µ)

that converges locally uniformly, with ai ∈ C∞(B1 ×Q0 × B
∗), such that

ϕ0
tµ(k exp(H)) = t−(n−r)/2a(t, k,H,µ)e−tµ(ρ((s)), k ∈ B1, H ∈ Q0.

Moreover, the condition that b′1(M0k
−1
1 ) > 0 for all k1 ∈ B1 implies that a0 is nonva-

nishing. The functions a and ai must be right-invariant under M , so we may push them
forward under 8 to obtain functions a ∈ C∞(R × V × B∗) and ai ∈ C∞(V × B∗) as
required. ut

Arguing in the same way allows us to prove an asymptotic expansion for ϕtµ(exp(H))
when H is regular. We now let B ⊂ ia0 denote a ball around the origin such that
exp(AdK B) ⊂ U0

C, and let Br = B ∩ ar .

Lemma 6.3. There is a function a ∈ C∞(R×Br×B∗×W)with an asymptotic expansion

a(t,H,µ,w) ∼

∞∑
i=0

t−iai(H,µ,w)

that converges locally uniformly, with ai ∈ C∞(Br×B∗×W) and a0 nonvanishing, such
that

ϕtµ(exp(H)) = t−(n−r)/2
∑
w∈W

a(t,H,µ,w)e−tµ(wH) for H ∈ Br .

Proof. We write

ϕtµ(exp(H)) =
∫
K

btµ(exp(Adk H)) dk =
∫
K

e−µ(A(exp(Adk H))) dk. (6.4)

Our assumption on B implies that we may define φ′(k,H,µ) = −µ(A(exp(Adk H))).
The function φ′ is clearly right-invariant under M , so that we may reduce this integral to
one on K/M , and it satisfies Re(φ′) ≤ 0 with equality iff k exp(H)k−1

∈ TK . When
H ∈ ar we again have k exp(H)k−1

∈ TK iff k ∈ M ′, and so by Proposition 5.5 it
suffices to consider neighbourhoods of the Weyl points in the integral (6.4). The lemma
now follows from stationary phase as before. ut

Lemma 6.2 shows that there is a clear similarity between ϕ0
tµ and the plane waves eiλ(A(g))

on G/K . We will make use of this by choosing H0 ∈ Q0, letting h = exp(H0) ∈ V , and
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expressing ϕtµ as an average of ϕ0
tµ under rotation about h. The fact that a0 in Lemma 6.2

was nonvanishing means that, for t sufficiently large, we may normalise ϕ0
tµ by setting

ϕ0
tµ(h) = 1. Then

ϕtµ(exp(H)) =
∫
K

ϕ0
tµ(hk exp(H)) dk, (6.5)

and when s ∈ V we have an asymptotic

ϕ0
tµ(s) = a(t, s, µ)e

−tµ(ρ(s))

with a as in Lemma 6.2. If B ∈ a0 is a ball such that hK exp(iB) ⊂ V , we may define
ψ ∈ C∞(K × B × B∗) by

ψ(k,H,µ) = iµ(ρ(hk exp(iH))).

We choose to multiply by i in this way so that ψ and its domain are both real. When
H ∈ B, this allows us to rewrite (6.5) as

ϕtµ(exp(iH)) =
∫
K

a(t, hk exp(iH), µ)eitψ(k,H,µ) dk.

By applying the asymptotic expansion of a, we see that Theorem 1.3 will follow from

Proposition 6.4. We have∫
K

a(hk exp(iH), µ)eitψ(k,H,µ) dk �
∏
α∈1̃+

(1+ t |α(H)|)−1/2

for all H ∈ B and a ∈ C∞(V , B∗).

6.2. The critical set of ψ

We shall prove Proposition 6.4 by uniformising ψ as in §4. We begin by establishing the
following analogues of Propositions 4.3 and 4.5 in the compact case. We recall that KH
is the stabiliser of H in K .

Proposition 6.5. The function ψ(k,H,µ) is right-invariant under KH , and its critical
point set is equal to M ′KH .

Proof. The invariance of ψ under KH is immediate. To determine the critical point set,
we shall first assume that k is a critical point of ψ and show that k = wkH for some
w ∈ M ′ and kH ∈ KH . Choose a vector X ∈ k0 and use the diffeomorphism 8 : V '

B1M/M ×Q0 to write

hk exp(tX) exp(iH) = k1(t) exp(V (t)) ∈ V

for t near 0, where k1(t) and V (t) are smooth functions that take values in K/M and P0
respectively. We have

∂

∂t
ψ(k exp(tX),H,µ)

∣∣∣∣
t=0
= iµ(V ′(0)).
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Let s : K/M → K be a section of the quotient map that is defined in a neighbourhood of
k1(0). If we define k1(t) = s(k1(t)) for t near 0, this gives a smooth Cartan decomposition

hk exp(tX) exp(iH) = k1(t) exp(V (t))k2(t) ∈ U. (6.6)

If we set a = exp(V (0)) and ki = ki(0) for i = 1, 2, and define Xi ∈ k0 so that

ki(t) = ki(0) exp(tXi +O(t2)),

then differentiating (6.6) at t = 0 gives

Ad−1
exp(iH)X = Ad−1

ak2
X1 + Ad−1

k2
V ′(0)+X2,

Adk2 Ad−1
exp(iH)X = Ad−1

a X1 + V
′(0)+ Adk2 X2.

As Ad−1
a X1 and Adk2 X2 both lie in k+ q, we see that V ′(0) is equal to the projection of

Adk2 Ad−1
exp(iH)X to a. Our assumption that k is a critical point of ψ then implies that

〈Hµ,Adk2 Ad−1
exp(iH)X〉 = 0 for all X ∈ k. (6.7)

Let l0 be the centraliser of H in g0, and let L be the Levi subgroup of G with Lie
algebra l0. Note that l0 is stable under θ ; we write its Cartan decomposition as l0 =
kL,0 + pL,0. Let KL = L ∩ K , which is a maximal compact subgroup of L because it is
compact and has Lie algebra kL,0. We note thatKL ⊆ KH . After shrinking B if necessary,
our assumption that H ∈ B implies that the projection of Ad−1

exp(iH) k to p is equal to

p⊥L ⊂ p, and so condition (6.7) holds iff Ad−1
k2
Hµ ∈ pL. The inclusion Ad−1

k2
Hµ ∈ pL

implies that there is a kL ∈ KL such that AdkL Ad−1
k2
Hµ ∈ a, and as Hµ is regular this

implies that k2 = wkL for some w ∈ M ′. Substituting this into (6.6) at t = 0 gives

hk = k1ak2 exp(−iH) = k1awkL exp(−iH) = k1a exp(−iwH)wkL.

We have h = exp(H0) and a exp(−iwH) = exp(V (0) − iwH), and if B is chosen
small enough we will have both H0 ∈ P0 and V (0) − iwH ∈ P0. Proposition 6.1 then
gives k ∈ M ′kL as required. This shows that the critical point set of ψ is contained in
M ′KH , and the reverse inclusion follows from the right KH -invariance of ψ and the
easily observed fact that ψ is critical on M ′. ut

Choose l ∈ K , and let aL and KL be as in §4.1. We again write l = wl0 with l0 ∈ KL
and w ∈ M ′ fixed, and let Xα = Ad−1

l Yα . It follows from Proposition 6.5, just as in the
proof of Lemma 4.4, that l is a critical point of φ exactly when H ∈ a0,L ∩ B.

Proposition 6.6. There are positive real analytic functions

Fα : B ∩ a0,L→ R, α ∈ 1̃+,

such that when H ∈ B ∩ a0,L, the Hessian of ψ at l with respect to the vector fields
{Xα | α ∈ 1̃

+

0 } is diagonal, and satisfies

(Dψ)αα = 〈µ, α〉Fα(H) sin(α(wH)), α ∈ 1̃+,

(Dψ)αα = 0, α ∈ 1̃+0 \ 1̃
+.



Lp norms of higher rank eigenfunctions 1487

Proof. Showing that (Dψ)αβ = 0 when α or β lie over the zero root is simple, and left
to the reader. Let α, β ∈ 1̃+. We wish to calculate

∂2

∂s∂t
µ
(
ρ(hl exp(sXα) exp(tXβ) exp(iH))

)∣∣∣∣
s=t=0

.

As l = wl0 and H ∈ aL, we may rewrite the argument of ρ above as

hl exp(sXα) exp(tXβ) exp(iH) = h exp(sYα) exp(tYβ) exp(iwH)l,

and so we may instead calculate

∂2

∂s∂t
µ
(
ρ(h exp(sYα) exp(tYβ) exp(iwH))

)∣∣∣∣
s=t=0

.

As in the proof of Proposition 6.5, we choose a smooth Cartan decomposition

h exp(sYα) exp(tYβ) exp(iwH) = k1(s, t) exp(V (s, t))k2(s, t) (6.8)

for s and t near 0. Moreover, because h exp(iwH) = exp(H0+iwH) andH0+iwH ∈ P0
for B small, we may assume that k1(0, 0) = k2(0, 0) = e so that we can write

ki(s, t) = exp
(
Xi,ss +Xi,t t +Xi,st st +O(s

2)+O(t2)
)
.

We define V = V (0, 0) = H0 + iwH and Vst = Vst (0, 0), and let a = exp(V ). Writing
the approximation to (6.8) involving terms s, t and st gives

h exp(sYα) exp(tYβ) exp(iwH) = exp(X1,ss +X1,t t +X1,st st)a exp(Vst st)

· exp(X2,ss +X2,t t +X2,st st)+O(s
2)+O(t2),

a exp(s Ad−1
exp(iwH) Yα) exp(t Ad−1

exp(iwH) Yβ)

= a exp(Ad−1
a [X1,ss +X1,t t +X1,st st]) exp(Vst st)

· exp(X2,ss +X2,t t +X2,st st)+O(s
2)+O(t2).

Combining exponentials using Baker–Campbell–Hausdorff gives

exp(Ad−1
exp(iwH)(sYα + tYβ + st/2[Yα, Yβ ]))

= exp
(
(Ad−1

a X1,s +X2,s)s + (Ad−1
a X1,t +X2,t )t

+ (Vst + Ad−1
a X1,st +X2,st +

1
2 [Ad−1

a X1,s, X2,t ] +
1
2 [Ad−1

a X1,t , X2,s])st

+O(s2)+O(t2)
)
, (6.9)

and equating first order terms, we have

Ad−1
exp(iwH) Yα = Ad−1

a X1,s +X2,s, Ad−1
exp(iwH) Yβ = Ad−1

a X1,t +X2,t . (6.10)
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If we let Yα = Vα + V−α where V±α ∈ g0,±α , and likewise for β, then (6.10) becomes

e−iα(wH)Vα + e
iα(wH)V−α = Ad−1

a X1,s +X2,s,

e−iβ(wH)Vβ + e
iβ(wH)V−wβ = Ad−1

a X1,t +X2,t .

Because V = H0 + iwH was generic we may solve this to obtain

X1,s ∈
sin(α(wH))
sin(α(V )/i)

(Vα+V−α)+m0, X2,s ∈
sin(α(V )/i − α(wH))

sin(α(V )/i)
(Vα+V−α)+m0,

(6.11)
and likewise for Xi,t and β.

Equating the st terms in (6.9) gives

1
2 Ad−1

exp(iwH)[Yα, Yβ ] = Vst + Ad−1
a X1,st +X2,st +

1
2 [Ad−1

a X1,s, X2,t ]

+
1
2 [Ad−1

a X1,t , X2,s].

We have [Yα, Yβ ] ∈ k, so that Ad−1
exp(iwH)[Yα, Yβ ] and Ad−1

a X1,st+X2,st both lie in k+q.
This implies that

Vst = −proja
( 1

2 [Ad−1
a X1,s, X2,t ] +

1
2 [Ad−1

a X1,t , X2,s]
)
, (6.12)

where proja is the orthogonal projection onto a.
We first consider the case where α 6= β. If α 6= β as elements of 1+ rather than just

1̃+, we see that (6.12) must vanish because the commutators of the form [Vα, V−β ] must
lie in root spaces corresponding to nonzero roots. If α = β in1+, the vanishing of (6.12)
follows from our assumption that the vectors V±α , V±β were orthogonal, and the identity
[I, J ] = Hγ 〈I, J 〉 for I ∈ gγ and J ∈ g−γ .

We now assume that α = β. In this case, Xi,s = Xi,t so that (6.12) becomes

Vst = −proja([Ad−1
a X1,s, X2,s]).

Substituting the values of X1,s and X2,s from (6.11) and noting that [m, k] ⊥ a, we have

−[Ad−1
a X1,s, X2,s] ∈ −

sin(α(wH)) sin(α(V )/i − α(wH))
sin(α(V )/i)2

· [e−α(V )Vα + e
α(V )V−α, Vα + V−α] + a⊥

∈
2i sin(α(wH)) sin(α(V )/i − α(wH))

sin(α(V )/i)
[Vα, V−α] + a⊥

∈
2i sin(α(wH)) sin(α(V )/i − α(wH))

sin(α(V )/i)
Hα〈Vα, V−α〉 + a⊥.

As 〈Vα, V−α〉 = −1/2, we therefore have

Vst =
−i sin(α(wH)) sin(α(V )/i − α(wH))

sin(α(V )/i)
Hα.
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If we define

Fα(H) =
sin(α(V )/i − α(wH))

sin(α(V )/i)
,

then if B is sufficiently small, Fα will be a positive real analytic function on B. We then
have

d2

dt2
ψ(l exp(tXα),H,µ)

∣∣∣∣
t=0
= i

d2

dt2
µ(ρ(hl exp(tXα) exp(iH)))

∣∣∣∣
t=0

= iµ(Vst ) = sin(α(wH))Fα(H)〈µ, α〉,

which completes the proof. ut

6.3. Uniformisation of ψ

Proposition 6.4, and hence Theorem 1.6, follows as in §4.4 after proving analogues of
Theorem 4.7 and Proposition 4.22 for ψ . The analogue of Proposition 4.22 follows in a
straightforward way from Propositions 6.5 and 6.6, but adapting Theorem 4.7 requires
some comments. Choose l ∈ K with l /∈ M ′, and a flag F ∈ F , and retain all the notation
of §4.1 and §4.2, including a choice of s = (u, µ) ∈ (π−1

A (B) ∩ J ∩ AL) × a∗0 with µ
regular. We now denote points in (S, s) by s′ = (u′, µ′). If x′ ∈ X, we let µ(x′) denote
its projection to a∗. We may apply Propositions 6.5 and 6.6 exactly as in §4.3 to prove the
following analogue of Corollary 4.15.

Proposition 6.7. There exists a subspace (Y, x) ⊂ (X, x) and an isomorphism

(X, x)
f

//

πS
##

(Y, x)× (Cd , 0)

πS×0
xx

(S, s)

with the following properties:

(a) f |Y is the identity.
(b) (Y, x) is invariant under c, and f commutes with c.
(c) The projection (Y, x)→ (S, s) is regular.
(d) Ys′ = lKq,C when s′ ∈ Sq , and Ys′ ⊆ lKi,C when s′ ∈ Si with 0 ≤ i < q.
(e) We have

f∗ψ(y, z) = ψ(y)−
∑
α∈6̃q

〈µ(y), α〉w−1αX(y)z
2
α. (6.13)

Next, we derive the analogue of Theorem 4.7 from Proposition 6.7, which completes the
proof of Theorem 1.6.
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Theorem 6.8. There is an isomorphism

(X, x)
f

//

πS
##

(Cd × Cd ′ , 0)× (S, s)

0×id
vv

(S, s)

a function ψS ∈ O(S, s), and a nonconstant affine-linear map L : Cd ′ → C, such that
f , ψS and L all commute with c, and

f∗ψ(z, z
′, s′) = ψS(s

′)−
∑
α∈6̃q

〈µ′, α〉w−1α(u′)z2
α +Q(u

′)L(z′).

Proof. The deduction of Theorem 6.8 from Proposition 6.7 follows much as in the case
of noncompact type. After proving the analogue of Lemma 4.16, we are given HL ∈ a0,L
andHL

∈ a0 \a0,L, and have to show that (∂/∂t)Yαψ(l,HL+ tHL, µ)|t=0 6= 0 for some
α ∈ 1̃+L . Let α ∈ 1̃+L , and for small s, t ∈ R, choose a smooth Cartan decomposition

hl exp(sYα) exp(HL + tHL) = k1(s, t)a(s, t)k2(s, t)

with k2(0, 0) = l. Reasoning as in the proof of Proposition 6.5 withX = Yα = Vα+V−α ,
we have

Yαψ(l,HL + tH
L, µ) = i〈Ad−1

k2(0,t)
Hµ, e

−itα(HL)Vα + e
itα(HL)V−α〉.

As in the proof of Lemma 4.18, this gives

∂

∂t
Yαψ(l,HL + tH

L, µ)

∣∣∣∣
t=0
= α(HL)〈Ad−1

l Hµ, Vα − V−α〉.

Lemma 4.19 implies that this quantity is nonzero for some α ∈ 1̃+L , which completes the
proof. ut

6.4. Bounds for Lp norms in compact type

Let B1 ⊂ ip0 be a round ball around the origin with respect to the Killing form such
that 2B1 ∩ ia0 ⊂ B where B is as in Theorem 1.6. Let b ∈ C∞(S) be a nonnegative
real valued K-biinvariant function with support in exp(B1), and that satisfies b(e) = 1
and b(u) = b(u−1). Let k0

t = t
n−rbϕs∗tµ, let K0

t be the point pair invariant kernel on S
associated to k0

t , and let Tt be the operator with integral kernel K0
t .

Proposition 6.9. The spherical transform of k0
t is real, and satisfies k̂0

t (s
∗tµ) � 1 and

k̂0
t (tν)�A,δ t

−A if ‖s∗µ− ν‖ > δ.
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Proof. To prove that k̂0
t (λ) is real, the identity ϕλ(u−1) = ϕλ(u) implies that

k̂0
t (λ) = t

n−r

∫
U

b(u)ϕs∗tµ(u)ϕs∗λ(u) du = t
n−r

∫
U

b(u)ϕs∗tµ(u
−1)ϕs∗λ(u

−1) du

= tn−r
∫
U

b(u)ϕs∗tµ(u)ϕs∗λ(u) du = k̂
0
t (λ)

as required. The assertion that k̂0
t (s
∗tµ) � 1 follows in a similar way from ϕs∗tµ = ϕtµ

and Lemma 6.3, which implies that tn−r |ϕs∗tµ|2 has mass � 1 in any ball about the
origin.

We prove the last assertion in the same way as Proposition 2.10, using the integral
representation (6.5). We have

k̂0
t (tν) =

∫
S

tn−rb(s)ϕs∗tµ(s)ϕs∗tν(s) ds,

and after substituting the representation (6.5), this becomes

k̂0
t (ν) =

∫
K

∫
S

tn−rb(s)ϕ0
ts∗µ(hks)ϕ

0
ts∗ν(hs) ds dk.

Our assumption on B1 implies that hks ∈ V for s ∈ supp(b), and so we may apply the
asymptotic expansion of Lemma 6.2, which reduces us to proving that∫
K

∫
S

tn−rb(s)a1(hks, s
∗µ)a2(hs, s

∗ν) exp
(
−ts∗µ(ρ(hks))− ts∗ν(ρ(hs))

)
ds dk

�A,δ t
−A.

Under the identification of T ∗S with U ×K ip∗, the differentials of −s∗µ(ρ(s)) and
−s∗ν(ρ(s)) lie inU×AdK iµ andU×AdK iν respectively. The assumption ‖s∗µ−ν‖>δ
implies that U × AdK iµ and U × AdK(−iν) are separated, and the result now follows
from integration by parts as in Proposition 2.10. ut

It follows from Proposition 6.9 that Tt is a self-adjoint approximate spectral projector
onto the parameter tµ. It follows that if we define kt = k0

t ∗ k
0
t and let Kt be the point

pair invariant associated to kt , then Kt is the integral kernel of TtT ∗t . We may prove
Theorem 1.1 as in the noncompact case, by performing a radial decomposition of Kt
and estimating the L1

→ L∞ and L2
→ L2 norms of the truncated pieces. This works

in exactly the same way once we have a pointwise bound for kt analogous to that of
Lemma 2.8, and a bound for the Harish-Chandra transform of the truncated pieces of kt .
The pointwise bound is given by the following lemma.

Lemma 6.10. We have

kt (exp(H))� tn−r
∏
α∈1̃+

(1+ t |α(H)|)−1/2,

uniformly for H ∈ B and µ ∈ B∗.
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Proof. Inverting the spherical transform of kt and substituting s = e gives∑
ν∈3

d(ν)̂kt (ν) = kt (e) = k
0
t ∗ k

0
t (e) ≤ ‖k

0
t ‖

2
2 � d(tµ)� tn−r . (6.14)

If we choose δ > 0 and let B∗1 ⊂ a∗0 be the ball of radius δ about s∗µ, we may also apply
Proposition 6.9 to obtain

kt (s) =
∑

ν∈3∩tB∗1

d(ν)̂kt (ν)ϕν(s)+OA(t
−A).

Combining this with (6.14) and the positivity of k̂t implies that

|kt (s)| � tn−r sup
ν∈3∩tB∗1

|ϕν(s)| +OA(t
−A),

and as we may assume that s ∈ exp(B), the result now follows from Theorem 1.6. ut

The L2
→ L2 bound for the truncated pieces is proven by combining Lemma 6.10 with

the method of Proposition 6.9. Theorem 1.1 now follows as in §2.
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[1] Avakumović, V. G.: Über die Eigenfunktionen auf geschlossenen Riemannschen Mannig-
faltigkeiten. Math. Z. 65, 327–344 (1956) Zbl 0070.32601 MR 0080862

[2] Blomer, V., Pohl, A.: The sup-norm problem on the Siegel modular space of rank two. Amer.
J. Math., to appear; arXiv:1402.4635

[3] Burq, N., Gérard, P., Tzvetkov, N.: Restrictions of the Laplace–Beltrami eigenfunctions to
submanifolds. Duke Math. J. 138, 445–486 (2007) Zbl 1131.35053 MR 2322684

[4] Duistermaat, J. J., Kolk, J. A. C., Varadarajan, V. S.: Functions, flows and oscillatory integrals
on flag manifolds and conjugacy classes in real semisimple Lie groups. Compos. Math. 49,
309–389 (1983) Zbl 0524.43008 MR 0707179

[5] Gangolli, R.: On the Plancherel formula and the Paley–Wiener theorem for spherical functions
on semisimple Lie groups. Ann. of Math. 93, 150–165 (1971) Zbl 0232.43007 MR 0289724

[6] Gangolli, R., Varadarajan, V. S.: Harmonic Analysis of Spherical Functions on Real Reductive
Groups. Ergeb. Math. Grenzgeb. 101, Springer, Berlin (1988) Zbl 0675.43004 MR 0954385

[7] Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations.
Springer Monogr. Math., Springer (2007) Zbl 1125.32013 MR 2290112

[8] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Grad. Stud. Math.
34, Amer. Math. Soc., Providence, RI (2001) Zbl 0993.53002 MR 1834454

[9] Helgason, S.: Geometric Analysis on Symmetric Spaces. Math. Surveys Monogr. 39, Amer.
Math. Soc., Providence, RI (2008) Zbl 1157.43003 MR 2463854

[10] Helgason, S.: Groups and Geometric Analysis. Math. Surveys Monogr. 83, Amer. Math. Soc.,
Providence, RI (1984) Zbl 0965.43007 MR 1790156

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0070.32601&format=complete
http://www.ams.org/mathscinet-getitem?mr=0080862
http://arxiv.org/abs/1402.4635
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1131.35053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2322684
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0524.43008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0707179
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0232.43007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0289724
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0675.43004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0954385
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1125.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2290112
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0993.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1834454
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1157.43003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2463854
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0965.43007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1790156


Lp norms of higher rank eigenfunctions 1493
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