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Abstract. Let G be a connected real semisimple Lie group and H a closed connected subgroup.
Let P be a minimal parabolic subgroup of G. It is shown that H has an open orbit on the flag
manifold G/P if and only if it has finitely many orbits on G/P . This confirms a conjecture by
T. Matsuki.
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1. Introduction

Let G be a connected real semisimple Lie group and P a minimal parabolic subgroup.
Let H < G be a closed and connected subgroup. The following theorem was conjectured
by T. Matsuki [13].

Theorem 1.1. If there exists an open H -orbit on the real flag variety G/P then the
double coset space H\G/P is finite.

The purpose of this paper is to give a proof of Matsuki’s conjecture. Note that the converse
statement is easy: if H\G/P is finite, then at least one double coset must be open as a
consequence of the Baire category theorem. Further we remark that the theorem becomes
false if the parabolic subgroup P is not minimal. A standard counterexample is G =
SL(3,R) with P a maximal parabolic and H the unipotent part of P .

In case G is a complex algebraic reductive group, the minimal parabolic P equals a
Borel subgroup B of G. A complex algebraic subgroup which has an open orbit on G/B
is called spherical. In this case the finiteness of H\G/B for a spherical subgroup H is
a result of Brion [5] and Vinberg [14] with a simplified proof by Knop [10]. The spher-
ical subgroups of a complex algebraic group have been classified by Krämer [11] and
Brion [6], but to our knowledge there exists no such classification for G real.
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For G real and H a symmetric subgroup (that is, H is the identity component of the
set of fixed points for an involution), it was shown by Wolf [15] that both the assumption
and conclusion of Theorem 1.1 are always fulfilled.

Our proof of Theorem 1.1 proceeds in two steps. In the first step we reduce the asser-
tion to the case where the real rank of G is one. The argument for this step is essentially
due to Matsuki [13]. For rank one groups we then treat the cases where H is reductive
or non-reductive in G separately. In case H is non-reductive, one shows that H is con-
tained in a conjugate of P and that there are two, three or four H -orbits on G/P . For
reductive H we prove a refined statement:

Theorem 1.2. Suppose that G is of real rank one and that H is a connected reductive
subgroup with an open orbit on G/P . Then there is a symmetric subgroup H ′ ⊃ H such
that the H ′-orbit decomposition of G/P equals the H -orbit decomposition.

This concludes the proof of Theorem 1.1 since as mentioned above, H\G/P is finite for
all symmetric subgroups of G.

Finally we remark that the conclusion of Theorem 1.2 is false in higher real rank.
For example, H = SL(2,R) diagonally embedded in the triple product G = SL(2,R)3
admits an open orbit in G/P (see [8]). Let P = P 3

1 , where P1 is a parabolic subgroup of
SL(2,R). Then the H -orbit through the origin of G/P is one-dimensional. On the other
hand, the proper symmetric subgroups containing H have the form H ′ = SL(2,R)2,
embedded by (x, y) 7→ (x, x, y) up to permutation, and for these groups the orbit through
the origin is two-dimensional.

After we finished this paper, it was brought to our attention by T. Kobayashi that the
subject was previously considered by F. Bien [2], where an outline is given for a proof of
Theorem 1.1. Apart from the reduction suggested by Matsuki, there is however no overlap
with the current approach.

2. Reduction to the rank one case

Let us call the pair (G,H) real spherical provided there are open H -orbits on G/P .
This means that the corresponding infinitesimal pair (g, h) of Lie algebras satisfies g =
h+Ad(x)p for some x ∈ G. Since all our groups will be real, we will just say spherical.
As is customary, we denote Lie subgroups of G by upper case roman letters and their Lie
algebras by the corresponding lower case German letters.

Let (G,H) be a spherical pair. Matsuki remarked in [13, p. 813] that Theorem 1.1
holds true provided it is valid for all spherical pairs (G,H) where G is a semisimple Lie
group of real rank one. The purpose of this section is to provide a proof of this remark.
We follow closely the proof of [13, Theorem 4].

We assume that the assertion of Theorem 1.1 holds for all rank one groups. Let (G,H)
be a spherical pair. Then there exists an open orbit in G/P , say Hx0P .

We fix a Cartan decomposition g = k ⊕ s, with corresponding involution θ , and a
maximal abelian subspace a ⊂ s. We assume that P ⊃ A and denote by5 ⊂ a∗ the set of
simple roots attached to P . For α ∈ 5we define the parabolic subgroup Pα := PsαP ∪P
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where sα ∈ G is a Weyl group representative of the reflection associated to α, and write
Pα = LαUα for its Levi decomposition relative to A. Then Lα has real rank one. Write
G = Pα1 · . . . · Pαn as a product of such parabolics. Set

P i := Pα1 · . . . · Pαi (0 ≤ i ≤ n)

with the convention that P 0
= P . We will prove by induction on i that H\Hx0P

i/P is
finite. The conclusion is reached after n steps.

The case of i = 0 is clear. Assume that

Hx0P
i
= Hg1P ∪ · · · ∪HgkP (2.1)

for elements g1, . . . , gk ∈ G and let α = αi+1 ∈ 5. Then it is sufficient to show for any
g ∈ Hx0P

i that HgPα breaks into finitely many H × P -orbits.
We shall first prove that there exists a relatively open H × P -orbit in HgPα . More

precisely, we will show that for some r = 1, . . . , k we have HgrP ⊂ HgPα open.
Note that pα = p+ g−α + g−2α and set V := exp(g−α + g−2α). Then VP is an open

neighborhood of 1 in Pα . As Hx0P
i is open and contains g, we obtain an open subset

O ⊂ V with 1 ∈ O such that gx ∈ Hx0P
i for all x ∈ O. Moreover, because of (2.1) we

have O =
⋃k
r=1Or with

Or = {x ∈ O | gx ∈ HgrP },

and at least one of these sets has non-empty interior by Baire’s theorem. Fix such an r .
ThenHgxP = HgrP for every x ∈ Or , and asOrP has non-empty interior in VP it fol-
lows that HgrP has non-empty interior in HgPα , hence is an open subset by transitivity
of H × P .

We can now show that HgPα decomposes into finitely many orbits. Notice that we
have HgPα = HgrPα . For simplicity we replace H by grHg−1

r , and claim that if HP is
open in HPα then the latter set is a finite union of H × P -orbits.

We write pα = lα + uα for the Levi decomposition of the Lie algebra of Pα . Further
we denote by

πα : pα → lα

the projection along uα and remark that this map is a Lie algebra homomorphism. Set
hα := πα(pα ∩ h). As HP is open we find

h+ p = h+ pα,

and hence pα = (pα ∩ h)+ p. In turn this implies that

lα = hα + (lα ∩ p).

In other words, (lα, hα) is a rank-one spherical pair. We thus find that Hα\Lα/(Lα ∩ P)
is finite (the fact that Lα may be disconnected does not matter, because all its components
intersect P non-trivially). We write

Lα =

m⋃
j=1

Hαxj (Lα ∩ P)
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and claim that

HPα =

m⋃
j=1

HxjP.

As Pα = LαP , it suffices to show that hxj ∈ HxjP for all h ∈ Hα and all j . Note that
hα is contained in the subalgebra (pα ∩ h) + uα of pα , and hence Hα is contained in the
subgroup (Pα ∩H)Uα of Pα . It follows that

hxj ∈ (Pα ∩H)Uαxj = (Pα ∩H)xjUα ⊂ HxjP

as claimed.
Hence the proof of Theorem 1.1 is reduced to the following result.

Proposition 2.1. Let G be a semisimple Lie group of real rank one, and H a connected
spherical subgroup. Then the number of H -orbits on G/P is finite.

Example: G = SL(2,R). Every one-dimensional subalgebra is conjugate to k, a or n.
The first two are symmetric, and in the third case finiteness of H\G/P follows from
the Bruhat decomposition. Hence H\G/P is finite for every non-trivial connected sub-
group H .

2.1. Simple groups

Once the real rank is one, we can easily reduce to the case that G is simple. Otherwise G
is locally isomorphic toG1×K2 whereG1 is simple of real rank one andK2 is compact.
Then P = P1 × K2 where P1 ⊂ G1 is minimal parabolic, and hence G/P = G1/P1.
Moreover, if H1 denotes the projection of H on G1, then H -orbits on G/P are the same
as H1-orbits on G1/P1.

3. Non-reductive spherical subgroups

In this section we prove Proposition 2.1 for spherical subgroups which are not reductive.

Lemma 3.1. Let g be a real reductive Lie algebra of real rank one, and h a subalgebra
which is not reductive in g. Then h ⊂ p up to conjugation.

Proof. This is an easy consequence of the main result of [4]. Let u denote the unipotent
radical of h; then u 6= 0 by assumption. According to [4] there is a parabolic subalgebra
p′ ⊂ g such that

(1) the normalizer of u is contained in p′, and
(2) the unipotent radical of p′ contains u.

Hence h ⊂ p′ 6= g, and p′ is conjugate to p because of rank one. ut

For a rank one group G we let s be a non-trivial Weyl group representative and recall
the Bruhat decomposition G = P ∪ PsP . The following result together with Lemma 3.1
implies the conclusion of Proposition 2.1 for H non-reductive.
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Lemma 3.2. Let g be a simple real rank one Lie algebra, h a spherical subalgebra,
and p a minimal parabolic subalgebra for which h ⊂ p. Then the Bruhat decomposition
G/P = P ∪ PsP is H -stable and there are at most four orbits of H on G/P .

Proof. We denote by P = MAN the standard Langlands decomposition of P relative
to A.

The cells of the Bruhat decomposition are P -stable, hence alsoH -stable. In particular,
the closed cell P ∈ G/P is an H -orbit. Hence by assumption the open cell O := NsP
admits at least one openH -orbit, and the assertion is that it then decomposes into at most
three H -orbits.

We decompose h = l n n1 with l reductive in g and n1 an ideal which acts on g
nilpotently. As h ⊂ p we have n1 ⊂ n, and it is no loss of generality to assume that
l ⊂ m+ a. Then with m1 = l ∩m we have

h = m1 + RX + n1

for some X = Y +Z with Y ∈ m and Z ∈ a. Since [l, l] ⊂ m1, the element X belongs to
the center of l and commutes with m1. Let s1 = RX, then both s1 and m1 normalize n1
and we have

H = M1S1N1

for the corresponding subgroups of G. Since M1S1s ⊂ sP we see that the H -orbits
in NsP are the sets N1 cM1S1(x)sP for x ∈ N , where cg(x) = gxg−1. In particular,
N1sP ⊂ NsP is an H -orbit. If N1 = N we are done, hence we may assume n1 ( n.

Note that Z 6= 0. Otherwise X = Y , hence X ∈ m1 and h = m1 + n1. Then
H = M1N1 and H -orbits have the form N1 cM1(x)sP . Since N1 cM1(x) cannot be open
in N for any x, a contradiction is reached.

The element X acts semisimply on nC and preserves the subspace n1C. We denote
by α the indivisible positive root of a. Then n = gα⊕g2α and [n, n] ⊂ g2α . Since Z 6= 0,
the spaces gαC and g2α

C have no eigenvalues in common for ad(X). It follows that

n1 = (n1 ∩ g
α)⊕ (n1 ∩ g

2α). (3.1)

Let n0 be the orthogonal complement of n1 in n. Then n0 6= 0 and (3.1) implies

n0 = (n0 ∩ g
α)⊕ (n0 ∩ g

2α). (3.2)

It follows from (3.1) and (3.2) together with [9, Ch. IV, Lemma 6.8] that the exponen-
tial map induces a diffeomorphism of n0 and the left coset space N1\N . Note that n0
is M1S1-invariant. We conclude that the H -orbits in NsP correspond to the orbits of
Ad(M1S1) on n0. In particular, the H -orbit N1sP corresponds to {0} ⊂ n0.

Since M acts isometrically on n, M1 acts isometrically on n0. Furthermore, let X =
Y + Z be normalized so that α(Z) = 1 and set st = exp(tX) ∈ S1. Then for j = 1, 2,

‖Ad(st )x‖ = ej t‖x‖, x ∈ n0 ∩ g
jα, t ∈ R. (3.3)

It follows that if O1 6= {0} is an Ad(M1S1)-orbit in n0, then the intersection of O1 with
every sphere in n0 is non-empty and is an Ad(M1)-orbit.
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Assume first that dim n0 > 1. Then spheres in n0 are connected, and by compact-
ness an open Ad(M1)-orbit is the entire sphere. Hence the open Ad(M1S1)-orbit in n0 is
n0 \ {0}. In this case NsP decomposes into two orbits, N1sP and its complement.

Assume finally that dim n0 = 1. In this case (3.3) implies that Ad(st )x = ej tx for all
x ∈ n0 and all t ∈ R (where j = 1 or 2). Hence there are three orbits in n0, corresponding
to {0} and the two components of its complement. ut

Remark 3.1. The proof shows a bit more. The open N -orbit NsP breaks into at most
three H -orbits. If we identify N with Rn and N1 with Rk , then these H -orbits are of the
following type:

(1) Rn (one orbit, the case where H ⊃ N ) when k = n.
(2) Rk and Rn−k\{0} × Rk when 0 ≤ k < n− 1.
(3) Rn−1, R+ × Rn−1, R− × Rn−1 when k = n− 1.

4. Some results in real rank one

We now turn to the case where G has real rank one and our spherical subgroup H ⊂ G
is reductive, in which case Proposition 2.1 will ultimately be deduced from Theorem 1.2.
The proof of that theorem will be given after we have prepared for it through several
sections. Our first preparation, Proposition 4.1, shows in this case that if H ⊂ H ′ ⊂ G
withH ′ symmetric, then theH -orbits inG/P coincide with theH ′-orbits. The proof uses
Matsuki’s description of the H ′-orbits on G/P .

Lemma 4.1. Let g be a real reductive Lie algebra with Cartan involution θ , and let
gn ⊂ g be its maximal non-compact ideal. Let h ⊂ g be a θ -stable subalgebra such
that g = h+ k. Then gn ⊂ h.

Proof. It follows from the assumption that s ⊂ h, and this implies the conclusion as gn is
generated by s. ut

Recall that a subalgebra h′ ⊂ g is called symmetric if it is the fixed points of an involution
of g. Recall also that for every involution there exists a commuting Cartan involution.
Given an involution σ , we write g = h′ + q for the corresponding decomposition of g.

Lemma 4.2. Let g be simple of real rank one and let h′ be a proper symmetric subalgebra
defined by an involution σ commuting with θ . Let p = m+ a+ n be a minimal parabolic
subalgebra with the indicated Langlands decomposition, and assume a ⊂ s ∩ q. Then

g = h′ + p and h′ ∩ p ⊂ m.

Proof. This follows from [12, Theorem 3], since σ(n) = θ(n). ut

Lemma 4.3. LetG be a simple Lie group of real rank one and let h ⊂ h′ ( g be reductive
subalgebras such that

(1) h is spherical,
(2) h′ is symmetric and defined by an involution commuting with θ .
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Then:

(3) There exists a minimal parabolic subalgebra p as in Lemma 4.2 with a ⊂ s ∩ q such
that h′ = h+ (h′ ∩m) and

H ′ = H(H ′ ∩M).

(4) Let h′n be the maximal non-compact ideal in h′. Then h′n ⊂ h.

Proof. Let p1 be a minimal parabolic subalgebra for which h+p1 = g. Then h′+p1 = g
and it follows from [12, Theorems 1 and 3] that p1 isH ′-conjugate to a minimal parabolic
subalgebra p with a ⊂ s ∩ q. Thus g = h+ Ad(x)p for some x ∈ H ′. Since h ⊂ h′, this
implies that

h′ = h+ h′ ∩ Ad(x)p = h+ Ad(x)(h′ ∩ p).

From Lemma 4.2 we find h′ ∩ p = h′ ∩m, which is compact. It follows thatHx(H ′ ∩M)
is open and closed inH ′, hence equal toH ′. HenceH × (H ′ ∩M) is left×right transitive
on H ′, and (3) follows.

Since h is reductive in g, it is reductive in h′. Hence some H ′-conjugate h1 of it is
θ -stable. The conclusion in (3) is valid for h1 and hence h′ = h1 + h′ ∩ k. It now follows
from Lemma 4.1 that h′n ⊂ h1. Since h′n is an ideal, this implies h′n ⊂ h as well. ut

Proposition 4.1. LetG be a connected simple Lie group of real rank one, and letH ⊂ H ′

be connected reductive subgroups such that H is spherical and H ′ is symmetric and
proper in G. Then H is transitive on each H ′-orbit in G/P .

Proof. Choose a Cartan involution which commutes with the involution which de-
fines H ′. Let p be as in Lemma 4.3. Since the real rank of G is one, it follows from
Matsuki’s orbit description [12] that H ′ has only open and closed orbits in G/P . The
open orbits are of the form H ′xP for x ∈ NK(a), the normalizer in K of a, and the
closed orbits are of the form H ′yP with y ∈ K such that Ad(y)(a) ⊂ h′.

It follows from Lemma 4.3 that

H ′xP = H(H ′ ∩M)xP = HxP

for x ∈ NK(a).
Let h′c denote the ideal in h′ which is complementary to h′n. Then h′ = h′n ⊕ h′c and

H ′ = H ′nH
′
c. If Ad(y)(a) ⊂ h′ then Ad(y)(a) ⊂ h′n and hence Ad(y)(a) is centralized

by H ′c. It follows that H ′c ⊂ yMy
−1 and hence

H ′yP = H ′nyP = HyP

since H ′n ⊂ H by Lemma 4.3. ut

5. Example: The Lorentzian groups

Before we treat the general case, it is instructive to see the proof of Theorem 1.2 for the
case of SO0(1, n) for n ≥ 2.
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Proof. We observe that G = SO0(1, n) acts on Rn+1. In what follows we write the
elements of x ∈ Rn+1 as x = (x0, x

′) with x′ ∈ Rn. The stabilizer P ⊂ G of the line
R(1, 1, 0, . . . , 0) ∈ P(Rn+1) is a minimal parabolic subgroup. Note that G/P = Sn−1 is
an n− 1-dimensional sphere which we shall identify with a projective quadric:

Sn−1
= {[x] ∈ P(Rn+1) | x2

0 = ‖x
′
‖

2
= x2

1 + · · · + x
2
n}. (5.1)

Let h be a reductive spherical subalgebra, and let h = hn ⊕ hc be the decomposition
of h into ideals such that hn is non-compact and hc is compact. Since so(1, n) has rank
one and root multiplicitym2α = 0, the same must be true for hn. Hence hn = so(1, p) for
some 0 ≤ p ≤ n. Furthermore, by conjugation of h we can arrange that hn = so(1, p) is
realized in the left upper corner of g = so(1, n), and accordingly

h = hn ⊕ hc, H = SO0(1, p)×Hc (5.2)

with hc ⊂ so(n − p) and so(n − p) embedded in the lower right corner. It now follows
from Proposition 4.1 that orbits onG/P forH are the same as for the symmetric subgroup
H ′ = SO0(1, p)× SO(n − p) of G. Thus the proof of Theorem 1.2 is complete for this
case. ut

Remark 5.1. It follows from the above that every spherical subgroup in SO0(1, n) is
conjugate to a subgroup of H ′ = SO0(1, p)× SO(n− p) of the form (5.2) for some 0 ≤
p ≤ n. Furthermore sinceH ′∩M = SO(n−p−1) in this case, it follows that such a sub-
group is spherical if and only ifHc is transitive on Sn−p−1

= SO(n−p)/SO(n−p− 1).
BesidesH = H ′ this can be attained in case p satisfies certain parity conditions. A typical
example is p = n− 2k and

H = SO0(1, n− 2k)× SU(k),

since Hc = SU(k) acts transitively on the spheres in R2k . For p = n − 4k we can also
take Hc = Sp(k), which again acts transitively on spheres. Besides these two series there
are three exceptional cases (see [3] for the classification of transitive actions of compact
Lie groups on spheres).

6. Classifications

In this section we prepare for the proof of Theorem 1.2 by showing that in the rank one
case a maximal reductive subgroup is either symmetric or not spherical. This will be done
by applying some results which in turn are derived from known classifications of simple
Lie groups and their subgroups.

We first recall the classification of the simple real rank one Lie algebras:

so(1, n), su(1, n), sp(1, n), f4 (6.1)

where f4 = f4(−20), the real form of f4C with maximal compact so(9). In the first series,
n is limited to n ≥ 2. In the second and third series n ≥ 1 is allowed, but as so(1, 2) '
su(1, 1) and so(1, 4) ' sp(1, 1) an exhaustive list is obtained by taking n ≥ 2 in all
cases.
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6.1. Symmetric subalgebras

Lemma 6.1. The symmetric pairs (excluding h = g and h = k) for the simple real rank
one Lie algebras are

g = so(1, n), hm = so(1, m)× so(n−m), 0 < m < n,

g = su(1, n), hm = s(u(1, m)× u(n−m)), 0 < m < n,

h = so(1, n),
g = sp(1, n), hm = sp(1, m)× sp(n−m), 0 < m < n,

h = u(1, n),
g = f4, h1 = so(1, 8), h2 = sp(1, 2)× sp(1),

Proof. This is seen from Berger’s table [1, pp. 157–161]. ut

6.2. Maximal reductive subalgebras

We are particularly interested in reductive subalgebras which are maximal. The following
lemma provides the key to the reduction to symmetric pairs.

Lemma 6.2. Let g be a simple Lie algebra of real rank one and let h ⊂ g be a maximal
proper reductive subalgebra. Then either h is a symmetric subalgebra, or

(1) g = sp(1, n) and h is conjugate to so(1, n)× sp(1), where n > 1,
(2) g = f4 and h is conjugate to su(1, 2)× su(3),
(3) g = f4 and h is conjugate to so(1, 2) × g2, where g2 denotes the compact real form

of g2C.

None of the pairs in (1)–(3) are spherical.

Proof. It is well known that the symmetric subalgebras of a simple Lie algebra are max-
imal proper reductive subalgebras.

Reductive subalgebras are listed in [7, pp. 276 and 284], and it is easily seen from
these lists together with the list in Lemma 6.1 that only the subalgebras in (1)–(3) are
maximal and non-symmetric. The fact that these pairs are not spherical will be proved in
the following subsections.

6.2.1. (g, h) = (sp(1, n), so(1, n) × sp(1)) is not spherical when n > 1. If n = 2 then
dim h = 6 and dim(g/p) = 7, so we may assume n ≥ 3. As in the Lorentzian cases, we
identify for G = Sp(1, n) the flag variety G/P = S4n−1 with a quadric in the quaternion
projective space P(V ) where V = Hn+1:

S4n−1
= {[z] ∈ P(V ) | |z0|

2
= |z1|

2
+ · · · + |zn|

2
}.

Here the action of G on V is on the left, and

[z] = {zh | h ∈ H, h 6= 0} ∈ P(V ).
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As a representation for SO0(1, n), the space V decomposes into four copies of V0 = Rn+1

with standard action. Hence the stabilizer in Hn = SO0(1, n) of an element v ∈ V is the
stabilizer of four elements in V0, hence the centralizer of an at most four-dimensional
subspace in V0. The centralizer in SO0(1, n) of a four-dimensional subspace of Rn+1 is
conjugate to the centralizer in SO0(1, n − 3) of a one-dimensional subspace of Rn−2.
Since all non-trivial orbits of SO0(1, n − 3) in Rn−2 have codimension one, a simple
computation shows that the codimension in SO0(1, n) of such a subgroup is 4n − 6.
Hence orbits of Hn in V are at most of this dimension, and orbits of H in S4n−1 are at
most of dimension 4n− 3.

6.2.2. (f4, so(1, 2)× g2) is not spherical. Since dimG/P = 15, it suffices to show that
the subgroup G2 ⊂ K with Lie algebra g2 has orbits in K/M = G/P of dimension at
most 11. Recall that K = Spin(9) and that we can realize K/M as the unit sphere in the
16-dimensional real spin representation V16 ofK . This representation decomposes for the
standard inclusions Spin(7) ⊂ Spin(8) ⊂ Spin(9) into a direct sum of two copies of the
spin representation V8 of Spin(7). NowG2 is the isotropy subgroup of a spinor in V8, and
hence as a G2-representation,

V16 = V7 ⊕ V7 ⊕ R⊕ R,

with a 7-dimensional representation of G2. It follows that every orbit of G2 lies in a
product R1S

6
×R2S

6
⊂ V7⊕ V7 of spheres of radii R1, R2 ≥ 0. Furthermore, the action

of G2 on S6
× S6 is not transitive as the diagonal is invariant. Since G2 is compact, we

conclude that there are no open orbits on S6
× S6. This proves the claim.

6.2.3. (f4, su(2, 1)× su(3)) is not spherical. Note that dimH = 16 and dimG/P = 15.
Let us first collect a few facts about f4. We refer to [7] for more details. Consider the
Jordan algebra

Herm(3,O)2,1 =

x =
α1 c3 −c̄2
c̄3 α2 c1
c2 −c̄1 α3

∣∣∣∣∣∣ αi ∈ R, ci ∈ O

 . (6.2)

The group G of automorphisms of W := Herm(3,O)2,1 is a real Lie group with Lie
algebra f4. Moreover the trace free elements V := Wtr=0 is an irreducible real represen-
tation for G with a non-zero K-fixed vector. Let v0 ∈ V be a highest weight vector. Then
P · v0 = R+v0 and we can realize the flag manifold as the image of G · v0 in P(V ).
According to [7, p. 275], R×G · v0 = C, where

C := {x ∈ V | x2
= 0, x 6= 0},

and thus G/P = P(C).
Note that H = SU(2, 1)× SU(3) acts naturally on V . The factor Hn = SU(2, 1) acts

by matrix conjugation. Further, the automorphism group of O is G2 and Hc = SU(3)
is the subgroup which commutes with complex multiplication on O. We will show that
every element [x] ∈ P(C) has an at least 2-dimensional stabilizer in H .
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A straightforward matrix computation shows that if x in (6.2) satisfies x2
= 0 and has

trace zero, then up to multiplication by a real number,

x =

|c2|
2
−c̄2c̄1 −c̄2

c1c2 |c1|
2 c1

c2 −c̄1 −1

 (6.3)

with |c1|
2
+ |c2|

2
= 1.

In what follows, we decompose O = C + C⊥ and regard OI := C⊥ as a complex
vector space for the left action of C. Then as a module for SU(3) it is equivalent to the
standard complex representation on C3. Having said that, we write elements x ∈ V as

x = xC + xI

where xC ∈ isu(2, 1) ⊂ V and xI is of the form

xI =

 0 c3 −c̄2
c̄3 0 c1
c2 −c̄1 0

 (6.4)

with c1, c2, c3 ∈ OI . Note that this gives us a decomposition of H -modules.
We see from (6.3) that xC 6= 0 for all x ∈ C. Hence the map

P(C)→ P(isu(2, 1)), [x] 7→ [xC],

is defined. As this is an open map, the image of an open H -orbit is a non-empty open
set. Since the semisimple elements in isu(2, 1) are dense, it suffices to consider x in (6.3)
with xC semisimple. If xC ∈ isu(2, 1) is semisimple, it is SU(2, 1)-conjugate to one ofα1 0 0

0 α2 0
0 0 −α1 − α2

 ,
2α 0 0

0 −α γ i

0 γ i −α

 ,
where α1, α2, α, γ ∈ R. However, the second case does not conform with (6.3). Hence
we may assume that x = xC + xI with xC diagonal and with xI as in (6.4). It follows
from (6.3) that c1c2 = c̄3.

The fact that c1c2 ∈ OI implies that c1 and c2 are orthogonal elements. Let OI =
Cj ⊕ Cl ⊕ Cn in the standard notation. After application of SU(3) to xI , it is no loss of
generality to assume that c1 = aj and c2 = bl for some a, b ∈ R. Then c3 = −abn and

xI =

 0 −abn bl

abn 0 aj

bl aj 0

 .
The diagonal torus T < SU(2, 1) commutes with the diagonal matrix xC, and embedded
into H via

t = diag(t1, t2, t3) 7→ (t, t)

it also stabilizes xI—note that for z ∈ C and x ∈ OI one has xz = zx. Hence the
stabilizer of x in H has dimension at least 2.

This concludes the proof of Lemma 6.2. ut
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7. Proofs

All ingredients for the proofs have already been prepared.

7.1. Proof of Theorem 1.2

Let G be semisimple of real rank one and H ⊂ G a connected reductive spherical sub-
group. As seen in Section 2.1, we may assume G is simple.

Let h′ be a maximal proper reductive subalgebra which contains h. It follows from
Lemma 6.2 that h′ is symmetric, and then Proposition 4.1 implies that H -orbits and H ′-
orbits agree on G/P.

7.2. Proof of Proposition 2.1 and Theorem 1.1

Theorem 1.2 implies the statement of Proposition 2.1 for reductive subgroups by the
results of [15] or [12]. By combining with Lemmas 3.1 and 3.2 we obtain the proposition
for general subgroups. This also concludes the proof of Theorem 1.1.
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