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Abstract. We show that affine cones over smooth cubic surfaces do not admit non-trivial
Ga-actions.
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Throughout this article, we assume that all varieties considered are algebraic and defined
over an algebraically closed field of characteristic 0.

1. Introduction

One of the motivations for the present article comes from the articles of H. A. Schwarz
[34] and G. H. Halphen [16] in the mid-19th century, studying polynomial solutions of
Brieskorn–Pham polynomial equations in three variables after L. Euler (1756), J. Liou-
ville (1879) and so forth [12]. Meanwhile, since the mid-20th century the study of rational
singularities has witnessed great development [2], [5], [25]. These two topics, one classic
and the other modern, encounter each other in contemporary mathematics. For instance,
there is a strong connection between the existence of a rational curve on a normal affine
surface, i.e., a polynomial solution to algebraic equations, and rational singularities [15].

As an additive analogue of toric geometry, unipotent group actions, specially
Ga-actions, on varieties are attractive objects of study. Indeed, Ga-actions have been
investigated for their own sake [3], [18], [29], [35], [40]. We also observe that Ga-
actions appear in the study of rational singularities. In particular, the article [15] shows
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that a Brieskorn–Pham surface singularity is a cyclic quotient singularity if and only if
the surface admits a non-trivial regular Ga-action. Considering its 3-dimensional ana-
logue, H. Flenner and M. Zaidenberg in 2003 proposed the following question [15, Ques-
tion 2.22]:

Does the affine Fermat cubic threefold x3
+ y3

+ z3
+ w3

= 0 in A4 admit a
non-trivial regular Ga-action?

Even though it is simple-looking, this problem has stood open for 10 years. It turns out
that the problem is purely geometric and can be considered in a much wider setting [19]–
[22], [33].

To see the problem from a wider viewpoint, we let X be a smooth projective variety
with a polarization H , where H is an ample divisor on X. The generalized cone over
(X,H) is the affine variety defined by

X̂ = Spec
(⊕
n≥0

H 0(X,OX (nH))
)
.

Remark 1.1. The affine variety X̂ is the usual cone over X embedded in a projective
space by the linear system |H | provided thatH is very ample and the image of the variety
X is projectively normal.

Let Sd be a smooth del Pezzo surface of degree d and let Ŝd be the generalized cone
over (Sd ,−KSd ). For 3 ≤ d ≤ 9, the anticanonical divisor −KSd is very ample and the
generalized cone Ŝd is the affine cone in Ad+1 over the smooth variety anticanonically
embedded in Pd . In particular, for d = 3, the cubic surface S3 is defined by a cubic homo-
geneous polynomial equation F(x, y, z, w) = 0 in P3, and hence the generalized cone Ŝ3
is the affine hypersurface in A4 defined by the equation F(x, y, z, w) = 0. For d = 2, the
generalized cone Ŝ2 is the affine cone in A4 over the smooth hypersurface in the weighted
projective space P(1, 1, 1, 2) defined by a quasi-homogeneous polynomial of degree 4.
For d = 1, the generalized cone Ŝ1 is the affine cone in A4 over the smooth hypersurface
in the weighted projective space P(1, 1, 2, 3) defined by a quasi-homogeneous polyno-
mial of degree 6 [17, Theorem 4.4].

It is natural to ask whether the affine variety Ŝd admits a non-trivial Ga-action. The
problem mentioned earlier is just a special case of this.

T. Kishimoto, Yu. Prokhorov and M. Zaidenberg studied this generalized problem and
proved the following:

Theorem 1.2 (see [19, Theorem 3.19]). If 4 ≤ d ≤ 9, then the generalized cone Ŝd
admits an effective Ga-action. ut

Theorem 1.3 (see [22, Theorem 1.1]). If d ≤ 2, then the generalized cone Ŝd does not
admit a non-trivial Ga-action. ut

Their proofs make good use of a geometric property called cylindricity, which is worth
studying for its own sake.
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Definition 1.4 ([19]). Let M be a Q-divisor on a smooth projective variety X. An
M-polar cylinder in X is an open subset

U = X \ Supp(D)

defined by an effective Q-divisor D on X with D ∼Q M such that U is isomorphic to
Z × A1 for some affine variety Z.

Kishimoto et al. show that the existence of an H -polar cylinder on X is equivalent to the
existence of a non-trivial Ga-action on the generalized cone over (X,H):

Lemma 1.5 (see [21, Corollary 3.2]). Let H be an ample Cartier divisor on a smooth
projective variety X. Suppose that the generalized cone X̂ over (X,H) is normal. Then
X̂ admits an effective Ga-action if and only if X contains an H -polar cylinder. ut

Remark 1.6. If X is a rational surface, then there always exists an ample Cartier divi-
sor H on X such that X̂ is normal and X contains an H -polar cylinder (see [19, Proposi-
tion 3.13]), which implies, in particular, that X̂ admits an effective Ga-action.

Indeed, what Kishimoto et al. proved in their two theorems is that a del Pezzo surface Sd
has a (−KSd )-polar cylinder if 4 ≤ d ≤ 9 but no (−KSd )-polar cylinder if d ≤ 2.

The main result of the present article is

Theorem 1.7. A smooth cubic surface S3 in P3 does not contain any (−KS3)-polar
cylinders.

Together with Theorems 1.2 and 1.3, this leads to the following conclusion via Lem-
ma 1.5.

Corollary 1.8. Let Sd be a smooth del Pezzo surface of degree d . Then the generalized
cone over (Sd ,−KSd ) admits a non-trivial regular Ga-action if and only if d ≥ 4.

In particular, we here present a long-expected answer to the question raised by H. Flenner
and M. Zaidenberg.

Corollary 1.9. The affine Fermat cubic threefold x3
+ y3
+ z3
+w3

= 0 in A4 does not
admit a non-trivial regular Ga-action.

The following lemma shows that having anticanonical cylinders on del Pezzo surfaces
is strongly related to the log canonical thresholds of their effective anticanonical Q-
divisors.1 It may also be one example that shows how important it is to study singularities
of effective anticanonical Q-divisors on Fano manifolds. Indeed, the proof of Theorem 1.7
is substantially based on the lemma below.

1 An anticanonical Q-divisor on a varietyX is a Q-divisor Q-linearly equivalent to an anticanon-
ical divisor of X, while an effective anticanonical divisor on X is a member of the anticanonical
linear system |−KX|.
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Lemma 1.10. Let Sd be a smooth del Pezzo surface of degree d ≤ 4. Suppose that Sd
contains a (−KSd )-polar cylinder, i.e., there is an open affine subset U ⊂ Sd and an
effective anticanonical Q-divisor D such that U = Sd \ Supp(D) and U ∼= Z × A1 for
some smooth rational affine curve Z. Then there exists a point P on Sd such that

• the log pair (Sd ,D) is not log canonical at P ;
• if there exists a unique divisor T in the anticanonical linear system |−KSd | such that
(Sd , T ) is not log canonical at P , then there is an effective anticanonical Q-divisorD′

on Sd such that

– (Sd ,D
′) is not log canonical at P ;

– the support of T is not contained in the support of D′.

Proof. This follows from [19, Lemma 4.11 and proof of Lemma 4.14] (cf. [22, proof of
Lemma 5.3]). Since the proof is dispersed in [19] and [22], for the convenience of the
readers, we give a detailed and streamlined proof in the Appendix. ut

Applying Lemma 2.2 below, we easily obtain

Corollary 1.11. Let S3 be a smooth del Pezzo surface of degree 3. Suppose that S3 con-
tains a (−KS3)-polar cylinder. Then there is an effective anticanonical Q-divisorD on S3
such that

• the log pair (S3,D) is not log canonical at some point P on S3;
• the support of D does not contain at least one irreducible component of the tangent

hyperplane section TP of S3 at P .

In order to prove Theorem 1.7, it suffices to show that there is no divisor D as described
in Corollary 1.11 on a smooth del Pezzo surface of degree 3. In this article, this will be
done in a slightly wider setting. To be precise, we prove

Theorem 1.12. Let Sd be a smooth del Pezzo surface of degree d ≤ 3 and let D be
an effective anticanonical Q-divisor on Sd . Suppose that the log pair (Sd ,D) is not log
canonical at a point P . Then there exists a unique divisor T in the anticanonical linear
system |−KSd | such that (Sd , T ) is not log canonical at P . Moreover, the support of D
contains all the irreducible components of Supp(T ).

Corollary 1.13. Let S3 be a smooth cubic surface in P3 and let D be an effective anti-
canonical Q-divisor on S3. Suppose that the log pair (S3,D) is not log canonical at a
point P . Then for the tangent hyperplane section TP at P , the log pair (S3, TP ) is not log
canonical at P and Supp(D) contains all the irreducible components of Supp(TP ).

Note that Corollary 1.13 contradicts the conclusion of Corollary 1.11. This simply means
that the hypothesis of Corollary 1.11 fails to be true. This shows that Theorem 1.12 im-
plies Theorem 1.7. Moreover, we see that Theorem 1.12 recovers Theorem 1.3 through
Lemma 1.10 as well.

Remark 1.14. The condition d ≤ 3 is crucial in Theorem 1.12. Indeed, if d ≥ 4, then
the assertion of Theorem 1.12 is no longer true (see [19, proof of Theorem 3.19]). For
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example, consider the case when d = 4. There exists a birational morphism f : S4 → P2

such that f is the blow-up of P2 at five points that lie on a unique irreducible conic.
Denote this conic by C. Let C̃ be the proper transform of the conic C on the surface S4
and let E1, . . . , E5 be the exceptional divisors of the morphism f . Set

D =
3
2
C̃ +

5∑
i=1

1
2
Ei .

It is an effective anticanonical Q-divisor on S4 and the log pair (S4,D) is not log canonical
at any point P on C̃. Moreover, for any T ∈ |−KS4 |, its support cannot be contained in
the support of the divisor D.

To our surprise, Theorem 1.12 has other applications that are interesting for their own
sake.

Until the end of this section, let X be a projective variety with at worst Kawamata log
terminal singularities and let H be an ample divisor on X.

Definition 1.15. The α-invariant of the log pair (X,H) is the number defined by

α(X,H) = sup
{
λ ∈ Q

∣∣∣∣ the log pair (X, λD) is log canonical for every
effective Q-divisor D on X with D ∼Q H

}
.

The invariant α(X,H) has been studied intensively by many authors who used different
notation for it [1], [6], [14], [4, §3.4], [10, Definition 3.1.1], [11, Appendix A], [38, Ap-
pendix 2]. The notation α(X,H) is due to G. Tian who defined α(X,H) in a different
way [38, Appendix 2]. However, both the definitions coincide by [11, Theorem A.3]. In
the case when X is a Fano variety, the invariant α(X,−KX) is known as the famous
α-invariant of Tian and it is denoted simply by α(X). The α-invariant of Tian plays an
important role in Kähler geometry due to the following.

Theorem 1.16 ([13], [30], [36]). Let X be a Fano variety of dimension n with at worst
quotient singularities. If α(X) > n/(n+ 1), then X admits an orbifold Kähler–Einstein
metric.

The exact values of the α-invariants of smooth del Pezzo surfaces, given below, have been
obtained in [7, Theorem 1.7]. Those of del Pezzo surfaces defined over a field of positive
characteristic are presented in [28, Theorem 1.6] and those of del Pezzo surfaces with du
Val singularities in [8] and [32].

Theorem 1.17. Let Sd be a smooth del Pezzo surface of degree d . Then

α(Sd) =


1/3 if d = 9, 7 or d = 8 and S8 = F1,

1/2 if d = 6, 5 or d = 8 and S8 = P1
× P1,

2/3 if d = 4,

α(S3) =

{
2/3 if S3 is a cubic surface in P3 with an Eckardt point,
3/4 if S3 is a cubic surface in P3 without Eckardt points,
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α(S2) =

{
3/4 if |−KS2 | has a tacnodal curve,
5/6 if |−KS2 | has no tacnodal curves,

α(S1) =

{
5/6 if |−KS1 | has a cuspidal curve,
1 if |−KS1 | has no cuspidal curves.

Remark 1.18. Theorem 1.12 also provides the exact values of the α-invariants for
smooth del Pezzo surfaces of degrees ≤ 3. We here show how to extract the values from
Theorem 1.12. Let ν be the greatest number such that (Sd , νC) is log canonical for every
member C in |−KSd |. The number ν can be easily obtained from [31, Section 3] and
checked to be the same as listed in Theorem 1.17 for the α-invariant of Sd . By the defi-
nition of ν, there is an effective anticanonical divisor C on Sd such that (Sd , νC) is log
canonical but not Kawamata log terminal. This gives α(Sd) ≤ ν.

Suppose that α(Sd) < ν. Then there are an effective anticanonical Q-divisor D and
a positive rational λ < ν such that (Sd , λD) is not log canonical at some point P on Sd .
Since λ < 1, (Sd ,D) is not log canonical at P either. By Theorem 1.12, there exists a
divisor T ∈ |−KSd | such that (Sd , T ) is not log canonical at P . In addition, Supp(D)
contains all the irreducible components of Supp(T ).

The log pair (Sd , λT ) is log canonical since λ < ν. Set Dε = (1 + ε)D − εT for
every non-negative rational ε. Then D0 = D and Dε is effective for 0 < ε � 1 be-
cause Supp(D) contains all the irreducible components of Supp(T ). Choose the greatest
ε such that Dε is still effective. Then Supp(Dε) does not contain at least one irreducible
component of Supp(T ).

Since (Sd , λT ) is log canonical at P and (Sd , λD) is not, (Sd , λDε) is not log canoni-
cal at P (see Lemma 2.2). In particular, (Sd ,Dε) is not log canonical at P . However, this
contradicts Theorem 1.12 since Dε is an effective anticanonical Q-divisor. Therefore,
α(Sd) = ν.

Corollary 1.19. Let Sd be a smooth del Pezzo surface of degree d ≤ 3. If d = 3, suppose
in addition that S3 does not contain an Eckardt point. Then Sd admits a Kähler–Einstein
metric.

The problem of existence of Kähler–Einstein metrics on smooth del Pezzo surfaces was
completely solved by G. Tian and S.-T. Yau [37], [39]. In particular, Corollary 1.19 fol-
lows from [37, Main Theorem].

The invariant α(X,H) has a global nature. It measures the singularities of effective
Q-divisors on X in a fixed Q-linear equivalence class. F. Ambro [1] suggested a function
that encodes the local behavior of α(X,H).

Definition 1.20 ([1]). The α-function αHX of the log pair (X,H) is a real function on X
defined as follows: for P ∈ X,

αHX (P ) = sup
{
λ ∈ Q

∣∣∣∣ the log pair (X, λD) is log canonical at P for
every effective Q-divisor D on X with D ∼Q H

}
.

Lemma 1.21. We have α(X,H) = infP∈X αHX (P ).
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Proof. Easy. ut

In the case when X is a Fano variety, we denote the α-function of the log pair (X,−KX)
simply by αX.

Example 1.22. One can easily see that αPn(P ) ≤ 1/(n+ 1) for every point P on Pn.
This implies that the α-function αPn is constant with value 1/(n+ 1) since we have
α(Pn) = 1/(n+ 1).

Example 1.23. It is easy to see αP1×P1(P ) ≤ 1/2 for every point P on P1
× P1. Since

α(P1
× P1) = 1/2 by Theorem 1.17, the α-function αP1×P1 is constant with value 1/2

by Lemma 1.21. Moreover, if X is a Fano variety with at most Kawamata log terminal
singularities, then [11, proof of Lemma 2.21] shows that

αX×P1(P ) = min{1/2, αX(pr1(P ))}

for every point P on X × P1, where pr1 : X × P1
→ X is the projection. Using the

same argument as in [11, proof of Lemma 2.29], one can show that the α-function of a
product of Fano varieties with at most Gorenstein canonical singularities is the pointwise
minimum of the pull-backs of the α-functions of the factors.

As shown in Remark 1.18, the following can be obtained from Theorem 1.12 in a similar
manner.

Corollary 1.24. Let Sd be a smooth del Pezzo surface of degree d ≤ 3. Then the α-
function of Sd is as follows:

αS3(P ) =


2/3 if P is an Eckardt point,
3/4 if the tangent hyperplane section at P has a tacnode at P ,
5/6 if the tangent hyperplane section at P has a cusp at P ,
1 otherwise,

αS2(P ) =


3/4 if there is an effective anticanonical divisor with a tacnode at P ,
5/6 if there is an effective anticanonical divisor with a cusp at P ,
1 otherwise,

αS1(P ) =

{
5/6 if there is an effective anticanonical divisor with a cusp at P ,
1 otherwise.

By Lemma 1.21, Corollary 1.24 implies that Theorem 1.17 holds for smooth del Pezzo
surfaces of degrees at most 3. Thus, it is quite natural that we should extend Corollary 1.24
to all smooth del Pezzo surfaces in order to obtain a functional generalization of Theo-
rem 1.17. This will be done in Section 6, where we prove
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Theorem 1.25. Let Sd be a smooth del Pezzo surface of degree d ≥ 4. Then:

αP2(P ) = 1/3,
αF1(P ) = 1/3, αP1×P1(P ) = 1/2,

αS7(P ) =


1/3 if the point P lies on a (−1)-curve that

intersects two other (−1)-curves,
1/2 otherwise,

αS6(P ) = 1/2,

αS5(P ) =

{
1/2 if there is a (−1)-curve passing through P ,
2/3 otherwise,

αS4(P ) =


2/3 if P is on a (−1)-curve,
3/4 if there is an effective anticanonical divisor that

consists of two 0-curves intersecting tangentially at P ,
5/6 otherwise.

The primary statement in this article is Theorem 1.12. As explained before, it immedi-
ately implies the main result of the article, Theorem 1.7, and also recovers Theorem 1.3.
Theorem 1.12 will be proved in the following way.

In Section 2, we review the results that will be used. As a warm-up, we verify Theo-
rem 1.12 for a smooth del Pezzo surface of degree 1 (see Lemma 2.3). This is easy and
instructive.

In Section 3, we establish two results about singular del Pezzo surfaces of degree 2
that play a role in the proof of Theorems 1.12 for smooth cubic surfaces. In addition, these
two results immediately yield Theorem 1.12 for a smooth del Pezzo surface of degree 2
(see Lemma 3.4).

In Section 4, we prove Theorem 1.12 for a smooth cubic surface. This will be done
by a thorough case-by-case analysis of all possible types of tangent hyperplane sections
on a smooth cubic surface. Indeed, for a given point P on the smooth cubic surface,
we show that every effective anticanonical Q-divisor is log canonical at P if the tangent
hyperplane section at P is log canonical at P (Lemmas 4.7–4.9), whereas we show that
its support contains the support of the tangent hyperplane section at P if an effective
anticanonical Q-divisor and the tangent hyperplane section at P are not log canonical
at P (see Lemmas 4.3, 4.5 and 4.6).

The proof of Lemma 4.8 deserves a separate section because it is the central and the
most beautiful part of the article and it is a bit lengthy. It will be presented in Section 5.

The Appendix will deal with Lemma 1.10 for the readers’ convenience.

2. Preliminaries

This section presents simple but essential tools for the article. Most of the results de-
scribed here are well-known and valid in much more general settings (cf. [23]–[26]).
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Let S be a projective surface with at most du Val singularities, let P be a smooth point
of the surface S and let D be an effective Q-divisor on S.

Lemma 2.1. If the log pair (S,D) is not log canonical at the smooth point P , then

multP (D) > 1.

Proof. This is a well-known fact. See [26, Proposition 9.5.13], for instance. ut

Write D =
∑r
i=1 aiDi , where Di’s are distinct prime divisors on the surface S and ai’s

are positive rational numbers.

Lemma 2.2. Let T be an effective Q-divisor on S such that

• T ∼Q D but T 6= D;
• T =

∑r
i=1 biDi for some non-negative rational numbers b1, . . . , br .

For every non-negative rational ε, set Dε = (1+ ε)D − εT . Then

(1) Dε ∼Q D for every ε ≥ 0;
(2) the set {ε ∈ Q>0 | Dε is effective} attains the maximum µ;
(3) the support of Dµ does not contain at least one component of Supp(T );
(4) if (S, T ) is log canonical at P but (S,D) is not log canonical at P , then (S,Dµ) is

not log canonical at P .

Proof. The first assertion is obvious. For the rest we put

c = max{bi/ai | i = 1, . . . , r}.

For some index k we have c = bk/ak .
Suppose that c ≤ 1. Then ai ≥ bi for every i, so the divisorD−T =

∑r
i=1(ai−bi)Di

is effective. However, this is impossible since D − T is non-zero and numerically trivial
on a projective surface. Thus, c > 1, and hence bk > ak .

Set µ = 1/(c − 1). Then µ = ak/(bk − ak) > 0 and

Dµ =
bk

bk − ak
D −

ak

bk − ak
T =

r∑
i=1

bkai − akbi

bk − ak
Di,

where bkai − akbi ≥ 0 by the choice of k. In particular, the divisor Dµ is effective
and its support does not contain the curve Dk . Moreover, for every positive rational ε,
Dε =

∑r
i=1(ai + εai − εbi)Di . If ε > µ, then

ε(bk − ak) > µ(bk − ak) =
ak

bk − ak
(bk − ak) = ak,

and hence Dε is not effective. This proves the second and third assertions.
If both (S, T ) and (S,Dµ) are log canonical at P , then (S,D) must be log canonical

at P because D = µ
1+µT +

1
1+µDµ and µ

1+µ +
1

1+µ = 1. ut

Despite its naı̈ve appearance, Lemma 2.2 is a handy tool. To illustrate this, we verify
Theorem 1.12 for a del Pezzo surface of degree 1. This simple case also immediately
follows from [7, proof of Lemma 3.1] or [22, proof of Proposition 5.1].
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Lemma 2.3. Suppose that S is a smooth del Pezzo surface of degree 1 and D is an ef-
fective anticanonical Q-divisor on S. If the log pair (S,D) is not log canonical at the
point P , then there exists a unique divisor T ∈ |−KS | such that (S, T ) is not log canoni-
cal at P . Moreover, the support of D contains all the irreducible components of T .

Proof. Let T be a curve in |−KS | that passes through P . Note that T is irreducible. If
(S, T ) is log canonical at P , then it follows from Lemma 2.2 that there exists an effective
anticanonical Q-divisorD′ on S such that (S,D′) is not log canonical at P and Supp(D′)
does not contain T . We then obtain 1 = T · D′ ≥ multP (D′). This is impossible by
Lemma 2.1. Thus, (S, T ) is not log canonical at P .

Moreover, by Lemma 2.1 the divisor T is singular at P . Therefore, P is not the base
point of the pencil |−KS |. Consequently, such a divisor T is unique.

If the curve T is not contained in Supp(D), then we obtain an absurd inequality
1 = T ·D ≥ multP (D) > 1 by Lemma 2.1. Therefore, T ⊂ Supp(D). ut

The following is a ready-made Adjunction for our situation.

Lemma 2.4. Suppose that the log pair (S,D) is not log canonical at the smooth point P .
If a component Dj with aj ≤ 1 is smooth at P , then

Dj ·
(∑
i 6=j

aiDi

)
≥

∑
i 6=j

ai(Dj ·Di)P > 1,

where (Dj ·Di)P is the local intersection number of Ci and Cj at P .

Proof. This follows immediately from [24, Theorem 5.50]. ut

Let f : S̃ → S be the blow-up of the surface S at the point P with exceptional divisor E
and let D̃ be the proper transform of D by the blow-up f . Then

K
S̃
+ D̃ + (multP (D)− 1)E = f ∗(KS +D).

The log pair (S,D) is log canonical at P if and only if (S̃, D̃ + (multP (D)− 1)E) is log
canonical along the curve E.

Remark 2.5. If (S,D) is not log canonical at P , then there exists a point Q on E at
which (S̃, D̃ + (multP (D)− 1)E) is not log canonical. Lemma 2.1 then implies

multP (D)+multQ(D̃) > 2. (2.1)

If in addition multP (D) ≤ 2, then (S̃, D̃ + (multP (D) − 1)E) is log canonical at every
point of E other than Q. Indeed, if it is not log canonical at another point O on E, then
Lemma 2.4 generates an absurd inequality

2 ≥ multP (D) = D̃ · E ≥ multQ(D̃)+multO(D̃) > 2.

Notation 2.6. From now on, when we have a birational morphism of a surface denoted
by a capital Roman character with a tilde onto a surface, in order to denote the proper
transform of a divisor by this morphism, we will add a tilde to the same character that
denotes the original divisor. For example, in a situation similar to the one preceding Re-
mark 2.5, we use D̃ for the proper transform of D by f without explicit mention.
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3. Del Pezzo surfaces of degree 2

Let S be a del Pezzo surface of degree 2 with at most two ordinary double points. Then the
linear system |−KS | is base-point-free and induces a double cover π : S → P2 ramified
along a reduced quartic curve R ⊂ P2. Moreover, R has at most two ordinary double
points. In particular, it is irreducible.

Lemma 3.1. For an effective anticanonical Q-divisor D on S, the log pair (S,D) is log
canonical outside finitely many points on S.

Proof. Suppose the converse. Then we may write D = a1C1 + �, where C1 is an irre-
ducible reduced curve, a1 is a rational number > 1 and � is an effective Q-divisor whose
support does not contain C1. Since

2 = −KS ·D = −KS · (a1C1+�) = −a1KS ·C1−KS ·� ≥ −a1KS ·C1 > −KS ·C1,

we have −KS · C1 = 1. Then π(C1) is a line in P2. Thus, there exists an irreducible
reduced curve C2 on S such that C1 + C2 ∼ −KS and π(C1) = π(C2). Note that
C1 = C2 if and only if the line π(C1) is an irreducible component of the branch curve R.
Since R is irreducible, this is not the case. Thus, C1 6= C2.

Note that C2
1 = C

2
2 because C1 and C2 are interchanged by the biregular involution

of S induced by the double cover π . Thus,

2 = (−KS)2 = (C1 + C2)
2
= 2C2

1 + 2C · C2,

which implies that C1 · C2 = 1 − C2
1 . Since C1 and C2 are smooth rational curves, we

easily obtain C2
1 = C

2
2 = −1 + k/2, where k is the number of singular points of S that

lie on C1.
Now we write D = a1C1 + a2C2 + 0, where a2 is a non-negative rational number

and 0 is an effective Q-divisor whose support contains neither C1 nor C2. Then

1 = C1 · (a1C1 + a2C2 + 0) = a1C
2
1 + a2C1 · C2 + C1 · 0

≥ a1C
2
1 + a2C1 · C2 = a1C

2
1 + a2(1− C2

1).

Similarly, from C2 ·D = 1, we obtain 1 ≥ a2C
2
1+a1(1−C2

1). The two inequalities imply
that a1 ≤ 1 and a2 ≤ 1 since C2

1 = −1+ k/2, k = 0, 1, 2. Since a1 > 1 by assumption,
this is a contradiction. ut

The following two lemmas can be verified in much the same way as [7, Lemma 3.5].
Nevertheless we present their proofs since we should carefully deal with singular points
on S that have been considered neither in [7] nor in [22].

Lemma 3.2. For any effective anticanonical Q-divisorD on S, the log pair (S,D) is log
canonical at every point outside the ramification divisor of the double cover π .

Proof. Suppose that (S,D) is not log canonical at a point P whose image by π lies
outside R.
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Let H be a general curve in |−KS | that passes through P . Since π(P ) 6∈ R, the
surface S is smooth at P . Then

2 = H ·D ≥ multP (H)multP (D) ≥ multP (D),

and hence multP (D) ≤ 2.
Let f : S̃ → S be the blow-up of the surface S at P . We have

K
S̃
+ D̃ + (multP (D)− 1)E = f ∗(KS +D),

where E is the exceptional curve of the blow-up f . Then Remark 2.5 gives a unique
point Q on E such that (S̃, D̃ + (multP (D)− 1)E) is not log canonical at Q on E.

Since π(P ) 6∈ R, there exists a unique reduced but possibly reducible curve C ∈
|−KS | that passes through P and whose proper transform C̃ passes through Q. Note that
C is smooth at P . Since (S, C) is log canonical at P , Lemma 2.2 enables us to assume
that the support of D does not contain at least one irreducible component of C.

If the curve C is irreducible, then

2−multP (D) = 2−multP (C)multP (D) = C̃ · D̃ ≥ multQ(C̃)multQ(D̃) = multQ(D̃).

This contradicts (2.1). Thus, C must be reducible.
We may then write C = C1+C2, where C1 and C2 are irreducible smooth curves that

intersect at two points. Without loss of generality we may assume that the curve C1 is not
contained in the support of D. The point P must belong to C2: otherwise we would have

1 = D · C1 ≥ multP (D) > 1.

We set D = aC2 + �, where a is a non-negative rational number and � is an effective
Q-divisor whose support does not contain C2. Then

1 = C1 ·D =
(
2− 1

2k
)
a + C1 ·� ≥

(
2− 1

2k
)
a,

where k is the number of singular points of S on C1. On the other hand, the log pair
(S̃, aC̃2+ �̃+ (multP (D)− 1)E) is not log canonical atQ, where a ≤ 1 by Lemma 3.1.
We then obtain (

2− 1
2k
)
a = C̃2 ·

(
�̃+ (multP (D)− 1)E

)
> 1

from Lemma 2.4. This is a contradiction. ut

Lemma 3.3. For a smooth point P of S with π(P ) ∈ R, let TP be the unique divisor in
|−KS | that is singular at P . If the log pair (S, TP ) is log canonical at P , then for any
effective anticanonical Q-divisor D on S the log pair (S,D) is log canonical at P .

Proof. Suppose that (S,D) is not log canonical at P . Applying Lemma 2.2 to the log
pairs (S,D) and (S, TP ), we may assume that Supp(D) does not contain at least one
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irreducible component of TP . Thus, if the divisor TP is irreducible, then Lemma 2.1 gives
an absurd inequality

2 = TP ·D ≥ multP (TP )multP (D) ≥ 2multP (D) > 2

since TP is singular at P . Hence, TP must be reducible.
We may then write TP = T1 + T2, where T1 and T2 are smooth rational curves. Note

that P is one of the intersection points of T1 and T2. Without loss of generality, we may
assume that T1 is not contained in the support of D. Then

1 = T1 ·D ≥ multP (T1)multP (D) = multP (D) > 1

by Lemma 2.1, a contradiction. ut

Lemmas 3.2 and 3.3 yield the following result.

Lemma 3.4. Suppose that a del Pezzo surface S of degree 2 is smooth. LetD be an effec-
tive anticanonical Q-divisor on S. Suppose that the log pair (S,D) is not log canonical at
a point P . Then there exists a unique divisor T ∈ |−KS | such that (S, T ) is not log canon-
ical at P . The support of D contains all the irreducible components of T . The divisor
T is either an irreducible rational curve with a cusp at P or a union of two (−1)-curves
meeting tangentially at P .

Proof. By Lemma 3.2, the point π(P ) lies on R. Then there is a unique curve T ∈ |−KS |
that is singular at P . By Lemma 3.3, (S, T ) is not log canonical at P .

Suppose that the support of D does not contain an irreducible component of T . Then
the proof of Lemma 3.3 works verbatim to yield a contradiction.

The last assertion immediately follows from [31, Proposition 3.2]. ut

Lemma 3.4 shows that Theorem 1.12 holds for a smooth del Pezzo surface of degree 2.

4. Cubic surfaces

In the present section we prove Theorem 1.12. Lemmas 2.3 and 3.4 show that Theo-
rem 1.12 holds for del Pezzo surfaces of degrees 1 and 2, respectively. Thus, to complete
the proof, we let S be a smooth cubic surface in P3 and letD be an effective anticanonical
Q-divisor on S.

Lemma 4.1. The log pair (S,D) is log canonical outside finitely many points.

Proof. Suppose not. Then we may write D = aC +�, where C is an irreducible curve,
a is a rational number > 1 and � is an effective Q-divisor whose support does not con-
tain C. Then

3 = −KS · (aC +�) = −aKS · C −KS ·� ≥ −aKS · C > −KS · C.

This implies that C is either a line or an irreducible conic.
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Suppose thatC is a line. LetZ be a general irreducible conic on S withZ+C ∼ −KS .
Since Z is general, it is not contained in the support of D. We then obtain

2 = Z ·D = Z · (aC +�) = 2a + Z ·� ≥ 2a.

This contradicts our assumption.
Suppose that C is an irreducible conic. Then there exists a unique line L on S such

that L+C ∼ −KS . WriteD = aC+ bL+0, where b is a non-negative rational number
and 0 is an effective Q-divisor whose support contains neither C nor L. Then

1 = L ·D = L · (aC + bL+ 0) = 2a − b + L · 0 ≥ 2a − b.

On the other hand,

2 = C ·D = C · (aC + bL+ 0) = 2b + C · 0 ≥ 2b.

Combining these two inequalities, we obtain a ≤ 1. This contradicts our assumption
again. ut

For a point P on S, let TP be the tangent hyperplane section of S at P . This is the unique
anticanonical divisor that is singular at P . The curve TP is reduced but it may be reducible.

In order to prove Theorem 1.12 we must show that (S,D) is log canonical at P pro-
vided that one of the following two conditions is satisfied:

• (S, TP ) is log canonical at P ;
• (S, TP ) is not log canonical at P but Supp(D) does not contain at least one irreducible

component of TP .

The log pair (S, TP ) is log canonical at P if and only if P is an ordinary double point
of TP (see [31, Proposition 3.2]). Thus, (S, TP ) is log canonical at P if and only if TP is
one of the following curves: an irreducible cubic curve with one ordinary double point, a
union of three coplanar lines that do not intersect at one point, or a union of a line and a
conic that intersect transversally at two points.

Overall, we must consider the following cases:

(a) TP is a union of three lines that intersect at P (Eckardt point);
(b) TP is a union of a line and a conic that intersect tangentially at P ;
(c) TP is an irreducible cubic curve with a cusp at P ;
(d) TP is an irreducible cubic curve with one ordinary double point;
(e) TP is a union of three coplanar lines that do not intersect at one point;
(f) TP is a union of a line and a conic that intersect transversally at two points.

We consider these cases one by one in separate lemmas (Lemmas 4.3 and 4.5–4.9). We
however present the detailed proof of Lemma 4.8 in Section 5 to improve the readability
of this section. These lemmas together imply Theorem 1.12.

For simplicity, set m = multP (D).

Lemma 4.2. If the log pair (S,D) is not log canonical at the point P , then the support
of D contains all the lines on S passing through P .
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Proof. Let L be a line passing through P that is not contained in the support of D. Then
1 = L ·D ≥ m implies that (S,D) is log canonical at P by Lemma 2.1. ut

Lemma 4.3 ([19, Lemma 4.13]). Suppose that the tangent hyperplane section TP con-
sists of three lines intersecting at P . If the support of D does not contain at least one of
the three lines, then the log pair (S,D) is log canonical at P .

Proof. This immediately follows from Lemma 4.2. ut

From now on, let f : S̃ → S be the blow-up of the cubic surface S at P . In addition, let
E be the exceptional curve of f . We then have

K
S̃
+ D̃ + (m− 1)E = f ∗(KS +D).

Note that (S,D) is log canonical at P if and only if (S̃, D̃ + (m− 1)E) is log canonical
along the exceptional divisor E.

Remark 4.4. If there is a line passing through P , then S̃ is not a del Pezzo surface but
a weak del Pezzo surface of degree 2, i.e., K2

S̃
= 2 and −K

S̃
is nef and big. The proper

transforms of the lines passing through P will be (−2)-curves on S̃. All the (−2)-curves
on S̃ are disjoint from each other and they come from the lines passing through P on
S. By contracting these (−2)-curves we obtain a birational morphism g : S̃ → S̄. Then
S̄ is a del Pezzo surface of degree 2 with ordinary double points. In particular, the linear
system |−KS̄ | induces a double cover π : S̄ → P2 ramified along a quartic curve R ⊂ P2.
The (−2)-curves on S̃ are contracted to the ordinary double points on S̄. Therefore, the
number of ordinary double points on S̄ is the number of lines passing through P on S.
Since we have at most two lines passing through P , the surface S̄ has at most two ordinary
double points, and hence the quartic curve R must be an irreducible curve with at most
two ordinary double points.

Lemma 4.5. Suppose that the tangent hyperplane section TP consists of a line and a
conic intersecting tangentially at the point P . If the support of D does not contain both
the line and the conic, then the log pair (S,D) is log canonical at P .

Proof. Suppose that (S,D) is not log canonical at P . Let L and C be the line and the
conic, respectively, such that TP = L+ C. By Lemma 4.2, we may assume that C is not
contained in the support of D but L is in that support. We write D = aL+�, where a is
a positive rational number and� is an effective Q-divisor whose support contains neither
L nor C. We have m ≤ C ·D = 2.

Note that the three curves L̃, C̃ and E meet at one point transversally. Since m ≤ 2,
we have the unique point Q on E defined in Remark 2.5. The point Q does not belong
to C̃, and hence not to L̃ either. Indeed, otherwise

2−m = C̃ · (aL̃+ �̃) ≥ a +multQ(�̃) = multQ(D̃).

This contradicts (2.1).
Let g : S̃ → S̄ be the contraction defined in Remark 4.4. Note that g(L̃) is the ordinary

double point of the surface S̄. Set �̄ = g(�̃), Ē = g(E), C̄ = g(C̃) and Q̄ = g(Q). Then
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π(Ē) = π(C̄) since Ē+C̄ is an anticanonical divisor on S̄. The point π(Q̄) lies outsideR
becauseQ lies outside C̃. Since the divisor �̄+(m−1)Ē is Q-linearly equivalent to−KS̄
by our construction, Lemma 3.2 shows that (S̄, �̄+ (m− 1)Ē) is log canonical at Q̄. On
the other hand, it is not log canonical at Q̄ since g is an isomorphism in a neighborhood
of Q. This is a contradiction. ut

Lemma 4.6. Suppose that the tangent hyperplane section TP is an irreducible cubic
curve with a cusp at P . If TP is not contained in the support of D, then the log pair
(S,D) is log canonical at P .

Proof. Suppose that (S,D) is not log canonical at P . From the inequality

3 = TP ·D ≥ m ·multP (TP ) = 2m,

we obtain m ≤ 3/2. Then we have the unique point Q on E defined in Remark 2.5.
The surface S̃ is a smooth del Pezzo surface of degree 2. The linear system |−K

S̃
|

induces a double cover π : S̃ → P2 ramified along a smooth quartic curve R ⊂ P2. Then
the integral divisor E + T̃P is linearly equivalent to −K

S̃
, and hence π(E) = π(T̃P ) is a

line in P2. Moreover, T̃P tangentially meets E at a single point. The point π(Q) lies on
R if and only if Q is the intersection point of E and T̃P .

Applying Lemma 3.2 to (S̃, D̃ + (m− 1)E), we see that π(Q) ∈ R because this log
pair is not log canonical at Q and the divisor D̃ + (m − 1)E is Q-linearly equivalent
to −K

S̃
. The point Q therefore lies on the curve T̃P . Then from (2.1) we obtain

3− 2m = T̃P · D̃ ≥ multQ(D̃) > 2−m.

This contradicts Lemma 2.1. ut

For the remaining three cases, we show that the hypothesis of Theorem 1.12 is never
fulfilled, so that Theorem 1.12 is true.

Lemma 4.7. If the tangent hyperplane section TP is an irreducible cubic curve with a
node at P , then the log pair (S,D) is log canonical at P .

Proof. Suppose that (S,D) is not log canonical at P . The surface S̃ is a smooth del
Pezzo surface of degree two. Since D̃ + (m − 1)E ∼Q −KS̃ and (S̃, D̃ + (m − 1)E) is
not log canonical at some pointQ on E, it follows from Lemma 3.4 that there must be an
anticanonical divisor H on S̃ that has either a tacnode or a cusp at Q.

IfH has a tacnode atQ, then it consists of the exceptional divisorE and another (−1)-
curveLmeetingE tangentially atQ. Then f (H) is an effective anticanonical divisor on S
that has a cusp at P and is distinct from TP . This is impossible.

If H has a cusp at Q, then H must be irreducible. However, this is impossible since
H is singular at Q and E ·H = 1. ut

Lemma 4.8. Suppose that the tangent hyperplane section TP consists of three lines one
of which does not pass through the point P . Then the log pair (S,D) is log canonical
at P .
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Proof. This proof is the central and most beautiful part of the proof of Theorem 1.12.
Since it is a bit lengthy, it will be presented separately in Section 5. ut

Lemma 4.9. Suppose that the tangent hyperplane section TP consists of a line and a
conic intersecting transversally. Then the log pair (S,D) is log canonical at the point P .

Proof. We write TP = L + C, where L is a line and C is an irreducible conic that
intersect L transversally at P . Suppose that (S,D) is not log canonical at P .

By Lemmas 2.2 and 4.2, we may assume that C is not contained in the support of D
but L is. We write D = aL + �, where a is a positive rational number and � is an
effective Q-divisor whose support contains neither L nor C.

We have the unique point Q on E defined in Remark 2.5 since m ≤ D · C = 2.
Suppose thatQ does not belong to the (−2)-curve L̃. Let g : S̃ → S̄ be the contraction

defined in Remark 4.4. Then S̄ is a del Pezzo surface of degree 2 with only one ordinary
double point g(L̃). Set �̄ = g(�̃), Ē = g(E), C̄ = g(C̃) and Q̄ = g(Q). Then we have
π(Ē) = π(C̄) since Ē + C̄ is an anticanonical divisor on S̄. The point π(Q̄) lies on R
if and only if Q lies on C̃. The log pair (S̄, �̄ + (m − 1)Ē) is not log canonical at Q̄
since g is an isomorphism in a neighborhood of Q. Since the divisor �̄ + (m − 1)Ē is
Q-linearly equivalent to −KS̄ by our construction, Lemma 3.2 shows that Q ∈ C̃.

Note that C̄ + Ē is the unique curve in |−KS̄ | that is singular at Q̄. But (S̄, C̄ + Ē) is
log canonical at Q̄. Hence, by Lemma 3.3, so is (S̄, �̄+(m−1)Ē). This is a contradiction.
Therefore, Q must belong to the (−2)-curve L̃.

Now we can apply [8, Theorem 1.28] to the log pair (S̃, aL̃+ (m− 1)E + �̃) at the
point Q to obtain a contradiction immediately. Indeed, it is enough to set M = 1, A = 1,
N = 0, B = 2, and α = β = 1 in [8, Theorem 1.28] and check that all the conditions of
that theorem are satisfied. However, there is a much simpler way to obtain a contradiction.

There exists another line M on S that intersects L at a point. The line M does not
intersect the conic C since 1 = TP ·M = (L+C) ·M = L ·M . In particular, P does not
lie on M . Let h : S̃ → Š be the contraction of the proper transform of the line M on S̃.
Since M is a (−1)-curve and P /∈ M , the surface Š is a smooth cubic surface in P3.

Set �̌ = h(�̃), Ě = h(E), Ľ = h(L̃), Č = h(C̃), P̌ = h(Q) and Ď = h(D̃).
Then (Š, Ď) is not log canonical at P̌ since h is an isomorphism in a neighborhood of
the point Q. On the other hand, Ľ + Č + Ě is an anticanonical divisor of Š. Since P̌
is the intersection point of Ľ and Ě and the divisor Ď is Q-linearly equivalent to −K

Š
,

Lemma 4.8 implies that (Š, Ď) is log canonical at P̌ . This is a contradiction. ut

As already mentioned, Theorem 1.12 follows from Lemmas 4.3 and 4.5–4.9. Thus Theo-
rem 1.12 has been proved under the assumption that Lemma 4.8 is valid. This assumption
will be confirmed in the following section.

5. The proof of Lemma 4.8

To prove Lemma 4.8, we keep the notation of Section 4. We write TP = L+M+N , where
L,M , andN are three coplanar lines on S. We may assume that P is the intersection point
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of L and M , whereas it does not lie on N . We also write D = a0L+ b0M + c0N +�0,
where a0, b0 and c0 are non-negative rational numbers and �0 is an effective Q-divisor
on S whose support contains none of the lines L, M or N . Write m0 = multP (�0).

Suppose that (S,D) is not log canonical at P . Let us look for a contradiction.
By Lemma 4.1, (S,D) is log canonical outside finitely many points. In particular,

0 ≤ a0, b0, c0 ≤ 1. Also, Lemma 2.1 implies thatm0+a0+b0 > 1 and Lemma 4.2 gives
a0, b0 > 0.

Lemma 5.1. We have m0 + a0 + b0 > c0 + 1.

Proof. Since (S, a0L+ b0M +�0) is not log canonical at P , Lemma 2.4 yields

1+ a0 − c0 = L · (D − a0L− c0N) = L · (b0M +�0) > 1,

which implies a0 > c0. Similarly, b0 > c0.
The log pair (S, L+M +N) is log canonical. Since (S, a0L+ b0M + c0N +�0) is

not log canonical at P , it follows from Lemma 2.2 and its proof that(
S,

1
1− c0

D −
c0

1− c0
TP

)
is not log canonical at P . Then Lemma 2.1 shows that

multP

(
1

1− c0
D −

c0

1− c0
TP

)
= multP

(
a0 − c0

1− c0
L+

b0 − c0

1− c0
M +

1
1− c0

�0

)
=
a0 − c0

1− c0
+
b0 − c0

1− c0
+

m0

1− c0
> 1.

This yields the conclusion. ut

Since a0, b0, c0 ≤ 1 and (S, L + M + N) is log canonical, the effective Q-divisor �0
cannot be the zero-divisor. Let r be the number of irreducible components of the support
of �0. Then

�0 =

r∑
i=1

eiCi0,

where ei’s are positive rational numbers and Ci0’s are irreducible reduced curves of de-
grees di0 on S. Consequently,

3 = −KS ·
(
a0L+ b0M + c0N +

r∑
i=1

eiCi0

)
= a0 + b0 + c0 +

r∑
i=1

eidi0. (5.1)

We have

K
S̃
+ a0L̃+ b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +

r∑
i=1

eiC̃i0 = f
∗(KS +D).

Recall that a0 + b0 +m0 = m.

Lemma 5.2. We have m = a0 + b0 +m0 ≤ 2.
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Proof. This immediately follows from the three inequalities

1 = L · (a0L+ b0M + c0N +�0) = −a0 + b0 + c0 + L ·�0 ≥ −a0 + b0 + c0 +m0,

1 = M · (a0L+ b0M + c0N +�0) = a0 − b0 + c0 +M ·�0 ≥ a0 − b0 + c0 +m0,

1 = N · (a0L+ b0M + c0N +�0) = a0 + b0 − c0 +N ·�0 ≥ a0 + b0 − c0. ut

The log pair (
S̃, a0L̃+ b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +

r∑
i=1

eiC̃i0

)
(5.2)

is not log canonical at some point Q on E. Since multP (D) = a0 + b0 + m0 ≤ 2, it
follows from Remark 2.5 that there is only one such point.

Let g : S̃ → S̄ be the contraction defined in Remark 4.4. Then S̄ is a del Pezzo surface
of degree 2 with two ordinary double points, g(L̃) and g(M̃).

Lemma 5.3. The point Q on the exceptional curve E belongs to either L̃ or M̃ .

Proof. Suppose Q lies on neither L̃ nor M̃ . Set Ē = g(E), N̄ = g(Ñ) and Q̄ = g(Q).
In addition, write C̄i0 = g(C̃i0) for each i. Then π(Ē) = π(N̄). The point π(Q̄) lies
outside the quartic curve R since Q̄ is a smooth point of the anticanonical divisor Ē + N̄
on S̄.

Since g is an isomorphism in a neighborhood of Q, the log pair(
S̄, c0N̄ + (a0 + b0 +m0 − 1)Ē +

r∑
i=1

eiC̄i0

)
(5.3)

is not log canonical at Q̄. The divisor c0N̄ + (a0 + b0 + m0 − 1)Ē +
∑r
i=1 eiC̄i0 is an

effective anticanonical Q-divisor on the surface S̄. Hence, we can apply Lemma 3.2 to
the log pair (5.3) to obtain a contradiction. ut

From now on we may assume without loss of generality that Q is the intersection point
of L̃ and E.

Let ρ : S 99K P2 be the linear projection from the point P . Then ρ is a generically
2-to-1 rational map. Thus it induces a birational involution τP of the cubic surface S,
classically known as the Geiser involution associated to P (see [27]).

Remark 5.4. By construction, τP is biregular outside L ∪M ∪N . In fact, one can show
that τP is biregular outside P and N . Moreover, τP (L) = L and τP (M) = M .

For each i, set Ci1 = τP (Ci0) and denote by di1 the degree of the curve Ci1. We then
employ new effective Q-divisors

�1 =

r∑
i=1

eiCi1, D1 = a1L+ b1M + c1N +�1,

where a1 = a0, b1 = b0 and c1 = a0 + b0 +m0 − 1. Note that a0 + b0 +m0 − 1 > 0 by
Lemma 2.1 (cf. Lemma 5.1).
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Lemma 5.5. The divisorD1 is an effective anticanonical Q-divisor on the surface S. The
log pair (S,D1) is not log canonical at the intersection point of L and N .

Proof. Let h : S̃ → S′ be the contraction of the (−1)-curve Ñ . Then S′ is a smooth cubic
surface in P3. Set E′ = h(E), L′ = h(L̃), M ′ = h(M̃), Q′ = h(Q) and C′i0 = h(C̃i0)
for each i. Then the integral divisor L′ + M ′ + E′ is an anticanonical divisor of S′. In
particular, L′, M ′ and E′ are coplanar lines on S′. Moreover, Q′ is the intersection point
of L′ and E′ by the assumption right after Lemma 5.3. It does not lie on M ′.

Let ιP be the biregular involution of the surface S̄ induced by the double cover π . Then
ιP induces a biregular involution υP of S̃ since S̃ is the minimal resolution of singularities
of S̄. Thus, we have a commutative diagram

S̃

f

��
g

%%

υP // S̃

f

��
g

yy
S

ρ //

S̄

π ��

ιP // S̄

π��

S

ρooP2

This shows τP = f ◦υP ◦f−1. On the other hand, υP (E) = Ñ since π◦g(E) = π◦g(Ñ).
This means that there exists an isomorphism σ : S → S′ that makes the diagram

S̃

h

��

υP // S̃

f

��
S′ oo

σ
S

commute. By construction, σ(L) = L′, σ(M) = M ′, σ(N) = E′, and σ(Ci1) = C′i0 for
every i. Recall that Q′ is the intersection point of L′ and E′.

Since h is an isomorphism locally around Q, the log pair(
S′, a0L

′
+ b0M

′
+ (a0 + b0 +m0 − 1)E′ +

r∑
i=1

eiC
′

i0

)
is not log canonical at Q′. Since

a0L̃+ b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +
r∑
i=1

eiC̃i0 ∼Q −KS̃,

we have a0L
′
+ b0M

′
+ (a0 + b0 +m0 − 1)E′ +

∑r
i=1 eiC

′

i0 ∼Q −KS′ . Therefore,

a0L+ b0M + (a0 + b0 +m0 − 1)N +
r∑
i=1

eiCi1 ∼Q −KS,
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and (
S, a0L+ b0M + (a0 + b0 +m0 − 1)N +

r∑
i=1

eiCi1

)
is not log canonical at the intersection point of L and N . ut

Now we are able to replace the original effective Q-divisor D by the new effective Q-
divisor D1. By Lemma 5.5, both have the same properties that we have been using so far.
However, the Q-divisor�1 is slightly better than�0 in the sense of the following lemma.

Lemma 5.6. The degree of the Q-divisor �1 is strictly smaller than the degree of �0,
i.e.,

r∑
i=1

eidi1 <

r∑
i=1

eidi0.

Proof. Since D1 ∼Q −KS by Lemma 5.5, we obtain

3 = −KS ·
(
a0L+ b0M + (a0 + b0 +m0 − 1)N +

r∑
i=1

eiCi1

)
= 2a0 + 2b0 +m0 − 1+

r∑
i=1

eidi1.

On the other hand, a0 + b0 + c0 +
∑r
i=1 eidi0 = 3 by (5.1). Thus,

r∑
i=1

eidi1 =

r∑
i=1

eidi0 − (a0 + b0 +m0 − 1− c0) <

r∑
i=1

eidi0

because a0 + b0 +m0 − 1− c0 > 0 by Lemma 5.1. ut

Repeating this process, we can obtain a sequence of effective anticanonical Q-divisors

Dk = akL+ bkM + ckN +�k

on the surface S such that for each k, the log pair (S,Dk) is not log canonical at one of
the three intersection points L ∩M , L ∩N and M ∩N . Note that

�k =

r∑
i=1

eiCik,

where Cik’s are irreducible reduced curves of degrees dik . We then obtain a strictly de-
creasing sequence of rational numbers

r∑
i=1

eidi0 >

r∑
i=1

eidi1 > · · · >

r∑
i=1

eidik > · · ·

by Lemma 5.6. This is a contradiction since the subset{ r∑
i=1

eini

∣∣∣ n1, . . . , nr ∈ N
}
⊂ Q

is discrete and bounded from below. This completes the proof of Lemma 4.8.
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6. α-functions of smooth del Pezzo surfaces

In this section, we prove Theorem 1.25. Let Sd be a smooth del Pezzo surface of degree d.
We first make a simple but useful observation.

Lemma 6.1. Let f : Sd → S be the blow-down of a (−1)-curve E on the del Pezzo
surface Sd . Then S is a smooth del Pezzo surface and αSd (P ) ≥ αS(f (P )) for every
point P of Sd outside E.

Proof. It is easy to check that −KS is ample. The second statement immediately follows
from the definition of the α-function. ut

We have already shown that the α-function αP2 of the projective plane is constant with
value 1/3 (see Example 1.22) and the α-function αP1×P1 of the quadric surface is constant
with value 1/2 (see Example 1.23).

Lemma 6.2. The α-function αF1 of the blow-up F1 of P2 at one point is the constant
function with value 1/3.

Proof. Let P be a point on F1. Let π : F1 → P1 be the P1-bundle morphism onto P1.
Let C be its section with C2

= −1 and let LP be the fiber of the morphism π over π(P ).
Since 2C + 3LP ∼ −KF1 , we have αF1(P ) ≤ 1/3. But α(F1) = 1/3 by Theorem 1.17.
Thus, αF1 is the constant function with value 1/3 by Lemma 1.21. ut

The surface S7 is the blow-up of P2 at two distinct pointsQ1 andQ2. Let E be the proper
transform of the line passing through Q1 and Q2 by the two-point blow-up f : S7 → P2

with exceptional curves E1 and E2.

Lemma 6.3. The α-function of a del Pezzo surface S7 of degree 7 is

αS7(P ) =

{
1/2 if P 6∈ E,
1/3 if P ∈ E.

Proof. Let P ∈ S. Then αS7(P ) ≥ α(S) = 1/3 by Theorem 1.17 and Lemma 1.21.
If P ∈ E, then αS7(P ) ≤ 1/3 since 2E1 + 2E2 + 3E ∼ −KS . It follows that

αS7(P ) = 1/3.
Suppose that P /∈ E. Let L be a line on P2 whose proper transform by the blow-

up f passes through P . Since f ∗(2L) + E is an effective anticanonical divisor passing
through P , we have αS7(P ) ≤ 1/2.

Let g : S → P1
× P1 be the birational morphism obtained by contracting the

(−1)-curve E. Then g is an isomorphism around P . We have αS7(P ) ≥ αP1×P1(g(P ))

by Lemma 6.1. Since αP1×P1 is constant with value 1/2, we obtain αS7(P ) = 1/2. ut

Lemma 6.4. The α-function αS6 of a del Pezzo surface S6 of degree 6 is constant with
value 1/2.

Proof. Let P ∈ S6. One can easily check that αS6(P ) ≤ 1/2. One the other hand, we
have a birational morphism h : S6 → S7, where S7 is a del Pezzo surface of degree 7,
such that h is an isomorphism around P and the point h(P ) is not on the (−1)-curve of S7
intersecting two different (−1)-curves. Then αS6(P ) ≥ 1/2 by Lemmas 6.1 and 6.3. ut
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Lemma 6.5. The α-function of a del Pezzo surface S5 of degree 5 is

αS5(P ) =

{
1/2 if there is a (−1)-curve passing through P ,
2/3 otherwise.

Proof. Let P ∈ S5. Suppose that P lies on a (−1)-curve. Then there exists an effec-
tive anticanonical divisor not reduced at P . Thus, we have αS5(P ) ≤ 1/2. Meanwhile,
1/2 = α(S5) ≤ αS5(P ) by Lemma 1.21 and Theorem 1.17. Therefore, αS5(P ) = 1/2.

Suppose that P is not on any (−1)-curve. Then there exist exactly five irreducible
smooth rational curves C1, . . . , C5 passing through P , with −KS · Ci = 2 for each i
(cf. [7, proof of Lemma 5.8]). Moreover, for every Ci , there are four irreducible smooth
rational curves Ei1, Ei2, Ei3 and Ei4 such that 3Ci + Ei1 + E

i
2 + E

i
3 + E

i
4 belongs to the

bi-anticanonical linear system |−2KS5 | (cf. Remark 1.14). Therefore, αS5(P ) ≤ 2/3.
Suppose that αS5(P ) < 2/3. Then there is an effective anticanonical Q-divisor D

such that (S, λD) is not log canonical at P for some positive rational λ < 2/3. Then
multP (D) > 1/λ by Lemma 2.1. Let f : S4 → S5 be the blow-up of S5 at P with
exceptional curve E and let D̃ be the proper transform of D on S4. Then S4 is a smooth
del Pezzo surface of degree 4. We have

KS4 + λD̃ + (λmultP (D)− 1)E = f ∗(KS5 + λD),

which implies that (S4, λD̃ + (λmultP (D) − 1)E) is not log canonical. On the other
hand, (S4, λD̃ + λ(multP (D)− 1)E) is log canonical because D̃ + (multP (D)− 1)E is
an effective anticanonical Q-divisor of S4 and α(S4) = 2/3 by Theorem 1.17. However,
this is absurd because λ(multP (D)− 1) > λmultP (D)− 1. ut

Lemma 6.6. The α-function on a del Pezzo surface S4 of degree 4 is

αS4(P ) =


2/3 if P is on a (−1)-curve,
3/4 if there is an effective anticanonical divisor that consists of

two 0-curves meeting tangentially at P ;
5/6 otherwise.

Proof. Let P ∈ S4. If P lies on a (−1)-curve L, then there are five mutually disjoint
(−1)-curves E1, . . . , E5 that intersect L. Let h : S4 → P2 be the contraction of all Ei’s.
Since h(L) is a conic in P2, we see that 3L+

∑
1≤i≤5 Ei is a member of the linear system

|−2KS4 | (cf. Remark 1.14). This means that αS4(P ) ≤ 2/3. Therefore, αS4(P ) = 2/3
since α(S4) ≤ αS4(P ) by Lemma 1.21 and α(S4) = 2/3 by Theorem 1.17.

Suppose that P does not lie on a (−1)-curve. Set ω = 3/4 when there is an effec-
tive anticanonical divisor that consists of two 0-curves intersecting tangentially at P , and
ω = 5/6 otherwise.

One can easily find an effective anticanonical divisor F on S4 such that (S4, λF ) is
not log canonical at P for every rational λ > ω (see [31, Proposition 3.2]). This shows
that αS4(P ) ≤ ω. Moreover, it is easy to check that (S4, ωC) is log canonical at P for
each C ∈ |−KS4 |.
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Suppose αS4(P ) < ω. Then there is an effective anticanonical Q-divisor D such
that (S4, ωD) is not log canonical at P . Note that there are only finitely many effective
anticanonical divisors C1, . . . , Ck such that (S4, Ci) is not log canonical at P . Apply-
ing Lemma 2.2, we may assume that for each i at least one irreducible component of
Supp(Ci) is not contained in the support of D.

Let f : S3 → S4 be the blow-up of S4 at P with exceptional curve E and let D̃ be the
proper transform of the divisorD on S3. Then S3 is a smooth cubic surface in P3 and E is
a line in S3. Moreover, (S3, D̃ + (multP (D)− 1)E) is not log canonical at some point Q
on E because (S4,D) is not log canonical at P .

Let TQ be the tangent hyperplane section of S3 atQ. Note that TQ contains the line E.
Since D̃+(multP (D)−1)E is an effective anticanonical Q-divisor on S3, it follows from
Corollary 1.13 that (S3, TQ) is not log canonical at Q and the support of D̃ contains all
the irreducible components of TQ. In fact, TQ is either a union of three lines meeting
at Q or a union of a line and a conic intersecting tangentially at Q. The divisor f (TQ)
is an effective anticanonical divisor on S4 such that the log pair (S4, f (TQ)) is not log
canonical at P . This contradicts our assumption since the support of D contains all the
irreducible components of f (TQ). ut

Consequently, Theorem 1.25 follows from Examples 1.22 and 1.23, and Lemmas 6.2–6.6.

Appendix

This appendix is devoted to the proof of Lemma 1.10. The proof originates from [19]
and [22], where it is dispersed. For the readers’ convenience, we give a detailed and
streamlined proof here.

Let S be a smooth del Pezzo surface of degree at most 4. Suppose that S contains a
(−KS)-polar cylinder, i.e., there is an open affine subset U ⊂ S and an effective anti-
canonical Q-divisor D such that U = S \ Supp(D) and U ∼= Z × A1 for some smooth
rational affine curve Z. Set D =

∑r
i=1 aiDi , where each Di is an irreducible reduced

curve and each ai is a positive rational number.

Lemma A.1 ([22, Lemma 4.4]). The number of irreducible components of the divisorD
is not smaller than the rank of the Picard group of S, i.e., r ≥ rk Pic(S) = 10−K2

S ≥ 6.

To prove Lemma 1.10, we must show that there exists a point P ∈ S such that

• the log pair (S,D) is not log canonical at P ;
• if there exists a unique divisor T in the anticanonical linear system |−KS | such that
(S, T ) is not log canonical at P , then there is an effective anticanonical Q-divisor D′

on S such that

– (S,D′) is not log canonical at P ;
– the support of T is not contained in the support of D′.

The natural projection U ∼= Z × A1
→ Z induces a rational map π : S 99K P1 given by

a pencil L on the surface S. Then either L is base-point-free or its base locus consists of
a single point.
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Lemma A.2 ([22, Lemma 4.2]). The pencil L is not base-point-free.

Proof. Suppose that L is base-point-free. Then π is a morphism, which implies that there
exists exactly one irreducible component of Supp(D) that does not lie in a fiber of π .
Moreover, this component is a section. Without loss of generality, we may assume that
the component is Dr . Let L be a sufficiently general curve in L. Then

2 = −KS · L = D · L =
r∑
i=1

aiDi · L = arDr · L,

and hence ar = 2. This implies that α(S) ≤ 1/2. However, this contradicts Theorem 1.17
since the degree of S is at most 4. ut

Denote the unique base point of the pencil L by P . Let us show that P is the point we are
looking for. Resolving the base locus of L, we obtain a commutative diagram

W

f

��

g

  
S

π // P1

where f is a composition of blow-ups at smooth points over P and g is a morphism whose
general fiber is a smooth rational curve. Denote by E1, . . . , En the exceptional curves of
the birational morphism f . Exactly one of them does not lie in the fibers of g. Without
loss of generality, we may assume that this is En. Then En is a section of g.

For every Di , denote by D̃i its proper transform on the surface W . Then every
curve D̃i lies in a fiber of g.

The following lemma is a slightly stronger version of [22, Lemma 4.6]; its proof is
almost the same.

Lemma A.3 (cf. [22, Lemma 4.6]). For every effective anticanonical Q-divisor H with
Supp(H) ⊆ Supp(D), the log pair (S,H) is not log canonical at the point P .

Applying Lemma A.3 to (S,D), we see that (S,D) is not log canonical at P . Thus, if
there exists no anticanonical divisor T such that (S, T ) is not log canonical at P , then
we are done. Hence, to complete the proof of Lemma 1.10, we assume that there exists a
unique divisor T ∈ |−KS | such that (S, T ) is not log canonical at P . Then Lemma 1.10
follows from the lemma below.

Lemma A.4. There exists an effective anticanonical Q-divisor D′ on S such that the
log pair (S,D′) is not log canonical at P and Supp(D′) does not contain at least one
irreducible component of Supp(T ).

Proof. If Supp(D) does not contain at least one irreducible component of Supp(T ), then
we can simply set D′ = D. Suppose otherwise, i.e., Supp(T ) ⊆ Supp(D). Then T 6= D.
Indeed, the number of irreducible components of Supp(D) is at least 6 by Lemma A.1.
On the other hand, the number of irreducible components of Supp(T ) is at most 4 because
−KS · T = K

2
S and −KS is ample.
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Since T 6= D, there exists a positive rational µ such that the Q-divisor (1+µ)D−µT
is effective and its support does not contain at least one irreducible component of
Supp(T ). Set D′ = (1 + µ)D − µT . Note that D′ is also an effective anticanonical
Q-divisor on S. By our construction, Supp(D′) ⊆ Supp(D). Thus, (S,D′) is not log
canonical at P by Lemma A.3. ut

Remark A.5. Note that U 6= S \Supp(D′), which implies that the number of irreducible
components of Supp(D′)may be less than rk Pic(S). Therefore, we can apply Lemma 2.2
only once here. This shows that in the proof of Lemma A.4 we really need to use the
uniqueness of the divisor T in |−KS | such that (S, T ) is not log canonical at P . Indeed,
if there is another divisor T ′ in |−KS | such that (S, T ′) is not log canonical at P , then we
would not be able to apply Lemma 2.2 since we might have D′ = T ′.
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