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Abstract. We derive new obstructions to periodicity of classical knots by employing the Heegaard
Floer correction terms of the finite cyclic branched covers of the knots. Applying our results to
2-fold covers, we demonstrate through numerous examples that our obstructions are successful
where many existing periodicity obstructions fail.

A combination of previously known periodicity obstructions and the results presented here
leads to a nearly complete (with the exception of a single knot) classification of alternating, periodic,
12-crossing knots with odd prime periods. For the case of alternating knots with 13, 14 and 15
crossings, we give a complete list of all periodic knots with odd prime periods q > 3.
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1. Introduction

1.1. Background

The study of periodic knots is an extension of the usual framework of knot theory to the
equivariant case. Focusing on finite cyclic group actions, we say that a knot K in S3 is
periodic if there exists an integer q > 1 and an orientation preserving diffeomorphism
f : S3

→ S3 such that f (K) = K , the order of f is q, and the fixed point set of f is a
circle disjoint from K . Any such q is called a period of K . The set B = Fix(f ) is called
the axis of f . We shall refer to a knot of period q as q-periodic. The positive resolution
of the Smith Conjecture [BM] ensures that the axis B is an unknot.

Remark. It is crucial to assume that f : S3
→ S3 be smooth to ensure that B is an

unknot. Montgomery and Zippin [MZ] constructed a homeomorphism of S3 of order two
with a complicated fixed point set.

If 〈f 〉 is the subgroup of Diff+(S3) generated by f , then the orbit space S3/〈f 〉 is diffeo-
morphic to S3 [Moi], and we let π : S3

→ S3/〈f 〉 be the associated quotient map. The
knot K = π(K) is called the quotient knot of K and B = π(B) the quotient axis of K .
See Figure 1 for an illustration of 3-periodicity of the trefoil.
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Fig. 1. A 3-periodic diagram of the trefoil K and its quotient knot K . The axis B and the quotient
axis B are indicated.

Example 1.1. The periods of the (a, b)-torus knot are the divisors of |a| and |b| (see [C]).

Topologists have studied how periodicity of a knot is reflected in its various invariants,
including polynomial invariants such as the Alexander polynomial [DL, Mu1, Mu2], the
Jones polynomial [Mu3] and its 2-variable generalizations [C1, C2, P, Tr1, Tr2, Y1, Y2],
and the twisted Alexander polynomials [HLN]. Obstructions to periodicity have also been
found in terms of hyperbolic structures on knot complements [AHW], homology groups
of branched cyclic covers [N1, N2], concordance invariants of Casson and Gordon [N2],
Khovanov homology [C3] and link Floer homology [H].

We add to these a new knot periodicity obstruction that is based on the Heegaard
Floer correction terms of a cyclic branched cover of the knot. To do so, we let Y be a
prime-power-fold cyclic cover of S3 branched along K . Any such Y is a rational ho-
mology 3-sphere, and when K is q-periodic, features an order q, orientation preserving,
self-diffeomorphism F : Y → Y [N1]. The latter is used in conjunction with the diffeo-
morphism invariance of the Heegaard Floer correction terms to obstruct periodicity.

Theorem 1.2. Let Y be a rational homology 3-sphere, s ∈ Spinc(Y ) a spinc-structure
on Y , and F : Y → Y an orientation preserving diffeomorphism. Then

d(Y, F ∗(s)) = d(Y, s),

where F ∗(s) is the pullback of s under F , and d(Y, s) is the Heegaard Floer correction
term of Y associated to the spinc-structure s.

Theorem 1.2 is a consequence of the diffeomorphism invariance of the Heegaard
Floer groups HF◦(Y, s), ◦ ∈ {∞,−,+, ˆ}. Indeed, this invariance induces commuta-
tive diagrams relating the long exact sequences of the triples (HF−(Y, s),HF∞(Y, s),
HF+(Y, s)) and (HF−(Y, F ∗(s)),HF∞(Y, F ∗(s)),HF+(Y, F ∗(s))), from which Theo-
rem 1.2 readily follows.

Returning to a q-periodic knot K and its prime-power-fold cyclic branched cover Y ,
understanding the fixed point set of F ∗ allows for a prediction of certain correction terms
for Y to appear with multiplicities divisible by q, and the absence of such multiplicities
obstructs q-periodicity of K . For instance, if F ∗ is fixed point free, then all but one value
of the correction terms appear with multiplicity divisible by q.
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Information about the fixed point set of F ∗ can be obtained by considering the first
homology of Y , the corresponding cyclic cover of S3 branched along the quotient knotK
of K . If for an Abelian group H and a prime ` we let H` denote the `-primary subgroup
of H (the set of elements of order a power of `), we have the following result from [N1,
Proposition 2.5] the proof of which is based on a transfer argument similar to that in
Section 2.2.3 in the proof of Theorem 1.11.

Remark 1.3. Throughout this paper, q and ` will denote distinct primes, and n will be a
power of some prime number.

Theorem 1.4 ([N1, Proposition 2.5]). Let q, ` and n be as in Remark 1.3, and let Y and
Y be the n-fold cyclic covers of S3 branched along a q-periodic knot K and its quotient
knot K respectively. Then

Fix(F∗|H1(Y ;Z)`)
∼= H1(Y ;Z)`. (1.1)

Remark 1.5. In what follows we shall rely on an affine identification of Spinc(Y ) and
H1(Y ;Z). In the presence of a diffeomorphism F : Y → Y , we shall further require
that these identifications be “F -compatible” in the sense that if s ∈ Spinc(Y ) and s ∈
H1(Y ;Z) are identified with one another, then so are F ∗(s) and F∗(s).

Such an identification exists if and only if there is a spinc-structure s0 ∈ Spinc(Y )
with F ∗(s0) = s0, in which case the F -compatible affine identification is chosen so as
to identify s0 with 0 ∈ H1(Y ;Z). We force the existence of such an s0 by requiring
H1(Y ;Z)2 = 0, the latter condition implying that Y possesses a unique spin-structure s0,
and clearly then F ∗(s0) = s0. The condition H1(Y ;Z)2 = 0 is automatic if n is a power
of 2, as it will be in all of our examples (where n = 2).

1.2. Results and examples

An immediate consequence of Theorems 1.2 and 1.4 is our first obstruction to q-period-
icity.

Theorem 1.6. Let q, ` and n be as in Remark 1.3, and let Y and Y be the n-fold cyclic
covers of S3 branched along a q-periodic knot K and its quotient knot K respectively.
Assume thatH1(Y ;Z)` is trivial and let F : Y → Y be the diffeomorphism induced by the
q-periodicity of K . Then, under an F -compatible affine identification of Spinc(Y ) with
H1(Y ;Z) (Remark 1.5), the Heegaard Floer correction terms d(Y, s), corresponding to
spinc-structures s ∈ H1(Y ;Z)` − {0}, occur with multiplicities divisible by q.

Example 1.7. Consider the knot K = 12a100 from the knot tables [CL]. For its 2-fold
branched cover Y , we haveH1(Y ;Z)5 ∼= Z5⊕Z5 (throughout we reserve the symbol Zm
for the cyclic group Z/mZ of m elements).

If this K were 3-periodic, the Alexander polynomial of any quotient knot K would
have to be trivial, and hence H1(Y ;Z) = 0 (a claim we justify in Section 2.3). Ac-
cording to Theorem 1.6, 3-periodicity of K would force the correction terms d(Y, s),
s ∈ H1(Y ;Z)5 − {0}, to occur with multiplicities divisible by 3. This does not happen as
an explicit computation of the correction terms shows:
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12a100
d(Y, s) −

4
5 −

2
5 0 2

5
4
5

Multiplicity of d(Y, s) 2 6 6 6 4
, s ∈ H1(Y ;Z)5 − {0}.

It follows that 12a100 cannot be 3-periodic.

When H1(Y ;Z)` is non-trivial, that is, when the fixed point set of F∗|H1(Y ;Z)` is non-
trivial, it is harder to keep tally of the multiplicities of the correction terms d(Y, s) with
s ∈ H1(Y ;Z)`, and our obstruction to q-periodicity in this case is weaker, taking the form
of an inequality as seen in Theorem 1.8 below. (Note, however, that Theorem 1.6 follows
as a corollary of Theorem 1.8 when H1(Y ;Z)` = 0.)

Theorem 1.8. Let q, ` and n be as in Remark 1.3, let KsubsetS3 be a q-periodic knot
and let Y and Y be the n-fold cyclic covers of S3 branched along K and its quotient knot
K respectively. Let F : Y → Y be the diffeomorphism induced by the q-periodicity of K .
Then, under an F -compatible affine identification of Spinc(Y ) with H1(Y ;Z) (Remark
1.5), there exists a subgroup H of H1(Y ;Z)`, isomorphic to H1(Y ;Z)`, such that:

(i) Each correction term d(Y, s) with s ∈ H1(Y ;Z)` − H occurs with a multiplicity
divisible by q.

(ii) Let the multiplicities of the correction terms d(Y, s)with s∈H1(Y ;Z)` be n1, . . . , nk ,
and let mi be their reductions modulo q, that is, mi ≡ ni (mod q) and 0 ≤ mi < q.
Then

m1 + · · · +mk ≤ |H |.

Example 1.9. Consider the knots 74 and 92 from the knot tables [CL]. For each of these,
the Alexander polynomial is

1(t) = 174(t) = 192(t) = 4t2 − 7t + 4.

Note that 1(−1) = 15, showing that the first homology of the double branched cover
along any knot with this polynomial is Z5 ⊕ Z3.

Let K = 74 # 74 # 92 and suppose that K has period 3. Then the Alexander poly-
nomial of the quotient knot K is forced to be 1K(t) = 4t2 − 7t + 4 (as explained in
Section 2.3). Let Y and Y denote the double branched covers along K and K , respec-
tively. Then H1(Y ;Z)5 ∼= Z5⊕Z5⊕Z5 and H1(Y ;Z)5 ∼= Z5. By Theorem 1.8 the fixed
point set of the generator of the Z3 action on H1(Y ) is a subgroup H isomorphic to Z5
and the sum of the modulo 3 multiplicities of the correction terms should be bounded
above by |H | = 5.

The table below shows the correction terms d(Y, s) with s ∈ H1(Y ;Z) with their
corresponding multiplicities. We see two corrections terms with multiplicities 24 and 6,
respectively, but nine distinct correction terms which do not have multiplicities divisible
by 3. By Theorem 1.8, K cannot have period 3. Specifically, adding the modulo 3 reduc-
tions of the multiplicities gives 2 + 2 + 2 + 2 + 1 + 2 + 1 + 1 + 1 = 10 > 5 = |H |.

d(Y, s) −
29
10 −

5
2 −

17
10 −

13
10 −

9
10 −

1
2 −

1
10

3
10

7
10

11
10

3
2

Multiplicity of d(Y, s) 8 8 20 24 8 16 20 10 6 4 1
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In Section 2.3 we demonstrate that Examples 1.7 and 1.9 pass several previously known
obstructions to knot periodicity, indicating that Theorems 1.6 and 1.8 pick out information
about the knots not contained in those obstructions.

Remark 1.10. The Heegaard Floer correction terms d(Y, s) of a rational homology
3-sphere are invariant under conjugation of spinc-structures: d(Y, s) = d(Y, s̄). This
“built-in” Z2-symmetry of the correction terms unfortunately makes it difficult to use
Theorems 1.6 and 1.8 to obstruct 2-periodicity of knots. However, see [H].

The use of correction terms to obstruct q-periodicity (with q a prime) in Theorems 1.6
and 1.8 relies on the fact that the hypotheses in the theorems ensure that F∗ : H1(Y ;Z)→
H1(Y ;Z) has fixed point set Fix(F∗) smaller than H1(Y ;Z). Since q is prime, the cardi-
nality of the set {s, F∗(s), . . . , F

q−1
∗ (s)} is q for each choice s ∈ H1(Y ;Z) − Fix(F∗),

thus giving a q-fold multiple for the value of the correction terms d(Y, s).
This reasoning is completely general and guarantees the existence of q-fold values

of correction terms d(Y, s), s ∈ H1(Y ;Z) − Fix(F∗), whenever one has an order q dif-
feomorphism F : Y → Y . In the absence of a prime ` distinct from q satisfying the
hypotheses of Theorems 1.6 and 1.8 (as happens, for instance, when H1(Y ;Z) is itself q-
primary), ensuring that H1(Y ;Z)− Fix(F∗) is non-empty becomes harder. Nevertheless,
we submit the following non-triviality criterion.

Theorem 1.11. Let q be an odd prime and n a power of a prime. Let K be a q-periodic
knot with quotient knot K , and let Y and Y be their n-fold cyclic branched covers. Let
F∗,q be the restriction of F∗ : H1(Y ;Z)→ H1(Y ;Z) to H1(Y ;Z)q , and let

Fix(F∗,q) ∼= Zm1
q ⊕ Zm2

q2 ⊕ · · · ⊕ Z
mk
qk

for some natural numbers k,m1, . . . , mk . Then

|Fix(F∗,q)| ≤ qm1+···+mk · |H1(Y ;Z)q |. (1.2)

In particular, if qm1+···+mk · |H1(Y ;Z)q | < |H1(Y ;Z)q | then H1(Y ;Z)q − Fix(F∗,q) is
non-trivial and each correction term d(Y, s) with s ∈ H1(Y ;Z)q −Fix(F∗,q) occurs with
a multiplicity divisible by q.

Corollary 1.12. Under the hypothesis of the previous theorem, assume additionally that
H1(Y ;Z)q ∼= Zqk for some natural number k > 1. Then |Fix(F∗,q)| ≤ q · |H1(Y ;Z)q |
and if

q · |H1(Y ;Z)q | < |H1(Y ;Z)q |, (1.3)

then there is a set S of correction terms of Y such that:

(i) Each correction term d(Y, s) ∈ S occurs with a multiplicity divisible by q.
(ii) The number of correction terms in S, counted with multiplicity, is greater than or

equal to |H1(Y ;Z)q | − q · |H1(Y ;Z)q |.

Examples of applications of Theorem 1.11 and Corollary 1.12 are given in Section 3.
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1.3. Applications to low-crossing knots

Periodicity of knots with fewer than twelve crossings has been discussed extensively in
the references we have included in the introduction. For the benefit of the reader we re-
count some of these results below, and add some new findings to the list. As discussed in
greater detail in Section 3, the results we state here are based on subjecting knots to what
we label the sieve of “homological periodicity obstructions” first, and then running the
remaining knots through the sieve of the Heegaard Floer correction terms periodicity ob-
struction. As correction terms of 2-fold cyclic branched covers of non-alternating knots
are difficult to calculate at present, our results focus almost exclusively on alternating
knots.

By the “homological periodicity obstructions” we refer to the three periodicity tests:
• Edmonds’ genus condition (Section 2.1.1),
• Murasugi’s Alexander polynomial conditions (Section 2.1.2), and
• the homology condition (Section 2.1.3).
The selection of these three periodicity obstructions for comparison with the correction
terms obstruction is motivated by their relatively easy implementation in a Mathemat-
ica computer code. This is relevant to the examples below where we examine entire
families of knots for periodicity properties, with some families containing thousands of
knots. A knot by knot approach, as would for instance be required when using the twisted
Alexander polynomial obstruction, would indeed be an overwhelming task.

We are not aware of an example of a knot that passes all hitherto known periodicity
obstructions but fails to pass the correction terms periodicity obstruction, though such
an example may well exist. We are however able to exhibit examples of knots whose
periodicity is excluded by the correction terms obstruction, even when they pass each of
the three homological periodicity obstructions, providing substantiation for the usefulness
of our techniques. Details of the calculations presented here are provided in Section 3.

1.3.1. Knots with up to nine crossings. Periods for knots up to nine crossings are all
known, and are listed in [BZ]. The eight 3-periodic knots in this family are

31, 819, 91, 935, 940, 941, 947, 949.

Indeed, 31, 819 and 91 are the (3, 2)-, (4, 3)- and (9, 2)-torus knots respectively (see Ex-
ample 1.1), while 935 is the 3-stranded pretzel knot P(−3,−3,−3). Periodic diagrams
for 940, 941, 947 and 949 can be found in [BZ, p. 276]. The only 5- and 7-periodic knots
with nine or fewer crossings are the (5, 2)- and (7, 2)-torus knots respectively, and no
knots with prime periods q > 7 exist.

1.3.2. Knots with ten crossings. The knot tables in [BZ] also contain information about
periodicity of ten crossing knots, though the knot 103 is listed there incorrectly as having
period 3. Odd prime periods q > 3 have been determined in [N1].

Of the 165 knots with ten crossings, the ones that pass the homological obstructions
for 3-periodicity are

104, 1087, 1098, 1099, 10124 , 10143,
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of which only 10124, being the (5, 3)-torus knot, is 3-periodic. Of the alternating knots
104, 1087, 1098 and 1099, Heegaard Floer correction terms can be used to exclude the
knots 104, 1087 from having period 3. The knot 1098 fails to be 3-periodic by the result
from [P], and 10143 can be shown not to be 3-periodic by the methods of [Y1]. The added
symmetry of 1099, coming from its amphicheirality, causes it to pass many 3-periodicity
obstructions, including the one stemming from Heegaard Floer correction terms. Indeed,
the only test that we know that obstructs 1099 from 3-periodicity is the one relying on the
hyperbolic structure of its complement [AHW].

The 10-crossing knots that pass the homological obstructions for 5-periodicity are

10123 , 10124 , 10132, 10137,

of which 10123 and 10124 are 5-periodic. We already mentioned that 10124 is the (5, 3)-
torus knot, and as such is 5-periodic, while a 5-periodic diagram of 10123 is given in Fig-
ure 2. The remaining two knots, both non-alternating, can be excluded from 5-periodicity
by examining their HOMFLYPT polynomials as in [Tr2], or their Jones polynomials as
in [Mu3]. There are no 10-crossing knots with odd prime period q > 5.

Fig. 2. Periodic diagram for the knot 10123.

1.3.3. Knots with eleven crossings. Some of the results in this section have previously
been obtained for periods q > 3 in [N1]. Of the 552 knots with eleven crossings, five
alternating and nine non-alternating knots pass the homological obstructions for period 3:

11a43, 11a58, 11a165, 11a297, 11a321,

11n67, 11n72, 11n77, 11n97, 11n106, 11n126, 11n133, 11n139, 11n145.

Of the alternating knots in the first row, all but 11a43 are excluded from being 3-periodic
by the Heegaard Floer correction terms. 11a43 is excluded from 3-periodicity by its HOM-
FLYPT polynomial as in [P].

Of the non-alternating knots in the second row, all of which are hyperbolic, only the
two knots 11n126 and 11n133 have full symmetry groups (see Section 1.4 below) with el-
ements of order 3, and are thus the only two knots in this list that may be 3-periodic. They
are however excluded from 3-periodicity (and are thus forced to be freely 3-periodic) by
their HOMFLYPT polynomials [P]. There are no 11-crossing knots with period 3.
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There are no 11-crossing knots with periods 5 or 7 either, and there is exactly one 11-
periodic 11-crossing knot, namely the (11, 2)-torus knot 11a367. There are no 11-crossing
knots of prime odd periods q > 11. (See 2.5.)

1.3.4. Knots with twelve crossings. We use our techniques to provide a nearly complete
classification of 12-crossing alternating knots with odd prime period.

Theorem 1.13. Among the 1288 alternating 12-crossing knots, there are no examples of
knots with odd prime period greater than 3. There are at most seven 3-periodic knots,
namely

12a503 , 12a561 , 12a615 , 12a634, 12a1019 , 12a1022 , 12a1202 .

Of these, the six framed knots are 3-periodic (Figure 3 shows their periodic diagrams),
while the remaining knot 12a634, if 3-periodic, has a quotient knot with Alexander poly-
nomial 4− 7t + 4t2.

12a503 12a561 12a615

12a1019 12a1022 12a1202

Fig. 3. Periodic diagrams of certain 3-periodic 12-crossing alternating knots.

1.3.5. Knots with 13, 14 and 15 crossings. In this category we focus on the alternating
knots only, where we are able to give a complete classification of periodic knots of prime
periods q > 3. The exclusion of period q = 3 from our consideration is due to the large
number of knots that pass the homological obstructions for 3-periodicity.



Periodic knots and correction terms 1659

Theorem 1.14. The following is a complete classification of q-periodic alternating knots
with 13, 14 or 15 crossings, for q > 3 a prime.

(i) Among the 4,878 alternating knots with 13 crossings, the only knot that possesses a
prime period q > 3 is the (13, 2)-torus knot 13a4878. Its only periods are 2 and 13.
At most 29 alternating knots with 13 crossings have period 3.

(ii) Among the 19,536 alternating knots with 14 crossings, the only knot that possesses
a prime period q > 3 is the 7-periodic knot 14a19470 (see Figure 4 for a periodic
diagram), and 7 is its only odd prime period. At most 49 alternating knots with 14
crossings have period 3.

(iii) Of the 85,263 alternating knots with 15 crossings, the only knots that have a prime
period q > 3 are the knots

15a64035, 15a84903, 15a85262, 15a85263.

Each of these knots has period 5, but no other prime period q > 5. Periodic diagrams
for the first two knots are seen in Figure 5. The knot 15a85262 is the 5-stranded pretzel
knot P(−3,−3,−3,−3,−3), and the knot 15a85263 is the (15, 2)-torus knot. At
most 133 alternating knots with 15 crossings have period 3.

Fig. 4. A 7-periodic diagram for the knot 14a19470.

15a64035 15a64035 15a84903

Fig. 5. Periodic diagrams for the knots 15a64035 and 15a84903. The leftmost figure gives an alter-
nating 5-periodic diagram for 15a64035, while the middle figure gives a 5-periodic ribbon diagram
for the same knot.
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1.4. Concluding remarks and the full symmetry group of a knot

The full symmetry group S(K) of a knotK (see KnotInfo [CL] or [K, Section 10.6]) is the
group of diffeomorphisms of the pair (S3,K) modulo its normal subgroup generated by
diffeomorphisms of (S3,K) isotopic to the identity. For a hyperbolic knot the symmetry
group is always finite, given by the group of isometries of the unique complete hyperbolic
structure on the complement ofK . Thus, ifK is a hyperbolic knot, then q-periodicity ofK
implies the existence of q-torsion in S(K) (see [AHW] and references therein).

Conversely, however, if f ∈ S(K) is an order q element, there is no guarantee of
q-periodicity of K , even if K is hyperbolic. The reason for this is that f may be fixed
point free, rendering K freely q-periodic (a concept not discussed in this work), but not
q-periodic. For example, S(12n276) ∼= D6 (with D6 being the order 12 dihedral group),
which clearly has elements of order 3. However, 12n276 is not 3-periodic as it does not
pass the Murasugi conditions (Section 2.1.2). Other such examples are the hyperbolic
knots 948, 1075 and 11a366, neither of which is 3-periodic, but each of which has a full
symmetry group with elements of order 3.

Question 1.15. Can the hyperbolic structure on the complement of a hyperbolic knot be
used to distinguish free periodicity from periodicity of the knot?

In a different direction, a non-hyperbolic knot may be q-periodic without S(K) hav-
ing any elements of order q. For instance, the torus knots T2,2n+1 (Example 1.1) have
S(T2,2n+1) ∼= Z2, but any divisor q of 2n + 1 is a period. These q-periods are thus re-
alized by fq,n : (S3, T2,2n+1)→ (S3, T2,2n+1), diffeomorphisms that are isotopic to the
identity. Recall that torus knots and cable knots are not hyperbolic.

The knot 12a634 from Theorem 1.13 has full symmetry group S(12a634) ∼= Z2 and
given that 12a634 is hyperbolic, it cannot have period 3. The symmetry groups on Knot-
Info were determined by computer calculations as in [AHW], and we are not able to
eliminate the possibility of period 3 for 12a634 without reliance on computers. Besides
passing all period 3 obstructions mentioned in this paper, 12a634 also passes the obstruc-
tions from [DL, HLN, Mu1, Mu3, P, Tr2, Y1, Y2].

With regard to the twisted Alexander polynomial obstructions described in [HLN],
the fundamental group of the knot 12a634 has a unique representation into the dihedral
group D5, obtained by exploiting the fact that the 2-fold branched cover Y of 12a634 has
H1(Y ;Z)5 ∼= Z5, and by remembering thatD5 is a semidirect product of Z2 with Z5. The
associated twisted Alexander polynomial of 12a634 passes the generalized Murasugi con-
ditions from [HLN], and so fails to obstruct 3-periodicity of 12a634. Despite this, it may
well be that twisted polynomials ofK = 12a634 associated to different representations of
π1(S

3
−K) could exclude period 3.

Conjecture. If an alternating knot K with crossing number c has odd prime period q,
then q divides c.

This conjecture holds for q > 3 for all 111,528 alternating non-trivial knots with crossing
number c ≤ 15. The conjecture does not extend to non-alternating knots. For instance,
the non-alternating knots 819 and 10124 each have period 3. Also, the (6, 5)-torus knot,
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which is non-alternating and has crossing number 24, is 5-periodic. The conjecture does
not extend to period 2 either, as any torus knot T2,2n+1 is alternating with an odd number
(2n+ 1) of crossings and has period 2.

Organization. The paper is organized as follows. Section 2 discusses knot periodicity.
It describes and refines several previously known obstructions to knot periodicity, and
revisits Examples 1.7 and 1.9 to show that they pass the said obstructions. The proofs
of Theorem 1.6, 1.8, 1.11 and 1.13 are also provided in that section. Section 3 provides
calculations of the Heegaard Floer correction terms for the 2-fold branched covers of the
knots mentioned in Section 1.3.

2. Knot periodicity

This section begins with background material on knot periodicity and reviews as well as
refines some known obstructions to periodicity alluded to in the introduction. The proofs
of Theorems 1.6, 1.8 and 1.11 are supplied in Section 2.2.

2.1. Background and homological periodicity obstructions

Let K ⊂ S3 be a knot of period q > 1 and let f : S3
→ S3 be an orientation preserving

diffeomorphism realizing K’s q-periodicity.
For some n ∈ N, let ℘ : Y → S3 be an n-fold cyclic covering map of S3 branched

alongK . It is easy to see that f : S3
→ S3 lifts to an order q diffeomorphism F : Y → Y ,

which in turn induces a q-fold cyclic covering map 5 : Y → Y (with Y = Y/〈F 〉)
branched over ℘̄−1(B). The commutative diagram (2.1) captures the descriptions from
this paragraph.

Y

F

,,

n-fold cyclic
cover, branched

along K
℘

��

q-fold cyclic cover,
branched along ℘̄−1(B)

5
// Y

n-fold cyclic
cover, branched

along K
℘̄

��
S3

f

33
q-fold cyclic cover,
branched along B

π // S3

(2.1)

With this in place, we turn to several known knot periodicity obstructions.

2.1.1. Edmonds’ genus condition. In [E] Edmonds showed that if a knot K of genus g
has period q, then

q ≤ 2g + 1 and if q > g, then q = g + 1 or 2g + 1. (2.2)
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Furthermore, if the genus of the quotient knot is g, then

g ≥ qg. (2.3)

Clearly, if q > g, then g is forced to be 0, and therefore 1 is 1.
If n is an an even number, the number of disks in a Seifert surface F , obtained using

Seifert’s algorithm on an n-crossing knot diagram, is greater than 2, as only the trivial
knot has exactly one Seifert circuit and only the torus knots of type (n, 2) have exactly
two Seifert circuits and n in that case has to be odd. The Euler characteristic of such an F
is 1− 2g(F ) ≥ −n+ 3 and the genus of the knot satisfies g ≤ g(F ). It follows (see [N1,
Lemma 4.5]) that if K is an n-crossing knot with n even, then

g ≤ n/2− 1. (2.4)

Combining (2.2) and (2.4), we have q < 2g + 1 ≤ n− 1. On the other hand, if n is odd,
the T (2, n) torus knot has period n. So we have, for an n-crossing knot,

q ≤ n if n is odd, and q ≤ n− 1 if n is even. (2.5)

These conditions substantially limit the periods a given knot may possess.

2.1.2. Murasugi’s Alexander polynomial conditions. Note that the Alexander polyno-
mial of a knot is a polynomial 1 with integer coefficients such that

1(t) = tdeg(1)1(t−1). (2.6)

Let K be a q-periodic knot with quotient knot K and let λ = |`k(K,B)| be the
absolute value of the linking number of K with its axis B. Let 1K(t) and 1K(t) be
the Alexander polynomials of K and K respectively. The next two conditions constrain
periodicity of K with K as a quotient knot:

1K |1K in Z[t, t−1
]. (2.7)

1K(t)
·
≡ (1K(t))

q(1+ t + · · · + tλ−1)q−1 (mod q). (2.8)

The symbol “
·
≡” stands for congruence modulo q up to multiplication by units in

Z[t, t−1
]. Additionally, gcd(λ, q) = 1. The proofs of these can be found in [Mu1, Mu2].

Conditions (2.7) and (2.8) are called the Murasugi conditions.
The genus of any knot is necessarily greater than or equal to half the degree of its

Alexander polynomial. Therefore, using (2.3) we have

g(K) ≥
q

2
deg(1K). (2.9)

2.1.3. The homology condition. Recall from Remark 1.3 that q and ` denote distinct
primes and n is a prime power. Let gq(`) be the smallest natural number such that

`gq (`) ≡ ±1 (mod q). (2.10)
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Let Y and Y be n-fold cyclic covers of S3 branched over a q-periodic knotK and its quo-
tient knot K respectively. Then there exist non-negative integers s, b1, . . . , bs such that,
after identifying H1(Y ;Z)` with a subgroup of H1(Y ;Z)` as allowed by (1.1), we have
the following isomorphism, proved in [N2], and henceforth referred to as the homology
condition:

H1(Y ;Z)`/H1(Y ;Z)` ∼= Z2b1gq (`)

` ⊕ Z2b2gq (`)

`2 ⊕ · · · ⊕ Z2bsgq (`)
`s . (2.11)

Prime-power-fold cyclic covers Y of S3 branched over a knot are rational homology
spheres, and the degree of the cover is relatively prime to the order of the first homol-
ogy of Y . If the degree of the cover is odd, then H1(Y ;Z) is always a double (that is,
H1(Y ;Z) ∼= G ⊕ G for some G), but in general this is not the case for even-fold cov-
ers. In Corollary 2.1 below we observe that for a periodic knot we have a “double” in
homology irrespective of the parity of the prime-power-fold cover.

Corollary 2.1. Let q and ` be two distinct primes and K a q-periodic knot with Y its
n-fold cyclic branched cover (with n a prime power of arbitrary parity). Then

H1(Y ;Z)`/H1(Y ;Z)` is a double. (2.12)

In particular if Y is a double branched cover of K , 1K(t) the Alexander polynomial of
the quotient knot, and ` - 1K(−1), then

H1(Y ;Z)` is a double. (2.13)

Proof. The claim (2.12) is a direct consequence of (2.11) as Z2bgq (`)
`m

∼= Zbgq (`)`m ⊕Zbgq (`)`m ,
while (2.13) is implied by (2.12) along with the observation that if ` does not divide
1K(−1), then H1(Y ;Z)` = 0. With regard to (2.12) and (2.13), we note that the trivial
group is a double. ut

As mentioned in Section 1.3, we shall refer to the periodicity obstructions from Sec-
tion 2.1.1 (Edmonds’ genus conditions), Section 2.1.2 (Murasugi’s Alexander polynomial
conditions) and from the present section (the homology condition) collectively as the ho-
mology periodicity obstructions. When in Subsection 2.3 we revisit Examples 1.7 and 1.9
from the introduction, we shall see that that the knots considered therein pass each of the
obstructions (2.2), (2.7), (2.8), (2.9) and (2.11), underscoring the strength of the Heegaard
Floer obstruction.

2.2. Proofs of Theorems 1.6, 1.8 and 1.11

For the proofs in this section, we rely on the following notation and assumptions:
Let K be a q-periodic knot whose periodicity is realized by an order q, orientation

preserving diffeomorphism f : S3
→ S3. For some prime power n, let Y be an n-fold

cyclic cover of S3 branched over K and let F : Y → Y be the lift of f . Note that Y is
a rational homology 3-sphere. Let Y be an n-fold cyclic cover of S3 branched along the
quotient knot K and let ` be a prime distinct from q. Recall also that we tacitly identify
Spinc(Y ) with H1(Y ;Z) through an F -compatible affine identification (see Remark 1.5),
and write s or F∗(s) with s ∈ H1(Y ;Z) instead of s or F ∗(s) with s ∈ Spinc(Y ).
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2.2.1. Proof of Theorem 1.6. The hypothesis of Theorem 1.6 states that H1(Y ;Z)` = 0,
showing that the fixed point set of F∗ restricted to H1(Y ;Z)` is {0} (as follows from
(1.1)). Thus for every non-zero element s ∈ H1(Y ;Z)`, the set {F∗(s), F 2

∗ (s), . . . , F
q
∗ (s)}

contains q distinct spinc-structures. As d(Y, F i1∗ (s)) = d(Y, F
i2
∗ (s)) for any pair i1, i2 ∈

{1, . . . , q} (Theorem 1.2), the claim of Theorem 1.6 follows. ut

2.2.2. Proof of Theorem 1.8. Define H to be the subgroup of H1(Y ;Z)` given by H =
Fix(F∗|H1(Y ;Z)`), and note that H ∼= H1(Y ;Z)` according to (1.1). Consider the cosets
s + H of H in H1(Y ;Z)` and for any s + h ∈ s + H 6= 0 + H , consider the associ-
ated orbit {s + h, F∗(s + h), F 2

∗ (s + h), . . . , F
q−1
∗ (s + h)} of s + h under the action of

Zq = {Id, F∗, . . . , F
q−1
∗ }. Each such orbit has q elements since q is prime (restricting

the cardinality of the orbit to be either 1 or q) and because an orbit of cardinality 1 would
lead to s + h = F∗(s + h) and thus to s + h ∈ H , contrary to assumption. Accordingly,
there are

([H1(Y ;Z) : H ] − 1) · |H |
q

values of correction terms (not necessarily all distinct) d(Y, s) with s ∈ H1(Y ;Z)`, each
of which occurs with multiplicity q. The remaining |H | correction terms d(Y, s) with
s ∈ H may have arbitrary multiplicity. Theorem 1.8 now follows. ut

2.2.3. Proof of Theorem 1.11. Assume K is a q-periodic knot with q a prime, let K be
its quotient knot and let1K(t) and1K(t) be their respective Alexander polynomials. Let
Y and Y be the n-fold cyclic branched covers of S3 with branching sets K and K respec-
tively, with n a power of a prime. Let F∗,q = F∗|H1(Y ;Z)q . The proof of the theorem rests
on the existence of a “transfer map” µ∗ : H1(Y ;Z)q → H1(Y ;Z)q with the property
that if F∗,q(α) = α for some α ∈ H1(Y ;Z)q , then (see diagram (2.1) for the definition
of 5)

µ∗ ◦5∗(α) = q · α. (2.14)

The existence of µ∗ and the validity of (2.14) follow from the results in [B, Section III.2]
(see specifically relation (2.2) there).

Write Fix(F∗,q) for the fixed point set of F∗,q : H1(Y ;Z)q → H1(Y ;Z)q , and con-
sider the commutative diagram

Fix(F∗,q)

5∗ &&LL
LLL

LLL
LL

·q // H1(Y ;Z)q

H1(Y ;Z)q

µ∗

88qqqqqqqqqq
(2.15)

If Fix(F∗,q) ∼= Zm1
q ⊕ · · · ⊕ Zmk

qk
, then the image of the horizontal map in (2.15) is

isomorphic to Zm2
q ⊕ · · · ⊕ Zmk

qk−1 and is contained in the image of µ∗. Thus,

|Fix(F∗,q)| = qm1+···+mk · |Im(·q)| ≤ qm1+···+mk · |Im(µ∗)| ≤ qm1+···+mk · |H1(Y ;Z)q |,

as claimed in Theorem 1.11. Corollary 1.12 is an easy consequence of Theorem 1.11. ut
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2.3. Examples 1.7 and 1.9 revisited

This section shows that the knots in Examples 1.7 and 1.9 pass the homological peri-
odicity obstructions from Sections 2.1.1–2.1.3, as claimed in the introduction. This un-
derscores the usefulness of the periodicity obstruction coming from the Heegaard Floer
correction terms.

2.4. Calculations for Example 1.7

Let K be the knot K = 12a100. Its Alexander polynomial 1K(t) and the factorization of
1K(t) over Z into irreducible factors are given by

1K(t) = 3t6 − 21t5 + 53t4 − 71t3 + 53t2 − 21t + 3,

= (t3 − 5t2 + 6t − 3)(3t3 − 6t2 + 5t − 1). (2.16)

The Murasugi condition (2.8) for 1K(t) and with q = 3 reads

(1+ t)2
·
≡ (1+ t + · · · + tλ−1)2 · (1K(t))

3 (mod 3). (2.17)

As by (2.6) and (2.7), 1K is a symmetric factor of 1K , the only possibilities for 1K(t)
are 1 or 1K(t). Of these, the only one that fits condition (2.17) is 1K(t) = 1. Thus
K = 12a100 passes the Murasugi conditions with q = 3, 1K(t) = 1 and λ = 2 (note
that, as required, gcd(λ, q) = 1).

The first homology of the 2-fold cyclic cover Y of S3 branched over K is

H1(Y ;Z) ∼= Z5 ⊕ Z5 ⊕ Z9.

Given this and given q = 3, the only meaningful choice of ` is 5. Since g3(5) = 1 (see
(2.10)), condition (2.11) gives us (keeping in mind that1K(t) = 1 impliesH1(Y ;Z) = 0)

H1(Y ;Z)5 ∼= Z2b1
5 ⊕ Z2b2

25 ⊕ · · · ⊕ Z2bt
5t ,

which is clearly satisfied with t = 1, a1 = 1 and ai = 0 for i ≥ 2. Accordingly,
K = 12a100 passes the homology condition.

2.5. Calculations for Example 1.9

Let K = 74 # 74 # 92 be as in Example 1.9. As already noted, the knots K1 = 74 and
K2 = 92 have the same Alexander polynomial 1Ki (t) = 4t2 − 7t + 4, so that the
Alexander polynomial of K is 1K(t) = (4t2 − 7t + 4)3. As 4t2 − 7t + 4 is irreducible
over Z, the only possibilities for the Alexander polynomial of a quotient knot K are 1 or
powers of 4t2 − 7t + 4. The Murasugi condition (2.8) with q = 3 becomes

(1+ t)6
·
≡ (1+ t + · · · + tλ−1)2 · (1K(t))

3 (mod 3),

which forces 1K(t) = 4t2 − 7t + 4 and λ = 1. With theses choices, K satisfies the
Murasugi conditions (2.7) and (2.8).
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It is easily seen that K also meets the homology condition (2.11) since

H1(Yi;Z) ∼= Z3 ⊕ Z5

(where Yi is the 2-fold cyclic cover of S3 branched along Ki , i = 1, 2), rendering
H1(Y ;Z) (with Y the 2-fold cyclic cover of S3 branched alongK) isomorphic toH1 of the
2-fold cyclic branched cover of S3 branched along the 3-periodic knot K ′ = 74 # 74 # 74.

We invite the reader to check that the knot 74 # 92 # 92 is also excluded from being
3-periodic by the Heegaard Floer correction terms (though it too passes the homological
3-periodicity obstructions).

3. Calculations for low-crossing knots

This section supplies background on the massive computational effort on which the re-
sults from Section 1.3 are based. All our correction term calculations for alternating knots
are based on an implementation of the Ozsváth–Szabó algorithm from [OS2] into Math-
ematica. Likewise, the three homological knot periodicity obstructions from Sections
2.1.1–2.1.3 have also been checked with computations in Mathematica. We do not ad-
dress non-alternating knots as at present there is no efficient algorithm for the compu-
tation of correction terms of their 2-fold cyclic branched covers. As in the introduction,
by homological q-periodicity obstructions we mean the q-periodicity obstructions of Ed-
monds, Murasugi and the homology obstruction, discussed in Sections 2.1.1, 2.1.2 and
2.1.3 respectively.

Notational conventions. For the remainder of this section, when analyzing potentially
periodic knots, we denote them by K,Ki, L,Li , we label their hypothetical quotient
knots by K,K i, L, Li , and their respective 2-fold cyclic branched covers by Y, Yi, X,Xi
and Y , Y i, X,Xi . For a knotM ,1M(t) denotes its Alexander polynomial, and the symbol
.
≡ means congruence up to multiplication by ±tn, n ∈ Z.

3.1. Alternating knots with up to eleven crossings

With the exception of the period 3 results for 11-crossing knots, all results from Sections
1.3.1–1.3.3 have appeared elsewhere in the literature. We thus focus on our claimed ob-
struction for 3-periodicity for 11-crossing alternating knots. Recall that the only five knots
which pass the homological 3-periodicity obstruction are 11a43, 11a58, 11a165, 11a297,
11a321. All but the first one are excluded from actually being 3-periodic by the Heegaard
Floer correction terms.

If K1 is either 11a58 or 11a165, then 1K1(t) = (t − 2)(2t − 1)(1 − t + t2)2
.
≡

(1 + t)6 (mod 3). Accordingly, K1 passes the Murasugi conditions with hypothetical
quotient knot K1 with either 1K1

(t) = (t − 2)(2t − 1) or 1K1
(t) = 1− t + t2. We find

that |H1(Y 1;Z)| equals either 3 or 9. As H1(Y1;Z) ∼= Z81, Corollary 1.12 implies that
there are at least 81 − 27 = 54 correction terms of Y1 which occur with multiplicities
divisible by 3. This is not the case for either choice of K1, as evidenced by the table
below (while 11a58 and 11a165 share this table of multiplicities, they do not have the
same correction terms overall).
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11a58 or 11a165
d(Y, s) −

8
9 −

2
9 0 4

9 All others

Multiplicity of d(Y, s) 6 6 9 6 2

ForK2 = 11a297 we obtain1K2(t) = (1−3t+t2)2(2−3t+2t2)
.
≡ (1+t2)3 (mod 3),

which passes the Murasugi polynomial conditions with quotient knot K2 with Alexander
polynomial 1K2

(t) = 1 − 3t + t2 or 1K2
(t) = 2 − 3t + 2t2. As the first homology

of Y2 is given by H1(Y2;Z) ∼= Z5 ⊕ Z5 ⊕ Z7, the possibility 1K2
(t) = 1 − 3t + t2

is excluded by the homology condition, leaving 1K2
(t) = 2 − 3t + 2t2. This leads

to H1(Y2;Z)5/H1(Y 2;Z)5 ∼= Z5 ⊕ Z5, and thus Theorem 1.6 with ` = 5 implies the
existence of 24 correction terms d(Y2, s) with multiplicities divisible by 3, which is not
the case.

11a297
d(Y, s) −

13
10 , 11

10 −
9

10 , 7
10 −

1
2 −

1
10 , 3

10

Multiplicity of d(Y, s) 2 4 1 6

For K3 = 11a321 we obtain 1K3(t) = 3− 15t + 27t2 − 31t3 + 27t4 − 15t5 + 3t6
.
≡

1 (mod 3), passing Murasugi’s conditions with quotient knot K3 with 1K3
(t) = 1K3(t)

or 1K3
(t) = 1. The former possibility is excluded by Edmonds’ condition, forcing

1K3
(t) = 1. Since H1(Y3;Z) ∼= Z11 ⊕ Z11, Theorem 1.6 with ` = 11 implies the

existence of 120 correction terms d(Y3, s) with multiplicities divisible by 3. This is not
the case: Each of the values λ/11 with λ ∈ {−7,±5,±3,±1} equals a correction term
of Y3 with multiplicity 12, each of −9/11 and 7/11 is the value of a correction term with
multiplicity 10, 9/11 comes with multiplicity 8, and the remaining correction terms have
multiplicities 1, 2 and 4. Thus, there are at most 102 correction terms with multiplicities
divisible by 3, preventing 3-periodicity of 11a321.

There are no 11-crossing knots that pass the homological q-periodicity obstructions
for a prime q > 3, save 11a367 which, being the (11, 2)-torus knot, passes the 11-
periodicity obstructions.

3.2. 12-crossing alternating knots

It follows from (2.4) that the largest possible genus of any knot with twelve crossings
is g = 5 and from (2.5) that the largest possible period is q = 11. Thus, we proceed
by checking which 12-crossing alternating knots pass the homological q-periodicity ob-
structions for q = 3, 5, 7, 11.

There are 17 knots that pass the homological 3-periodicity obstructions, namely the
six 3-periodic knots 12a503, 12a561, 12a615, 12a1019, 12a1022, 12a1202 from Figure 3,
and the eleven knots listed below:

12a100, 12a348, 12a376, 12a1206,

12a390, 12a425, 12a459, 12a596, 12a672,

12a634, 12a780.

(3.1)
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Of the knots in the first row of (3.1),K1 = 12a100 was already shown not to have period 3
in Example 1.7 using correction terms. Using the same method, we shall next demonstrate
that the other three knots in this row cannot have period 3 either.

The Alexander polynomial of the knot K2 = 12a348 is

1K2(t) = 2− 17t + 54t2 − 79t3 + 54t4 − 17t5 + 2t6,

= (t − 2)(2t − 1)(t2 − 3t + 1)2, (3.2)

and its modulo 3 reduction is

1K2(t)
·
≡ (1+ t + · · · + t3)2 (mod 3). (3.3)

This with (2.8) forces λ = 4 and 1K2
(t)

·
≡ 1. Examining the factors of 1K2(t) in (3.2),

we find that 1K2
(t) = 1. Accordingly, H1(Y 2;Z) = 0. By choosing ` = 5, Theorem

1.6 shows that all correction terms d(Y2, s) with s ∈ H1(Y2;Z)5 − {0} must come with
multiplicities divisible by 3. However, the correction terms and their multiplicities in the
next table show that this is not the case.

12a348
d(Y2, s) −

94
45 −

58
45 −

8
9 −

28
45 −

16
45 −

2
9

2
45

14
45

4
9

Multiplicity of d(Y2, s) 1 2 4 2 2 2 2 6 4

Turning to K3 = 12a376, we note that H1(Y3;Z) ∼= Z27 ⊕ Z5 while its quotient
knot K3, if it exists, has H1(Y 3;Z) ∼= Z15 ∼= Z3 ⊕ Z5. Envoking Corollary 1.12 with
q = 3, we see that |Fix(F∗,3)| ≤ 9, showing that there are at least 18 correction terms
d(Y, s), s ∈ H1(Y3;Z)3 ∼= Z27, that come with a multiplicity divisible by 3. An explicit
computation shows that this is not the case:

12a376
d(Y3, s)

1
2 −

1
6 All others

Multiplicity of d(Y3, s) 3 6 2

The knot K4 = 12a1206 from (3.1) has H1(Y4;Z) ∼= Z7 ⊕ Z35 and if there is a
quotient knot K4, it has H1(Y 4;Z) ∼= Z5. This allows for an application of Theorem 1.8
with the choice of ` = 7, forcing the 48 correction terms d(Y4, s) of Y4 corresponding to
s ∈ H1(Y4;Z)7 − {0} to come with values with multiplicities divisible by 3. An explicit
computation shows this does not happen, precluding 12a1206 from being 3-periodic:

12a1206
d(Y4, s) −

9
7 −1 −

5
7 −

3
7 −

1
7

1
7

3
7

5
7 1 9

7

Multiplicity of d(Y4, s) 2 4 4 6 6 6 6 4 8 2

Somewhat similar to the case of 12a376 above, the knots in row two of (3.1) have
2-fold covers Y with H1(Y ;Z) ∼= Zk3 with k = 4, 5. However, their corresponding hy-
pothesized quotient knots K have 2-fold covers Y with |H1(Y ;Z)| = 3, 9, and thus by
Corollary 1.12, the action of F∗ on H1(Y ;Z) cannot be the identity. It must thus equal
F∗ = 28 · id or F∗ = 55 · id (if k = 4) and F∗ = 82 · id or F∗ = 162 · id (if k = 5).
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The fixed point set of F∗ has cardinality 27 (if k = 4) or 81 (if k = 5), showing that
81 − 27 = 54 (if k = 4) or 243 − 81 = 162 (if k = 5) of the correction terms of Y
must come with values that have multiplicity a multiple of 3. An explicit computation
shows that this is not the case for any of these knots. For example, for 12a425, we have
H1(Y ;Z) = Z34 , H1(Y ;Z) = 0, and the correction terms and their multiplicities are
given by

12a425
d(Y, s) −

8
9

4
9 −

2
9 0 All others

Multiplicity of d(Y, s) 4 4 6 9 2

Finally, the two knots in the last row of (3.1), if 3-periodic, are forced by the Murasugi
conditions to have Alexander polynomials for quotient knots equal to 4− 7t + 4t2 (in the
case of 12a634) and 1 − t + t2 (in the case of 12a780). The knot K = 12a634 has 2-fold
cyclic branched cover Y withH1(Y ;Z) ∼= Z3⊕Z9⊕Z5 and quotient knotK with 2-fold
cyclic branched cover Y with H1(Y ;Z) ∼= Z3 ⊕ Z5. Thus the only sensible choice of
` in Theorem 1.8 is that of ` = 5, rendering the theorem ineffective as H1(Y ;Z)5 ∼=
H1(Y ;Z)5. On the other hand, condition (2.14) (as in the proof of Theorem 1.11) can be
satisfied for certain choices of maps 5∗ and µ∗, not allowing us to preclude the equality
F∗ = id. Accordingly, the correction term methods cannot be brought to bear on this knot.

The knot K = 12a780 has 2-fold cover Y with H1(Y ;Z) ∼= Z5 ⊕ Z5 ⊕ Z9 and
quotient knot K , if it exists, with 2-fold cover Y with H1(Y ;Z) ∼= Z3. Thus Theo-
rem 1.8 with ` = 5 applies here, but alas all the correction terms corresponding to
Z5 ⊕ Z5 − {0} = H1(Y ;Z)5 − {0} do come with values that all have multiplicity 3.
Theorem 1.11 does not apply to the 3-torsion here. This makesK = 12a780 the only knot
among twelve crossing alternating knots that passes the Murasugi conditions, the homol-
ogy condition and the correction terms condition, but the stronger factorization conditions
over cyclotomic integers obtained by Davis–Livingston [DL] show that this knot is not
3-periodic. (The knot 12a634 satisfies the Davis–Livingston conditions.)

Lastly, there are no 12-crossing alternating knots that pass the homological q-period-
icity obstructions for q = 5, 7, 11.

3.3. 13-crossing alternating knots

The largest genus of any 13-crossing alternating knot is 6 (realized only by the (13, 2)-
torus knot 13a4878). Edmonds’ conditions then show that the only possible odd prime
periods q of this family of knots are q = 3, 5, 7, 11, 13.

There are 29 alternating 13-crossing knots that pass the homological 3-periodicity
obstructions, but only three that pass it for period 5, namely

13a2142, 13a2907, 13a3010.

All three of these are excluded from actually being 5-periodic by the Heegaard Floer
correction terms.

The knotK1 = 13a242 has Alexander polynomial1K1(t) = (1− t + t
2)5, and passes

that Murasugi conditions with hypothetical quotient knotK1 with1K1
(t) = 1−t+t2 and
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λ = 1. An easy computation yieldsH1(Y1;Z) ∼= Z9⊕Z27 andH1(Y 1;Z) ∼= Z3. The only
way the homology condition is then satisfied is if H1(Y1;Z)3/H1(Y 1;Z)3 ∼= Z9 ⊕ Z9,
in which case there would have to be 80 correction terms that come with multiplicities
divisible by 5. This is not the case as the next table shows:

13a2142
d(Y1, s) −

29
18 −

17
18 −

1
2 −

5
18

1
6

7
18

19
18

Multiplicity of d(Y1, s) 6 14 9 18 18 12 4

The knot K2 = 13a2907 has Alexander polynomial

1K2(t) = (2t − 3)(3t − 2)(1− 3t + t2) ≡ (1+ t)4 (mod 5),

which passes the Murasugi conditions with hypothetical quotient knot K2 with 1K2
(t)

= 1 and λ = 2. As H1(Y2;Z) ∼= Z125 and H1(Y 2;Z) ∼= 0, Corollary 1.12 then ensures
that |Fix(F∗)| ≤ 5, forcing at least 120 correction terms of Y2 to come with multiplicities
divisible by 5. While Y2 has 53 distinct values for its correction terms, most of them come
with multiplicity 2, with a small number of exceptions:

13a2907 and 13a3010
d(Y2, s) −

2
5 0 2

5 All others

Multiplicity of d(Y2, s) 10 5 10 2

The knot K3 = 13a3010 has Alexander polynomial

1K3(t) = (1− 3t + t2)(1− t + t−t3 + t4)2 ≡ (1+ t)10 (mod 5),

and passes the Murasugi conditions with hypothetical quotient knot K3 with 1K3
(t) =

1 − 3t + t2 and λ = 1. It is easy to compute H1(Y3;Z) ∼= Z125 and H1(Y 3;Z) ∼= Z5,
and so Corolllary 1.12 implies that |Fix(F∗)| ≤ 25 showing that at least 100 correction
terms must come with multiplicities divisible by 5. Indeed, the correction terms of Y3
fit the same table of multiplicities as the correction terms for Y2, and so 13a3010 is not
5-periodic. We note that while the correction terms for Y2 and Y3 follow identical multi-
plicity patterns, the correction terms for Y2 do not equal those for Y3. For instance, − 212

125
is the value of a correction term for Y2 that does not occur among the correction terms
for Y3.

No 13-crossing alternating knot passes the homological q-periodicity obstructions for
q = 7, 11, while the only knot that passes the homological 13-periodicity obstructions is
13a4878, the (13, 2)-torus knot.

3.4. 14-crossing alternating knots

The maximum genus among 14-crossing alternating knots is 6, showing that the only
possible odd prime periods that may occur for these knots are q = 3, 5, 7, 11, 13.

There are 49 knots that pass the homological 3-periodicity obstructions, but only two
knots pass the homological 5-periodicity obstructions, namely

14a11685, 14a14294.



Periodic knots and correction terms 1671

Both of these knots are excluded from having period 5 by the Heegaard Floer correction
terms. Indeed, the knot K1 = 14a11685 has Alexander polynomial

1K1(t) = (2t − 3)(3t − 2)(1− 3t + t2) ≡ (1+ t)4 (mod 5),

passing the Murasugi conditions with possible quotient knot K1 with Alexander polyno-
mial 1K1

(t) = 1 and λ = 2. One easily obtains H1(Y1;Z) ∼= Z125 and H1(Y 1;Z) ∼= 0,
so that Corollary 1.12 implies that Y1 has at least 120 correction terms with multiplicity
divisible by 5. However, this does not occur:

14a11685
d(Y1, s) −

8
5 −

2
5 0 2

5 All others

Multiplicity of d(Y1, s) 4 10 3 6 2

The knot K2 = 14a14294 has Alexander polynomial

1K2(t) = (1− 3t + t2)(10− 31t + 43t2 − 31t3 + 10t4)
.
≡ (1+ t)4 (mod 5)

and so, as with K1, it passes Murasugi’s conditions with possible quotient knot K2 with
1K2

(t) = 1 and λ = 2. SinceH1(Y2;Z) ∼= Z5⊕Z125 andH1(Y 2;Z) ∼= 0, Theorem 1.11
guarantees that there are at least 600 correction terms with multiplicities divisible by 5.
This knot comes close to having such correction terms. Indeed, each of the values λ

125
with

λ ∈ {−99,−91,−89,−79,−71,−69,−61,−59,−51,−49,−41,−39,−31,−29,
−21,−19,−11,−9,−1, 1, 9, 11, 19, 21, 29, 31, 41, 49, 51, 59, 81, 89}

represents the value of a correction term of Y2 with multiplicity 10 (for a total of 320
correction terms). Each of − 3

5 , ± 1
5 is the value of a correction term of Y2 of multiplic-

ity 30 (adding another 90 correction terms). Moreover, − 7
5 has multiplicity 12 and 3

5
has multiplicity 18, each possibly contributing correction terms with multiplicity 10 (for
an additional 20 correction terms). All other correction terms have multiplicities 2, 3, 4,
6 and 8. Overall, there are 430, out of 600 needed, correction terms with multiplicities
divisible by 5. Thus 14a14294 is not 5-periodic.

There are seven alternating 14-crossing knots that pass the homological 7-periodicity
obstructions:

14a3023, 14a6681, 14a7378, 14a12332, 14a12702, 14a15044, 14a19470 . (3.4)

Of these, the knot 14a19470 is 7-periodic (cf. Figure 4), while the remaining knots are ex-
cluded from being 7-periodic by the Heegaard Floer correction terms. Letting L1, . . . , L6
denote the six non-framed knots in (3.4), we find that 1Li (t) = (2 − 3t + 2t2)3 ≡
(1+ t)6 (mod 7) for each i = 1, . . . , 6, forcing the hypothetical quotient knot Li to have
trivial Alexander polynomial (and λi = 2) in order to pass the Murasugi conditions. One
finds that H1(Xi;Z) ∼= Z343 for each i = 1, . . . , 6, and so Corollary 1.12 implies the
existence of at least 336 correction terms with multiplicity divisible by 7, a condition that
is violated by each of the six knots.

No 14-crossing alternating knot passes the homological q-periodicity obstructions for
q = 11, 13.
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3.5. 15-crossing alternating knots

The largest genus of any 15-crossing alternating knot is 7 (attained uniquely by the
(15, 2)-torus knot 15a85263), and accordingly the only possible odd prime periods for
these knots are q = 3, 5, 7, 11, 13.

There are 133 knots that pass the homological 3-periodicity obstructions. The only
eleven knots that may have period 5 are

15a23599, 15a23902, 15a40549, 15a53966, 15a64035 , 15a69121, 15a76651, 15a80526,

15a84903 , 15a85262 , 15a85263 .

The four boxed knots are 5-periodic. Indeed, 15a85263 is the (15, 2)-torus knot, the knot
15a85262 is the 5-stranded pretzel knot P(−3,−3,−3,−3,−3), and 5-periodic diagrams
for 15a64035 and 15a84903 are given in Figure 5. Each of the remaining seven knots is
excluded from being 5-periodic by the Heegaard Floer correction terms.

Let K1 be either of the knots 15a23599 or 15a23902. Then

1K1(t) = (1− 3t + t2)3(1− t + t2 − t3 + t4) ≡ (1+ t)10 (mod 5).

This Alexander polynomial passes the Murasugi test with quotient knot K1 with 1K1
(t)

= 1−3t+ t2 and λ = 1. We findH1(Y1;Z) ∼= Z5⊕Z125 andH1(Y 1;Z) ∼= Z5. Theorem
1.11 then implies the existence of at least 600 correction terms with multiplicities divisible
by 5. However, 15a23599 only has 340 such correction terms, and 15a23902 only 320.

Let K2 = 15a40549. Then

1K2(t) = (1− 2t + 4t2 − 3t3 + t4)(1− 3t + 4t2 − 2t3 + t4)(1− t + t2 − t3 + t4)

≡ (1+ t + t2 + t3)4 (mod 5),

which passes the Murasugi conditions with 1K2
(t) = 1 and λ = 4. As H1(Y2;Z) ∼=

Z5⊕Z11⊕Z11 andH1(Y 2;Z) ∼= 0, Theorem 1.6 with ` = 11 shows that each correction
term d(Y2, s), s ∈ H1(Y2;Z)11 − {0}, has to have a multiplicity divisible by 5 (for a total
of 120 such correction terms). However, only 70 such correction terms exist, precluding
5-periodicity of 15a40549.

Let K3 be any of the knots 15a53966, 15a69121, or 15a80526. Then

1K3(t) = (2− 3t + 2t2)(1− 3t + 3t2 − 3t3 + t4)2 ≡ [2(1+ t + t2)]5 (mod 5).

This polynomial passes the Murasugi conditions with 1K3
(t) = 2− 3t + 2t2 and λ = 3.

The first homology groups of Y3 and Y 3 areH1(Y3;Z) ∼= Z7⊕Z11⊕Z11 andH1(Y 3;Z)
∼= Z7. As with the previous example, Theorem 1.6 with ` = 11 guarantees the existence
of 120 correction terms d(Y3, s), s ∈ H1(Y3;Z)11 − {0}, each with a multiplicity that is
divisible by 5. This condition is not realized for any of the three possible knots in this
paragraph.

Finally, consider K4 = 15a76651. Then

1K4(t) = 10− 61t + 141t2 − 181t3 + 141t4 − 61t5 + 10t6 ≡ (1+ t)4 (mod 5),
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which passes Murasugi’s conditions with 1K4
(t) = 1 and λ = 2. The first homologies

of Y4 and Y 4 are H1(Y4;Z) ∼= Z5 ⊕ Z11 ⊕ Z11 and H1(Y 4;Z) ∼= 0. Theorem 1.6 with
` = 11 provides the existence of 120 correction terms of Y4 with multiplicity divisible
by 5. However, there are only 90 such correction terms.

Only a single 15-crossing alternating knot passes the homological 7-periodicity ob-
struction, namely 15a23046. This knotL has Alexander polynomial1L(t)=(2−3t+2t2)3

≡ (1 + t)6 (mod 7), passing the Murasugi conditions with 1L(t) = 1 and λ = 2. Its 2-
fold branched cover X has first homology H1(X;Z) ∼= Z343, and thus Corollary 1.12
implies the existence of at least 336 correction terms of X with multiplicities divisible
by 7. A direct calculation shows that there are only 14 such correction terms.

Finally, no 15-crossing alternating knot passes the homological q-periodicity obstruc-
tion for q = 11, 13, completing the proof of Theorem 1.14.
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