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Abstract. We prove almost sharp upper bounds for the LP norms of eigenfunctions of the full
ring of invariant differential operators on a compact locally symmetric space, as well as their re-
strictions to maximal flat subspaces. Our proof combines techniques from semiclassical analysis
with harmonic theory on reductive groups, and makes use of new asymptotic bounds for spherical
functions that are of independent interest.
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1. Introduction

If M is a compact Riemannian manifold of dimension n and v is a Laplace eigenfunction
on M satisfying Ay = A4, it is a well studied problem to investigate the asymptotic
behaviour of the L? norms of ¢ as A — o0. The fundamental upper bound for these
norms was established by Sogge [18] (see also Avakumovi¢ [1] and Levitan [13] in the
case p = 00), who proves that

¥l < 222yl (1.1)

where §(n, p) is the piecewise linear function of 1/p given by
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Moreover, these bounds were shown by Sogge [18] to be sharp when M is the round
n-sphere S”.

It is sometimes possible to improve the upper bound in (1.1) by assuming that M
has additional symmetry, or that v is an eigenfunction of extra differential operators that
commute with A. In the extreme case of the flat torus 7", for instance, if one assumes that

8(n, p) = (1.2)
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¥ is an eigenfunction of all the translations {id/dx;} then v is a complex exponential,
and so we have |[{]|, < C||¥||> for all p and some C depending only on 7". A more
interesting example of this phenomenon is given by Sarnak in his letter to Morawetz [15].
He proves that if X is a compact locally symmetric space of dimension n and rank r,
and ¢ is an eigenfunction of the full ring of differential operators on X with Laplace
eigenvalue A2, then

1 lloo < 27213 (13)

(Notations are standard and given in §2.1.) Note that (1.3) represents an improvement in
the exponent of (1.1) from (n — 1)/2 to (n — r)/2. This upper bound is also sharp in the
case when X is of compact type, and Sarnak states that it should be considered as the
‘local bound’ for the sup norm of a higher rank eigenfunction.

The goal of this paper is to derive the correct local bound for all L? norms of an
eigenfunction in higher rank, by combining real interpolation with an analysis of spherical
functions. Our main result in this direction is stated below, which in the compact case
differs from the sharp bound only by a factor of (log)!/? at the kink point.

Theorem 1.1. Let X be a compact locally symmetric space of dimension n and rank r
that is a quotient of the globally symmetric space S = G /K, and assume that S is irre-
ducible and not Euclidean. Let ag be a real Cartan subalgebra of G, and let a; and a*
be its real and complex dual respectively. If f € C*(X) is an eigenfunction of the ring
of invariant differential operators, we say [ has spectral parameter v € a* if it has the
same eigenvalues as the function exp((p + iv)(A(x))) on S.

Let B* C ag be a compact set that is bounded away from the singular set. Let {r €
C°(X) be an eigenfunction of the full ring of invariant differential operators on X, with
v ll2 = 1 and spectral parameter t) where t > 0 and ). € B*. We have

2
(og 1) !/2r8@/rp) |y — %
||1/’||p <<B*,p i} (1.4)
oy £ %

where the function § is as in (1.2). Moreover, these bounds are sharp up to the logarithmic
factor in the case when X is of compact type.

A similar result was obtained in the Euclidean case by Mockenhaupt [14]. It will be
apparent in the course of the proof of Theorem 1.1 that when X is the quotient of a product
S = 81 x---x 8§ of irreducible symmetric spaces, the L? norm of an eigenfunction on X
is bounded by the product of the functions (1.4) for each irreducible factor of S. Moreover,
in the compact case this will again be sharp up to the logarithmic factors at the kink points.

To give an example comparing the bound produced by Theorem 1.1 with the classical
bound (1.1), let X be a quotient of the globally symmetric space SL(3, R)/SO(3). It
was proven by Selberg [16] that the ring R of invariant differential operators on X is
isomorphic to the free polynomial ring C[A, D], where D is an operator of degree 3. Let
¥ be an eigenfunction of R, and assume that the spectral parameter of y is restricted as
in Theorem 1.1. The two exponents §(5, p) and 25(5/2, p) appearing in Sogge’s bound
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Fig. 1. Comparison of the two exponents 6(5, p) and 26(5/2, p) appearing in Sogge’s bound and
Theorem 1.1 in the case G = SL(3, R).

and in Theorem 1.1 are graphed together in Figure 1. We see that by using the symmetry
of X in the form of its extra differential operators, we are able to significantly strengthen
the bounds for ||y ,.

Let us take a moment to discuss the significance of the exponent in Theorem 1.1, and
hopefully convince the reader that it is natural. Suppose that r | n, and let X be a product
of r compact manifolds X x --- x X, of dimension n/r. Let A; be the Laplacian of X;,
and let v = ¥ x --- x ¥, be a joint eigenfunction of the Laplacians A; on X. Let
Aiy = )Ll-zl/f, and assume that the ratios A;/A; are all bounded by some constant. By
applying Sogge’s bound (1.1) to each v;, we may show that

I ll, < APy,

where 12 = A% + -+ kf. We may therefore summarize Theorem 1.1 by saying that,
from the point of view of the convex bound for L” norms of eigenfunctions, a locally
symmetric space of dimension n and rank » whose universal cover is irreducible behaves
like the product of » general Riemannian manifolds of dimension n/r.

It would be interesting to know in which other cases this product behaviour occurs,
that is, when the L? bounds of Theorem 1.1 hold for a more general compact manifold M
of dimension n with » commuting differential operators that are ‘independent’ in some
sense. There are no nontrivial examples of this in the completely integrable case, as it was
proven by Toth and Zelditch [20] that if M is a quantum completely integrable manifold
and all joint eigenfunctions on M are uniformly bounded then M is a flat torus.

In proving Theorem 1.1, we shall in fact show that the same bounds hold for the
L? — LP norm of a spectral projector onto a ball of fixed radius about A. With this
formulation, our bounds will be sharp up to the log in the case of both compact and
noncompact type. The fact that this bound is sharp for individual eigenfunctions in the
compact case is due to the high multiplicity of the spectrum, so that by choosing the
radius of our spectral projector to be sufficiently small we know that it will always pick
out exactly one eigenvalue of high multiplicity.
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In both cases, the bounds of Theorem 1.1 are realised by simple wave packets which
are the higher rank analogues of the zonal functions and Gaussian beams on a general
Riemannian manifold. We shall describe these packets on the globally symmetric space
S = G/K, their analogues on X being similar. The cotangent bundle 7*S of S is isomor-
phic to the K -principal bundle G X g p*, which we recall is defined to be the quotient of
the trivial bundle G x p* by the action

(g, vk = (gk, Ad; ' v).
If X € a*, we define 7;"S C T*S by
TiS = {(g,v) € G xk p* | v e Adg (A/[IA)}.

Saying that ¢ € C°°(S) is an approximate eigenfunction of the ring of invariant differ-
ential operators on S with parameter A then implies that the microlocal support of i is
concentrated on 7,°S; see [17, §5.4].

Let o € S correspond to the identity coset of K, and let A be a maximal flat subspace
containing o. Define 7,;A = A x A/||A|| C T;*S, and let £, C T,*S be the orbit of 7,"A
under rotation by K about 0. The K -biinvariant functions k; constructed in §2 and §6.4
saturate the L? norms on S for p above the kink point, and we believe that these functions
should be microlocally concentrated on £, . The fibre of the projection map = : £, — S
ats € S can be identified with Stabg (s), so that this fibre is identified with M for generic s
and with K at s = o, and correspondingly ¥ will be strongly peaked at o so that we may
think of v as an analogue of the usual zonal function on a Riemannian manifold. Note
that in the case of compact type we can prove that the spherical functions ¢, also saturate
the L? bounds of Theorem 1.1 for large p.

For p below the kink point, the L?” norms on S are saturated by the higher rank ana-
logue of a Gaussian beam, which is simply a wave packet concentrated on a maximal flat
subspace, and whose microlocal support is concentrated on the set 7," A. These functions
will be described more thoroughly in the case of compact type in §5.3.

The methods we develop to prove Theorem 1.1 also allow us to deduce the following
result on the restrictions of eigenfunctions to flats in X. We hope to extend this theorem
to more general locally symmetric submanifolds in future.

Theorem 1.2. With notation as in Theorem 1.1, let E be an open ball in a maximal flat
subspace of X.

(a) Ifn > 3r, the LP norms of ¥ |g satisfy
1Vlel, <gs t"7D/200P,
(b) Ifn =3r, the L? norms of V| satisfy

1Wlell, <gep t@ 2 p s,
||¢|E||2 < B* (log t)l/ztﬂ/Z—r.
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(¢) Ifn < 3r, the LP norms of ¥ |g satisfy

4
fog20, p= 4
IVIEl, <Bp 4r
ta(p)? p # b
n—r
where 8(p) is the piecewise linear function
1 n—r
n—r—=2r/p, 0<—< ol
— p r
op) = n—r 1 1
n—r)/2, <—-—<-.
4r p 2

All of these bounds are sharp up to the logarithmic factor in the case of compact type.

When r = 1, this is a slight weakening of a theorem of Burq, Gérard and Tzvetkov [3]. We
note that there are only finitely many globally symmetric spaces that fall under cases (b)
and (c) of Theorem 1.2. In case (b), these are the spaces associated to SO(3, 1), SO(3, 2),
SO(3, 3), SL4(R), and their compact duals, and in case (c) these are the spaces associated
to SLo(R), SL3(R), and their compact duals. Theorem 1.2 will be proven in §3.

1.1. Asymptotics for spherical functions

In the course of proving Theorem 1.1 we have found it necessary to develop sharp asymp-
totics for spherical functions of large eigenvalue on G, which we state here as separate
theorems. First let us assume that G is semisimple and noncompact with finite centre. For
S ag, let ¢, denote the standard spherical function with parameter A, normalised so that
@)(e) = 1. If « is a nonzero root of a in g, let m(«) denote its multiplicity. Our result is
the following:

Theorem 1.3. Let B C ag and B* C ag be compact sets, with B* bounded away from
the singular set. Then

gi(exp(H) <p.g= [ | (1 + tla(H))) ™"/ (1.5)

aEAT

for H € B and A € B*.

Theorem 1.3 is the strongest upper bound that can be given for ¢, (exp(H)) when H
and X are bounded and ¢ grows, at least under the regularity assumption on A that we have
made. We have attempted to remove this assumption, but so far only have an approach
to this in the case of rank 2. We hope to carry this out in a future paper, and to use it to
remove the regularity condition in Theorem 1.1 in some cases.

Theorem 1.3 is similar to results of Duistermaat, Kolk, and Varadarajan [4, Cor. 9.3
and Thm. 11.1], and Blomer and Pohl [2, Thm. 2]. The result of Blomer and Pohl gives
a bound for ¢ (exp(H)) which is not generally sharp, but which is uniform as H and A
vary in any compact subsets of ag and aj. The results of Duistermaat, Kolk, and Varadara-
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jan are only uniformly sharp if H is restricted to a compact equisingular set, but [4,
Thm. 11.1] is uniformly sharp for A in any compact set. In some sense, [4, Thm. 11.1]
is complementary to Theorem 1.3, which requires A to be regular but is uniformly sharp
in H. Our proof of Theorem 1.3 is similar to the proof of [4, Thm. 11.1], with the main
difference being that the phase function ¢ (k, H, 1) that appears in the oscillatory inte-
grals is linear in A, but nonlinear in the variable H that we are allowing to degenerate.
Theorem 1.3 will be derived from an analysis of stationary phase integrals in §4.

Our methods also allow us to strengthen the asymptotic formula for ¢;; (exp(H))
given in [4, equation (9.10)]. Let Voly(K) and Voly(M) be the volumes of K and M with
respect to the metric induced from minus the Killing form on £, and for any w € W define

ow(H,\) = — Z m(a) sgn((A, a)a(wH)). (1.6)
aeAt
Theorem 1.4. Let a, and a; denote the regular sets in ag and af respectively. Let B C ag
and B* C af be compact sets. If H € ay, let || H||s denote the Killing distance from H to
the singular set. There are functions f,, € C*(a, x af x R.o) for w € W such that

3 \“ 1
R (H, A, 1) K Btq ————— (t|e(H) )—m(a)/2’
<8H> Ju ST OLL ]
and
@12 (exp(H))
12 @2 ol (M
= l‘[ {a, tA) sinh o (H) olo(M) Z exp(itA(wH) +imoy(H, 1) /4)
aeAt 2n Voly(K) =
+ ) exp(th(wH)) fu(H, 1 1) + O a (@I HID)™) [T Gl
weW weAt

1.7
for He BNa, and . € B*.

We also have the following asymptotic, which is weaker than Theorem 1.4 but seems to
be the most useful for our planned applications.

Theorem 1.5. Let a, and a; denote the regular sets in ag and ag respectively. Let B C ag
and B* C af be compact sets. If H € ay, let || H||s denote the Killing distance from H to
the singular set. There are functions f,, € C*(a, x af x R.o) for w € W such that

a a
<_> FuH 3 0) Kp.pea 1HIZE [T @latH)) ™72,

oH aeAt
and
@i (exp(H))
= > exp(tr(wH) fu(H, %, 1) + Op g+ a(@IHID™) [ ClaE))™7?
wew aeAt

for H € BNa, and . € B*.
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We have a result analogous to Theorem 1.3 in the case of compact type, but which is
weakened by the requirement that the group variable be constrained to a small ball about
the origin. Let U be a compact semisimple Lie group, and K a subgroup with the prop-
erty that (U, K) is a Riemannian symmetric pair. If u is a spherical weight (defined
in §5.1), we let ¢, be the K-spherical function on U with parameter w, normalised so
that g, (e) = 1.

Theorem 1.6. There exists a ball B C iag about the origin such that for all compact sets
B* C aj that are bounded away from the singular set, we have

Quu(exp(H)) g [ | (1 +tla(H))) @/

aeAT

for H € B and u € B*.

Theorem 1.6 will be proved in §6.3.

2. Bounds for L” norms in noncompact type

We shall first prove Theorem 1.1 in the case when X is of noncompact type. The proof in
the case of compact type is similar, and we shall make the modifications to our argument
that are required to treat it in §6.4.

2.1. Notation

2.1.1. Lie algebras. We shall denote real Lie algebras with a subscript 0, and denote
their complexifications by dropping this subscript. Let G be a connected noncompact
semisimple real Lie group with finite centre and Lie algebra go. In §§2-3 we shall further
assume that G is almost simple, in the sense that go is simple over R, or that G does
not factor after an isogeny. Note that we shall only use this assumption when summing
the bounds we obtain for truncated kernels. We denote the Killing form on g by (, ). Let
go = £o+po be a Cartan decomposition of g, and 6 the corresponding Cartan involution.
Let K be the compact connected subgroup of G with Lie algebra €, so that S = G/K is
a globally symmetric space of noncompact type. Let

G=NAK, g=n(g)exp(A(g)k(g), g=t+a+n

be an Iwasawa decomposition of G. Let M’ and M be the normaliser and centraliser of a
in K, let m be the Lie algebra of M, and let W be the Weyl group M’/ M. We let A denote
the set of roots of g with respect to a. If « € A we denote the corresponding root space

by g

Remark 2.1. Note that we shall include O in A, which is not standard notation, but it will
be convenient for us. In particular, g, = a + m when o = 0. To avoid confusion with the
real Lie algebra g, the expression g, with @« = 0 will only appear implicitly when we
index over root spaces.
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We let m(o) = dimg, when @ # 0, and when ¢ = 0 we let m(e) = dimm. We
let AT be the set of positive roots corresponding to n, and let ct(‘)Ir be the associated
pos1t1ve Weyl chamber. We let ao denote the dual positive Weyl chamber. We define
P =3 LY ear m(@a. If v € a*, H, € a will be the vector dual to v under the Killing
form. We emphasise the followmg piece of notation, as it is nonstandard and will be used
frequently.

Definition 2.2. We let A denote the multiset on A in which every o € A appears with
multiplicity m(«). If R € A, we let R denote the corresponding subset of A.

2.1.2. The Harish-Chandra transform. 1f A € a*, we let ¢, denote the spherical function
with parameter A, defined by

00 = [ exp((o-+im) Ak dk

If f € Cy°(S), we define its Harish-Chandra transform by

f) = /S F @ (x) dx.

If f is K-biinvariant, we have the inversion formula

o= FowwlemPa,
ag/w

where c(v) is Harish-Chandra’s c-function. See [6] for more information about this trans-

form.

2.2. An outline of the proof

We shall assume that B* is contained in the positive dual Weyl chamber aa +- We shall
approach Theorem 1.1 by the standard method of constructing a family of approximate
spectral projectors 7; onto a ball of radius 1 about ¢, and bounding the norms of 7; from
L? to LP. Note that all bounds we state will depend on X and B* from now on, but will
be uniform in A € B*.

We shall construct 7; using the Harish-Chandra transform, which will allow us to gain
good control over the behaviour of the integral kernel of this operator. Choose a function
h € S(ag) of Paley—Wiener type that is real-valued and > 1 in a ball of radius 1 about the
origin. Let

hy(v) = Z h(wv + t1),
weW
and let k? be the K-biinvariant function on S with Harish-Chandra transform #;. It is of
compact support independent of £ by the Paley—Wiener theorem of [5]. Define K tO to be
the point pair invariant kernel on S associated to kt0 , given by KtO (x,y) = k?(x_1 y) for
x,y € G. Let T; be the operator on X with integral kernel

T(x,y) =y K (x, yy). @1

yell
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As Ty = hy(—tA)y and hy(—tA) > 1, it will suffice to prove bounds for || 7; ||, of the
form (1.4), uniformly for € B*. As is common, we shall approach this by forming the
adjoint square operator 7;7;* and proving the bounds

2
logt - t2 P flly, p= Antr) r),
1T, <p ner 2.2)
2(n+r)
2D £y, pE——

for the operator norms of 7, T;* using real interpolation. Here, p” and p are dual exponents
and f € C*(X). Note that T; is actually self-adjoint because A, is real, and so if we define
the K -biinvariant function k, = k%Y, then T, T* is associated to k; as in (2.1). We define
B C ap to be a ball about the origin such that supp(k; o exp) < B.

2.3. The case of rank one

We begin by outlining the real interpolation argument used to prove (2.2) when r = 1,
in which case it consists of a dyadic decomposition of k; in terms of its radial support.
Choose g € Cgo (R) to be a real, nonnegative, even function that is identically 1 in a
neighbourhood of 0, and for m € Z>g let

g(tx), m =0,
g(te™x) —g(te™™*1x), m > 0.

ft,m(x) = {

Fix an isomorphism between ag and R, and pull the functions f; ,,, back to B; ,, on ag. De-
fine the K-biinvariant function k; ,, by k; ,, (exp(H)) = B;,m(H )k, (exp(H)), let K; ,, be
the associated point pair invariant, and 7; ,, the integral operator on X associated to K ,.
It may be shown that

1Ty flloo < 2"~ ™™D £, 2.3)
1Ty fll2 <t e™ [ 1l 2.4
By interpolating between (2.3) and (2.4) we may prove the bound

n+1 n-—1
2

T fll, < =201 exp(m( >>||f||pu 2<p<oo, (25)

and because the supports of k; were uniformly compact there is C > 0 such that k; ,, = 0
for m > logt 4+ C. Summing over m then gives

B _ n+1 n-—1
LTS fll, < "D N exp(m - Il 2<p<oo.
0<m<logt+C p 2

The sum is a geometric progression of length logt with extremal terms 1 and
1+ D/p=(=1/2 The bounds of Theorem 1.1 follow immediately from this and the ob-
servation that

25(p) = n(l —2/p)—1+max{0, ntl "_1}.

2
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2.4. Partitions of unity

Our proof for higher rank groups works by applying a similar decomposition in terms of
the Cartan ag coordinate to k;. We begin by defining the partition of unity that we shall
use.

Consider a partition of A into three sets Ry and R4, and define C to be the cone

C={veag|a@w)=0,aeRy}N{veay|a@) >0, € R}
N{vea |aw) <0, € R_}.

We let C be the collection of nonempty cones obtained in this way, which form a partition
of ag. We choose a point pc in the interior of every cone C. We define a flag to be a
sequence {Co, Cq, ..., C,} of elements of C such that C; C m and dimC; = i, and
let the set of flags be F. If FF = {Cp,Cy,...,Cr} € F,and 1 < i < r, define A;
to be the set of roots that vanish on C;_; but not on C;. For every F € F we define
the closed cone S(F) to be the positive linear span of the set {pc | C € F}, so that
ap = Uper S(F). We may assume without loss of generality that wS(F) = S(wF) for
allw e W.

Let F = {Co, Cy,...,C,} € F, and let ¢ be the linear isomorphism ¢g : ap >~ R”
such that ¢ (pc,) is the vector with i 1’s followed by r —i 0’s. We see that ¢ maps S(F)
onto the cone So = {x; > --- > x, > 0}, and that ¢ (C;) C {(x1,...,x;,0,...0) |
xj € R}. If o € Ais aroot, we let ¢} be the pushforward of o to R".

Lemma 2.3. Let {e; | 1 < j < r} be the standard basis of R". We may choose the
points pc so that foralla € A and F € F, ¢py.a is either nonpositive or nonnegative on
the positive quadrant R, and if a € A; p we have ¢pra(ej) = 0iff j < i.

Proof. Let F = {Cp, Cy, ..., C,}. We may assume without loss of generality that « is
positive on C,, and let @ € A; . We define a new collection of points pi. € C by setting
pe = AYMC pe for some large A > 1 to be chosen later. It is equivalent to show that our
new collection of points satisfies the condition ¢y (ej) > 0 with equality iff j < i. As
ej = br(pp,) — B (P, ), we have

¢rale)) = a(p) —alpg, ) = Aa(pc)) — AV a(pe; ).

Our assumptions on « imply that o (pc,) > 0 with equality iff k¥ < 7, and so by choosing
A large enough we see that the same will be true for ¢7a(e;). As there are only finitely
many choices for F and o, some A will work for all of them. O

Define
My={meZ |logt+1>m;>my>--->0}

Choose a small § > 0. We define an equivalence relation on M, by setting m ~ m’ if
and only if m| = m/, and for all i with m; # m] we have max{m;,m}} < ém. If we set

Mis={me M; |mi =00rm; >3my, Vi},

then M; s contains a representative for every equivalence class in M;.
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Let g € Cgo (R) be a real-valued function supported in [—e, e] such that g(x) = 1
for x € [—1, 1], and both g(x) and g(x) — g(ex) are nonnegative. For m € M; s and
1 <i <r,define fm; € C(‘)’O(R) by

g(re=mil=iyy if m; =0,

o 1 ) 2.6
Xi0.00) (G g (te ™ x) — g(te™™ =i x)] it my > [smy], 2O

Sm,i(x) = {

and define fm € C°(R") by
fm@) =[] funi ) = 0.
i=1

Let§0 C Sobetheset{l >x; >--->x, >0}
Lemma 2.4. We have

Z Jm(x) =1 whenx € So.
meM; s

Proof. When r = 1, the result is obvious. Assume » > 1, and define

Ni=meZ ' |logt+1=n =ny > >0},
Nis={meN |n=0o0rn; >é8ny, Vi}.

If m € M, s, letm € N, ;s be its first r — 1 entries. We may define the function fy; for
neN;sand1l <i <r —1asin (2.6), and write

r—1
Yo =Y Y fa@= Y [[fi) Y fart). @D
meM, s neN; s meM, s neN; s i=1 meM; s

m=n m=n

If n,_1 > 8ny, we have

D7 fmrle) =ge™ P T+ DT [glte™™ T xy) — g(te ™™ T x,)]

meM, s Sni<mp<n,_y
m=n

—Hp_1—Tr

Zg(te xr),

while if n,_1 = 0 we have

Z Sm,r(xp) = g(te_mn”_rxr)
meM; s
m=n
We may assume without loss of generality that f, (x,—1) # 0in (2.7). If n,_1 > ény,
this implies that
0<rte 17"ty | <e.
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Our assumption that x € So implies that x,_; > x, > 0,sothat 0 < fe7""-17"x, < 1
and g(te”"-17"x,) = 1. Likewise, when n,_; = 0 we also have g(te_L‘s”‘J_’xr) = 1.
Applying this to (2.7) gives

r—1
Yo fa@ =Y ] faito,

meM, s nelN; s i=1
and proceeding inductively completes the proof. O

We now pull the functions fi, back to ap under ¢r, and let the collection of func-
tions we obtain be {fm,r | m € M, ;}. We may assume without loss of generality
that the set of functions we generate in this way is invariant under the Weyl group, i.e.
SmwrF(WH) = fm r(H) for w € W. By scaling the points pc if necessary we may
assume that ¢ (2B) C [—1, 1] for all F, and it follows from this and Lemma 2.4 that

Yo fmrH) =1

FeF meM, s

for H € 2B. If we choose f to be a smooth Weyl-invariant function that vanishes on B
and is equal to 1 outside 2B, then

GH) = foo(H)+ Y > fmr(H) > 1 (2.8)

FeF meM, s
for all H € ap. We define the partition of unity {fm,r | m € M; 5, F € F}U{Bx} 0n ap
by setting
Pm.F(H) = fm,r(H)/G(H), Poo(H) = foo(H)/G(H).

We have introduced the parameter § so that we may prove the following lemma, which
will allow us to prove that the Harish-Chandra transforms of our truncated kernels decay
near the walls of ag .

Lemma 2.5. If 0% is a product of derivatives in the coordinate directions on ag, we have
0 B, Ko 11le7oml, (2.9)

Proof. Each of the functions fi, r clearly satisfies the bound (2.9), and because there is
some N > 0 independent of ¢ such that each H € qay lies in the support of at most N of
the functions fm r, we see that the function G (H) in (2.8) also satisfies (2.9). The lemma
follows from this and the bound G(H) > 1. ]

2.5. Bounds for truncated kernels

We shall now use our partition of unity to decompose the K -biinvariant function k;, and
give bounds for the norms of the operators constructed from the truncated pieces. For
m € M; s and F € F, the function Bm [r|(H) = >, cw Pm. r(wH) is Weyl-invariant
and so we may define a K -biinvariant function S, r by setting

B, (exp(H)) = B (r)(H)



LP norms of higher rank eigenfunctions 1449

for H € ap. We then define kym r = Em,]?k;. Clearly km,F = km,wF, and the condition
that S~ vanishes on B implies that

k= > > kmr.

FeF/WmeM, ;s

As before, we let Ky, r and Ty, r be the point pair invariant and integral operator associ-
ated to km, r. Let L(F, p) be the linear functional

1 1\ < ~ 2
L(F, p)(x) = (— - —> XilAipl+— ) xi.
We shall require the following bounds on Ty, F.

Proposition 2.6. There is a constant N depending only on G, and a constant Cy depend-
ing on ¢, such that if we define y (m) by

1 ifm, <démy + Cq,
0 otherwise,

x(m) = |
then
I T, fllp <5 "0/ P exp(L(F, p)(m) + x m)Nsm )| £l » (2.10)

forall p > 2and f € C*®°(X). The implied constant is uniform in m.

Proof of Proposition 2.6 assuming Theorem 1.3. We begin by establishing the following
bounds for the values taken by the roots on the support of By .

Lemma 2.7. Ifa € A; F, then

1

sup{la(H)| | H € supp(Bm )} < 17" max{e™, e}, 211

and there are positive constants C1 and Cy such that if m; > dm| + C1, then
inf{la(H)| | H € supp(Bm,r)} = Car~'e™. (2.12)

Proof. Let H € supp(Bm,r), so that x = ¢r(H) € supp(fm) and a(H) = ¢jo(x),
and assume without loss of generality that ¢« is positive on C, € F. We know that all

x € supp( fm) satisfy

| < lelBmiltrtl e 0, (2.13)

el < o < gl Gtherwise. (2.14)

By Lemma 2.3, if we let the standard basis vectors of R” be ¢; as before, we have

Prax) = ¢ralxe)).
j=i
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This implies that
lpra(x)| <r I}lglx{lﬁa(et)l} r;lglx{lxj'l} < I}lgf{lxj'l},

and the bound (2.11) now follows from (2.13) and (2.14). To prove (2.12), let g be the
smallest number such that m, = 0. If ¢ < i then m; = 0 and there is nothing to prove.
Otherwise, the inequalities ¢>j;a(ej) > 0 from Lemma 2.3 and x; > O for j < g from
(2.14) give

-
Prax) = praleix)) + Y pralxje)).
Applying (2.13) and (2.14) gives a constant C3 >j Oqsuch that
ra(x) = e prae) |t e — Cyr~ 1™,
If we assume that m; > ém + C; for Cy satisfying e "1 |¢1’;a(ei)| — C3¢ €1 > 0, then
we have ¢ra(x) > t~1e™i as required. O
The second input we shall need is a bound on the pointwise norm of k;.
Lemma 2.8. We have
ki(exp(H)) < "7 [T (0 + tle(E))™'/
aeAt
for H € ag and A € B*.
Proof. The Harish-Chandra transform of k; is equal to
k() = h2(v) = (Z h(wv + t,\))z

weW
=Y hwv+tA)*+ Y h(wiv + tA)h(wav + 12)

weW wiFwy

= Z h(wv + tA)2 + s(v, 1),

weW
where s (v, rA) satisfies
I+ D sy 2l g1 qr) Kroa £ (2.15)
as a function of v for all A. It suffices to bound |k; (exp(H))| with H € B. Inverting the

Harish-Chandra transform as in §2.1.2 gives

aexp(t) = [ B exptH)Icm)P dv

Wiay

= [ 0 e ) P dv

0

+ / 5(v, 1)@y (exp(HY) e[ dv.
W\ag
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By combining the bounds |¢, (exp(H))| < 1, |c()|> < 1 + [v|*~", and (2.15), we may
estimate the second integral by

f s(v, 1\)@y(exp(H))|cW) > dv <p.a t ™4
W\ag

Let Bf C a(";ﬁ . be a precompact open set that contains B * and is bounded away from the
walls. We divide the domain of the first integral into —¢ B} and aj \ — B}. We know that
h(v+tA) is rapidly decaying in v and  for v ¢ —¢ By, and together with |, (exp(H))| < 1
this gives

[ b eexptlem) dy < 14,
ag\—1B}
so that
ki (exp(H)) = / h(v + 1)y (exp(H)|c)* dv + 04 (™). (2.16)
—tB}
When v € —t By}, we apply Theorem 1.3 to the set — B} and B as chosen here to obtain

pulexp(H) <pge || (1 +tle(H))™2.

aeAt

Combining this with (2.16) gives

k(exp(H) < [] ( +t|a(H)|)_1/2/ R + 1) cW)P dv + 04(™),
acAt —1B}
and the bound |c(v)|> < 1+ |v|"~" completes the proof. O

We shall prove (2.10) by interpolating between the cases p = oo and p = 2. To begin
with the case p = oo, proving a bound for the L' — L norm of Ty, r is the same as
proving a bound for || T, F (-, -)[|co. If we assume that B is sufficiently small that there is
at most one nonzero term in the sum

T (¥, ) =) Km r(x,7Y)
14

for all x and y, then ||Tm (-, )lloc = llkm,F llco- By Lemma 2.8, we have
lkm, Flloo < sup{lk;(exp(H))| | H € supp(Bm,F)}
<" sup] [T (1 + 1l ™2 | H € supp(Bm.p}.
aeAt

Ifo € A; pand m; > 8m + C1, we may apply Lemma 2.7 to obtain 1 + t|a(H)| > €™,
while if m; < 8m; + C; we have the trivial bound 1 + fja(H)| > 1 > e™i—0m,
Combining these, we obtain

1 < ~
[T a+temEmn"? < exp(—z > milA rl +smm(m)/4>,
i=1

aeAT
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where 1(m) is given by

nm)y= Y |Arp|l<I|AlL 2.17)

mi<émi+Cq

The bound (2.10) with p = oo follows if we choose N > |Z|/4

To prove the case p = 2, we first note that the L? — L? norm of T, is equal to
sup{|km r(=v)| | v € S}, where S C a*/ W is the set of spectral parameters of the joint
eigenfunctions in LZ(X ). Itis known thatif v € S, then either v € aO, or Re(v) is singular
and [Im()|| < |lp|l (see [10, Thm. 8.1, §8, Ch. IV] or [12, Thm. 16.6 and §16.5, ex. 7]).
Let Bf and B; be compact sets such that B* C B C By C ag ,, each set contains an
open nei ghbourhood of the one preceding it, and B* is bounded away from the walls. The
following two results allow us to reduce to the case in which v € tBJ.

Lemma2.9. Ifv € aa+ \ B} and « € af satisfies ||| < |pll, then km r(—tv — ik)
K t~". The implied constant is uniform in m.

Proof. We have
R (=10 — k) = / ki, (V) ryi () dx = f Bn. F Okt (X)Prvs i () dix.
S S

As in the proof of Lemma 2.8, we may invert the Harish-Chandra transform of k; to obtain
ko, F (—tv—ik) = / / B, £ ()P () rvix () dxh (=11 1P+ 0 (™),
—tBy JS

The lemma now follows from Proposition 2.10 below and |c(1)|> < 1 + || ", O

Proposition 2.10. [f i € —Bf and v € aj _ \ By, then

fqgm,F(x)¢tu(x)¢tv+iK(x) dx Lst™",

where the implied constant is uniform in m.

Proof. Unfolding the integrals over K used to define ¢, and ¢;, 1., we have

fgﬁm,F(x)wtu(x)wtv+iK(x) dx = /K /ng,F(x) exp((itp + p)(A(x))
+ (itv — k + p)(A(kx))) dx dk

:/K/S,Em,F(x)a(k, x)exp(it(W(A(kx)) + n(A(x)))) dx dk,

where a(k, x) = exp(p(A(x))+ (p —k)(A(kx))). There is a natural identification of T*S
with the principal bundle G x g p;. We let C, C T*S be the set of points of the form
(G, v), where v is conjugate to v under K, and define C,, similarly. We know that the
differentials of v(A(kx)) and w(A(x)) with respect to x lie in C, and C,, respectively,
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and our assumption that v € ag, \ By and —u € B were separated implies that
[Vv(A(kx)) + Vi(A(x))| > € for some € > 0 depending on B} and B;.

We shall apply integration by parts with respect to Vv(A(kx)) + Vu(A(x)). All
derivatives of Vv(A(kx)) + Vu(A(x)) and a(k, x) are bounded above. It follows from
Lemma 2.5 that the K-biinvariant function S, r satisfies the analogous bound to (2.9),
i.e. for any linear differential operator D of degree d on S with continuous coefficients,

we have

DEm,F <D tde—Smld.

To calculate the bound obtained by integration by parts, we shall begin by estimating the
volume of the support of S r on S. If we define V(H) = [[,cx+ le(H)I|, the Weyl
integration formula gives

Vol (suppBm. 1)) < f V(H)dH.
supp(Bm,F)

On the support of B, r, Lemma 2.7 implies (as in the proof of our bound for ||km, 7 ||c0)
that

1 ~
V(H) <1~ exp<§ > milAi |+ Smm(m)/Z), @.18)

with 7(m) as in (2.17). It follows from our construction of By, r that

Vol (supp(Bm, ) < 1~ exp(Y_ mi + bmig(m) ), (2.19)

where g (m) is the number of zero entries in m, and combining these gives

/ B, F (X)a(k, x)e't CAEDFTRACD gy« Vol (supp(Bm. F))
S

<" exp(Z mi(1+ |2 £1/2) + 8min(m)/2 + 8m1q<m)>.

Each partial integration produces a factor of r~!, and a factor of re =% from differ-
entiating B, r. Performing this A times therefore gives

| B 51tk ) exp(in (A ) + (AGE))
<a 7 exp(Yomi(U+ By p1/2) + 5my(— A+ n(m) /2 + g ().

If we choose A to be large enough, the exponential expression will be less than 1. We
therefore have

fs Ban. r (¥)alk, x) exp(it (W(AC)) + w(AC))) dx <5 17"

as required. O
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We now estimate 7<\m, F(—v) for v € tB}. The Weyl integration formula gives

T, (—v) = /S B, F (ki ()@, (x) dx
< f Bm, F(H)|k; (exp(H)) @, (exp(H))|V (H) dH,
ap

where V(H) is as above. If we assume that H € supp(fm,r), then reasoning as in the
proof of our bound for ||km, r |lcc gives

_, 1 ~
ki (exp(H))gy (exp(H)) < 1" exp(—z > milAir| + amm<m)/2),
and combining this with (2.18) we have
Tom, F (—v) < emnm f Bum.r(H)dH.
ap

Equation (2.19) then gives
K, r () <17 exp(z m; + émiq(m) + rSmm(m))-

If we choose N > r + |Z|, this completes the proof of (2.10) when p = 2, and of
Proposition 2.6 with C; as in Lemma 2.7. O

2.6. Summation of L? bounds

We now sum the bound of Proposition 2.6 over m and F to obtain a bound for T; 7;*. We
begin with summation over m. Define

Tr= Y Tur.

meM; s

‘We have

ITeflp< D M Tmr flly<Ifllpt" 2P~ 3" exp(L(F, p)(m)+x (m)Ném,).
meM; ; meM; s

Dividing the sum into the terms with x (m) equal to O and 1 gives

ITr Fllp < If e 02/P 3 hEpm
mEMms
x (m)=0

+ ||f||p/l‘"(l_2/p)_r Z eL(F,p)(m)-’rNSm] ) (2.20)

mEM,,a
x (m)=1
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We define M? to be the subset of M, withm, = 0,and let 7 : {M;; | x(m) = 1} —
M? be the projection obtained by setting m, = 0. If x (m) = I, there are constants N’
and D such that

11 ~ 2 ,
— — —|m A F|+ (2= = )m, < N'6m; + D.
2p 4 ’ p

Because the fibres of 7w have at most C; + 2 elements, we may restrict the second sum in
(2.20) from {M; s | x(m) = 1} to M? (while increasing N if necessary) and enlarge the
first sum to M, to obtain

ITE fllp < f N2 =27 Z oL(F.p)(m)
meM,;
+ ”f”p/tn(l—Z/[’)—r Z eL(F.p)(m)+Ném; 2.21)
meM?

If C; € F is a cell, we define the function L(C;, p) by

LG p = = ) S 1Rirl 2 = (o = D) 4RI 1R, + 2
P=(3,"3 il 2i=(3,"3 oD+ i

i=j p

where Ac; is the set of roots that vanish on C;. The function L(Cj, p) is the value of
L(F, p)(x) at the vertex of Sy corresponding to C;. Note that L(C;, p) depends only
on the Weyl orbit of C;, and not on F. The first sum in (2.21) is the generalised geo-
metric progression obtained by summing eZ(*>P ) gver the integer points in the simplex
(logt + 1)So, and the second sum is (up to the Ném; term) the sum over one of its
boundary faces. The following proposition will allow us to estimate these sums.

Proposition 2.11. Define
M(p) = max{L(C;, p), L(Co, p)} = max{(n+r)/p — (n —r)/2,0}.
If C € Cis acone withdim C ¢ {0, r}, then L(C, p) < M(p) forall p > 2.

Proof. 1t suffices to prove the analogous statement for the linear functions K (C, x) =
(1/4 — x/2)|Ac| + 2x dim C for x € [0, 1/2]. For 0 < s < r, define

D(s) = max{|Ac| | dimC = s} and Ko(s,x) = (1/4 — x/2)D(s) + 2sx.

Then K(C,x) < Ko(dimC, x). The linear function K¢(s, x) interpolates between the
points (0, D(s)/4) and (1/2, s), and to show that this collection of functions is dominated
by Ko(0, x) and K¢ (7, x), it suffices to show that D(s) is strictly concave up as a function
of s.

The cones C are in bijection with Levi subgroups M of G satisfying A € M, in such
a way that exp(C) generates a maximal R-split torus in the centre of M, and Ac are
the restricted roots of M. Using our assumption that go was simple over R, and Cartan’s
classification of globally symmetric spaces, it is then easy to check that D(s) is concave
up as required. O
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Note that M(p) is a piecewise linear function of 1/p, with a kink point at p =
2(n + r)/(n — r). Proposition 2.11 implies that the function L(F, p)(x) attains its
maximum on Sg at either (0,...,0) (if p > 2 +r)/(n — 1)), (I,..., 1) Gf p <
2(n+r)/(n —r)), or on the edge joining them (if p = 2(n +r)/(n — r)). It follows that
the first sum in (2.21) satisfies the estimate

Z eLF.pm) (logt)tM(p)
mGMt

uniformly for p > 2, and that if p # 2(n 4+ r)/(n — r) we have

Z L (F.p)(m) <p M)
meM;

To estimate the second sum, let 3Sg be the boundary face of So on which x, = 0. If § is
chosen sufficiently small, Proposition 2.11 implies that there will be an € > 0 such that
the linear functional L(F, p)(x) + N§x; attains its maximum on 9Spatx = (0,...,0)
forall p > 2(n +r)/(n —r) — €. Moreover, for p < 2(n +r)/(n —r) — € and § small
we will have

sup{L(F, p)(x) + Néx1 | x € 8Sp} < M(p).

Combining these gives
Z eL(F.p))+Nomy o (M (p)
meM?
If we observe that n(1 — 2/p) —r + M(p) = 25(p), then we have

ITF fll, < Qog P £,
ITF fll, <p 2PN fll,y  forp #20m+r)/(n—r).

Theorem 1.1 now follows by summing over F.

3. Restrictions to maximal flat subspaces

Theorem 1.2 may be proven using a slight modification of the method used to prove
Theorem 1.1. We shall assume that we are in the case of noncompact type. The proof for
compact type is similar, and may be deduced from the results of §5 and §6.

We continue to use the notation of §2, including the K -biinvariant kernel k;, opera-
tor T3, and the collection of flags F and simplices S(F). We define R to be the operator of
restriction to E, and let a € C(C)’O(E ) be a real-valued cutoff function. It suffices to bound
the operator norms of

aRT, : L*(X) — LP(E),

and if we let ¢ € C(‘)’O(E) and ¢ € C*°(X) be arbitrary functions with ||¢;||, =
lp21l2 = 1, it suffices to bound (¢, aRT;¢7). By taking adjoints and applying Cauchy—
Schwarz, we have the inequality

(91, aRT, o) < (a1, RT, T R*a¢1).
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Embed E isometrically inside ag, and let P; be the integral operator on ag with translation-
invariant kernel
Py (Hi, H>) = ki (exp(H1 — H»)).
If we assume that the supports of a and k; are small enough, we have RT;T;*R*a¢; =
Pra¢;. Therefore
(ag1, RT, T R*a¢1) = (a¢1, Pragr),
and so it suffices to estimate the L? — L norms of P;.

We do this by combining a dyadic decomposition of the kernel P; with an interpola-
tion between L? — L2 and L' — L bounds as before. The decomposition we make is
simpler in this case, as we do not need to introduce the modified index set M, 5. If g is
asin §2.4,and m € M, and 1 <i <r, we therefore define fin; € CSO(R) by

Fui(x) = {g(leixi), . ‘ m; =0,
i X10.00) (X [g(te ™ "I x;) — g(te™™i T 1= Ix))], m; > 0,

and define fm € C;°(R") by

,
S @) =T [ fmi i)
i=1
We let {Bm.F | m € M,;, F € F}U{Bx} be the partition of unity on ag derived from the
functions fy, as in §2.4, define ky, r € C3°(ap) by
km,r(H) = ki (exp(H))Bm,.r (H),
and let Py, r be the operator with kernel Py r(H1, H2) = km,r(H1 — H3) so that

Pi= %" Pur.

meM,
FeF
The L! — L*® and L? — L? norms of P, r are bounded by
I Pm.F flloo < lkm,Fllooll fll1s 1 Pm.Ffll2 < llkm,Fllill fl2-

If we define J(F, p)(x) to be the linear functional
J(F, p)(x) 1§r A |+2§rj
,p)(x) =—- Xi|A; — Xi,
P 4 - i i,F » £ i

then we may prove the following bound for the L? — L?' norm of Pm.F by bounding
lkm, 7 ll1 and ||km, F ||co using Theorem 1.3 as in §2.5.
Proposition 3.1. We have the bound || Pm r f ||, < t"~" =27 exp(J (F, p)(m))|| f |-
If C; € F is acell, we define

1 ~ 2j
J(Cj,p)=—= ) [AjFl+—,
4 ; p

which is the value of J(F, p)(x) at the vertex of Sy corresponding to C ;. The conclusion
of Theorem 1.2 in the case n > 3r may be deduced from the following lemma as in §2.6.
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Lemma 3.2. If n > 3r, we have J(Cy, p) > J(C;, p) forall j > 0and p > 2.
Proof. It is clear that J(Cp, 00) > J(Cj, 00) for j > 0, so it suffices to show the same
for p = 2. Because
~ : : 1 ~ :
—IAI/A+DG)/A+ Z =7 Y IRirl+ = T(C}.2),
i<j
where D(j) is as in the proof of Proposition 2.11, it suffices to show that

J(Co,2) > —|Al/4+ D(j)/4+ j 3.1)

with equality iff j = 0. We know that D(j) is concave up as a function of j, and so
D(j)/4+ j is also. We know that equality holds in (3.1) when j = 0, and so it suffices to
prove that strict inequality holds when j = r. However, this is equivalent to our assump-
tion thatn > 3r. O

In cases (b) and (c), Theorem 1.2 follows by examining the functions J(C;, p) for the
finite number of globally symmetric spaces to which these cases apply. The sharpness of
the upper bounds in the case of compact type follows from the remarks of §5.4.

4. Bounds for spherical functions on noncompact groups

We shall prove Theorems 1.3 and 1.4 by studying the expression

@i (exp(H)) =/KeXp((p+itk)(A(k€Xp(H))))dk 4.1

for ¢, as an oscillatory integral over K. We define
¢(k, H,») = A(A(kexp(H)))

to be the phase of this integral, so that we may rewrite (4.1) as
piexp(t) = [ btk H)EID 42)
K

where b(k, H) = exp(p(A(kexp(H)))) is a function with all derivatives uniformly
bounded. We shall prove a uniformisation theorem for ¢ in §4.3, which will reduce The-
orems 1.3 and 1.4 to an application of stationary phase to the integral (4.2) in §4.4.

4.1. The critical set of ¢

We begin by recalling some properties of the critical point set of ¢, taken from [4]. Note
that we shall always talk about the critical points of ¢ with respect to the variable k only.
Let A(J)r = A1 U {0}, and for every o € Z*‘, choose a vector Yy € (go + 9—o) N €
sothat {Yy | @ € Z(‘)"} is an orthonormal basis of €y with respect to —( , ). Note that
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when o = 0, we are chosing a basis for my. We also let ¥,, denote the corresponding
left-invariant vector fields on K. Fix a point/ € K, and define V C ay to be the subspace

V = Ad; ! ap N a.
We recall that a Levi subgroup of G is called semistandard if it contains A.

Lemma 4.1. There is a semistandard Levi subgroup A € L C G with real Lie algebra |
such that V is the centre a1, of lp.

Proof. Pick H € V generic, in the sense that if «(H) = 0 then «(V) = 0 fora € A. Let
L be the connected centraliser of H in G, which is a semistandard Levi subgroup whose
Lie algebra [y is the centraliser of H in gy. We have

b= P e 1= [ kera,

aEA aEA
o(H)=0 o (H)=0

sothat V C ap . As [y is stable under 6 we may decompose [y as (po N lp) + (8o N lp) =
po.z. + to,z. The group Kz = K N L is maximal compact in L, as it is compact with
Lie algebra €y 1. The subspaces ap and Adl_l ag € Zg,(H) = lp are maximal abelian
in po, 7, and so there exists /[y € K such that Ady, Ad;1 ap = dag. This implies that
Adl_1 ap = Adl;l ap, so that ap 1 < Adl_1 ap and ag, . € V, completing the proof. O

Definition 4.2. It follows from the proof of Lemma 4.1 that I € M’'Ky, and we fix a
decomposition I = wly with w € M’ and Iy € K, for the remainder of §4.

We define X, = Adl_1 Yy for a € K+, and also let X, denote the corresponding left-
invariant vector field on K. Decompose a as an orthogonal direct sum a = a; + aX. We
let Ay, be the set of roots that vanish on az, which is exactly the root system of L, and let
AL = A\ Ap beits complement. We let A} = A N AT and AL = AL N AT,

Proposition 4.3 ([4, Proposition 5.4]). Fix H € ag and regular A € a;‘), and let Ky be
the stabiliser of H in K. The function ¢ (k, H, ) is right-invariant under Ky, and its
critical point set is equal to M'K .

Lemma 4.4. If ) € ag is regular, [ is a critical point of ¢ (k, H, L) ifand only if H € ag,L.

Proof. Asl € M'Ky, we clearly have | € M'Ky if H € ag 1. For the converse, suppose
that H € ag is such that | = w'ky for w’ € M’ and ky € Kp. Then Adl_l wH =
Ad,:;H:H, sothatHeAdflaoﬁa():ao,L. O

Although the following result is stated as Proposition 6.5 of [4], we have included a
derivation to avoid any possible error in converting the result to our notation.

Proposition 4.5. When H € ao,1, the Hessian of ¢ with respect to the vector fields
{Xg | € Aa'} at l is diagonal, and satisfies

(DP)aa = 3 (0, a) (1 — 22@H)), (4.3)
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Proof. We have
lexp(tXy)exp(H) = exp(tYy) exp(wH)!,

and so if we consider the Iwasawa decomposition
exp(tYy) exp(wH) = n(t) exp(V (¢))k(t)
then X2¢ (1, H, ) = A(V"(0)). As n(0) = k(0) = e and V (0) = wH, we may write
n(r) = exp(t Ny + 12 Na + 0(r%)), k(r) = exp(tKy + 12 K> + O(1%)),
so that
exp(tYy) exp(wH) = exp(t Ny +1>Na) exp(wH +12V"(0)/2) exp(t K1 +12K2) + O (17),
exp(1Yy) = exp(t N1 +12Na) exp(t> V" (0)/2) (4.4)

- exp(t Adexpw iy K1 +12 Adexpawry K2)+ 0 (22).

Equating first order terms gives
Yo = N1+ Adexpawn) K1,

and if we write Y, = V,, + V_, with Vi, € go, 4« We may solve this to obtain

Ny = (1 -y, K =iy,

Applying the Baker—Campbell-Hausdorff formula in (4.4) and equating second order
terms gives

0= N+ V"(0)/2 + Adexpwr) K2 + [N1, Adexpwr) K11/2.
Because Ny + Adexpwh) K2 € at, this implies that
V"(0) = —projo[N1, Adexpqwry K11 = (€™ — 1)(Ve, V_o) Hy.
Our assumption that (Y, Y, ) = —1 implies that (V,,, V_y) = —1/2, so that
X5, H.2) =MV"(0) = 3, a)(1 — @)

as required. The proof that the off-diagonal terms vanish is similar, and omitted. O

4.2. Notation for complexifiying ¢

When uniformising ¢, we will use different methods in the cases/ € M’ and! ¢ M’. Both
cases involve analytically continuing ¢ into a complex domain, but the second case also
involves blowing up the a-coordinate of this domain along the edges of a flag. We treat
the case [ ¢ M’ first, as it is the more difficult of the two. We establish the notation used
for doing this here. By passing to an isogenous group if necessary, we may assume that G
is an analytic subgroup of a complex Lie group G¢ with real Lie algebra g, and that there
is a closed complex subgroup K¢ C G¢ with real Lie algebra € such that K = K¢ N G.
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4.2.1. Generalities on complex germs. We shall use the language of local complex spaces
and holomorphic germs, for which we refer to [7] for definitions. All local complex spaces
we shall work with will be regular, and we shall denote them by (M, p), where M is a
complex manifold and p € M is a point. We denote the ring of holomorphic germs on
(M, p) by O(M, p). All the local complex spaces we work with will have a natural com-
plex conjugation, which we will denote by c¢ in all cases. If f is a holomorphic function
we let Z¢ denote its zero divisor.

4.2.2. Blowing up a. Let F = {Cy, ..., C,} be a flag as in §2.4. Choose points p; € C;
for each i, and let J be the nonnegative linear span of the p;. Let V; C a be the complex
subspace spanned by C;. Let {x; | 0 < i < r — 1} be the unique linear functions on a such
that x; (p;) = 0ifi > j and 1 otherwise, which form a coordinate system. We define A to
be C” with the standard linear coordinates {z; | 0 <i <r — 1}, and definer 4 : A — a
to be the blowdown map given by

*
7TA)C]' = nZi.

i<j

Then A is a Zariski-open subset of the blowup of a along the subspaces Vp, ..., V.. If
we denote the interior of J by J? it may be seen that

71 (79 = {(0,00) x (0, ) ' CR" C A},

and we define
T =m3"J% ={[0,00) x [0, 1" CR" C A}.

4.2.3. Blowing up K¢ x a x a*. Define the complex manifolds
S=Axa*, X=KcxS§.

We shall denote points in S by s’ = (u/, A”). We shall think of all roots @ € A as holo-
morphic functions on .4 by pullback, and let «x denote the pullback of « to a function
on X under the natural projection. We let 7g : X — S and 7 : X — a* be the natural
projections. We let X and X be the unique holomorphic and antiholomorphic vector
fields on X such that X;r + X, = X, on the real submanifold K x R" x ag of X, and
likewise for Y.

4.2.4. Germs of ¢. We define A; = n;tl(aL) and Sp = A x a*. Let p be the largest
integer such that V,, € a;. We see that Q = z¢...z, is a defining function for A;. We
let Qx denote the pullback of Q to X.

We choose a point s = (u, 1) € (7 NAL) x ag with A regular. We letx = (I, 5) € X.
As ¢ is an analytic function on K x ag x afj, we may complexify it and pull it back to
obtain a germ in O(X, x). It follows from Lemma 4.4 that (/, u’, ") € (X, x) is a critical
point of ¢ exactly when u’ € Ajf.
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4.2.5. Divisors. Welet D; = {z € A| z; = 0} for0 < i < r — 1 be the coordinate
divisors on A, and define S; = D; x a*for0 < i < p. We have m4(D;) C V; and
AL = Up<i<, Di- Let g be the largest integer with ¢ < p and u € D,. We shall think of
the divisors D; as subspaces of (A, u) from now on, so that D; is empty if u ¢ D; (and
in particular if i > q).

Lemma 4.6. Recall that Ajp = {e € A | aly, #0, aly,, =0} forl < j <r. If
a € Aj p, we have (Zy, u) = 2051'5,/—1 D;.

Proof. Assume without loss of generality that « is nonnegative on J. If o vanishes
on C;j_; but not on Cj, then o/xj_; must satisfy C > a/xj_1 > ¢ > 0 on JO.
After pulling back to A, we see that the function (zg. ..zj,l)_loz(z) satisfies C >
(zo...zj—1 Y la(z) > ¢ > 0on JO, and so it extends to an invertible function in O(A, u).
The result now follows. o

4.3. Uniformisation of ¢

The uniformisation theorem for ¢ that we shall use is as follows. We define ¥; =
{w e AT |wla]y, #0}. Letd = |Z,] and d’ = dim K — d, and identify C¢ with C*
so that {zy | @ € ¥;} form a system of coordinates on this space.

Theorem 4.7. There is an isomorphism f

f

(X, x) (€4 x C4,0) x (S, 5)
(S,s)

a function ¢ps € O(S, s), and a nonconstant affine-linear map L : C?" = C, such that
f, ¢s and L all commute with c, and

fed (@28 = ¢s(s) = Y W ew ez + QW)LE).

aEY,

In other words, this expresses ¢ as the sum of a quadratic form on C4, and a linear func-
tion on C¥' that is zero exactly when 7z’ € Ay. Proposition 4.9 and Corollary 4.15 below
carry out the uniformisation in the first set of coordinates C¢. They work by constructing a
smooth subspace (Y, x) C (X, x) that projects regularly to (S, s) (see [7, Def. 1.112]), so
that the fibres Yy are smooth, and performing a change of variables that fixes Yy and con-
verts ¢ to a quadratic form transversally to Y. Proposition 4.9 builds (Y, x) by induction
on its codimension, and Corollary 4.15 summarises the end ~result.

The main idea of the induction is as follows. Let « € %,. The derivative X ¢ van-
isheson Z,,-1,, and so we may divide to obtain the holomorphic function wle)™1x Dfd).
The divisor of this function gives us our first submanifold (Y, x), and we may repeat this
process to decrease its dimension.
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Remark 4.8. The argument we use does not require complexification. We have written
it in this way because we originally thought it was necessary in order to apply complex
stationary phase in §6.1, and because we felt the constructions were more familiar in a
complex setting.

For 0 <i < p, let K; be the centraliser of V; in K. Because V; C ay for0 <i < p, we
have K; C K;. Moreover

Lie(K;) = span{Y, | @ € AJ, aly, = 0} = span{X, | @ € AS \ &), 4.5)
where the second equality follows from the fact that [y € K; C K;.

Proposition 4.9. Let ij_1 CRC ij with 1 < j < q be given, and suppose that there
exists a subspace (Y, x) C (X, x) and an isomorphism

(X, x) / (Y, x) x (CR,0)
(S,s)

with the following properties:

(@) fly is the identity.

(b) (Y, x) is invariant under c, and f commutes with c.

(c) The projection (Y, x) — (S, s) is regular (see [7, Def. 1.112]).

(d) Yy € IK;c when s’ € S with0 < i < j, andlK;c C Yy when s’ € S; with
J < i <gq, where Yy is the fibre of Y above s’ € S.

(e) Whens' € S; with j <i <gq, wehavel € Yy and

1,0 x
70y, = span{X] |« € A \ R}

(£) We have
() =) = D> _(m() d)w lax(y)z. (4.6)

oER

Then if p € S i \ R, there exists a subspace (Y', x) and an isomorphism f' having the
same properties with respect to R U {B}.

Proof. We first note that property (c) and the regularity of (S, s) imply that both (Y, x)
and (Y, [) are regular. Let R” = RU{B}. Define ¢; = fi¢, and push the vector fields ng
forward under f to obtain fields on ¥ x CR, which we also denote by X. Let V. be the
vector fields on Y obtained by applying the natural projection 7Y x TCR > TYto X ;'E
Hypothesis (e¢) implies that when s’ € S; with j <i < g,and o € Ag \ R, we have

VS =X} e Ty, 4.7
and (4.6) implies that when y € ¥ and @ € ZS’ we have

Vig1(3,0) = X9 (). (4.8)
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Lemma 4.10. If y € Y and w™'Bx(y) = 0, we have X ;¢ (y) = 0.

Proof. Our assumption that 8 € f]j \ flj_l implies that w18 € Zj,p. Ifw™!'Bx(y) =0,
Lemma 4.6 implies that wg(y) € UOEiE -1 Si. It follows that the image of y under
projection to A and then blowdown by m 4 lies in V;_1. Proposition 4.3 implies that ¢ is
right-invariant under K;_1, and the lemma follows from (4.5). m]

Lemma 4.10 and (4.8) imply that we also have ngﬁl (y,0) = 0 when w™!8x(y) = 0.

We can therefore define an analytic function ¥ € O(Y,x) by ¢ = (w™! ﬂx)_lVg' b1,
and define Y’ to be the zero locus of .

We now establish (d) for Y. The first inclusion Y|, € IK; c fors’ € S; and 0 <i < j
follows from Y’ C Y. To establish the second inclusion, let j < i < g and assume that
(S;, s) is nonempty. Proposition 4.3 and the inclusion w4 (D;) C V; imply that [ K; ¢ lies
in the critical locus of ¢ when s’ € §;, so that V;‘ ¢1 vanishes on /K; ¢ x S;. It follows that
IKic C YS/, when s’ € S; and w™'B(u’) # 0, and because j < i and S; is irreducible,
w1 B(u') is nonzero on an open dense subset of S;. The result then follows by continuity.
In particular, x € Y’ and so (Y’, x) is a subspace of (Y, x). The following lemma implies
that (Y’, x) and (Y}, [) are both regular, and that

7MY, = span{X] |« € AL\ R')

for s’ € S; with j < i < g so that Y’ satisfies (e). Moreover, we see that Y’ satisfies (¢)
by combining the regularity of the fibre ¥, with [7, Prop. 1.85 and Thm. 1.115].

Lemma 4.11. We have VS (1, s) # 0, and Vi (I, ') = 0 forall a € AS\ R’ and all
s'e S;withj <i <gq.

Proof. Leta € Zg \ R, choose j < i < g with (S;, s) nonempty, and assume that s" € S;
with w™!' B(u’) # 0. Equation (4.8) implies that

Viwrdsh) = ™ BTV Ve s = T B TV X8,
and (4.7) then gives
Viwd,sh = ™' BN TIXT XA s).
We may apply Proposition 4.5 to obtain

w1 g Sinh(w ™' ()
wBw)

and V¢ (l,s") = 0 for o # B, and the result follows by continuity and the fact that

w™! B is nonzero on an open dense subset of ;. O

3

Viwd, s = — (', Ble

Lemma 4.11 implies that the vector field Vf;r is transverse to Y’. Integrating along the
flow of Vg“ gives the following.
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Lemma 4.12. There is a unique isomorphism

8

(Y, x) Y',x) x (C,0)

R%

(S,s)

with the properties that gly: is the identity, and if we let (', z) be the coordinates on
Y’ x C then g*Vf;r =9d/9z.

We let ¢ = g«¢1, and define ¢5(y', 2) = ¢2(y’, 2) — ¢2()’, 0). We know that ¢; (', z)
vanishes to second order along ¥’ x 0 by the definition of Y’, and we have 3¢} /dz =

V;‘m = X}Yp so that ¢/ (y’, z) vanishes identically when w™!Bx(y") = 0 by Lemma
4.10. We can therefore define yo(y’, z) = (w™'Bx (y')7'¢5(y', 2) € O(Y' x C, (x,0)),
which also vanishes to second order on Y’ x 0 by continuity.

Lemma 4.13. We have 3*y9/3z%(x, 0) # 0.

Proof. As in Lemma 4.11, we may calculate 32v/9z> at (I, s’,0) € Y’ x 0 for s’ € Sq-
When w™!8(u') # 0 we have

%o

32 /
2 — w1 20

(.s',0) 322 | .50

= (w_lﬂ(u/))_l(vg_)2¢1 l(1,5,0)-

By combining (4.7) and (4.8) as before we may rewrite this as

%o Los ma—l _tg,n sinh(w™B(u’))
=B NX D Plasy=—0, Ble? P @49
822 ([ys/go) ( ﬁ( )) ( ﬂ ) ¢|(1,S ) ( 13) w_lﬂ(u/) ( )
and continuity gives the result. O

We may therefore define zg = /—¥o/(m.()’), B), which is an element of
O’ x C, (x, 0)) that satisfies zg(y’, 0) = 0 and dz/3z(y’, 0) # O forall y’ € (Y’, x).
We define g’ to be the automorphism

(Y',x) x (C,0) — (Y, x) x (C,0), (¥,2) > (' 2p),

and let ¢3 = g ¢>. The definitions of ¥ and zg imply that

B3y, 28) = 20, 2) = 200, 0) + w™ Bx (Y)Y (', 2)
= ¢3(.0) — (m.(y). BYw ™' Bx (V)23 (4.10)
We define f’ to be the composition f o g o g’. Equations (4.6) and (4.10) imply that ¢

satisfies (f) with respect to f' and R’, and f’ clearly acts as the identity on Y”.
It remains to establish (b). We first show that the function ¢ commutes with c.
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Lemma 4.14. We have ¥ (y) = ¥ ().
Proof. We have ¢, (X +) = X and c*(V ) = V., which implies that

Vio() =V 0() =V (9o = (c(V)H$)F) = V5 ¢,
and this implies the lemma. O

It follows that Y’ is invariant under c. It can be shown that the conditions that define
the map g are also satisfied by g(¥), and so by uniqueness we must have g(¥) = g(y).
This implies that ¢, and ¥y commute with ¢, and because (3 (y’), B) does also, we have
zp o ¢ = *zg. Equation (4.9) implies that dzg/dz(x) is real and nonzero, which means
that in fact zg o ¢ = zg. This completes the proof. O

Applying Proposition 4.9 inductively, we obtain
Corollary 4.15. There exists a subspace (Y, x) C (X, x) and an isomorphism

f

(X, x) (Y, x) x (C4,0) 4.11)
R %
(S, s)

with the following properties:

(@) fly is the identity.
(b) (Y, x) is invariant under c, and f commutes with c.
(c) The projection (Y, x) — (S, s) is regular.
(d) Yy =1K, c whens' € Sy, and Yy C IK; c whens' € S; with0 <i < gq.
(e) We have

(D) =0 — Y (), w lax(¥)zg. (4.12)

aes,

Proof. We only need to describe how to change indices from j to j + 1 in the induction
argument. The only thing that requires explanation is how to pass from the inclusion
IKjc C Yy when s’ € §; and R C 2 to Yy C IK;c whens' € §; andE C R.In
the boundary case when R’ =3, j» the subspace Y’ produced by Proposmon 4. 9 satisfies
IKjc € YS when s’ € S;, and because dim Yy’, =dimK — |E | = dim K ¢ and both
spaces are smooth we must in fact have /K c = ¥/, when s’ € §;. O

Proof of Theorem 4.7. Because Y is regular over S, there is a commutative diagram

i

(Y, x) (Y, D) x (S, 9)

(S, s)
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with i an isomorphism. It may be seen that we can choose i to commute with ¢, for
instance by choosing the generators #; of O(Y;, [) and their lifts /; to be real in [7, proof
of Thm. 1.115]. Moreover, by condition (d) of Corollary 4.15 and the fact that (Y, [) is
smooth, we may choose i to satisfy

itl,s)=(,s") fors €S, (4.13)

We define £ : (S,s) — (Y,x) by setting £(s’) = i~'(I x s’), and define ¢o(y) =
¢ (y) — ¢p(& oms(y)) € O(Y, x). Proposition 4.3 implies that ¢ is right-invariant under
K; when s’ € S;, and it follows from this and condition (d) of Corollary 4.15 that ¢o(y)
vanishes when s’ € S7. We may therefore define v = Q;lq‘)o € O(Y, x), so that ¢ (y) =
¢ (& oms(y)) + Ox ()Y (y). Transfer the fields {Y," | « € ZZ} to ¥ x C? via the map
f of Corollary 4.15, and let W, be the projections of Y, to TY along Y. We wish to
show that Vy, y|; # 0, where Vy, denotes the~gradient along Y, and this will follow
from knowing that Wy (x) # 0 for some o € Az'. We begin with the following lemma.

Lemma 4.16. There exist Hy € ag, 1 and HL € q \ ao,z such that for all « € Z+,
Wiy (x) = %Yaﬂp(z, Hp +tH" 0| . (4.14)
t=0
Remark 4.17. The vectors Hz, and HZ in ag need not be orthogonal for the rest of §4.3.
Proof of Lemma 4.16. Leto € ZZ‘ We have
W (Oxy) =W 9 c O, x), YW, Ox+ OxW, v =W,'¢,

and because W Qx = 0 this gives Qx Wy = W ¢. Letu = (u, ..., ur—1) € Dy be
a generic point near u, so that u; = 0iff i = ¢, and let s'(r) = (4 + te,, A). Substituting
E(s' (1)) into Qx Wiy = W gives

t ]_[Ei W (€' (1)) = W ¢ (E(s" (1)),
i<p
i#q

and because W ¢ (y) = Y,f¢(y) for y € Y by (4.12), we may rewrite this as
t[[mWhvEs ) = YieEs' o).
i<p
i#q

Taking 9/9r of both sides and setting r = 0, and noting that & (s’(0)) = (I, s'(0)) by (4.13)
and our assumption that u € D, we obtain

— + / a —+ !/
]_[uiWa YU(l,57(0) = =Y, (E(s (1))
i ot -0
i#q
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We have (3/31)&(s'(t))|r=0 = 3s'/0t|;=0 +V € T(1,50)) X for some V € T} K. Because
S Az, Proposition 4.3 implies that Y, ¢ (y, s') vanishes for all y when s’ € S, and
because s”(0) € Sz, we have VY ¢ (I, s'(0)) = 0. Therefore

— + / 85‘,
[Tawlvasop=(--
i<p

i#q
We may rewrite this and let # — u to obtain

Wy (x) = lim lim Q7' (@ + te)) Y, ¢ (L, 1 + tey, A).

u—ut—0

+ v) YEO(L S 0) = ¥F o, 5'1)
t=0 ot 1=0

As Yl u', 1) € O(A, u) vanishes on Ay, we know that Q! (u’)Y,;F (I, u’, 1) extends
to a function in O(A, u) so that we may rewrite the limit more simply as

Wiy (x) = lim Q7 @)Y od, u', 2).
u'—u
Let A! be C" with the standard linear coordinate functions wy, . .., w,_;, and define
the maps A Lan a by
JTI*wj= Hls] ' . JT;XJ'= {w]’ J _P.,
l_[p<,'§jZi» P <1 WpWj, p <.
Then 4 = mpomy and 7w, = Q. We may naturally think of A as a Zariski-open set in

the blowup of a along a; . The function w;l (w’ )Y(j‘ ¢ (I, w’, 1) extends to a holomorphic
germ in O(A', 71 ()), and we have

07 W)Yo u' 0y = mf(w, ' W)Y w', 1) € OCA, w).

Write u = (ug, ..., ur—1). Define Hy, = w4 (u) € ag, 1, and HL € q by
0, J=<p,
x](HL): L sz’

[lp<icjui» P<iJ.
We then have HL € qq \ ap, and 72 (T (u) +tep) = Hp + tHL. As ug = 0 we have
wp(y(u) +tep) = wy(tey) =1,
so that
Wiy (x) = ul/ii)nu o'wHy ol u' 1) = lim w;l(w’)Y;qs(z, w', \)

w' =y (u)
= linz) YU () F ey, n) = 111% e, Hy +tHE Q)
= t—
9 o+ L
= —Y o, Hy+tH" )| . O

We now have to prove that the RHS of (4.14) is nonzero for some choice of « € ZZ We
begin by simplifying the expression as follows. If « € AT, we write Y, = V,, 4+ V_ with
Vig € gta-
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Lemma 4.18. Let o € Kzr, Hj € apr, and HY € ag \ ag, 1. Then

o]
o Ya (U H + tH )| = a(HY AL Hy, Vog — Vy),
=0

where H) € ay is dual to A under the Killing form.

Proof For t € R, we have the Iwasawa decomposition lexp(H; + tHY) =
n(t)a(t)k(t). If we write the first-order approximation to the Iwasawa decomposition of
lexp(sYy) exp(Hy, + tHLY as

lexp(sYy)exp(Hr + tHL) =n(t)exp(sNy + 0(s2))
ca(r)exp(sAy + O(s2)k(t) exp(sK| + O(s%)),

then Y, (I, H, +tH™, 1) = A(A}). Moving the terms involving s to the right and equat-
ing first order parts gives

_ L L _ _
e IOV, + M HOV g = Adyy ) N1+ Adig) A1+ K1,

Ady (e IV, + e HIY_ ) = AdLL Ny + Ap + Adg) K.

We have Ad !

a(t) N1+ Adio) Ky € al, and so

WAL = (Hy, Adg (e @ HDV, 4 @ HIY_ ),

_ _ L L
Yad(, He +1H", 3) = (Adiy) Hy, e "DV, 4 *HDV_),

Differentiating at t = 0 gives

0 0
5a¢<l,HL+zHL,A) = —(Ad,!

(A B Yo) |+ a(H) (Adyg) Hy, Ve = V).
t=0

t=0
Because Adk_(}) H) € pand Y, € ¢ the first term vanishes. Because [exp(Hr) =
exp(w‘1 Hp)l, we have k(0) = I, which completes the proof. ]

Lemma 4.19. There is o« € A} such that a(HY)(Ad; " Hy, V_g — Vy) # 0.

Proof. The Lie algebra of L is givenby [ = ), N and our choice of Y, = V,+V_,
implies that the Cartan —1-eigenspace pz C [is given by

pL=span{V, — V_4 | @ € A} @ a. (4.15)

Suppose that Ot(HL)(Ad;I H,,V_o—Vy)=0foralla € Zj Because Ad;1 H), €ypr,
(4.15) implies that
A" Hie P g

aeAp
a(HL)=0

The RHS is the Lie algebra I of a semistandard Levi subgroup L’ C L, where the in-
clusion is proper because HX ¢ ag ;. We let K;» = K N L’, which is maximal compact
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in L'. Let ag 1’ be the centre of [,. There is I’ € K/ such that Ady Adf1 H, € ap, and

because H,, is regular this implies that [ € M'l’ ¢ M'K . Tt follows that Adl_1 ap N ag
contains ag 7/, which contradicts Lemma 4.1. ]

Combining Lemmas 4.18 and 4.19 and applying the holomorphy of ¢, we see this also
implies that there is & € A‘L" such that

0]
=Y, ¢, HL+1H", )|  #0,
ot 1=0

and by Lemma 4.16 this gives W, (x) # 0 as required.

We have ¢(y) = ¢(& o ws(») + Qx (MY (), 50 that ixd(yy,s") = ixd(l.s) +
OW)isyr (ys, s"). Because Vy, ¥ (I, s) # 0 and ¥ commutes with c, there is an isomor-
phism

i

(Ys, 1) x (S, ) (€4 ,0) x (S, s)

0xid 0xid
(S,s)

such that (i’ o i),y is a nonconstant affine-linear function L, and i’ and L both also
commute with ¢. Defining ¢s(s”) = i,¢ (I, s’) completes the proof. ]

4.4. Proof of Theorem 1.3

We now use Theorem 4.7 to bound the contribution to the integral (4.2) from points away
from M’. Throughout §4.4, H = H; + H L will denote the orthogonal decomposition of
H corresponding to the decomposition a = a;, + a associated to a semistandard Levi
subgroup L.

Proposition 4.20. Let B and B* be as in the statement of Theorem 1.3. Let | € K with
1 ¢ M'. Recall the notation of §4.1 associated to I, including the Levi L and decomposi-
tion H = H;+HY. There is an open set U C K withl € U such that for all by € CSO(U)
and all (H, \) € B x B*, we have

/ bo(k)b(k, H)e"?CHM dk < (14 tH D™ [T (A +tleE)D™'2. (4.16)
K

aeA+
The implied constant depends on A, B, B*, I, and by.

Proof. Assume that the collection of cones J (F) associated to F' € F in §4.2.2 satisfies
ap = Uper J(F). Choose F € F, and recall the notation associated to F in §4.2.
Define B = n;‘l(B) NJ and By = rr;‘l(B) NJ NAL, sothat m4(B) = BN J and
7A(BL) = BN JNag. Foreach s’ € By x B*, let Vo ¢ K¢ and Wy C A x a*
be open neighbourhoods of [ and s’ respectively such that Uy = Vy» x Wy realises the
isomorphism f of Theorem 4.7. We also assume that Wy intersects only the divisors S;
that contain 5. Let VSQ C Vg and WSO, C Wy be smaller open neighbourhoods such that
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Vs(/) C Vy and W?, C Wy . By compactness, there exists a finite collection {s;} of points
such that Ws? cover By, x B*. We define U = ﬂsi VS? NK,andlet Ug C B be arelatively
open neighbourhood of By, in B such that Ug x B* C Us,- Ws?.

Fix a point s; = (u;, A;). Let g be the largest integer such that u; € D, as in §4.2, and
let ¥, be asin §4.3. Fix s’ = (u’, 1") € (Ug x B*)N WS, and let H = 4 (u’). Applying
Theorem 4.7 and restricting to the fibre above s’, we obtain an open set U’ C R? x RY
and a real analytic diffeomorphism f : U — U’ such that

fep(x.x' sy = s = Y (W eyw ™ e(H)xE + Q) L(x').
ae¥,
Making this change of coordinates in the integral of (4.16) gives
/ bo(k)b(k, H)e" &) g = (11056 / c(x, x')
K

.exp<iz[— Z W, ayw a(H)x2 + Q(u’)L(x’)D dxdx’,
aes,
where ¢ € C(‘)X’(U ") is the product of by, b, and the determinant of the Jacobian of f.

Because f extends to a complex analytic function on the set Uy, , which contains U x WS,
all derivatives of ¢ with respect to x and x’ are bounded for (x, x’) € U’, uniformly for
s € (Ug x BN WYOI Application of van der Corput and the bound |Q (/)| > ||H!||
therefore gives

/ c(x, x") exp(ir[— Z (V, ayw a(H)x2 + Q(u’)L(x’)D dxdx’' (4.17)
U/

acs,

<ap A+110@HD™ [T A +tlw™ a(H)p~/?
acs,

<ap A+110@HD™ [T t+tlamp™"2  (4.18)
acAt
vy #0

We now pass from (4.18) to the RHS of (4.16). We first apply the following lemma.

Lemma 4.21. Ifu’' € Band H = mw 4(u'), we have |Qu')| ~ |H™|.

Proof. We have Q = njlx,,, where xp, is asin §4.2.2. Because ap . NJ = C,and H € J,
we also have |x,(H)| ~ || HE]. o
It remains to enlarge the product in (4.18) to one over Zi, and then over AT, If o € Zf_
satisfies «|y, = 0, our assumption on W;, intersecting only those divisors S; that contain
s; implies that &/ Q is holomorphic on W;,. This implies that | (u")| < |Q )| < || HL,
and so (1 + t|oz(HM)_1/2 > (14 |tHED~2. We may therefore enlarge the product in
(4.18) to one over AL which is the same as the bound

@17) <ape A+ eHA D™ [T A+ tla(E)D™.

AL
aeAY
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Ifa e Zz, we have a(H) <« ||[H™|| and so we are free to enlarge the product further
to AT, Applying this bound for each set WS , we obtain the inequality (4.16) for all
s’ € Ug x B*.

We may therefore assume that s € (B \ Ug) x B*, which is equivalent to assuming
that |Q(u)| > 8 > 0, or that ||[HZ| > § > 0. After possibly shrinking U, this implies
that || V@]l > € > 0 on U, and so

/ bo(k)b(k, H)e"*®HA) qie < g p g 174
K

As w4(B) = J N B, applying this argument for every F € F completes the proof. O

We now bound the contribution to the integral (4.2) from a neighbourhood of M’. Tt will
be convenient to reduce the integral to one over R = M\K, which may be done as ¢
and bg are both left-invariant under M. We shall use the uniformisation of ¢ at the points
W € R given by Proposition 4.22 below, which may be proved in exactly the same way
as Proposition 4.9.

Let Rc = Mc\Kc be the complexification of R, and let S = a x a* and X =
Rc x a x a*. Let mg : X — S be the natural projection. Choose w € W, H € B and
A€ B* andlets = (H,A) € Sand x = (w, s) € X. We extend ¢ to a holomorphic germ
in O(X, x).

Proposition 4.22. There is an isomorphism

(X, x) ! (C"77,0) x (S, 9)

\;;\\& k///6;;//

(S,s)

which commutes with ¢ and satisfies
fep@ H W)= H' 2= Y (V. a)a(wH)z],. (4.19)
acA+
As in the proof of Proposition 4.20, Proposition 4.22 implies that there is a neighbourhood
U C R with W C U such that for all b € Cj°(U) and all (H, ») € B x B*, we have

[ bt e ar e T 1+ st
R

aeAt

Combined with Proposition 4.20, this completes the proof of Theorem 1.3.

4.5. Proof of Theorems 1.4 and 1.5

We prove Theorems 1.4 and 1.5 by a more detailed analysis of the contribution to the
integral

@in(exp(H)) = / bo(r, H)e'"*-HM) g (4.20)
R

from the Weyl points. We begin with four lemmas that provide a form of the stationary
phase asymptotic adapted to the integrals we wish to study.
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Lemma 4.23. Let b € C3°(R x Ry), and define f € C*(Rxo x Rxg) by

/b(x,y)e_”yxz dx = b0, y)'2|ty| 2 exp(—im sgn(y)/4) + f(y,1).  (4.21)
If g € C°(R) and k > 0, define

lgllce = supflg(x)| | x e R, 0 < j <k}

Then
k

0 f _ w , .

P S R (A Il S N (R R TOROI PoRE (4.22)
y i+j=k

forall k > 0and all (y,t) € Rxo x R.q, where the implied constant depends only on k

and a bound for the support of b in the x-variable.

Proof. We use induction. Suppose that (4.22) is known for some k > 0 and all b €
C3°(R x R0). Note that the base case k = 0 is given by the stationary phase asymptotic
(see for instance [11, Lemma 7.7.3]). Differentiating the LHS of (4.21) and integrating
by parts gives

9 ity ab . _
a—/b(x,Y)e_”}xz dx = / a—(x,y)e_”yxz dx—i—/b(x,y)(_izxz)e—ltyxz dx
y y

= f %(x, y) — ix—b(x, Y) e~ g,
ay ox 2y

Comparing this with the derivative of the RHS of (4.21) gives

ay ax 2y

ab b(0, y) _ . af
= (520, — === ) Ply |7V exp(—izm sgn(n)/4) + == (v, ).
dy 2y dy
Applying the inductive hypothesis to the two functions db/dy and (3/0x)(xb(x, ¥))/2y
separately gives the result. O

The following lemma may be proved just as Lemma 4.23, with the base case provided by
van der Corput’s Lemma (see for instance [19, Ch. VIII, §1.2, Corollary]).

Lemma 4.24. Let b € C°(R x Ry), and define f € C*(Rxo x R.q) by

/b(x, Ve dx = f(y,1).

Then
8kf( ~1/2 ~i (37 b /9y
FHE O D K™ 5 T I@ B/ ek
i+j=k
forallk > 0and all (y,t) € Ry x R, where the implied constant depends only on k
and a bound for the support of b in the x-variable.
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We recall the definition of a, and a; as the regular sets in ag and aj, and || H | as the
distance from H € ay to the singular set.

Lemma 4.25. Let b € C(R"™ x ag x af). Let R C A*, and let d = |A* \ R|. We

define
ow(R, M, H) = — Z sgn((A, )a(wH)).

a€R

If x € R"™, we write x = (xR, xR) with xg € R4 ~ RR gnd xR ¢ RY ~ RZ+\R.
Suppose that there exists a function f € C®[R? x a, x at x R.o) with the following
properties.

(@) IfH €ay, A€ al,andt > 0, we have

/b(xR,xR,H, A)exp(—it Z (A,a)a(wH)xi) dxg

aeAt
=exp<—it Z (A,a)a(wH)x§>
aeAt\R

: (n|R|/2 [Tl WawH)) ™' explimon (R, &, H)/4)bO, x*, H, %)
aeR

+f(xR,H,)\,z)).

(b) The function f satisfies
( ’ )p( ’ )qf < [Tale@wmn=""?
— — a(w _—,
oxk) \oH weR | H L

where the implied constant depends on p, q, and b.
(c) There is a compact set B C RY x ag x a¥ such that supp(f) C B x R.y.

IfB € At \ R and we define R’ = R U {B}, there exists [’ satisfying the same conditions
with respect to R’

Proof. We write x = (xg/, x®') in the same way as x = (xg, xX). If we apply prop-
erty (a), we see that

fb(xR,,xR', H, ) exp(—it > (A,a)a(wH)xg) dxp

aeA+t
is the sum of

exp(—it 3 (A,a)a(wH)xi)n'R'/z
aeAH\R'
T le NawH) )™ explinon (R, . H)/4)

a€R

./b(O, xp, x® H A exp(—it{n, B)B(wH)x3) dxg  (4.23)
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and

exp(—it 3 <A,a>a(wH)x§)ff(xﬁ,xR/,H,A,t)exp(-it(k,ﬂ)ﬁ(wﬂ)xé)dxﬂ.
aeAH\R (4.24)

We deal with (4.23) by writing ag as a direct sum of the kernel of w~!8 and any
transverse subspace, and applying Lemma 4.23 with y = (A, 8)B(wH). Note that we
are free to truncate the support of b away from the set S(wH) = 0 to ensure that the
hypotheses of Lemma 4.23 are satisfied. This implies that

/b(O, xp, xR H, 0 exp(—it (i, B)B(wH)x}) dxg

= b(0, x®, H, )| (x, B)B(wH)| /)% exp(—im sgn((r, B)B(wH))/4)
+ fl® H x 1),

where f| satisfies

0 Pra\? g
(ax—R) (—) fi < @|BwH))2BwH)| ™ < t|BwH))~ 2 H|

oH
) (4.25)
To deal with (4.24), we define

AR H a0 = / flp, x® L H A 1) exp(=it(n, B)B(wH)x3) dxp.

We may show that f; satisfies (b) with respect to R in the same way as we proved (4.25),
by truncating f away from the singular set in H, and applying Lemma 4.24 and the
assumption that f satisfied (b). If we define

R H, A 1)
=72 Tt le Ma(wH) )™ exp(ino, (R, A, H)/4) f{®' H, . 1)

aeR
/o R
+f2(x 7H7)"7t)5
it may be seen that f satisfies the conditions of the lemma with respect to R’. O

As the conditions of Theorem 4.25 with R = {J are satisfied, by induction we obtain

Lemma 4.26. Let be Cj°(R"™" xagxay). There exists a function f € C*(a, xar xR.0)
with the following properties.

(@ IfH € ay, A€ al, andt > 0, we have
/b(x, H. ) exp(—it 3 (A,a)a(wH)x§> dx
acA+t
=g 2 exp(imo,(H, 1)/4)bO, H, )
T @lte a2+ F(H. ). (4.26)

aeAt
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(b) The function f satisfies

3\’ i 1
<8_H) < H (tla(H)]) W 4.27)

aeAT

where the implied constant depends on p and b.

Proof of Theorem 1.4. Let b € C*°(R) be supported in a neighbourhood of W, and equal
to 1 on a smaller neighbourhood of W. We write

@1 (exp(H)) :/b(r)bo(r, H)e''? -2 dr+/(1 — b(r)bo(r, H)e"? "M gr.
R R

Proposition 4.20 implies that the second term may be absorbed into the error term in (1.7).
By applying a partition of unity in the variables (H, A) and shrinking the support of b,
we may use Proposition 4.22 to write the first term as a finite sum of integrals of the
form (4.26) multiplied by exp(itA(wH)) for some w € W. Applying Lemma 4.26 gives
functions {¢,, € C®(a x af) | w € W}and {f, € C®(a, x af x Rog) | w € W}
satisfying (4.27) such that

/ b(r)bo(r, H)e" 1) dr = z =012 TT (tl(e, Mya(H)) ™2
aeAt

. Z exp(itA(wH) +irnoy(H, M) /4)cy(H, X) + Z exp(ith(wH)) fyy(H, A, t)
weW weW

for H € B and A € B*. This gives an asymptotic for ¢, of the same type as Theorem 1.4,
but with the presence of factors c¢,,(H, A) € C*°(a x af) in the main terms. These may
be calculated by comparison with [4, formula (9.10)] when H € B and A € B*, which
completes the proof. m}

The proof of Theorem 1.5 follows from a similar induction, with Lemma 4.24 used instead
of Lemma 4.23.

5. Symmetric spaces of compact type

We now consider the case in which X is a locally symmetric space of compact type. We
assume without loss of generality that X is a simply connected globally symmetric space
S = U/K. As in the noncompact case, most of the work in proving Theorem 1.1 lies in
establishing a sharp pointwise bound for the kernel of an approximate spectral projector,
and the bound we shall use is exactly that of Theorem 1.6 for the spherical function ¢,
on S. We shall prove this bound using the method of the previous sections, after first
deriving an expression for ¢, as an average of plane waves which is an analogue of the
usual expression for ¢, as a K -integral in the noncompact case.
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5.1. Notation

Let (up,0) be a semisimple orthogonal symmetric Lie algebra of compact type. Let
ug = €9 + ipo be the associated Cartan decomposition. Let (U, K) be the unique Rie-
mannian symmetric pair associated to (ug, #) with U simply connected and K the con-
nected subgroup with Lie algebra £j. Let g be the complexification of ug. Let (go, s) be
the orthogonal symmetric Lie algebra dual to (ug, €), so that go C g is a real form of g
and s is the restriction of 6 to g, and the Cartan decomposition of gg is £y + po. Let G
be a connected Lie group with real Lie algebra go and finite centre. After an isogeny, we
may assume that U and G are both analytic subgroups of the simply connected group G¢
with real Lie algebra g. We denote the Killing form on g by ( , ). Let qo be the orthogonal
complement of ag in po with respect to the Killing form, so that

go = € +po = £o + ap + qo.
Let
G =NAK, g=n(g)exp(A(g)k(g), g=Ft+a+n

be an Iwasawa decomposition of G. Let M’ and M be the normaliser and centraliser of
a in K, and let W be the Weyl group M’/ M. We let My be the connected component
of the identity in M, and m be its Lie algebra. Let A denote the set of roots of g with
respect to a. Note that we assume that 0 € A asin §2.1.1. We let A™ be the set of positive
roots corresponding to n, and let ag be the associated positive Weyl chamber. We let aa n

denote the positive dual Weyl chamber. We shall let A denote the multiset on A in which
each root is counted with multiplicity m(e), with m(e) as in §2.1.1, and likewise for any
subset of A. We let Aar = AT U{0}, and forevery o € Aar choose Yy € (g0 +9—o) Nty
sothat {Y, | ¢ € Z(T } is an orthonormal basis of €y with respect to —(, ). Extend ap to a
Cartan subalgebra b of go. Define T to be the connected subgroup of U with Lie algebra
iag, and let T be the image of 7 in S so that T is a maximal flat subspace of S.

5.1.1. Spherical functions. Define

(e, a)
(o, @)

For each u € A, we extend y to a linear functional on § that is 0 on hN¥E, and let (77, V)
denote the irreducible representation of G¢ with highest weight w. By [9, Thm. 4.12,
Ch. II], the set of irreducible representations of G¢ whose restriction to G is spherical
(that is, has a K-fixed vector) is exactly {7, | u € A}. Let (, ) be a 7, (U)-invariant
Hermitian inner product on V,,, and let d(u) be the dimension of V,,. We let s* be the au-
tomorphism of a* such that i, and m,«,, are contragredient, which is given by composing
the map u — —pu with the long element of the Weyl group.

Lete, € V, belong to the weight 1 and let v, € V,, be a unit vector fixed under K.
We define ¢,,, b, € C*°(G¢) by

A:{ueu*

eZ  fora e A*}.

0u(8) = (T v, vdes bulg) = (mu(g™ Dew, vu)n-
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The restriction of ¢, to U is the spherical function with spectral parameter (4, and we shall
see in §5.3 that the restriction of b, to U may be thought of as a higher rank Gaussian
beam. R

If f € C*°(U) is a K -biinvariant function, we define its spherical transform f by

fw = /U FWg,w)du, e A.

The following inversion formula for the spherical transform is a consequence of the Peter—
Weyl theorem (see for instance [9, Prop. 9.1, Ch. III]).

Proposition 5.1. We have
Fa)y =Y e fudw).

HEA

5.1.2. Complex Iwasawa coordinates. The mapping
(X,H,J)r—>expXexpHexpJ (Xen Hea, Ject

is a holomorphic diffeomorphism of a neighbourhood of 0 in g onto a neighbourhood
UL of e in G¢. We can therefore analytically continue the map A : G — ap to a map
C

U2 — a by defining

A:expXexpHexpJ — H.
As b, is holomorphic on G¢, N-invariant on the left and K-invariant on the right, we
have

bu(exp X exp Hexp J) = by(exp H) = e *Hp, (e).

It follows that b, (e) # 0, and we shall always normalise b, by b, (e) = 1 so that

bu(u) = e HAW -y e U2 (5.1
We shall need the following invariance property of A.

Lemma 5.2. Ifu € U(g and m € My satisfy mu € U(g, then A(u) = A(mu).

Proof. Because ¢, is fixed by My, we have b, (mu) = b, (u) for all u and m € My. If
we define the lattice apn = {H € iag | u(H) € 2wiZ for all u € A}, this implies that
A(mu) — A(u) € ap. By shrinking U(g if necessary, the lemma follows. O

The following lemma allows us to extend the representation (5.1) to TU(g.

Lemma 5.3. We may extend A to a function A : TU(g — a/ax.

Proof. If g = exp(H)u € TUX with H € iap and u € U2, we define A(exp(H)u) =
H + A(u) € a/ap. To show that this is well defined, assume that g = exp(H})u
exp(H2)us. We have

bu(g) = e WHITAWD) e—M(Hz-%A(uz)),

so that
u(Hy + A(uy)) — u(Ha + A(uz)) € 2miZ.
As this holds for all © € A, we have H| + A(u1) — H» + A(u2) € ap as required. O
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5.2. Approach to proving Theorem 1.6

Let B* C aj , be a compact set that is bounded away from the singular set, and assume
that u € B* and ¢ > O satisfy tu € A. We have

(pm(exp(H))=/;{bm(kexp(H))dk, H eiap. (5.2)

We see from (5.1) that there is a strong formal analogy between this expression for ¢,
and the standard representation of ¢, as a K-integral in the noncompact case, and so one
would hope to be able to prove Theorem 1.6 by applying the techniques of §4 to this
integral. This works when H is regular, and we use this approach to prove an asymptotic
expansion for ¢;, in Lemma 6.3. However, the fact that b, is sharply concentrated along
a flat subspace (in particular, that its absolute value has large derivatives) makes it difficult
to prove bounds for ¢, (exp(H)) using the representation (5.2) that are uniform as H
degenerates. We get around these difficulties by observing that the terms in the expansion
of Lemma 6.3 behave much more like plane waves on G/K than the function b, as
their absolute values are not changing rapidly. As a result, we may prove Theorem 1.6 by
first averaging b, under the action of a small open neighbourhood of the identity in K
to generate a plane wave on some open set in S, and then expressing ¢;,, as an average of
the plane wave under rotation about a point in this set.

5.3. The structure of Gaussian beams

To begin this approach, we shall prove that b, is localised around T at scale t~1/2,
making it a higher rank analogue of a Gaussian beam. By Lemma 5.3, we may define

AY:TUL — ap, g > Re(A(g)).

It follows from Lemma 5.3 that AY is left-invariant under 7', so that VA%e) = 0 for
V € iap, and it may likewise be seen that VA%(e) = 0 for V € iqo. This implies that
when we restrict i o A” to S it has a critical point at e, and hence along 7. The following
lemma shows that this critical point is negative definite transversally to 7.

Lemma 5.4. There are positive constants Cy and C depending only on B* such that for

all' V e iqo, we have

d2

3 (A (exp(1V)))
S (A% (exp(

—Ci(V,V) >
1 >_dt

> —C(V, V) >0.
=0

Proof. Let
V= ica(Xoa— X o) €iqo, VF= ) icaXia,

aeAT aeAT

where ¢, € R, X4y € 90,40 and X_, = 6X,. Write the second order approximation to
the Iwasawa decomposition of exp(z V') in terms of unknowns Vi, V;, and V3 as

exp(tV) = exp(2t VT + 12V)) exp(:2Va) exp(—t (VT + V7)) + 12 V3) + O (D).
After applying the Baker—Campbell-Hausdorff formula to the RHS we have
exp(tV) = exp(tV — 2 [V, V1 4+ 2(Vi + Va + V3)) + O(1D).
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Equating coefficients gives V| + V5 + V3 = [VT, V7], so that V; is the projection of
[V*, V~]to a. Calculating this projection using the formula [Xy, X o] = (Xo, X o) Hy
gives
Vi=— > ci{Xo. X o) Hy.
aeAt

It follows that

d2
TFHAexpV))| =2 3 G (Xa, X (1 @),

1=0 aeAT

and our assumption that 4 € B* implies that (i, a) ~pg+ 1. Combining this with

(V.V)y=2 )" ct{Xa, X o)

aeAt
completes the proof. O

It follows from Lemma 5.4 that b;,, has Gaussian decay at scale t=1/2 transversally to T,
which implies that b, € L?(S) has norm [, |2 > t~""~")/4. We next show that b,
decays rapidly in sets that are bounded away from T by an argument involving pseudo-
differential operators.

Proposition 5.5. If D C S is any compact set that does not intersect T, we have

1D (x)] <p,a ™, xeD.

Proof. Let A be the positive Laplacian on S associated to the metric —( , ) on ipg, which
is equal to the restriction of the Casimir operator on U to the space of right K -invariant
functions. Let o = p/ (i, w)'/2, and let 0 H,, be the vector field on S whose value at u K
is (9/0t) exp(it H,,)uK |;=o. Under the isomorphism T'S >~ U x ipg, 9 H, is given by
(u, projip(Adu_] iH,,)). The actions of A and idH, on b, are

Abyy = (tu,tu),  i0Hby, = (ti, po),

and we shall prove the proposition by comparing these. As we have already established
that [y lla > 1= )/4_ it suffices to prove the proposition after first rescaling b, u to
have L? norm one.

Lemma 5.6. The principal symbol pg(x, §) of the operator Py = A — (iE)HM)2 satisfies
po(x,&) >0, and if po(x,&) =0thenx € T or & = 0.

Proof. We shall denote the principal symbols of the operators A and id H,, by pa and p,,.
Under the isomorphism 7*S >~ U x g ip(, the formulas for pa and p,, are

pa: @, V) —(V.V),  px: @, V)~ V(proj,(Ad, ' iHyy)) = (V. Ad, " iuo).
We then have

po(u, V) = —(V, V) — (V, Ad; Vi),
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so that Cauchy—Schwarz implies that po(u, V) > 0 with equality iff V = cAdu_1 ipuo for
some c. Suppose that po(u, V) = 0, and assume that 0 # V € iag so that Adu_1 ipn€iag.
By following [8, proof of Prop. 8.8(ii), Ch. VII], and observing that the torus T C Py
introduced there must be contained in our torus 7 as w is regular, we see that we must
have u = kt fork € K andt € T. Then Ad,;1 ine ia(’g, sothatk e M'andu =kt e TK
as required. O

As Pyb;,, = 0 and Py is elliptic away from T, it is a general principle of semiclassical
analysis that b, is rapidly decaying away from T ast — oo. We shall give a quick
proof of this fact. Let D C U; C U, be open neighbourhoods of D with U, C U, and
U, NT = @, and choose nonnegative functions a; and a; in C*°(S) satisfying

a(x)=1, xeT,
a(x) =1, x € Uy,
aja; = 0.
Define
P=(+a)A — (idH,)*

so that P is elliptic on S. If we define P(axb;,) = p then supp(p) N Uy = ¥. As P is
an elliptic differential operator, it has a parametrix E such that EP = [ + S for some
smoothing operator S [19, VI §4, 3.5], and applying E P to axb;,, gives

Ep = axb, + S(azbiy). 5.3)

As E is also a pseudodifferential operator it is local up to smoothing, and because
supp(p) N Uy = ¢ this means there is a second smoothing operator S; such that
Ep(x) = S1p(x) for x € U. Combining this with (5.3) for x € U gives

(az2b1)(x) = Ep(x) — S(azbsy) (x),
by (x) = S1P(azb)(x) — Sazb)(x) = (S1Pax — Saz) (b)) (x).

As 81 Par — Saj is a smoothing operator, this implies that the L? norm of b, u Testricted to
U, is rapidly decaying. The standard methods of bounding L°° norms of Laplace eigen-
functions in terms of their L2 norms then imply that |b;, (x)| <p,a t~4 forx € D,
which concludes the proof of Proposition 5.5. O

Combining Lemma 5.4 and Proposition 5.5 on U N TU(g, we obtain

Corollary 5.7. We have ,u(AO(u)) <0onUnN TU(g, with equality iffu € TK.

5.4. Sharpness of Theorem 1.1 in the compact case

We may now prove that Theorem 1.1 is sharp up to the logarithmic factor in the case of
compact type.
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The spherical function ¢;, saturates the L? bounds for p above the kink point. To see
this, first observe that b, is roughly constant in a ball of radius > ¢t~ ! about the identity
in § by (5.1), and so the expression (5.2) for ¢;, implies that |¢;,(s)| > 1 in the same
ball. Moreover, the Weyl dimension formula implies that [|¢;,|l2 ~ t~"~")/2. These two
facts imply that t(”’r)/zgom has L? norm ~ 1, and has absolute value > t~")/2 on a set
of measure >> t~", so that ||t(”_’)/2<pm||p > "72=1/P)=1/2 a5 required.

Lemma 5.4 and Proposition 5.5 imply that the functions "~/ 4btu saturate the
bounds of Theorem 1.1 for p below the critical point. Indeed, by Proposition 5.5 it suf-
fices to understand the behaviour of b, in the open neighbourhood U N TU(g of T,
and Lemma 5.4 implies that |b;, | is essentially the characteristic function of a ball of

radius ¢~/ around T in S. It easily follows that the L? norm of t*=")/4p, , is approxi-
mately =" (1/2=1/p)/2.

6. Bounds for spherical functions on compact groups

In this section we shall derive Theorem 1.6 from the results of §5.3, before using Theorem
1.6 to prove Theorem 1.1.

6.1. Plane waves and integral representations

We begin by averaging b,,, over rotations by a small neighbourhood of the identity in K
to generate a plane wave on S. Let By C B C K be two open balls around e that satisfy
B = Bfl and B C B.Leth| € C§°(B) be a nonnegative function that is equal to 1
on Bj, and define gptoﬂ € C®U) by

o, (1) = fK by (k)b (ku) dk.
To state the asymptotic we require for (p,ow we introduce Cartan coordinates on S. We
define
O:K/M xiag— S, (kM,H)w— kexp(H).
Define the diagram D (U, K) and the regular set a, by
DWU,K)=1{H ciay | a(H) € miZforsomeo € AT}, a, =iap\ DU, K).

The regular set a, is a union of open simplices, and we choose one such simplex
Py whose closure contains the origin. It is known (see [8, Thm. 3.3, Ch. VII]) that
O(K/M, D(U, K)) is an analytic set of codimension at least 2 in §, and we define the
regular set S, tobe S\ ®(K/M, D(U, K)).

Proposition 6.1. We have ®(K/M, Py) = S;, and the map ® : K/M x Py — S, is a
covering map. Moreover; if

u = kyexp(Hyky = Iy exp(Ha)l> 6.1
with H; € Py and ki, l; € K, then H = Hy, ki\M' =11 M’, and M'k, = M'[5.
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Proof. The assertions that ®(K/M, Py) = S,, ® is a covering map, and H; = H> in
(6.1) are proven in [8, Lemma 8.1 and Thm. 8.6, Ch. VII]. To prove that ki M’ = | M’,
consider

u@u) ™" = ki expQHDA' =l expQH)I,

so that if we let k = ll_lkl then we have kexp(2H1)k_1 = exp(2H) = s. Following [8,
proof of Lemma 8.7, Ch. VII], we let Z; be the centraliser of s in U. Our assumption that
Hp was in a, implies that the Lie algebra of Z; is exactly mg + iap, and so reasoning as
in the proof of that lemma we see that k € M’ as required. The claim that M'k, = M'l,
follows in the same way. O

Proposition 6.1 implies that we may define the Cartan A-coordinate p : S, — Py by
kexp(H) — H. Assume that BBy N M’ C M. If we choose B and B to be sufficiently
small, there exists an open set Qg C Py such that BB exp(Qp) C U(g. Define V =
®(By, Qo) C S,. We may assume that By and B are small enough that ® provides a
diffeomorphism V >~ B{M /M x Q.

Lemma 6.2. There is a function a € C*° (R x V x B*) with an asymptotic expansion
© .
a(t,s, p) ~ Zt*lai(s, W)
i=0

that converges locally uniformly, with a; € C*°(V x B*) and ay nonvanishing, such that

o (s) =t~ a5, e M) s ey 6.2)

Proof. Our asumption that BBjexp(Qg) C U((C) implies that we may define ¢ <
C*®°(BB1 x Qo x B*) by ¢(k, H, u) = —u(A(kexp(H))). Corollary 5.7 implies that
Re ¢ < 0 with equality iff kexp(H) € T. Now [8, Thm. 8.3(iii), Ch. VII] shows that
T = ®(M’, Py), and Proposition 6.1 and our assumption that BBy N M’ C My then
imply that kexp(H) € T iff k € My.If k; € By and H € Q, we may write

o, (ki exp(H)) = / by (k)eHAKK exptHD)) gp — f by (kk; He'? &A1 g,
K K

It will be convenient to reduce this integral to one with a single critical point. Lemma 5.2
implies that ¢ is left-invariant under My, so that we may define R = Mo\ K and reduce ¢
to a function on Myp\MoBB| C R, which we continue to denote by ¢. We also define
b} : R — Rby

by (Mok) = / bi(mk)dm.
My
The support of b/ is contained in Mo\MoB, and our assumption that b equals 1 on
By = By implies that b/ (Mok;') > 0 for all k; € By. We have

¢?M(k1 exp(H)) = / b (rkfl)et"’(r’H'“) dr. (6.3)
R
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If D¢ is the Hessian of ¢ at e, we may calculate D¢ with respect to the basis {Y, |
a € At} of T, R as in Proposition 4.5 to be the diagonal matrix

(DP)aa = % (1, a)(@*H) — 1),

We have «(H) € iR \ wiZ for all « when H € a,, so that Re(D¢ye) < 0 on Qo X B*.
We may apply the stationary phase method for complex phases (see for instance [11,
Thm. 7.75]) to obtain a function a € C*®(R x By x Qg x B*) with an asymptotic
expansion

o0
at. k. H )~ ) 1~ ai(k, H, 1)
i=0

that converges locally uniformly, with a; € C*°(B1 x Qo x B*), such that

op (kexp(H)) =t~ " Pa(t, k, H, wye ""*) ke By, H € Q.

Moreover, the condition that b/l (Mokl_l) > 0 for all k1 € B; implies that ag is nonva-
nishing. The functions a and a; must be right-invariant under M, so we may push them
forward under @ to obtain functions a € C*°(R x V x B*) and a¢; € C*°(V x B*) as
required. o

Arguing in the same way allows us to prove an asymptotic expansion for ¢;, (exp(H))
when H is regular. We now let B C iap denote a ball around the origin such that
exp(Adg B) C U2, and let B, = BN a,.

Lemma 6.3. There is a functiona € C®(Rx B, x B* x W) with an asymptotic expansion

o0
a(t, Hp,w) ~ Y 7 a;(H, p. w)
i=0

that converges locally uniformly, with a; € C*° (B, x B* x W) and ay nonvanishing, such
that
Quu(exp(H)) =t~/ Z a(t, H, w, w)e @0 for H € B,.
weW

Proof. We write
P (exp(H)) = f by (exp(Ady H)) dk = / HACPAGHD) g (6.4)
K K

Our assumption on B implies that we may define ¢’ (k, H, u) = —u(A(exp(Ady H))).
The function ¢’ is clearly right-invariant under M, so that we may reduce this integral to
one on K /M, and it satisfies Re(¢’) < O with equality iff k exp(H)k~! € TK. When
H € a, we again have kexp(H)k~' € TK iff k € M’, and so by Proposition 5.5 it
suffices to consider neighbourhoods of the Weyl points in the integral (6.4). The lemma
now follows from stationary phase as before. O

Lemma 6.2 shows that there is a clear similarity between (p?u and the plane waves ¢/*(4(8)
on G/K. We will make use of this by choosing Hy € Qo, letting h = exp(Hp) € V, and
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expressing ¢;,, as an average of <p,0M under rotation about /. The fact that ap in Lemma 6.2
was nonvanishing means that, for ¢ sufficiently large, we may normalise go,oﬂ by setting
P, (h) = 1. Then

ouy (exp(H)) = /K o0,k exp(H) d, 6.5)

and when s € V we have an asymptotic

%OM(S) =al(t, s, p)e He®)

with a as in Lemma 6.2. If B € ag is a ball such that 1K exp(i B) C V, we may define
Y € C*®°(K x B x B*) by

Yk, H, n) = ij(p(hkexp(iH))).

We choose to multiply by i in this way so that ¥ and its domain are both real. When
H € B, this allows us to rewrite (6.5) as

@1 (exp(i H)) = / a(t, hkexp(H), w)e'V &H0 g
K
By applying the asymptotic expansion of a, we see that Theorem 1.3 will follow from

Proposition 6.4. We have

/a(hkexp(iH),u)e”‘/”(k’H’”)dk < [T a+rlawp=?
K

acAt

forall H € Banda € C*®°(V, B¥).

6.2. The critical set of Y

We shall prove Proposition 6.4 by uniformising ¥ as in §4. We begin by establishing the
following analogues of Propositions 4.3 and 4.5 in the compact case. We recall that K g
is the stabiliser of H in K.

Proposition 6.5. The function v (k, H, u) is right-invariant under K g, and its critical
point set is equal to M'K .

Proof. The invariance of ¥ under K g is immediate. To determine the critical point set,
we shall first assume that k is a critical point of ¢ and show that k = wkpy for some
w € M and ky € Kp. Choose a vector X € € and use the diffeomorphism & : V ~
Bi1M/M x Qg to write

hkexp(tX)exp(iH) = k1) exp(V(t) eV

for ¢ near 0, where k1 (¢) and V (¢) are smooth functions that take values in K /M and Py
respectively. We have

0
a—w(k exp(tX), H, )| =in(V'(0)).
! =0
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Lets : K/M — K be a section of the quotient map that is defined in a neighbourhood of
k1(0). If we define k1 (t) = s(k1(¢)) for ¢ near O, this gives a smooth Cartan decomposition

hkexp(tX)exp(iH) = k1 (t) exp(V()ka(t) € U. (6.6)
If we seta = exp(V (0)) and k; = k;(0) fori = 1, 2, and define X; € ¥ so that
ki(1) = ki (0) exp(tX; + O(1%)),

then differentiating (6.6) at t = 0 gives

Adgdimy X = Ady X1+ Ad V/(0) + Xa,
-1 —1
Adiy Ad iy X = Ad;! X1+ V/(0) + Adyg, X

As Ad;1 X1 and Adg, X both lie in € + g, we see that V’(0) is equal to the projection of
Ady, Ade_xi)(i gy X to a. Our assumption that k is a critical point of ¥ then implies that

(H,., Ady, Ad_!

expiy X) =0 forall X e t. (6.7)

Let [y be the centraliser of H in go, and let L be the Levi subgroup of G with Lie
algebra [p. Note that [y is stable under 6; we write its Cartan decomposition as lp =
€10+ pro. Let Kp = L N K, which is a maximal compact subgroup of L because it is
compact and has Lie algebra €7, o. We note that K;, C K g. After shrinking B if necessary,
our assumption that H € B implies that the projection of Ade_xi)(i mttop is equal to
pi C p, and so condition (6.7) holds iff Ad,;1 H,, € py. The inclusion Ad,:z1 H, €pL
implies that there is a k; € K, such that Ady, Adk_z1 H, € a,and as H,, is regular this
implies that k = wky, for some w € M’. Substituting this into (6.6) at t = 0 gives

hk = kjaky exp(—iH) = kiawkp exp(—i H) = kjaexp(—iwH)wky .

We have h = exp(Hp) and aexp(—iwH) = exp(V(0) — iwH), and if B is chosen
small enough we will have both Hy € Py and V(0) — iwH € Py. Proposition 6.1 then
gives k € M'ky as required. This shows that the critical point set of ¥ is contained in
M’K g, and the reverse inclusion follows from the right K y-invariance of ¥ and the
easily observed fact that ¥ is critical on M’. O

Choose [ € K, and let a and K, be as in §4.1. We again write [ = wly with [y € K,
and w € M’ fixed, and let X, = Adl_1 Y,. It follows from Proposition 6.5, just as in the
proof of Lemma 4.4, that [ is a critical point of ¢ exactly when H € ap ; N B.

Proposition 6.6. There are positive real analytic functions
Fy:BNapr — R, a€Z+,

such that when H € B N ag,r, the Hessian of Y at | with respect to the vector fields
{Xo | @ € Ag} is diagonal, and satisfies

(DY)ae = {1, @) Fu(H) sin(@(wH)), o € A*,

(DV)aa =0, a€Af\ AT
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Proof. Showing that (Dvr)qs = 0 when « or B lie over the zero root is simple, and left
to the reader. Let o, B € A™T. We wish to calculate

2

a .
o597 Mol exp(sXa) exp(tXp) exp(i H)))

s=t=0

Asl = wlp and H € a;, we may rewrite the argument of p above as
hlexp(sXy)exp(tXg) exp(i H) = hexp(sYy) exp(tYg) exp(iwH)l,

and so we may instead calculate

2

0
8—u(p(h exp(sYy) exp(tYp) exp(iwH))) )
sot $=1=0

As in the proof of Proposition 6.5, we choose a smooth Cartan decomposition
hexp(sYy) exp(tYg) exp(GwH) = ki (s, ) exp(V (s, 1)k (s, 1) (6.8)

for s and ¢ near 0. Moreover, because h exp(iwH) = exp(Ho+iwH) and Hy+iwH € Py
for B small, we may assume that k1 (0, 0) = k»2(0, 0) = e so that we can write

ki(s, 1) = exp(Xiss + Xi st + Xi g5t + O(s?) + 0(t?)).

We define V =V (0,0) = Hy +iwH and Vi; = V;(0, 0), and let a = exp(V). Writing
the approximation to (6.8) involving terms s, ¢ and st gives
hexp(sYy)exp(tYg)exp(iwH) = exp(X1 585 + X1t + X1 515t)a exp(Vist)
- exp(Xa,55 + Xo.41 + Xog50) + O(s) + 0(1%),
a exp(s Adg g ) Yo) exp Al i) Y5)
=a exp(Ad;l[Xl,Ss + X140t + X1,5:5t]) exp(Virst)

-exp(Xa,55 + X241 + Xo,451) + O(s%) + O (17).

Combining exponentials using Baker—Campbell-Hausdorff gives

exp(Ad i) (Yo +1Yp + 51/2[Ya, Yp1))
= exp((Ad, ' X1 + Xo.5)s + (Ad, ' X14 + X200t
+ (Vo + Ady ' X5 + Xog0 + SIAd;! X5, X001+ SIAd, ! X1, Xo s D)st

+0(6H + 0@h), (6.9)
and equating first order terms, we have

Ad!

-1 -1
exp(iwH) Yo =Ad,” X1+ Xo, Ad

exp(iwH) Yp :Ada_l X1+ X2 (6.10)



1488 Simon Marshall

If welet Yy = Vy 4+ V_y where Viy € go,+«, and likewise for 8, then (6.10) becomes

e*ia(wH)Va +eia(wH)V_a — Ad;l Xl,s + XZ,S?
e PRy 4 Py g = Ad X1+ Xoy

Because V = Hjy + iwH was generic we may solve this to obtain

sin(a(wH)) sin(a(V)/i — a(wH))
Xis€ —————(Vu+V_ , Xps€ - Vot+V_ ,
1,s sin(a(V)/i)( at+V_o)+mg 2,5 sin(@(V)/1) (Va+V_o)+mp
(6.11)
and likewise for X;; and B.
Equating the st terms in (6.9) gives
3 AL i Ve Y1 = Vo + Ad7 X o+ Xo + 3[AdS" X5, Xo,]
+ 3IAd; " X1, Xa .
We have [Yy, Yg] € ¢, so that Ad;(L(in)[Ya, Yg] and Ad;1 X1 st + X2, both lie in £4-q.
This implies that
Vi = —projq (3[1Ad; " X1, X1+ 3[Ad; ! X1, X2]). (6.12)

where proj, is the orthogonal projection onto a.

We first consider the case where o # . If o # B as elements of A™ rather than just
Z"’, we see that (6.12) must vanish because the commutators of the form [V, V_g] must
lie in root spaces corresponding to nonzero roots. If « = 8 in AT, the vanishing of (6.12)
follows from our assumption that the vectors V44, Vg were orthogonal, and the identity
([,J1=H,{I,J)for]l eg,and J € g_,.

We now assume that o« = B. In this case, X; ; = X;; so that (6.12) becomes

Vo = —proj, ([Ad, ! X1 5, Xa,]).
Substituting the values of X1 s and X5 ¢ from (6.11) and noting that [m, €] L a, we have

_ sin(e(wH)) sin(x(V)/i —a(wH))
sin(a(V)/i)?
eV +e*VV_g, Vo + Vool + ot

—[Ad; ! X1 4, X251 €

. 2i sin(a(wH)? sin(oz(V)./i —a(wH)) Vo, Vo] + a*
sin(a(V)/ 1)

€ 2 sm(a(wH)? s1n(oe(V)'/z —ewi) Hy(Ve, Vog) + a™.
sin(a (V) /1)

As (Vy, V_g) = —1/2, we therefore have

Vo = —isin(a(wH)) sin(e(V)/i — a(wH)) H
S sin(a(V) /i) *
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If we define
Fu(H) = sin(oz(Y)/i — ot.(wH))’
sin(ae(V) /1)

then if B is sufficiently small, F,, will be a positive real analytic function on B. We then
have

d? _d? )
d—21ﬂ(1 exp(tXq), H, )| =i—=pu(p(hlexp(tXy)exp(iH)))
t t=0 dt t=0
=ipn(Vsr) = sin(a(wH)) Fo (H) (1, ),
which completes the proof. O

6.3. Uniformisation of

Proposition 6.4, and hence Theorem 1.6, follows as in §4.4 after proving analogues of
Theorem 4.7 and Proposition 4.22 for ¥. The analogue of Proposition 4.22 follows in a
straightforward way from Propositions 6.5 and 6.6, but adapting Theorem 4.7 requires
some comments. Choose [ € K withl ¢ M’, and a flag F € F, and retain all the notation
of §4.1 and §4.2, including a choice of s = (u, u) € (n;\] (BN J NAL) x ag with u
regular. We now denote points in (S, s) by s' = (', u'). If x’ € X, we let u(x’) denote
its projection to a*. We may apply Propositions 6.5 and 6.6 exactly as in §4.3 to prove the
following analogue of Corollary 4.15.

Proposition 6.7. There exists a subspace (Y, x) C (X, x) and an isomorphism

7

(X, x) (Y, x) x (C4,0)
R %
(S,s)

with the following properties:

(a) fly is the identity.
(d) (Y, x) is invariant under c, and f commutes with c.
(c) The projection (Y, x) — (S, s) is regular.
(d) Yy =1K, c whens' € S,, and Yy C IK;c whens' € S; with0 <i < q.
(e) We have
L3, =y () — Y ), e)w ax(y)zg. (6.13)

a€X,

Next, we derive the analogue of Theorem 4.7 from Proposition 6.7, which completes the
proof of Theorem 1.6.
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Theorem 6.8. There is an isomorphism

(X, x) : (€4 x C4,0) x (S, s)
(S,s)

a function ¥ € O(S, s), and a nonconstant affine-linear map L : C? - C, such that
f, ¥s and L all commute with ¢, and

f @2 s) =vs) = D (W eyw ez + QWHLE).

aEgY,

Proof. The deduction of Theorem 6.8 from Proposition 6.7 follows much as in the case
of noncompact type. After proving the analogue of Lemma 4.16, we are given Hy, € ag,1,
and HL € ap \ ap, ., and have to show that (9/01) Y, ¥ (I, H, +rHE, W|t=0 # 0 for some

o€ ZJLF Leta € ZJLF, and for small s, r € R, choose a smooth Cartan decomposition
hlexp(sYy) exp(Hy + tHY) = ki (s, )a(s, Dka(s, 1)

with k> (0, 0) = [. Reasoning as in the proof of Proposition 6.5 with X =Y, = V,+V_,,
we have

Yo (I Hy + tHE ) = i (Adg) ) Hyy e @ HD Y, 4 e Dy,

-1
k2(0,1)

As in the proof of Lemma 4.18, this gives

ad —
S YaV U He e HE )| = a(HE) (A Hy, Vo = Vo).
t=0

Lemma 4.19 implies that this quantity is nonzero for some « € AT, which completes the
proof. O

6.4. Bounds for LP norms in compact type

Let By C ipp be a round ball around the origin with respect to the Killing form such
that 2By Niag C B where B is as in Theorem 1.6. Let b € C°°(S) be a nonnegative
real valued K -biinvariant function with support in exp(Bj), and that satisfies b(e) = 1
and b(u) = b(u™"). Let k? = 1"""bogy, let K ,0 be the point pair invariant kernel on S
associated to k¥, and let T be the operator with integral kernel K?.

Proposition 6.9. The spherical transform of k? is real, and satisfies k?(s*tj1) > 1 and
KO(rv) <as t™ A if |Is* i —v|| > 6.
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Proof. To prove that k? (A) is real, the identity ¢; whH= @, (1) implies that
W) = / DG 1y (WP ) dt = £ / D) serp (1~ e (w1
U U

= /U D)oty (W) pye (0) dt = KYR)

as required. The assertion that k? (s*tw) > 1 follows in a similar way from ¢+, = @, "
and Lemma 6.3, which implies that t”"|gos*m|2 has mass > 1 in any ball about the
origin.

We prove the last assertion in the same way as Proposition 2.10, using the integral
representation (6.5). We have

k) (tv) = / 1" b($) P51 (8) srev () ds,
S
and after substituting the representation (6.5), this becomes

KO(v) = / / 1" b(5)@pye , (hks)@Pye, (hs) ds dk.
KJS

Our assumption on By implies that hks € V for s € supp(b), and so we may apply the
asymptotic expansion of Lemma 6.2, which reduces us to proving that

/ / t"7"b(s)ay (hks, s*waz(hs, s*v) exp(—ts*,u(p(hks)) - ts*v(,o(hs))) ds dk
KJS
Last

Under the identification of T*S with U xg ip*, the differentials of —s*u(po(s)) and
—s*v(p(s)) liein U x Adg i and U x Adg iv respectively. The assumption ||s*u—v| >3
implies that U x Adg i and U x Adg (—iv) are separated, and the result now follows
from integration by parts as in Proposition 2.10. O

It follows from Proposition 6.9 that T; is a self-adjoint approximate spectral projector
onto the parameter 7. It follows that if we define k; = k? * k? and let K; be the point
pair invariant associated to k,, then K, is the integral kernel of 7,7;*. We may prove
Theorem 1.1 as in the noncompact case, by performing a radial decomposition of K,
and estimating the L' — L™ and L> — L? norms of the truncated pieces. This works
in exactly the same way once we have a pointwise bound for k; analogous to that of
Lemma 2.8, and a bound for the Harish-Chandra transform of the truncated pieces of k;.
The pointwise bound is given by the following lemma.

Lemma 6.10. We have

ke(exp(H)) < 1" [T (0 + tlaCH)D ™',

aeAT

uniformly for H € B and u € B*.
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Proof. Inverting the spherical transform of k; and substituting s = e gives

D dWik(v) = ki(e) = k) # k) (e) < KI5 < d(tpe) < 1" (6.14)
veA

If we choose § > 0 and let B} C ag; be the ball of radius § about s* 1, we may also apply
Proposition 6.9 to obtain

k)= Y dWk®es(s) + 046,

veANt Bf
Combining this with (6.14) and the positivity of E implies that

k()| < 1" sup  |@u(s)| + 0a(t™™),
veAﬁth

and as we may assume that s € exp(B), the result now follows from Theorem 1.6. O

The L?> — L? bound for the truncated pieces is proven by combining Lemma 6.10 with
the method of Proposition 6.9. Theorem 1.1 now follows as in §2.
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