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Abstract. The currently preferred models of the universe undergo accelerated expansion induced
by dark energy. One model for dark energy is a positive cosmological constant. It is consequently
of interest to study Einstein’s equations with a positive cosmological constant coupled to matter
satisfying the ordinary energy conditions: the dominant energy condition etc. Due to the difficulty
of analysing the behaviour of solutions to Einstein’s equations in general, it is common to either
study situations with symmetry, or to prove stability results. In the present paper, we do both. In
fact, we analyse, in detail, the future asymptotic behaviour of 'JI‘3—Gowdy symmetric solutions to
the Einstein—Vlasov equations with a positive cosmological constant. In particular, we prove the
cosmic no-hair conjecture in this setting. However, we also prove that the solutions are future stable
(in the class of all solutions). Some of the results hold in a more general setting. In fact, we obtain
conclusions concerning the causal structure of ’]l'z—syrnrnetric solutions, assuming only the presence
of a positive cosmological constant, matter satisfying various energy conditions and future global
existence. Adding the assumption of 'JI‘3—Gowdy symmetry to this list of requirements, we obtain
CO-estimates for all but one of the metric components. There is consequently reason to expect that
many of the results presented in this paper can be generalised to other types of matter.
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1. Introduction

Towards the end of 1998, two research teams studying supernovae of type Ia announced
the unexpected conclusion that the universe is expanding at an accelerating rate (cf. [27,
18]). After the observations had been corroborated by other sources, there was a corre-
sponding shift in the class of solutions to Einstein’s equations used to model the universe.
In particular, physicists attributed the acceleration to a form of matter they referred to
as ‘dark energy’. However, as the nature of the dark energy remains unclear, there are
several models for it. The simplest one is that of a positive cosmological constant (which
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is the one we use in the present paper), but there are several other possibilities (cf., e.g.,
[24, 25, 26] and references cited therein for some examples). Combining the different ob-
servational data, the currently preferred model of the universe is spatially homogeneous
and isotropic (i.e., the cosmological principle is assumed to be valid), spatially flat, and
has matter of the following forms: ordinary matter (usually modelled by a radiation fluid
and dust), dark matter (often modelled by dust), and dark energy (often modelled by a
positive cosmological constant).

In the present paper, we are interested in the Einstein—Vlasov system. This corre-
sponds to a different description of the matter than the one usually used. However, this
system can also be used in order to obtain models consistent with observations (cf., e.g.,
[31, Chapter 28]). In fact, Vlasov matter has the property that it naturally behaves as ra-
diation close to the singularity and as dust in the expanding direction, a desirable feature
which is usually put in by hand when using perfect fluids to model the matter.

The cosmic no-hair conjecture. The standard starting point in cosmology is the assump-
tion of spatial homogeneity and isotropy. However, it is preferable to prove that solutions
generally isotropise and that the spatial variation (as seen by observers) becomes negli-
gible. This is expected to happen in the presence of a positive cosmological constant; in
fact, solutions are in that case expected to appear de Sitter like to observers at late times.
The latter expectation goes under the name of the cosmic no-hair conjecture (see Con-
jecture 1.11 for a precise formulation). The main objective when studying the expanding
direction of solutions to Einstein’s equations with a positive cosmological constant is to
verify this conjecture.

Spatial homogeneity. Turning to the results that have been obtained so far, it is natu-
ral to begin with the spatially homogeneous setting. In 1983, Robert Wald wrote a short,
but remarkable, paper [40], in which he proved results concerning the future asymptotic
behaviour of spatially homogeneous solutions to Einstein’s equations with a positive cos-
mological constant. In particular, he confirmed the cosmic no-hair conjecture. What is
remarkable about the paper is that he was able to obtain conclusions assuming only that
certain energy conditions hold and that the solution does not break down in finite time.
Concerning the symmetry type, the only issue that comes up in the argument is whether it
is compatible with the spatial hypersurfaces of homogeneity having positive scalar curva-
ture or not; positive scalar curvature of these hypersurfaces sometimes leads to recollapse.
The results should be contrasted with the case of Einstein’s vacuum equation in the spa-
tially homogeneous setting, where the behaviour is strongly dependent on the symmetry
type. Since Wald did not prove future global existence, it is necessary to carry out a fur-
ther analysis in order to confirm the picture obtained in [40] in specific cases. In the case
of the Einstein—Vlasov system, this was done in [13]. It is also of interest that it is possible
to prove results analogous to those of Wald for more general models for dark energy (see
e.g., [24, 25, 26, 14]).

Surface symmetry. Turning to the spatially inhomogeneous setting, there are results in
the surface symmetric case with a positive cosmological constant (cf. [39, 38, 37, 15]; see
[22] for the definition of surface symmetry). In this case, the isometry group (on a suit-
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able covering space) is 3-dimensional. Nevertheless, the system of equations that result
after symmetry reduction is 1+ 1-dimensional. However, the extra symmetries do elimi-
nate some of the degrees of freedom. Again, the main results are future causal geodesic
completeness and a verification of the cosmic no-hair conjecture.

T2-symmetry. A natural next step to take after surface symmetry is to consider Gowdy
or T2-symmetry. That is the purpose of the present paper. In particular, we prove future
causal geodesic completeness of solutions to the T3-Gowdy symmetric Einstein—Vlasov
equations with a positive cosmological constant (note, however, the caveat concerning
global existence stated in Subsection 1.1). Moreover, we verify that the cosmic no-hair
conjecture holds. It is of interest that most of the arguments go through under the as-
sumption of T2-symmetry. However, in order to obtain the full picture in this setting, it
is necessary to prove one crucial inequality (see Definition 1.1), which we have not yet
been able to do in general.

Stability. A fundamental question in the study of cosmological solutions is that of future
stability: given initial data corresponding to an expanding solution, do small perturba-
tions thereof yield maximal globally hyperbolic developments which are future causally
geodesically complete and globally similar to the future? In the case of a positive cos-
mological constant, the first result was obtained by Helmut Friedrich [10]; he proved
stability of de Sitter space in 3 + 1 dimensions. Later, he and Michael Anderson [11, 1]
generalised the result to higher (even) dimensions and to include various matter fields.
Moreover, results concerning radiation fluids were obtained in [16]. However, conformal
invariance plays an important role in the arguments presented in these papers. As a con-
sequence, there seems to be a limitation of the types of matter models that can be dealt
with using the corresponding methods. The paper [28] was written with the goal of de-
veloping methods that are more generally applicable. The papers [29, 36, 32, 34, 35, 12],
in which the methods developed in [28] play a central role, indicate that this goal was
achieved. In fact, a general future global non-linear stability result for spatially homoge-
neous solutions to the Einstein—Vlasov equations with a positive cosmological constant
was obtained in [31], the ideas developed in [28] being at the core of the argument.

In the present paper, we not only derive detailed future asymptotics of T>-Gowdy
symmetric solutions to the Einstein—VIasov equations with a positive cosmological con-
stant. We also prove that all the resulting solutions are future stable in the class of all
solutions (without symmetry assumptions).

Outlook. As we describe in the next subsection, some of the results concerning T3-
Gowdy symmetric solutions hold irrespective of the matter model (as long as it satisfies
the dominant energy condition and the non-negative pressure condition). As a conse-
quence, we expect that it might be possible to derive detailed asymptotics in the case
of the Einstein—-Maxwell equations (with a positive cosmological constant), and in the
case of the Einstein-Euler system (though the issue of shocks may be relevant in the lat-
ter case). Due to the stability results demonstrated in [36, 32, 34, 35], it might also be
possible to prove stability of the corresponding solutions.
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1.1. General results under the assumption of T>-symmetry

T2-symmetry. In the present paper, we are interested in T?-symmetric solutions to Ein-
stein’s equations. There are various geometric ways of imposing this type of symmetry
(cf., e.g., [7, 33]), but for the purposes of the present paper, we simply assume the topol-
ogy to be of the form / x T3, where I is an open interval contained in (0, co). If 6, x
and y are ’coordinates’ on T3 and ¢ is the coordinate on I, we also assume the metric to
be of the form

g =112 (—di* +a71d6?) +tel [dx + Qdy + (G + QH)dO* +1e~F (dy+ Hd6)?,

(1.1
where the functions ¢ > 0, A, P, Q, G and H only depend on ¢ and 6 (cf., e.g., [33]).
Note that translation in the x and y directions defines a smooth action of T? on the space-
time (as well as on each constant-# hypersurface). Moreover, the metric is invariant under
this action, and the corresponding orbits are referred to as symmetry orbits, given by
{t} x {#} x T2. Note that the area of a symmetry orbit is proportional to . For this rea-
son, the foliation of the spacetime corresponding to the metric form (1.1) is referred to
as the constant areal time foliation. The case of T3-Gowdy symmetry corresponds to the
functions G and H being independent of time; again, there is a more geometric way of
formulating this condition: the spacetime is said to be Gowdy symmetric if the so-called
twist quantities, given by

J = €apps X YPVYX®| K = €upys X°YPVVY?, (1.2)

vanish, where X = 0y and Y = 9, are Killing fields of the above metric and € is the
volume form. A basic question to ask concerning T2-symmetric solutions to Einstein’s
equations is whether the maximal globally hyperbolic development of initial data admits
a constant areal time foliation which is future global. There is a long history of proving
such results. The first one was obtained by Vincent Moncrief [17] in the case of vac-
uum solutions with T3-Gowdy symmetry. The cases of T2-symmetric vacuum solutions
with and without a positive cosmological constant have also been considered in [8] and
[5] respectively. Turning to Vlasov matter, [2] contains an analysis of the existence of
foliations in the T3-Gowdy symmetric Einstein—Vlasov setting. The corresponding re-
sults were later extended to the Tz—symmetric case in [4]. However, from our point of
view, the most relevant result is that of [33]. By the results of that paper, there is, given
T2-symmetric initial data to the Einstein—Vlasov equations with a positive cosmologi-
cal constant, a future global foliation of the spacetime of the form (1.1). In other words
I = (19, 00). Moreover, if the distribution function is not identically zero, then 7y = 0. Fi-
nally, if the initial data have Gowdy symmetry, then the same is true of the development.
Strictly speaking, the future global existence result in [33] is based on the observation that
the argument should not be significantly different from the proofs in [5, 8, 4]. It would be
preferable to have a complete proof of future global existence in the case of interest here,
but we shall not provide it in this paper.

Results. Turning to the results, it is of interest to note that some of the conclusions can
be obtained without making detailed assumptions concerning the matter content. For that
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reason, let us assume, for the remainder of this subsection, that we have a solution to
Einstein’s equations with a positive cosmological constant, where the metric is of the
form (1.1), the existence interval I is of the form (7y, c0) and the matter satisfies the
dominant energy condition and the non-negative pressure condition; recall that the matter
is said to satisfy the dominant energy condition if T (u, v) > 0 for all pairs u, v of future
directed timelike vectors (where T is the stress energy tensor associated with the matter);
and that it is said to satisfy the non-negative pressure condition it T (w, w) > 0 for every
spacelike vector w. To begin with, there is a constant C > 0 such that a(r,0) < Ct~3
for all (1,0) € [t + 2, 00) x S! (cf. Proposition 3.3). In fact, this conclusion also holds
if we replace the cosmological constant with a non-linear scalar field with a positive
lower bound (cf. Remark 3.4). One particular consequence of this estimate for « is that
the f-coordinate of a causal curve converges. Moreover, observers whose 6-coordinates
converge to different 6-values are asymptotically unable to communicate. In this sense,
there is asymptotic silence. In the case of Gowdy symmetry, more can be deduced. In fact,
for every € > 0, thereisa T > fy such that

3
At,0) > —3Int +2In — —
(t,0) = nt+ n4A €

for all (r,0) € [T, 00) x S' (cf. Proposition 3.5). This estimate turns out to be of cru-
cial importance also in the general T2-symmetric case. For this reason, we introduce the
following terminology.

Definition 1.1. A metric of the form (1.1) which is defined for ¢ > f¢ for some 79 > 0 is
said to have A-asymptotics if for every € > O thereis a T > ¢ such that

3
At 0) > —31nt+21na — e forall (t,0) € [T, 00) x SL.

Remark 1.2. All Gowdy solutions have A-asymptotics under the above assumptions (cf.
Proposition 3.5).

Proposition 1.3. Consider a T2-symmetric solution to Einstein’s equations with a posi-
tive cosmological constant. Assume that the matter satisfies the dominant energy condi-
tion and the non-negative pressure condition. Assume moreover that the corresponding
metric admits a foliation of the form (1.1) on I x T3, where I = (to, 00) and ty > O.
Finally, assume that the solution has A-asymptotics and let t| = to + 2. Then there is a
constant C > 0 such that

<2,
co

1732 @ V21, 9) + 106, o + 1P, o < C,
I H(t, Y+ 1Go(t, ) < 32

3
M, - 3Int —2In —
H( )+ 31n no—

forall (t,0) € [, 00) x S
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Remark 1.4. The choice #; = f9+2 may seem unnatural. However, we need to stay away
from 1y (since we do not control the solution close to #y). Moreover, in some situations
we need to know that In ¢ is positive and bounded away from zero. Since fy = 0 for most
solutions, it is therefore natural to only consider the interval # > #y + 2 in the study of the
future asymptotics.

Remark 1.5. If & is a scalar function on S!, we use the notation
1
(h) = —/ hdé. (1.3)
27‘[ sl

Sometimes, we shall use the same notation for a scalar function 4 on I x S!. In that
case, (h) is the function of ¢ defined by (h(z, -)). Finally, if p € R3, we shall also use the
notation (p). However, in that case, (p) = (1 + |p|*)'/? (cf. Remark 1.19).

Proof of Proposition 1.3. The statement is a consequence of Lemmas 3.7-3.9. O

In particular, in the case of a T>-Gowdy symmetric solution, there is asymptotic silence
in the sense that the Oxy-coordinates of a causal curve converge, and causal curves whose
asymptotic fxy-coordinates differ are asymptotically unable to communicate (cf. Propo-
sition 3.10).

1.2. Results in the Einstein—Vlasov setting

In order to be able to draw detailed conclusions, we need to restrict our attention to a
specific type of matter. In the present paper, we study the Einstein—Vlasov system.

A general description of Vlasov matter. Intuitively, Vlasov matter gives a statistical de-
scription of an ensemble of collections of particles. In practice, the matter is described by
a distribution function defined on the space of states of particles. The possible states are
given by the future directed causal vectors (here and below, we assume that the Lorentz
manifolds under consideration are time oriented). Usually, one distinguishes between
massive and massless particles. In the latter case, the distribution function is defined on
the future light cone, and in the former case, it is defined on the interior.

In the present paper, we are interested in the massive case, and we assume all the
particles to have unit mass (for a description of how to reduce the case of varying masses
to the case of all particles having unit mass, see [6]). As a consequence, the distribution
function is a non-negative function on the mass shell P, defined to be the set of future
directed unit timelike vectors. In order to connect the matter to Einstein’s equations, we
need to associate a stress energy tensor with the distribution function. It is given by

Ty (r) = fp fpappiip,. (1.4)

In this expression, P, denotes the set of future directed unit timelike vectors based at the
spacetime point 7. In other words, if Tier € T M is a future directed timelike vector, then

Pr = {U € TrM : g(va U) = _1? g(Trefa U) < 0}
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Moreover, the Lorentz metric g induces a Riemannian metric on P, and pp, denotes the
corresponding volume form (see (1.18) below for a coordinate representation of wp, ).
Finally, p, denotes the components of the one-form obtained by lowering the index of
p € P using the Lorentz metric g. Clearly, it is necessary to demand some degree of
fall-off of the distribution function f in order for the integral (1.4) to be well defined. In
the present paper, we shall be mainly interested in the case that the distribution function
has compact support in the momentum directions (for a fixed spacetime point). However,
in Subsections 1.3—1.7 we shall consider a somewhat more general situation. The equation
the distribution function has to satisfy is given by

Lf=o. (1.5)

Here £ denotes the vector field induced on the mass shell by the geodesic flow (see (1.19)
below for a coordinate representation). An alternative way to formulate this equation is to
demand that f be constant along y for every future directed unit timelike geodesic y. The
intuitive interpretation of the Vlasov equation (1.5) is that collisions between particles are
neglected. It is of interest that if f satisfies the Vlasov equation, then the stress energy
tensor is divergence free. To conclude, the Einstein—Viasov equations with a positive cos-
mological constant consist of (1.5) and

Ein+ Ag =TV, (1.6)
where TV is given by the right hand side of (1.4) and A is a positive constant. Moreover,
Ein = Ric — %S g

is the Einstein tensor, where Ric is the Ricci tensor and S is the scalar curvature of the
Lorentz manifold (M, g). The above description is somewhat brief, and the reader inter-
ested in more details is referred to, e.g., [9, 23, 3, 31].

Vlasov matter under T2-symmetry. In the case of T2-symmetry, it is convenient to
use a symmetry reduced version of the distribution function. To this end, introduce the
orthonormal frame

eo = t'/*e™4y,, ey = t"/*e 412 (3 — GO, — Hy),

(1.7)
ex=1""2e7Ph ey =1712P2 (3, — Q0)).

Since the distribution function f is defined on the mass shell, it is convenient to
parametrise this set; note that the manifolds we are interested in here are parallelisable
(i.e., they have a global frame). An element in P can be written v®e,, where

v =1+ @)+ @)+ @HV2

As a consequence, we can think of f as depending on v’, i = 1, 2, 3, and the base point.
However, due to the symmetry requirements, the distribution function only depends on
the r6-coordinates of the base point. As a consequence, the distribution function can be
considered to be a function of (¢, 6, v), where v = (v!, v2, v?). In what follows, we shall
abuse notation and denote the symmetry reduced function, defined on I x S! x R3, by f.
A symmetry reduced version of the equations is found in Section 2.
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Remark 1.6. In the T?-symmetric setting, we always assume the distribution function f
has compact support when restricted to constant-t hypersurfaces. Under the assumptions
made in the present paper, f has this property, assuming the initial datum for f has
compact support.

The first question to ask concerning T2-symmetric solutions is that of existence of con-
stant areal time foliations for an interval of the form (#p, 0c0). However, due to previous
results (cf. [33]), we know that Tz-symmetric solutions to the Einstein—Vlasov equations
with a positive cosmological constant are future global in this setting (keeping the caveat
stated in Subsection 1.1 in mind). In other words, there is a ty > 0 such that the solution
admits a foliation of the form (1.1) on I x T3, where I = (19, 00). Consequently, the
issue of interest here is the asymptotics. Unfortunately, we are unable to derive detailed
asymptotics for all T?-symmetric solutions. However, we do obtain results for solutions
with A-asymptotics; recall that all T3-Gowdy symmetric solutions fall into this class.

Theorem 1.7. Consider a T?-symmetric solution to the Einstein—Vlasov system with
a positive cosmological constant. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I x T3, where I = (1o, 00). Assume that the solution has
A-asymptotics and let t| = ty + 2. Then there are smooth functions deso > 0, Poo, Qco,
Goo and Hso on S and, forevery0 < N € Z, a constant Cy > 0 such that

tIH (t, ey +11Get, ey + IH (T, ) — Hoollen + G, ) — Goollon < Cnt ™32,

(1.8)
tIP(t, Hlew + Qe (2, Hen + 1P, ) — Poollen + 10, ) — Qoollen < Cnt ™Y,
(1.9)
(07 3 3 )
4+ +n+=] <oyt (1.10)
o t cN t CcN
3
B, ) — asolley + | Az, ) +3Inr —2In—| < Cyr~! (1.11)
4A CN

forallt > t1. Define fs.(t,0,v) = f(¢,0, t_1/2v). Then there is an R > 0 such that
supp fic(t, ) S S' x Bg(0)
forall t > t1, where Br(0) is the ball of radius R in R3 centred at 0. Moreover; there is

a smooth, non-negative function f. o on S' x R3 with compact support such that

1|07 fuc (2, ')||CN(§IXR3) + |l foc, -) — fsc,oo||CN(Sl><R3) = CNfl

for all t > ty. Turning to the geometry, let §(t,-) and k(t, -) denote the metric and the
second fundamental form induced by g on the hypersurface {t} x T3, and let g; ()
denote the components of g(t, -) with respect to the vector fields 01 = 9y, 02 = 0y and
03 = 0y etc. Then

It 8ij () — Zooijllen + It kij — Hioosijllon < Cnt ™! (1.12)
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forallt > t1, where H = (A/3)'/? and

_ 3 _

Foo = 15— 407 + ™ [dx + Qoody + (Goo + Qoo Hoo) OV + ™" (dy + Hoo d0)*.
o

(1.13)

Moreover, the solution is future causally geodesically complete.

The proof of the above theorem is given in Section 10.

It is of interest to record what the spacetime looks like to an observer. In particular, we
wish to prove the cosmic no-hair conjecture in the present setting. The rough statement of
this conjecture is that the spacetime appears de Sitter like to late time observers. However,
in order to be able to state a theorem, we need a formal definition. Before proceeding to
the details, let us provide some intuition. Let

gas = —di* + Mg, (1.14)

where H = (A/3)'/? and g denotes the standard flat Euclidean metric. Then (R?, gas)
corresponds to a part of de Sitter space. It may seem more reasonable to consider de
Sitter space itself. However, as far as the asymptotic behaviour of de Sitter space is con-
cerned, (1.14) is as good a model as de Sitter space itself. Consider a future directed and
inextendible causal curve in (R“, gds), say y = (yO, ¥ ), defined on (s_, s4+). Then y(s)
converges to some xg € R3ass — s+—. Moreover, y (s) € Cx,, A for all s, where

Cro.n = {(1,%) 1 |¥ — %ol < H '),

In practice, it is convenient to introduce a lower bound on the time coordinate and to
introduce a margin in the spatial direction. Moreover, it is convenient to work with open
sets. We shall therefore be interested in sets of the form

Caxr={t5%:t>T, |5 <KH e My (1.15)

note that xp can be translated to zero by an isometry. Since we are interested in the late
time behaviour of solutions, it is natural to restrict attention to sets of the form Cx g 1
forsome K > 1and T > 0.

Definition 1.8. Let (M, g) be a time oriented, globally hyperbolic Lorentz manifold
which is future causally geodesically complete. Assume moreover that (M, g) is a so-
lution to Einstein’s equations with a positive cosmological constant A. Then (M, g) is
said to be future asymptotically de Sitter like if there is a Cauchy hypersurface X in
(M, g) such that for every future oriented and inextendible causal curve y in (M, g), the
following holds:

e there is an open set D in (M, g) such that J~(y)NJT(X) C D and D is diffeomorphic
to Cx k. for a suitable choice of K > 1 and T > O,

e using Y : Cp x.,r — D to denote the diffeomorphism; letting R(t) = KH e
using gqs(?, ) and kas(z, -) to denote the metric and the second fundamental form in-
duced on S; = {r} x Bg()(0) by gds; using g(z, -) and k(t,-) to denote the metric and

—Ht.
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the second fundamental form induced on S; by ¥*g (where ¥*g denotes the pullback
of g by ¥); and letting N € N, we have

tl_i)r&(lléds(n ) =8 llen s, + llkas (2, -) — k(z, ')Ilcgg(st)) =0. (1.16)

Remark 1.9. In the definition, we use the notation

N

o . . . 1/2

- - —im =Jjngll gl J1 Ji

Illen s,y = (Slslngds,iljl + - 8aS.irjr 84S 8as Vas - VashijVas - - Vdshmn>
t =0

for a covariant 2-tensor field & on S;, where Vgs denotes the Levi-Civita connection

associated with gqs (7, -). Note also that, even though R(¢) shrinks to zero exponentially,
the diameter of S;, as measured with respect to gqs(z, -), is constant.

Remark 1.10. In some situations it might be more appropriate to adapt the Cauchy hy-
persurface X to the causal curve y, i.e., to first fix y and then X.

The above definition leads to a formal statement of the cosmic no-hair conjecture.

Conjecture 1.11 (Cosmic no-hair). Let A denote the class of initial data such that the
corresponding maximal globally hyperbolic developments (MGHD’s) are future causally
geodesically complete solutions to Einstein’s equations with a positive cosmological con-
stant A (for some fixed matter model). Then generic elements of A yield MGHD’s that
are future asymptotically de Sitter like.

Remark 1.12. It is probably necessary to exclude certain matter models in order for the
statement to be correct. Moreover, the statement, as it stands, is quite vague: there is no
precise definition of ‘generic’. However, which notion of genericity is most natural might
depend on the situation.

Remark 1.13. The Nariai spacetimes, discussed, e.g., in [28, pp. 126-127], are time ori-
ented, globally hyperbolic, causally geodesically complete solutions to Einstein’s vacuum
equations with a positive cosmological constant that do not exhibit future asymptotically
de Sitter like behaviour. They are thus potential counterexamples to the cosmic no-hair
conjecture. There is a similar example in the Einstein—-Maxwell setting (with a positive
cosmological constant) in [28, p. 127]. However, both of these examples are rather spe-
cial, and it is natural to conjecture them to be unstable. Nevertheless, they constitute the
motivation for demanding genericity.

Finally, we are in a position to phrase a result concerning the cosmic no-hair conjecture in
the T3-Gowdy symmetric setting. The proof of the theorem below is given in Section 10.

Theorem 1.14. Consider a T?-symmetric solution to the Einstein-Vlasov system with
a positive cosmological constant. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I x T3, where I = (19, 00). Assume that the solution has
A-asymptotics. Then the solution is future asymptotically de Sitter like, i.e., the cosmic
no-hair conjecture holds.



Cosmic no-hair conjecture 1575

Remark 1.15. Recall that all T3-Gowdy symmetric solutions have A-asymptotics.

Remark 1.16. In the particular case of interest here, the equality (1.16) can actually be
improved to the estimate

1as(z, ) = &5, e s,y + Mas (2, ) = k(@ e s, < Cne™ M0

for all T > T and a suitable constant Cy.

Remark 1.17. The main estimate needed to prove the theorem is (1.12). In situations
where such an estimate holds, it is thus to be expected that the solution is future asymp-
totically de Sitter like.

1.3. Stability, notation and function spaces

Let us now turn to the subject of stability. Combining Theorem 1.7 with the results of [31],
it turns out to be possible to prove that the solutions to which Theorem 1.7 applies are
also future stable. In the present subsection, we begin by introducing the terminology
necessary in order to make a formal statement of this result.

Let (M, g) be atime oriented n + 1-dimensional Lorentz manifold. We say that (x, U)
are canonical local coordinates if 0,0 is future oriented timelike on U and g (9. |, 0y 1),
i,j=1,...,n,are the components of a positive definite metric for every r € U (cf. [31,
p- 87]). If p € P, for some r € U, we then define

&)

x(P) = Ex(p®dxelr) = [x(r), pl, (1.17)

where p = (p!,..., p"). Note that E, are local coordinates on the mass shell. If f is
defined on the mass shell, we shall use the notation fy = f o E I Tt is also convenient
to introduce the notation py according to Ex(p) = [X(r), px(p)], assuming p € P,. With

this notation, the measure pp, can be written
Cdpy, (1.18)

where |gx| is the determinant of the metric g expressed in the x-coordinates; ¢, : P, — P
is the inclusion; p§(p) are the components of p in the coordinates x; and px o (p) =
8x,aB pf (p). The reader interested in the derivation of (1.18) is referred to [31, Sec-
tion 13.3]. Let us also note that the operator L is given by

; d
Lo=p¢— —Tlplpk — (1.19)
apL
in the above coordinates.
In order to proceed, we need to introduce function spaces for the distribution func-

tions. To that end, recall [31, Definition 7.1, p. 87]:
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Definition 1.18. Let 1 <n € Z, u € R, (M, g) be a time oriented n + 1-dimensional
Lorentz manifold and P be the set of future directed unit timelike vectors. The space
DZO(P) is defined to consist of the smooth functions f : P — R such that, for every
choice of canonical local coordinates (x, U), n 4+ 1-multiindex « and n-multiindex S,
the derivative 9 85 fx (where x symbolises the first n + 1 and p the last n variables),
considered as a function from x(U) to the set of functions from R” to R, belongs to

CIx(U). L7, 5 (RM]. (1.20)

Remark 1.19. The space Li(R”) is the weighted L2-space corresponding to the norm

1/2
Al = (/R (ﬁ)z”lh(ﬁ)l2dﬁ) : (121)

where (p) = (1 + |p|*)!/?; recall the comments in Remark 1.5.

Remarks 1.20. If f € CDZ‘”(P) for some ;> n/2 + 1, then the stress energy tensor is
a well defined smooth function (cf. [31, Proposition 15.37, p. 246]). Moreover, the stress
energy tensor is divergence free if f satisfies the Vlasov equation.

It is worth pointing out that it is possible to introduce more general function spaces, corre-
sponding to a finite degree of differentiability (cf. [31, Definition 15.1, p. 234]). However,
the above definition is sufficient for our purposes. The above function spaces are suitable
when discussing functions on the mass shell. However, we also need to introduce function
spaces for the initial datum for the distribution function. If (x, U) are local coordinates on
a manifold X, we introduce local coordinates on 7' by Ex( ﬁiaii | é) = (x(&), p) in anal-

ogy with (1.17). Moreover, if £ is defined on 7'%, we shall use the notation fx = fo &7 .
Let us recall [31, Definition 7.5, p. 89]:

Definition 1.21. Let 1 <n € Z, u € R and X be an n-dimensional manifold. The space
@ZO(T Y) is defined to consist of the smooth functions f : TY — R such that, for every
choice of local coordinates (x, U), n-multiindex « and n-multiindex S, the derivative
3)‘-;‘ 3P fx (where x symbolises the first n and p the last n variables), considered as a function
from X(U) to the set of functions from R” to R, belongs to

CIX(U), Ly, 5 (RM)].

Remark 1.22. According to the criteria appearing in Definitions 1.18 and 1.21, we need
to verify continuity conditions for every choice of local coordinates. However, it turns out
to be sufficient to consider a fixed collection of local coordinates covering the manifold
of interest (cf. [31, Lemma 15.9, p. 235 and Lemma 15.19, p. 237]).

Finally, in order to be able to state a stability result, we need a norm. To this end, recall
[31, Definition 7.7, pp. 89-90]:



Cosmic no-hair conjecture 1577

Definition 1.23. Let 1 <n € 7,0 <[ € Z, u € R and X be a compact n-dimensional

manifold. Let, moreover, x;, i = 1, ..., j, be a finite partition of unity subordinate to a

cover consisting of coordinate neighbourhoods, say (x;, U;). Then || - || H, is defined by
A

B J _ B _ _ 1/2
1N, =(Z > f - <@,>2"”'ﬂ'xi(s><aga§fi,.)2<s,é)dédé)
M NST el +Bl X (U xR
(1.22)
for each f € @l"f(TE).

Remark 1.24. Clearly, the norm depends on the choice of partition of unity and on the
choice of coordinates. However, different choices lead to equivalent norms. Here, we are
mainly interested in the case X = T3, in which case it is not necessary to introduce local
coordinates or a partition of unity.

1.4. The Einstein—Vlasov-non-linear scalar field system

In the present paper, we are mainly interested in the Einstein—Vlasov system with a pos-
itive cosmological constant. However, in the proof of future stability of T>-Gowdy sym-
metric solutions, we use two results. First, we use the fact that solutions that start out close
to de Sitter space are future stable. Second, we use Cauchy stability. There are results of
this type in the literature. However, they are formulated in the Einstein—Vlasov-non-linear
scalar field setting. In order to make it clear that the statements appearing in the literature
can be applied in our setting, it is therefore necessary to briefly describe the Einstein—
Vlasov-non-linear scalar field system. This is the purpose of the present subsection.

In 3+ 1-dimensions, the Einstein—Vlasov-non-linear scalar field system can be written

Rap — Tup + 3 (tr T)gap = 0, (1.23)
ViV — V' 0 =0, (1.24)
Lf=0 (1.25)

(cf. [31, (7.13)—(7.15), p. 91]). In these equations, ¢ € C°°(M) is referred to as the scalar
field; V : R — R is a smooth function referred to as the potential; V is the Levi-Civita
connection associated with the metric g; and

Tup = Ty + T,y

where TV! is defined in (1.4) and
T3 = Vad Vs — [5V/ 0V, 6 + V(@) ]2p-

Assuming that V'(0) = 0, it is consistent to demand that ¢ be zero in (1.24). Moreover,
if ¢ = 0, then 75" = —V(0)g. Letting A = V(0), the equations (1.23)—(1.25) then
reduce to the Einstein—Vlasov system with a positive cosmological constant A, assuming
V(0) > 0. In order to prove future stability in the Einstein—VIasov-non-linear scalar field
setting, it is not sufficient to demand that V/(0) = 0 and V (0) > 0. It is also of interest
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to know that V" (0) > 0. We shall therefore make this assumption from now on. Given V
such that V/(0) = 0, V(0) > 0 and V" (0) > 0, it is convenient to introduce

H = (V(0)/3)"?, (1.26)
x = V"(0)/H (1.27)

(cf. [31, (7.9) and (7.10), p. 90]). Note that in the non-linear scalar field setting, we al-
ways assume V (0) is positive and we equate it with A. In particular, (1.26) is thus con-
sistent with previous definitions of H (cf., e.g., the statement of Theorem 1.7). If we are
interested in the Einstein—Vlasov system with a positive cosmological constant A, it is
sufficient to choose

V(p) = A + Ag>. (1.28)

Then V(0) = A > 0, V/(0) = 0 and V”(0) = 2A > 0. Moreover, H = (A/3)'/? and
x = 6. Clearly, (1.28) is an arbitrary choice; there are many other possibilities.

Let us now recall the definition of initial data given in [31, Definition 7.11, pp. 93-94]
(note that the dimension 7 is here assumed to equal 3):

Definition 1.25. Let 5/2 < w € R. Initial data for (1.23)—(1.25) consist of an oriented
3-dimensional manifold ¥, a non-negative function f € Z_)ZO(TZ), a Riemannian met-
ric g, a symmetric covariant 2-tensor field k and two functions ¢y and ¢; on ¥, all as-
sumed to be smooth and to satisfy

F— kiKY + (k)2 = @2 + V' $oVido + 2V (o) + 2", (1.29)
Vi — Vi) = $:1Vigo — I, (1.30)

where V is the Levi-Civita connection of g, r is the associated scalar curvature, indices
are raised and lowered by g, and p¥! and J_l.Vl are given by (1.33) and (1.34) below respec-
tively. Given initial data, the initial value problem is that of finding a solution (M, g, f, )
to (1.23)—(1.25) (in other words, a 4-dimensional manifold M, a smooth time oriented
Lorentz metric g on M, a non-negative function f € ’DZO(P) and a ¢ € C*°(M) such
that (1.23)—(1.25) are satisfied), and an embedding i : ¥ — M such that

i*g=g ¢oi=do, [=i"(fopry),

and if N is the future directed unit normal and « is the second fundamental form of i (¥),
then i*k = k and (N¢) oi = ¢;. Such a quadruple (M, g, f, ¢) is referred to as a
development of the initial data, the existence of an embedding i being tacit. If, in addition
to the above conditions, i (X) is a Cauchy hypersurface in (M, g), the quadruple is said
to be a globally hyperbolic development.

Remark 1.26. The map pr; x,) is the diffeomorphism from the mass shell above i (%) to
the tangent space of i (X) defined by mapping a vector v to its component perpendicular
to the normal of i (X).
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Remark 1.27. If ¢g = ¢ = 0, the equations (1.29) and (1.30) become
F—kijk' 4 (rk)* = 2A + 2oV, (1.31)
Vi = Viwk) = —JY (1.32)

These are the constraint equations for the Einstein—VIasov system with a positive cosmo-
logical constant A.

The energy density and current induced by the initial data are given by

pV'(E) = f FPU+2B, 1V ig e, (133)
TéE

TV(X) = / F(PEX, pitg ;- (1.34)
TEE

In these expressions, § ex, X e TgE, ﬂg’é is the volume form on TEE induced by g,
and p € T; X. It is important to note that under the assumptions of the above definition,
the energy density is a smooth function and the current is a smooth one-form field on X
(cf. [31, Lemma 15.40, p. 246]).

Given initial data, there is a unique maximal globally hyperbolic development thereof
(cf. [31, Corollary 23.44, p. 418 and Lemma 23.2, p. 398]). The definition of a maximal
globally hyperbolic development is given by [31, Definition 7.14, p. 94]:

Definition 1.28. Given initial data for (1.23)—(1.25), a maximal globally hyperbolic de-
velopment of the data is a globally hyperbolic development (M, g, f, ¢) with embedding
i X — M suchthatif (M’, g', f', ¢’) is any other globally hyperbolic development of
the same data with embedding i’ : ¥ — M’, then there is amap v : M’ — M which is a
diffeomorphism onto its image such that y*g = g/, v* f = f/, ¥*¢p = ¢’ and Y oi’ = i.

It is worth noting that the maximal globally hyperbolic development is independent of
the parameter p. The above discussion of the initial value problem for the Einstein—
Vlasov-non-linear scalar field system is somewhat brief, and the reader interested in a
more detailed discussion is referred to [31, Chapter 7].

1.5. Future stability in the spatially homogeneous and isotropic setting

In the proof of stability of the T3-Gowdy symmetric solutions, we need to refer to [31,
Theorem 7.16, pp. 104—106]. However, the statement of this theorem is based on termi-
nology introduced in [31]. Moreover, in the statement of Theorem 1.35, we refer to the
conclusions of [31, Theorem 7.16]. For this reason, we here provide not only the nota-
tional background, but also the statement of [31, Theorem 7.16]. However, the reader
interested in why the particular formulation of the theorem is natural is referred to [31,
Sections 7.6-7.7].

The rough idea is to only make local assumptions concerning the initial data and
to derive future global conclusions concerning the solution. Given a 3-manifold X, we
therefore focus on a local coordinate patch (x, U). Here U is the neighbourhood in which
we make assumptions in the statement of the theorem. The conditions on the initial data
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are phrased in terms of Sobolev norms on U. Given a tensor field ¥ on X, we therefore
define

__ \1/2
S =( Y 3 /(U)w“ Tt ospas) . ass)
X

ileeends =1 jiecgr=1 l|<l

In this expression, the components of T are computed with respect to the coordinates x and
the derivatives are taken with respect to x. In what follows, norms of the type [|Z|| )
are always computed using a particular choice of local coordinates. The choice we have
in mind should be clear from the context. In Theorem 1.29, we also use the notation

3 12
ol = (3 3 [ 100y 0x 'R ax) (136)

i, j=1|a|<l YXU)
To measure the local size of the distribution function, we need a weighted Sobolev norm.
However, it is also necessary to allow the freedom to rescale the momentum variable in
the definition of the norm. Since we have already motivated the need for this rescaling
freedom in [31, Subsection 7.6.1, pp. 100-102], we shall not do so here. Given a con-
stant w, we simply define the local norm for the distribution function by

_ - _ 1/2
w _ —wN\2|Bl w =\2u+2|8] a0 aBE_ 12 ~ ~
ILf 1l g = / f (e )" {e" p) |0g 051" (&, p)dé dp
@ <oz|+2ﬂ:<l R3 Jx(U) 5P )
(1.37)

Here_ Ex are the coordinates on TU associated with X (cf. Subsection 1.3), and fz =
fo&!

leen the above notation, [31, Theorem 7.16, pp. 104-106] takes the following form
forn = 3.

Theorem 1.29. Let5/2 < pu € Rand7/2 < kg € Z. Let V be a smooth function on R
such that V(0) = Vo > 0, V/(0) = 0 and V"(0) > 0. Let H, x > 0 be defined by (1.26)
and (1.27) respectively and let Ky > 0. There is an ¢ > 0, depending only on u and V,
such that if

(2, 8.k, f,do, §1) are initial data for (1.23)—(1.25) with dim £ = 3,

x : U — B1(0) are local coordinates with x(U) = B1(0),

the inequality

le*Kgi; —dijl <e (1.38)
holds on U foralli, j =1, ..., n, where K is defined by eX = 4/H,
with the notation introduced in (1.35) and (1.36), we have

3
2 M98l ooy + HIk = HE N ro
Jj=1 _ _
+ Igoll o1y + H b1l gio @y < 75V, (1.39)

using the notation introduced in (1.37) we have, with w = K + Ky,
Ut gy < HEE2TIE2TEN, (1.40)

Vi,u
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then the maximal globally hyperbolic development (M, g, f, ¢) of the initial data has
the property that if i : ¥ — M is the associated embedding, then all causal geodesics
that start in i o X '[B) /4(0)] are future complete. Furthermore, there is at— < 0 and
a smooth map

Yo (t—,00) X Bs;3(0) — M, (1.41)

which is a diffeomorphism onto its image, such that all causal curves that start in
i ox '[By /4(0)] remain in the image of \ to the future, and g, f and ¢ have expan-
sions of the form (1.42)—(1.55) in the solid cylinder [0, 00) x Bs;3(0) when pulled back
by . Finally, y(0,&) =i ox (&) forE e Bs;5(0). In the formulae below, Latin indices
refer to the natural Euclidean coordinates on Bs;3(0) and t is the natural time coordinate
on the solid cylinder. Let ¢ = 4x /9,
o {%{1 (=07, ce©D,
pre 3
3, =1,

and hy = min{l, Ape}. There is a smooth Riemannian metric ¢ on Bs;3(0) and, for every
[l > 0, a constant K; such that

||€2Hl+2Kgij(t, ) _ él]”C/ + ||e_2Ht_2Kgij(ta ) — élj”Cl S Kle_zkaf’ (142)
le™2M=2K g 001, ) — 2Hpijller < Kpe 2nME (143)

A

foralll > 0andt > 0. Here 0 denotes the components of the inverse of 6. Furthermore,
C! denotes the C'-norm on Bs,8(0). Turning to gom, there is a b > 0 and, for every [ > 0,
a constant K; such that

I gom (7, ) — Bmllct + 180gom (¢, et < Kre o™ (1.44)
foralll > 0andt > 0, where
_ 1 _..
O = ﬂ@” Vimj (1.45)

and yimj denote the Christoffel symbols of the metric o, given by
Vimj = %(0i0jm + 3j0im — 0m0ij)-
Let k; j denote the components of the second fundamental form (induced on the constant-t
hypersurfaces) with respect to the standard coordinates on Bs;3(0). If Am < 1, then for
everyl > 0, there is a constant K; such that
lgoo(t, ) + Lller + ld0goo(t, ller < Kre > n e,
le™>" 2K ki1, ) — Haijl o

A

Kle—ZAm’Ht

foralll > 0andt > 0. If Ay = 1, then for every l > 0, there is a constant K; such that

IT80g00 + 2H(goo + D1(t, et < Kre 2,
lgoo(, ) + Ut < Ki(1 +12)1/2e=2H,
le 22K (1, ) = Hoijller < Ki(L+ 1)1 /2e=2H
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foralll = 0 andt > 0. In order to describe the asymptotics concerning ¢, let ¢ =
e)‘PfeH’qb. If ¢ < 1, there is a smooth function ¢y, a constant b > 0 and, for everyl > 0,
a constant K; such that

o, ) = goller + l1dogller < Kie P! (1.46)

foralll > 0andt > 0. If { = 1, there are smooth functions ¢o and ¢1, a constant b > 0
and, for every | > 0, a constant K; such that

10e(t. ) — @iller + g, ) — o1t — gollcr < Kje " (1.47)
foralll > 0andt > 0. Finally, if { > 1, there is an antisymmetric matrix A, given by
0 &H
A= (—87—[ 0 )

where § = 3(¢ — 1)V/2/2, smooth functions o and @1, a constant b > 0 and, for every
[ > 0, a constant K| such that

—ar(SHe ), | _ (%o
He (30<p>(t’) <<m)

foralll > 0andt > 0. In order to describe the asymptotics for the distribution function,
let x = 1/f_1. Then (x, U) are canonical local coordinates, where

< Kje "M (1.48)

c!

U = ¥[(t—, 00) x Bs3(0)].

Letfy = f o B and

X
h(t, %, §) = fx(t, %, e 2HI=K=Knigy, (1.49)

Introduce moreover the notation

B B 1/2
11 2, [35/8<o>xRa,=( > / / <ﬁ>2“+2ﬂ|a§aﬁf(zz,ﬁ)|2dﬁdi)
" lal 1BI< ¥ Bs/s(0) JR?

for? € C*°[Bs/3(0) x R3). Then there is a constant b > 0 and, for every I, a constant K;
such that

180G, Mg, (s g(oycrey < Kre ™" (1.50)

"

foralll > 0andt > 0. There is also a function he C*[Bs;5(0) x R3], a constant b > 0
and, for every l, a constant K; such that

”h”Hiqvﬂ[BS/s(O)XR’z] < o0,

Ih(z, ) — H”H\l/l#[BS/S(O)XRS] = Kleib’Ht (1.51)
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foralll > 0 and t > 0. Furthermore, h > 0. Concerning the stress energy tensor
associated with the Vlasov matter, there is a b > 0 and, for every l > 0, a constant K
such that

63(HZ+KVI)TO\6] _/ I,_]|é|1/2 dq < Kle—b’Hl’ (152)
R3 C!

AR TV f Gihlal'2dg| < Kie "M, (1.53)
R3 c!

||62Ht+3KVlTi>~/l||Cl < K; (1.54)

foralll > 0andallt > 0, where |o| denotes the absolute value of the determinant of o,
qi = 0 + X "o/

and v; is defined in (1.45). Finally, if © > 9/2, there is a constant b > 0 and, for every
[ > 0, a constant K; such that

3 1 hd; ;1o 1
e (Hl-ﬁ-KV])]‘i}] — /R3 hq,-quQ|1/2 dq

foralll > 0andt > Q.

< Kje Mt (1.55)

c!

Remark 1.30. In case one is only interested in the Einstein—Vlasov setting with a posi-
tive cosmological constant, more detailed information can be obtained (cf. [31, Proposi-
tion 32.8, pp. 609-611]).

1.6. Cauchy stability

In what follows, we also need a Cauchy stability result in the Einstein—Vlasov-non-linear
scalar field setting. There are such results in the literature (cf. [31]). However, for the
convenience of the reader, we introduce the necessary terminology and quote the relevant
result in the present subsection.

First, we need to introduce the notion of a background solution (cf. [31, Defini-
tion 24.2, p. 421]). In the 3-dimensional case, this definition takes the following form.

Definition 1.31. Let5/2 < u € R, X be a closed 3-dimensional manifold, and let g be
a smooth time oriented Lorentz metric on M = I x X, where [ is an open interval. Let
d; denote differentiation with respect to the first coordinate and assume that g(9;, 9;) =
goo < 0 and the hypersurfaces ¥; = {t} x X are spacelike with respect to g for ¢t € I.
Finally, assume that ¢ € C°(M) and f € ZDZO(P), together with g, satisfy (1.23)—(1.25).
Then (M, g, f, ¢) is called a background solution.

Remark 1.32. In the case of ']I‘z-symmetric solutions, the metric is of the form (1.1).
Moreover, the distribution functions of interest have compact support on constant time
hypersurfaces. As a consequence, it is clear that the T>-symmetric solutions we consider
in the present paper are background solutions in the sense of the above definition.
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Next, we introduce the notion of induced initial data on constant-# hypersurfaces (cf. [31,
Definition 24.3, p. 421]). In the 3-dimensional case, this definition takes the following
form.

Definition 1.33. Let 5/2 < p € R, X be a closed 3-dimensional manifold, and let g be
a smooth time oriented Lorentz metric on M = I x X, where [ is an open interval. Let
furthermore ¢ € C*(M), f € @f(’P) and assume that (g, f, ¢) solve (1.23)—(1.25).
Lett € I and assume X; = {t} x X is spacelike with respect to g. Let « be the second
fundamental form and N be the future directed unit normal of X;. Finally, let¢; : ¥ — M
be defined by t;(x) = (¢, x) and

g=ig k=gx, [=0(fopy), do=i0, ¢ = (Ng).
Then (g, k, f, ¢o, ¢1) are referred to as the initial data induced on %; by (g, f, $), or
simply the initial data induced on %; if the solution is understood from the context.

Finally, we formulate the Cauchy stability result we need here (cf. [31, Corollary 24.10,
p- 432]). In the 3-dimensional case, this result takes the following form.

Theorem 1.34. Let 5/2 < u € Rand 5/2 < | € Z. Let (Mypg, gbg, fog, Pvg) be a
background solution with Myg = lyg X X and recall the notation X, %, etc. from Def-
inition 1.31 (the interval denoted by I in Definition 1.31 will here be denoted by Ipy).
Assume that O € lyg and let (gog, kvg, fog, Pbe,0, Pog,1) be the initial data induced on Xy
by (gvg, fog, Pvg). Make a choice of H\Z,I)M(TE)-norms and a choice of Sobolev norms
| - | gy on tensor fields on . Let J C Iy be a compact interval and let € > 0. Then there
isaé > 0 such that if (¥, g, k, f_, (;30, ¢_>1) are initial data for the Einstein—Vlasov-non-
linear scalar field system satisfying

12 — &bell g1 + Ik — kgl g1 + g0 — Pog,0ll i1
+ 161 = Gog il + 1 = foll g, sy =8

then there is an open interval I containing 0 and a solution (g, f, ¢) to (1.23)—(1.25) on
M = I x X such that

e the initial data induced on o by (g, f, ¢) are given by (g, k, f, ¢o, $1),

e 0, is timelike with respect to g and X is a spacelike Cauchy hypersurface with respect
to g forallt € 1,

e J C [ and if the initial data induced on Z; (for t € Iy N 1) by (g, f,¢) and

(8vg, fog Bog) are (Ze, ke, fr, ¢r.0. Br.1) and (Gvg,r- kvg.r+ fog,rs Pog,r,0, Pog,r,1) respec-
tively, then

18 — Zbe,ll gt + ke — ko ell g1 + 1be,0 — Bog.r,0ll i1
+ 1601 = Gogrill + 1fe = foeillyy, sy =€ (1.56)

forallt € J.
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1.7. Stability of T3-Gowdy symmetric solutions

Combining Theorems 1.7, 1.29 and 1.34 yields a future stability result for the T?-sym-
metric solutions considered in Theorem 1.7. Moreover, the solutions are stable in the
Einstein—Vlasov-non-linear scalar field setting.

Theorem 1.35. Consider a T?-symmetric solution to the Einstein—Vlasov system with a
positive cosmological constant A. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I x T3, where I = (19, 00). Assume that the solution has
A-asymptotics. Choose at € I and leti : T3 — I x T3 be given by i(¥) = (1, X).
Let gog = i*g and let Igbg denote the pullback (under i) of the second fundamental form
induced on i (T?) by g. Let moreover

fbg =i*(fo pri_&3))-

Make a choice of @ > 5/2, a choice of norms as in Definition 1.23 and a choice of
Sobolev norms on tensor fields on T>. Let in addition V : R — R be a smooth function
such that V(0) = A, V/(0) = 0 and V"(0) > 0. Then there is an € > 0 such that if
(T3, 3. k. f. o, 1) are initial data for (1.23)(1.25) with f € D> (T'T?) satisfying

12 — &ogll s + Ik — kogll o + 1 f — J;bg”H{*/lM + ligollgs + lP1ll o < €.

then the maximal globally hyperbolic development (M, g, f, ¢) of the initial data is future
causally geodesically complete. Moreover, there is a Cauchy hypersurface ¥ in (M, g)
such that for each point of X, there is a neighbourhood (X, U) such that Theorem 1.29
applies. In particular, the asymptotics stated in Theorem 1.29 hold.

Remark 1.36. Up to the point where we appeal to Theorem 1.29, Cauchy stability ap-
plies. It should therefore be possible to obtain detailed control over the perturbed solutions
for the entire future. The interested reader is encouraged to write down the details.

Remark 1.37. The function f_bg has compact support, but f need not.

The proof of Theorem 1.35 is given in Section 10.

1.8. Outline

Finally, let us give an outline of the paper. In Section 2, we write down the equations
in the case that the metric takes the form (1.1) (the reader interested in the derivation is
referred to Appendix A). In Section 3, we collect the conclusions which are not depen-
dent on the particular type of matter model (as long as it satisfies the dominant energy
condition and the non-negative pressure condition). The section ends with conclusions
concerning the causal structure of T3-Gowdy symmetric spacetimes. Turning to the more
detailed conclusions, we specialise to the case of Vlasov matter. The natural first step is
to derive light cone estimates, i.e., to consider the behaviour along characteristics. This
is the subject of Section 4. As opposed to the vacuum case, we need to control the char-
acteristics associated with the Vlasov equation at the same time as the first derivatives of
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the metric components. Fortunately, the e> and e3 components of the momentum are con-
trolled automatically due to symmetry. However, an argument is required in the case of
the e; component. In order to obtain control of higher order derivatives, we need to take
derivatives of the characteristic system (associated with the Vlasov equation, i.e. with
the geodesic flow). Naively, this should require control of second order derivatives of the
metric functions, something we do not have. Nevertheless, by an appropriate choice of
variables, controlling first order derivatives turns out to be sufficient. A similar choice
was already suggested in [2, Lemma 3, p. 363] (cf. also [4, Lemma 3, p. 257]). How-
ever, in the present setting, it is not sufficient to derive a system involving only first order
derivatives of the metric functions. We also need to be able to use the system to derive
the desired type of asymptotics for the derivatives of the characteristic system. It turns
out to be possible to do so, and we write down the required arguments in Section 6. Af-
ter obtaining this conclusion, we proceed inductively to derive higher order estimates for
the characteristic system and the metric components. The required arguments are written
down in Sections 7 and 8. In order to obtain the desired conclusions concerning the dis-
tribution function, it is convenient to consider L?-based energies. This subject is treated
in Section 9. Finally, in Section 10, we prove the main theorems of the paper. As an
appendix, we include a derivation of Einstein’s equations as well as of the Vlasov equa-
tion (cf. Appendix A). We also provide a summary of the most important notation in
Appendix B.

2. Symmetry assumptions and equations

In this paper, we study T2-symmetric solutions of Einstein’s equations. Since it will be
convenient to express the equations using the orthonormal frame (1.7), let us introduce
the notation

o ="T(ep,e0), Ji=-T(ep,e;), Pi=T(e,e), Sij=T(e,ej), 2.1

where we do not sum over any indices; here and below, we tacitly assume that Latin
indices range from 1 to 3 and Greek indices range from 0 to 3. It is also convenient to
introduce the notation

J =P 2ePH2(G, + QH,)), K = QJ — a2~ P42, (2.2)

Note that these objects are the twist quantities introduced in (1.2) (cf. Appendix A.3).
In order to derive Einstein’s equations, it is useful to calculate the Einstein tensor for a
metric of the form (1.1). The corresponding, somewhat lengthy, computations appear in
Appendix A. Using the above notation, the calculations yield the conclusion that the 00
and 11 components of Einstein’s equations can be written

ar 2 2, 2P, 2 2 P2
Af—z;:t[PI —i-otP@ +e (Qt+aQ6)]+tsT
r/24+P K—0J 2
e
KON 41202 4 ), (2.3)

(52
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2 2, 2P, 2 2 P2
A =t[P +aPy+e” (QF +aQp)] — 5
r/2+P K—0J 2
TR =D 22 py — . (2.4)

572
respectively. The 22 component minus the 33 component can be written
—1/2,4/2=P j2

2t5/2

o
3 (ta” V2P = 8 (ta'? Py) + ta”V2e*P (02 —a Q3) +

—12,0/24P (g _ 0 J)2
S 2;552 QI 212 (py— Py, (25)

The 22 component plus the 33 component can be written

o 3
3, |:tot_l/2()»r _ 25 _ ;ﬂ — 910" 2hg) — 10~ 12[P2 1 2P 0% — (P2 + 27 03]

B Zta_l/z(e}»/Z—P ]2 e)»/2+P(K _ QJ)2>
t1/2 £1/2

+a V20 + 2012207122 — Py — P3). (2.6)

The 01, 02, 03, 12 and 13 components are equivalent to

ro = 2t(P, Py + e*F 0, 09) — 4112?12y, 2.7
Ty = 2541 2P1241/4 g, (2.8)
Ky = 2t5/4a_1/2e_P/2“/4J3 + 2t5/4a_1/2ep/2“/4QJ2, (2.9)
J, = —2/4 AP 2g (2.10)
K, = —215/4 M AHP2 0S5 — 213/4= P24 g @2.11)

respectively. Finally, the 23 component reads

¥ (ta”2e* Q) — dp(ta'?e*F Qg)
= 1727122 J (K — QU) + 2t 2072 PP g0 (2.12)

For future reference, we also note that

—P+A/2 12 P+A/2(p _ 2
(x_,:_e J _e (K QJ) —4[1/23A/2A
o 15/2 1572
— 211222 (p — Py), (2.13)
(07
A — ;’ =[P’ +aP} + P (Q? +a QD))+ 2112 (o + ). (2.14)

2.1. Preliminary calculations

Since the metric components only depend on two variables, it is natural to derive esti-
mates by integrating along characteristics. In the present subsection, we record a general
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calculation which is of interest in that context. To begin with, let us define
dr =0 £a'?3y, Ar=0:P)+(0:0)% (2.15)

One reason for introducing A is the equality (2.16) derived below; since the right hand
side only contains first derivatives of the metric components, it is possible to integrate
along the characteristics to control A.

Lemma 2.1. Consider a T?-symmetric solution to Einstein’s equations with a cosmolog-
ical constant A such that the metric takes the form (1.1). Then

2 o« 2
A+ A = _<; B ;[)'A:F F ?al/z(f’eaﬁ[) + e 0pd50)
—P+1/2 2 PHA2(K — 0 J)> M2I(K — QJ)
e e ¢ P
{71/2 0P — t1/2 0P +2 t7/2 ¢ 050
+ 2t—1/2eA/2(P2 — P3P + 4t‘1/2e”2523eP83FQ. (2.16)

Remark 2.2. In this calculation, the cosmological constant need not be positive.

Proof of Lemma 2.1. The statement follows from a lengthy computation. For the benefit
of the reader, let us write down some of the intermediate steps. Using (2.5), we obtain

1 o
0rdx P =——P + jazﬂ’ +e7(07 — 2 0))
—P+1/2 j2 P+A2 5 _ 2
¢ T e (K —09J) —1/2 ,3/2
2u72 217/2 +17 e (P — Py (2.17)

Similarly, due to (2.12), we obtain

1 o MNP (K - QJ)
8i8¢Q=—;Q:+Z8;Q—2(Qth—aQePe)+ 7
+ 2t 1222 P gy (2.18)

If we combine (2.17) and (2.18) with the fact that

—4(Q: P — aPy Q)3+ Q + 20L P(3:0)* = —20+P(Q7 — a 0}),

a calculation yields the conclusion of the lemma. O

2.2. Viasov matter

The equations (2.3)—(2.14) hold in general. However, we are here particularly interested
in matter of Vlasov type. In order to derive the relevant form of the Vlasov equation,
recall the conventions concerning f introduced in Subsection 1.2. Recall moreover that
the Vlasov equation is equivalent to f being constant along future directed unit timelike
geodesics. As a consequence, it can be calculated (cf. Appendix A.7) that the Vlasov
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equation takes the form

af al/?ulaf Loy, o, 1 20 1Y 12 v2?
i - |- A p, - 2L — a2, ——
T T A ) i R

i)
— 1A (e P2 gt PP (K — QJ)U3)]a—f1
v

1 1 1 127 9
() s

2 W0 |92
11 s_ L e vl b s 1/2 v'\]9f
—|:§<?—P[)U —EO[ PQT‘F@ v Qt+a QQE mzo (219)
Turning to the stress energy tensor, it satisfies
1
Teuen = [ vivf—-dv. (2.20)
R3 —v0
where vy = 148 vP and n = diag{—1, 1, 1, 1}. In particular, in the Vlasov case, we have
ky2 ik
p= [ Orav m=[ Ol rav s [ dran si= [ Sran
R3 RS U R3 R3 VU
(2.21)

where j, k=1, 2, 3.

3. Preliminary conclusions concerning the asymptotics

In the present section, we are interested in T2-symmetric solutions to Einstein’s equations
such that the corresponding metric admits a foliation of the form (1.1) on I x T3, where
I = (t9, 00) and tp > 0. For the sake of brevity, we shall refer below to solutions of
this form as future global, and we shall speak of 7y and #; = 7y + 2 without further
introduction.

It is useful to begin by recalling the following consequences of the non-negative pres-
sure condition and the dominant energy condition.

Lemma 3.1. Consider a solution to Einstein’s equations with a cosmological constant A
and a metric of the form (1.1). Let p, P;, J; and S;j, i, j = 1,2, 3, be defined by (2.1). If
the stress energy tensor satisfies the non-negative pressure condition, then, fori = 1,2, 3,

0<P. 3.1)

If the stress energy tensor satisfies the dominant energy condition, then, fori, j = 1,2, 3,

0<p, (3.2)
|Pi| < p, (3.3)
[Jil < p, 34

[Sij] < p. (3.5
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Proof. By definition, P; = T (e;, ¢;). Since ¢; is a spacelike vector field, the non-negative
pressure condition implies that (3.1) holds. The dominant energy condition states that
T (u, v) > 0 for future directed timelike vectors u and v. By continuity, this also holds for
future directed causal vectors. Since e is future directed timelike, p = T (eg, ¢g) > 0, so
(3.2) follows. Note that eg + ¢; is a future directed causal vector field. In particular,

0<T(ep—ei,eo+ej)=p+Ji—J—Sij.

Since §;; is symmetric, adding this inequality to the one obtained by interchanging i and
J yields S;; < p. Similarly,

0<T(e*ei,exej)=pFJiFJ+Si.

Adding the two inequalities yields —S;; < p. Thus (3.5) holds. The proof of (3.3) is
similar. Finally,
0=<T(ep,e0 tei)) =pFJi,

so that (3.4) holds. ]

Before deriving estimates describing the asymptotics of solutions, let us make the follow-
ing remark.

Remark 3.2. In what follows, the constants appearing in the estimates we state are al-
lowed to depend on the solution, unless otherwise indicated.

Proposition 3.3. Given a future global solution to Einstein’s equations with a cosmo-
logical constant A > 0, T2-symmetry and a stress energy tensor satisfying the dominant
energy condition, there is a constant C > 0 such that

a(t,d) < Ct—3 (3.6)
forall (t,0) € [, 00) x Sl

Remark 3.4. The same conclusion holds if we replace the cosmological constant with a
non-linear scalar field with a potential having a positive lower bound; in other words, if
we set A = 0 and consider stress energy tensors of the form T = T° 4+ T, where T°
is the stress energy tensor associated with matter fields satisfying the dominant energy
condition, and T is the stress energy tensor associated with a non-linear scalar field with
a potential V having a positive lower bound.

Proof of Proposition 3.3. Due to (2.14) and the fact that the matter satisfies the dominant
energy condition (so that (3.3) holds), we conclude that A; — o/ > 0. There is thus a
co > 0 such that

(@ '2eM)(,0) = ¢

for all (1, 0) € [t;, 00) x S!. Combining this observation with (2.13) and (3.3), we obtain

012 = _;‘_lafl/z > 212 12 2 A > 11112
o

for some constant ¢; > 0 and all (¢, 0) € [f1, 00) x Sl. Integrating this inequality, we
obtain the conclusion of the proposition. O
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In the Gowdy case, the second and third terms on the right hand side of (2.4) are zero, so
we can extract more information. In fact, we have the following observation.

Proposition 3.5. Consider a future global solution to Einstein’s equations with a cos-
mological constant A > 0, T3-Gowdy symmetry and matter satisfying the non-negative
pressure condition. Then for every € > 0, thereisa T > ty such that

3
AMt,0) > —3Int +2In— —
(t,0) = nt—+ n4A €

forall (t,0) € [T, o0) x S..
Proof. Let

- 3

A=A+3Int —2In—. 3.7

+31n n A 3.7
Then (2.4) with J = K = 0 yields
A 3 a
qh=1t[PE+aP?+ T (Q? +aQd)]+ 422 P + —( - M.
Since P; > 0 due to the non-negative pressure condition (cf. (3.1)), we conclude that
~ 3 »
A > ?(1 — M.

For every € > 0, there is thus a T such that ):(t, ) > —eforall (t,0) € [T, c0) X sl. o

In order to proceed, it is convenient to introduce an energy:

Epas :/ la]/z()»t - 2% — 4l1/2e)‘/2A) de
St o

—1/2,4/2-P J2
— a e
- /S (’2“ VAR P} + (0 + @)+
—1/2,0/24P (K _ O )2
+ 2 t3/(2 e’ ~|—4t3/2a_1/26}‘/2,0) 6.  (3.8)

Let us motivate this particular choice. The energy Epss is quite similar to the energy
defined in [4, (42), p. 251]. However, there is one fundamental difference. The integrand
in the energy defined in [4] contains a term of the form o ~!/2 U[Z, where U = (P+Int)/2.
Using U instead of P as a variable is convenient in global existence arguments, since
some of the formulae become less involved. However, the variable U is poorly adapted
to the actual asymptotics of solutions. The reason is that, in the end, P; converges to zero
as 2. The dominant term in U is thus (In7)/2. If one uses U instead of P in the energy,
the best estimate of Epas one could hope for would be Epys(f) < C 132, Below, we prove
that Epys < Ct1/2 (cf. Lemma 3.7). In addition, it is possible to derive a good estimate
for the time derivative of Ep,g (cf. the proof of Lemma 3.6 below).

On a more general level, it is natural to ask why it is necessary to use L?-based energy
estimates at all. Since the problem is 1 4 1-dimensional, should it not be sufficient to
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consider the behaviour along characteristics? The problem in our setting is that we wish
to derive detailed quantitative information for arbitrary initial data. In particular, we are
not in a situation where we can use bootstrap arguments. For this reason, we need to
proceed step by step. First, it is necessary to derive not only rough, but quite detailed,
control of some of the metric components, in particular A. This leads, for example, to
estimates of the form (3.19) and (3.20) below. Only once we have estimates of this form,
is it meaningful to turn to the characteristic system: see, e.g., the last two terms on the
right hand side of (4.2) and the proof of Lemma 4.3.
If the metric has A-asymptotics (recall Definition 1.1), we can estimate Ep,s.

Lemma 3.6. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant A > 0, T2-symmetry, -asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then for every
a > 1/2, there is a constant C, > 0 such that

Epas(t) < Cyut” (3.9)
forallt > 1.
Proof. Due to (2.6), we obtain

3, [ral/z (/\, _p% 4t1/2e“2A>]
(07

3 q—1/2M2—P J2
_ 1/2 12, p2 2P 2y 2
=0t '“hg) +2ta ' (Py + e~ Qp) 7 50

3 a—l/ZEA/Z-i-P(K _ QJ)2
) 15/2
+ 1120712223 p + Py — 2Py — 2P3) — 4120”2 A(p + Py). (3.10)

— 20720~ PPPAIPE + & OF + a(Pf + ¢ 0)]

Since the matter satisfies the non-negative pressure condition, we know that P; > 0 (cf.
(3.1)), so that

dEbas

o = / 210 (P2 + 2P 02) d6 — / 2020l 22N (PF + €27 0F) db
sl st

+/ 2= 122(3p + P do — f 4t>a~ 2 A(p + Py) db.
St st
Using the consequences of Lemma 3.1 and the fact that the solution has A-asymptotics,

we conclude that for every a > 1/2, there is a T > ¢ such that

d Eas a
=< —Lbpas
dt t

forall t > T. As a consequence, Ep,s(t) < Ct fort > 11. O

Using the estimate for Ey,g derived in Lemma 3.6, it is possible to extract more informa-
tion concerning the asymptotics.
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Lemma 3.7. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant A > 0, T?-symmetry, A-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that

3
At ) +3Int —2ln—| <12, 3.11
H (t,)+3In no < (3.11)

CO
Epas(t) < Cr'/? (3.12)
forallt > 1.

Proof. From the estimate Epy(f) < C,t%, the fact that «'/2 < Cr=3/2, (2.4) and (3.3),
we conclude that
(h) = =4t 2 (A + 047 (3.13)

(the notation (X;) was introduced in Remark 1.5). Due to (2.7) and (3.4), we also have
kol < ta'2[P?+ aPf + P (OF + Q)] + 410”12 2p.

By (3.9), we thus obtain
/Sl Ao|do < Ct* 1. (3.14)

Recall that X is defined in (3.7) and note that, by (3.13),
~ 3 IS
(o) = 2= () + 0702, (3.15)

Let us first prove that (1) converges to zero. To this end, let € > 0. Since the solution has
A-asymptotics, there is a T such that (X)(t) > —e forall t > T. To prove that thereisa T
such that (i)(t) < e forallt > T, let us assume that ():)(t) > ¢ for some t. From (3.14),
we conclude that A(z, 8) > € /2 forall @ € S! (assuming ¢ is large enough). Inserting this
into (3.15), we conclude that

) < %(1 oY

for ¢ large enough. Since the right hand side is negative and non-integrable, ():) has to
decay until it is smaller than € (assuming the starting time ¢ is large enough). Moreover,

~

(A) cannot exceed € at a later time. To obtain a quantitative estimate, note that
2 3 /2 a=2
<)\t>:;(l_e )+ 0a"),

where we have used the fact that 2 is bounded to the future as well as (3.14). Hence

2 6 - s 22 a—2,3
) = >[1—<1+5<A>+0(<x> >)}+0(r ()
§<i>2 + ;0<<i>3> + 0@ 2.

>

(M2 =2(
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Let0 < b < 1 — a and define € = 22(1)2. Then

dg€ 2b 3
e
dt t t
As a consequence, there is a constant C > 0 such that 3;£ < 0 when £ > C and 7 is large
enough. In particular, £ is bounded to the future. For every 0 < b < 1/2, there is thus a

constant Cp, such that

1 .
£+ ;0(@)5) + 1 to@lte1gl/?y,

< Cbt_b

3
At ) +3Int —21n —
H( )+3In an | o

for all t > ¢#1. Due to this estimate, we can return to the argument presented in the proof
of Lemma 3.6 and obtain the improvement Ep,s(f) < C t'2fort > 1. Asa consequence,
we can go through the above arguments witha = 1/2 and b = 1/2. O

Lemma 3.8. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant A > 0, T2-symmetry, A-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that
S22, - - P(t,)lco < C 3.16

a1 ) QO Dl co + PR, Do < (3.16)
forallt > t.
Proof. Using (2.13), (3.7), (3.11), (3.12) and Lemma 3.1, we estimate

3 1?y = 1 o2
2 o
B 1 a—l/Ze—P+A/2J2 N a—l/ZeP—HL/Z(K _ QJ)Z "
2w Jg 215/2 215/2

1
+ 2—/ 2:'2a7 12PN + 11201222 (0 — P1)]d6
T Js!

<ct V24 i/ 2612071222 A qp
27‘[ sl

<Ci ' 4 %@i/za—lﬂ) < %«x—l/z) +Ct @) o2
Let A = (@~ '/2) +¢. Then
dA : 3
— =V +1< A+ A
ar ol Al = Ay
Consequently,
m A0 3, t+C
n —1In s
A(t) ~ 2 0

so that (&~ 1/2) < C3/2 fort > 1. Combining this estimate with (3.12) yields

1/2 1/2
/ [Py do < (/ a'2p? d@) (/ a2 d9> <ci3Pr<c (317)
St St St
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for ¢ > t1. On the other hand, using (3.6) and (3.12) gives

1 1 172 ~
18, (P)| = |(P,)]| < ﬂ/sl |P;|dO < E(/Sl P,2d9> < Ci 32, (3.18)

Consequently, (P) is bounded to the future. Combining these two observations implies
P co=C

for all + > 1. Combining this estimate for P with the bound (3.12), one can derive Ll
estimates for Oy and Q; analogous to (3.17) and (3.18). Consequently, Q is also bounded
to the future. O

Lemma 3.9. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant A > 0, T2-symmetry, -asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that

2/2-P j2
eIST = ct 2, (3.19)
c
P+)~/2(K _ QJ)2
€ -2
57 = Ct (3.20)
c

forallt > t1. Moreover, fort > 1,
IH 1+ Gl < 372
Proof. Combining (2.8), (3.4), (3.11), (3.12) and (3.16), we conclude that
/ |Jg| dO < C15/4/ ail/zek/“p do < Ct5/4t73/2t3/4/ t3/2ofl/ze)‘/2p do < Ct.
St St St
(3.21)

Hence the spatial variation of J is not greater than Ct. Combining (2.10), (3.5), (3.6),
(3.11), (3.12) and (3.16) yields

/ \,1do < Ct5/4/ Mhodo < Ct5/4t_3/2t3/4t_3/2/ 327126412 5 4
st sl sl
<ct 12, (3.22)

Asa consequence,
I(J)| < Ct'/2, (3.23)

Combining (3.21) and (3.23) yields
17, o < Cr. (3.24)

From (3.11), (3.16) and (3.24), we conclude that (3.19) holds.
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Let us now turn to K — QJ. First, note that the L'-norm of Qp is bounded to the
future. The argument is similar to (3.17), keeping in mind that (3.16) holds. Moreover,

/Sl |Ko— Qo — Qg d6 < /S IKe—QleldGJr/Sl 10071 d6 < /S |Ko— Qg dO+Ct,

where we have used (3.24) and the fact that the L'-norm of Qp is bounded. On the other
hand, (2.8) and (2.9) yield

Ko — QJp = 2051412 PI200/4 g
Keeping (3.4) in mind, we can thus argue as in the proof of (3.21) to conclude that
/ Ko — QoJ — QJp|do < Ct. (3.25)
Sl

In particular, the spatial variation of K — QJ is bounded by Ct. On the other hand, the
L'-norm of Q, is bounded by C t73/2 (cf. (3.18) and (3.16)). Combining this observation
with (3.24) yields

[ K= 0= ounide < [ 1K~ 0uias+ [ 105140
5/ |K; — QJ;|do + Ct™1/2. (3.26)
sl

Moreover, due to (2.10) and (2.11),
K, — QJ, = _2t5/4e—P/2+A/4SI3.

Keeping (3.5) in mind, we can proceed as in (3.22) to obtain

/Sl |K; — QJ;|do < Ct~ /2.

Due to (3.26) and this estimate, the mean value of K — QJ cannot grow faster than Cr!/2.
Combining this observation with (3.25) yields
IK —QJllco = Crt. 3.27)

Keeping (3.11) and (3.16) in mind, we obtain (3.20). As (2.2) holds, we conclude that
f |H,| d6 5/ 132q712ePH2 1 K — 0| d6.
St St

Combining this with (3.11), (3.16) and (3.27) yields the desired L!-estimate for H,.
A similar argument for G, gives the remaining conclusion of the lemma. O

3.1. Causal structure of T3-Gowdy symmetric solutions

It is of interest to note that in the T3-Gowdy symmetric case, it is sufficient to assume
future global existence and energy conditions in order to conclude that there is asymptotic
silence. In fact, we have the following result.
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Proposition 3.10. Consider a future global T3-Gowdy symmetric solution to Einstein’s
equations with a cosmological constant A > 0 and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C, depending only on the solution, such that if

y(s) =[s,60(s5), x(s), y(s)] =[5, ¥ (5)]

is a causal curve, then

17 (s)I* < Cs™3 (3.28)
for s > ty. In particular, there is a point Xo € T3 such that
d[y(s), %ol < Cs™'/? (3.29)

forall s > t1, where d is the standard metric on T3,

Proof. The causality of the curve is equivalent to the estimate
o107 + 5225 + Q3 + (G + QH)OP + 572 P2 (5 + HO)? < 1. (3.30)

Note that in the case of Gowdy symmetry, G and H are time-independent. In particular,
they are bounded. Due to (3.16) we also know that Q is bounded for ¢ > #;. On the other
hand, combining (3.30) with (3.6), (3.11) and (3.16) yields
6] < Cs732,
|y + HO| < Cs™3/2,
¥ + Q¥ + (G + QH)d| < Cs—3/?

for s > #1. Thus (3.28) holds, an estimate which implies (3.29). ]

4. Light cone estimates

In the presence of matter of Vlasov type, it is necessary to consider the characteristic sys-
tem in parallel with the light cone estimates for the metric components. Let us therefore
begin by writing down the characteristic system:

e V!

A VA 4.1
ds ¢ 4% @D
dv! 1 1 a 1 y2y3
W = _Zal/ZAGVO - Z()\; - 2;1‘ - ;)Vl +C¥1/2€PQ9W

3\2 (22 —P/24+)1/4 P/2+A/4 _
L VT =V e Ty e (K= 0J) 3
2 VO S7/4 S7/4
4.2)

dv? 1 N o 1oy, ViV?
K:—E Pt+; \% —EO[ Pg VO . (43)
dv3 1/1 1 yly3 viy
= _§<; — P,)V3 + Ea‘/ngw —eP 0, v? —al2ef 0y o (4.4)
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Note that in this system of equations, functions such as /2 should be evaluated at

[s, ®(s)]. In view of the Vlasov equation (2.19), it is clear that the distribution function
is constant along characteristics. It is important to note that only the case of V! requires
an analysis; for V2 and V3 we automatically obtain the following estimate.

Lemma 4.1. Consider a T?-symmetric solution to the Einstein-Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = to + 2. Then there is a constant C > 0,
depending only on the solution, such that if ©, V is a solution to (4.1)—(4.4) with initial
data ©(ty), V(1) such that [t1, ©O(t1), V(t1)] is in the support of f, then

V2| + Vi) < Cs™V2 foralls > 1.

Remark 4.2. As mentioned in Remark 1.6, we tacitly assume f (¢, -) to have compact
support.

Proof of Lemma 4.1. Due to (4.3) and (4.4), it can be verified that
§12ePI2y2 (120PI2y2 4 G112, P23 (4.5)

are conserved along characteristics. Since we know P and Q to be uniformly bounded
(cf. Lemma 3.8), we obtain the conclusion of the lemma. O

Let us now turn to V'!. First, we have the following estimate.

Lemma 4.3. Consider a T?-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t; = to + 2. Then there is a constant C > 0,
depending only on the solution, such that if ®, V is a solution to (4.1)—(4.4) with initial
data ©(ty), V(1) such that [t1, ©O(t1), V(t1)] is in the support of f, then

avhr 1, 4 V4
< _(v Cs— 1202012 !
- _s()+s e (Q)VO
+CSFL1'+cs*‘F1/2ﬂ+Cs*3/2(v‘)2+Cs*2|V‘| (4.6)
Vo I '
forall s > t|, where
Q' (1) == sup{|v'| : (r,6,v', v*, v*) € supp f} 4.7)
and
F(t) = sup A, (t,0) 4 sup A_(1,0), (4.8)
peS! peS!

where AL is defined in (2.15).
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Proof. By (4.2), we have

d(v1hH? 1 1 a 1 yiyzy3
= —Eal/zk(;VOVl —5 (% - 2;’ - vhH?+ 2(>11/2e1°Q9T
12 1(v3)2 _ (VZ)Z e—P/2+)»/4J
—a PV Vo 77
P/2+A/4 K—0J
428 5/4 2 yiys,
S

yly?

However, using Lemmas 3.9 and 4.1, we can estimate the last two terms by Cs2|V'!].

We thus have

g S__al/zkgvovl__ )\.[_2%—— (V1)2+CS_IF1/2
ds 2 2 a s

where we have used Lemma 4.1. By (2.3) and (2.7), the sum of the first and the second
terms on the right hand side can be written

A

o +Cs™v,

e~ P22 J2

2512221, V0 — pV YV — 25122 A (V12 — 7 (V1?2
A

P+A/2(K _ QJ)2
e
- 572 (V1?2 —sa' (P Py + €*F 0, 00)VOV!

1 1
- Es[P,Z+o¢1f>92+e2“’(Q,2+on5)](V1)2+ Z(VI)Z. (4.9)

Note that
1 1
—sa! 2P Py VOV = SSIPE+a PRIV < 5o 2IP Py VOV = 25 (PP +a PV
1
<sa' 2P Py IVII(VO — V] — S5l — a2 1Py 2 (V12

Combining this estimate with a similar estimate for Q, we conclude that the second last
and third last terms in (4.9) can be estimated by

1 V22 V32 Vl
OV IV

172 2P 1
sa ' 7(|P Pyl + e |Qr QoIV " VO V1| <

By Lemma 3.7, we have

1 1
212N 4 — ==+ 0.
2s s
Combining the above observations with Lemma 3.9, we conclude that
1,2
dv'?
ds

1
—;(vl)2 + 25122 VO — pvHV!
v

&
Vo Vo

+ CsF +Cs I F1/2 V0+Cs_3/2(V1)2—|—Cs_2|V1|. (4.10)
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Let us estimate the term
Ty = 25222 VO — pv v = 25122 (17 + 1)V, 4.11)

where
0
I_(s)=/f !'VOo(s) — vV Is)1 £ (s, OCs), v) dv' dv? dv?,
R2 J-0
IT(s) = / /m[v]VO(s)—UOVl(s)]f(s,®(s),v)dv1dv2dv3.
R2 JO

There are two cases to distinguish: Vi(s) > 0and V1(s) < 0. When V1(s) > 0, I~ is
non-positive and can be dropped. Furthermore, for v! > 0,

S0 oyt — @DV — v

vV 4+ 0v!
DA+ (VHTH(VHDH (VHEA+ D)+ D)
B vlVO0 40Vt B v VO 40Vl
_ a4+ A2+ ()
< o3 .

Letting Eve = {2, v3) : W3 < Cs V2, 13| < Cs~ 12}, where C is the constant
appearing in Lemma 4.1, we obtain

dv' dv? dv?

/Ql o' (L+ (V2 + (V)
0

T < 20 (11, )loos 22V /E El

vel
1

Q
< CS—1/2ex/2/

A 12002, 12 V!
A v dv 7o <Cs e (QY) Tk 4.12)

where Ql(t) is defined in the statement of the lemma. When V! < 0, an analogous
argument can be given and it follows that in both cases

V]
Ty < Cs—l/ze”?(g‘ﬁ"T.'. (4.13)
Combining (4.10), (4.11) and (4.13) yields the conclusion of the lemma. O

Lemma 4.4. Consider a T>-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = to + 2. Then there is a constant C > 0,
depending only on the solution, such that

PP +aP? 4+ P (02 + a0 o +1[Q' O < C  forallt > 1.
Proof. Let us use (2.16) to derive an estimate for F. Note first that

o) 2 (Brarona) = ony
1 o t t
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where we have used (2.13), (3.3) and (3.11). Note also that the second term on the right
hand side of (2.16) can be written

1 2 1 1

—(Ag —Ap) + Za(Pf + 2P 0F) < —Ax + —(Ap + A).

2t t 1t 2t
Combining these estimates with Lemma 3.9, we conclude that

4 1
deAz < —Ax + Cr Py + (A A + cr3AY?
+ 2071262 (Py — P3P 4 4171262 553e" 0 Q.
Moreover, due to (2.21) and Lemma 4.1,
[Pl < Ct2In(1+QY,  [S3 < Ct ?In(1 + QY

for k = 2, 3. As a consequence,

4 1
deAz < ——Ap+ Ci3 AL + 5 (As+ A + cr3 AL 4 et AP (1 + QY.

Defining .
A =r*As +1, (4.14)
we obtain
~ 1 4 ~ ~ ~
dedz < (A + A + Cr72 A + 2 A (1 + QY.

Introducing . . .

F(t) = sup Ay (t,0) + sup A_(t,6), 4.15)

fesS! feS!

we obtain

t
F@t) < Fty) +/ (lﬁ(s) + Cs 32 F(s) + Cs2FY2(s) In(1 + Q‘)) ds. (4.16)
S

n

Introduce
R'(s) =s(VIsn?+ 112, Qls) = [s(Q'(s))2 + 112 4.17)
Then (4.6) implies that
1,2
AR < 5720 + C572F + s~ F 4 Cs (G2,

ds
Integrating this inequality from #1 to t and taking the supremum over initial data belonging
to the support of f, we obtain

t
[0'O1P <19 t1? +/ (Cs72F + Cs732(0Y?) ds. (4.18)

3l
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Adding (4.16) and (4.18) and introducing
G=F+ (0" (4.19)
we obtain

g@) =6) +/

n

In particular, G(f) < Ct, so that F (t) < Cr and Q! is bounded. Returning to (4.6) with

this information in mind, we conclude that
142

d(R'? _

ds —

By arguments similar to ones given above, we conclude that Q! is bounded. O

t

(lg(s) + Cs_3/zg(s)) ds.
S

Cs‘3/2(Q1)2.

5. Intermediate estimates

Before proceeding, it is useful to collect the estimates that follow from the above argu-
ments.

Lemma 5.1. Consider a T?>-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = ty + 2. Then there is a constant C > 0,
depending only on the solution, such that

3
A, ) +3Int—2In—| <7, 5.1
‘ (t,")+31In no o= (5.1
3 3
TS ‘ mt| <o (5.2)
o t C() t C()
le'agllco < C172 (5.3)
forallt > t1. Moreover,
1 Jillco + 1 Killco < Ct72, (5.4)
P+xr/2 K—-—0J 2 _P+)\./2J2
e e
H (5 > o’ — <cr (5.5)
t / CO t / CO
Iollco + I Kellco < C, (5.6)
P+)\./2(K _ QJ)Z _P+)\./2J2
e 4 —4
89( 52 > o + | 99 <T> oo <Ct 5.7
forallt > t1. Finally,
Iollco + 1121 illco + 2l Pillco + 1l Simllco < C17>/2 (5.8)

forallt > 1.

Remark 5.2. Note that as a consequence of (5.2),

18, (@ 2*?) || co < Ct™2 forallt > 1.
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Proof of Lemma 5.1. Due to (2.21) and Lemmas 4.1 and 4.4, the estimate (5.8) holds.
Combining Lemmas 3.9 and 4.4 with (2.4) and (5.8), we conclude that
~ 3 3
k== ;e*/z +0@17?),
where we have used the notation (3.7). Combining this observation with Lemma 3.7, we
conclude that there is a constant C such that

~ 3. ~
a2 < —;/\2 + Ct72Al.

Introducing L = tziz’ we obtain

1 C
&L < —;L + ?LW.

In particular, L decreases once it exceeds a certain value. As a consequence, L is bounded,
and we obtain (5.1). Combining (2.4), (2.13), (5.1) and (5.8) and Lemmas 3.9 and 4.4, we
then obtain (5.2). As a consequence of this estimate, 3o converges to a strictly positive
function. In particular, there are constants C; > 0,7 = 1, 2, such that

C) < Pa(r,0) < C; (5.9)

forallt > 1.

From (2.7), (3.11), (5.8) and Lemma 4.4, we obtain (5.3). Returning to (2.10) and
(2.11), keeping (3.11), (3.16) and (5.8) in mind, we conclude that (5.4) holds. As a con-
sequence, J and K are bounded. Combining this observation with (3.11) and (3.16)
yields (5.5). From (2.8), (2.9), (3.11), (3.16), (5.8) and (5.9), we also obtain (5.6). By
(3.16), (5.9) and Lemma 4.4, we know that Py and Qg are bounded for ¢ > ¢;. Moreover,
Mg 1s bounded for ¢ > #; due to (5.3) and (5.9). Combining these observations with (5.1),
(5.6) and the fact that J, K, Q and P are bounded, we obtain (5.7). ]

6. Derivatives of the characteristic system

Solutions to the Vlasov equation can be expressed in terms of the initial datum for the
distribution function and appropriate solutions to the characteristic system (4.1)—(4.4).
To see this, let us begin by introducing the notation ®, V for the solution to (4.1)—(4.4)
corresponding to the initial data

O(;t,0,v)y =0, V(t;t,0,v) =v. 6.1)

Here we write ©(s; t,6,v) and V(s; t,0, v) in order to clarify the dependence on the
initial data. In particular, ®(s; ¢, 6, v) and V(s;¢, 6, v), considered as functions of s,
constitute a solution to (4.1)—(4.4). The purpose of the variables (¢, 6, v) appearing after
the semi-colon is simply to indicate that the relations (6.1) hold. We shall write d® /ds
and dV /ds to indicate differentiation with respect to the first variable. Moreover, 9,0,
090, 9, © etc. will denote differentiation with respect to the variables appearing after the
semi-colon.
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Given a fixed T € (fy, 00), where (fg, 00) is the existence interval of the solution to
the Einstein—Vlasov system under consideration, we know that

f(@,0,v)= flr,0(;t,0,v), V(r;t,0,v)]. (6.2)

Since f(t,-) is a smooth function with compact support, it is sufficient to estimate the
derivatives of solutions to the characteristic system in order to estimate the derivatives
of f. Unfortunately, differentiating the characteristic system leads to second order deriva-
tives of P, Q etc., quantities over which we have no control. However, using the ideas
introduced in [2], this problem can be circumvented. In fact, let @ be a shorthand for 9;,
dp or 9, and let

W =a 2290, (6.3)
I _ o 1 (V2)2 _ (V3)2
ZV = av! 4 | ca 2, — 2% _ 4122 \ VO — Zg~ 12,0
+ [404 t o s/ce 7 Vv — (v
+1P0V1 (VH2 - (V) a12eP 0 voy2y3
277 (VO —(vhy? "2 — (viy?
Vlv2v3
P
02 _ (2 |77 6.4
+e" Qs (V0)2 _ (V1)2:| (6.4)
1
72 =0v2+ §P9V28®, (6.5)
1
ARLIAE <§Pe vi—ef Q0V2>8®. (6.6)

It is then possible to derive an ODE for (¥, Z 1 72 7 3) such that the coefficients are con-
trolled due to previous arguments. The definitions (6.3)—(6.6) differ slightly from those
of [2]. The reason is that in the present context, it is not sufficient to know that no second
order derivatives of P, Q etc. occur; we need to analyse, in detail, all the terms that ap-
pear, and to use the resulting system in order to derive specific estimates for 3® and V.
The relevant result is the following.

Lemma 6.1. Consider a T>-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (tg, 00), where to > 0. Assume that
the solution has A-asymptotics and let t| = ty + 2. Then there is a constant C > 0,
depending only on the solution, such that

z' _ 1 Z' 1oV e 77 6.7)
ds = 2s €19 izt '
dz? 1

= -7 VA 6.8
ds 2s tea2 (6.8)
dz? 1, ) 3

— =——Z"+ 322"+ 332", (6.9)
ds 2s

dwv ;

— =cpoV¥ +cp;iZ", (6.10)

ds
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where Einstein’s summation convention applies to i and j, and
lei,j (53 1,6, V) + Ica,i (s 1,6, V) + |cig(s 1,0, v) + 5 |cq (551,60, v)| < Cs™
forall (t,0,v) € [t], 00) X S! x R3 in the support of f and for all s € [t1, t].
Proof. Let us begin by noting that
ePI251272 — (s1/2eP12y2),
s12e P2 73 L oP12051272 — (512 0eP 2V 4 5126~ P12V,

Since the quantities appearing in (4.5) are preserved along characteristics, we obtain

d
d—(emsl/zzz) =0, 6.11)
S

d

d—(sl/ze_P/2Z3—|—eP/2Qs1/ZZZ) =0. (6.12)

S

We also have
dv 1 o 1oy V! waaf V!

In the end, we shall express B(V1 / VO) in terms of Z! and W. However, there is no imme-
diate gain in doing so here. The most cumbersome part of the argument is to compute the
derivative of Z!. This calculation can be divided into several parts. We first consider

d dv!
—@vh =9 —).
ds( ) (ds)

When calculating the right hand side, it is convenient to divide the result into terms which
include a 9V’ factor, i = 1,2, 3, and terms which do not. Combining Lemmas 4.1, 4.4
and 5.1, we see that the terms which include such a factor can be written

1 1 i
——adV +cdV’,
2s

where ¢;(s) = O(s™2); note that the coefficient of V! in (4.2) is

L os
- s79).
2s
It is straightforward to calculate the remaining terms, and we conclude that
d 1 1 v2y3
L OVH= —=0p(@ ) V%0 — =35 (2, — 22V V190 + 8y (' /2e” 04) 90
ds 4 4 o Vo

V32 _ (V22
%a@) + 57499 *e PP V200

1
— g 2P,
5 g (o' Py)

1 )
+s7 gl * e (K — QI)V390 — 2—8v1 +¢idVi,
S
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where c¢;(s) = O(s~%). Combining an argument which is identical to the proof of (5.7)
with Lemma 4.1, we can estimate the coefficients of d® in the third last and fourth last
terms on the right hand side. In fact, we obtain

d 1 1 1 1/2 0 1 ot 1
— @OV = ——aV! — 280 Pr) V%0 — —9( 1, — 2L )V1eO
ds( ) 2 49(05 0) A ”

yiy3

332 _ 232
" V) (V)a®

+0p('/?e” Qp) 0

1
90 — 5ag(oﬂﬂpg)

+ 90O + iV,

where ¢;(s) = O(s~2) and cg(s) = O(s—3). As a next step, it is of interest to consider
the terms that arise when d/ds hits a V¥ in the second term in the definition of Z'. Before
writing down the result, let us note that, due to Lemmas 4.1, 4.4 and 5.1,

Y _Lyitoey, o6, (6.14)
ds 2s ds
From these observations, Lemmas 4.1, 4.4 and 5.1, as well as (5.9) and the definition
of Z!, we conclude that when d/ds hits a V* in the second term in Z', the resulting
expression can be written cyd®, where ¢y (s) = 0(s™2).
Note that every term appearing in the second term in the definition of Z' can be
written in the form

h(-, )y (V)a~V2(, ©)00. (6.15)

We have already estimated the terms that arise when d/ds hits . Let us therefore con-
sider the terms that arise when the derivative hits the remaining factors. Omitting the
arguments, we need to consider

473
203/2

Vl
(h, +a1/2hgw)wa—l/2a® — hy9©

1 1 1

__%_nY ~12_% V- v

+h¢[ e 500 +a 2o 200 + 0 1
1

_in & 1%
= (8 (x h)+hgW Va0 + hyrd 77 ) (6.16)

In all the terms of interest, hyr = O(s_z), where we have used Lemmas 4.1, 4.4 and 5.1.
As a consequence, this expression can be written

I’ .
(a, (@ %) + h9W>¢3® +cioVE,

where ¢;(s) = O(s™2). Combining the above observations, we conclude that
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dz! 1 1 1
e v — 9y Pag) V000 — =3y (2, — 22 V100
ds 2s 4 4 o
V2V3 1 (V3)2 _ (V2)2
1/2 P _ 1/2 A e
+ 09 2e” 0p) =590 — S5 (@2 Py) =0 30

1
+ 50 [a—l/z(x, _o% 4s1/2e)‘/2A>:|V08®
o
(VH2 = (V3)?

1 g 1/2 )2 1 1 —-1/2 0
+Zag(kt—25—4s e AV 8@—58,(05 Pt)V W

1 | (VZ)Z _ (V3)2 1 | (V2)2 _ (V3)2
PV ey 9 T PV ey 12 0©

1 (VhH? (v?)? —(v¥? _ voy2y3
3@ P e a0 — e el 00 5 00

vivzys3 » viviys3
(Vo2 — (Vl)za® +di(e” Qo) (Vo2 (Vl)za®
vl yly2y3
W(VO)2 _ (VI)Z

—3p(e” Q)

+ dp(a'2e” Qp) 30 +cgdO + c;dV', (6.17)
where cg(s) = O(s™2) and ¢;i(s) = O(s~2). How to interpret the terms in this equation
should be clear from (6.15) and (6.16). However, there is one term which is slightly am-
biguous, namely the sixth one on the right hand side of (6.17). For clarity, let us point out
that the coefficient of V9® in this term should be interpreted as the time derivative of

(s 2% - anmoma)]
4 o

evaluated at [s, ®(s)]. The expression (6.17) can be simplified somewhat. First, the terms
involving Py cancel. Moreover,

—3 (e 0 + 8" Qg) = " (PL Oy — Py O)).

Using Lemma 4.4 and (5.9), we can estimate this expression in order to conclude that the
sum of the fourth last and fifth last terms is of the form cyd®, where ¢y = O(s3) (to
obtain this conclusion, we also use Lemma 4.1). By Lemma 4.4, (5.1), (5.3) and (5.9), the
sum of the third and the seventh terms is cgd®, where ¢y = O (s _2). Since
(V3)2 _ (V2)2 (V1)2 (V2)2 _ (V3)2 0 (V2)2 _ (V3)2
S VO (VO — (v T T (VO — (VI
viys vyt yly2ys voy2ys3

vo T yo (V02 — (V12— (V02 —(v12’

the terms involving a factor of dy (al/ 2 Pyp) can be written

1 (V2)2 _ (V3)2
5ag(oﬂ/zlf’@)vo—(vo)z — (V1)28®,
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and the terms involving a factor of 3y («'/?¢” Qp) can be written

yoy2ys3
1/2 P
(/e QG)(Vo)z_(lea@'

Combining these observations yields

dz! 1 1 1
& vl oo a2 a, =22 451220 ) V09O — S8 (@ 2g) V09O
ds 2s 4 o 4

V() (V2)2 _ (V3)2
(V02— (v1)?
VOv2v3

(V02 —(v1)?

1 _
=3l 2Py — 3 (a'/? P)] 30

— [0 (@ e" Q1) — dp(@?e” Qp)] 90 + IO + c;aVi,  (6.18)
where ¢y (s) = O(s_z) and ¢;(s) = O(s_z). Combining (2.5), (5.9) and Lemmas 4.4 and
5.1 yields

(@ PPy —dp@'?Py) = 0.

Due to this estimate and Lemmas 4.4 and 4.1, the fourth term on the right hand side of
(6.18) is cg3®, where cg(s) = O(s2). Keeping (2.12) in mind, a similar argument yields
the same conclusion concerning the fifth term on the right hand side of (6.18). Finally,
keeping (3.10) in mind, a similar argument yields the conclusion that the combination
of the second and third terms on the right hand side of (6.18) is cgd®, where cy(s) =
O(s—3/%). To conclude,

dz! (I ;
— =——0V + 00 +;0V", (6.19)
ds 2s
where cg(s) = O(s~3/2) and ¢;(s) = O(s~2). On the other hand, due to (5.1) and (5.9),
the function o ~'/2¢*/2 can be bounded from above and below by positive constants (for
t > t1). In other words, 0® and W are interchangeable when deriving equations of the
form (6.7)—(6.10). Moreover, due to (5.9) and Lemmas 4.1, 4.4 and 5.1,

Zi=09Vi4 gV, (6.20)

where ¢; g (s) = O(s~/%). We can now prove the lemma. First, combining (6.11), (6.12)
and Lemma 4.4 yields (6.8) and (6.9). Combining (6.13) and (6.20) with Lemmas 4.1, 4.4
and 5.1 gives (6.10). Finally, combining (6.19) and (6.20) yields (6.7). m]

Lemma 6.2. Consider a T?-symmetric solution to the Einstein-Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = to + 2. Then there is a constant C > 0,
depending only on the solution, such that

(Ins5)?|99O(s: 1,60, v)| + 5% V(s 1,0, v)| < C(In1)? (6.21)

foralls € [t1,t] and (¢, 0,v) € [t1, 00) X S! x R3 in the support of f.
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Remark 6.3. Arguments similar to the ones below yield estimates for 9;®, 9,; © etc.
Proof of Lemma 6.2. Let
Zi(s;1,0,v) =s2Z1(s:1,0,v), W(s;1,0,v) = (ns)>W(s;1,0,v).  (6.22)

Then, due to Lemma 6.1,

dz! . .

d_ = cl‘gsl/z(lns)_2\ll + Cl’jZ/,
s

dz? .y

K =027,

d23 52 53

T 322 + 3327,

dw 2 . . N
= U+ cg oW + cgis 2 (Ins)?Z!
ds sins ’ ’

for s € [#1, t], with coefficients as in Lemma 6.1. Introducing

3
E=) (Z) + &), (6.23)
i=1
we conclude that there is a constant C > 0, depending only on the solution, such that
dE 1.
_ > E
ds — s(Ins)?
for s € [t1, t]. As a consequence,
E(s;1,0,v) < CE(t;1,0,v) (6.24)

for s € [t1, t]. Let us now assume 0 = dg. Then
U(t;1,6,v) = O[(In1)?).

Moreover, N .
Zit;1,0,v) = [1'%09VI + O()WV](t; 1,60, v) = O(1).

As a consequence, E(t; t,0,v) = O[(Int)*]. Thus (6.24) implies (6.21); note that the
estimate for dyp ® is immediate and

10V < |Z'| + Cs™'/%13,0]. o

7. Higher order light cone estimates

Before proceeding to higher order light cone estimates, let us record some consequences
of the estimates obtained in Lemma 6.2.
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Lemma 7.1. Consider a T?>-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = ty + 2. Then there is a constant C > 0,
depending only on the solution, such that

180 pllco + £/2113g Ji llco + 11180 Sijllco + £118p Pellco < C+—32(n6)?,  (7.1)

ag(ﬁ> <132, (1.2)
o co
w2l <c (1.3)
o co

forallt > 1.

Remark 7.2. Note that 9y (ot; /) = 9, (g /ct) = 9,09 Incx.

Proof of Lemma 7.1. The estimate (7.1) follows from (6.2), (6.21) and the fact that |v!| <
Ct~ /2 in the support of f (¢, -). Consider (2.13). Since Lemmas 4.4 and 5.1 together with
(5.9) imply that J, K, Q and P are bounded in C! and that Ag is O (r=1/2), the first two
terms on the right hand side of (2.13) are O(r=*) in C!. Since Ay is O(t~1/?), the 6-
derivative of the third term on the right hand side of (2.13) is O(t73/2). Due to (7.1), the
0-derivative of the last term is better. Thus (7.2) holds, so that

< < cr32,

[e2] o
ol — do| —
t(“) co 9(“) co

Integrating this estimate yields (7.3). O

In what follows, we shall proceed inductively in order to derive estimates for higher order
derivatives. Let us therefore assume that we have a T2-symmetric solution to the Einstein—
Vlasov equations with a cosmological constant A > 0 and existence interval (zy, 00),
where #y > 0. Assume moreover that the solution has A-asymptotics and let 1; = #9 + 2.
Let us make the following inductive assumption.

Inductive Assumption 7.3. For some 1 < N € Z, there are constants 0 < m; € Z and
Cj,j=1,..., N, (depending only on N and the solution) such that

s1/2 ﬂ(s-t 0,v)| + @(m 0,v)| < Ci(lnt)™, (1.4)
00 g T = ’ '
IPolicn—1 + 1 Qallev—1 + 232 Pllen—t + 372 Qcllev—1 < Cy—y (7.5)

forall j =1,..., N, (t,0,v) € [t], 00) X S! x R3 in the support of f and s € [11, t].

Remarks 7.4. The induction hypothesis holds for N = 1. In what follows, C; and m;
will change from line to line. However, they are only allowed to depend on N and the
solution.

In this section we prove that if Inductive Assumption 7.3 holds, then (7.5) holds with N
replaced by N + 1. In the next section, we close the induction argument by proving that
(7.4) holds with j replaced by N + 1.

We shall need the following consequences of the inductive assumption.



Cosmic no-hair conjecture 1611

Lemma 7.5. Consider a T>-symmetric solution to the Einstein—Vlasov equations with
a cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume
that the solution has A-asymptotics and let t; = ty + 2. Assume moreover that Inductive
Assumption 7.3 holds for some 1 < N € Z. Then there are constants Cj, j =0, ..., N,
and my, depending only on N and the solution, such that

Ipllen + 21 Jillen + I Pllen + I Simllen < Cynt ™3 (Iney™™, (7.6)
28 Ao < €, (1.7)

la™' 8] allco < Cj, (7.8)

I olley + IKollen < Cy(Ine)™, (1.9)

<cp 32 (7.10)

gl+1 [l
4 o

fort >1t,0<j<N,0<I<N-landi,m=1,2,3.

co

Proof. For N = 1, the conclusions follow from Lemmas 4.4, 5.1 and 7.1, (5.9) and the
equations (2.8) and (2.9). We may thus assume that N > 2. An immediate consequence
of the inductive assumption is that, for0 < j < N and ¢t > 11,

J

— . m;
So7| = Citnoy™

(cf. (6.2) and (7.4)). This yields (7.6). To obtain control of the -derivatives of o and A,
we proceed inductively. Let us make the inductive assumption that

la™" el co < Cj, (7.11)
18 llco < Cjt~ /2 (7.12)

for 1 < j <l < N.Note that we know this is true for / = 1. Differentiating (2.7) / times
with respect to 8 and appealing to (7.5), (7.6), (7.11) and (7.12), we conclude that (7.12)
holds with j replaced by / + 1. In order to improve our knowledge concerning «, let us
begin by improving our estimates for the 8-derivatives for J and K. Differentiating (2.8)
and (2.9) 0 < j <[ times and using (7.5), (7.6), (7.11) and (7.12), we conclude that

195 Tllco + 195 K llco < Ci(In )™ (7.13)

fort > t; and 0 < j < [. Differentiating (2.13) [ + 1 times with respect to 6, using (7.5),
(7.6), (7.13) as well as the fact that (7.12) holds for 1 < j <[+ 1, we obtain

gl+1 o 9, id
o (C{ co % o

ag
bl —

. < Cll_3/2 (7.14)
C

for t > t;. Thus

<C1

co
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fort > #;. Combining this estimate with the inductive hypothesis, we conclude that (7.11)
holds with j replaced by [+ 1. Thus (7.12) and (7.11) hold for 1 < j < N. Consequently,
(7.7)-(7.9) hold. In addition, (7.14) implies (7.10). O
We are now in a position to derive higher order light cone estimates.
Lemma 7.6. Consider a T2-symmetric solution to the Einstein-Vlasov equations with
a cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume
that the solution has A-asymptotics and let t| = ty + 2. Assume moreover that Inductive
Assumption 7.3 holds for some 1 < N € Z. Then there is a constant Cn > 0, depending
only on N and the solution, such that

121185’ Prllco + 1195 Pollco + 1°72 11”33 Qtllco + 1le” 8 Qpllco < Cv - (7.15)
forallt > t1. As a consequence, (7.5) holds with N replaced by N + 1.

Proof. If N = 1, then in some of the sums below, the lower summation limit is larger
than the upper limit; such sums are meant to be zero. Moreover, terms which are bounded
by Ct~3 for t > t; will sometimes be written O (t~3). Let us compute

3180 P, F 9 (@2 Py)]

(04
=Py T ag\’(jal/ng +oc1/2Pt9) +a! 29N P — o 23) (@2 Py)

| N=l ClaN Lo
=9 PaF 5 ) Bidy (é)a;(al/ng) F oy @ 2Py)
j=0

Nag N=2 . .
F it BF ) gy @ a) (P — 0 1o 2oy @2 o))
j=0
Nay

+

N-=-2
N »
A AR ORI CED AR CER )8
=0

where the g; are binomial coefficients. Note that all the sums are O (+73) due to Inductive
Assumption 7.3, Lemma 7.5 and (5.9). Let us use (2.5) in order to compute

o
9 [P — a'?99(a 2 Py)] = aév(Pt, —aPyy — EPe)
= 1BNP Y9N p S aN=i( % \aip = aN=i (2PYai (02 2
=—0 t+£0 t+j2:;ﬁj9 20 )% t+jZ:;ﬂj9 (e*7)9,(0; — Q)

N_l . .
+eP Y B8 (01 — @2 00)) (@] (01 + 2 00))
j=1

P+xr/2 K—0J 2
+2€2P[Qt3(§sz—061/2Q03(§v(011/2Q0)]—3($V<e el L )

4+ 9N ﬂ +t7]/23N[ 1/2([) — Py)]
o\ ole (P2 = B
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By Inductive Assumption 7.3, Lemmas 7.5 and 5.1, and (5.9), the sums are o173, as
also are the last three terms on the right hand side. We thus obtain

3180 P, F 9 (@2 Py)]

= —;%sz + ;—;[aévPr F 0y (@' Pyl F %[ag’a x 0 @'/ Py)]
+26°710,0) 0 — a2 Q93 (@2 Q)] + Ot 7).
Introducing
Ansrx = [0) P £3) @' 2 Pp)1* + €*7[9) Qr £ 95 (@'? 00T, (7.16)

we conclude that
0+[97 P F 09 (@' Py
< —?[agth F oy @ PP %aévmee)[aévP, F 0y (@2 Py)]
+ Ot AT -+ vt (A + Ang o),
where we have used Inductive Assumption 7.3, Lemma 7.5, (5.2) and (5.9). Now consider

3185 0r F Y (@' 0p)]

1 = _ifa ; l o
=9 0uF 5 ) Bdy (Ef)ag @2 Q9) F 5 0" @' Q)
j=0

NO[Q N-2 N )
T 2412 0 Qi F Y Bidy (@3] Qi — 8] la' 05 (a"/? Q)]
j=0
Nag n 1/2 = N—j, 1/2yqi+1, 1/2
+ 20172 80 (@ /7Qg) + Z ,Bjag (o )89 (@' /“Qp).

j=0

As above, all the sums are O (¢t —3) due to Inductive Assumption 7.3, Lemma 7.5 and (5.9).
Using (2.12), we compute

' 1Qs — ' ?3p(a'? Q9]
Loy &N N Vi (2, N
=0y Qi+ 8 0 + ;ﬂjag = )ai 0 -2 Py
= 2P, Q1) + 297 (@' Pp)ar' > Qg + 20" Py} (' Q)

N—1 ) . N-1 . .
—2 3 Bidy P00 +2 ) i@y (@ /Py (@] (@' > Q)
j=1 j=1

MNP (K — QJ) B _
+ agv< 7 ) + 207129 (2P 833,
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By Inductive Assumption 7.3, Lemmas 7.5 and 5.1, and (5.9), the sums are o173, as
are the last two terms on the right hand side. Thus

3+[9) Q1 F 95 (@'/* 0p)]
= —}aéVQw;‘—;[aéVQtqcagNw”zQe)]:F%[aygﬁa&a”zgan
—20) PO, —2P,(8) 0) +28) (@' Po)a'? Qg + 2012 Pyd) (a2 Qg) + O (1 73).
Consequently,
3:[05 Q1 F 9 (@'/? Q) 1?
< —?[aév 0 F3) @'?00)1* F %agN(a”ZQe)[agN Q; F 9y (@' Qp)]
1/2

+ C1\/f3A,\,+mF + CNt73/2(~AN+1,+ + Ant1,-)s
where we have used Inductive Assumption 7.3, Lemma 7.5, (5.2) and (5.9). Adding up
the above estimates, we conclude that
5 1 1
0+ AN11,5 < —;ANJrl,:F + Z(-ANJH,:F —Ans1,4) + ;(-AN+1,+ +Ant1,-)
_ —3 4172
+ Cnt 3/2(-/4N+1,+ + Any1,-) + Cpnt 3.»41\{_’_1?.

Let us introduce

2 72 12 £ A - 2 ~
Aviie =t Ay e+t Fypre=sup Ayi1e,  Enin = Fypro4+Fygr—.
peS!
(7.17)

Then |
O+ Ant1,5 < ZANH,:N: + Oyt (Ang1 4+ + Avgr o).

Integrating this differential inequality, taking the supremum etc., we obtain

t
Fy41(t) < Fy41(t) +/

n

1 4 n
(ZFNH(s) + ch3/2FN+1(s)> ds.

As a consequence, F nN+1(t) < Cyt'/?. Combining this estimate with Inductive Assump-
tion 7.3, Lemma 7.5 and (5.9), we obtain (7.15). m]

8. Higher order derivatives of the characteristic system
In the previous section we showed that (7.5) holds with N replaced by N + 1, that is,

IPolicn + 1Qollen + 321 Pdlien + 13211 Qcllen < Cn (8.1)

for all ¢ > #;. We also need to prove that (7.4) holds with j replaced with N + 1. Before
stating the relevant result, let us make the following preliminary observation.
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Lemma 8.1. Consider a T>-symmetric solution to the Einstein—Vlasov equations with
a cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume
that the solution has A-asymptotics and let t; = ty + 2. Assume moreover that Inductive
Assumption 1.3 holds for some 1 < N € Z. Then there are constants C; and mj, j =

0,..., N, depending only on N and the solution, such that
lpllen + 621 illen + tPillen + tlSimllen < Cyt™>ney™ . (82)
_ i i+1
lle ™8 allco + £'/2113) T Ao < €, (8.3)
[Jolley + IKglleny < Cn(nt)™™, 3.4
(07
9! <i> F 195 Al co < Crr 732, (8.5)
o co

A =22 4 2PN < oyt (8.6)
o cN

‘x[ I (8.7)
o cN

fort >1,0<j<N,0<I<N-—1landi,m = 1,2, 3. Moreover, using the notation
J i J i i Jysi J
v =0, V¥, ZJ’- =9 VAR Vj’ = 9 v, ;= 0,0 (8.8)

(where the 0-operator used to define Z and WV is given by 0g), there are functions c; g,
i =1,2,3, such that

W (s: 1,0, 0)| +5%1Zi(s;:1,0,v)| < C;(Inp)™, (8.9)

1, (s; 1,6, v) — (@~ V/2e?)[s, O(s; 1,0, 1)]0)41(s; 1,6, v)| < C;(Inr)™, (8.10)
|Z3(s32,0,0) = Viy (551, 0,0) — (cigW)(s; 1,0, v)] < Cjs™2(Inn)™i, (8.11)
lcio(s:1,6,v)] < Cos™'/2 (8.12)

forall (t,0,v) € [t, 00) X S! x R3 in the supportof f,0<j < N,0<I[<N —1and
s € [n,t].

Remark 8.2. Due to (8.3), we have
19ja?| < Cp ja?

for all (¢,0) € [t1, 00) X st p € Rand 0 < j < N. In particular, spatial derivatives
of powers of « can effectively be ignored. In the derivation of the estimates below, it is
useful to keep this observation in mind.

Proof of Lemma 8.1. Combining Lemma 7.5 with (8.1), (2.4) and (2.7), we obtain (8.2)—
(8.5); recall that P, Q, J and K are bounded to the future. The estimate (8.6) is a conse-
quence of Lemma 7.5, (8.1) and the fact that
o 1/2,0,/2 2 2 2P, 2 2 —h g
=2 =4 PRMIN =t PE 4+ a P + P (07 +a 0] + —r
eP-H\/Z(K _ QJ)Z
£5/2

41122,
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(cf. (2.13) and (2.14)). For similar reasons, (8.7) holds (cf. (2.14)). Turning to (8.9)—
(8.12), note that, up to numerical factors, 89] W (s; t, 0, v) can be written as a sum of terms

of the form

@™V )5, O(s; 1,0, v)104, (551,60, v) - Oy, (53 1,6, V),

Lk+1

where i| + -+ ix+1 = j + 1. Since k < j < N, the first factor is bounded due to (8.3).
By Inductive Assumption 7.3, the factors ©;; can be estimated by C(In#)"/ if i; < N.
The only way a factor ®y 1 could occur is if k = 0 and all the derivatives hit ® in the
definition of W. These observations yield (8.10) and the estimate

|W;(s; 2,0, v)] < Ci(Int)™

for 0 <! < N —1. The proof of the remaining estimates is similar in nature, but somewhat
more involved. O

We now finish the induction argument by proving that (7.4) holds with j replaced by
N + L.

Lemma 8.3. Consider a T2-symmetric solution to the Einstein-Vlasov equations with
a cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume
that the solution has A-asymptotics and let t| = ty + 2. Assume, moreover, that Inductive
Assumption 7.3 holds for some 1 < N € Z. Then (7.4) holds with j replaced by N + 1.

Proof. The strategy of the proof is very similar to that of the proof of Lemma 6.1. The idea
is to derive a system of ODE’s for Zjv and Wy analogous to (6.7)—(6.10), and then to use
arguments similar to those in the proof of Lemma 6.2. Deriving appropriate equations for
Z 5\,, i = 2, 3, turns out to be relatively easy, due to (6.11) and (6.12). In fact, we obtain the
desired conclusions concerning Zi,, i = 2, 3, without much effort (cf. (8.15) and (8.16)
below). Deriving an equation for Wy also turns out to be quite easy (cf. (8.14)). Similarly
to the proof of Lemma 6.1, the main difficulty lies in deriving an equation for Z }V Once
the desired equation has been obtained, we rescale Zzlv and Wy according to (8.23) and
introduce an energy according to (8.24); note that these definitions are analogous to the
ones in the proof of Lemma 6.2. Finally, the equations imply a differential inequality for
the energy Ex which can be integrated to yield the desired estimate.

Before proceeding to the proof, we introduce some notation. Let b be a C! function
on M = (19, 00) x Sl. Evaluating it along a characteristic, we obtain

B(s;t,0,v) =b[s, O(s; t,0,v)].
Differentiating B with respect to 6 yields

aB('t9 )_ab[ O(s;1,0 )]86('t9 ) (8.13)
89 S1 b Sv _89 s1 S! 9 9v 89 s1 b 1v' .

On the other hand, distinguishing between B and b is quite cumbersome in the arguments
that we are about to carry out. As a consequence, we shall write » when we mean B.
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Moreover, we shall use dy b as a shorthand for dyp B, whereas dypb should be interpreted as
the first factor on the right hand side of (8.13), and 9;b as mapping (s; ¢, 6, v) to
ob
at
In particular, by = bg®;. Finally, if in some expression a ¢*-derivative hits a V or a ©, it

is to be interpreted as an ordinary 6-derivative.
Note first that

[s,®O(s;t,0,v)].

3

av 1 1y, V! av! vl
— = (-2 )w Prg—W 42— — 2 —__ N yigy!
ds 2< ' a) TR MY T T o 2 Z

due to (6.13). Differentiating this equality N times with respect to ¥, we obtain
3

duy 1 1, V! » Vi V!
A — Wy /123, SV 2N+ A2 T
ds 2( ' a) ¥ eyt TG (V03 £ Z Ve

+ Ols~2(Inr)"™],

where we have used (5.9), Inductive Assumption 7.3 and Lemma 8.1. Due to (8.11), this
equation can be written

awv .
d_sN =y Wn + ¢} Zi + Ols™*(Int)"™], (8.14)
where cé\{e = O(s_z), cé\’i = O(s_3/2) and we sum over i but not N. Turning to 72, we
have 5 |
dzZ 1 _, 1 12,V 5
— =——Z7—-_(P 2py— )z
ds 2s 2( AT

(cf. (6.11)). Differentiating this equality N times with respect to ¥, we obtain

dz% 1 1 1oy V
=——72--(p 12Py— ) Z% + O[s~*(Ing)"V
P 25N 2<z+oe ev) + O[s“(Int)"™"],

where we have used (5.9), (8.1), Inductive Assumption 7.3 and Lemma 8.1. Hence
i(sl/zef’/zz,zv) = O[s>*(Int)"V].
Integrating this equality from s to 7, we obtain (assuming N > 1)
—(s'2eP2Z3))(s; 1,6, v) = O[(Int)™];

note that
(tl/2 P/ZZN)(t 1.0, v)—tl/z P2t (BNHP) 2 = 0(1)

due to (8.1). In particular,
1Z3,(s;1,0,v)| < Cys~ Y2 (ng)y™ (8.15)
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for s € [11, t]. Turning to Z3, we have

dz3 1 1 vl vl
T —523 + §<Pt +a1/2PQW)Z3 _€P<Qt +(¥1/2Q0W)22

(cf. (6.12) and (6.11)). Differentiating N times with respect to ©#, we obtain

dz3 1 1 Vi Vi
N - 73+ —<P, +al?p, )Z?\, — eP(Q; —l—al/zQ(;W)Z%\,

ds 2s 2 vo
+ O[s~2(nt)"].

Due to (8.15), the third term on the right hand side is O [s~2(In#)"~]. We can thus proceed
as in the proof of (8.15) to obtain
1Z3,(s31,0,v)] < Cys~ Y2 (ne)™™ (8.16)

for s € [t1, t]. Finally, we need to derive an equation for Zzlv- Just as in the derivation of
the equation for Z!, it is natural to divide the analysis into several steps. Consider first

gt dv!
v ds
for 0 < j < N. All the terms appearing in dV!/ds can be written 2 o V. When

differentiating an expression of this form, the terms that arise are (up to numerical factors)
of the form a’,;hagw oV.If both k and [ are > 1, the resulting term is O[s ~>(In7)" ]. If all

the derivatives hit 1, we obtain (after summing over all the terms appearing in d V! /ds)

+cl V!

L+ Ols(Inn)™]

1
_ZVjJr]

where cl.j = O(s~?) and we sum over i but not j. If all the derivatives hit &, we obtain
(after summing over all the terms appearing in dV'! /ds)
v2ys3

Vo

1 ; 1 o ;
_Zaéﬂ(al/zke)vo_Z%H(A[_th>vl+a$+1(a1/2ePQ9)

L j+ V)2 —v»? _ |
— 50 @ P 4 GOy + Ols T ()],
where cé = O(s—3) and we have used (5.6); note that, due to (8.1) and Lemma 8.1, we
control N + 1 6-derivatives of the first factor in each of the last two terms appearing on

the right hand side of (4.2). Adding up, we conclude that

1 (V! Lo i J Lo+, 12 0
3 <K> = —ngH +¢] Vi + 60541 — 13119 @'?r)V
Lo j+ @\ 1y it 12, p g, VIV
1 V3 2 _ VZ 2
- z&é“(al/ng)()% + Ols2(Inr)™], (8.17)

where cij = O(s2%) and cé = O(s—3) and we sum over i but not J-
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The second term in the definition of Z! is a sum of terms of the form

hyoVa l?20,. (8.18)
The relevant /’s are
1 1 1
hi= (=25 4512220, hy=—=P,  hy=-a'?Py,
4 o 2 2

ha=—e" Q. hs = a2’ Qy,
and the relevant ¢’s are
I/II _ VO I/fz _ VO (VZ)Z _ (V3)2 ¢3 _ | (V2)2 _ (V3)2
’ (VO)Z _ (V1)2’ (VO)Z _ (Vl)z ’
o vovzys _ovivzys
- (V0)2 _ (VI)Z’ 5= (VO)Z _ (Vl)z'

We want to differentiate (8.18) with respect to s and then N times with respect to ¥
Before going into the details, let us record the following estimate:

Yy

sY21@5h1) (53 8,0, v)] + Y 1@3hi)(s; 1,0, )] < Cys ™2 (In )™ (8.19)
i=2

forO < j <N, (t,v,0) € [t1,0) X S! x R3 in the support of f and s € [#1, ¢]. In the
caseof hj,i =2,...,5,(8.19) is an immediate consequence of the inductive hypothesis,
(5.9), (8.1) and Lemma 8.1, and in the case of &1, it is a consequence of (8.6). We also
have

5
Wi(s31,6,v) +s Y 1Yils;1,6,v)] < C,
i=2 (8.20)

5 .
> 1@ i o V(sit.0,v)] < Cis T npy™
i=1

for0 <j<N-—-1,(tv,0) € [t, 00) X S! x R3 in the support of f and s € [#1, t]; this
is an immediate consequence of the inductive hypothesis.
Let us consider the term that arises when d/ds hits the y-factor in (8.18). Note that

i(dV'
W\ a5

foralli =1,2,3and all0 < j < N; for j = 0, the estimate is a consequence of (6.14);
for j > 1 andi = 1, it is a consequence of (8.17); and in the case of i = 2, 3, it follows
immediately from (4.3), (4.4) and the induction hypothesis. Hence

< Cys?(nt)™

dy oV
ay h‘”—oa—l/ze)] =) On41 + O[s 2(Int)™],
ds

where cév = O(s %) and hisone of hy, ..., hs. When the s-derivative hits the remaining
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terms in (8.18) (not 1), we obtain

N 12 vl av! vl S
— 1 ]
0y |:<3,(Oé h) +h9—V0>l/f®] +hl/f—v0 — hw—(vo)S ;:1 VoV i|

(cf. (6.16)). Due to (8.19) and (8.20), this expression can be written
N 1/2 v! : Ny/i 2
dy |:(3z(06_ 2h) -I-heW)I/f@]} + Zci Vg1 + Ols = (Int)™V],
i=1

where clN = 0(s_2). Differentiating the second term in the definition of Z! once with
respect to s and N times with respect to ¢, we obtain (by adding up the above)

v! 3 .
Z 31]9V|:<3t(0l1/2hi)+(39hi)w>¢i®1j| +ZCiNV]l\/+1+CéV®N+1+O[S72(1nt)mN]’
. 2
l (8.21)

i=1

where cév = O(s~?) and c{v = O(s~?). In order to obtain the desired equation we need
to add this expression to (8.17) with j = N. However, before doing so, note that

—10) T @' Prg) VO = — Lol (89 (@' hp) VOO + OLs™(In )N ]

etc. Due to this observation, we can argue as in the proof of Lemma 6.1. In particular,
we obtain a formula analogous to (6.17): the difference is that 3V ! should be replaced
by VI{, 41 in the first term on the right hand side of (6.17); that 8119\’ should be applied to
all but the first and last two terms on the right hand side of (6.17); and that the last two
terms should be replaced by ones analogous to the last three terms on the right hand side
of (8.21). Proceeding as in the proof of Lemma 6.1, the corresponding expression can be
simplified (cf. the derivation of (6.18)). Most of the steps involved in the derivation of
(6.18) consist of algebraic manipulations. However, there are two exceptions. The com-
bination of the fourth last and fifth last terms on the right hand side of (6.17) can be
written

PB0u - rr0n— VL
e —_ —_—
The analogous expression in the present setting is

viy2ys
(VO)Z _ (Vl)z

1.

3y (eP(Pt Qo — PyQy) ®1> =) Ont1 + O[s3(nr)™],

where cé\' = 0(s~3) and we have used (8.1), Inductive Assumption 7.3 and Lemma 8.1.
The combination of the third and seventh terms on the right hand side of (6.17) can be
written

—3p(s'2 P A)V1O,.

In the present setting, the analogous term is
—0) 09 (522 M) VIO = ¢ Ong1 + O[s2(Inr)™],

where cév = O(s~?) and we have used Inductive Assumption 7.3 and Lemma 8.1. Sum-
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ming up, we obtain

dz! 1 1
: N _ _2_vA1,+1 + ag[za, [al/z(x, . 4s1/ze)‘/2A>:|V0@1
s S o

1 1 (VH? = (v3)?

0@ VOO, — 18~ 2PY — 80 (@ 2Py VO L Y )
1 (' “Ag) 1 2[ (o 1) — 0g (' Pp)] (V02— (v1)2

yoy2y3

. —1/2 P _ 1/2 P I
[0¢ ( e 0;) dp (o’ “e” Qp)] (V0)2 _ (V1)2®1j|

+ C$/®N+] + Cl'IVVI(/+1 + O[S_z(lnt)mNL (822)

where cév = 0(s72), clN = O(s~2) and we sum over i but not over N. The term of impor-
tance is the second one on the right hand side. If all the ¥-derivatives hit ®1, the resulting
term can be dealt with as in the proof of Lemma 6.1, and we obtain a cév Oy 41-term,
where cév = O(s~3/?). For all the remaining terms, it is possible to use the equations
(as in the proof of Lemma 6.1) to obtain terms of the form O[s—3/2(Int)"~1]. Let us go
through the argument in detail for

1
9 [—E[at(a‘mp,) — g (a'2 Py)]

O(v2)2 _ (V3)2
T (v1)2®‘]'

By using (2.5), this expression can be written

—1/2,4/2=P 2

[ [ —1/2 2P, A2 2 o
S [ R TR
—1/2 )‘/2+P(K _ QJ)2 (V2)2 _ (V3)2
a” /e —1/2 1J2,—1/2 0
_ S + 5712212 (P, - P3)>V 07 (Vl)z(@l}

=c) Oy 41+ Ols *(Inn)"V],

where cg = O(s~2) and we have used (5.9), (8.1), Inductive Assumption 7.3 and Lem-
ma 8.1. From this argument, and similar ones for the remaining terms in (8.22), we obtain

dz! 1 .
T =5 Ve 6 On 6 Vi + Ol ™Y,

where cév = 0(s3/?), clN = O(s—3/%) and we sum over i but not over N. Due to (8.10)
and (8.11), we conclude that

dz! 1 .
dsN = _gz}\, + Uy + N Zh 4+ 0l 2 (Inr)™,
where cév = O0(s3/?), clN = O(s—3/?) and we sum over i but not over N. Combining
this equation with (8.14)—(8.16) yields
dWy
ds sins
dz),
ds

Wy + g Wn + ) ;s72(ns)*Zy + Ols 2(Ins)*(In )™V ],

Yos2(ns) 2y + e Z) + Os ™ (Inp)™¥],
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where ¢}y = 0(s72), ¢}, = 0(s73/?), ¢y = 0(s7%/?), ¢V, = O(s™>/?), there is no
summation over N and we have used the notation

ZhGsit,0,0) =s2ZL(s;1,0,v),  Wn(s;1,0,v) = (Ins)>Wn(s;1,60,v). (8.23)

Introducing the energy

Ey = (I + (Z))2, (8.24)
we conclude that
dEN Cn - 1 ~1/2
> — Ey—-C Int)"™E /",
ds —  s(ns)? N ns—(nt) N

Letting ry be such that ry (1) = 0 and its derivative is the first factor in the first term on
the right hand side, we obtain

dE
N S _cysTlannmvel/?,
ds

where Ey = exp(—rN)E ~. Dividing by £ 1{,/ % and integrating from s to ¢, we obtain

EN(s:1,0,0) < £% (31,0, v) + Cy(In D)™
However, the first term on the right hand side can be estimated by Cy (In#)?. Combining
the resulting estimate with (8.10), (8.11), (8.15) and (8.16), we conclude that (7.4) holds
with j = N 4+ 1. O

Corollary 8.4. Consider a T?-symmetric solution to the Einstein—Vlasov equations with
a cosmological constant A > 0 and existence interval (tg, 00), where tg > 0. Assume
that the solution has \-asymptotics and let t| = to + 2. Let 0 < k € Z. Then there is a
constant Cy, depending only on k and the solution, such that

1P ek + 11Qell e + 1Nl Prgllcr < Crr ™ (8.25)
forallt > t1. Moreover,

3
242 < Gyt~
t ck Cck
Proof. By combining Lemmas 7.6 and 8.3, we know that Inductive Assumption 7.3 holds
for all N. In particular, the conclusions of Lemma 8.1 hold for all N. Combining this

information with (2.5) and (2.12) yields
13 (t ™ 2 P)ll ek + 118 (™2 Q) ox < Crt ™12

3
A+ — 2 forallt > t.
o t

"

As a consequence,
lea™ 2 Prlice + lta™ "2 Qull o < Cut 2.
Due to this estimate, as well as (5.9) and (8.3), we can proceed inductively to get
1P llcx + 1 Qillex < Crt ™2

Combining this estimate with (2.7), (5.9), (8.1) and Lemma 8.1, we obtain (8.25). Com-
bining (8.25) with (2.4), (2.13) and (5.2) yields the final conclusion. ]



Cosmic no-hair conjecture 1623

9. Energy estimates for the distribution function

In the proof of the existence of fs oo (cf. Theorem 1.7), a natural first step is to estimate
L?-based energies for f. In the process of deriving such estimates, it is useful to con-
sider equations for the derivatives of the distribution function. Such equations take the
following general form:

oh a0 9n 1 ;on R ©.0)
J— _——_——) — = . .
ot v 90 2 vt

Incase h = f, R is given by

-0
R:L‘—f., 9.2)
av’
where
1 1 20, 3 v 1 W% — (v?3)?
LU= 22500 o« S, — 2% _ 2\l — g1 2P 0, Y Lt 2p, ) T
g% v +4 T P A Qo Vo +2a v Vo
— 1t PR 0 4 P2 (K — QU)Y), 9.3)
1 1 vlv?
P B N V)
L = 2P,v —|—2a Py 0 9.4)
3 1 3 1 ogp v'v? P 2 172 v!
L Z—EPIU —EO{ PQW‘i‘e v Q1+a QQE . (95)

The energies we shall consider are

Ex[h](t) = Z //f'ﬂl|a§afh(t,9,u)|2a*‘/2f3/2dvd9. 9.6)
I+1Bl<k /S' JR?

We shall also use the notation £ = Ej.

Remarks 9.1. The purpose of the factor o~ !/2¢73/2 is to simplify some of the terms that
result upon carrying out partial integrations. We could equally well consider energies of

the form

Hlf1) = ) //t"ﬁ'(tl/zv)2“+2|ﬁ||8éaff(t,6,v)|2dvd9
1+1BI<k /S /R

for u > 0 (cf. [31]). However, there is a constant C > 1, depending only on the solution,
w and B, such that

! < (112226 < ¢

for t+ > t; (where #; is as in the statement of the previous lemmas) and (¢, 6, v) in the
support of f. As a consequence, the corresponding weight is of no practical importance.
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Lemma 9.2. Consider a T>-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = ty + 2. Let h be a smooth solution to (9.1)
(where the function a appears in the Einstein—Vlasov equations and R is some function)
which has compact support when restricted to compact time intervals. Then there is a
constant C > 0, depending only on the solution to the Einstein—Vlasov equations, such
that

dE[h]

dt

forallt > 1.

3
< ——E[h] +2/ / hRa~2t732 qvdo + Ct=2E[h]
2t st JR3

Remark 9.3. It is important to note that the constant C does not depend on /. Moreover,
R should be thought of as being defined by (9.1). In particular, due to the assumptions
concerning /, the function R is smooth and has compact support when restricted to com-
pact time intervals.

Proof of Lemma 9.2. Differentiating E with respect to time, we obtain

dE 3
— :2/ / hatha_l/zt_3/2dvd9+/ / R2( =2 = 2127302 gy g
dt s! JRr3 st Jr3 2t 20

9.7)

Due to (5.2), we can estimate the second term on the right hand side. Consider the first
term; using (9.1), it can be written

U2yl on 1 . 9k
2/| /3 h(—“ vov 2t ZU’W + R>a—1/2t—3/2dvd9.
St JRR-

The term involving dg/ can be integrated to zero. The term involving R we leave as it is.
What remains is to estimate the term

1 i Oh* —-1/2,-3/2 3 2 —1/2,-3/2
— vV —a t dvdf = —— h“a t dvdf.
2t Js1 Jgz OV 2t Jsi1 Jr3

The lemma follows. O

Let us turn to higher order derivatives of the distribution function.

Lemma 9.4. Consider a T?-symmetric solution to the Einstein—Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = tg+2. Fix 0 < k € Z. Then there is a constant
Cr > 0, depending only on k and the solution to the Einstein—Vlasov equations, such that

dE[f]

3
= BT+ Cet P ELlf]

forallt > t1. In particular, t3/2Ek[f] is bounded to the future.
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Proof. Differentiating (9.1) with A = f, we obtain

ofp.i al/2y! ofp.i 1 ;0fp4
+ - —v .
ot w90 2t v

Bal al ol Uoin apal
:8U88R+[ = ag,avae}f—z—t[v’avi,avag]f,

9.8)

where we use the notation fg; = 85} Bé f and assume that |8| + [ < k. Let us denote the
right hand side of (9.8) by Rg ;. Due to Lemma 9.2, it is of interest to estimate

2/ / 171 £ 1Rg 10121732 qu . 9.9)
St JR3

By an inductive argument, it can be proven that the third term on the right hand side of
(9.8) is given by |B| f,1/2t. The corresponding contribution to (9.9) is thus

':i'r—‘ﬁ‘E[fﬁ,z].

Turning to the second term on the right hand side of (9.8), it can (up to numerical factors)
be written as a sum of terms of the form

/2,1
Lo’V Ih+1
35'3@1<T>352392 £,

where 81 + B2 = B,11 + 1 =1 and |B1]| + 1 > 1. Note that the first factor can always
be estimated by Cixr /2. In case B; = 0, it can be estimated by Cxz 2 (on the support
of f). Due to these observations, we have

1/2,1
_ 2 o v 1
1Bl [739735330]f

<Gt Y P2 p
Li+IB11<k

The corresponding contribution to (9.9) can thus be estimated by
Crt 2 Ex[ f].

Finally, let us consider the first term on the right hand side of (9.8). Since R is given
by (9.2), the expression 8,’? E)éR is given by the sum of

L'a,:089, f (9.10)
and terms which (up to numerical factors) can be written
@%10}) 113,029 f, ©.11)

where |81| 4+ [1 > 1. The contribution to (9.9) from (9.10) can be written

/Sl /Rg tPIL @, f5 a2 dv do.
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Integrating by parts with respect to v’ and keeping in mind that the L’ are given by (9.3)—
(9.5), we conclude that this expression can be estimated by

Cut P El 1, (9.12)
where we have used Lemma 8.1 and Corollary 8.4. Let us now consider the contribution
from terms of the form (9.11). It is natural to divide them into two different categories:
either 1 = 0, or B1 # 0. In case B = 0, the expression (9.11) can be estimated by

Crt=3271219,:08 872 £1.
In case B1 # 0, the expression (9.11) can be estimated by
Crt=3219,:082072 1.

In order to obtain these estimates, we have appealed to Lemma 8.1 and Corollary 8.4. As
a consequence, the contribution to (9.9) from terms of the form (9.11) can be estimated
by (9.12). Adding up the above observations, we conclude that

|ﬁ|t_|/3|E[f +t_|/3|dE[fﬁ,l]
dt

< _@t—lﬂlE[f 11— —t l'BlE[fﬁl]

—(t |/3|E[f D =—

+2/SI/ tPIRg ; fpaa 232 dvds + Ct 2 PLE £

< —z_tz “BIEL 501 + Cut T3 ExL £1.

Summing over 8 and /, we obtain

d Ej [f ] 3 —3/2

< — = Ex[f1+ Cut P ELLf]. o
o = o B [f1+ Ck klf]
In order to obtain a better understanding of the asymptotics, it is convenient to rescale the
distribution function according to

feelt,0,0) = (1,0, 1" ?0).

We have the following conclusions concerning fg.

Lemma 9.5. Consider a T?-symmetric solution to the Einstein-Vlasov equations with a
cosmological constant A > 0 and existence interval (ty, 00), where ty > 0. Assume that
the solution has A-asymptotics and let t| = to+2. Fix 0 < k € Z. Then there is a constant
C, depending only on the solution, such that in order for (t, 0, v) € [t], 00) X S x R3 10
be in the support of fs, v has to satisfy |v| < C. Moreover; there is a constant Cy > 0,
depending only on k and the solution to the Einstein—Vlasov equations, such that

19 foc(t, Mok st xmyy < Ckt ™2 forallt > 1.

In particular, there is a smooth, non-negative function with compact support, say fsc.co
on S' x R3 such that

| fsc(t, ) — fsc,oo”Ck(Slx]R3) < th_l forallt > 1.
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Proof. The statement concerning the support is an immediate consequence of Lem-

mas 4.1 and 4.4. In order to derive the desired estimates, let us compute

(3 fio) (1,0, v) = (3 £)(1,0, 17 /?v) — zitf”zvi(avf 6,177

Using the Vlasov equation, we conclude that
ol/2—1/2y1

3tfsc = _W

39fsc + RSCs

where

Race(t,0,v) = L'(t,0,17"?v) (3, /), 6,17 ?v)
=120, 0,1720) (0, fio) (2,60, V)

and the L’ are defined in (9.3)—(9.5). Introducing
Li(t,0,v) =L, 0,170,

we thus have
al/2¢=1/241

Waefsc + Lécavf Sse-

atfsc = -

(9.13)

Due to the properties of the support of fs., Lemma 8.1 and Corollary 8.4, for each 0 <

k € Z there is a constant C such that

> I@FoRLL) (2,0, v) < Ct™?
I+|Bl=<k

9.14)

foralli = 1,2,3 and (7,6, v) € [11,00) x S! x R3 in the support of fi.. To estimate the
derivatives of fs. in C k it is convenient to translate the estimate E; < Ckt~>/? into an

estimate for f.. However,

[, [ @t roco.vrasan= [ [ @ PoR oo
St JR3 s! JRr3

:ta/z/ / t7|ﬂ||(3é31/)3f)(;,9,U)|2d9dv
st JR3

< CPPE(t) < Cy,

assuming / + | 8| < k. From this estimate and Sobolev embedding, we conclude that all
derivatives of fi. are bounded for + > #;. Combining this observation with (9.13) and

(9.14), we conclude that

Z |afaé8tfsc| =< th72 fort > 1.
I+|Bl<k
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10. Proofs of the main theorems

Finally, we are in a position to prove the main theorems. Let us begin with Theorem 1.7.

Proof of Theorem 1.7. The conclusions concerning the distribution function are direct
consequences of Lemma 9.5. Turning to H and G, we have

Hy = —t~52 2P 2(K — 0Ty, G, = —QH, — 1522 P21 (10.1)

(cf. (2.2)). In order to estimate H; and G, it is useful to note that P and Q are bounded in
every C*-norm for 1 > 1o; this follows by integrating (8.25). Combining this observation
with (2.10), (2.11), (3.11) and Lemma 8.1 yields

I Jllev + 1K ey < Cyt=2(ng)™.

Thus J and K are uniformly bounded in C. Combining this observation with (10.1),
(5.9), (3.11), the bound on P and Q in every CN-norm and Lemma 8.1, we deduce (1.8).
From Corollary 8.4, we know that (1.9) and (1.10) hold. Combining (1.10) with (3.11)
and (5.9) yields (1.11). Let us turn to the second fundamental form. By definition,

kij = k(3. 9;) = (Va,eo, ;) = (Vo (¢ *e™ 40y, 95)
= 1'e (Vg 0, 05) = 511 M 0,4y,
where we have used the fact that 9, and 9; are perpendicular. In what follows, we would

like to prove that B

lkij — Hgijllev < Cn, (10.2)
where H = (A/3)!/%. Consider the spatial components of the metric (1.1). If a time
derivative hits one of P, Q, G or H in such a component, then the resulting expression
is bounded in CV after it has been multiplied by #!/4¢=*/4/2: this is due to (1.8), (1.9)

and (1.11). As a consequence, what we need to consider are the components of the tensor
field

ltl/“e*”“ _i T l)»z o 1201201 gg2
2 2t 2 o

+ ePldx + Qdy + (G + QH)d01* + e F(dy + H d@)z}

1 _; _ 1 1 3 o 3

—3/4 —1r/4 —1/4,,—1 /4 t 2
—t + —t o — A +—-)=-—+ - do ,
2 ¢ § 2 ¢ |:2< ! t> (a t)i|

where g is the spatial part of the metric. Note that the components of the second term
on the right hand side are bounded in C": this is a consequence of (1.10) and (1.11).

Moreover,
%t’3/4e’*/4 _ He’”‘*,

where A is defined in (3.7). To prove (10.2), it is thus sufficient to demonstrate that

le™* = Dgijllen < Cn.



Cosmic no-hair conjecture 1629

However, t(e_}:/4 — 1) is bounded in C¥ in view of (1.11), and z—lgi.,' is bounded in C¥
due to (1.8), (1.9) and (1.11). Thus (10.2) holds. Let us define g, by (1.13); note that this
is a smooth Riemannian metric on T3. Moreover,

It 8 (2, ) — Goviijllen < Cyt™! (10.3)

by (1.8), (1.9) and (1.11). Combining this estimate with (10.2), we obtain (1.12). The
proof of future causal geodesic completeness is not very complicated, given the above
estimates. One can, e.g., proceed as in [28, proof of Propositions 3 and 4, pp. 189-191].
However, we shall not write down the details, since the result follows from the proof of
Theorem 1.35. O

Let us now turn to the proof of the cosmic no-hair conjecture.

Proof of Theorem 1.14. We need to verify that the conditions stated in Definition 1.8 are
fulfilled. First, note that X, = {¢} x T3 is a Cauchy hypersurface for each ¢ € (¢, 00).
An argument is required in order to justify this statement, but since the details are quite
standard (cf., e.g., [30, proof of Proposition 20.3, p. 215], in particular [30, p. 217]), we
omit the details. Let y = (y°, 7) be a future directed and inextendible causal curve,
defined on I, = (s_, s+). Reparametrising the curve if necessary, we can assume that
yo(s) = s and I, = (fy, 00). By the causality of the curve, we know that

2ijly O Oy (1) < —gooly ()] < €172

for t > 11, where #{ = #p + 2 and we have used (1.11). Combining this estimate with
(1.12), we conclude that there is a constant Ky > 1 (independent of the curve y, as long
as yo(t) = t) such that

Zoo i [P O OV (1) < JKGH 21

for all ¢+ > #1. In particular, there is an x¢ € T3 such that dooly (1), Xo] < KoH~'+=1/2 for
all ¢ > 11, where d, is the topological metric on T3 induced by gco- Let €jp; > 0 denote
the injectivity radius of (T3, o). The injectivity radius of a point p of a Riemannian
manifold, denoted inj(p), is defined in [20, Definition 9.2, p. 142], and the injectivity ra-
dius of a Riemannian manifold is the infimum of the injectivity radii of the points of the
manifold; that €;,; > O follows from the continuity of inj (cf. [20, p. 178]); readers inter-
ested in a more quantitative bound on the injectivity radius are referred to [20, Lemma 51,
p- 319]. Then, given x € T3, there are normal coordinates on Bemj (x), where distances
are computed using do (cf. [19, pp. 72-73] for the definition of normal coordinates). Fix
— > Kg?—lfzei;jz + 1 (note that 7_ is independent of the curve). By the above arguments
and definitions,

JMNITE) C{t, ) el xT 1 >1_, deo(X, %) < KoH ™ 't7'%}  (10.4)

and the closed ball of radius KoH ™! t:l/ 2 (with respect to d~) and centre Xy is contained

in the domain of definition of normal coordinates x with centre at xo. Denote the set on
the right hand side of (10.4) by D;_ ., Define

¥ (z, &) = [M7, 571 @),
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Then

¥ Di ko i) = (1, E) € I xR 17 = T, [§] < KoH ™ 'e 77},
where Ty = H~'(Inr_)/2, and J = (19, 00), where 19 = H~'(In19)/2; if 1o = 0, then
79 = —oo. If we let T be slightly smaller than Tp, and K be slightly larger than K, the
map V¥ is still defined on Cp g 1 (cf. (1.15)). In analogy with Definition 1.8, let D =
Y(Cpaxkr)and R(t) = K H~le=HT. We have already verified all of the requirements of
Definition 1.8 (with X = X,_ etc.) but the last one, i.e., (1.16).

In order to proceed, let go ;; denote the components of g, with respect to the coor-
dinates X. Let g;;(t, -) and Rij (z, -) denote the components of g(eZHT, -) and 15(627'“, ),
respectively, in the coordinates X. Moreover, consider goo ;;, 8i; (T, -) and R,- j(t,) to be
functions on the image of X, i.e., on B, . (0), with the origin corresponding to x¢. Note that
the estimates (10.2) and (10.3) hold with g;; replaced by g;; etc., assuming the domain
on which the C"-norm is computed is suitably restricted. In particular, letting S; be as in
Definition 1.8, we have

||e_2Hr R,’j (t,) — Hgoo,ij”cN(sr) + ||3_2Hr§ij (t,) — goo,ij”CN(Sr) = CNe_ZHT

for all ¢ > T. Note that
800,ij(0) =6ij,  (0/80,ij)(0) =0

by the definition of the coordinates x. As a consequence, if § € S;, then

= = ! d = £ —Hz
[(01800,ij)(5)] = a[(algoo,ij)(SS)]dS < Ce ™.
0
Moreover, B
18c0,ij(§) — 8ij| < Ce Mt
fort >T andé € S;. In particular,
le™ ki (2, ) — Hijllcogs,y + le 277 &ij (t, ) — bijllcogs,) < Ce 2Hr

forall t > T. Letting ggs(t, -) and ];ds(l', -) be defined as in Definition 1.8, we conclude
in particular that

13as (. ) = &(T. Iy s, + lkas (T, ) = k(T )l ey, s,y < Ce™ 7

for all T > T'. In fact, due to the above estimates, we have

1as (. ) = &5, Mlen s,y + Mkas (T, ) = k(@ Ml en s, = Cne M0

forallt > T. O

Finally, we are in a position to prove Theorem 1.35.

Proof Theorem 1.35. The idea is to demonstrate that for late enough ¢, there is a neigh-
bourhood of each point in {¢} x T> such that Theorem 1.29 applies in the neighbourhood;
combining this with Cauchy stability (cf. Theorem 1.34) then yields the desired result.
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Fixing N, there is an € > 0 and a constant Cy such that for every x € T3, there
are normal coordinates x on W = B.(x) with respect to g, Where distances on T
are measured using the topological metric induced by g. Moreover, if goo ;; are the
components of g, with respect to X, and g5, are the components of the inverse, then the
derivatives of g~ ;; and 24, up to order N with respect to the coordinates X on W are
bounded by Cx. Moreover, the derivatives of X, considered as functions of (6, x, y), up
to order N + 1 are bounded by Cy. Similarly, the derivatives of X~ up to order N + 1
are bounded by Cy. The arguments required to prove the above statements are similar to
those in [31, proof of Lemma 34.9, p. 650]. The important point is that we obtain uniform
bounds which hold regardless of the base point.

Define K by the condition eX = 4/7{ and define the coordinates y = e~ X¢'/2x on W.
Note that the range of y is B,—«,1/2.(0). For ¢ large enough (the bound being independent
of the base point x), we then have e Kt1/2¢ = 1. From now on, we assume that 7 is large
enough for this to be the case. Moreover, we assume that the coordinates y are defined on
the image of B;(0) under y~!. Let g ; denote the components of g(t, -) with respect to
the coordinates y. Moreover, let goo ;; denote the components of g, with respect to the
coordinates x. Due to (10.3), we have

1921  &ij — Bocuiy) 0¥ 1E)| < Cye~ 171912
for £ € B1(0) and |o| < N; note that
y &) =X 1%E).
Since goo,ij 0y 1(0) = &5,

1

le 2Kg;; 0y~ —8;j] < Cyt™1/? (10.5)

on Bj(0); in particular, (1.38) holds with a margin for ¢ large enough. Similarly,

|9 (Boo.ij 0¥ @) =

n 1
S [ 900 sy 05 Dot ds| < 1!
=170

on B1(0). Thus
le™X (@&ij o ¥ ) llen-113,0y < Cnt ™" (10.6)
Due to (10.2), we also have

I kij — H&ij) oY llewgs o < Cnt ™" (10.7)

where k; j denotes the components of the second fundamental form k calculated using
the coordinates y. In the end, we shall choose Kvy; = (In#)/2. As a consequence, (10.6)
and (10.7) imply that (1.39) holds with a margin (note that the T2-symmetric background
solution is such that q_ﬁl-, i = 0, 1, vanish), assuming N > 5; note that in order to prove
Theorem 1.35, it is sufficient to apply Theorem 1.29 with kg = 4.

Let us turn to the distribution function. First of all, recall that if ¥ is a spacelike
hypersurface in a Lorentz manifold, and § is a distribution function defined on the mass
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shell, then the initial datum for the distribution function (denoted f and defined on T X)
induced by f on X is given by

H —1

f=Fo pry,,
where pry. is the projection from the mass shell over ¥ to T X; in other words, if p € P,
for some r € ¥ and N, is the future directed unit normal to ¥ at r, then pry(p) is the

element of 7, ¥ corresponding to p + g(p, N;)N,. In our case, we are interested in the
hypersurface ¥ = {¢} x . Ifz = (t,0, x,y), then

f(p'eil) = f(peals) = £(2,0, p),
where p = (p', p%, p°),
PO =1+ GH2+ D2+ (HH?

and p' = p'. However, in the application of Theorem 1.29, we need to express f in the
coordinates y. Consequently, we are interested in

FGE D) =T 051 =T A Bejle) = f11.0. v, P,

where z = (¢, 2),
vEZ ) = (P AN, PTA®@), PPAS (D)

and A i‘/ is defined by the requirement that
ayf l; = A,‘j (Z)ej|z'

Thus
jo= K,—1/2 K,—1/2 37!
A (@) = (05ilz, ejlz) = e t7 /7 (B5ilz, ejl:) = et P (2) (0512, €jlz),

where z correspond to the standard coordinates on the torus (which are locally well de-
fined). In particular, 9;1 = 99, 0;2 = 9y and 933 = d,. By the observations at the begin-
ning of the proof, (1.7) and Theorem 1.7, it is clear that all derivatives of A i] up to order
N are uniformly bounded on the domain of y, the bound being independent of the base
point X and time ¢ (assuming ¢ is sufficiently large). What we need to estimate is

Z / f (e—w)2|ﬂ|<ewﬁ>2ll+2|ﬂ|| ag ag?g/'Z(é, ﬁ) dé d[;
lal+1Bl<ko VR JYW)
(cf. (1.37) and (1.40)), where
5. p) = fIy &), pl = fIx "(Xt7128), p]
= f[t. 2" ox7 (Xt 28), vz (K17 2E), )]
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and the constant w remains to be specified. Note that all derivatives of x~! and z!' o x~!

up to order N are uniformly bounded. As a consequence,

BFE py= Y o f[t.2' ox (728, vz (X728, p)]w, (7 2E)
lyI=I8l

for functions v, with bounded derivatives; note that

v’ _ ; _
&K 2E), py = A, ox (K112,
ap/ J

Hence, 8:5‘ 85 Fy (§ , p) consists of sums of terms of the form
T Rogar ol 2t o)X T 2E), ux (X1 2E), )]y 50T PE) P,

where |[A| = |8], |yl = IBl, I + 18] < ||, ¢y 5,1 are bounded functions and o=
(PH*(p2*2(p3)*3. On the other hand,

F(t.6,v) = fielt,0,t"v),

where fi. converges to a smooth function with compact support in every C¥-norm. More-
over, fs has uniformly compact support. Note also that

3581))/—0-5]@07 0,v) = t(|y|+‘5|)/28(533;+6f5c(1, 0, tl/zv)_

Since there is a uniform constant C > 1 (independent of ¢ (large enough) and the base
point x) such that
C7lpl < e 1 1%8), p)l < Clpl.

we conclude that

7112|9870 fr, 2" o x (X1 T12E), uxT (X 1T 2E), )]y 5.0 (17 V2E) B
< Ca,ﬁt(lyl_la‘)/zx (t1/213)’

where x is a smooth function with compact support. As a consequence,
102 95% B )| < Capt P12 12 )

for £ € B1(0). Let us now define w = K 4 Ky, where Ky = (Int)/2. Then
/ / (™) 2Pl ev )2 281152 50 F 2 E, p) dE d s
B Jyw) d

IR B 0)

< Cﬂ,a,ﬂt_‘“l_m.
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The square root of the right hand side of this expression should be compared with the
right hand side of (1.40):

H2e5/2o=3K/2=Kvi _ 942.5/2,~3K/2,~1/2
Clearly, we have a margin. As a consequence, for ¢ large enough, every ¥ € T? has a
neighbourhood such that (1.40) holds with a margin. From (10.5)—(10.7), we also know
that (1.38) and (1.39) hold with a margin. We can thus apply Theorem 1.29 with the given
w > 5/2 and ko = 4. In addition, the covering of T obtained by taking the neigh-
bourhoods y~'[B; /4(0)] corresponding to varying base points X has a finite subcovering.

Appealing to Cauchy stability, Theorem 1.34, we conclude that there is an € > 0 with the
properties stated in the theorem. O

Appendix A. Derivation of the equations

The purpose of this appendix is to compute the Einstein tensor associated with the metric
(1.1), and to derive an expression for the Vlasov equation. Let us begin by expressing g
in terms of suitable one-form fields. Let

éo _ t—1/4ex/4dt’
%.] — t7]/4ek/4a71/2d9,

g2 =1'2e¢P2(dx + Qdy + (G + QH) db),
g3 =112e7P2(dy + H d9).

With these one-form fields, the metric can be written
3 . .
g=-£'0&+) @t
i=1
Using the orthonormal frame {e } introduced in (1.7), it can be verified that £*(eg) = (Sg.

A.l. Commutators

Let us compute the commutators, in other words the functions yg‘{ such that

leg, ec] = Vg ea-

Clearly, Vg; = —yg‘ﬂ. Consequently, it is sufficient to compute y/‘;( for 8 < ¢.Bya
straightforward computation,
vor = 4t el Pay, (A.1)
Yo = — LtV A0y — 20 Ja — 17D, (A2)
vor =1t P, (A3)

v =12%eP 2 (K - 0), (A.4)
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where we have used the notation (2.2). Turning to y3,, the only « for which this object is
non-zero is o = 2, and we have

7/022 — —%tl/“e’”“(fl +P).
The only o’s for which y; is non-zero are « = 2 and & = 3, and
Ve =~ AP 0,y = — LAkt _ py),

The only « for which )/1“2 is non-zero is « = 2, and

)/122 — —%t1/4e_k/4a1/2P9.
The only o’s for which y/% is non-zero are o = 2 and o = 3, and
y123 — 1A h/A 12, P 00, y]33 _ %t”“e‘““al/ng.
Finally, y% = 0. For future reference, let us record the following observations:
A —3/4 —)/4 A

You = —t /e, Yia =0,

ve =vor —t eyl =0,

Vow =vor — 1 e vl = -

where Greek indices range from 0 to 3, lower case Latin indices range from 1 to 3 and
capital Latin indices range from 2 to 3; moreover, Einstein’s summation convention is
in force.

Non-zero components. Note that for VE’; to be non-zero, one of the following conditions
has to be satisfied:

o {85} =101},
e one of B and ¢ is in {0, 1}, the other is in {2, 3}, and « is in {2, 3}.

A.2. Connection coefficients
Define the connection coefficients Fg ¢ by the relation
o
Vgﬁeg = Fﬂgea,
where V is the Levi-Civita connection associated with the metric g. Note that
0 .
Fﬁ; =_<Veﬂ€{a €o), r}lfjg =<Veﬂe{a ei),
since the frame is orthonormal. Let us record some symmetries of these objects.

Symmetries of connection coefficients. Since the connection is metric and the basis is
orthonormal, we have
« .
g = 0 (no summation over «).

For similar reasons, fo y is antisymmetric in i and j. Moreover, since [e;, e;] is perpen-
dicular to egp, we have

F;o = (Ve, 0, €i) = —(e0, Ve;ei) = —(e0, Vese) = (Ve,e0, €) = T,
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Thus, F’:O is symmetric in i and j. Note that the computation also shows that F;O = F?j.
Similarly, since [e4, ep] = 0, we have

Tg1 = (Veger.ea) = —(e1, Vegea) = —(e1, Vesen) = (Veyer. ep) = Ty
In particular, 1"21 is symmetric in A and B, and Fgl = —l"/l4 B

Connection coefficients including two or more zero indices. That Fgo = 0 follows
from the above. Moreover, using the Koszul formula, it can be computed that

F(())] =T éo = V(?l
and the remaining components satisfy Fg 4= F(I)Ao =0.
Connection coefficients including exactly one zero index. As already mentioned, Fé i
is antisymmetric and 1"]’:0 = F?j
i < jand Fj.o fori < j. We have

is symmetric. It is thus sufficient to compute 1"6 i for

1 _ 1. A 2 _ 1.2
FCoa=—2v01» Tz = 203
Moreover,
i i . . 1 _ 1. A 2 1.2
i0 = —Yo (nosummationoveri), [,o=—5%1, I35 =55

Connection coefficients including no zero index. Note that, due to the Koszul formula
and the properties of the commutators, the only F} « S which are non-zero are the ones that

have one index equalling 1 and two indices in {2, 3}. Moreover, since '}, = —T'} ; is
symmetric and FIAB is antisymmetric, it is sufficient to calculate that

l"f3 = %ylzg Fﬁl = —yﬁ (no summation over A), F%l = —%yé.

For future reference, note that

Y =y, (A.5)
ri, =0, (A.6)
Ty = =y +1 /e, (A7)
gl(A = . (A.8)

A.3. Twist quantities

The quantities J and K have been defined in two different ways: in (1.2) and in (2.2). In
this subsection, we verify that these two definitions yield the same result. In the proof, it is
useful to introduce different notation for the different definitions. Let us therefore denote
the J and K defined in (1.2) by Jiw and Ky respectively, while the quantities defined in
(2.2) will be still referred to as J and K. As we have calculated the connection coefficients
using the orthonormal frame {e,}, it is convenient to carry out the computations relative
to this frame. Note that

X =120y, ¥ =112 Pey +1126P2 Qe
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where X = 0, and ¥ = 9. In particular, if X* and Y denote the components of X and
Y with respect to the frame {ey}, then

o X2 =112¢P/2 and X* = 0 for o # 2,
o Y2 =1112eP20 y3 =112 P2and YO = ¥! = 0.

Consequently,
Jow = €aprs XYPVE XS = €935 X2Y3VE X0 = 1(VOX! — vIX0)
= —1(VoX' + v, X9, (A.9)

where the indices are frame indices, and we assume that the orientation of M is such that
€123 = 1. Similarly,
K = —t (VoY + v, Y0). (A.10)

It remains to calculate Vo X I etc. However,
Vo XP = £ (Ve, X) = P lea(X)er + X Ve e0] = e (XP) + XETE,.
The calculation for Y is the same. In particular,
VoX' + VX% = X6, +T0,) = X*(Tgy + T = —Xy3,.
Combining this with (A.3) and (A.9) yields
Jiw = tX2y021 =322y 73127125 — .
Next, let us calculate
VoY +ViY? = Yo (g + 1) = Y2(gy + T) + Y3 (T + Ty) = =Yy — Yy
Combining this with (A.3), (A.4) and (A.10) yields

Ko = 1Y2y3 +1Y3y, = 132eP2 0173272 4 1327 P12 32 PI2 (K — 0 ) = K.

A.4. Auxiliary computations

To simplify future calculations, let us make some observations concerning the derivatives
of the connection coefficients. Note first that

1/4g=4/4

Yor = —t

for suitably chosen functions f;. Thus, it can be computed that

i 1 1 3
—eo(vy) = —t1/4em 4%y, (— exp(—zk + 5 Ina — 1 lnt>ta_1/2fi>

1 1\ .
_ Zl1/4ex/4<kt _ 2% _ ;)V(;i A ALyl g 120212 (16712 1),
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where we do not sum over i. However, the coefficient of yéi in the first term is _7’011 and
the coefficient of yél. in the second term is —)/022 - V()33~ Consequently,

eo(TY) + T % = 171267424128, (10712 fy),
where we sum over « but not over i. In particular,
122 2, [ta 7 2 (0 — 207 e — 1], (ALTD)
17V 22 2 [t 2 (7 P, (A.12)
1712 21 2, [t 2 = P (A.13)

eo(Tf)) + Tl =
() + T orzz =
eo(T'93) + Tl =

Pl— = A=

Next, note that y(())l, )/122 and y133 can all be written as h; = t'/4¢=*/4 f; for suitably chosen

functions f;. Moreover,

e1(hi) = t1/4e—k/4a1/280(tl/4e—k/4ﬁ) 1/2 —A/2 1/289f _ VO]

Since Fgl = y(())l, we conclude that

e1 (Do) + T4 Do = 5171 2e ™26 235 (1! 2 1p), (A.14)
e1(Tyy) + T Ty = — 117127421295 (102 Py), (A.15)
e1(Tyy) + T Ty = 71 2e 4261 295 (1012 Py). (A.16)

The expressions y023 and )/123 require a somewhat different treatment. However, similar
arguments yield

e1(Ty)+T3 08 = — 17127227 P 1250 (16126 Q) — L (v —vi)vE. (A7)
eo(T9) + T = 171272 P o129, (1071222 0y + Ly — v v (A18)

A.5. Ricci curvature

The Ricci curvature is given by
Ric(eg, e;)
= ZQX(Reaeﬁe{s ey) = ZQX(VE(X Veﬂe;‘ - Ve,g Veueg - V[eu,eﬁ]eg‘y eq)
o o
= Y €u(Ve, (Phre5) — Vey (Tore5) — v2g T
= € ea( /3;68) eﬂ( a;eé) Yapl s5c€0s eq)
o
= Y eulea(Th)es + Th Thser — ep(Do)es — To Thser — vigTien. ea)
o
= ea(Tf) + T Tos — ep(Tar) — Tor Ths — YapThe
where ¢g = —1 and €; = 1. Let us begin by computing the 00 component:
Ric(eo, €0) = ea(Ty) + Tgolss — e0(Tgo) — 80F86 — Vaol'$o

= e1(Tgy) + TT, — eo(T%y) — T oGy — yforgo.
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In order to simplify this expression, note that
e1(Dgy) + DTy = 17126720123y (1022,
where we have used (A.14). Moreover, due to (A.7),
—eg(T%) = —eo(—yg + 1 /4™%) = eo(ygp) + 11712720 + 3671,
By the symmetries of the connection coefficients,
B 0 i i 10 i i 1 -0 042
_Faorgﬁ = —Tiol00 — TooToi — r‘ijor(l),/ = —Tol'or = =)™
Finally,
B B i 0 i i 042 1 1 Al B A
—Yaol'80 = —7iol o = ¥oi oo + Yoi Tio= o) + Yo+ Y01l a0 + v0aT ko
= (7o0)> = o) + ¥31Tho + ¥4 T30
= (o))" — o))’ — 36)° — 305D — V) — ) — 3’
1.2.3
— 27Y03%02-
Since )/032 = 0, we obtain
Ric(eo, e0) = 31~ /272! oy (10 Phg) + 517220y 4+ 3171 + eo(vg))
— o) — 357 — S — i) — (vgy) — S g™
To simplify this expression, we combine (A.7) and (A.11) to conclude
eo(vo) — (vg))* = —3t~ e 2o [1a ™ P 0 — 207y — 7))
+ }‘t_lﬂe_)‘/z()\, — 2a_1a, — t_l).

Let us now compute

1 1 1
=5 0607 = 50607 = ) = () — 5 ()

L P2 PP (K — U)?
12 =x)2 2 2P 2
= 2t e <P, +e QO + 7 7

1

) _ 1473202
2

Thus

1
Ric(eq, ep) = Zt_l/ze_)‘/zotl/z(ag(tal/zkg) —3ta 20 — 207y — 7))

el/Z—P J2 ek/2+P(K _ QJ)2
t7/2 t7/2

1
_ Etl/ze_“2<P,2+62PQ,2+

+ lt—l/ze—W()\, - %>.
o

[\
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Using (A.5), (A.8) and the antisymmetry of F[‘;[ y ini and j, we get

Ric(eo, e1) = ea(T§)) + T T — (%) — T8 T8, — ybyT4,
= eo(T0)) + T9i T — eo(vg) — FaIFOﬁ - Vaol“,‘é‘l
= F&F{i‘o - Fglrgﬁ - Vforgr

By (A.7),

—3/4,=0/4) 0 ;=3/4,~1/4

0 0 1 0.1
To1 a0 = vo1 (=71 +1 ~Yo1Yo1 T Yot

Moreover, using the symmetries of the connection coefficients, we obtain

B 0 I i J 0.1
_Falrgﬂ =T Tgo — Fjl'lr()i = Yo1%01-

Thus
I‘81 TG0 — Ffll“gﬂ = Vo (344 % 1 1267421/2,.
Finally,
_yforgl - V(ﬁl“j;l o1 Tor + yOlFl = ¥5T31 + ¥ D1 + vl'51 + vesTay
= —Yipvia = 3YGVis — Ysvia = =yt e 2 AP Py + €7 01 00).
Thus

Ric(eo, e1) = 2172202 [1g — 21 (P, Py + 27 0, 0p)].
Using (A.8), we get

Ric(eq. ea) = ea(T§,) + ThaT% — eo(T%,) — Th T8y — v£iT4 4
—3e1(yg) + ToaTe1 = T1aTg0 — ToaToy — F;AF({i + Y01 Toa + ¥6;Tia
= —3e1(yg) + Ty + TEOTG +v0i T pa-
Let us begin by considering the case A = 2:

—161(1/021) _ _%t—5/4e—P/2—A/4a1/2J9 _ %VIZZVOZP
(Tp1 + THITG = —3vhye — 3viavYer
rlo— 2,2 1,32
7/01 B2 = Yo1V12 T 2V01Y13-

Thus

Ric(eq, e2) = —%l_5/4€_P/2_)”/4o(1/2J9.

Moreover

—yei(rg) = =yt e PR (Ky — 0J9) + 3y — 376
(T3 + T = =377
1.2.2 3.3
YorTps = Y0113 + Yo1Vis-
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Keeping in mind that y122 = —y133, we conclude that
Ric(eq, e3) = — 31/ 4eP 1244612 (Ky — QJp).
Using the symmetries of the connection coefficients, we obtain
Ric(er, e1) = e (T'f}) + Ftlsl ws —eaTg) — Fglrtlxs - V&Slrfsxl
_ 0 0 0 A 0 0 i J i 0 0
=eo(T'}))) + T Tg0 —e1vg) — Tyl — Tl — T — v Ton
10 A0 B [-A
= Yo't =vo1Ua1 — vai U
= eo(T7) + TV T — e1(vp) + 3¥01761 — 3761701 + vor T — (ro))®
1 0 A0 B -A
—voil'ti = voilar = va1 Ty
= eo(TY) + T T — e1 () — W? = viiTS, — vE T,
Due to (A.11) and (A.14), the sum of the first four terms is

212 2 2 (31 2 (0 — 207y — 17 1] = Bp(ta P 0p)).

It can also be computed that
~¥iTay = 3t le TP 4" (K = Q1))
—yals = =312 Pa(Pf + 27 0).

Thus
1
Ric(ey, 1) = Zt—l/ze—“zal/z(a,[za—l/z(x, =20y — 1] = dp(1a'?p))

N ltl/Ze—A/Z(e)L/z_P J2 e)‘/2+P(K _ QJ)2
2

112 1172

1
> — Etlﬂe_)‘/zoz(P@z + %P Qg).
Let us turn to

Ric(er. ea) = ea (M) + 174 Tg5 — e1(Tg ) = ToaTs = var T
0 0 1 0 pi i R0 i o0 i 10 i
= eo(T )+ AT o0+ 1Al —Tiali0o=ToaT 1 = Tal1 = viiToa—vor Dia =¥l

1 A 1 B B 1 1 1 B 1 1 0 B0
= —5e0(/o)+T 40 so—T a0l Bo—T0aT 10— Toal o= Y0114 =701 Ba-

We compute
1 2\ _ _1,-5/4 —1/A—P/2 1.3.2 2.2
—Seo(yg) = =5t e PR g — Lyl — v vir
1 1 110 _
—Tplo = vl =0,
B 1 Brl _  1.2.2 1.2.3
=20l g0 = Toal'po = —2Y02Y01 — 2Y03%01>

| B B0 _3.2.2 ,1.2.3 ,1.3.2
Paol'go = Yor1l'g2 = 5V01¥02 + 2701¥03 + 201 Y03+
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Adding up, we obtain
Ric(er, e2) = — 4175/ 4=P12
Furthermore,
_%60()’51) = _%’_5/46})/2_”4(& - QJ) — %%)237/021 - %70221’031 — YosYors
1 1 1 0
—Toslo = vz =0,
Bl B -1 1.3.3
=300 — T'o3lgo = —3 V33015
1 B B0 3.3.3 ,1.3.2 ,1.2.2
30050 = vo1U'B3 = 2Y01 %03 + 2 %0102 + 201703+
Adding up, we obtain
Ric(er, e3) = —51 /424K, — QU)).
Next,
Ric(ea, ep) = ea (M p) + T L5 — ToT%s — vaaT'ss
= eo(Ty ) + e1(Typ) + T gl + Thpley — TopT%s — voaTsp.
Note that if A = B = 2, the first four terms can be written
L1 2e M2 2 ([t 27! + P — 89 (ta' 2 Py))
(cf. (A.12) and (A.15)). Let us therefore turn to
s s 0 i i 0 i ~J 2 0 2 1
—Tool%s = Vo I'so = =TinT = Tool'y = il — vp s — vin ',
i i i 1 pA Al 2 0 2 11
= —T0(Ty + Tgp) =Tl = Tlos — val'an — vial'oo-
However, it can be computed that
—Th (T + i)
1 pA Al
—L ol =T,

1,-3 —P 32 1,1/2 —1/2 2P 52 2.2
—5t e J—gt/e 12¢ 07 — (V)™
1,1/2 —1/2_ 2P A2 2.2
jt/e Pae 05 + (vi5)",

) — (i)™

2 0 2 1
—Yool'22 = ¥ial'o

Adding up gives

1
Ric(ez, 2) = 21727 a2 (01110”12671 + P = By (a2 Py)

ek/2—P ]2

1, 1
/2 —)/2 1/2 —3/2 2P/ 2 2
—21‘ e 7 — —2t e e (07 —aQy).

Next, consider

Ric(ez, e3) = eO(ng) +e1(Ty3) + F83Fgo + T3l —Toslss — v Tss.
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Due to (A.17) and (A.18), the sum of the first four terms can be written
%t—l/ze—k/2—Pal/2[at(ta—1/2e2P 0,) — 89(ta1/262p 00)]

1,.3 202 1,3 2.2
— >z —vi))viz + 3 (Vo3 — Y) Y03+

We compute
s s 0 i i 10 i T~J 2 10 2 1
—Ioal%s — Vaal's3 = =315 — Tgs I — F}3F2i =Yl —vial'as
i i i 1 pA Al 2 0 2 1
= —(T3 + T — Taslay — T304 — v5oTas — vinlos-
However,
i i i 1.3.2 _1.3.2
— (30 + Top) M9 = —2701701 — 2703703
1 pA Al 1.3 .2
=3 =T34 = 3vizvis,
2 10 2 1 1.2.2 _1.2.2
—Y0al'3 = vial'o3 = 2¥ve — 2viaYis:
Adding up, we obtain

Ric(ez, e3) = 5t7'2e ™2 Pl 219, (1a™12e*P 0;) — 39 (ta'?e*" 0p)]
- L3Ik - 0U).
Finally, let us consider
Ric(e3, e3) = eo(I'y3) + e1(T'33) + T T + 3300 — Toslss — VesTss.
Due to (A.13) and (A.16), the sum of the first four terms is
L7127 201 2 (1™ 2 (17! — P + B9t /2 Py)).
Let us therefore compute
s s 0 i i 10 i J A0 Al
—Toal5s — Vasls3 = —Ti3T50 — T35 — F/l'3r3/i —vo3la3 = vizla3
30 03’1 30 A31 31 13134 = Yo3! A3 = Vi3l a3-
On the other hand,
—(To + T T = _%(V()Sl)z — (v’
1 A Al 342
—Iu3l5 =T33, = (3)7,
A0 Al 1,212 332 1,242 342
—Y03las = vizlaz = 2(V3)" + (53)” — 2 (in)” — (¥3)"-
Adding up, we obtain
—T3Tgs — y& T = —13eP (K — Q0)* + 112 22P (02 — w 0F).
Thus
1
Ric(es, e3) = 1™ 2™ a2 (@ 1a™' 27" = PO1+ B9 (1! 2 Py)

_ ltl/ze—x/zel\/HP(K — QJ)?
772

1 _
+ Erl/ze M22P (07 — a Q).
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A.6. The Einstein tensor
Adding up the above, we conclude that the scalar curvature S is given by

1
S=—t712e 2o 2 (31t 2y — 207 oy — 171 ] = Bp(ta P 0g))
1
+ —t12e7 2 P 4 2P Q2 — a(PF + 2 03))

n Lap,-1n et2=P 2 n SRR —00)* 1,2,
2 £1/2 £1/2 2 L

As a consequence, if Eingg = Ein(ey, eg), then

1
Eingg = —Zt1/2e_)‘/2
A/Z—PJZ e)n/2+P(K _ QJ)2
-[Pt2+aP92+e2P(Qz2+“Q§)+ 2 + 72 }
1
gt e (x, - 2%)
. Lyn op
Ein|; = —Zt e
A/ZfPJZ ek/2+P(K _ QJ)2

- (12 :|

2 2 2P 2 2
.|:Pt +aPy+e" (QF +aQp) — 7
+ 1t—1/2e—“2xt,

Eingy = %tfl/Zef)\/Zal/Z

1 3 1
L O R )

2 o 2
1
——tl/ze_)‘/z[Pt2 +3¢*F Q,2 — ot(Pe2 +3¢*F Q%)]

1 12 a2 e)»/Z—PJZ eA/2+P(K _ QJ)2 1 12
_Zt e 3 t7/2 -+ [7/2 -+ Zl e )\t-

The last diagonal component is given by
Ein33 = — %t‘l/ze_)‘ﬂal/z
1 o 3 1
Aot P4 zhy— = — = )| — 0| 1a'?( Py + =i
<t|:05 z+21 o 21 g | ot 9+29
1 _
22, x/z[Ptz —eZPQtz—a(Pez—eZPQ(%)]

A2—P 72 A24P g _ 2
<e J e (K —QJ) >+‘—1lt‘1/2e‘mx,.

1
_ L1202
4

/2 (/2
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Note that
Einy — Bingz = 17"/ 2e 26" /2 (3, (1™ "2 P,) — 89 (ta'/* Py))
_ tl/ze—x/zezp(Qtz . an)
~ 1t1/2e—k/2(ek/2_PJ2 2P (K — QJ)2>.

72 1172

We also have
. . L i 12 —1/2 o 3 172
Einy; + Ein3z = _Et e o 0| ta A —2— — ; — dp(ta ' Ag)
o

1
— Etl/ze_)\/z[Plz +e*P 02 — (P} + P 0]

eA/Z—PJZ ek/Z—i—P(K _ QJ)2
t7/2 t7/2

1
_tl/Ze—A/2< ) +§t_1/2e_’\/zkt.

The remaining components of the Einstein tensor equal the corresponding components
of the Ricci tensor, and so have already been computed. The above calculations yield the
expressions (2.3)—(2.12) for Einstein’s equations, Ein + Ag = T.

A.7. The Vlasov equation

The distribution function f characterising the Vlasov matter is defined on the mass shell.
The mass shell, in its turn, is given by the future directed unit timelike vectors. Since a
tangent vector in this set can be written v¥¢,, where

=1+ @D+ 0+ )

we can think of f as depending on vi, i = 1,2, 3, and the base point. However, due to
the symmetry requirements, the distribution function only depends on the #6-coordinates
of the base point. As a consequence, the distribution function can be considered to be
a function of (¢, 6, v), where v = (vl, v2, v3). In order to derive an equation for f,
recall that the Vlasov equation is equivalent to f being constant along future directed unit
timelike geodesics. Consider, therefore, a future directed unit timelike geodesic

y(s) = [£(s),0(s), x(5), y(s)]

in a T2-symmetric spacetime. Define the functions v®(s) by the equality

y(s) = va(s)e(x|y(s)-

Note that
fl—gm = t4(s)(e™*) 0 y (5) v0(s), (A.19)

j—(j(s) =tY*(s) (e ) o y(s) v! (5). (A.20)
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Let

v(s) = [t(s),0(s), v(s)], h=fouv,
where v(s) = [v! (s), vz(s), v3(s)]. The requirement that f be constant along geodesics
is equivalent to dh/ds = 0 regardless of the choice of future directed unit timelike
geodesic y. On the other hand,

dh _d3f dr df do G~ df  dv
ds_8tovds+890vds+;8viovds'

Keeping (A.19) and (A.20) in mind, the requirement that dh/ds = 0 is equivalent to

of a o vlaf 3 bl af
EOV‘}‘“ oymﬁov—l—i;mﬁo\J—o.

In order to derive an expression for v, note that

. d . . .
0=y = g(v“ea) = 1%, + vﬁV};eﬂ = 0%, + vﬁv“Vgueﬁ ="+ vﬂv“Fﬁﬂ)ea.
The geodesic equation can thus be written

o B
v = vvFﬁM.

Using this formula, it can be calculated that

. 1 0.0 0 1.0..1 2.0.2 3.0.3 2.2.2 3.3.3 2.2.3
V= =Yy Vv + Yorvv + Yy v v +y01v VT — YpUTUT — Y30T 0T — Y3uTuT.

Using the formulae for yf‘ﬂ, we conclude that
. 2.3
v __Lap, o1 o I\ 1 pop, VTV
Wi = g e g\l TRy T Jr e e 0oy

1 332 _ (2)2
- Eal/ngw + 17 Y (e PR g + P2 (K — QU)?),
v

where we have omitted composition with y for brevity. We also have

.2 2 2 2.1.2
v =y02v0v + yjpv v,

so that 5 -
) 1 1\, 1 1)2p VU
m—‘z<P'+;)” EE R
Finally,
e =y023v0v2+y033v0v3+y123v]v2+y133v]v3,
so that

3 1,3 1
v _ 171 3L i, VY P2 12, Y
m—‘5<7"’f)“ HE R S ) &

Adding up the above computations, we conclude that the Vlasov equation is equivalent to
the requirement that (2.19) holds.
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Appendix B. Notation

Metric variables, twist quantities, cosmological constant, frame, manifold

o > 0,A, P, Q, G and H. These are the functions characterising the metric (cf. (1.1)).
X is defined in (3.7).

J and K. These are the twist quantities defined in (1.2). They also satisfy (2.2).

A and H. A is the positive cosmological constant and H = (A /3)'/2.

{eq} 1s the orthonormal frame defined in (1.7).

to, t1. In the situations of interest in this paper, the metric (1.1) is defined on (79, c0) x
T3, where #o > 0. When speaking of a T2-symmetric solution, we take it for granted
that 7g is defined in this way. Moreover, t; = fy + 2.

Variables for the characteristic system

®, V!, V2, V3 are the basic variables of the characteristic system (4.1)—(4.4). The
symbols O(s; ¢, 6, v), V(s; t, 8, v) denote a solution to the characteristic system cor-
responding to initial data (¢, 6, v). In other words, ®(s; t,0,v), V(s;t,6,v), con-
sidered as functions of s, are solutions to (4.1)—(4.4). Moreover, O(z;t,6,v) = 6,
V(t;t,0,v) =v.

W and Zi, i = 1,2, 3. Given a choice of derivative (3;, dg or d,i), say 0, the variables
W and Z = (Z', 2%, Z3) are defined by (6.3)—(6.6).

o U and VA are the rescaled versions of W and Z, and they are defined in (6.22).
o V. Z J’., Vj’ and ©; are the higher order derivatives of ¥, Z, V and ©. They are defined

in (8.8).
zZ zlv and Wy are the rescaled versions of Z le and Wy, and they are defined in (8.23).

Matter quantities

0, Ji, P; and S;;. The quantities p, J;, P; and S;; are defined in general in (2.1). In the
case of Vlasov matter, they are defined in (2.21).

Vlasov matter

e P denotes the mass shell (the set of future directed unit timelike vectors).
e f denotes the distribution function. For Tz—symmetric solutions, f, however, denotes

the symmetry reduced version of the distribution function. In other words, f is con-
sidered to be a function of ¢, 8, v!, v? and v3, where, if p is an element of the mass
shell, (¢, 8, x, y) is the base point of p, and v* are the components of p relative to the
orthonormal frame {e,}.

e fic is the rescaled distribution function. It is given by fi. (¢, 8, v) = f(¢, 6, =1/ 2v).
° To}g is the stress energy tensor associated with the Vlasov matter. It is given by (1.4).

The components of the stress energy tensor with respect to the frame {e, } are given by
(2..1) and (2.21); see also (2.20).
L'. The functions L' are given by (9.3)-(9.5).

The initial value formulation

pry; is the projection defined in Remark 1.26.
pVVand JV! are defined in (1.33) and (1.34).
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Aucxiliary notation

e (h).If h is a scalar function, its mean value is denoted (k) (cf. (1.3)).
e (p).If pisavector, (p) = (14 |p|>)V/2.

Energies controlling the metric variables, the distribution function and solutions to
the characteristic system

e The Hl, .-norm is defined in (1.22).
e 01 and Ay are defined in (2.15). They are given by

dr = & + a8,  Asr=(0+P)*+ P (0:0)°

o Epy is the L2-based energy introduced in (3.8).
o Q! controls the size of the support of f in the v!-direction (cf. (4.7)). It is given by

o) := sup{|v1| S, 0,000 € suppf}.
e F.The sup-norm energy F is introduced in (4.8). It is given by

F(t) = sup A4 (t,0) + sup A_(z, 0).
feS! feS!

e Ay and F are introduced in (4.14) and (4.15) respectively. They are given by

Ar=t* Ay +1t, F@) = sup /i+(t, 0) + sup A_(t,0).
peS! feS!

e R!and Q! are defined in (4.17). They are given by
R'(s) =[s(V's)*+ 112, Qo) = [s(Q'(s)* + 112

° q is defined in (4.19). . N A
e E is introduced in (6.23). Itis given by £ = 33| (Z))? + (¥)2.
e Ay + isintroduced in (7.16). It is given by

Ansrz = [0) P £3) (@' 2 P)* + *7[9) 0, + 0 (¢ 09)).
° ftNH,i and F N+1 are introduced in (7.17). They are given by

2 72 12 p A A
Anst1e =t Ay o +1Y2 Fypr = sup Aygr 4+ sup Ay —.
peS! 0eS!

o Ey is defined in (8.24). It is given by Ey = (W) + (Z})%
e E; and E. These energies control suitably weighted Sobolev norms of the distribution
function. Ej is defined in (9.6). Moreover, E = Ej.
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