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Abstract. We construct a positive allowable Lefschetz fibration over the disk on any minimal
(weak) symplectic filling of the canonical contact structure on a lens space. Using this construc-
tion we prove that any minimal symplectic filling of the canonical contact structure on a lens space
is obtained by a sequence of rational blowdowns from the minimal resolution of the corresponding
complex two-dimensional cyclic quotient singularity.
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1. Introduction

The link of an isolated complex surface singularity carries a canonical—also known as
Milnor fillable—contact structure which is unique up to isomorphism [4]. A Milnor fil-
lable contact structure is Stein fillable since a regular neighbourhood of the exceptional
divisor in a minimal resolution of the surface singularity provides a holomorphic filling
which can be deformed to be Stein without changing the contact structure on the bound-
ary [3]. In particular, a singularity link with its canonical contact structure always admits
a symplectic filling given by the minimal resolution of the singularity.

The canonical contact structure on a lens space (the oriented link of a complex two-
dimensional cyclic quotient singularity) is well understood as the quotient of the standard
tight contact structure on S3. The finitely many diffeomorphism types of the minimal
symplectic fillings of the canonical contact structure on a lens space were classified by
Lisca [11] (see also work of the first author and K. Ono [2]).

In this paper, we give an algorithm to present each minimal symplectic filling of the
canonical contact structure on a lens space as an explicit genus-zero PALF (positive al-
lowable Lefschetz fibration) over the disk. The existence of such a genus-zero PALF also
follows from [19, Theorem 1] although we do not rely on that result in this paper. Using
our construction we prove the following.
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Theorem 4.1. Any minimal symplectic filling of the canonical contact structure on a lens
space is obtained by a sequence of rational blowdowns along linear plumbing graphs
starting from the minimal resolution of the corresponding cyclic quotient singularity.

We would like to emphasize that while the various fillings are related to the plumbing by
rational blowdown, the curves that are blown down need not be apparent in the canonical
plumbing graph. We also obtain the following corollaries of Theorem 4.1.

Corollary 4.7. The canonical contact structure on a lens space admits a unique mini-
mal symplectic filling—represented by the Stein structure via the PALF we construct on
the minimal resolution—up to symplectic rational blowdown and symplectic deformation
equivalence.

Corollary 4.8. Any Milnor fibre of any smoothing of a complex two-dimensional cyclic
quotient singularity can be obtained, up to diffeomorphism, by a sequence of rational
blowdowns along linear plumbing graphs from the Milnor fibre diffeomorphic to the min-
imal resolution of the singularity.

We refer the reader to [9] and [15] for background material on Lefschetz fibrations, open
books and contact structures. We denote a right-handed Dehn twist along a curve γ as γ
again and we use functional notation while writing products of Dehn twists.

2. Symplectic fillings as Lefschetz fibrations

For integers 1 ≤ q < p with (p, q) = 1, recall that the Hirzebruch–Jung continued
fraction is given by

p

q
= [a1, . . . , al] = a1 −

1

a2 −
1

. . . −
1
al

, ai ≥ 2 for all 1 ≤ i ≤ l.

The lens space L(p, q) is orientation preserving diffeomorphic to the link of the cyclic
quotient singularity whose minimal resolution is given by a linear plumbing graph with
vertices having weights −a1, . . . ,−al , where p/q = [a1, . . . , al].

It is known that any tight contact structure on L(p, q), in particular the canonical
contact structure ξcan, is supported by a planar open book [17]. According to Wendl [19],
if a contact 3-manifold (Y, ξ) is supported by a planar open book OBξ , then any strong
symplectic filling of (Y, ξ) is symplectic deformation equivalent to a blowup of a PALF
whose boundary is OBξ . On the other hand, it is also known that every weak symplectic
filling of a rational homology sphere can be modified into a strong symplectic filling [13].
We conclude that any minimal symplectic filling of (L(p, q), ξcan) admits a genus-zero
PALF over D2. In this section we give an algorithm to describe any minimal symplectic
filling of (L(p, q), ξcan) as an explicit genus-zero PALF over D2.
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2.1. Lisca’s classification of the fillings

We first briefly review Lisca’s classification [11] of symplectic fillings of (L(p, q), ξcan),
up to diffeomorphism. Let

p

p − q
= [b1, . . . , bk],

where bi ≥ 2 for 1 ≤ i ≤ k. A k-tuple of nonnegative integers (n1, . . . , nk) is called ad-
missible if each of the denominators in the continued fraction [n1, . . . , nk] is positive. It is
easy to see that an admissible k-tuple of nonnegative integers is either (0) or consists only
of positive integers. Let Zk ⊂ Zk denote the set of admissible k-tuples n = (n1, . . . , nk)

of nonnegative integers such that [n1, . . . , nk] = 0, and let

Zk
( p
p−q

)
= {(n1, . . . , nk) ∈ Zk | 0 ≤ ni ≤ bi for i = 1, . . . , k}.

Note that any k-tuple of positive integers in Zk can be obtained from (1, 1) by a sequence
of strict blowups.

Definition 2.1. A strict blowup of an r-tuple of integers at the j th term is a map ψj :
Zr → Zr+1 defined by

(n1, . . . , nj , nj+1, . . . , nr) 7→ (n1, . . . , nj−1, nj + 1, 1, nj+1 + 1, nj+2, . . . , nr)

for any 1 ≤ j ≤ r − 1 and by

(n1, . . . , nr) 7→ (n1, . . . , nr−1, nr + 1, 1)

when j = r . The left inverse of a strict blowup at the j th term is called a strict blowdown
at the (j + 1)st term.

Consider the chain of k unknots in S3 with respective framings n1, . . . , nk . For any n =
(n1, . . . , nk) ∈ Zk , let N(n) denote the result of Dehn surgery on this framed link. It is
easy to see that N(n) is diffeomorphic to S1

× S2. Let L =
⋃k
i=1 Li denote the framed

link in N(n), shown in Figure 1 in the complement of the chain of k unknots, where Li
has bi − ni components.

The 4-manifoldWp,q(n) with boundary L(p, q) is obtained by attaching 2-handles to
S1
× D3 along the framed link ϕ(L) ⊂ S1

× S2 for some diffeomorphism ϕ : N(n)→
S1
× S2. Note that this description is a relative handlebody decomposition of Wp,q(n)

a b d e

6 a45 7 a1 a3a2 a5 a6

1 2 3 4

9 108

n1 n2 nk−1 nk

b1 − n1 b2 − n2 bk−1 − nk−1 bk − nk

−1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1

Fig. 1. Lisca’s description of the filling W(p,q)(n).
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and it is independent of the choice of ϕ since any self-diffeomorphism of S1
×S2 extends

to S1
× D3. According to Lisca, any symplectic filling of (L(p, q), ξcan) is orientation

preserving diffeomorphic to a blowup of Wp,q(n) for some n ∈ Zk
( p
p−q

)
.

Remark 2.2. In particular, for p 6= 4, (L(p, 1), ξcan) has a unique minimal symplectic
filling and, for p ≥ 2, (L(p2, p − 1), ξcan) has two distinct minimal symplectic fillings,
up to diffeomorphism.

2.2. Another description of the fillings

Here we give another description ofWp,q(n) which will lead to a construction of a genus-
zero PALF on this 4-manifold with boundary. We refer to Figure 1 in the following dis-
cussion. First we slide the unknot with framing nk−1 over the unknot with framing nk and
denote by n′k−1 the framing of the new unknot. Next we slide the unknot with framing
nk−2 over the unknot with framing n′k−1 and proceed inductively until we slide the un-
knot with framing n1 over the one with framing n′2 and let n′1 denote its new framing. By
setting n′k = nk , the new framings of the surgery curves are given by n′1, . . . , n

′

k , all of
which can be computed inductively by the standard formula for a handle-slide:

n′i = ni + n
′

i+1 − 2

for 1 ≤ i ≤ k − 1. Notice that these handle-slides are performed in the complement
of the link L in Figure 1 and the result of Dehn surgery on the new framed link is also
diffeomorphic to S1

× S2.
Moreover, this new surgery link can be viewed as the closure of a braid in S3. We order

the strands of this braid using the subindices of their associated framings. To visualize this
braid, imagine a trivial braid with k strands, wrap the kth strand n′k − 1 times around the
first k− 1 strands and then wrap the strand indexed by k− 1 around the first k− 2 strands
n′k−1 − 1 times and proceed inductively. See Figure 2 for an illustration of “wrapping
around”. To be more precise, this braid is given by

k∏
j=2

(σ−1
j−1 · · · σ

−1
1 σ−1

1 · · · σ
−1
j−1)

n′j−1

where σ1, . . . , σk−1 are the standard generators in the braid group with k strands.

a

b

first j − 1 strands
j th strand

Fig. 2. The j th strand wraps around the first j − 1 strands once.
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Each component Li of L can now be viewed as an unknot linking the first i strands
of this braid. As a result we get another relative handlebody description of the 4-manifold
Wp,q(n), where the chain of unknots with framings n1, . . . , nk in Lisca’s description is
replaced by unknots with framings n′1, . . . , n

′

k braided as described above and the link L
plays the same role in both descriptions.

2.3. Open book decompositions of S1
× S2

Let ξst denote the standard contact structure in S1
× S2. Our aim in this section is to

construct an open book decomposition compatible with (S1
× S2, ξst) corresponding to a

strict blowup sequence from (0) to an arbitrary positive k-tuple n = (n1, . . . , nk) ∈ Zk .
It is well-known that the open book whose page is an annulus and whose monodromy is
the identity is compatible with (S1

× S2, ξst). We say that this open book corresponds
to (0) ∈ Z1. If k > 1, we stabilize this open book once so that the new page is a disk
with two holes and the new monodromy is a right-handed Dehn twist around one of the
holes. This is the open book corresponding to (1, 1) ∈ Z2. The holes in the disk are
ordered linearly from left to right and the Dehn twist is around the second hole as shown
in Figure 3(a).

21

a

b

4 53 6 7 8

c

1 2 1 2 3 1 2 3

(a)

(b) (c)

Fig. 3. Positive stabilizations.

Depending on a blowup sequence from (1, 1) to (n1, . . . , nk), we inductively stabilize
k − 2 times the open book corresponding to (1, 1) as follows: For the initial step corre-
sponding to the blowup (1, 1) → (2, 1, 2) we just split the second hole in Figure 3(a)
into two holes, so that both holes lie in the interior of the Dehn twist. Then we relabel the
holes 1, 2, 3 consecutively from left to right and add a stabilizing right-handed Dehn twist
which encircles the holes labelled 1 and 3 as depicted in Figure 3(b). This is certainly a
positive stabilization, as one can attach a 1-handle in the interior of the second hole in
Figure 3(a), and let the stabilizing curve go over this 1-handle.

Corresponding to the alternative blowup (1, 1) → (1, 2, 1), we just insert a third
hole to the right of the second hole so that this hole is not included—as opposed to the
previous case—in the Dehn twist which already exists in the initial open book. Then we
add a stabilizing right-handed Dehn twist around this new hole as shown in Figure 3(c).

Suppose that the page of the open book, corresponding to the result of r − 2 consec-
utive blowups starting from (1, 1), is a disk Dr with r holes (for 3 ≤ r ≤ k − 1) so that
the monodromy is the product of r − 1 right-handed Dehn twists

x1 · · · xr−1.
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Assume that the holes are ordered linearly from left to right on the disk. If the next blowup
occurs at the j th term, for 1 ≤ j ≤ r − 1, then we insert a new hole between the j th
and (j + 1)st holes (imagine splitting the (j + 1)st hole into two) and relabel the holes
1, . . . , r + 1 consecutively from left to right. Let Dr+1 denote the new disk with r + 1
holes and let x̃i denote the right-handed Dehn twist onDr+1 induced from xi . This means
that if xi encircles the (j + 1)st hole in Dr , then x̃i encircles the same holes as xi plus
the new hole inserted to obtain Dr+1, otherwise xi and x̃i encircle the same holes. To
complete the stabilization, we add a right-handed Dehn twist along a curve βj encircling
the holes labelled 1, . . . , j, j + 2, skipping the new hole now labelled j + 1 in Dr+1. As
a result the monodromy of the new open book is given by the product

x̃1 · · · x̃r−1βj .

If, on the other hand, the next blowup occurs at the rth term, we insert an (r + 1)st
hole to the right and add a stabilizing right-handed Dehn twist αr+1 around this new hole
labelled r+1. In this case, it is clear how to lift the Dehn twist xi inDr to x̃i inDr+1 and
the resulting monodromy is

x̃1 · · · x̃r−1αr+1.

The page of the resulting open book decomposition of S1
× S2 corresponding to a

strict blowup sequence from (1, 1) to the positive k-tuple n = (n1, . . . , nk) is a disk Dk
with k holes and the monodromy is given as the product of k − 1 right-handed Dehn
twists (ordered by the induction) along the inserted stabilizing curves at each blowup.
Note that if we think of the holes inDk as being arranged counterclockwise in an annular
neighbourhood of the boundary, then each of the Dehn twists we consider is a convex
Dehn twist.

The open book decomposition we have just constructed leads to yet another surgery
description of S1

× S2. Take the closure of a trivial braid with k strands each of which
has 0-framing and insert (−1)-framed surgery curves (ordered from top to bottom) cor-
responding to the stabilizing curves linking this braid according to the algorithm given
above. By blowing down all the (−1)-surgery curves we get a framed braid with k strands
whose closure represents S1

× S2.

2.4. Equivalence of the two framed braids

We claim that the framed braid with k strands obtained by blowing down all the (−1)-
surgery curves in Section 2.3 is exactly the same as the framed braid obtained in Sec-
tion 2.2 by handle-slides on the given chain of k unknots. Our aim in this section is to
prove this claim by induction. Let us use (n1, . . . , nk)

′
= (n′1, . . . n

′

k) to denote the new
framings of the surgery curves after performing the handle-slides in Section 2.2.

First of all, we claim that the framings of each strand with the same index are equal
in both braids. Suppose that our claim holds before we apply a blowup to an r-tuple
(n1, . . . , nr). One can verify that the effect of a blowup of (n1, . . . , nr) at the j th term,
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for 1 ≤ j ≤ r − 1, is given by

(n1, . . . , nj−1, nj + 1, 1, nj+1 + 1, nj+2, . . . , nr)
′

= (n′1 + 1, . . . , n′j−1 + 1, n′j + 1, n′j+1, n
′

j+1 + 1, n′j+2, . . . , n
′
r).

On the other hand, for the induction step in the framed surgery presentation described
in Section 2.3, we insert a zero framed new strand between the j th and the (j + 1)st
strand and relabel the strands consecutively from left to right so that the new strand has
index j + 1. We also insert a new (−1)-surgery curve linking the strands 1, . . . , j, j + 2
avoiding the new (j+1)st strand. The induction hypothesis implies that by blowing down
all the (−1)-curves except the new one, the framings of the strands are given by

(n′1, . . . , n
′

j , n
′

j+1, n
′

j+1, n
′

j+2, . . . , n
′
r).

We simply observe that blowing down the last inserted (−1)-surgery curve adds 1 to
the new framing of the first j strands and the (j + 2)nd strand, which is consistent with
the blowup formula above.

Next we show that the two braids are in fact equivalent in the complement of L. As
the induction hypothesis we suppose that the two braids are equivalent for an r-tuple
(n1, . . . , nr) and then we apply a blowup to (n1, . . . , nr) at the j th term, for 1 ≤ j ≤

r − 1, as the induction step. According to the braid description in Section 2.3, we insert a
new strand between the j th and (j + 1)st strand, which is a parallel copy of the (j + 1)st

1

2

e

n

+1

+1

−1

new strand

Fig. 4. Blowing down the (−1)-curve.
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strand, corresponding to the blowup at the j th term. The induction hypothesis implies
that by blowing down all (−1)-curves except the new one, with the new indexing, the
(j +1)st strand links the (j +2)nd strand n′j+1 times. This is because the (j +1)st strand
is nothing but a parallel copy of the (j + 2)nd strand, and their linking is determined by
the framing of the former (j +1)st strand. Similarly, they both wrap around the strands to
the left of them n′j+1 − 1 times. The effect of blowing down the last inserted (−1)-curve
linking the strands 1, . . . , j, j + 2 avoiding the new strand (now indexed with j + 1) is
illustrated on the left in Figure 4, where the new strand is represented by the thin curve.

By blowing down the last (−1)-curve, the strands 1, . . . , j, j + 2 will acquire a full
right twist, as shown in the middle of Figure 4. When we pull the “spring” in the thin
curve down, it becomes clear how this (j + 1)st strand wraps around the strands to the
left of it n′j+1 − 1 times as depicted on the right in Figure 4. In this new braid the number
of times any strand wraps around the strands to the left of it is consistent with the blowup
formula given above. In particular, the (j + 2)nd strand wraps around the strands to the
left of it n′j+1 times.

To verify our claim for the case of a blowup of an r-tuple at the j th term for j = r is
much easier and it is left to the reader.

2.5. Genus-zero PALF on the fillings

The open book decomposition of S1
× S2 described in Section 2.3, corresponding to

any sequence of strict blowups from (0) to a k-tuple n ∈ Zk
( p
p−q

)
, is compatible with the

unique tight contact structure on S1
×S2. The genus-zero PALF overD2 whose boundary

is given by this open book is diffeomorphic to S1
× D3 since the tight contact S1

× S2

has a unique Stein filling up to diffeomorphism. A handlebody decomposition of this
PALF on S1

× D3 can be obtained from the closure of the framed braid in Section 2.3
by converting the 0-framed surgery curves—the strands of the braid—to dotted circles
representing 1-handles, where each (−1)-surgery curve linking the strands of this braid
represents a vanishing cycle.

Inserting the link L into this diagram completes the handlebody decomposition of the
desired PALF on Wp,q(n), since each component of L also represents a vanishing cycle.
This is because each component of L can be Legendrian realized on the planar page of
the open book of S1

× S2.
As a consequence, the resulting contact structure on L(p, q) is obtained by Legen-

drian surgery from the standard tight contact S1
× S2. The ordered vanishing cycles of

this PALF onWp,q(n) can be explicitly described on a disk with k holes by the algorithm
given in Section 2.3, where we add a Dehn twist corresponding to each component of L
at the end. Summarizing we obtain

Theorem 2.3. There is an algorithm to present any minimal symplectic filling of the
canonical contact structure on a lens space as an explicit genus-zero PALF over the disk.

We would like to point out that the PALF in Theorem 2.3 can be obtained explicitly,
which therefore leads to an absolute handlebody decomposition of any symplectic filling
at hand as opposed to the relative decomposition depicted in Figure 1.
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2.6. An example

In the following we illustrate our algorithm to construct a genus-zero PALF on the sym-
plectic filling W(81,47)(n) of the canonical contact structure on L(81, 47), where n =
(3, 2, 1, 3, 2). Note that 81

47 = [2, 4, 3, 3, 2] and 81
81−47 = [3, 2, 3, 3, 3].

According to Lisca’s classification, W(81,47)(n) represents one of the six distinct dif-
feomorphism classes of minimal symplectic fillings of the canonical contact structure on
L(81, 47). The link L in Lisca’s description of the filling in question has three compo-
nents in total, two of which are linking the third and one linking the fifth unknot in the
chain n (see Figure 5).

g

h

f

r3 r2 r1

a3a2

y

c

a1

l

edba

3 2 145

r4

23223

−1 −1 −1

3 2 1 3 2

−1

−1

−1

L

∼=

4th 3rd 2nd 1st

Fig. 5. Handle-slides.

First we slide 2-handles in the chain over each other and obtain a new surgery diagram
as shown on the right in Figure 5. The new unknots can be drawn as the closure of a
braid and their framings are given by (n′1, . . . , n

′

5) = (3, 2, 2, 3, 2). In addition, two
components of L link the first three strands, and one component links all the strands of
this braid.

On the other hand, positive stabilizations of the standard open book of S1
× S2 corre-

sponding to the blowup sequence

(1, 1)→ (2, 1, 2)→ (3, 1, 2, 2)→ (3, 2, 1, 3, 2) = n

are depicted in Figure 6. The monodromy of our PALF onW(81,47)((3, 2, 1, 3, 2)) is given
as the product

x1x2x3β2γ
2
3 γ5
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1 5

6da b

2 3 4

c e 87 9

s2

s3

s1

1 2 1 2 3

1 2 3 41 2 3 4 5

2nd hole splits

2nd hole splits
3rd hole splits

Fig. 6. Positive stabilizations of the standard open book.

a

g3

b2

g5

x

z

y

321

e

c

d

g

f

k l

b

−1

−1

−1

−1

−1

−1

−1

1 2 3 4 5

x1

x2

x3

β2
γ3

γ5

Fig. 7. Monodromy x1x2x3β2γ
2
3 γ5 of the PALF on W(81,47)((3, 2, 1, 3, 2)) and its handlebody

diagram.

of right-handed Dehn twists along the four stabilizing curves x1, x2, x3, β2 in the order
they appear and three more right-handed Dehn twists corresponding to the link L (see
Figure 7). Two of these latter ones are along two disjoint copies of a convex curve γ3
encircling the first three holes and one is along a convex curve γ5 encircling all the holes.
Moreover, a handle decomposition of W(81,47)((3, 2, 1, 3, 2)) including five 1-handles,
where one can explicitly see the PALF, is shown in Figure 7.
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3. Monodromy substitutions and rational blowdowns

The lantern relation in the mapping class group of a sphere with four holes was discov-
ered by Dehn although Johnson named it the lantern relation after rediscovering it in [10].
This relation and its generalizations have been effectively used recently in solving some
interesting problems in low-dimensional topology. The key point is that the lantern rela-
tion (cf. Figure 8) holds in any subsurface of another surface which is homeomorphic to
a sphere with four holes.

3

b

d

c
2

1

a

4

d1

d2

d3

d4

a

b

c

Fig. 8. The lantern relation d1d2d3d4 = abc on a four-holed sphere

Suppose that there is a “piece” in the monodromy factorization of a (not necessarily
positive or allowable) Lefschetz fibration which appears as the left-hand side of the lantern
relation. Deleting that piece from the monodromy word and inserting the right-hand side
is called a lantern substitution. It was shown in [5] that the effect of this substitution in
the total space of the fibration is a rational blowdown operation, which can be easily seen
as follows: The PALF with monodromy d1d2d3d4 is diffeomorphic to theD2 bundle over
S2 with Euler number −4, while the PALF with monodromy abc is diffeomorphic to a
rational 4-ball with boundary L(4, 1). Cutting a submanifold diffeomorphic to the D2-
bundle over S2 with Euler number −4 from a 4-manifold and gluing in a rational 4-ball
was named a rational blowdown operation by Fintushel and Stern [7].

We would like to point out that the genus-zero PALF with monodromy d1d2d3d4 and
the genus-zero PALF with monodromy abc represent the two distinct diffeomorphism
classes of the minimal symplectic fillings of (L(4, 1), ξcan).

Since the linear plumbing of p−1 disk bundles over S2 with Euler numbers−(p+2),
−2, . . . ,−2 has boundary L(p2, p−1), which also bounds a rational 4-ball, the cut-and-
paste operation described above is defined similarly for this case [7]. The corresponding
monodromy substitution was discovered and named the daisy relation in [6], which is
essentially obtained by repeated applications of the lantern substitution. In fact, the PALFs
given by the products of right-handed Dehn twists appearing on the two sides of the
daisy relation represent the two distinct diffeomorphism classes of the minimal symplectic
fillings of (L(p2, p − 1), ξcan) for any p ≥ 2.
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A generalization of Fintushel and Stern’s rational blowdown operation was introduced
in [16] involving the lens space L(p2, pq − 1) as the boundary. The corresponding mon-
odromy substitution for this rational blowdown can be computed by the technique intro-
duced in [6].

A rational blowdown along a linear plumbing graph is the replacement of a neigh-
bourhood of a configuration of spheres in a smooth 4-manifold which intersect according
to a linear plumbing graph whose boundary is L(p2, pq− 1) by a rational 4-ball with the
same oriented boundary.

4. Symplectic fillings and rational blowdowns

Our goal in this section is to prove our main result. We point out that our proof does not
rely on the results in [6].

Theorem 4.1. Any minimal symplectic filling of the canonical contact structure on a
lens space is obtained, up to diffeomorphism, by a sequence of rational blowdowns along
linear plumbing graphs from the minimal resolution of the corresponding complex two-
dimensional cyclic quotient singularity.

Remark 4.2. According to [18] (see also [8]), the rational blowdowns in Theorem 4.1
can be realized as symplectic rational blowdowns.

It will be convenient to make the following definitions for the proof of Theorem 4.1.

Definition 4.3. For a positive k-tuple n = (n1, . . . , nk) ∈ Zk , we say that n has height s,
and write ht(n) = s, if s is the minimal number of strict blowups required to obtain n
from an l-tuple of the form (1, 2, . . . , 2, 1) ∈ Zl , which we will denote by ul , for l ≥ 2.
We set u1 = (0) and define ht(u1) = 0.

It is easy to check that
ht(n) = |n| − 2(k − 1),

for any n = (n1, . . . , nk) ∈ Zk , where |n| = n1 + · · · + nk .
In addition, we slightly generalize the definition of the 4-manifoldWp,q(n) as follows:

Definition 4.4. For a pair of k-tuples n = (n1, . . . , nk),m = (m1, . . . , mk) ∈ Zk , with
n ∈ Zk , we will denote by W(n,m) the 4-manifold constructed as in Section 2 from the
3-manifold N(n) ∼= S1

× S2 and the framed link L =
⋃k
i=1 Li associated to m, where

Li consists of |mi | components as in Figure 1 with the components having framings −1
if mi > 0 and framings +1 if mi < 0.

Note that if each mi ≥ 0 and bi := ni + mi ≥ 2 for all i, then there are unique integers
1 ≤ q < p with (p, q) = 1 such that

p

p − q
= [b1, . . . , bk].
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In this case W(n,m) is just the minimal symplectic filling Wp,q(n) of L(p, q) given by
Lisca. Also note that if m has precisely one component mj which is different from 0
with mj = ±1 and nj = 1, then W(n,m) is a rational 4-ball. To see this, note that
H1(W(n,m),Q) and H2(W(n,m),Q) are trivial precisely when the matrix describing
the linking of the attaching circles of the 2-handles with the dotted circles representing
the 1-handles is nondegenerate, and it is easy to check that the latter holds when one
imposes the above conditions on m and n.

By the algorithm in Section 2, the 4-manifoldW(n,m)with boundary admits a genus-
zero ALF (achiral Lefschetz fibration) over D2. In other words, the monodromy of the
Lefschetz fibration will include left-handed Dehn twists if mi < 0 for some i. In the
following by the monodromy factorization of W(n,m) we mean the monodromy factor-
ization of this Lefschetz fibration over D2 (which may include some left-handed Dehn
twists). Moreover, by a cancelling pair of Dehn twists we mean the composition of a
right-handed and a left-handed Dehn twist along two parallel copies of some curve on a
surface. Our proof of Theorem 4.1 is based on the following preliminary result.

Lemma 4.5. Given a pair of k-tuples n = (n1, . . . , nk),m = (m1, . . . , mk) ∈ Zk with
n ∈ Zk and s = ht(n) ≥ 1, there exists a sequence of k-tuples n0, . . . ,ns ∈ Zk with
n0 = uk and ns = n such that, setting mi = n + m − ni , the monodromy factorization
of W(ni,mi) can be obtained from the monodromy factorization of W(ni−1,mi−1) by
a lantern substitution together with, possibly, the introduction or removal of some can-
celling pairs of Dehn twists for 1 ≤ i ≤ s.

Proof. The proof will be by induction on s. Suppose that s = ht(n) = 1. This means that
n = ψj (uk−1) for some 1 ≤ j ≤ k− 2, where ψj : Zk−1

→ Zk denotes the strict blowup
at the j th term. Letting m′ = (m′1, . . . , m

′

k) = n+m− uk , we find that

mi =


m′i − 1 if i = j ,
m′i + 1 if i = j + 1,
m′i − 1 if i = j + 2,
m′i otherwise

for any m = (m1, . . . , mk) ∈ Zk . We compute the monodromy factorizations φ and φ′ of
W(n,m) and W(uk,m′), respectively. For this, consider a disk Dk with k holes ordered
linearly from left to right and label the boundary of the ith hole αi , for 2 ≤ i ≤ k. Also,
label the convex curve containing the first i holes γi , for 1 ≤ i ≤ k, and label the convex
curve containing the (j + 1)st and the (j + 2)nd holes δj . Finally label the convex curve
containing the first j holes plus the (j + 2)nd hole βj . Here “convex” is used as in the
sense of Section 2.3. Following the algorithm given in the same section, we find that

φ′ = α2 · · ·αkγ
m′1
1 · · · γ

m′k
k

and

φ = α2 · · ·αj δjαj+3 · · ·αkβjγ
m′1
1 · · · γ

m′
j−1

j−1 γ
m′j−1
j γ

m′
j+1+1

j+1 γ
m′
j+2−1

j+2 γ
m′
j+3

j+3 · · · γ
m′k
k .
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We see that φ can be obtained from φ′ by the single lantern substitution

αj+1αj+2γjγj+2 = δjβjγj+1.

Note, however, that if either m′j ≤ 0 or m′j+2 ≤ 0, then we will need to introduce a
cancelling pair of Dehn twists into the monodromy factorization φ′ before we can apply
the lantern substitution. Also, if m′j+1 ≤ −1, then after applying the lantern substitution
we will remove a cancelling pair of Dehn twists which appears in the monodromy. This
finishes the proof for s = 1 by setting m0 = m′.

Now suppose that t is a positive integer and it is known that for every pair of k-
tuples n,m ∈ Zk with n ∈ Zk and s = ht(n) ≤ t there exists a sequence of k-tuples
n0, . . . ,ns ∈ Zk with n0 = uk and ns = n such that, setting mi = n + m − ni , the
monodromy factorization of W(ni,mi) can be obtained from the monodromy factoriza-
tion of W(ni−1,mi−1) by a lantern substitution together with, possibly, the introduction
or removal of some cancelling pairs of Dehn twists for 1 ≤ i ≤ s. Let n,m ∈ Zk be
a pair of k-tuples with n ∈ Zk and s = ht(n) = t + 1. Then there is a (k − 1)-tuple
n′ ∈ Zk−1 such that n = ψj (n′) and ht(n′) = t . Let ρj+1 : Zk → Zk−1 denote the map
(l1, . . . , lk) 7→ (l1, . . . , l̂j+1, . . . , lk) given by omitting the (j + 1)st entry. By the induc-
tion hypothesis, there is a sequence of (k − 1)-tuples n′0, . . . ,n′t ∈ Zk−1 with n′0 = uk−1
and n′t = n′ such that, setting m′i = n′ + ρj+1(m) − n′i , the monodromy factorization
of W(n′i,m′i) can be obtained from the monodromy factorization of W(n′i−1,m′i−1) by
a lantern substitution together with, possibly, the introduction or removal of some can-
celling pairs of Dehn twists for 1 ≤ i ≤ t . Consider the sequence ni = ψj (n′i−1) for
1 ≤ i ≤ s = t + 1 of k-tuples in Zk obtained by taking strict blowups at the j th term of
the (k − 1)-tuples in the sequence n′0, . . . ,n′t . Let n0 = uk and set mi = n + m − ni
for 0 ≤ i ≤ s. We claim that the monodromy factorization of W(ni,mi) can be obtained
from the monodromy factorization of W(ni−1,mi−1) by a lantern substitution together
with, possibly, the introduction or removal of some cancelling pairs of Dehn twists for
1 ≤ i ≤ s.

For i = 1, the proof follows from the above since ht(n1) = 1. Suppose that i > 1.
Then the monodromy factorization φ′i−2 of W(n′i−2,m′i−2) has the form

φ′i−2 = c1 · · · cl,

where cr denotes a convex Dehn twist of Dk−1 for 1 ≤ r ≤ l. It follows that the mon-
odromy factorization φi−1 of W(ni−1,mi−1) has the form

φi−1 = c̃1 · · · c̃lβjγ
mi−1,j+1
j+1 ,

where βj and γj+1 are convex Dehn twists of Dk as before and mi−1,j+1 denotes the
(j + 1)st component of mi−1. Here we have used the convention that if σ is a convex
Dehn twist of Dk−1 around a collection H of holes, then σ̃ denotes the convex Dehn
twist of Dk around the collection H̃ of holes given by

H̃ = {r | 1 ≤ r ≤ j + 1 and r ∈ H } ∪ {r + 1 | j + 1 ≤ r ≤ k − 1 and r ∈ H }.
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By the induction hypothesis, the monodromy factorization φ′i−1 of W(n′i−1,m′i−1) is ob-
tained from the monodromy factorization φ′i−2 ofW(n′i−2,m′i−2) via a lantern relation of
the form

ci1ci2ci3ci4 = ci5ci6ci7 ,

where, for each r , cir is a convex Dehn twist of Dk−1 which may or may not be in-
cluded in the set {c1, . . . , cl} of convex Dehn twists, together with, possibly, the intro-
duction or removal of some cancelling pairs of Dehn twists. It follows easily that the
monodromy factorization φi ofW(ni,mi) is obtained from the monodromy factorization
φi−1 of W(ni−1,mi−1) via a lantern relation of the form

c̃i1 c̃i2 c̃i3 c̃i4 = c̃i5 c̃i6 c̃i7 ,

together with, possibly, the introduction or removal of some cancelling pairs of Dehn
twists, completing the proof of the induction step and the lemma. ut

Proof of Theorem 4.1. Let n = (n1, . . . , nk),m = (m1, . . . , mk) be k-tuples in Zk with
n ∈ Zk and m nonnegative. Assume that nj + mj > 1 for all 1 < j < k. We prove
that W(n,m) is obtained from W(uk,m0) by a sequence of rational blowdowns, where
m0 = n+m− uk . The statement of the theorem follows from this.

Let s = ht(n). If s = 0, thenW(n,m) corresponds to the filling of a lens space by the
canonical plumbing and there is nothing to check. Suppose that s ≥ 1 and consider the
sequence

n = n0
→ n1

→ · · · → ns (4.1)

given by taking the strict blowdown at the leftmost possible 1. (Note, in particular, that
if the first term of n is 1, then, according to the definition of a strict blowdown, n cannot
be strictly blown down at this term.) Here ni ∈ Zk−i for 0 ≤ i ≤ s, and ns = uk−s .
From the proof of Lemma 4.5, there is an associated sequence uk = n0, . . . ,ns = n such
that, setting mi = n + m − ni , the monodromy factorization of W(ni,mi) is obtained
from the monodromy factorization of W(ni−1,mi−1) by a lantern substitution together
with, possibly, the introduction or removal of some cancelling pairs of Dehn twists. Let
0 = i0 < i1 < · · · < ir = s be the sequence of indices such that mi has all components
nonnegative if and only i = ij for some j . We claim that W(nij ,mij ) is obtained from
W(nij−1 ,mij−1) by a rational blowdown for 1 ≤ j ≤ r . The proof is by induction on r .

Suppose that r = 1, that is, i1 = s. We first show that n = ns contains exactly one
component nj equal to 1 with 1 < j < k. On the contrary, suppose that n contains at
least two such components. Consider the strict blowdown sequence in (4.1) and let nt
be the first tuple which has fewer interior components equal to 1 than n. It follows from
the assumption that t < s. Let m = m0, . . . ,ms denote the associated sequence con-
structed as follows: if ni is obtained from ni−1 by a strict blowdown at the j th term, let
mi
= ρj (mi−1), where, as before, ρj : Zk−i+1

→ Zk−i is the map given by omitting the
j th entry. For each pair (ni,mi), consider the sequence (ni0 = uk−i,mi

0), . . . , (n
i
s−i =

ni,mi
s−i = mi) constructed as in the proof of Lemma 4.5 from the portion of the blow-

down sequence (4.1) beginning at ni . Now consider the following diagram:
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(n = n0
s ,m = m0

s )
- (nt = nts−t ,mt

s−t )
- (ns0 = uk−s,ms

0)

(n0
t ,m0

t )

6

- (nt0 = uk−t ,mt
0)

6

(n0
0 = uk,m0

0)

6

Note that, by construction, every interior component of nts−t + mt
s−t is greater than 1.

(Here the condition that the strict blowdowns are chosen in a consistent fashion, such as
taking each strict blowdown at the leftmost possible 1, as we have done, is essential.)
Hence every interior component of nt0+mt

0, being equal to the corresponding component
of nts−t+mt

s−t , is greater than 1. Since nt0 = uk−t = (1, 2, . . . , 2, 1), it follows that every
component of mt

0 is nonnegative (that this is true for the first and last components of mt
0

follows from the fact that each component of mt
s−t is nonnegative). Now note that mi−1

l+1
can be obtained from mi

l as follows: Suppose that nis−i is obtained from ni−1
s−i+1 by strictly

blowing down at the j th term (and hence that nil is obtained from ni−1
l+1 also by strictly

blowing down at the j th term for 0 ≤ l ≤ s−i); then mi−1
l+1 = χj (m

i
l ), where χj : Zk−i →

Zk−i+1 is the map (z1, . . . , zk−i) 7→ (z1, . . . , zj−1, m
i−1
j , zj , . . . , zk−i) given by splicing

into the j th position the j th component of mi−1, which, being an entry of m, is nonneg-
ative. It follows that every component of m0

t is nonnegative, contradicting the fact that
r = 1. This proves that n contains exactly one interior component nj equal to 1.

We now proceed as follows: Given n, suppose that nj is the only component that is
equal to 1, with 1 < j < k. Let m′ = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the j th
position. Then m′ ≤ m, since every interior component of n + m is greater than 1 and
m is nonnegative. Now note that W(uk,m′0) can be rationally blown down to W(n,m′),
where m′0 = n+m′ − uk (since W(uk,m′0) corresponds to the filling of a lens space by
the canonical plumbing andW(n,m′) is a rational 4-ball). By replacing the “piece” of the
monodromy factorization ofW(uk,m0) that corresponds to the monodromy factorization
of W(uk,m′0), where m0 = n +m − uk , by the monodromy factorization of W(n,m′),
we see that W(n,m) is obtained from W(uk,m0) by a rational blowdown.

Now assume that l ≥ 1 and the claim is known to hold whenever r ≤ l. Suppose that
r = l + 1 and consider the following diagram:

(n = n0
ir
,m = m0

ir
) - (ni1ir−i1 ,mi1

ir−i1
) - (nir0 = uk−ir ,mir

0 )

(n0
i1
,m0

i1
)

6

- (ni10 = uk−i1 ,mi1
0 )

6

(n0
0 = uk,m0

0)

6
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By the previous step, we know that there is exactly one j with 1 < j < k such that the j th
component of n0

i1
is 1. It follows thatW(n0

i1
,m0

i1
) is obtained fromW(n0

0,m0
0) by a ratio-

nal blowdown. Thus it is sufficient to show thatW(n0
ir
,m0

ir
) is obtained fromW(n0

i1
,m0

i1
)

by a sequence of rational blowdowns. For this, consider the pair (ni1ir−i1 ,mi1
ir−i1

). Since

in the sequence mi1
0 ,mi1

1 , . . . ,mi1
s−i1

the only tuples with all components nonnegative are
precisely the ones with subscripts 0 < i2 − i1 < · · · < ir − i1 = s − i1, it follows
from the induction hypothesis that W(ni1ir−i1 ,mi1

ir−i1
) is obtained from W(uk−i1 ,mi1

0 ) by
a sequence of rational blowdowns. Now, arguing as before we find thatW(n0

ir
,m0

ir
) is ob-

tained from W(n0
i1
,m0

i1
) by a sequence of rational blowdowns, completing the induction

step and the proof of the theorem. ut

The content of [11, Corollary 5.2 and Theorem 6.1] can be recovered as a corollary:

Corollary 4.6. Any minimal symplectic filling of the canonical contact structure on a lens
space can be realized as a Stein filling, i.e. the underlying smooth 4-manifold with bound-
ary admits a Stein structure whose induced contact structure on the boundary agrees with
the canonical one.

Proof. Any minimal symplectic filling of the canonical contact structure on a lens space
admits a PALF over D2 by Theorem 2.3 (also by [19, Theorem 1]). This implies that
the underlying smooth 4-manifold with boundary admits a Stein structure whose induced
contact structure on the boundary is compatible with the open book induced from the
PALF [1]. By the proof of Theorem 4.1, the induced open book on the boundary is fixed
for all distinct PALFs constructed for a given lens space. The desired result follows since
we know that the induced open book on the boundary of the canonical PALF on the
minimal resolution is compatible with the canonical contact structure [14]. ut

Corollary 4.7. The canonical contact structure on a lens space admits a unique minimal
symplectic filling—represented by the Stein structure via the PALF we constructed on
the minimal resolution—up to symplectic rational blowdown and symplectic deformation
equivalence.

Proof. This follows from the combination of Theorem 4.1, Remark 4.2, Corollary 4.6 and
the fact that each diffeomorphism type of a minimal symplectic filling of the canonical
contact structure on a lens space carries a unique symplectic structure up to symplectic
deformation equivalence which fills the contact structure in question [2]. ut

Corollary 4.8. Any Milnor fibre of any smoothing of a complex two-dimensional cyclic
quotient singularity can be obtained, up to diffeomorphism, by a sequence of rational
blowdowns along linear plumbing graphs from the Milnor fibre diffeomorphic to the min-
imal resolution of the singularity.

Proof. This immediately follows from Theorem 4.1 coupled with the results in [12], in
which Némethi and Popescu-Pampu prove that the classification of Milnor fibres for a
cyclic quotient singularity agrees with Lisca’s classification of symplectic fillings for the
canonical contact singularity link, up to diffeomorphism. ut
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4.1. An example

We would like to describe how one can obtain the symplectic fillingW(81,47)((3, 2, 1, 3, 2))
from the minimal resolution W(81,47)((1, 2, 2, 2, 1)) by a single rational blowdown.

The monodromy of the the canonical PALF onW(81,47)((1, 2, 2, 2, 1)), which is illus-
trated in Figure 9(a), can be expressed as

α2α3α4a5γ
2
1 γ3γ4γ

2
5

by our algorithm using the blowup sequence

(1, 1)→ (1, 2, 1)→ (1, 2, 2, 1)→ (1, 2, 2, 2, 1).

In the following we describe a sequence of lantern substitutions, together with intro-
duction or removal of some cancelling pairs of Dehn twists, to obtain the PALF (see Fig-
ure 7) we constructed on the symplectic fillingW(81,47)((3, 2, 1, 3, 2)) from the canonical
PALF (see Figure 9(a)) on the minimal resolution W(81,47)((1, 2, 2, 2, 1)).

We first insert a cancelling pair of Dehn twists along two parallel copies of a curve
encircling the first two holes to obtain the ALF in Figure 9(b) with monodromy

α2α3α4a5γ
2
1 (γ
−1
2 γ2)γ3γ4γ

2
5 .

x

y

c d

a b

d2

b2

(a) (b)

(c) (d)

w

x3

β2

δ2

Fig. 9. Thicker curves indicate right-handed Dehn twists on a 5-holed disk, whereas left-handed
Dehn twists are drawn as dashed curves.
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We apply a lantern substitution γ2α3α4γ4 = δ2β2γ3 as indicated in Figure 9(b), to
obtain the new ALF depicted in Figure 9(c) with monodromy

α2α5γ
2
1 γ
−1
2 (γ4γ

−1
4 )δ2β2γ3γ3γ

2
5 ,

where we also inserted a pair of cancelling Dehn twists along two parallel copies of a
curve encircling the first four holes.

Next we apply a second lantern substitution γ1α2δ2γ4 = γ2wx3 indicated in Fig-
ure 9(c), to obtain the new ALF depicted in Figure 9(d) with monodromy

α5γ
−1
4 γ1(γ

−1
2 γ2)wx3β2γ

2
3 γ

2
5 = α5γ

−1
4 γ1wx3β2γ

2
3 γ

2
5 ,

where we removed a pair of cancelling Dehn twists encircling the first two holes. A final
lantern substitution γ1wα5γ5 = γ4x1x2 is applied as indicated in Figure 9(d), together
with the removal of a pair of cancelling Dehn twists encircling the first four holes, to
obtain a PALF whose monodromy is

(γ−1
4 γ4)x1x2x3β2γ

2
3 γ5 = x1x2x3β2γ

2
3 γ5.

It is clear that this monodromy is equivalent to the monodromy of the PALF on the sym-
plectic filling W(81,47)((3, 2, 1, 3, 2)) depicted in Figure 7.

Using the notation in Lemma 4.5, the above sequence of three lantern substitutions
can be expressed as

W(81,47)((1, 2, 2, 2, 1)) = W((1, 2, 2, 2, 1), (2, 0, 0, 1, 1, 2))
→ W((1, 3, 1, 3, 1), (2,−1, 2, 0, 2))
→ W((2, 2, 1, 4, 1), (1, 0, 2,−1, 2))
→ W((3, 2, 1, 3, 2), (0, 0, 2, 0, 1)) = W(81,47)((3, 2, 1, 3, 2)).

We show that the filling W(81,47)((3, 2, 1, 3, 2)) is in fact obtained from the minimal
resolution W(81,47)((1, 2, 2, 2, 1)) by a single rational blowdown as follows: The mon-
odromy of the PALF on W(81,47)((3, 2, 1, 3, 2)) can be obtained from the monodromy of
the PALF on W(81,47)((1, 2, 2, 2, 1)) by a single monodromy substitution (see Figure 10)
as

α2α3α4a5γ
2
1 γ4γ5γ3γ5 = x1x2x3β2γ3γ3γ5,

which is the combination of the three lantern substitutions together with the introduction
or removal of cancelling pairs of Dehn twists.

The PALF represented on the left in Figure 10 is diffeomorphic to the linear plumbing
of disk bundles over S2 with Euler numbers −2,−5,−3, which can be directly checked
by drawing the handlebody diagram of this PALF and applying some handle-slides and
cancellations. On the other hand, the PALF on the right is a rational homology 4-ball
since the curves in the monodromy spans the rational homology of the genus-zero fibre.
We conclude that this monodromy substitution corresponds to a rational blowdown since

[−2,−5,−3] = −
52

5 · 3− 1
.
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a f g h lk

z

x

y

bb

g3

g1

g4

g5

a2 a4a3 a5

=

x2

x3
x1

β2

γ3γ4
γ5

γ1 α2 α3 α4 α5

Fig. 10. A monodromy substitution: α2α3α4α5γ
2
1 γ4γ5 = x1x2x3β2γ3.

Remark 4.9. When we run our algorithm for the two distinct minimal symplectic fillings
of (L(p2, p − 1), ξcan), for any p ≥ 2, we obtain another proof of the daisy relation [6].
Our method would yield many more interesting “positive” relations in the mapping class
groups of planar surfaces.

We would like to finish with the following question: Does Theorem 4.1 hold true for min-
imal symplectic fillings of any Milnor fillable contact 3-manifold supported by a planar
open book?
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