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Abstract. The currently preferred models of the universe undergo accelerated expansion induced
by dark energy. One model for dark energy is a positive cosmological constant. It is consequently
of interest to study Einstein’s equations with a positive cosmological constant coupled to matter
satisfying the ordinary energy conditions: the dominant energy condition etc. Due to the difficulty
of analysing the behaviour of solutions to Einstein’s equations in general, it is common to either
study situations with symmetry, or to prove stability results. In the present paper, we do both. In
fact, we analyse, in detail, the future asymptotic behaviour of T3-Gowdy symmetric solutions to
the Einstein–Vlasov equations with a positive cosmological constant. In particular, we prove the
cosmic no-hair conjecture in this setting. However, we also prove that the solutions are future stable
(in the class of all solutions). Some of the results hold in a more general setting. In fact, we obtain
conclusions concerning the causal structure of T2-symmetric solutions, assuming only the presence
of a positive cosmological constant, matter satisfying various energy conditions and future global
existence. Adding the assumption of T3-Gowdy symmetry to this list of requirements, we obtain
C0-estimates for all but one of the metric components. There is consequently reason to expect that
many of the results presented in this paper can be generalised to other types of matter.
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1. Introduction

Towards the end of 1998, two research teams studying supernovae of type Ia announced
the unexpected conclusion that the universe is expanding at an accelerating rate (cf. [27,
18]). After the observations had been corroborated by other sources, there was a corre-
sponding shift in the class of solutions to Einstein’s equations used to model the universe.
In particular, physicists attributed the acceleration to a form of matter they referred to
as ‘dark energy’. However, as the nature of the dark energy remains unclear, there are
several models for it. The simplest one is that of a positive cosmological constant (which
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is the one we use in the present paper), but there are several other possibilities (cf., e.g.,
[24, 25, 26] and references cited therein for some examples). Combining the different ob-
servational data, the currently preferred model of the universe is spatially homogeneous
and isotropic (i.e., the cosmological principle is assumed to be valid), spatially flat, and
has matter of the following forms: ordinary matter (usually modelled by a radiation fluid
and dust), dark matter (often modelled by dust), and dark energy (often modelled by a
positive cosmological constant).

In the present paper, we are interested in the Einstein–Vlasov system. This corre-
sponds to a different description of the matter than the one usually used. However, this
system can also be used in order to obtain models consistent with observations (cf., e.g.,
[31, Chapter 28]). In fact, Vlasov matter has the property that it naturally behaves as ra-
diation close to the singularity and as dust in the expanding direction, a desirable feature
which is usually put in by hand when using perfect fluids to model the matter.

The cosmic no-hair conjecture. The standard starting point in cosmology is the assump-
tion of spatial homogeneity and isotropy. However, it is preferable to prove that solutions
generally isotropise and that the spatial variation (as seen by observers) becomes negli-
gible. This is expected to happen in the presence of a positive cosmological constant; in
fact, solutions are in that case expected to appear de Sitter like to observers at late times.
The latter expectation goes under the name of the cosmic no-hair conjecture (see Con-
jecture 1.11 for a precise formulation). The main objective when studying the expanding
direction of solutions to Einstein’s equations with a positive cosmological constant is to
verify this conjecture.

Spatial homogeneity. Turning to the results that have been obtained so far, it is natu-
ral to begin with the spatially homogeneous setting. In 1983, Robert Wald wrote a short,
but remarkable, paper [40], in which he proved results concerning the future asymptotic
behaviour of spatially homogeneous solutions to Einstein’s equations with a positive cos-
mological constant. In particular, he confirmed the cosmic no-hair conjecture. What is
remarkable about the paper is that he was able to obtain conclusions assuming only that
certain energy conditions hold and that the solution does not break down in finite time.
Concerning the symmetry type, the only issue that comes up in the argument is whether it
is compatible with the spatial hypersurfaces of homogeneity having positive scalar curva-
ture or not; positive scalar curvature of these hypersurfaces sometimes leads to recollapse.
The results should be contrasted with the case of Einstein’s vacuum equation in the spa-
tially homogeneous setting, where the behaviour is strongly dependent on the symmetry
type. Since Wald did not prove future global existence, it is necessary to carry out a fur-
ther analysis in order to confirm the picture obtained in [40] in specific cases. In the case
of the Einstein–Vlasov system, this was done in [13]. It is also of interest that it is possible
to prove results analogous to those of Wald for more general models for dark energy (see
e.g., [24, 25, 26, 14]).

Surface symmetry. Turning to the spatially inhomogeneous setting, there are results in
the surface symmetric case with a positive cosmological constant (cf. [39, 38, 37, 15]; see
[22] for the definition of surface symmetry). In this case, the isometry group (on a suit-
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able covering space) is 3-dimensional. Nevertheless, the system of equations that result
after symmetry reduction is 1+1-dimensional. However, the extra symmetries do elimi-
nate some of the degrees of freedom. Again, the main results are future causal geodesic
completeness and a verification of the cosmic no-hair conjecture.

T2-symmetry. A natural next step to take after surface symmetry is to consider Gowdy
or T2-symmetry. That is the purpose of the present paper. In particular, we prove future
causal geodesic completeness of solutions to the T3-Gowdy symmetric Einstein–Vlasov
equations with a positive cosmological constant (note, however, the caveat concerning
global existence stated in Subsection 1.1). Moreover, we verify that the cosmic no-hair
conjecture holds. It is of interest that most of the arguments go through under the as-
sumption of T2-symmetry. However, in order to obtain the full picture in this setting, it
is necessary to prove one crucial inequality (see Definition 1.1), which we have not yet
been able to do in general.

Stability. A fundamental question in the study of cosmological solutions is that of future
stability: given initial data corresponding to an expanding solution, do small perturba-
tions thereof yield maximal globally hyperbolic developments which are future causally
geodesically complete and globally similar to the future? In the case of a positive cos-
mological constant, the first result was obtained by Helmut Friedrich [10]; he proved
stability of de Sitter space in 3 + 1 dimensions. Later, he and Michael Anderson [11, 1]
generalised the result to higher (even) dimensions and to include various matter fields.
Moreover, results concerning radiation fluids were obtained in [16]. However, conformal
invariance plays an important role in the arguments presented in these papers. As a con-
sequence, there seems to be a limitation of the types of matter models that can be dealt
with using the corresponding methods. The paper [28] was written with the goal of de-
veloping methods that are more generally applicable. The papers [29, 36, 32, 34, 35, 12],
in which the methods developed in [28] play a central role, indicate that this goal was
achieved. In fact, a general future global non-linear stability result for spatially homoge-
neous solutions to the Einstein–Vlasov equations with a positive cosmological constant
was obtained in [31], the ideas developed in [28] being at the core of the argument.

In the present paper, we not only derive detailed future asymptotics of T3-Gowdy
symmetric solutions to the Einstein–Vlasov equations with a positive cosmological con-
stant. We also prove that all the resulting solutions are future stable in the class of all
solutions (without symmetry assumptions).

Outlook. As we describe in the next subsection, some of the results concerning T3-
Gowdy symmetric solutions hold irrespective of the matter model (as long as it satisfies
the dominant energy condition and the non-negative pressure condition). As a conse-
quence, we expect that it might be possible to derive detailed asymptotics in the case
of the Einstein–Maxwell equations (with a positive cosmological constant), and in the
case of the Einstein-Euler system (though the issue of shocks may be relevant in the lat-
ter case). Due to the stability results demonstrated in [36, 32, 34, 35], it might also be
possible to prove stability of the corresponding solutions.
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1.1. General results under the assumption of T2-symmetry

T2-symmetry. In the present paper, we are interested in T2-symmetric solutions to Ein-
stein’s equations. There are various geometric ways of imposing this type of symmetry
(cf., e.g., [7, 33]), but for the purposes of the present paper, we simply assume the topol-
ogy to be of the form I × T3, where I is an open interval contained in (0,∞). If θ , x
and y are ’coordinates’ on T3 and t is the coordinate on I , we also assume the metric to
be of the form

g = t−1/2eλ/2(−dt2+α−1dθ2)+ teP [dx+Qdy+(G+QH)dθ ]2+ te−P (dy+Hdθ)2,

(1.1)
where the functions α > 0, λ, P , Q, G and H only depend on t and θ (cf., e.g., [33]).
Note that translation in the x and y directions defines a smooth action of T2 on the space-
time (as well as on each constant-t hypersurface). Moreover, the metric is invariant under
this action, and the corresponding orbits are referred to as symmetry orbits, given by
{t} × {θ} × T2. Note that the area of a symmetry orbit is proportional to t . For this rea-
son, the foliation of the spacetime corresponding to the metric form (1.1) is referred to
as the constant areal time foliation. The case of T3-Gowdy symmetry corresponds to the
functions G and H being independent of time; again, there is a more geometric way of
formulating this condition: the spacetime is said to be Gowdy symmetric if the so-called
twist quantities, given by

J = εαβγ δX
αY β∇γXδ, K = εαβγ δX

αY β∇γ Y δ, (1.2)

vanish, where X = ∂x and Y = ∂y are Killing fields of the above metric and ε is the
volume form. A basic question to ask concerning T2-symmetric solutions to Einstein’s
equations is whether the maximal globally hyperbolic development of initial data admits
a constant areal time foliation which is future global. There is a long history of proving
such results. The first one was obtained by Vincent Moncrief [17] in the case of vac-
uum solutions with T3-Gowdy symmetry. The cases of T2-symmetric vacuum solutions
with and without a positive cosmological constant have also been considered in [8] and
[5] respectively. Turning to Vlasov matter, [2] contains an analysis of the existence of
foliations in the T3-Gowdy symmetric Einstein–Vlasov setting. The corresponding re-
sults were later extended to the T2-symmetric case in [4]. However, from our point of
view, the most relevant result is that of [33]. By the results of that paper, there is, given
T2-symmetric initial data to the Einstein–Vlasov equations with a positive cosmologi-
cal constant, a future global foliation of the spacetime of the form (1.1). In other words
I = (t0,∞). Moreover, if the distribution function is not identically zero, then t0 = 0. Fi-
nally, if the initial data have Gowdy symmetry, then the same is true of the development.
Strictly speaking, the future global existence result in [33] is based on the observation that
the argument should not be significantly different from the proofs in [5, 8, 4]. It would be
preferable to have a complete proof of future global existence in the case of interest here,
but we shall not provide it in this paper.

Results. Turning to the results, it is of interest to note that some of the conclusions can
be obtained without making detailed assumptions concerning the matter content. For that
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reason, let us assume, for the remainder of this subsection, that we have a solution to
Einstein’s equations with a positive cosmological constant, where the metric is of the
form (1.1), the existence interval I is of the form (t0,∞) and the matter satisfies the
dominant energy condition and the non-negative pressure condition; recall that the matter
is said to satisfy the dominant energy condition if T (u, v) ≥ 0 for all pairs u, v of future
directed timelike vectors (where T is the stress energy tensor associated with the matter);
and that it is said to satisfy the non-negative pressure condition if T (w,w) ≥ 0 for every
spacelike vector w. To begin with, there is a constant C > 0 such that α(t, θ) ≤ Ct−3

for all (t, θ) ∈ [t0 + 2,∞) × S1 (cf. Proposition 3.3). In fact, this conclusion also holds
if we replace the cosmological constant with a non-linear scalar field with a positive
lower bound (cf. Remark 3.4). One particular consequence of this estimate for α is that
the θ -coordinate of a causal curve converges. Moreover, observers whose θ -coordinates
converge to different θ -values are asymptotically unable to communicate. In this sense,
there is asymptotic silence. In the case of Gowdy symmetry, more can be deduced. In fact,
for every ε > 0, there is a T > t0 such that

λ(t, θ) ≥ −3 ln t + 2 ln
3

43
− ε

for all (t, θ) ∈ [T ,∞) × S1 (cf. Proposition 3.5). This estimate turns out to be of cru-
cial importance also in the general T2-symmetric case. For this reason, we introduce the
following terminology.

Definition 1.1. A metric of the form (1.1) which is defined for t > t0 for some t0 ≥ 0 is
said to have λ-asymptotics if for every ε > 0 there is a T > t0 such that

λ(t, θ) ≥ −3 ln t + 2 ln
3

43
− ε for all (t, θ) ∈ [T ,∞)× S1.

Remark 1.2. All Gowdy solutions have λ-asymptotics under the above assumptions (cf.
Proposition 3.5).

Proposition 1.3. Consider a T2-symmetric solution to Einstein’s equations with a posi-
tive cosmological constant. Assume that the matter satisfies the dominant energy condi-
tion and the non-negative pressure condition. Assume moreover that the corresponding
metric admits a foliation of the form (1.1) on I × T3, where I = (t0,∞) and t0 ≥ 0.
Finally, assume that the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a
constant C > 0 such that ∥∥∥∥λ(t, ·)+ 3 ln t − 2 ln

3
43

∥∥∥∥
C0
≤ Ct−1/2,

t−3/2
〈α−1/2(t, ·)〉 + ‖Q(t, ·)‖C0 + ‖P(t, ·)‖C0 ≤ C,

‖Ht (t, ·)‖L1 + ‖Gt (t, ·)‖L1 ≤ Ct
−3/2

for all (t, θ) ∈ [t1,∞)× S1.
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Remark 1.4. The choice t1 = t0+2 may seem unnatural. However, we need to stay away
from t0 (since we do not control the solution close to t0). Moreover, in some situations
we need to know that ln t is positive and bounded away from zero. Since t0 = 0 for most
solutions, it is therefore natural to only consider the interval t ≥ t0+ 2 in the study of the
future asymptotics.

Remark 1.5. If h is a scalar function on S1, we use the notation

〈h〉 =
1

2π

∫
S1
h dθ. (1.3)

Sometimes, we shall use the same notation for a scalar function h on I × S1. In that
case, 〈h〉 is the function of t defined by 〈h(t, ·)〉. Finally, if p̄ ∈ R3, we shall also use the
notation 〈p̄〉. However, in that case, 〈p̄〉 = (1+ |p̄|2)1/2 (cf. Remark 1.19).

Proof of Proposition 1.3. The statement is a consequence of Lemmas 3.7–3.9. ut

In particular, in the case of a T3-Gowdy symmetric solution, there is asymptotic silence
in the sense that the θxy-coordinates of a causal curve converge, and causal curves whose
asymptotic θxy-coordinates differ are asymptotically unable to communicate (cf. Propo-
sition 3.10).

1.2. Results in the Einstein–Vlasov setting

In order to be able to draw detailed conclusions, we need to restrict our attention to a
specific type of matter. In the present paper, we study the Einstein–Vlasov system.

A general description of Vlasov matter. Intuitively, Vlasov matter gives a statistical de-
scription of an ensemble of collections of particles. In practice, the matter is described by
a distribution function defined on the space of states of particles. The possible states are
given by the future directed causal vectors (here and below, we assume that the Lorentz
manifolds under consideration are time oriented). Usually, one distinguishes between
massive and massless particles. In the latter case, the distribution function is defined on
the future light cone, and in the former case, it is defined on the interior.

In the present paper, we are interested in the massive case, and we assume all the
particles to have unit mass (for a description of how to reduce the case of varying masses
to the case of all particles having unit mass, see [6]). As a consequence, the distribution
function is a non-negative function on the mass shell P , defined to be the set of future
directed unit timelike vectors. In order to connect the matter to Einstein’s equations, we
need to associate a stress energy tensor with the distribution function. It is given by

T Vl
αβ (r) =

∫
Pr
fpαpβµPr . (1.4)

In this expression, Pr denotes the set of future directed unit timelike vectors based at the
spacetime point r . In other words, if Tref ∈ TrM is a future directed timelike vector, then

Pr = {v ∈ TrM : g(v, v) = −1, g(Tref, v) < 0}.
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Moreover, the Lorentz metric g induces a Riemannian metric on Pr , and µPr denotes the
corresponding volume form (see (1.18) below for a coordinate representation of µPr ).
Finally, pα denotes the components of the one-form obtained by lowering the index of
p ∈ Pr using the Lorentz metric g. Clearly, it is necessary to demand some degree of
fall-off of the distribution function f in order for the integral (1.4) to be well defined. In
the present paper, we shall be mainly interested in the case that the distribution function
has compact support in the momentum directions (for a fixed spacetime point). However,
in Subsections 1.3–1.7 we shall consider a somewhat more general situation. The equation
the distribution function has to satisfy is given by

Lf = 0. (1.5)

Here L denotes the vector field induced on the mass shell by the geodesic flow (see (1.19)
below for a coordinate representation). An alternative way to formulate this equation is to
demand that f be constant along γ̇ for every future directed unit timelike geodesic γ . The
intuitive interpretation of the Vlasov equation (1.5) is that collisions between particles are
neglected. It is of interest that if f satisfies the Vlasov equation, then the stress energy
tensor is divergence free. To conclude, the Einstein–Vlasov equations with a positive cos-
mological constant consist of (1.5) and

Ein+3g = T Vl, (1.6)

where T Vl is given by the right hand side of (1.4) and 3 is a positive constant. Moreover,

Ein = Ric− 1
2Sg

is the Einstein tensor, where Ric is the Ricci tensor and S is the scalar curvature of the
Lorentz manifold (M, g). The above description is somewhat brief, and the reader inter-
ested in more details is referred to, e.g., [9, 23, 3, 31].

Vlasov matter under T2-symmetry. In the case of T2-symmetry, it is convenient to
use a symmetry reduced version of the distribution function. To this end, introduce the
orthonormal frame

e0 = t
1/4e−λ/4∂t , e1 = t

1/4e−λ/4α1/2(∂θ −G∂x −H∂y),

e2 = t
−1/2e−P/2∂x, e3 = t

−1/2eP/2(∂y −Q∂x).
(1.7)

Since the distribution function f is defined on the mass shell, it is convenient to
parametrise this set; note that the manifolds we are interested in here are parallelisable
(i.e., they have a global frame). An element in P can be written vαeα , where

v0
= [1+ (v1)2 + (v2)2 + (v3)2]1/2.

As a consequence, we can think of f as depending on vi , i = 1, 2, 3, and the base point.
However, due to the symmetry requirements, the distribution function only depends on
the tθ -coordinates of the base point. As a consequence, the distribution function can be
considered to be a function of (t, θ, v), where v = (v1, v2, v2). In what follows, we shall
abuse notation and denote the symmetry reduced function, defined on I × S1

×R3, by f .
A symmetry reduced version of the equations is found in Section 2.
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Remark 1.6. In the T2-symmetric setting, we always assume the distribution function f
has compact support when restricted to constant-t hypersurfaces. Under the assumptions
made in the present paper, f has this property, assuming the initial datum for f has
compact support.

The first question to ask concerning T2-symmetric solutions is that of existence of con-
stant areal time foliations for an interval of the form (t0,∞). However, due to previous
results (cf. [33]), we know that T2-symmetric solutions to the Einstein–Vlasov equations
with a positive cosmological constant are future global in this setting (keeping the caveat
stated in Subsection 1.1 in mind). In other words, there is a t0 ≥ 0 such that the solution
admits a foliation of the form (1.1) on I × T3, where I = (t0,∞). Consequently, the
issue of interest here is the asymptotics. Unfortunately, we are unable to derive detailed
asymptotics for all T2-symmetric solutions. However, we do obtain results for solutions
with λ-asymptotics; recall that all T3-Gowdy symmetric solutions fall into this class.

Theorem 1.7. Consider a T2-symmetric solution to the Einstein–Vlasov system with
a positive cosmological constant. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I × T3, where I = (t0,∞). Assume that the solution has
λ-asymptotics and let t1 = t0 + 2. Then there are smooth functions α∞ > 0, P∞, Q∞,
G∞ and H∞ on S1 and, for every 0 ≤ N ∈ Z, a constant CN > 0 such that

t‖Ht (t, ·)‖CN + t‖Gt (t, ·)‖CN + ‖H(t, ·)−H∞‖CN + ‖G(t, ·)−G∞‖CN ≤ CN t
−3/2,

(1.8)

t‖Pt (t, ·)‖CN + t‖Qt (t, ·)‖CN + ‖P(t, ·)− P∞‖CN + ‖Q(t, ·)−Q∞‖CN ≤ CN t
−1,

(1.9)∥∥∥∥αtα + 3
t

∥∥∥∥
CN
+

∥∥∥∥λt + 3
t

∥∥∥∥
CN
≤ CN t

−2, (1.10)

‖t3α(t, ·)− α∞‖CN +

∥∥∥∥λ(t, ·)+ 3 ln t − 2 ln
3

43

∥∥∥∥
CN
≤ CN t

−1 (1.11)

for all t ≥ t1. Define fsc(t, θ, v) = f (t, θ, t
−1/2v). Then there is an R > 0 such that

suppfsc(t, ·) ⊆ S1
× BR(0)

for all t ≥ t1, where BR(0) is the ball of radius R in R3 centred at 0. Moreover, there is
a smooth, non-negative function fsc,∞ on S1

× R3 with compact support such that

t‖∂tfsc(t, ·)‖CN (S1×R3) + ‖fsc(t, ·)− fsc,∞‖CN (S1×R3) ≤ CN t
−1

for all t ≥ t1. Turning to the geometry, let ḡ(t, ·) and k̄(t, ·) denote the metric and the
second fundamental form induced by g on the hypersurface {t} × T3, and let ḡij (t, ·)
denote the components of ḡ(t, ·) with respect to the vector fields ∂1 = ∂θ , ∂2 = ∂x and
∂3 = ∂y etc. Then

‖t−1ḡij (t, ·)− ḡ∞,ij‖CN + ‖t
−1k̄ij −Hḡ∞,ij‖CN ≤ CN t−1 (1.12)
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for all t ≥ t1, where H = (3/3)1/2 and

ḡ∞ =
3

43α∞
dθ2
+ eP∞ [dx +Q∞dy + (G∞ +Q∞H∞) dθ]

2
+ e−P∞(dy +H∞ dθ)

2.

(1.13)
Moreover, the solution is future causally geodesically complete.

The proof of the above theorem is given in Section 10.
It is of interest to record what the spacetime looks like to an observer. In particular, we

wish to prove the cosmic no-hair conjecture in the present setting. The rough statement of
this conjecture is that the spacetime appears de Sitter like to late time observers. However,
in order to be able to state a theorem, we need a formal definition. Before proceeding to
the details, let us provide some intuition. Let

gdS = −dt
2
+ e2Ht ḡE, (1.14)

where H = (3/3)1/2 and ḡE denotes the standard flat Euclidean metric. Then (R4, gdS)

corresponds to a part of de Sitter space. It may seem more reasonable to consider de
Sitter space itself. However, as far as the asymptotic behaviour of de Sitter space is con-
cerned, (1.14) is as good a model as de Sitter space itself. Consider a future directed and
inextendible causal curve in (R4, gdS), say γ = (γ 0, γ̄ ), defined on (s−, s+). Then γ̄ (s)
converges to some x̄0 ∈ R3 as s → s+−. Moreover, γ (s) ∈ Cx̄0,3 for all s, where

Cx̄0,3 = {(t, x̄) : |x̄ − x̄0| ≤ H−1e−Ht }.

In practice, it is convenient to introduce a lower bound on the time coordinate and to
introduce a margin in the spatial direction. Moreover, it is convenient to work with open
sets. We shall therefore be interested in sets of the form

C3,K,T = {(t, x̄) : t > T , |x̄| < KH−1e−Ht }; (1.15)

note that x̄0 can be translated to zero by an isometry. Since we are interested in the late
time behaviour of solutions, it is natural to restrict attention to sets of the form C3,K,T
for some K ≥ 1 and T > 0.

Definition 1.8. Let (M, g) be a time oriented, globally hyperbolic Lorentz manifold
which is future causally geodesically complete. Assume moreover that (M, g) is a so-
lution to Einstein’s equations with a positive cosmological constant 3. Then (M, g) is
said to be future asymptotically de Sitter like if there is a Cauchy hypersurface 6 in
(M, g) such that for every future oriented and inextendible causal curve γ in (M, g), the
following holds:

• there is an open setD in (M, g) such that J−(γ )∩J+(6) ⊂ D andD is diffeomorphic
to C3,K,T for a suitable choice of K ≥ 1 and T > 0,
• using ψ : C3,K,T → D to denote the diffeomorphism; letting R(t) = KH−1e−Ht ;

using ḡdS(t, ·) and k̄dS(t, ·) to denote the metric and the second fundamental form in-
duced on St = {t} × BR(t)(0) by gdS; using ḡ(t, ·) and k̄(t, ·) to denote the metric and
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the second fundamental form induced on St by ψ∗g (where ψ∗g denotes the pullback
of g by ψ); and letting N ∈ N, we have

lim
t→∞

(
‖ḡdS(t, ·)− ḡ(t, ·)‖CNdS(St )

+ ‖k̄dS(t, ·)− k̄(t, ·)‖CNdS(St )

)
= 0. (1.16)

Remark 1.9. In the definition, we use the notation

‖h‖CNdS(St )
=

(
sup
St

N∑
l=0

ḡdS,i1j1 · · · ḡdS,iljl ḡ
im
dS ḡ

jn

dS∇
i1
dS · · · ∇

il
dShij∇

j1
dS · · · ∇

jl
dShmn

)1/2

for a covariant 2-tensor field h on St , where ∇dS denotes the Levi-Civita connection
associated with ḡdS(t, ·). Note also that, even though R(t) shrinks to zero exponentially,
the diameter of St , as measured with respect to ḡdS(t, ·), is constant.

Remark 1.10. In some situations it might be more appropriate to adapt the Cauchy hy-
persurface 6 to the causal curve γ , i.e., to first fix γ and then 6.

The above definition leads to a formal statement of the cosmic no-hair conjecture.

Conjecture 1.11 (Cosmic no-hair). Let A denote the class of initial data such that the
corresponding maximal globally hyperbolic developments (MGHD’s) are future causally
geodesically complete solutions to Einstein’s equations with a positive cosmological con-
stant 3 (for some fixed matter model). Then generic elements of A yield MGHD’s that
are future asymptotically de Sitter like.

Remark 1.12. It is probably necessary to exclude certain matter models in order for the
statement to be correct. Moreover, the statement, as it stands, is quite vague: there is no
precise definition of ‘generic’. However, which notion of genericity is most natural might
depend on the situation.

Remark 1.13. The Nariai spacetimes, discussed, e.g., in [28, pp. 126-127], are time ori-
ented, globally hyperbolic, causally geodesically complete solutions to Einstein’s vacuum
equations with a positive cosmological constant that do not exhibit future asymptotically
de Sitter like behaviour. They are thus potential counterexamples to the cosmic no-hair
conjecture. There is a similar example in the Einstein–Maxwell setting (with a positive
cosmological constant) in [28, p. 127]. However, both of these examples are rather spe-
cial, and it is natural to conjecture them to be unstable. Nevertheless, they constitute the
motivation for demanding genericity.

Finally, we are in a position to phrase a result concerning the cosmic no-hair conjecture in
the T3-Gowdy symmetric setting. The proof of the theorem below is given in Section 10.

Theorem 1.14. Consider a T2-symmetric solution to the Einstein–Vlasov system with
a positive cosmological constant. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I × T3, where I = (t0,∞). Assume that the solution has
λ-asymptotics. Then the solution is future asymptotically de Sitter like, i.e., the cosmic
no-hair conjecture holds.
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Remark 1.15. Recall that all T3-Gowdy symmetric solutions have λ-asymptotics.

Remark 1.16. In the particular case of interest here, the equality (1.16) can actually be
improved to the estimate

‖ḡdS(τ, ·)− ḡ(τ, ·)‖CNdS(Sτ )
+ ‖k̄dS(τ, ·)− k̄(τ, ·)‖CNdS(Sτ )

≤ CNe
−2Hτ

for all τ > T and a suitable constant CN .

Remark 1.17. The main estimate needed to prove the theorem is (1.12). In situations
where such an estimate holds, it is thus to be expected that the solution is future asymp-
totically de Sitter like.

1.3. Stability, notation and function spaces

Let us now turn to the subject of stability. Combining Theorem 1.7 with the results of [31],
it turns out to be possible to prove that the solutions to which Theorem 1.7 applies are
also future stable. In the present subsection, we begin by introducing the terminology
necessary in order to make a formal statement of this result.

Let (M, g) be a time oriented n+1-dimensional Lorentz manifold. We say that (x, U)
are canonical local coordinates if ∂x0 is future oriented timelike on U and g(∂xi |r , ∂xj |r),
i, j = 1, . . . , n, are the components of a positive definite metric for every r ∈ U (cf. [31,
p. 87]). If p ∈ Pr for some r ∈ U , we then define

4x(p) = 4x(p
α∂xα |r) = [x(r), p̄], (1.17)

where p̄ = (p1, . . . , pn). Note that 4x are local coordinates on the mass shell. If f is
defined on the mass shell, we shall use the notation fx = f ◦ 4

−1
x . It is also convenient

to introduce the notation p̄x according to 4x(p) = [x(r), p̄x(p)], assuming p ∈ Pr . With
this notation, the measure µPr can be written

µPr = −
|gx(r)|

1/2

px,0 ◦ ιr
ι∗r dp̄x, (1.18)

where |gx| is the determinant of the metric g expressed in the x-coordinates; ιr : Pr → P
is the inclusion; pαx (p) are the components of p in the coordinates x; and px,α(p) =

gx,αβp
β
x (p). The reader interested in the derivation of (1.18) is referred to [31, Sec-

tion 13.3]. Let us also note that the operator L is given by

L = pαx
∂

∂xα
− 0iαβp

α
xp
β
x
∂

∂ p̄ix
(1.19)

in the above coordinates.
In order to proceed, we need to introduce function spaces for the distribution func-

tions. To that end, recall [31, Definition 7.1, p. 87]:
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Definition 1.18. Let 1 ≤ n ∈ Z, µ ∈ R, (M, g) be a time oriented n + 1-dimensional
Lorentz manifold and P be the set of future directed unit timelike vectors. The space
D∞µ (P) is defined to consist of the smooth functions f : P → R such that, for every
choice of canonical local coordinates (x, U), n + 1-multiindex α and n-multiindex β,
the derivative ∂αx ∂

β
p̄ fx (where x symbolises the first n + 1 and p̄ the last n variables),

considered as a function from x(U) to the set of functions from Rn to R, belongs to

C[x(U), L2
µ+|β|(R

n)]. (1.20)

Remark 1.19. The space L2
µ(Rn) is the weighted L2-space corresponding to the norm

‖h‖L2
µ
=

(∫
Rn
〈p̄〉2µ|h(p̄)|2 dp̄

)1/2

, (1.21)

where 〈p̄〉 = (1+ |p̄|2)1/2; recall the comments in Remark 1.5.

Remarks 1.20. If f ∈ D∞µ (P) for some µ > n/2 + 1, then the stress energy tensor is
a well defined smooth function (cf. [31, Proposition 15.37, p. 246]). Moreover, the stress
energy tensor is divergence free if f satisfies the Vlasov equation.

It is worth pointing out that it is possible to introduce more general function spaces, corre-
sponding to a finite degree of differentiability (cf. [31, Definition 15.1, p. 234]). However,
the above definition is sufficient for our purposes. The above function spaces are suitable
when discussing functions on the mass shell. However, we also need to introduce function
spaces for the initial datum for the distribution function. If (x̄, U) are local coordinates on
a manifold 6, we introduce local coordinates on T6 by 4̄x̄(p̄

i∂x̄i |ξ̄ ) = (x̄(ξ̄ ), p̄) in anal-
ogy with (1.17). Moreover, if f̄ is defined on T6, we shall use the notation f̄x̄ = f̄ ◦4̄

−1
x̄ .

Let us recall [31, Definition 7.5, p. 89]:

Definition 1.21. Let 1 ≤ n ∈ Z, µ ∈ R and 6 be an n-dimensional manifold. The space
D̄∞µ (T 6) is defined to consist of the smooth functions f̄ : T6 → R such that, for every
choice of local coordinates (x̄, U), n-multiindex α and n-multiindex β, the derivative
∂αx̄ ∂

β
p̄ f̄x̄ (where x̄ symbolises the first n and p̄ the last n variables), considered as a function

from x̄(U) to the set of functions from Rn to R, belongs to

C[x̄(U), L2
µ+|β|(R

n)].

Remark 1.22. According to the criteria appearing in Definitions 1.18 and 1.21, we need
to verify continuity conditions for every choice of local coordinates. However, it turns out
to be sufficient to consider a fixed collection of local coordinates covering the manifold
of interest (cf. [31, Lemma 15.9, p. 235 and Lemma 15.19, p. 237]).

Finally, in order to be able to state a stability result, we need a norm. To this end, recall
[31, Definition 7.7, pp. 89–90]:
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Definition 1.23. Let 1 ≤ n ∈ Z, 0 ≤ l ∈ Z, µ ∈ R and 6 be a compact n-dimensional
manifold. Let, moreover, χ̄i , i = 1, . . . , j , be a finite partition of unity subordinate to a
cover consisting of coordinate neighbourhoods, say (x̄i, Ui). Then ‖ · ‖H l

Vl,µ
is defined by

‖f̄ ‖H l
Vl,µ
=

( j∑
i=1

∑
|α|+|β|≤l

∫
x̄i (Ui )×Rn

〈%̄〉2µ+2|β|χ̄i(ξ̄ )(∂
α

ξ̄
∂
β
%̄ f̄x̄i )

2(ξ̄ , %̄) dξ̄ d%̄

)1/2

(1.22)
for each f̄ ∈ D̄∞µ (T 6).

Remark 1.24. Clearly, the norm depends on the choice of partition of unity and on the
choice of coordinates. However, different choices lead to equivalent norms. Here, we are
mainly interested in the case 6 = T3, in which case it is not necessary to introduce local
coordinates or a partition of unity.

1.4. The Einstein–Vlasov-non-linear scalar field system

In the present paper, we are mainly interested in the Einstein–Vlasov system with a pos-
itive cosmological constant. However, in the proof of future stability of T3-Gowdy sym-
metric solutions, we use two results. First, we use the fact that solutions that start out close
to de Sitter space are future stable. Second, we use Cauchy stability. There are results of
this type in the literature. However, they are formulated in the Einstein–Vlasov-non-linear
scalar field setting. In order to make it clear that the statements appearing in the literature
can be applied in our setting, it is therefore necessary to briefly describe the Einstein–
Vlasov-non-linear scalar field system. This is the purpose of the present subsection.

In 3+1-dimensions, the Einstein–Vlasov-non-linear scalar field system can be written

Rαβ − Tαβ +
1
2 (tr T )gαβ = 0, (1.23)

∇
α
∇αφ − V

′
◦ φ = 0, (1.24)
Lf = 0 (1.25)

(cf. [31, (7.13)–(7.15), p. 91]). In these equations, φ ∈ C∞(M) is referred to as the scalar
field; V : R → R is a smooth function referred to as the potential; ∇ is the Levi-Civita
connection associated with the metric g; and

Tαβ = T
sf
αβ + T

Vl
αβ ,

where T Vl is defined in (1.4) and

T sf
αβ = ∇αφ∇βφ −

[ 1
2∇

γφ∇γφ + V (φ)
]
gαβ .

Assuming that V ′(0) = 0, it is consistent to demand that φ be zero in (1.24). Moreover,
if φ = 0, then T sf

= −V (0)g. Letting 3 = V (0), the equations (1.23)–(1.25) then
reduce to the Einstein–Vlasov system with a positive cosmological constant 3, assuming
V (0) > 0. In order to prove future stability in the Einstein–Vlasov-non-linear scalar field
setting, it is not sufficient to demand that V ′(0) = 0 and V (0) > 0. It is also of interest
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to know that V ′′(0) > 0. We shall therefore make this assumption from now on. Given V
such that V ′(0) = 0, V (0) > 0 and V ′′(0) > 0, it is convenient to introduce

H = (V (0)/3)1/2, (1.26)

χ = V ′′(0)/H2 (1.27)

(cf. [31, (7.9) and (7.10), p. 90]). Note that in the non-linear scalar field setting, we al-
ways assume V (0) is positive and we equate it with 3. In particular, (1.26) is thus con-
sistent with previous definitions of H (cf., e.g., the statement of Theorem 1.7). If we are
interested in the Einstein–Vlasov system with a positive cosmological constant 3, it is
sufficient to choose

V (φ) = 3+3φ2. (1.28)

Then V (0) = 3 > 0, V ′(0) = 0 and V ′′(0) = 23 > 0. Moreover, H = (3/3)1/2 and
χ = 6. Clearly, (1.28) is an arbitrary choice; there are many other possibilities.

Let us now recall the definition of initial data given in [31, Definition 7.11, pp. 93–94]
(note that the dimension n is here assumed to equal 3):

Definition 1.25. Let 5/2 < µ ∈ R. Initial data for (1.23)–(1.25) consist of an oriented
3-dimensional manifold 6, a non-negative function f̄ ∈ D̄∞µ (T 6), a Riemannian met-
ric ḡ, a symmetric covariant 2-tensor field k̄ and two functions φ̄0 and φ̄1 on 6, all as-
sumed to be smooth and to satisfy

r̄ − k̄ij k̄
ij
+ (tr k̄)2 = φ̄2

1 + ∇
i
φ̄0∇i φ̄0 + 2V (φ̄0)+ 2ρVl, (1.29)

∇
j
k̄ji − ∇i(tr k̄) = φ̄1∇i φ̄0 − J̄

Vl
i , (1.30)

where ∇ is the Levi-Civita connection of ḡ, r̄ is the associated scalar curvature, indices
are raised and lowered by ḡ, and ρVl and J̄Vl

i are given by (1.33) and (1.34) below respec-
tively. Given initial data, the initial value problem is that of finding a solution (M, g, f, φ)
to (1.23)–(1.25) (in other words, a 4-dimensional manifold M , a smooth time oriented
Lorentz metric g on M , a non-negative function f ∈ D∞µ (P) and a φ ∈ C∞(M) such
that (1.23)–(1.25) are satisfied), and an embedding i : 6→ M such that

i∗g = ḡ, φ ◦ i = φ̄0, f̄ = i∗(f ◦ pr−1
i(6)),

and if N is the future directed unit normal and κ is the second fundamental form of i(6),
then i∗κ = k̄ and (Nφ) ◦ i = φ̄1. Such a quadruple (M, g, f, φ) is referred to as a
development of the initial data, the existence of an embedding i being tacit. If, in addition
to the above conditions, i(6) is a Cauchy hypersurface in (M, g), the quadruple is said
to be a globally hyperbolic development.

Remark 1.26. The map pri(6) is the diffeomorphism from the mass shell above i(6) to
the tangent space of i(6) defined by mapping a vector v to its component perpendicular
to the normal of i(6).
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Remark 1.27. If φ̄0 = φ̄1 = 0, the equations (1.29) and (1.30) become

r̄ − k̄ij k̄
ij
+ (tr k̄)2 = 23+ 2ρVl, (1.31)

∇
j
k̄ji − ∇i(tr k̄) = −J̄Vl

i . (1.32)

These are the constraint equations for the Einstein–Vlasov system with a positive cosmo-
logical constant 3.

The energy density and current induced by the initial data are given by

ρVl(ξ̄ ) =

∫
Tξ̄6

f̄ (p̄)[1+ ḡ(p̄, p̄)]1/2µ̄ḡ,ξ̄ , (1.33)

J̄Vl(X̄) =

∫
Tξ̄6

f̄ (p̄)ḡ(X̄, p̄)µ̄ḡ,ξ̄ . (1.34)

In these expressions, ξ̄ ∈ 6, X̄ ∈ Tξ̄6, µ̄ḡ,ξ̄ is the volume form on Tξ̄6 induced by ḡ,
and p̄ ∈ Tξ̄6. It is important to note that under the assumptions of the above definition,
the energy density is a smooth function and the current is a smooth one-form field on 6
(cf. [31, Lemma 15.40, p. 246]).

Given initial data, there is a unique maximal globally hyperbolic development thereof
(cf. [31, Corollary 23.44, p. 418 and Lemma 23.2, p. 398]). The definition of a maximal
globally hyperbolic development is given by [31, Definition 7.14, p. 94]:

Definition 1.28. Given initial data for (1.23)–(1.25), a maximal globally hyperbolic de-
velopment of the data is a globally hyperbolic development (M, g, f, φ) with embedding
i : 6 → M such that if (M ′, g′, f ′, φ′) is any other globally hyperbolic development of
the same data with embedding i′ : 6→ M ′, then there is a map ψ : M ′→ M which is a
diffeomorphism onto its image such that ψ∗g = g′, ψ∗f = f ′, ψ∗φ = φ′ and ψ ◦ i′ = i.

It is worth noting that the maximal globally hyperbolic development is independent of
the parameter µ. The above discussion of the initial value problem for the Einstein–
Vlasov-non-linear scalar field system is somewhat brief, and the reader interested in a
more detailed discussion is referred to [31, Chapter 7].

1.5. Future stability in the spatially homogeneous and isotropic setting

In the proof of stability of the T3-Gowdy symmetric solutions, we need to refer to [31,
Theorem 7.16, pp. 104–106]. However, the statement of this theorem is based on termi-
nology introduced in [31]. Moreover, in the statement of Theorem 1.35, we refer to the
conclusions of [31, Theorem 7.16]. For this reason, we here provide not only the nota-
tional background, but also the statement of [31, Theorem 7.16]. However, the reader
interested in why the particular formulation of the theorem is natural is referred to [31,
Sections 7.6–7.7].

The rough idea is to only make local assumptions concerning the initial data and
to derive future global conclusions concerning the solution. Given a 3-manifold 6, we
therefore focus on a local coordinate patch (x̄, U). Here U is the neighbourhood in which
we make assumptions in the statement of the theorem. The conditions on the initial data
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are phrased in terms of Sobolev norms on U . Given a tensor field T on 6, we therefore
define

‖T‖H l(U) =

( 3∑
i1,...,is=1

3∑
j1,...,jr=1

∑
|α|≤l

∫
x̄(U)
|∂αTi1···isj1···jr

◦ x̄−1
|
2 dx̄

)1/2
. (1.35)

In this expression, the components of T are computed with respect to the coordinates x̄ and
the derivatives are taken with respect to x̄. In what follows, norms of the type ‖T‖H l(U)

are always computed using a particular choice of local coordinates. The choice we have
in mind should be clear from the context. In Theorem 1.29, we also use the notation

‖∂mḡ‖H l(U) =

( 3∑
i,j=1

∑
|α|≤l

∫
x̄(U)
|∂α∂mḡij ◦ x̄

−1
|
2 dx̄

)1/2
. (1.36)

To measure the local size of the distribution function, we need a weighted Sobolev norm.
However, it is also necessary to allow the freedom to rescale the momentum variable in
the definition of the norm. Since we have already motivated the need for this rescaling
freedom in [31, Subsection 7.6.1, pp. 100–102], we shall not do so here. Given a con-
stant w, we simply define the local norm for the distribution function by

w
‖f̄ ‖H l

Vl,µ(U)
=

( ∑
|α|+|β|≤l

∫
R3

∫
x̄(U)

(e−w)2|β|〈ewp̄〉2µ+2|β|
|∂α
ξ̄
∂
β
p̄ f̄x̄|

2(ξ̄ , p̄) dξ̄ dp̄
)1/2

.

(1.37)

Here 4̄x̄ are the coordinates on T U associated with x̄ (cf. Subsection 1.3), and f̄x̄ =
f̄ ◦ 4̄−1

x̄ .
Given the above notation, [31, Theorem 7.16, pp. 104–106] takes the following form

for n = 3.

Theorem 1.29. Let 5/2 < µ ∈ R and 7/2 < k0 ∈ Z. Let V be a smooth function on R
such that V (0) = V0 > 0, V ′(0) = 0 and V ′′(0) > 0. Let H, χ > 0 be defined by (1.26)
and (1.27) respectively and let KVl ≥ 0. There is an ε > 0, depending only on µ and V ,
such that if
• (6, ḡ, k̄, f̄ , φ̄0, φ̄1) are initial data for (1.23)–(1.25) with dim6 = 3,
• x̄ : U → B1(0) are local coordinates with x̄(U) = B1(0),
• the inequality

|e−2K ḡij − δij | ≤ ε (1.38)
holds on U for all i, j = 1, . . . , n, where K is defined by eK = 4/H,
• with the notation introduced in (1.35) and (1.36), we have

3∑
j=1

H2
‖∂j ḡ‖H k0 (U) +H‖k̄ −Hḡ‖H k0 (U)

+ ‖φ̄0‖H k0+1(U) +H−1
‖φ̄1‖H k0 (U) ≤ εe

−KVl , (1.39)

• using the notation introduced in (1.37) we have, with w = K +KVl,
w
‖f̄ ‖

H
k0
Vl,µ(U)

≤ H2ε5/2e−3K/2−KVl , (1.40)
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then the maximal globally hyperbolic development (M, g, f, φ) of the initial data has
the property that if i : 6 → M is the associated embedding, then all causal geodesics
that start in i ◦ x̄−1

[B1/4(0)] are future complete. Furthermore, there is a t− < 0 and
a smooth map

ψ : (t−,∞)× B5/8(0)→ M, (1.41)

which is a diffeomorphism onto its image, such that all causal curves that start in
i ◦ x̄−1

[B1/4(0)] remain in the image of ψ to the future, and g, f and φ have expan-
sions of the form (1.42)–(1.55) in the solid cylinder [0,∞) × B5/8(0) when pulled back
by ψ . Finally, ψ(0, ξ̄ ) = i ◦ x̄−1(ξ̄ ) for ξ̄ ∈ B5/8(0). In the formulae below, Latin indices
refer to the natural Euclidean coordinates on B5/8(0) and t is the natural time coordinate
on the solid cylinder. Let ζ = 4χ/9,

λpre =

{
3
2 [1− (1− ζ )

1/2
], ζ ∈ (0, 1),

3
2 , ζ ≥ 1,

and λm = min{1, λpre}. There is a smooth Riemannian metric %̄ on B5/8(0) and, for every
l ≥ 0, a constant Kl such that

‖e2Ht+2Kgij (t, ·)− %̄ij‖Cl + ‖e
−2Ht−2Kgij (t, ·)− %̄ij‖Cl ≤ Kle

−2λmHt , (1.42)

‖e−2Ht−2K∂tgij (t, ·)− 2H%̄ij‖Cl ≤ Kle
−2λmHt (1.43)

for all l ≥ 0 and t ≥ 0. Here %̄ij denotes the components of the inverse of %̄. Furthermore,
Cl denotes the Cl-norm on B5/8(0). Turning to g0m, there is a b > 0 and, for every l ≥ 0,
a constant Kl such that

‖g0m(t, ·)− v̄m‖Cl + ‖∂0g0m(t, ·)‖Cl ≤ Kle
−bHt (1.44)

for all l ≥ 0 and t ≥ 0, where

v̄m =
1
H
%̄ijγimj (1.45)

and γimj denote the Christoffel symbols of the metric %̄, given by

γimj =
1
2 (∂i %̄jm + ∂j %̄im − ∂m%̄ij ).

Let k̄ij denote the components of the second fundamental form (induced on the constant-t
hypersurfaces) with respect to the standard coordinates on B5/8(0). If λm < 1, then for
every l ≥ 0, there is a constant Kl such that

‖g00(t, ·)+ 1‖Cl + ‖∂0g00(t, ·)‖Cl ≤ Kle
−2λmHt ,

‖e−2Ht−2K k̄ij (t, ·)−H%̄ij‖Cl ≤ Kle
−2λmHt

for all l ≥ 0 and t ≥ 0. If λm = 1, then for every l ≥ 0, there is a constant Kl such that

‖[∂0g00 + 2H(g00 + 1)](t, ·)‖Cl ≤ Kle
−2Ht ,

‖g00(t, ·)+ 1‖Cl ≤ Kl(1+ t2)1/2e−2Ht ,

‖e−2Ht−2K k̄ij (t, ·)−H%̄ij‖Cl ≤ Kl(1+ t2)1/2e−2Ht
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for all l ≥ 0 and t ≥ 0. In order to describe the asymptotics concerning φ, let ϕ =
eλpreHtφ. If ζ < 1, there is a smooth function ϕ0, a constant b > 0 and, for every l ≥ 0,
a constant Kl such that

‖ϕ(t, ·)− ϕ0‖Cl + ‖∂0ϕ‖Cl ≤ Kle
−bHt (1.46)

for all l ≥ 0 and t ≥ 0. If ζ = 1, there are smooth functions ϕ0 and ϕ1, a constant b > 0
and, for every l ≥ 0, a constant Kl such that

‖∂0ϕ(t, ·)− ϕ1‖Cl + ‖ϕ(t, ·)− ϕ1t − ϕ0‖Cl ≤ Kle
−bHt (1.47)

for all l ≥ 0 and t ≥ 0. Finally, if ζ > 1, there is an antisymmetric matrix A, given by

A =

(
0 δH
−δH 0

)
,

where δ = 3(ζ − 1)1/2/2, smooth functions ϕ0 and ϕ1, a constant b > 0 and, for every
l ≥ 0, a constant Kl such that∥∥∥∥e−At( δHϕ∂0ϕ

)
(t, ·)−

(
ϕ0
ϕ1

)∥∥∥∥
Cl
≤ Kle

−bHt (1.48)

for all l ≥ 0 and t ≥ 0. In order to describe the asymptotics for the distribution function,
let x = ψ−1. Then (x, U) are canonical local coordinates, where

U = ψ[(t−,∞)× B5/8(0)].

Let fx = f ◦4−1
x and

h(t, x̄, q̄) = fx(t, x̄, e
−2Ht−K−KVl q̄). (1.49)

Introduce moreover the notation

‖f̄‖H l
Vl,µ[B5/8(0)×R3] =

( ∑
|α|+|β|≤l

∫
B5/8(0)

∫
R3
〈p̄〉2µ+2|β|

|∂αx̄ ∂
β
p̄ f̄(x̄, p̄)|

2 dp̄ dx̄

)1/2

for f̄ ∈ C∞[B5/8(0)×R3
]. Then there is a constant b > 0 and, for every l, a constant Kl

such that
‖∂th(t, ·)‖H l

Vl,µ[B5/8(0)×R3] ≤ Kle
−bHt (1.50)

for all l ≥ 0 and t ≥ 0. There is also a function h̄ ∈ C∞[B5/8(0)×R3
], a constant b > 0

and, for every l, a constant Kl such that

‖h̄‖H l
Vl,µ[B5/8(0)×R3] <∞,

‖h(t, ·)− h̄‖H l
Vl,µ[B5/8(0)×R3] ≤ Kle

−bHt (1.51)
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for all l ≥ 0 and t ≥ 0. Furthermore, h̄ ≥ 0. Concerning the stress energy tensor
associated with the Vlasov matter, there is a b > 0 and, for every l ≥ 0, a constant Kl
such that ∥∥∥∥e3(Ht+KVl)T Vl

00 −

∫
R3

h̄|%̄|1/2 dq̄

∥∥∥∥
Cl
≤ Kle

−bHt , (1.52)∥∥∥∥e3(Ht+KVl)T Vl
0i +

∫
R3

q̄i h̄|%̄|
1/2 dq̄

∥∥∥∥
Cl
≤ Kle

−bHt , (1.53)

‖e2Ht+3KVlT Vl
ij ‖Cl ≤ Kl (1.54)

for all l ≥ 0 and all t ≥ 0, where |%̄| denotes the absolute value of the determinant of %̄,

q̄i = v̄i + e
K−KVl %̄ij q̄

j

and v̄i is defined in (1.45). Finally, if µ > 9/2, there is a constant b > 0 and, for every
l ≥ 0, a constant Kl such that∥∥∥∥e3(Ht+KVl)T Vl

ij −

∫
R3

h̄q̄i q̄j |%̄|
1/2 dq̄

∥∥∥∥
Cl
≤ Kle

−bHt (1.55)

for all l ≥ 0 and t ≥ 0.

Remark 1.30. In case one is only interested in the Einstein–Vlasov setting with a posi-
tive cosmological constant, more detailed information can be obtained (cf. [31, Proposi-
tion 32.8, pp. 609–611]).

1.6. Cauchy stability

In what follows, we also need a Cauchy stability result in the Einstein–Vlasov-non-linear
scalar field setting. There are such results in the literature (cf. [31]). However, for the
convenience of the reader, we introduce the necessary terminology and quote the relevant
result in the present subsection.

First, we need to introduce the notion of a background solution (cf. [31, Defini-
tion 24.2, p. 421]). In the 3-dimensional case, this definition takes the following form.

Definition 1.31. Let 5/2 < µ ∈ R, 6 be a closed 3-dimensional manifold, and let g be
a smooth time oriented Lorentz metric on M = I × 6, where I is an open interval. Let
∂t denote differentiation with respect to the first coordinate and assume that g(∂t , ∂t ) =
g00 < 0 and the hypersurfaces 6t = {t} × 6 are spacelike with respect to g for t ∈ I .
Finally, assume that φ ∈ C∞(M) and f ∈ D∞µ (P), together with g, satisfy (1.23)–(1.25).
Then (M, g, f, φ) is called a background solution.

Remark 1.32. In the case of T2-symmetric solutions, the metric is of the form (1.1).
Moreover, the distribution functions of interest have compact support on constant time
hypersurfaces. As a consequence, it is clear that the T2-symmetric solutions we consider
in the present paper are background solutions in the sense of the above definition.
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Next, we introduce the notion of induced initial data on constant-t hypersurfaces (cf. [31,
Definition 24.3, p. 421]). In the 3-dimensional case, this definition takes the following
form.

Definition 1.33. Let 5/2 < µ ∈ R, 6 be a closed 3-dimensional manifold, and let g be
a smooth time oriented Lorentz metric on M = I × 6, where I is an open interval. Let
furthermore φ ∈ C∞(M), f ∈ D∞µ (P) and assume that (g, f, φ) solve (1.23)–(1.25).
Let t ∈ I and assume 6t = {t} × 6 is spacelike with respect to g. Let κ be the second
fundamental form andN be the future directed unit normal of6t . Finally, let ιt : 6→ M

be defined by ιt (x̄) = (t, x̄) and

ḡ = ι∗t g, k̄ = ι∗t κ, f̄ = ι∗t (f ◦ pr−1
6t
), φ̄0 = ι

∗
t φ, φ̄1 = ι

∗
t (Nφ).

Then (ḡ, k̄, f̄ , φ̄0, φ̄1) are referred to as the initial data induced on 6t by (g, f, φ), or
simply the initial data induced on 6t if the solution is understood from the context.

Finally, we formulate the Cauchy stability result we need here (cf. [31, Corollary 24.10,
p. 432]). In the 3-dimensional case, this result takes the following form.

Theorem 1.34. Let 5/2 < µ ∈ R and 5/2 < l ∈ Z. Let (Mbg, gbg, fbg, φbg) be a
background solution with Mbg = Ibg × 6 and recall the notation 6, 6t etc. from Def-
inition 1.31 (the interval denoted by I in Definition 1.31 will here be denoted by Ibg).
Assume that 0 ∈ Ibg and let (ḡbg, k̄bg, f̄bg, φ̄bg,0, φ̄bg,1) be the initial data induced on 60

by (gbg, fbg, φbg). Make a choice of H l
Vl,µ(T 6)-norms and a choice of Sobolev norms

‖ · ‖H l on tensor fields on 6. Let J ⊂ Ibg be a compact interval and let ε > 0. Then there
is a δ > 0 such that if (6, ḡ, k̄, f̄ , φ̄0, φ̄1) are initial data for the Einstein–Vlasov-non-
linear scalar field system satisfying

‖ḡ − ḡbg‖H l+1 + ‖k̄ − k̄bg‖H l + ‖φ̄0 − φ̄bg,0‖H l+1

+ ‖φ̄1 − φ̄bg,1‖H l + ‖f̄ − f̄bg‖H l
Vl,µ(T 6)

≤ δ,

then there is an open interval I containing 0 and a solution (g, f, φ) to (1.23)–(1.25) on
M = I ×6 such that

• the initial data induced on 60 by (g, f, φ) are given by (ḡ, k̄, f̄ , φ̄0, φ̄1),
• ∂t is timelike with respect to g and 6t is a spacelike Cauchy hypersurface with respect

to g for all t ∈ I ,
• J ⊂ I and if the initial data induced on 6t (for t ∈ Ibg ∩ I ) by (g, f, φ) and
(gbg, fbg, φbg) are (ḡt , k̄t , f̄t , φ̄t,0, φ̄t,1) and (ḡbg,t , k̄bg,t , f̄bg,t , φ̄bg,t,0, φ̄bg,t,1) respec-
tively, then

‖ḡt − ḡbg,t‖H l+1 + ‖k̄t − k̄bg,t‖H l + ‖φ̄t,0 − φ̄bg,t,0‖H l+1

+ ‖φ̄t,1 − φ̄bg,t,1‖H l + ‖f̄t − f̄bg,t‖H l
Vl,µ(T 6)

≤ ε (1.56)

for all t ∈ J .
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1.7. Stability of T3-Gowdy symmetric solutions

Combining Theorems 1.7, 1.29 and 1.34 yields a future stability result for the T2-sym-
metric solutions considered in Theorem 1.7. Moreover, the solutions are stable in the
Einstein–Vlasov-non-linear scalar field setting.

Theorem 1.35. Consider a T2-symmetric solution to the Einstein–Vlasov system with a
positive cosmological constant 3. Choose coordinates so that the corresponding met-
ric takes the form (1.1) on I × T3, where I = (t0,∞). Assume that the solution has
λ-asymptotics. Choose a t ∈ I and let i : T3

→ I × T3 be given by i(x̄) = (t, x̄).
Let ḡbg = i

∗g and let k̄bg denote the pullback (under i) of the second fundamental form
induced on i(T3) by g. Let moreover

f̄bg = i
∗(f ◦ pr−1

i(T3)
).

Make a choice of µ > 5/2, a choice of norms as in Definition 1.23 and a choice of
Sobolev norms on tensor fields on T3. Let in addition V : R → R be a smooth function
such that V (0) = 3, V ′(0) = 0 and V ′′(0) > 0. Then there is an ε > 0 such that if
(T3, ḡ, k̄, f̄ , φ̄0, φ̄1) are initial data for (1.23)–(1.25) with f̄ ∈ D̄∞µ (TT3) satisfying

‖ḡ − ḡbg‖H 5 + ‖k̄ − k̄bg‖H 4 + ‖f̄ − f̄bg‖H 4
Vl,µ
+ ‖φ̄0‖H 5 + ‖φ̄1‖H 4 ≤ ε,

then the maximal globally hyperbolic development (M, g, f, φ) of the initial data is future
causally geodesically complete. Moreover, there is a Cauchy hypersurface 6 in (M, g)
such that for each point of 6, there is a neighbourhood (x̄, U) such that Theorem 1.29
applies. In particular, the asymptotics stated in Theorem 1.29 hold.

Remark 1.36. Up to the point where we appeal to Theorem 1.29, Cauchy stability ap-
plies. It should therefore be possible to obtain detailed control over the perturbed solutions
for the entire future. The interested reader is encouraged to write down the details.

Remark 1.37. The function f̄bg has compact support, but f̄ need not.

The proof of Theorem 1.35 is given in Section 10.

1.8. Outline

Finally, let us give an outline of the paper. In Section 2, we write down the equations
in the case that the metric takes the form (1.1) (the reader interested in the derivation is
referred to Appendix A). In Section 3, we collect the conclusions which are not depen-
dent on the particular type of matter model (as long as it satisfies the dominant energy
condition and the non-negative pressure condition). The section ends with conclusions
concerning the causal structure of T3-Gowdy symmetric spacetimes. Turning to the more
detailed conclusions, we specialise to the case of Vlasov matter. The natural first step is
to derive light cone estimates, i.e., to consider the behaviour along characteristics. This
is the subject of Section 4. As opposed to the vacuum case, we need to control the char-
acteristics associated with the Vlasov equation at the same time as the first derivatives of
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the metric components. Fortunately, the e2 and e3 components of the momentum are con-
trolled automatically due to symmetry. However, an argument is required in the case of
the e1 component. In order to obtain control of higher order derivatives, we need to take
derivatives of the characteristic system (associated with the Vlasov equation, i.e. with
the geodesic flow). Naively, this should require control of second order derivatives of the
metric functions, something we do not have. Nevertheless, by an appropriate choice of
variables, controlling first order derivatives turns out to be sufficient. A similar choice
was already suggested in [2, Lemma 3, p. 363] (cf. also [4, Lemma 3, p. 257]). How-
ever, in the present setting, it is not sufficient to derive a system involving only first order
derivatives of the metric functions. We also need to be able to use the system to derive
the desired type of asymptotics for the derivatives of the characteristic system. It turns
out to be possible to do so, and we write down the required arguments in Section 6. Af-
ter obtaining this conclusion, we proceed inductively to derive higher order estimates for
the characteristic system and the metric components. The required arguments are written
down in Sections 7 and 8. In order to obtain the desired conclusions concerning the dis-
tribution function, it is convenient to consider L2-based energies. This subject is treated
in Section 9. Finally, in Section 10, we prove the main theorems of the paper. As an
appendix, we include a derivation of Einstein’s equations as well as of the Vlasov equa-
tion (cf. Appendix A). We also provide a summary of the most important notation in
Appendix B.

2. Symmetry assumptions and equations

In this paper, we study T2-symmetric solutions of Einstein’s equations. Since it will be
convenient to express the equations using the orthonormal frame (1.7), let us introduce
the notation

ρ = T (e0, e0), Ji = −T (e0, ei), Pi = T (ei, ei), Sij = T (ei, ej ), (2.1)

where we do not sum over any indices; here and below, we tacitly assume that Latin
indices range from 1 to 3 and Greek indices range from 0 to 3. It is also convenient to
introduce the notation

J = −t5/2α1/2eP−λ/2(Gt +QHt ), K = QJ − t5/2α1/2e−P−λ/2Ht . (2.2)

Note that these objects are the twist quantities introduced in (1.2) (cf. Appendix A.3).
In order to derive Einstein’s equations, it is useful to calculate the Einstein tensor for a
metric of the form (1.1). The corresponding, somewhat lengthy, computations appear in
Appendix A. Using the above notation, the calculations yield the conclusion that the 00
and 11 components of Einstein’s equations can be written

λt − 2
αt

α
= t[P 2

t + αP
2
θ + e

2P (Q2
t + αQ

2
θ )] +

eλ/2−P J 2

t5/2

+
eλ/2+P (K −QJ)2

t5/2
+ 4t1/2eλ/2(ρ +3), (2.3)
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λt = t[P
2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )] −

eλ/2−P J 2

t5/2

−
eλ/2+P (K −QJ)2

t5/2
+ 4t1/2eλ/2(P1 −3), (2.4)

respectively. The 22 component minus the 33 component can be written

∂t (tα
−1/2Pt ) = ∂θ (tα

1/2Pθ )+ tα
−1/2e2P (Q2

t − αQ
2
θ )+

α−1/2eλ/2−P J 2

2t5/2

−
α−1/2eλ/2+P (K −QJ)2

2t5/2
+ t1/2eλ/2α−1/2(P2 − P3). (2.5)

The 22 component plus the 33 component can be written

∂t

[
tα−1/2

(
λt − 2

αt

α
−

3
t

)]
= ∂θ (tα

1/2λθ )− tα
−1/2
[P 2
t + e

2PQ2
t − α(P

2
θ + e

2PQ2
θ )]

− 2tα−1/2
(
eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
+ α−1/2λt + 2t1/2eλ/2α−1/2(23− P2 − P3). (2.6)

The 01, 02, 03, 12 and 13 components are equivalent to

λθ = 2t (PtPθ + e2PQtQθ )− 4t1/2eλ/2α−1/2J1, (2.7)
Jθ = 2t5/4α−1/2eP/2+λ/4J2, (2.8)
Kθ = 2t5/4α−1/2e−P/2+λ/4J3 + 2t5/4α−1/2eP/2+λ/4QJ2, (2.9)
Jt = −2t5/4eλ/4+P/2S12, (2.10)
Kt = −2t5/4eλ/4+P/2QS12 − 2t5/4e−P/2+λ/4S13, (2.11)

respectively. Finally, the 23 component reads

∂t (tα
−1/2e2PQt )− ∂θ (tα

1/2e2PQθ )

= t−5/2α−1/2eλ/2+P J (K −QJ)+ 2t1/2α−1/2eλ/2+P S23. (2.12)

For future reference, we also note that

αt

α
= −

e−P+λ/2J 2

t5/2
−
eP+λ/2(K −QJ)2

t5/2
− 4t1/2eλ/23

− 2t1/2eλ/2(ρ − P1), (2.13)

λt −
αt

α
= t[P 2

t + αP
2
θ + e

2P (Q2
t + αQ

2
θ )] + 2t1/2eλ/2(ρ + P1). (2.14)

2.1. Preliminary calculations

Since the metric components only depend on two variables, it is natural to derive esti-
mates by integrating along characteristics. In the present subsection, we record a general
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calculation which is of interest in that context. To begin with, let us define

∂± = ∂t ± α
1/2∂θ , A± = (∂±P)2 + e2P (∂±Q)

2. (2.15)

One reason for introducing A± is the equality (2.16) derived below; since the right hand
side only contains first derivatives of the metric components, it is possible to integrate
along the characteristics to control A±.

Lemma 2.1. Consider a T2-symmetric solution to Einstein’s equations with a cosmolog-
ical constant 3 such that the metric takes the form (1.1). Then

∂±A∓ = −
(

2
t
−
αt

α

)
A∓ ∓

2
t
α1/2(Pθ∂∓P + e

2PQθ∂∓Q)

+
e−P+λ/2J 2

t7/2
∂∓P −

eP+λ/2(K −QJ)2

t7/2
∂∓P + 2

eλ/2J (K −QJ)

t7/2
eP ∂∓Q

+ 2t−1/2eλ/2(P2 − P3)∂∓P + 4t−1/2eλ/2S23e
P ∂∓Q. (2.16)

Remark 2.2. In this calculation, the cosmological constant need not be positive.

Proof of Lemma 2.1. The statement follows from a lengthy computation. For the benefit
of the reader, let us write down some of the intermediate steps. Using (2.5), we obtain

∂±∂∓P = −
1
t
Pt +

αt

2α
∂∓P + e

2P (Q2
t − αQ

2
θ )

+
e−P+λ/2J 2

2t7/2
−
eP+λ/2(K −QJ)2

2t7/2
+ t−1/2eλ/2(P2 − P3). (2.17)

Similarly, due to (2.12), we obtain

∂±∂∓Q = −
1
t
Qt +

αt

2α
∂∓Q− 2(QtPt − αQθPθ )+

eλ/2−P J (K −QJ)

t7/2

+ 2t−1/2eλ/2−P S23. (2.18)

If we combine (2.17) and (2.18) with the fact that

−4(QtPt − αPθQθ )∂∓Q+ 2∂±P(∂∓Q)2 = −2∂∓P(Q2
t − αQ

2
θ ),

a calculation yields the conclusion of the lemma. ut

2.2. Vlasov matter

The equations (2.3)–(2.14) hold in general. However, we are here particularly interested
in matter of Vlasov type. In order to derive the relevant form of the Vlasov equation,
recall the conventions concerning f introduced in Subsection 1.2. Recall moreover that
the Vlasov equation is equivalent to f being constant along future directed unit timelike
geodesics. As a consequence, it can be calculated (cf. Appendix A.7) that the Vlasov
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equation takes the form

∂f

∂t
+
α1/2v1

v0
∂f

∂θ
−

[
1
4
α1/2λθ v

0
+

1
4

(
λt −

2αt
α
−

1
t

)
v1
− α1/2ePQθ

v2v3

v0

+
1
2
α1/2Pθ

(v3)2 − (v2)2

v0 − t−7/4eλ/4
(
e−P/2Jv2

+ eP/2(K −QJ)v3)] ∂f
∂v1

−

[
1
2

(
Pt +

1
t

)
v2
+

1
2
α1/2Pθ

v1v2

v0

]
∂f

∂v2

−

[
1
2

(
1
t
− Pt

)
v3
−

1
2
α1/2Pθ

v1v3

v0 + e
P v2

(
Qt + α

1/2Qθ

v1

v0

)]
∂f

∂v3 = 0. (2.19)

Turning to the stress energy tensor, it satisfies

T (eµ, eν) =

∫
R3
vµvνf

1
−v0

dv, (2.20)

where vα = ηαβvβ and η = diag{−1, 1, 1, 1}. In particular, in the Vlasov case, we have

ρ =

∫
R3
v0f dv, Pk =

∫
R3

(vk)2

v0 f dv, Jk =

∫
R3
vkf dv, Sjk =

∫
R3

vjvk

v0 f dv,

(2.21)
where j, k = 1, 2, 3.

3. Preliminary conclusions concerning the asymptotics

In the present section, we are interested in T2-symmetric solutions to Einstein’s equations
such that the corresponding metric admits a foliation of the form (1.1) on I × T3, where
I = (t0,∞) and t0 ≥ 0. For the sake of brevity, we shall refer below to solutions of
this form as future global, and we shall speak of t0 and t1 = t0 + 2 without further
introduction.

It is useful to begin by recalling the following consequences of the non-negative pres-
sure condition and the dominant energy condition.

Lemma 3.1. Consider a solution to Einstein’s equations with a cosmological constant3
and a metric of the form (1.1). Let ρ, Pi , Ji and Sij , i, j = 1, 2, 3, be defined by (2.1). If
the stress energy tensor satisfies the non-negative pressure condition, then, for i = 1, 2, 3,

0 ≤ Pi . (3.1)

If the stress energy tensor satisfies the dominant energy condition, then, for i, j = 1, 2, 3,

0 ≤ ρ, (3.2)
|Pi | ≤ ρ, (3.3)
|Ji | ≤ ρ, (3.4)
|Sij | ≤ ρ. (3.5)
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Proof. By definition, Pi = T (ei, ei). Since ei is a spacelike vector field, the non-negative
pressure condition implies that (3.1) holds. The dominant energy condition states that
T (u, v) ≥ 0 for future directed timelike vectors u and v. By continuity, this also holds for
future directed causal vectors. Since e0 is future directed timelike, ρ = T (e0, e0) ≥ 0, so
(3.2) follows. Note that e0 ± ei is a future directed causal vector field. In particular,

0 ≤ T (e0 − ei, e0 + ej ) = ρ + Ji − Jj − Sij .

Since Sij is symmetric, adding this inequality to the one obtained by interchanging i and
j yields Sij ≤ ρ. Similarly,

0 ≤ T (e0 ± ei, e0 ± ej ) = ρ ∓ Ji ∓ Jj + Sij .

Adding the two inequalities yields −Sij ≤ ρ. Thus (3.5) holds. The proof of (3.3) is
similar. Finally,

0 ≤ T (e0, e0 ± ei) = ρ ∓ Ji,

so that (3.4) holds. ut

Before deriving estimates describing the asymptotics of solutions, let us make the follow-
ing remark.

Remark 3.2. In what follows, the constants appearing in the estimates we state are al-
lowed to depend on the solution, unless otherwise indicated.

Proposition 3.3. Given a future global solution to Einstein’s equations with a cosmo-
logical constant 3 > 0, T2-symmetry and a stress energy tensor satisfying the dominant
energy condition, there is a constant C > 0 such that

α(t, θ) ≤ Ct−3 (3.6)

for all (t, θ) ∈ [t1,∞)× S1.

Remark 3.4. The same conclusion holds if we replace the cosmological constant with a
non-linear scalar field with a potential having a positive lower bound; in other words, if
we set 3 = 0 and consider stress energy tensors of the form T = T o

+ T sf, where T o

is the stress energy tensor associated with matter fields satisfying the dominant energy
condition, and T sf is the stress energy tensor associated with a non-linear scalar field with
a potential V having a positive lower bound.

Proof of Proposition 3.3. Due to (2.14) and the fact that the matter satisfies the dominant
energy condition (so that (3.3) holds), we conclude that λt − αt/α ≥ 0. There is thus a
c0 > 0 such that

(α−1/2eλ/2)(t, θ) ≥ c0

for all (t, θ) ∈ [t1,∞)× S1. Combining this observation with (2.13) and (3.3), we obtain

∂tα
−1/2
= −

αt

2α
α−1/2

≥ 2t1/2α−1/2eλ/23 ≥ c1t
1/2

for some constant c1 > 0 and all (t, θ) ∈ [t1,∞) × S1. Integrating this inequality, we
obtain the conclusion of the proposition. ut
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In the Gowdy case, the second and third terms on the right hand side of (2.4) are zero, so
we can extract more information. In fact, we have the following observation.

Proposition 3.5. Consider a future global solution to Einstein’s equations with a cos-
mological constant 3 > 0, T3-Gowdy symmetry and matter satisfying the non-negative
pressure condition. Then for every ε > 0, there is a T > t0 such that

λ(t, θ) ≥ −3 ln t + 2 ln
3

43
− ε

for all (t, θ) ∈ [T ,∞)× S1.

Proof. Let

λ̂ = λ+ 3 ln t − 2 ln
3

43
. (3.7)

Then (2.4) with J = K = 0 yields

∂t λ̂ = t[P
2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )] + 4t1/2eλ/2P1 +

3
t
(1− eλ̂/2).

Since P1 ≥ 0 due to the non-negative pressure condition (cf. (3.1)), we conclude that

∂t λ̂ ≥
3
t
(1− eλ̂/2).

For every ε > 0, there is thus a T such that λ̂(t, θ) ≥ −ε for all (t, θ) ∈ [T ,∞)×S1. ut

In order to proceed, it is convenient to introduce an energy:

Ebas =

∫
S1
tα−1/2

(
λt − 2

αt

α
− 4t1/2eλ/23

)
dθ

=

∫
S1

(
t2α−1/2

[P 2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )] +

α−1/2eλ/2−P J 2

t3/2

+
α−1/2eλ/2+P (K −QJ)2

t3/2
+ 4t3/2α−1/2eλ/2ρ

)
dθ. (3.8)

Let us motivate this particular choice. The energy Ebas is quite similar to the energy
defined in [4, (42), p. 251]. However, there is one fundamental difference. The integrand
in the energy defined in [4] contains a term of the form α−1/2U2

t , whereU = (P+ln t)/2.
Using U instead of P as a variable is convenient in global existence arguments, since
some of the formulae become less involved. However, the variable U is poorly adapted
to the actual asymptotics of solutions. The reason is that, in the end, Pt converges to zero
as t−2. The dominant term in U is thus (ln t)/2. If one uses U instead of P in the energy,
the best estimate of Ebas one could hope for would be Ebas(t) ≤ Ct

3/2. Below, we prove
that Ebas ≤ Ct

1/2 (cf. Lemma 3.7). In addition, it is possible to derive a good estimate
for the time derivative of Ebas (cf. the proof of Lemma 3.6 below).

On a more general level, it is natural to ask why it is necessary to use L2-based energy
estimates at all. Since the problem is 1 + 1-dimensional, should it not be sufficient to
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consider the behaviour along characteristics? The problem in our setting is that we wish
to derive detailed quantitative information for arbitrary initial data. In particular, we are
not in a situation where we can use bootstrap arguments. For this reason, we need to
proceed step by step. First, it is necessary to derive not only rough, but quite detailed,
control of some of the metric components, in particular λ. This leads, for example, to
estimates of the form (3.19) and (3.20) below. Only once we have estimates of this form,
is it meaningful to turn to the characteristic system: see, e.g., the last two terms on the
right hand side of (4.2) and the proof of Lemma 4.3.

If the metric has λ-asymptotics (recall Definition 1.1), we can estimate Ebas.

Lemma 3.6. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant 3 > 0, T2-symmetry, λ-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then for every
a > 1/2, there is a constant Ca > 0 such that

Ebas(t) ≤ Ca t
a (3.9)

for all t ≥ t1.

Proof. Due to (2.6), we obtain

∂t

[
tα−1/2

(
λt − 2

αt

α
− 4t1/2eλ/23

)]
= ∂θ (tα

1/2λθ )+ 2tα1/2(P 2
θ + e

2PQ2
θ )−

3
2
α−1/2eλ/2−P J 2

t5/2

−
3
2
α−1/2eλ/2+P (K −QJ)2

t5/2
− 2t5/2α−1/2eλ/23[P 2

t + e
2PQ2

t + α(P
2
θ + e

2PQ2
θ )]

+ t1/2α−1/2eλ/2(3ρ + P1 − 2P2 − 2P3)− 4t2α−1/2eλ3(ρ + P1). (3.10)

Since the matter satisfies the non-negative pressure condition, we know that Pi ≥ 0 (cf.
(3.1)), so that

dEbas

dt
≤

∫
S1

2tα1/2(P 2
θ + e

2PQ2
θ ) dθ −

∫
S1

2t5/2α1/2eλ/23(P 2
θ + e

2PQ2
θ ) dθ

+

∫
S1
t1/2α−1/2eλ/2(3ρ + P1) dθ −

∫
S1

4t2α−1/2eλ3(ρ + P1) dθ.

Using the consequences of Lemma 3.1 and the fact that the solution has λ-asymptotics,
we conclude that for every a > 1/2, there is a T ≥ t1 such that

dEbas

dt
≤
a

t
Ebas

for all t ≥ T . As a consequence, Ebas(t) ≤ Ct
a for t ≥ t1. ut

Using the estimate for Ebas derived in Lemma 3.6, it is possible to extract more informa-
tion concerning the asymptotics.
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Lemma 3.7. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant 3 > 0, T2-symmetry, λ-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that∥∥∥∥λ(t, ·)+ 3 ln t − 2 ln

3
43

∥∥∥∥
C0
≤ Ct−1/2, (3.11)

Ebas(t) ≤ Ct
1/2 (3.12)

for all t ≥ t1.

Proof. From the estimate Ebas(t) ≤ Ca t
a , the fact that α1/2

≤ Ct−3/2, (2.4) and (3.3),
we conclude that

〈λt 〉 = −4t1/2〈eλ/2〉3+O(ta−5/2) (3.13)

(the notation 〈λt 〉 was introduced in Remark 1.5). Due to (2.7) and (3.4), we also have

|λθ | ≤ tα
−1/2
[P 2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )] + 4t1/2α−1/2eλ/2ρ.

By (3.9), we thus obtain ∫
S1
|λθ | dθ ≤ Ct

a−1. (3.14)

Recall that λ̂ is defined in (3.7) and note that, by (3.13),

〈λ̂t 〉 =
3
t
(1− 〈eλ̂/2〉)+O(ta−5/2). (3.15)

Let us first prove that 〈λ̂〉 converges to zero. To this end, let ε > 0. Since the solution has
λ-asymptotics, there is a T such that 〈λ̂〉(t) ≥ −ε for all t ≥ T . To prove that there is a T
such that 〈λ̂〉(t) ≤ ε for all t ≥ T , let us assume that 〈λ̂〉(t) ≥ ε for some t . From (3.14),
we conclude that λ̂(t, θ) ≥ ε/2 for all θ ∈ S1 (assuming t is large enough). Inserting this
into (3.15), we conclude that

〈λ̂t 〉 ≤
2
t
(1− eε/4)

for t large enough. Since the right hand side is negative and non-integrable, 〈λ̂〉 has to
decay until it is smaller than ε (assuming the starting time t is large enough). Moreover,
〈λ̂〉 cannot exceed ε at a later time. To obtain a quantitative estimate, note that

〈λ̂t 〉 =
3
t
(1− e〈λ̂〉/2)+O(ta−2),

where we have used the fact that λ̂ is bounded to the future as well as (3.14). Hence

∂t 〈λ̂〉
2
= 2〈λ̂〉〈λ̂t 〉 =

6
t
〈λ̂〉

[
1−

(
1+

1
2
〈λ̂〉 +O(〈λ̂〉2)

)]
+O(ta−2

〈λ̂〉)

= −
3
t
〈λ̂〉2 +

1
t
O(〈λ̂〉3)+O(ta−2

〈λ̂〉).
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Let 0 < b < 1− a and define E = t2b〈λ̂〉2. Then

dE
dt
=

2b
t
E −

3
t
E +

1
t
O(〈λ̂〉E)+ t−1O(tb+a−1E1/2).

As a consequence, there is a constant C > 0 such that ∂tE ≤ 0 when E ≥ C and t is large
enough. In particular, E is bounded to the future. For every 0 < b < 1/2, there is thus a
constant Cb such that ∥∥∥∥λ(t, ·)+ 3 ln t − 2 ln

3
43

∥∥∥∥
C0
≤ Cbt

−b

for all t ≥ t1. Due to this estimate, we can return to the argument presented in the proof
of Lemma 3.6 and obtain the improvement Ebas(t) ≤ Ct

1/2 for t ≥ t1. As a consequence,
we can go through the above arguments with a = 1/2 and b = 1/2. ut

Lemma 3.8. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant 3 > 0, T2-symmetry, λ-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that

t−3/2
〈α−1/2(t, ·)〉 + ‖Q(t, ·)‖C0 + ‖P(t, ·)‖C0 ≤ C (3.16)

for all t ≥ t1.

Proof. Using (2.13), (3.7), (3.11), (3.12) and Lemma 3.1, we estimate

∂t 〈α
−1/2
〉 = −

1
2

〈
α−1/2αt

α

〉
=

1
2π

∫
S1

[
α−1/2e−P+λ/2J 2

2t5/2
+
α−1/2eP+λ/2(K −QJ)2

2t5/2

]
dθ

+
1

2π

∫
S1
[2t1/2α−1/2eλ/23+ t1/2α−1/2eλ/2(ρ − P1)] dθ

≤ Ct−1/2
+

1
2π

∫
S1

2t1/2α−1/2eλ/23dθ

≤ Ct−1/2
+

3
2t
〈eλ̂/2α−1/2

〉 ≤
3
2t
〈α−1/2

〉 + Ct−3/2
〈α−1/2

〉 + Ct−1/2.

Let A = 〈α−1/2
〉 + t . Then

dA

dt
= ∂t 〈α

−1/2
〉 + 1 ≤

3
2t
A+ Ct−3/2A.

Consequently,

ln
A(t)

A(t1)
≤

3
2

ln t + C0,

so that 〈α−1/2
〉 ≤ Ct3/2 for t ≥ t1. Combining this estimate with (3.12) yields∫

S1
|Pθ | dθ ≤

(∫
S1
α1/2P 2

θ dθ

)1/2(∫
S1
α−1/2 dθ

)1/2

≤ Ct−3/4t3/4 ≤ C (3.17)
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for t ≥ t1. On the other hand, using (3.6) and (3.12) gives

|∂t 〈P 〉| = |〈Pt 〉| ≤
1

2π

∫
S1
|Pt | dθ ≤

1
√

2π

(∫
S1
P 2
t dθ

)1/2

≤ Ct−3/2. (3.18)

Consequently, 〈P 〉 is bounded to the future. Combining these two observations implies

‖P(t, ·)‖C0 ≤ C

for all t ≥ t1. Combining this estimate for P with the bound (3.12), one can derive L1-
estimates forQθ andQt analogous to (3.17) and (3.18). Consequently,Q is also bounded
to the future. ut

Lemma 3.9. Consider a future global solution to Einstein’s equations with a cosmolog-
ical constant 3 > 0, T2-symmetry, λ-asymptotics, and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C > 0 such that ∥∥∥∥eλ/2−P J 2

t5/2

∥∥∥∥
C0
≤ Ct−2, (3.19)∥∥∥∥eP+λ/2(K −QJ)2t5/2

∥∥∥∥
C0
≤ Ct−2 (3.20)

for all t ≥ t1. Moreover, for t ≥ t1,

‖Ht‖L1 + ‖Gt‖L1 ≤ Ct
−3/2.

Proof. Combining (2.8), (3.4), (3.11), (3.12) and (3.16), we conclude that∫
S1
|Jθ | dθ ≤ Ct

5/4
∫
S1
α−1/2eλ/4ρ dθ ≤ Ct5/4t−3/2t3/4

∫
S1
t3/2α−1/2eλ/2ρ dθ ≤ Ct.

(3.21)

Hence the spatial variation of J is not greater than Ct . Combining (2.10), (3.5), (3.6),
(3.11), (3.12) and (3.16) yields∫

S1
|Jt | dθ ≤ Ct

5/4
∫
S1
eλ/4ρ dθ ≤ Ct5/4t−3/2t3/4t−3/2

∫
S1
t3/2α−1/2eλ/2ρ dθ

≤ Ct−1/2. (3.22)

As a consequence,
|〈J 〉| ≤ Ct1/2. (3.23)

Combining (3.21) and (3.23) yields

‖J (t, ·)‖C0 ≤ Ct. (3.24)

From (3.11), (3.16) and (3.24), we conclude that (3.19) holds.
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Let us now turn to K − QJ . First, note that the L1-norm of Qθ is bounded to the
future. The argument is similar to (3.17), keeping in mind that (3.16) holds. Moreover,∫
S1
|Kθ−QθJ−QJθ | dθ ≤

∫
S1
|Kθ−QJθ | dθ+

∫
S1
|QθJ | dθ ≤

∫
S1
|Kθ−QJθ | dθ+Ct,

where we have used (3.24) and the fact that the L1-norm of Qθ is bounded. On the other
hand, (2.8) and (2.9) yield

Kθ −QJθ = 2t5/4α−1/2e−P/2+λ/4J3.

Keeping (3.4) in mind, we can thus argue as in the proof of (3.21) to conclude that∫
S1
|Kθ −QθJ −QJθ | dθ ≤ Ct. (3.25)

In particular, the spatial variation of K −QJ is bounded by Ct . On the other hand, the
L1-norm of Qt is bounded by Ct−3/2 (cf. (3.18) and (3.16)). Combining this observation
with (3.24) yields∫

S1
|Kt −QtJ −QJt | dθ ≤

∫
S1
|Kt −QJt | dθ +

∫
S1
|QtJ | dθ

≤

∫
S1
|Kt −QJt | dθ + Ct

−1/2. (3.26)

Moreover, due to (2.10) and (2.11),

Kt −QJt = −2t5/4e−P/2+λ/4S13.

Keeping (3.5) in mind, we can proceed as in (3.22) to obtain∫
S1
|Kt −QJt | dθ ≤ Ct

−1/2.

Due to (3.26) and this estimate, the mean value ofK−QJ cannot grow faster than Ct1/2.
Combining this observation with (3.25) yields

‖K −QJ‖C0 ≤ Ct. (3.27)

Keeping (3.11) and (3.16) in mind, we obtain (3.20). As (2.2) holds, we conclude that∫
S1
|Ht | dθ ≤

∫
S1
t−5/2α−1/2eP+λ/2|K −QJ | dθ.

Combining this with (3.11), (3.16) and (3.27) yields the desired L1-estimate for Ht .
A similar argument for Gt gives the remaining conclusion of the lemma. ut

3.1. Causal structure of T3-Gowdy symmetric solutions

It is of interest to note that in the T3-Gowdy symmetric case, it is sufficient to assume
future global existence and energy conditions in order to conclude that there is asymptotic
silence. In fact, we have the following result.
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Proposition 3.10. Consider a future global T3-Gowdy symmetric solution to Einstein’s
equations with a cosmological constant 3 > 0 and a stress energy tensor satisfying
the dominant energy condition and the non-negative pressure condition. Then there is a
constant C, depending only on the solution, such that if

γ (s) = [s, θ(s), x(s), y(s)] = [s, γ̄ (s)]

is a causal curve, then
| ˙̄γ (s)|2 ≤ Cs−3 (3.28)

for s ≥ t1. In particular, there is a point x̄0 ∈ T3 such that

d[γ̄ (s), x̄0] ≤ Cs
−1/2 (3.29)

for all s ≥ t1, where d is the standard metric on T3.

Proof. The causality of the curve is equivalent to the estimate

α−1θ̇2
+ s3/2eP−λ/2[ẋ +Qẏ + (G+QH)θ̇ ]2 + s3/2e−P−λ/2(ẏ +Hθ̇)2 ≤ 1. (3.30)

Note that in the case of Gowdy symmetry, G and H are time-independent. In particular,
they are bounded. Due to (3.16) we also know that Q is bounded for t ≥ t1. On the other
hand, combining (3.30) with (3.6), (3.11) and (3.16) yields

|θ̇ | ≤ Cs−3/2,

|ẏ +Hθ̇ | ≤ Cs−3/2,

|ẋ +Qẏ + (G+QH)θ̇ | ≤ Cs−3/2

for s ≥ t1. Thus (3.28) holds, an estimate which implies (3.29). ut

4. Light cone estimates

In the presence of matter of Vlasov type, it is necessary to consider the characteristic sys-
tem in parallel with the light cone estimates for the metric components. Let us therefore
begin by writing down the characteristic system:

d2

ds
= α1/2V

1

V 0 , (4.1)

dV 1

ds
= −

1
4
α1/2λθV

0
−

1
4

(
λt − 2

αt

α
−

1
s

)
V 1
+ α1/2ePQθ

V 2V 3

V 0

−
1
2
α1/2Pθ

(V 3)2 − (V 2)2

V 0 +
e−P/2+λ/4J

s7/4 V 2
+
eP/2+λ/4(K −QJ)

s7/4 V 3,

(4.2)

dV 2

ds
= −

1
2

(
Pt +

1
s

)
V 2
−

1
2
α1/2Pθ

V 1V 2

V 0 , (4.3)

dV 3

ds
= −

1
2

(
1
s
− Pt

)
V 3
+

1
2
α1/2Pθ

V 1V 3

V 0 − e
PQtV

2
− α1/2ePQθ

V 1V 2

V 0 . (4.4)
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Note that in this system of equations, functions such as α1/2 should be evaluated at
[s,2(s)]. In view of the Vlasov equation (2.19), it is clear that the distribution function
is constant along characteristics. It is important to note that only the case of V 1 requires
an analysis; for V 2 and V 3 we automatically obtain the following estimate.

Lemma 4.1. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that if 2, V is a solution to (4.1)–(4.4) with initial
data 2(t1), V (t1) such that [t1,2(t1), V (t1)] is in the support of f , then

|V 2(s)| + |V 3(s)| ≤ Cs−1/2 for all s ≥ t1.

Remark 4.2. As mentioned in Remark 1.6, we tacitly assume f (t1, ·) to have compact
support.

Proof of Lemma 4.1. Due to (4.3) and (4.4), it can be verified that

s1/2eP/2V 2, s1/2QeP/2V 2
+ s1/2e−P/2V 3 (4.5)

are conserved along characteristics. Since we know P and Q to be uniformly bounded
(cf. Lemma 3.8), we obtain the conclusion of the lemma. ut

Let us now turn to V 1. First, we have the following estimate.

Lemma 4.3. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that if 2, V is a solution to (4.1)–(4.4) with initial
data 2(t1), V (t1) such that [t1,2(t1), V (t1)] is in the support of f , then

d(V 1)2

ds
≤ −

1
s
(V 1)2 + Cs−1/2eλ/2(Q1)2

|V 1
|

V 0

+ CsF
|V 1
|

V 0 + Cs
−1F 1/2 |V

1
|

V 0 + Cs
−3/2(V 1)2 + Cs−2

|V 1
| (4.6)

for all s ≥ t1, where

Q1(t) := sup{|v1
| : (t, θ, v1, v2, v3) ∈ suppf } (4.7)

and

F(t) = sup
θ∈S1

A+(t, θ)+ sup
θ∈S1

A−(t, θ), (4.8)

where A± is defined in (2.15).
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Proof. By (4.2), we have

d(V 1)2

ds
= −

1
2
α1/2λθV

0V 1
−

1
2

(
λt − 2

αt

α
−

1
s

)
(V 1)2 + 2α1/2ePQθ

V 1V 2V 3

V 0

− α1/2PθV
1 (V

3)2 − (V 2)2

V 0 + 2
e−P/2+λ/4J

s7/4 V 1V 2

+ 2
eP/2+λ/4(K −QJ)

s7/4 V 1V 3.

However, using Lemmas 3.9 and 4.1, we can estimate the last two terms by Cs−2
|V 1
|.

We thus have

d(V 1)2

ds
≤ −

1
2
α1/2λθV

0V 1
−

1
2

(
λt − 2

αt

α
−

1
s

)
(V 1)2 +Cs−1F 1/2 |V

1
|

V 0 +Cs
−2
|V 1
|,

where we have used Lemma 4.1. By (2.3) and (2.7), the sum of the first and the second
terms on the right hand side can be written

2s1/2eλ/2(J1V
0
− ρV 1)V 1

− 2s1/2eλ/23(V 1)2 −
e−P+λ/2J 2

2s5/2 (V 1)2

−
eP+λ/2(K −QJ)2

2s5/2 (V 1)2 − sα1/2(PtPθ + e
2PQtQθ )V

0V 1

−
1
2
s[P 2

t + αP
2
θ + e

2P (Q2
t + αQ

2
θ )](V

1)2 +
1
2s
(V 1)2. (4.9)

Note that

−sα1/2PtPθV
0V 1
−

1
2
s[P 2

t +αP
2
θ ](V

1)2 ≤ sα1/2
|PtPθ |V

0
|V 1
|−

1
2
s[P 2

t +αP
2
θ ](V

1)2

≤ sα1/2
|PtPθ | |V

1
|(V 0
− |V 1

|)−
1
2
s(|Pt | − α

1/2
|Pθ |)

2(V 1)2.

Combining this estimate with a similar estimate for Q, we conclude that the second last
and third last terms in (4.9) can be estimated by

sα1/2(|PtPθ | + e
2P
|QtQθ |)|V

1
|
1+ (V 2)2 + (V 3)2

V 0 + |V 1|
≤ CsF

|V 1
|

V 0 .

By Lemma 3.7, we have

−2s1/2eλ/23+
1
2s
= −

1
s
+O(s−3/2).

Combining the above observations with Lemma 3.9, we conclude that

d(V 1)2

ds
≤ −

1
s
(V 1)2 + 2s1/2eλ/2(J1V

0
− ρV 1)V 1

+ CsF
|V 1
|

V 0 + Cs
−1F 1/2 |V

1
|

V 0 + Cs
−3/2(V 1)2 + Cs−2

|V 1
|. (4.10)
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Let us estimate the term

T1 := 2s1/2eλ/2(J1V
0
− ρV 1)V 1

= 2s1/2eλ/2(I− + I+)V 1, (4.11)

where

I−(s) =

∫
R2

∫ 0

−∞

[v1V 0(s)− v0V 1(s)]f (s,2(s), v) dv1 dv2 dv3,

I+(s) =

∫
R2

∫
∞

0
[v1V 0(s)− v0V 1(s)]f (s,2(s), v) dv1 dv2 dv3.

There are two cases to distinguish: V 1(s) ≥ 0 and V 1(s) < 0. When V 1(s) ≥ 0, I− is
non-positive and can be dropped. Furthermore, for v1

≥ 0,

v1V 0
− v0V 1

=
(v1)2(V 0)2 − (v0)2(V 1)2

v1V 0 + v0V 1

=
(v1)2(1+ (V 2)2 + (V 3)2)

v1V 0 + v0V 1 −
(V 1)2(1+ (v2)2 + (v3)2)

v1V 0 + v0V 1

≤
v1(1+ (V 2)2 + (V 3)2)

V 0 .

Letting Evel = {(v
2, v3) : |v2

| ≤ Cs−1/2, |v3
| ≤ Cs−1/2

}, where C is the constant
appearing in Lemma 4.1, we obtain

T1 ≤ 2‖f (t1, ·)‖∞s1/2eλ/2V 1
∫
Evel

∫ Q1

0

v1(1+ (V 2)2 + (V 3)2)

V 0 dv1 dv2 dv3

≤ Cs−1/2eλ/2
∫ Q1

0
v1 dv1V

1

V 0 ≤ Cs
−1/2eλ/2(Q1)2

V 1

V 0 , (4.12)

where Q1(t) is defined in the statement of the lemma. When V 1 < 0, an analogous
argument can be given and it follows that in both cases

T1 ≤ Cs
−1/2eλ/2(Q1)2

|V 1
|

V 0 . (4.13)

Combining (4.10), (4.11) and (4.13) yields the conclusion of the lemma. ut

Lemma 4.4. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that

t3‖P 2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )‖C0 + t[Q1(t)]2 ≤ C for all t ≥ t1.

Proof. Let us use (2.16) to derive an estimate for F . Note first that

−

(
2
t
−
αt

α

)
≤ −

(
2
t
+ 4t1/2eλ/23

)
≤ −

5
t
+O(t−3/2),
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where we have used (2.13), (3.3) and (3.11). Note also that the second term on the right
hand side of (2.16) can be written

1
2t
(A∓ −A±)+

2
t
α(P 2

θ + e
2PQ2

θ ) ≤
1
t
A∓ +

1
2t
(A+ +A−).

Combining these estimates with Lemma 3.9, we conclude that

∂±A∓ ≤ −
4
t
A∓ + Ct−3/2A∓ +

1
2t
(A+ +A−)+ Ct−3A1/2

∓

+ 2t−1/2eλ/2(P2 − P3)∂∓P + 4t−1/2eλ/2S23e
P ∂∓Q.

Moreover, due to (2.21) and Lemma 4.1,

|Pk| ≤ Ct
−2 ln(1+Q1), |S23| ≤ Ct

−2 ln(1+Q1)

for k = 2, 3. As a consequence,

∂±A∓ ≤ −
4
t
A∓ + Ct−3/2A∓ +

1
2t
(A+ +A−)+ Ct−3A1/2

∓ + Ct
−4A1/2

∓ ln(1+Q1).

Defining
Â± = t4A± + t, (4.14)

we obtain

∂±Â∓ ≤
1
2t
(Â+ + Â−)+ Ct−3/2Â∓ + Ct−2Â1/2

∓ ln(1+Q1).

Introducing
F̂ (t) = sup

θ∈S1
Â+(t, θ)+ sup

θ∈S1
Â−(t, θ), (4.15)

we obtain

F̂ (t) ≤ F̂ (t1)+

∫ t

t1

(
1
s
F̂ (s)+ Cs−3/2F̂ (s)+ Cs−2F̂ 1/2(s) ln(1+Q1)

)
ds. (4.16)

Introduce

R1(s) = [s(V 1(s))2 + 1]1/2, Q̂1(s) = [s(Q1(s))2 + 1]1/2. (4.17)

Then (4.6) implies that

d(R1)2

ds
≤ Cs−2(Q̂1)2 + Cs−2F̂ + Cs−5/2F̂ + Cs−3/2(Q̂1)2.

Integrating this inequality from t1 to t and taking the supremum over initial data belonging
to the support of f , we obtain

[Q̂1(t)]2 ≤ [Q̂1(t1)]
2
+

∫ t

t1

(
Cs−2F̂ + Cs−3/2(Q̂1)2

)
ds. (4.18)
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Adding (4.16) and (4.18) and introducing

G = F̂ + (Q̂1)2, (4.19)

we obtain

G(t) ≤ G(t1)+
∫ t

t1

(
1
s
G(s)+ Cs−3/2G(s)

)
ds.

In particular, G(t) ≤ Ct , so that F̂ (t) ≤ Ct and Q1 is bounded. Returning to (4.6) with
this information in mind, we conclude that

d(R1)2

ds
≤ Cs−3/2(Q̂1)2.

By arguments similar to ones given above, we conclude that Q̂1 is bounded. ut

5. Intermediate estimates

Before proceeding, it is useful to collect the estimates that follow from the above argu-
ments.

Lemma 5.1. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that∥∥∥∥λ(t, ·)+ 3 ln t − 2 ln

3
43

∥∥∥∥
C0
≤ Ct−1, (5.1)∥∥∥∥αtα + 3

t

∥∥∥∥
C0
+

∥∥∥∥λt + 3
t

∥∥∥∥
C0
≤ Ct−2, (5.2)

‖α1/2λθ‖C0 ≤ Ct
−2 (5.3)

for all t ≥ t1. Moreover,

‖Jt‖C0 + ‖Kt‖C0 ≤ Ct
−2, (5.4)∥∥∥∥eP+λ/2(K −QJ)2t5/2

∥∥∥∥
C0
+

∥∥∥∥e−P+λ/2J 2

t5/2

∥∥∥∥
C0
≤ Ct−4, (5.5)

‖Jθ‖C0 + ‖Kθ‖C0 ≤ C, (5.6)∥∥∥∥∂θ(eP+λ/2(K −QJ)2t5/2

)∥∥∥∥
C0
+

∥∥∥∥∂θ(e−P+λ/2J 2

t5/2

)∥∥∥∥
C0
≤ Ct−4 (5.7)

for all t ≥ t1. Finally,

‖ρ‖C0 + t
1/2
‖Ji‖C0 + t‖Pi‖C0 + t‖Sim‖C0 ≤ Ct

−3/2 (5.8)

for all t ≥ t1.

Remark 5.2. Note that as a consequence of (5.2),

‖∂t (α
−1/2eλ/2)‖C0 ≤ Ct

−2 for all t ≥ t1.
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Proof of Lemma 5.1. Due to (2.21) and Lemmas 4.1 and 4.4, the estimate (5.8) holds.
Combining Lemmas 3.9 and 4.4 with (2.4) and (5.8), we conclude that

∂t λ̂ =
3
t
−

3
t
eλ̂/2 +O(t−2),

where we have used the notation (3.7). Combining this observation with Lemma 3.7, we
conclude that there is a constant C such that

∂t λ̂
2
≤ −

3
t
λ̂2
+ Ct−2

|λ̂|.

Introducing L = t2λ̂2, we obtain

∂tL ≤ −
1
t
L+

C

t
L1/2.

In particular,L decreases once it exceeds a certain value. As a consequence,L is bounded,
and we obtain (5.1). Combining (2.4), (2.13), (5.1) and (5.8) and Lemmas 3.9 and 4.4, we
then obtain (5.2). As a consequence of this estimate, t3α converges to a strictly positive
function. In particular, there are constants Ci > 0, i = 1, 2, such that

C1 ≤ t
3α(t, θ) ≤ C2 (5.9)

for all t ≥ t1.
From (2.7), (3.11), (5.8) and Lemma 4.4, we obtain (5.3). Returning to (2.10) and

(2.11), keeping (3.11), (3.16) and (5.8) in mind, we conclude that (5.4) holds. As a con-
sequence, J and K are bounded. Combining this observation with (3.11) and (3.16)
yields (5.5). From (2.8), (2.9), (3.11), (3.16), (5.8) and (5.9), we also obtain (5.6). By
(3.16), (5.9) and Lemma 4.4, we know that Pθ and Qθ are bounded for t ≥ t1. Moreover,
λθ is bounded for t ≥ t1 due to (5.3) and (5.9). Combining these observations with (5.1),
(5.6) and the fact that J , K , Q and P are bounded, we obtain (5.7). ut

6. Derivatives of the characteristic system

Solutions to the Vlasov equation can be expressed in terms of the initial datum for the
distribution function and appropriate solutions to the characteristic system (4.1)–(4.4).
To see this, let us begin by introducing the notation 2,V for the solution to (4.1)–(4.4)
corresponding to the initial data

2(t; t, θ, v) = θ, V (t; t, θ, v) = v. (6.1)

Here we write 2(s; t, θ, v) and V (s; t, θ, v) in order to clarify the dependence on the
initial data. In particular, 2(s; t, θ, v) and V (s; t, θ, v), considered as functions of s,
constitute a solution to (4.1)–(4.4). The purpose of the variables (t, θ, v) appearing after
the semi-colon is simply to indicate that the relations (6.1) hold. We shall write d2/ds
and dV/ds to indicate differentiation with respect to the first variable. Moreover, ∂t2,
∂θ2, ∂vi2 etc. will denote differentiation with respect to the variables appearing after the
semi-colon.
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Given a fixed τ ∈ (t0,∞), where (t0,∞) is the existence interval of the solution to
the Einstein–Vlasov system under consideration, we know that

f (t, θ, v) = f [τ,2(τ ; t, θ, v), V (τ ; t, θ, v)]. (6.2)

Since f (τ, ·) is a smooth function with compact support, it is sufficient to estimate the
derivatives of solutions to the characteristic system in order to estimate the derivatives
of f . Unfortunately, differentiating the characteristic system leads to second order deriva-
tives of P , Q etc., quantities over which we have no control. However, using the ideas
introduced in [2], this problem can be circumvented. In fact, let ∂ be a shorthand for ∂t ,
∂θ or ∂vi and let

9 = α−1/2eλ/2∂2, (6.3)

Z1
= ∂V 1

+

[
1
4
α−1/2

(
λt − 2

αt

α
− 4s1/2eλ/23

)
V 0
−

1
2
α−1/2PtV

0 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2

+
1
2
PθV

1 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
− α−1/2ePQt

V 0V 2V 3

(V 0)2 − (V 1)2

+ ePQθ

V 1V 2V 3

(V 0)2 − (V 1)2

]
∂2, (6.4)

Z2
= ∂V 2

+
1
2
PθV

2∂2, (6.5)

Z3
= ∂V 3

−

(
1
2
PθV

3
− ePQθV

2
)
∂2. (6.6)

It is then possible to derive an ODE for (9,Z1, Z2, Z3) such that the coefficients are con-
trolled due to previous arguments. The definitions (6.3)–(6.6) differ slightly from those
of [2]. The reason is that in the present context, it is not sufficient to know that no second
order derivatives of P , Q etc. occur; we need to analyse, in detail, all the terms that ap-
pear, and to use the resulting system in order to derive specific estimates for ∂2 and ∂V i .
The relevant result is the following.

Lemma 6.1. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that

dZ1

ds
= −

1
2s
Z1
+ c1,θ9 + c1,jZ

j , (6.7)

dZ2

ds
= −

1
2s
Z2
+ c2,2Z

2, (6.8)

dZ3

ds
= −

1
2s
Z3
+ c3,2Z

2
+ c3,3Z

3, (6.9)

d9

ds
= cθ,θ9 + cθ,iZ

i, (6.10)
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where Einstein’s summation convention applies to i and j , and

|ci,j (s; t, θ, v)| + |cθ,i(s; t, θ, v)| + |ci,θ (s; t, θ, v)| + s
1/2
|cθ,θ (s; t, θ, v)| ≤ Cs

−3/2

for all (t, θ, v) ∈ [t1,∞)× S1
× R3 in the support of f and for all s ∈ [t1, t].

Proof. Let us begin by noting that

eP/2s1/2Z2
= ∂(s1/2eP/2V 2),

s1/2e−P/2Z3
+ eP/2Qs1/2Z2

= ∂(s1/2QeP/2V 2
+ s1/2e−P/2V 3).

Since the quantities appearing in (4.5) are preserved along characteristics, we obtain

d

ds
(eP/2s1/2Z2) = 0, (6.11)

d

ds
(s1/2e−P/2Z3

+ eP/2Qs1/2Z2) = 0. (6.12)

We also have

d9

ds
=

1
2

(
λt −

αt

α

)
9 +

1
2
α1/2λθ

V 1

V 09 + e
λ/2∂

(
V 1

V 0

)
. (6.13)

In the end, we shall express ∂(V 1/V 0) in terms of Zi and 9. However, there is no imme-
diate gain in doing so here. The most cumbersome part of the argument is to compute the
derivative of Z1. This calculation can be divided into several parts. We first consider

d

ds
(∂V 1) = ∂

(
dV 1

ds

)
.

When calculating the right hand side, it is convenient to divide the result into terms which
include a ∂V i factor, i = 1, 2, 3, and terms which do not. Combining Lemmas 4.1, 4.4
and 5.1, we see that the terms which include such a factor can be written

−
1
2s
∂V 1
+ ci∂V

i,

where ci(s) = O(s−2); note that the coefficient of V 1 in (4.2) is

−
1
2s
+O(s−2).

It is straightforward to calculate the remaining terms, and we conclude that

d

ds
(∂V 1)= −

1
4
∂θ (α

1/2λθ )V
0∂2−

1
4
∂θ

(
λt − 2

αt

α

)
V 1∂2+ ∂θ (α

1/2ePQθ )
V 2V 3

V 0 ∂2

−
1
2
∂θ (α

1/2Pθ )
(V 3)2 − (V 2)2

V 0 ∂2+ s−7/4∂θ (e
λ/4e−P/2J )V 2∂2

+ s−7/4∂θ [e
λ/4eP/2(K −QJ)]V 3∂2−

1
2s
∂V 1
+ ci∂V

i,
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where ci(s) = O(s−2). Combining an argument which is identical to the proof of (5.7)
with Lemma 4.1, we can estimate the coefficients of ∂2 in the third last and fourth last
terms on the right hand side. In fact, we obtain

d

ds
(∂V 1) = −

1
2s
∂V 1
−

1
4
∂θ (α

1/2λθ )V
0∂2−

1
4
∂θ

(
λt − 2

αt

α

)
V 1∂2

+ ∂θ (α
1/2ePQθ )

V 2V 3

V 0 ∂2−
1
2
∂θ (α

1/2Pθ )
(V 3)2 − (V 2)2

V 0 ∂2

+ cθ∂2+ ci∂V
i,

where ci(s) = O(s−2) and cθ (s) = O(s−3). As a next step, it is of interest to consider
the terms that arise when d/ds hits a V α in the second term in the definition of Z1. Before
writing down the result, let us note that, due to Lemmas 4.1, 4.4 and 5.1,

dV i

ds
= −

1
2s
V i +O(s−2),

dV 0

ds
= O(s−2). (6.14)

From these observations, Lemmas 4.1, 4.4 and 5.1, as well as (5.9) and the definition
of Z1, we conclude that when d/ds hits a V α in the second term in Z1, the resulting
expression can be written cθ∂2, where cθ (s) = O(s−2).

Note that every term appearing in the second term in the definition of Z1 can be
written in the form

h(·,2)ψ(V )α−1/2(·,2)∂2. (6.15)

We have already estimated the terms that arise when d/ds hits ψ . Let us therefore con-
sider the terms that arise when the derivative hits the remaining factors. Omitting the
arguments, we need to consider

(
ht + α

1/2hθ
V 1

V 0

)
ψα−1/2∂2−

αt

2α3/2 hψ∂2

+ hψ

[
−

αθ

2α3/2α
1/2V

1

V 0 ∂2+ α
−1/2 αθ

2α1/2
V 1

V 0 ∂2+ ∂

(
V 1

V 0

)]
=

(
∂t (α

−1/2h)+ hθ
V 1

V 0

)
ψ∂2+ hψ∂

(
V 1

V 0

)
. (6.16)

In all the terms of interest, hψ = O(s−2), where we have used Lemmas 4.1, 4.4 and 5.1.
As a consequence, this expression can be written(

∂t (α
−1/2h)+ hθ

V 1

V 0

)
ψ∂2+ ci∂V

i,

where ci(s) = O(s−2). Combining the above observations, we conclude that
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dZ1

ds
= −

1
2s
∂V 1
−

1
4
∂θ (α

1/2λθ )V
0∂2−

1
4
∂θ

(
λt − 2

αt

α

)
V 1∂2

+ ∂θ (α
1/2ePQθ )

V 2V 3

V 0 ∂2−
1
2
∂θ (α

1/2Pθ )
(V 3)2 − (V 2)2

V 0 ∂2

+
1
4
∂t

[
α−1/2

(
λt − 2

αt

α
− 4s1/2eλ/23

)]
V 0∂2

+
1
4
∂θ

(
λt − 2

αt

α
− 4s1/2eλ/23

)
V 1∂2−

1
2
∂t (α

−1/2Pt )V
0 (V

2)2 − (V 3)2

(V 0)2 − (V 1)2
∂2

−
1
2
PtθV

1 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
∂2+

1
2
PtθV

1 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
∂2

+
1
2
∂θ (α

1/2Pθ )
(V 1)2

V 0
(V 2)2 − (V 3)2

(V 0)2 − (V 1)2
∂2− ∂t (α

−1/2ePQt )
V 0V 2V 3

(V 0)2 − (V 1)2
∂2

− ∂θ (e
PQt )

V 1V 2V 3

(V 0)2 − (V 1)2
∂2+ ∂t (e

PQθ )
V 1V 2V 3

(V 0)2 − (V 1)2
∂2

+ ∂θ (α
1/2ePQθ )

V 1

V 0
V 1V 2V 3

(V 0)2 − (V 1)2
∂2+ cθ∂2+ ci∂V

i, (6.17)

where cθ (s) = O(s−2) and ci(s) = O(s−2). How to interpret the terms in this equation
should be clear from (6.15) and (6.16). However, there is one term which is slightly am-
biguous, namely the sixth one on the right hand side of (6.17). For clarity, let us point out
that the coefficient of V 0∂2 in this term should be interpreted as the time derivative of

1
4

[
α−1/2

(
λt − 2

αt

α
− 4t1/2eλ/23

)]
,

evaluated at [s,2(s)]. The expression (6.17) can be simplified somewhat. First, the terms
involving Ptθ cancel. Moreover,

−∂θ (e
PQt )+ ∂t (e

PQθ ) = e
P (PtQθ − PθQt ).

Using Lemma 4.4 and (5.9), we can estimate this expression in order to conclude that the
sum of the fourth last and fifth last terms is of the form cθ∂2, where cθ = O(s−3) (to
obtain this conclusion, we also use Lemma 4.1). By Lemma 4.4, (5.1), (5.3) and (5.9), the
sum of the third and the seventh terms is cθ∂2, where cθ = O(s−2). Since

−
(V 3)2 − (V 2)2

V 0 +
(V 1)2

V 0
(V 2)2 − (V 3)2

(V 0)2 − (V 1)2
= V 0 (V

2)2 − (V 3)2

(V 0)2 − (V 1)2
,

V 2V 3

V 0 +
V 1

V 0
V 1V 2V 3

(V 0)2 − (V 1)2
=

V 0V 2V 3

(V 0)2 − (V 1)2
,

the terms involving a factor of ∂θ (α1/2Pθ ) can be written

1
2
∂θ (α

1/2Pθ )V
0 (V

2)2 − (V 3)2

(V 0)2 − (V 1)2
∂2,
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and the terms involving a factor of ∂θ (α1/2ePQθ ) can be written

∂θ (α
1/2ePQθ )

V 0V 2V 3

(V 0)2 − (V 1)2
∂2.

Combining these observations yields

dZ1

ds
= −

1
2s
∂V 1
+

1
4
∂t

[
α−1/2

(
λt −2

αt

α
−4s1/2eλ/23

)]
V 0∂2−

1
4
∂θ (α

1/2λθ )V
0∂2

−
1
2
[∂t (α

−1/2Pt )− ∂θ (α
1/2Pθ )]V

0 (V
2)2− (V 3)2

(V 0)2− (V 1)2
∂2

− [∂t (α
−1/2ePQt )− ∂θ (α

1/2ePQθ )]
V 0V 2V 3

(V 0)2 − (V 1)2
∂2+ cθ∂2+ ci∂V

i, (6.18)

where cθ (s) = O(s−2) and ci(s) = O(s−2). Combining (2.5), (5.9) and Lemmas 4.4 and
5.1 yields

∂t (α
−1/2Pt )− ∂θ (α

1/2Pθ ) = O(t
−1).

Due to this estimate and Lemmas 4.4 and 4.1, the fourth term on the right hand side of
(6.18) is cθ∂2, where cθ (s) = O(s−2). Keeping (2.12) in mind, a similar argument yields
the same conclusion concerning the fifth term on the right hand side of (6.18). Finally,
keeping (3.10) in mind, a similar argument yields the conclusion that the combination
of the second and third terms on the right hand side of (6.18) is cθ∂2, where cθ (s) =
O(s−3/2). To conclude,

dZ1

ds
= −

1
2s
∂V 1
+ cθ∂2+ ci∂V

i, (6.19)

where cθ (s) = O(s−3/2) and ci(s) = O(s−2). On the other hand, due to (5.1) and (5.9),
the function α−1/2eλ/2 can be bounded from above and below by positive constants (for
t ≥ t1). In other words, ∂2 and 9 are interchangeable when deriving equations of the
form (6.7)–(6.10). Moreover, due to (5.9) and Lemmas 4.1, 4.4 and 5.1,

Zi = ∂V i + ci,θ9, (6.20)

where ci,θ (s) = O(s−1/2). We can now prove the lemma. First, combining (6.11), (6.12)
and Lemma 4.4 yields (6.8) and (6.9). Combining (6.13) and (6.20) with Lemmas 4.1, 4.4
and 5.1 gives (6.10). Finally, combining (6.19) and (6.20) yields (6.7). ut

Lemma 6.2. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that

(ln s)2|∂θ2(s; t, θ, v)| + s1/2
|∂θV

i(s; t, θ, v)| ≤ C(ln t)2 (6.21)

for all s ∈ [t1, t] and (t, θ, v) ∈ [t1,∞)× S1
× R3 in the support of f .
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Remark 6.3. Arguments similar to the ones below yield estimates for ∂t2, ∂vi2 etc.

Proof of Lemma 6.2. Let

Ẑi(s; t, θ, v) = s1/2Zi(s; t, θ, v), 9̂(s; t, θ, v) = (ln s)29(s; t, θ, v). (6.22)

Then, due to Lemma 6.1,

dẐ1

ds
= c1,θ s

1/2(ln s)−29̂ + c1,j Ẑ
j ,

dẐ2

ds
= c2,2Ẑ

2,

dẐ3

ds
= c3,2Ẑ

2
+ c3,3Ẑ

3,

d9̂

ds
=

2
s ln s

9̂ + cθ,θ 9̂ + cθ,is
−1/2(ln s)2Ẑi

for s ∈ [t1, t], with coefficients as in Lemma 6.1. Introducing

Ê =

3∑
i=1

(Ẑi)2 + (9̂)2, (6.23)

we conclude that there is a constant C > 0, depending only on the solution, such that

dÊ

ds
≥ −C

1
s(ln s)2

Ê

for s ∈ [t1, t]. As a consequence,

Ê(s; t, θ, v) ≤ CÊ(t; t, θ, v) (6.24)

for s ∈ [t1, t]. Let us now assume ∂ = ∂θ . Then

9̂(t; t, θ, v) = O[(ln t)2].

Moreover,
Ẑi(t; t, θ, v) = [t1/2∂θV

i
+O(1)9](t; t, θ, v) = O(1).

As a consequence, Ê(t; t, θ, v) = O[(ln t)4]. Thus (6.24) implies (6.21); note that the
estimate for ∂θ2 is immediate and

|∂θV
i
| ≤ |Zi | + Cs−1/2

|∂θ2|. ut

7. Higher order light cone estimates

Before proceeding to higher order light cone estimates, let us record some consequences
of the estimates obtained in Lemma 6.2.
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Lemma 7.1. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Then there is a constant C > 0,
depending only on the solution, such that

‖∂θρ‖C0 + t
1/2
‖∂θJi‖C0 + t‖∂θSij‖C0 + t‖∂θPk‖C0 ≤ Ct

−3/2(ln t)2, (7.1)∥∥∥∥∂θ(αtα
)∥∥∥∥

C0
≤ Ct−3/2, (7.2)∥∥∥∥αθα

∥∥∥∥
C0
≤ C (7.3)

for all t ≥ t1.

Remark 7.2. Note that ∂θ (αt/α) = ∂t (αθ/α) = ∂t∂θ lnα.
Proof of Lemma 7.1. The estimate (7.1) follows from (6.2), (6.21) and the fact that |vi | ≤
Ct−1/2 in the support of f (t, ·). Consider (2.13). Since Lemmas 4.4 and 5.1 together with
(5.9) imply that J , K , Q and P are bounded in C1 and that λθ is O(t−1/2), the first two
terms on the right hand side of (2.13) are O(t−4) in C1. Since λθ is O(t−1/2), the θ -
derivative of the third term on the right hand side of (2.13) is O(t−3/2). Due to (7.1), the
θ -derivative of the last term is better. Thus (7.2) holds, so that∥∥∥∥∂t(αθα

)∥∥∥∥
C0
≤

∥∥∥∥∂θ(αtα
)∥∥∥∥

C0
≤ Ct−3/2.

Integrating this estimate yields (7.3). ut

In what follows, we shall proceed inductively in order to derive estimates for higher order
derivatives. Let us therefore assume that we have a T2-symmetric solution to the Einstein–
Vlasov equations with a cosmological constant 3 > 0 and existence interval (t0,∞),
where t0 ≥ 0. Assume moreover that the solution has λ-asymptotics and let t1 = t0 + 2.
Let us make the following inductive assumption.

Inductive Assumption 7.3. For some 1 ≤ N ∈ Z, there are constants 0 ≤ mj ∈ Z and
Cj , j = 1, . . . , N , (depending only on N and the solution) such that

s1/2
∣∣∣∣∂jV∂θ j (s; t, θ, v)

∣∣∣∣+ ∣∣∣∣∂j2∂θ j (s; t, θ, v)
∣∣∣∣ ≤ Cj (ln t)mj , (7.4)

‖Pθ‖CN−1 + ‖Qθ‖CN−1 + t
3/2
‖Pt‖CN−1 + t

3/2
‖Qt‖CN−1 ≤ CN−1 (7.5)

for all j = 1, . . . , N , (t, θ, v) ∈ [t1,∞)× S1
× R3 in the support of f and s ∈ [t1, t].

Remarks 7.4. The induction hypothesis holds for N = 1. In what follows, Cj and mj
will change from line to line. However, they are only allowed to depend on N and the
solution.

In this section we prove that if Inductive Assumption 7.3 holds, then (7.5) holds with N
replaced by N + 1. In the next section, we close the induction argument by proving that
(7.4) holds with j replaced by N + 1.

We shall need the following consequences of the inductive assumption.
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Lemma 7.5. Consider a T2-symmetric solution to the Einstein–Vlasov equations with
a cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume
that the solution has λ-asymptotics and let t1 = t0 + 2. Assume moreover that Inductive
Assumption 7.3 holds for some 1 ≤ N ∈ Z. Then there are constants Cj , j = 0, . . . , N ,
and mN , depending only on N and the solution, such that

‖ρ‖CN + t
1/2
‖Ji‖CN + t‖Pi‖CN + t‖Sim‖CN ≤ CN t

−3/2(ln t)mN , (7.6)

t1/2‖∂ l+1
θ λ‖C0 ≤ Cl, (7.7)

‖α−1∂
j
θ α‖C0 ≤ Cj , (7.8)

‖Jθ‖CN + ‖Kθ‖CN ≤ CN (ln t)
mN , (7.9)∥∥∥∥∂ l+1

θ

(
αt

α

)∥∥∥∥
C0
≤ Cl t

−3/2 (7.10)

for t ≥ t1, 0 ≤ j ≤ N , 0 ≤ l ≤ N − 1 and i, m = 1, 2, 3.

Proof. For N = 1, the conclusions follow from Lemmas 4.4, 5.1 and 7.1, (5.9) and the
equations (2.8) and (2.9). We may thus assume that N ≥ 2. An immediate consequence
of the inductive assumption is that, for 0 ≤ j ≤ N and t ≥ t1,∣∣∣∣∂jf∂θ j

∣∣∣∣ ≤ Cj (ln t)mj
(cf. (6.2) and (7.4)). This yields (7.6). To obtain control of the θ -derivatives of α and λ,
we proceed inductively. Let us make the inductive assumption that

‖α−1∂
j
θ α‖C0 ≤ Cj , (7.11)

‖∂
j
θ λ‖C0 ≤ Cj t

−1/2 (7.12)

for 1 ≤ j ≤ l < N . Note that we know this is true for l = 1. Differentiating (2.7) l times
with respect to θ and appealing to (7.5), (7.6), (7.11) and (7.12), we conclude that (7.12)
holds with j replaced by l + 1. In order to improve our knowledge concerning α, let us
begin by improving our estimates for the θ -derivatives for J and K . Differentiating (2.8)
and (2.9) 0 ≤ j ≤ l times and using (7.5), (7.6), (7.11) and (7.12), we conclude that

‖∂
j+1
θ J‖C0 + ‖∂

j+1
θ K‖C0 ≤ Cj (ln t)mj (7.13)

for t ≥ t1 and 0 ≤ j ≤ l. Differentiating (2.13) l + 1 times with respect to θ , using (7.5),
(7.6), (7.13) as well as the fact that (7.12) holds for 1 ≤ j ≤ l + 1, we obtain∥∥∥∥∂ l+1

θ

(
αt

α

)∥∥∥∥
C0
=

∥∥∥∥∂t∂ lθ(αθα
)∥∥∥∥

C0
≤ Cl t

−3/2 (7.14)

for t ≥ t1. Thus ∥∥∥∥∂ lθ(αθα
)∥∥∥∥

C0
≤ Cl
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for t ≥ t1. Combining this estimate with the inductive hypothesis, we conclude that (7.11)
holds with j replaced by l+1. Thus (7.12) and (7.11) hold for 1 ≤ j ≤ N . Consequently,
(7.7)–(7.9) hold. In addition, (7.14) implies (7.10). ut

We are now in a position to derive higher order light cone estimates.

Lemma 7.6. Consider a T2-symmetric solution to the Einstein–Vlasov equations with
a cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume
that the solution has λ-asymptotics and let t1 = t0 + 2. Assume moreover that Inductive
Assumption 7.3 holds for some 1 ≤ N ∈ Z. Then there is a constant CN > 0, depending
only on N and the solution, such that

t3/2‖∂Nθ Pt‖C0 + ‖∂
N
θ Pθ‖C0 + t

3/2
‖eP ∂Nθ Qt‖C0 + ‖e

P ∂Nθ Qθ‖C0 ≤ CN (7.15)

for all t ≥ t1. As a consequence, (7.5) holds with N replaced by N + 1.
Proof. If N = 1, then in some of the sums below, the lower summation limit is larger
than the upper limit; such sums are meant to be zero. Moreover, terms which are bounded
by Ct−3 for t ≥ t1 will sometimes be written O(t−3). Let us compute

∂±[∂
N
θ Pt ∓ ∂

N
θ (α

1/2Pθ )]

= ∂Nθ Pt t ∓ ∂
N
θ

(
αt

2α
α1/2Pθ + α

1/2Ptθ

)
± α1/2∂N+1

θ Pt − α
1/2∂N+1

θ (α1/2Pθ )

= ∂Nθ Pt t ∓
1
2

N−1∑
j=0

βj∂
N−j
θ

(
αt

α

)
∂
j
θ (α

1/2Pθ )∓
1
2
αt

α
∂Nθ (α

1/2Pθ )

∓
Nαθ

2α1/2 ∂
N
θ Pt ∓

N−2∑
j=0

βj∂
N−j
θ (α1/2)∂

j+1
θ (Pt )− ∂

N
θ [α

1/2∂θ (α
1/2Pθ )]

+
Nαθ

2α1/2 ∂
N
θ (α

1/2Pθ )+

N−2∑
j=0

βj∂
N−j
θ (α1/2)∂

j+1
θ (α1/2Pθ ),

where the βj are binomial coefficients. Note that all the sums areO(t−3) due to Inductive
Assumption 7.3, Lemma 7.5 and (5.9). Let us use (2.5) in order to compute

∂Nθ [Pt t − α
1/2∂θ (α

1/2Pθ )] = ∂
N
θ

(
Pt t − αPθθ −

αθ

2
Pθ

)
= −

1
t
∂Nθ Pt +

αt

2α
∂Nθ Pt +

N−1∑
j=0

βj∂
N−j
θ

(
αt

2α

)
∂
j
θ Pt +

N−1∑
j=0

βj∂
N−j
θ (e2P )∂

j
θ (Q

2
t − αQ

2
θ )

+ e2P
N−1∑
j=1

βj (∂
N−j
θ (Qt − α

1/2Qθ ))(∂
j
θ (Qt + α

1/2Qθ ))

+ 2e2P
[Qt∂

N
θ Qt − α

1/2Qθ∂
N
θ (α

1/2Qθ )] − ∂
N
θ

(
eP+λ/2(K −QJ)2

2t7/2

)
+ ∂Nθ

(
e−P+λ/2J 2

2t7/2

)
+ t−1/2∂Nθ [e

λ/2(P2 − P3)].
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By Inductive Assumption 7.3, Lemmas 7.5 and 5.1, and (5.9), the sums are O(t−3), as
also are the last three terms on the right hand side. We thus obtain

∂±[∂
N
θ Pt ∓ ∂

N
θ (α

1/2Pθ )]

= −
1
t
∂Nθ Pt +

αt

2α
[∂Nθ Pt ∓ ∂

N
θ (α

1/2Pθ )] ∓
Nαθ

2α1/2 [∂
N
θ Pt ∓ ∂

N
θ (α

1/2Pθ )]

+ 2e2P
[Qt∂

N
θ Qt − α

1/2Qθ∂
N
θ (α

1/2Qθ )] +O(t
−3).

Introducing

AN+1,± = [∂
N
θ Pt ± ∂

N
θ (α

1/2Pθ )]
2
+ e2P

[∂Nθ Qt ± ∂
N
θ (α

1/2Qθ )]
2, (7.16)

we conclude that

∂±[∂
N
θ Pt ∓ ∂

N
θ (α

1/2Pθ )]
2

≤ −
5
t
[∂Nθ Pt ∓ ∂

N
θ (α

1/2Pθ )]
2
∓

2
t
∂Nθ (α

1/2Pθ )[∂
N
θ Pt ∓ ∂

N
θ (α

1/2Pθ )]

+ CN t
−3A1/2

N+1,∓ + CN t
−3/2(AN+1,+ +AN+1,−),

where we have used Inductive Assumption 7.3, Lemma 7.5, (5.2) and (5.9). Now consider

∂±[∂
N
θ Qt ∓ ∂

N
θ (α

1/2Qθ )]

= ∂Nθ Qt t ∓
1
2

N−1∑
j=0

βj∂
N−j
θ

(
αt

α

)
∂
j
θ (α

1/2Qθ )∓
1
2
αt

α
∂Nθ (α

1/2Qθ )

∓
Nαθ

2α1/2 ∂
N
θ Qt ∓

N−2∑
j=0

βj∂
N−j
θ (α1/2)∂

j
θQtθ − ∂

N
θ [α

1/2∂θ (α
1/2Qθ )]

+
Nαθ

2α1/2 ∂
N
θ (α

1/2Qθ )+

N−2∑
j=0

βj∂
N−j
θ (α1/2)∂

j+1
θ (α1/2Qθ ).

As above, all the sums areO(t−3) due to Inductive Assumption 7.3, Lemma 7.5 and (5.9).
Using (2.12), we compute

∂Nθ [Qt t − α
1/2∂θ (α

1/2Qθ )]

= −
1
t
∂Nθ Qt +

αt

2α
∂Nθ Qt +

N−1∑
j=0

βj∂
N−j
θ

(
αt

2α

)
∂
j
θQt − 2(∂Nθ Pt )Qt

− 2Pt (∂Nθ Qt )+ 2∂Nθ (α
1/2Pθ )α

1/2Qθ + 2α1/2Pθ∂
N
θ (α

1/2Qθ )

− 2
N−1∑
j=1

βj (∂
N−j
θ Pt )(∂

j
θQt )+ 2

N−1∑
j=1

βj (∂
N−j
θ (α1/2Pθ ))(∂

j
θ (α

1/2Qθ ))

+ ∂Nθ

(
eλ/2−P J (K −QJ)

t7/2

)
+ 2t−1/2∂Nθ (e

λ/2−P S23).
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By Inductive Assumption 7.3, Lemmas 7.5 and 5.1, and (5.9), the sums are O(t−3), as
are the last two terms on the right hand side. Thus

∂±[∂
N
θ Qt ∓ ∂

N
θ (α

1/2Qθ )]

= −
1
t
∂Nθ Qt +

αt

2α
[∂Nθ Qt ∓∂

N
θ (α

1/2Qθ )]∓
Nαθ

2α1/2 [∂
N
θ Qt ∓∂

N
θ (α

1/2Qθ )]

−2(∂Nθ Pt )Qt −2Pt (∂Nθ Qt )+2∂Nθ (α
1/2Pθ )α

1/2Qθ +2α1/2Pθ∂
N
θ (α

1/2Qθ )+O(t
−3).

Consequently,

∂±[∂
N
θ Qt ∓ ∂

N
θ (α

1/2Qθ )]
2

≤ −
5
t
[∂Nθ Qt ∓ ∂

N
θ (α

1/2Qθ )]
2
∓

2
t
∂Nθ (α

1/2Qθ )[∂
N
θ Qt ∓ ∂

N
θ (α

1/2Qθ )]

+ CN t
−3A1/2

N+1,∓ + CN t
−3/2(AN+1,+ +AN+1,−),

where we have used Inductive Assumption 7.3, Lemma 7.5, (5.2) and (5.9). Adding up
the above estimates, we conclude that

∂±AN+1,∓ ≤ −
5
t
AN+1,∓ +

1
2t
(AN+1,∓ −AN+1,±)+

1
t
(AN+1,+ +AN+1,−)

+ CN t
−3/2(AN+1,+ +AN+1,−)+ CN t

−3A1/2
N+1,∓.

Let us introduce

ÂN+1,± = t
7/2AN+1,±+t

1/2, F̂N+1,± = sup
θ∈S1

ÂN+1,±, F̂N+1 = F̂N+1,++F̂N+1,−.

(7.17)
Then

∂±ÂN+1,∓ ≤
1
2t
ÂN+1,± + CN t

−3/2(ÂN+1,+ + ÂN+1,−).

Integrating this differential inequality, taking the supremum etc., we obtain

F̂N+1(t) ≤ F̂N+1(t1)+

∫ t

t1

(
1
2s
F̂N+1(s)+ CN s

−3/2F̂N+1(s)

)
ds.

As a consequence, F̂N+1(t) ≤ CN t
1/2. Combining this estimate with Inductive Assump-

tion 7.3, Lemma 7.5 and (5.9), we obtain (7.15). ut

8. Higher order derivatives of the characteristic system

In the previous section we showed that (7.5) holds with N replaced by N + 1, that is,

‖Pθ‖CN + ‖Qθ‖CN + t
3/2
‖Pt‖CN + t

3/2
‖Qt‖CN ≤ CN (8.1)

for all t ≥ t1. We also need to prove that (7.4) holds with j replaced with N + 1. Before
stating the relevant result, let us make the following preliminary observation.
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Lemma 8.1. Consider a T2-symmetric solution to the Einstein–Vlasov equations with
a cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume
that the solution has λ-asymptotics and let t1 = t0 + 2. Assume moreover that Inductive
Assumption 7.3 holds for some 1 ≤ N ∈ Z. Then there are constants Cj and mj , j =
0, . . . , N , depending only on N and the solution, such that

‖ρ‖CN + t
1/2
‖Ji‖CN + t‖Pi‖CN + t‖Sim‖CN ≤ CN t

−3/2(ln t)mN , (8.2)

‖α−1∂
j
θ α‖C0 + t

1/2
‖∂
j+1
θ λ‖C0 ≤ Cj , (8.3)

‖Jθ‖CN + ‖Kθ‖CN ≤ CN (ln t)
mN , (8.4)∥∥∥∥∂ l+1

θ

(
αt

α

)∥∥∥∥
C0
+ ‖∂ l+1

θ λt‖C0 ≤ Cl t
−3/2, (8.5)∥∥∥∥λt − 2

αt

α
− 4t1/2eλ/23

∥∥∥∥
CN
≤ CN t

−2, (8.6)∥∥∥∥λt − αtα
∥∥∥∥
CN
≤ CN t

−2 (8.7)

for t ≥ t1, 0 ≤ j ≤ N , 0 ≤ l ≤ N − 1 and i, m = 1, 2, 3. Moreover, using the notation

9j = ∂
j
θ9, Zij = ∂

j
θZ

i, V ij = ∂
j
θ V

i, 2j = ∂
j
θ2 (8.8)

(where the ∂-operator used to define Z and 9 is given by ∂θ ), there are functions ci,θ ,
i = 1, 2, 3, such that

|9l(s; t, θ, v)| + s
1/2
|Zl(s; t, θ, v)| ≤ Cl(ln t)ml , (8.9)

|9j (s; t, θ, v)− (α
−1/2eλ/2)[s,2(s; t, θ, v)]2j+1(s; t, θ, v)| ≤ Cj (ln t)mj , (8.10)

|Zij (s; t, θ, v)− V
i
j+1(s; t, θ, v)− (ci,θ9j )(s; t, θ, v)| ≤ Cj s

−1/2(ln t)mj , (8.11)

|ci,θ (s; t, θ, v)| ≤ C0s
−1/2 (8.12)

for all (t, θ, v) ∈ [t1,∞)× S1
×R3 in the support of f , 0 ≤ j ≤ N , 0 ≤ l ≤ N − 1 and

s ∈ [t1, t].

Remark 8.2. Due to (8.3), we have

|∂
j
θ α

p
| ≤ Cp,jα

p

for all (t, θ) ∈ [t1,∞) × S1, p ∈ R and 0 ≤ j ≤ N . In particular, spatial derivatives
of powers of α can effectively be ignored. In the derivation of the estimates below, it is
useful to keep this observation in mind.

Proof of Lemma 8.1. Combining Lemma 7.5 with (8.1), (2.4) and (2.7), we obtain (8.2)–
(8.5); recall that P , Q, J and K are bounded to the future. The estimate (8.6) is a conse-
quence of Lemma 7.5, (8.1) and the fact that

λt − 2
αt

α
− 4t1/2eλ/23 = t[P 2

t + αP
2
θ + e

2P (Q2
t + αQ

2
θ )] +

e−P+λ/2J 2

t5/2

+
eP+λ/2(K −QJ)2

t5/2
+ 4t1/2eλ/2ρ
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(cf. (2.13) and (2.14)). For similar reasons, (8.7) holds (cf. (2.14)). Turning to (8.9)–
(8.12), note that, up to numerical factors, ∂jθ9(s; t, θ, v) can be written as a sum of terms
of the form

∂kθ (α
−1/2eλ/2)[s,2(s; t, θ, v)]2i1(s; t, θ, v) · · ·2ik+1(s; t, θ, v),

where i1 + · · · + ik+1 = j + 1. Since k ≤ j ≤ N , the first factor is bounded due to (8.3).
By Inductive Assumption 7.3, the factors 2ij can be estimated by C(ln t)mj if ij ≤ N .
The only way a factor 2N+1 could occur is if k = 0 and all the derivatives hit 21 in the
definition of 9. These observations yield (8.10) and the estimate

|9l(s; t, θ, v)| ≤ Cl(ln t)ml

for 0 ≤ l ≤ N−1. The proof of the remaining estimates is similar in nature, but somewhat
more involved. ut

We now finish the induction argument by proving that (7.4) holds with j replaced by
N + 1.

Lemma 8.3. Consider a T2-symmetric solution to the Einstein–Vlasov equations with
a cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume
that the solution has λ-asymptotics and let t1 = t0 + 2. Assume, moreover, that Inductive
Assumption 7.3 holds for some 1 ≤ N ∈ Z. Then (7.4) holds with j replaced by N + 1.

Proof. The strategy of the proof is very similar to that of the proof of Lemma 6.1. The idea
is to derive a system of ODE’s for ZiN and 9N analogous to (6.7)–(6.10), and then to use
arguments similar to those in the proof of Lemma 6.2. Deriving appropriate equations for
ZiN , i = 2, 3, turns out to be relatively easy, due to (6.11) and (6.12). In fact, we obtain the
desired conclusions concerning ZiN , i = 2, 3, without much effort (cf. (8.15) and (8.16)
below). Deriving an equation for 9N also turns out to be quite easy (cf. (8.14)). Similarly
to the proof of Lemma 6.1, the main difficulty lies in deriving an equation for Z1

N . Once
the desired equation has been obtained, we rescale Z1

N and 9N according to (8.23) and
introduce an energy according to (8.24); note that these definitions are analogous to the
ones in the proof of Lemma 6.2. Finally, the equations imply a differential inequality for
the energy ÊN which can be integrated to yield the desired estimate.

Before proceeding to the proof, we introduce some notation. Let b be a C1 function
on M = (t0,∞)× S1. Evaluating it along a characteristic, we obtain

B(s; t, θ, v) = b[s,2(s; t, θ, v)].

Differentiating B with respect to θ yields

∂B

∂θ
(s; t, θ, v) =

∂b

∂θ
[s,2(s; t, θ, v)]

∂2

∂θ
(s; t, θ, v). (8.13)

On the other hand, distinguishing between B and b is quite cumbersome in the arguments
that we are about to carry out. As a consequence, we shall write b when we mean B.
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Moreover, we shall use ∂ϑb as a shorthand for ∂θB, whereas ∂θb should be interpreted as
the first factor on the right hand side of (8.13), and ∂tb as mapping (s; t, θ, v) to

∂b

∂t
[s,2(s; t, θ, v)].

In particular, bϑ = bθ21. Finally, if in some expression a ϑ-derivative hits a V or a 2, it
is to be interpreted as an ordinary θ -derivative.

Note first that

d9

ds
=

1
2

(
λt −

αt

α

)
9 +

1
2
α1/2λθ

V 1

V 09 + e
λ/2 ∂V

1

V 0 − e
λ/2 V 1

(V 0)3

3∑
i=1

V i∂V i

due to (6.13). Differentiating this equality N times with respect to ϑ , we obtain

d9N

ds
=

1
2

(
λt −

αt

α

)
9N +

1
2
α1/2λθ

V 1

V 09N + e
λ/2V

1
N+1

V 0 − e
λ/2 V 1

(V 0)3

3∑
i=1

V iV iN+1

+O[s−2(ln t)mN ],

where we have used (5.9), Inductive Assumption 7.3 and Lemma 8.1. Due to (8.11), this
equation can be written

d9N

ds
= cNθ,θ9N + c

N
θ,iZ

i
N +O[s

−2(ln t)mN ], (8.14)

where cNθ,θ = O(s
−2), cNθ,i = O(s

−3/2) and we sum over i but not N . Turning to Z2, we
have

dZ2

ds
= −

1
2s
Z2
−

1
2

(
Pt + α

1/2Pθ
V 1

V 0

)
Z2

(cf. (6.11)). Differentiating this equality N times with respect to ϑ , we obtain

dZ2
N

ds
= −

1
2s
Z2
N −

1
2

(
Pt + α

1/2Pθ
V 1

V 0

)
Z2
N +O[s

−2(ln t)mN ],

where we have used (5.9), (8.1), Inductive Assumption 7.3 and Lemma 8.1. Hence

d

ds
(s1/2eP/2Z2

N ) = O[s
−3/2(ln t)mN ].

Integrating this equality from s to t , we obtain (assuming N ≥ 1)

−(s1/2eP/2Z2
N )(s; t, θ, v) = O[(ln t)

mN ];

note that
(t1/2eP/2Z2

N )(t; t, θ, v) = t
1/2eP/2

1
2
(∂N+1
θ P)v2

= O(1)

due to (8.1). In particular,

|Z2
N (s; t, θ, v)| ≤ CN s

−1/2(ln t)mN (8.15)
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for s ∈ [t1, t]. Turning to Z3, we have

dZ3

ds
= −

1
2s
Z3
+

1
2

(
Pt + α

1/2Pθ
V 1

V 0

)
Z3
− eP

(
Qt + α

1/2Qθ

V 1

V 0

)
Z2

(cf. (6.12) and (6.11)). Differentiating N times with respect to ϑ , we obtain

dZ3
N

ds
= −

1
2s
Z3
N +

1
2

(
Pt + α

1/2Pθ
V 1

V 0

)
Z3
N − e

P

(
Qt + α

1/2Qθ

V 1

V 0

)
Z2
N

+O[s−2(ln t)mN ].

Due to (8.15), the third term on the right hand side isO[s−2(ln t)mN ]. We can thus proceed
as in the proof of (8.15) to obtain

|Z3
N (s; t, θ, v)| ≤ CN s

−1/2(ln t)mN (8.16)

for s ∈ [t1, t]. Finally, we need to derive an equation for Z1
N . Just as in the derivation of

the equation for Z1, it is natural to divide the analysis into several steps. Consider first

∂
j+1
ϑ

(
dV 1

ds

)
for 0 ≤ j ≤ N . All the terms appearing in dV 1/ds can be written hψ ◦ V . When
differentiating an expression of this form, the terms that arise are (up to numerical factors)
of the form ∂kϑh∂

l
θψ ◦V . If both k and l are≥ 1, the resulting term isO[s−2(ln t)mj ]. If all

the derivatives hit ψ , we obtain (after summing over all the terms appearing in dV 1/ds)

−
1
2s
V 1
j+1 + c

j
i V

i
j+1 +O[s

−2(ln t)mj ]

where cji = O(s
−2) and we sum over i but not j . If all the derivatives hit h, we obtain

(after summing over all the terms appearing in dV 1/ds)

−
1
4
∂
j+1
ϑ (α1/2λθ )V

0
−

1
4
∂
j+1
ϑ

(
λt − 2

αt

α

)
V 1
+ ∂

j+1
ϑ (α1/2ePQθ )

V 2V 3

V 0

−
1
2
∂
j+1
ϑ (α1/2Pθ )

(V 3)2 − (V 2)2

V 0 + c
j
θ2j+1 +O[s

−3(ln t)mj ],

where cjθ = O(s
−3) and we have used (5.6); note that, due to (8.1) and Lemma 8.1, we

control N + 1 θ -derivatives of the first factor in each of the last two terms appearing on
the right hand side of (4.2). Adding up, we conclude that

∂
j+1
ϑ

(
dV 1

ds

)
= −

1
2s
V 1
j+1 + c

j
i V

i
j+1 + c

j
θ2j+1 −

1
4
∂
j+1
ϑ (α1/2λθ )V

0

−
1
4
∂
j+1
ϑ

(
λt − 2

αt

α

)
V 1
+ ∂

j+1
ϑ (α1/2ePQθ )

V 2V 3

V 0

−
1
2
∂
j+1
ϑ (α1/2Pθ )

(V 3)2 − (V 2)2

V 0 +O[s−2(ln t)mj ], (8.17)

where cji = O(s
−2) and cjθ = O(s

−3) and we sum over i but not j .
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The second term in the definition of Z1 is a sum of terms of the form

hψ ◦ V α−1/221. (8.18)

The relevant h’s are

h1 =
1
4

(
λt − 2

αt

α
− 4s1/2eλ/23

)
, h2 = −

1
2
Pt , h3 =

1
2
α1/2Pθ ,

h4 = −e
PQt , h5 = α

1/2ePQθ ,

and the relevant ψ’s are

ψ1 = V
0, ψ2 = V

0 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
, ψ3 = V

1 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
,

ψ4 =
V 0V 2V 3

(V 0)2 − (V 1)2
, ψ5 =

V 1V 2V 3

(V 0)2 − (V 1)2
.

We want to differentiate (8.18) with respect to s and then N times with respect to ϑ .
Before going into the details, let us record the following estimate:

s1/2
|(∂

j
ϑh1)(s; t, θ, v)| +

5∑
i=2

|(∂
j
ϑhi)(s; t, θ, v)| ≤ CN s

−3/2(ln t)mN (8.19)

for 0 ≤ j ≤ N , (t, v, θ) ∈ [t1,∞) × S1
× R3 in the support of f and s ∈ [t1, t]. In the

case of hi , i = 2, . . . , 5, (8.19) is an immediate consequence of the inductive hypothesis,
(5.9), (8.1) and Lemma 8.1, and in the case of h1, it is a consequence of (8.6). We also
have

|ψ1(s; t, θ, v)| + s

5∑
i=2

|ψi(s; t, θ, v)| ≤ C,

5∑
i=1

|(∂
j+1
θ ψi ◦ V )(s; t, θ, v)| ≤ Cj s

−1(ln t)mj
(8.20)

for 0 ≤ j ≤ N − 1, (t, v, θ) ∈ [t1,∞)× S1
×R3 in the support of f and s ∈ [t1, t]; this

is an immediate consequence of the inductive hypothesis.
Let us consider the term that arises when d/ds hits the ψ-factor in (8.18). Note that∣∣∣∣∂jϑ(dV ids

)∣∣∣∣ ≤ CN s−3/2(ln t)mj

for all i = 1, 2, 3 and all 0 ≤ j ≤ N ; for j = 0, the estimate is a consequence of (6.14);
for j ≥ 1 and i = 1, it is a consequence of (8.17); and in the case of i = 2, 3, it follows
immediately from (4.3), (4.4) and the induction hypothesis. Hence

∂Nϑ

(
h
dψ ◦ V

ds
α−1/221

)
= cNθ 2N+1 +O[s

−2(ln t)mj ],

where cNθ = O(s
−2) and h is one of h1, . . . , h5. When the s-derivative hits the remaining
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terms in (8.18) (not ψ), we obtain

∂Nϑ

[(
∂t (α

−1/2h)+ hθ
V 1

V 0

)
ψ21 + hψ

∂V 1

V 0 − hψ
V 1

(V 0)3

3∑
i=1

V i∂V i
]

(cf. (6.16)). Due to (8.19) and (8.20), this expression can be written

∂Nϑ

[(
∂t (α

−1/2h)+ hθ
V 1

V 0

)
ψ21

]
+

3∑
i=1

cNi V
i
N+1 +O[s

−2(ln t)mN ],

where cNi = O(s−2). Differentiating the second term in the definition of Z1 once with
respect to s and N times with respect to ϑ , we obtain (by adding up the above)

5∑
i=1

∂Nϑ

[(
∂t (α

−1/2hi)+(∂θhi)
V 1

V 0

)
ψi21

]
+

3∑
i=1

cNi V
i
N+1+c

N
θ 2N+1+O[s

−2(ln t)mN ],

(8.21)

where cNθ = O(s
−2) and cNi = O(s

−2). In order to obtain the desired equation we need
to add this expression to (8.17) with j = N . However, before doing so, note that

−
1
4∂
N+1
ϑ (α1/2λθ )V

0
= −

1
4∂
N
ϑ [∂θ (α

1/2λθ )V
021] +O[s

−2(ln t)mN ]

etc. Due to this observation, we can argue as in the proof of Lemma 6.1. In particular,
we obtain a formula analogous to (6.17): the difference is that ∂V 1 should be replaced
by V 1

N+1 in the first term on the right hand side of (6.17); that ∂Nϑ should be applied to
all but the first and last two terms on the right hand side of (6.17); and that the last two
terms should be replaced by ones analogous to the last three terms on the right hand side
of (8.21). Proceeding as in the proof of Lemma 6.1, the corresponding expression can be
simplified (cf. the derivation of (6.18)). Most of the steps involved in the derivation of
(6.18) consist of algebraic manipulations. However, there are two exceptions. The com-
bination of the fourth last and fifth last terms on the right hand side of (6.17) can be
written

eP (PtQθ − PθQt )
V 1V 2V 3

(V 0)2 − (V 1)2
21.

The analogous expression in the present setting is

∂Nϑ

(
eP (PtQθ − PθQt )

V 1V 2V 3

(V 0)2 − (V 1)2
21

)
= cNθ 2N+1 +O[s

−3(ln t)mN ],

where cNθ = O(s
−3) and we have used (8.1), Inductive Assumption 7.3 and Lemma 8.1.

The combination of the third and seventh terms on the right hand side of (6.17) can be
written

−∂θ (s
1/2eλ/23)V 121.

In the present setting, the analogous term is

−∂Nϑ [∂θ (s
1/2eλ/23)V 121] = c

N
θ 2N+1 +O[s

−2(ln t)mN ],

where cNθ = O(s
−2) and we have used Inductive Assumption 7.3 and Lemma 8.1. Sum-
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ming up, we obtain

dZ1
N

ds
= −

1
2s
V 1
N+1 + ∂

N
ϑ

[
1
4
∂t

[
α−1/2

(
λt − 2

αt

α
− 4s1/2eλ/23

)]
V 021

−
1
4
∂θ (α

1/2λθ )V
021 −

1
2
[∂t (α

−1/2Pt )− ∂θ (α
1/2Pθ )]V

0 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
21

− [∂t (α
−1/2ePQt )− ∂θ (α

1/2ePQθ )]
V 0V 2V 3

(V 0)2 − (V 1)2
21

]
+ cNθ 2N+1 + c

N
i V

i
N+1 +O[s

−2(ln t)mN ], (8.22)

where cNθ = O(s
−2), cNi = O(s

−2) and we sum over i but not overN . The term of impor-
tance is the second one on the right hand side. If all the ϑ-derivatives hit21, the resulting
term can be dealt with as in the proof of Lemma 6.1, and we obtain a cNθ 2N+1-term,
where cNθ = O(s−3/2). For all the remaining terms, it is possible to use the equations
(as in the proof of Lemma 6.1) to obtain terms of the form O[s−3/2(ln t)mN ]. Let us go
through the argument in detail for

∂Nϑ

[
−

1
2
[∂t (α

−1/2Pt )− ∂θ (α
1/2Pθ )]V

0 (V
2)2 − (V 3)2

(V 0)2 − (V 1)2
21

]
.

By using (2.5), this expression can be written

−
1
2
∂Nϑ

[(
−

1
s
α−1/2Pt + α

−1/2e2P (Q2
t − αQ

2
θ )+

α−1/2eλ/2−P J 2

2s7/2

−
α−1/2eλ/2+P (K −QJ)2

2s7/2 + s−1/2eλ/2α−1/2(P2 − P3)

)
V 0 (V

2)2 − (V 3)2

(V 0)2 − (V 1)2
21

]
= cNθ 2N+1 +O[s

−2(ln t)mN ],

where cθ = O(s−2) and we have used (5.9), (8.1), Inductive Assumption 7.3 and Lem-
ma 8.1. From this argument, and similar ones for the remaining terms in (8.22), we obtain

dZ1
N

ds
= −

1
2s
V 1
N+1 + c

N
θ 2N+1 + c

N
i V

i
N+1 +O[s

−3/2(ln t)mN ],

where cNθ = O(s
−3/2), cNi = O(s

−3/2) and we sum over i but not over N . Due to (8.10)
and (8.11), we conclude that

dZ1
N

ds
= −

1
2s
Z1
N + c

N
θ 9N + c

N
i Z

i
N +O[s

−3/2(ln t)mN ],

where cNθ = O(s
−3/2), cNi = O(s

−3/2) and we sum over i but not over N . Combining
this equation with (8.14)–(8.16) yields

d9̂N

ds
=

2
s ln s

9̂N + c
N
θ,θ 9̂N + c

N
θ,1s
−1/2(ln s)2Ẑ1

N +O[s
−2(ln s)2(ln t)mN ],

dẐ1
N

ds
= cN1,θ s

1/2(ln s)−29̂N + c
N
1,1Ẑ

1
N +O[s

−1(ln t)mN ],
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where cNθ,θ = O(s
−2), cNθ,1 = O(s

−3/2), cN1,θ = O(s
−3/2), cN1,1 = O(s

−3/2), there is no
summation over N and we have used the notation

Ẑ1
N (s; t, θ, v) = s

1/2Z1
N (s; t, θ, v), 9̂N (s; t, θ, v) = (ln s)29N (s; t, θ, v). (8.23)

Introducing the energy
ÊN = (9̂N )

2
+ (Ẑ1

N )
2, (8.24)

we conclude that

dÊN

ds
≥ −

CN

s(ln s)2
ÊN − CN s

−1(ln t)mN Ê1/2
N .

Letting rN be such that rN (t1) = 0 and its derivative is the first factor in the first term on
the right hand side, we obtain

dEN
ds
≥ −CN s

−1(ln t)mN E1/2
N ,

where EN = exp(−rN )ÊN . Dividing by E1/2
N and integrating from s to t , we obtain

E1/2
N (s; t, θ, v) ≤ E1/2

N (t; t, θ, v)+ CN (ln t)mN .

However, the first term on the right hand side can be estimated by CN (ln t)2. Combining
the resulting estimate with (8.10), (8.11), (8.15) and (8.16), we conclude that (7.4) holds
with j = N + 1. ut

Corollary 8.4. Consider a T2-symmetric solution to the Einstein–Vlasov equations with
a cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume
that the solution has λ-asymptotics and let t1 = t0 + 2. Let 0 ≤ k ∈ Z. Then there is a
constant Ck , depending only on k and the solution, such that

‖Pt‖Ck + ‖Qt‖Ck + t
1/2
‖α1/2λθ‖Ck ≤ Ckt

−2 (8.25)

for all t ≥ t1. Moreover,∥∥∥∥αtα + 3
t

∥∥∥∥
Ck
+

∥∥∥∥λt + 3
t

∥∥∥∥
Ck
≤ Ckt

−2 for all t ≥ t1.

Proof. By combining Lemmas 7.6 and 8.3, we know that Inductive Assumption 7.3 holds
for all N . In particular, the conclusions of Lemma 8.1 hold for all N . Combining this
information with (2.5) and (2.12) yields

‖∂t (tα
−1/2Pt )‖Ck + ‖∂t (tα

−1/2Qt )‖Ck ≤ Ckt
−1/2.

As a consequence,

‖tα−1/2Pt‖Ck + ‖tα
−1/2Qt‖Ck ≤ Ckt

1/2.

Due to this estimate, as well as (5.9) and (8.3), we can proceed inductively to get

‖Pt‖Ck + ‖Qt‖Ck ≤ Ckt
−2.

Combining this estimate with (2.7), (5.9), (8.1) and Lemma 8.1, we obtain (8.25). Com-
bining (8.25) with (2.4), (2.13) and (5.2) yields the final conclusion. ut
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9. Energy estimates for the distribution function

In the proof of the existence of fsc,∞ (cf. Theorem 1.7), a natural first step is to estimate
L2-based energies for f . In the process of deriving such estimates, it is useful to con-
sider equations for the derivatives of the distribution function. Such equations take the
following general form:

∂h

∂t
+
α1/2v1

v0
∂h

∂θ
−

1
2t
vi
∂h

∂vi
= R. (9.1)

In case h = f , R is given by

R = Li
∂f

∂vi
, (9.2)

where

L1
=

1
4
α1/2λθ v

0
+

1
4

(
λt −

2αt
α
−

3
t

)
v1
− α1/2ePQθ

v2v3

v0 +
1
2
α1/2Pθ

(v3)2 − (v2)2

v0

− t−7/4eλ/4
(
e−P/2Jv2

+ eP/2(K −QJ)v3), (9.3)

L2
=

1
2
Ptv

2
+

1
2
α1/2Pθ

v1v2

v0 , (9.4)

L3
= −

1
2
Ptv

3
−

1
2
α1/2Pθ

v1v3

v0 + e
P v2

(
Qt + α

1/2Qθ

v1

v0

)
. (9.5)

The energies we shall consider are

Ek[h](t) =
∑

l+|β|≤k

∫
S1

∫
R3
t−|β||∂ lθ∂

β
v h(t, θ, v)|

2α−1/2t−3/2 dv dθ. (9.6)

We shall also use the notation E = E0.

Remarks 9.1. The purpose of the factor α−1/2t−3/2 is to simplify some of the terms that
result upon carrying out partial integrations. We could equally well consider energies of
the form

Hk[f ](t) =
∑

l+|β|≤k

∫
S1

∫
R3
t−|β|〈t1/2v〉2µ+2|β|

|∂ lθ∂
β
v f (t, θ, v)|

2 dv dθ

for µ ≥ 0 (cf. [31]). However, there is a constant C > 1, depending only on the solution,
µ and β, such that

C−1
≤ 〈t1/2v〉2µ+2|β|

≤ C

for t ≥ t1 (where t1 is as in the statement of the previous lemmas) and (t, θ, v) in the
support of f . As a consequence, the corresponding weight is of no practical importance.
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Lemma 9.2. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0 + 2. Let h be a smooth solution to (9.1)
(where the function α appears in the Einstein–Vlasov equations and R is some function)
which has compact support when restricted to compact time intervals. Then there is a
constant C > 0, depending only on the solution to the Einstein–Vlasov equations, such
that

dE[h]

dt
≤ −

3
2t
E[h] + 2

∫
S1

∫
R3
hRα−1/2t−3/2 dv dθ + Ct−2E[h]

for all t ≥ t1.

Remark 9.3. It is important to note that the constant C does not depend on h. Moreover,
R should be thought of as being defined by (9.1). In particular, due to the assumptions
concerning h, the function R is smooth and has compact support when restricted to com-
pact time intervals.

Proof of Lemma 9.2. Differentiating E with respect to time, we obtain

dE

dt
= 2

∫
S1

∫
R3
h∂thα

−1/2t−3/2 dv dθ +

∫
S1

∫
R3
h2
(
−

3
2t
−
αt

2α

)
α−1/2t−3/2 dv dθ.

(9.7)

Due to (5.2), we can estimate the second term on the right hand side. Consider the first
term; using (9.1), it can be written

2
∫
S1

∫
R3
h

(
−
α1/2v1

v0
∂h

∂θ
+

1
2t
vi
∂h

∂vi
+ R

)
α−1/2t−3/2 dv dθ.

The term involving ∂θh can be integrated to zero. The term involving R we leave as it is.
What remains is to estimate the term

1
2t

∫
S1

∫
R3
vi
∂h2

∂vi
α−1/2t−3/2 dv dθ = −

3
2t

∫
S1

∫
R3
h2α−1/2t−3/2 dv dθ.

The lemma follows. ut

Let us turn to higher order derivatives of the distribution function.

Lemma 9.4. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0+2. Fix 0 ≤ k ∈ Z. Then there is a constant
Ck > 0, depending only on k and the solution to the Einstein–Vlasov equations, such that

dEk[f ]

dt
≤ −

3
2t
Ek[f ] + Ckt

−3/2Ek[f ]

for all t ≥ t1. In particular, t3/2Ek[f ] is bounded to the future.
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Proof. Differentiating (9.1) with h = f , we obtain

∂fβ,l

∂t
+
α1/2v1

v0
∂fβ,l

∂θ
−

1
2t
vi
∂fβ,l

∂vi
= ∂βv ∂

l
θR+

[
α1/2v1

v0 ∂θ , ∂
β
v ∂

l
θ

]
f −

1
2t
[vi∂vi , ∂

β
v ∂

l
θ ]f,

(9.8)

where we use the notation fβ,l = ∂
β
v ∂

l
θf and assume that |β| + l ≤ k. Let us denote the

right hand side of (9.8) by Rβ,l . Due to Lemma 9.2, it is of interest to estimate

2
∫
S1

∫
R3
t−|β|fβ,lRβ,lα

−1/2t−3/2 dv dθ. (9.9)

By an inductive argument, it can be proven that the third term on the right hand side of
(9.8) is given by |β|fβ,l/2t . The corresponding contribution to (9.9) is thus

|β|

t
t−|β|E[fβ,l].

Turning to the second term on the right hand side of (9.8), it can (up to numerical factors)
be written as a sum of terms of the form

∂β1
v ∂

l1
θ

(
α1/2v1

v0

)
∂β2
v ∂

l2+1
θ f,

where β1 + β2 = β, l1 + l2 = l and |β1| + l1 ≥ 1. Note that the first factor can always
be estimated by Ckt−3/2. In case β1 = 0, it can be estimated by Ckt−2 (on the support
of f ). Due to these observations, we have

t−|β|/2
∣∣∣∣[α1/2v1

v0 ∂θ , ∂
β
v ∂

l
θ

]
f

∣∣∣∣ ≤ Ckt−2
∑

l1+|β1|≤k

t−|β1|/2|fβ1,l1 |.

The corresponding contribution to (9.9) can thus be estimated by

Ckt
−2Ek[f ].

Finally, let us consider the first term on the right hand side of (9.8). Since R is given
by (9.2), the expression ∂βv ∂ lθR is given by the sum of

Li∂vi∂
β
v ∂

l
θf (9.10)

and terms which (up to numerical factors) can be written

(∂β1
v ∂

l1
θ L

i)∂vi∂
β2
v ∂

l2
θ f, (9.11)

where |β1| + l1 ≥ 1. The contribution to (9.9) from (9.10) can be written∫
S1

∫
R3
t−|β|Li(∂vif

2
β,l)α

−1/2t−3/2 dv dθ.
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Integrating by parts with respect to vi and keeping in mind that the Li are given by (9.3)–
(9.5), we conclude that this expression can be estimated by

Ckt
−3/2Ek[f ], (9.12)

where we have used Lemma 8.1 and Corollary 8.4. Let us now consider the contribution
from terms of the form (9.11). It is natural to divide them into two different categories:
either β1 = 0, or β1 6= 0. In case β1 = 0, the expression (9.11) can be estimated by

Ckt
−3/2t−1/2

|∂vi∂
β
v ∂

l2
θ f |.

In case β1 6= 0, the expression (9.11) can be estimated by

Ckt
−3/2
|∂vi∂

β2
v ∂

l2
θ f |.

In order to obtain these estimates, we have appealed to Lemma 8.1 and Corollary 8.4. As
a consequence, the contribution to (9.9) from terms of the form (9.11) can be estimated
by (9.12). Adding up the above observations, we conclude that

d

dt
(t−|β|E[fβ,l]) = −

|β|

t
t−|β|E[fβ,l] + t

−|β| dE[fβ,l]

dt

≤ −
|β|

t
t−|β|E[fβ,l] −

3
2t
t−|β|E[fβ,l]

+ 2
∫
S1

∫
R3
t−|β|Rβ,lfβ,lα

−1/2t−3/2 dv dθ + Ct−2t−|β|E[fβ,l]

≤ −
3
2t
t−|β|E[fβ,l] + Ckt

−3/2Ek[f ].

Summing over β and l, we obtain

dEk[f ]

dt
≤ −

3
2t
Ek[f ] + Ckt

−3/2Ek[f ]. ut

In order to obtain a better understanding of the asymptotics, it is convenient to rescale the
distribution function according to

fsc(t, θ, v) = f (t, θ, t
−1/2v).

We have the following conclusions concerning fsc.

Lemma 9.5. Consider a T2-symmetric solution to the Einstein–Vlasov equations with a
cosmological constant 3 > 0 and existence interval (t0,∞), where t0 ≥ 0. Assume that
the solution has λ-asymptotics and let t1 = t0+2. Fix 0 ≤ k ∈ Z. Then there is a constant
C, depending only on the solution, such that in order for (t, θ, v) ∈ [t1,∞)× S1

×R3 to
be in the support of fsc, v has to satisfy |v| ≤ C. Moreover, there is a constant Ck > 0,
depending only on k and the solution to the Einstein–Vlasov equations, such that

‖∂tfsc(t, ·)‖Ck(S1×R3) ≤ Ckt
−2 for all t ≥ t1.

In particular, there is a smooth, non-negative function with compact support, say fsc,∞,
on S1

× R3 such that

‖fsc(t, ·)− fsc,∞‖Ck(S1×R3) ≤ Ckt
−1 for all t ≥ t1.
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Proof. The statement concerning the support is an immediate consequence of Lem-
mas 4.1 and 4.4. In order to derive the desired estimates, let us compute

(∂tfsc)(t, θ, v) = (∂tf )(t, θ, t
−1/2v)−

1
2t
t−1/2vi(∂vif )(t, θ, t

−1/2v).

Using the Vlasov equation, we conclude that

∂tfsc = −
α1/2t−1/2v1

〈t−1/2v〉
∂θfsc + Rsc,

where

Rsc(t, θ, v) = L
i(t, θ, t−1/2v)(∂vif )(t, θ, t

−1/2v)

= t1/2Li(t, θ, t−1/2v)(∂vifsc)(t, θ, v)

and the Li are defined in (9.3)–(9.5). Introducing

Lisc(t, θ, v) = t
1/2Li(t, θ, t−1/2v),

we thus have

∂tfsc = −
α1/2t−1/2v1

〈t−1/2v〉
∂θfsc + L

i
sc∂vifsc. (9.13)

Due to the properties of the support of fsc, Lemma 8.1 and Corollary 8.4, for each 0 ≤
k ∈ Z there is a constant Ck such that∑

l+|β|≤k

|(∂βv ∂
l
θL

i
sc)(t, θ, v)| ≤ Ckt

−2 (9.14)

for all i = 1, 2, 3 and (t, θ, v) ∈ [t1,∞)× S1
×R3 in the support of fsc. To estimate the

derivatives of fsc in Ck , it is convenient to translate the estimate Ek ≤ Ckt−3/2 into an
estimate for fsc. However,∫

S1

∫
R3
|(∂ lθ∂

β
v fsc)(t, θ, v)|

2 dθ dv =

∫
S1

∫
R3
t−|β||(∂ lθ∂

β
v f )(t, θ, t

−1/2v)|2 dθ dv

= t3/2
∫
S1

∫
R3
t−|β||(∂ lθ∂

β
v f )(t, θ, v)|

2 dθ dv

≤ Ct3/2Ek(t) ≤ Ck,

assuming l + |β| ≤ k. From this estimate and Sobolev embedding, we conclude that all
derivatives of fsc are bounded for t ≥ t1. Combining this observation with (9.13) and
(9.14), we conclude that ∑

l+|β|≤k

|∂βv ∂
l
θ∂tfsc| ≤ Ckt

−2 for t ≥ t1. ut
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10. Proofs of the main theorems

Finally, we are in a position to prove the main theorems. Let us begin with Theorem 1.7.

Proof of Theorem 1.7. The conclusions concerning the distribution function are direct
consequences of Lemma 9.5. Turning to H and G, we have

Ht = −t
−5/2α−1/2eP+λ/2(K −QJ), Gt = −QHt − t

−5/2α−1/2e−P+λ/2J (10.1)

(cf. (2.2)). In order to estimateHt andGt , it is useful to note that P andQ are bounded in
every Ck-norm for t ≥ t0; this follows by integrating (8.25). Combining this observation
with (2.10), (2.11), (3.11) and Lemma 8.1 yields

‖Jt‖CN + ‖Kt‖CN ≤ CN t
−2(ln t)mN .

Thus J and K are uniformly bounded in CN . Combining this observation with (10.1),
(5.9), (3.11), the bound on P and Q in every CN -norm and Lemma 8.1, we deduce (1.8).
From Corollary 8.4, we know that (1.9) and (1.10) hold. Combining (1.10) with (3.11)
and (5.9) yields (1.11). Let us turn to the second fundamental form. By definition,

k̄ij = k̄(∂i, ∂j ) = 〈∇∂i e0, ∂j 〉 = 〈∇∂i (t
1/4e−λ/4∂t ), ∂j 〉

= t1/4e−λ/4〈∇∂i∂t , ∂j 〉 =
1
2 t

1/4e−λ/4∂tgij ,

where we have used the fact that ∂t and ∂i are perpendicular. In what follows, we would
like to prove that

‖k̄ij −Hḡij‖CN ≤ CN , (10.2)

where H = (3/3)1/2. Consider the spatial components of the metric (1.1). If a time
derivative hits one of P , Q, G or H in such a component, then the resulting expression
is bounded in CN after it has been multiplied by t1/4e−λ/4/2: this is due to (1.8), (1.9)
and (1.11). As a consequence, what we need to consider are the components of the tensor
field

1
2
t1/4e−λ/4

[(
−

1
2t
+

1
2
λt −

αt

α

)
t−1/2eλ/2α−1 dθ2

+ eP [dx +Qdy + (G+QH) dθ]2 + e−P (dy +H dθ)2
]

=
1
2
t−3/4e−λ/4ḡ +

1
2
t−1/4α−1eλ/4

[
1
2

(
λt +

3
t

)
−

(
αt

α
+

3
t

)]
dθ2,

where ḡ is the spatial part of the metric. Note that the components of the second term
on the right hand side are bounded in CN : this is a consequence of (1.10) and (1.11).
Moreover,

1
2 t
−3/4e−λ/4 = He−λ̂/4,

where λ̂ is defined in (3.7). To prove (10.2), it is thus sufficient to demonstrate that

‖(e−λ̂/4 − 1)ḡij‖CN ≤ CN .
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However, t (e−λ̂/4 − 1) is bounded in CN in view of (1.11), and t−1ḡij is bounded in CN

due to (1.8), (1.9) and (1.11). Thus (10.2) holds. Let us define ḡ∞ by (1.13); note that this
is a smooth Riemannian metric on T3. Moreover,

‖t−1ḡij (t, ·)− ḡ∞,ij‖CN ≤ CN t
−1 (10.3)

by (1.8), (1.9) and (1.11). Combining this estimate with (10.2), we obtain (1.12). The
proof of future causal geodesic completeness is not very complicated, given the above
estimates. One can, e.g., proceed as in [28, proof of Propositions 3 and 4, pp. 189–191].
However, we shall not write down the details, since the result follows from the proof of
Theorem 1.35. ut

Let us now turn to the proof of the cosmic no-hair conjecture.

Proof of Theorem 1.14. We need to verify that the conditions stated in Definition 1.8 are
fulfilled. First, note that 6t = {t} × T3 is a Cauchy hypersurface for each t ∈ (t0,∞).
An argument is required in order to justify this statement, but since the details are quite
standard (cf., e.g., [30, proof of Proposition 20.3, p. 215], in particular [30, p. 217]), we
omit the details. Let γ = (γ 0, γ̄ ) be a future directed and inextendible causal curve,
defined on Iγ = (s−, s+). Reparametrising the curve if necessary, we can assume that
γ 0(s) = s and Iγ = (t0,∞). By the causality of the curve, we know that

ḡij [γ (t)] ˙̄γ
i(t) ˙̄γ j (t) ≤ −g00[γ (t)] ≤ Ct

−2

for t ≥ t1, where t1 = t0 + 2 and we have used (1.11). Combining this estimate with
(1.12), we conclude that there is a constant K0 > 1 (independent of the curve γ , as long
as γ 0(t) = t) such that

ḡ∞,ij [γ̄ (t)] ˙̄γ
i(t) ˙̄γ j (t) ≤ 1

4K
2
0H
−2t−3

for all t ≥ t1. In particular, there is an x̄0 ∈ T3 such that d∞[γ̄ (t), x̄0] ≤ K0H−1t−1/2 for
all t ≥ t1, where d∞ is the topological metric on T3 induced by ḡ∞. Let εinj > 0 denote
the injectivity radius of (T3, ḡ∞). The injectivity radius of a point p of a Riemannian
manifold, denoted inj(p), is defined in [20, Definition 9.2, p. 142], and the injectivity ra-
dius of a Riemannian manifold is the infimum of the injectivity radii of the points of the
manifold; that εinj > 0 follows from the continuity of inj (cf. [20, p. 178]); readers inter-
ested in a more quantitative bound on the injectivity radius are referred to [20, Lemma 51,
p. 319]. Then, given x̄ ∈ T3, there are normal coordinates on Bεinj(x̄), where distances
are computed using d∞ (cf. [19, pp. 72–73] for the definition of normal coordinates). Fix
t− > K2

0H
−2ε−2

inj + 1 (note that t− is independent of the curve). By the above arguments
and definitions,

J−(γ ) ∩ J+(6t−) ⊆ {(t, x̄) ∈ I × T3
: t ≥ t−, d∞(x̄, x̄0) ≤ K0H−1t−1/2

} (10.4)

and the closed ball of radiusK0H−1t
−1/2
− (with respect to d∞) and centre x̄0 is contained

in the domain of definition of normal coordinates x̄ with centre at x̄0. Denote the set on
the right hand side of (10.4) by Dt−,K0,x̄0 . Define

ψ(τ, ξ̄ ) = [e2Hτ , x̄−1(ξ̄ )].
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Then
ψ−1(Dt−,K0,x̄0) = {(τ, ξ̄ ) ∈ J × R3

: τ ≥ T0, |ξ̄ | ≤ K0H−1e−Hτ },

where T0 = H−1(ln t−)/2, and J = (τ0,∞), where τ0 = H−1(ln t0)/2; if t0 = 0, then
τ0 = −∞. If we let T be slightly smaller than T0, and K be slightly larger than K0, the
map ψ is still defined on C3,K,T (cf. (1.15)). In analogy with Definition 1.8, let D =
ψ(C3,K,T ) and R(τ) = KH−1e−Hτ . We have already verified all of the requirements of
Definition 1.8 (with 6 = 6t− etc.) but the last one, i.e., (1.16).

In order to proceed, let ḡ∞,ij denote the components of ḡ∞ with respect to the coor-
dinates x̄. Let ḡij (τ, ·) and k̄ij (τ, ·) denote the components of ḡ(e2Hτ , ·) and k̄(e2Hτ , ·),
respectively, in the coordinates x̄. Moreover, consider ḡ∞,ij , ḡij (τ, ·) and k̄ij (τ, ·) to be
functions on the image of x̄, i.e., on Bεinj(0), with the origin corresponding to x̄0. Note that
the estimates (10.2) and (10.3) hold with ḡij replaced by ḡij etc., assuming the domain
on which the CN -norm is computed is suitably restricted. In particular, letting Sτ be as in
Definition 1.8, we have

‖e−2Hτ k̄ij (τ, ·)−Hḡ∞,ij‖CN (Sτ ) + ‖e
−2Hτ ḡij (τ, ·)− ḡ∞,ij‖CN (Sτ ) ≤ CNe

−2Hτ

for all τ ≥ T . Note that

ḡ∞,ij (0) = δij , (∂l ḡ∞,ij )(0) = 0

by the definition of the coordinates x̄. As a consequence, if ξ̄ ∈ Sτ , then

|(∂l ḡ∞,ij )(ξ̄ )| =

∣∣∣∣∫ 1

0

d

ds
[(∂l ḡ∞,ij )(sξ̄ )] ds

∣∣∣∣ ≤ Ce−Hτ .
Moreover,

|ḡ∞,ij (ξ̄ )− δij | ≤ Ce
−2Hτ

for τ ≥ T and ξ̄ ∈ Sτ . In particular,

‖e−2Hτ k̄ij (t, ·)−Hδij‖C0(Sτ )
+ ‖e−2Hτ ḡij (t, ·)− δij‖C0(Sτ )

≤ Ce−2Hτ

for all τ ≥ T . Letting ḡdS(τ, ·) and k̄dS(τ, ·) be defined as in Definition 1.8, we conclude
in particular that

‖ḡdS(τ, ·)− ḡ(τ, ·)‖C0
dS(Sτ )

+ ‖k̄dS(τ, ·)− k̄(τ, ·)‖C0
dS(Sτ )

≤ Ce−2Hτ

for all τ ≥ T . In fact, due to the above estimates, we have

‖ḡdS(τ, ·)− ḡ(τ, ·)‖CNdS(Sτ )
+ ‖k̄dS(τ, ·)− k̄(τ, ·)‖CNdS(Sτ )

≤ CNe
−2Hτ

for all τ ≥ T . ut

Finally, we are in a position to prove Theorem 1.35.

Proof Theorem 1.35. The idea is to demonstrate that for late enough t , there is a neigh-
bourhood of each point in {t}×T3 such that Theorem 1.29 applies in the neighbourhood;
combining this with Cauchy stability (cf. Theorem 1.34) then yields the desired result.
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Fixing N , there is an ε > 0 and a constant CN such that for every x̄ ∈ T3, there
are normal coordinates x̄ on W = Bε(x̄) with respect to ḡ∞, where distances on T3

are measured using the topological metric induced by ḡ∞. Moreover, if ḡ∞,ij are the
components of ḡ∞ with respect to x̄, and ḡij∞ are the components of the inverse, then the
derivatives of ḡ∞,ij and ḡij∞ up to order N with respect to the coordinates x̄ on W are
bounded by CN . Moreover, the derivatives of x̄, considered as functions of (θ, x, y), up
to order N + 1 are bounded by CN . Similarly, the derivatives of x̄−1 up to order N + 1
are bounded by CN . The arguments required to prove the above statements are similar to
those in [31, proof of Lemma 34.9, p. 650]. The important point is that we obtain uniform
bounds which hold regardless of the base point.

DefineK by the condition eK = 4/H and define the coordinates ȳ = e−K t1/2x̄ onW .
Note that the range of ȳ is Be−K t1/2ε(0). For t large enough (the bound being independent
of the base point x̄), we then have e−K t1/2ε > 1. From now on, we assume that t is large
enough for this to be the case. Moreover, we assume that the coordinates ȳ are defined on
the image of B1(0) under ȳ−1. Let ḡij denote the components of ḡ(t, ·) with respect to
the coordinates ȳ. Moreover, let ḡ∞,ij denote the components of ḡ∞ with respect to the
coordinates x̄. Due to (10.3), we have

|∂α
ξ̄
[(e−2K ḡij − ḡ∞,ij ) ◦ ȳ

−1
](ξ̄ )| ≤ CN t

−1−|α|/2

for ξ̄ ∈ B1(0) and |α| ≤ N ; note that

ȳ−1(ξ̄ ) = x̄−1(eK t−1/2ξ̄ ).

Since ḡ∞,ij ◦ ȳ
−1(0) = δij ,

|e−2K ḡij ◦ ȳ
−1
− δij | ≤ CN t

−1/2 (10.5)

on B1(0); in particular, (1.38) holds with a margin for t large enough. Similarly,

|∂m(ḡ∞,ij ◦ ȳ
−1)(u)| =

∣∣∣∣ n∑
l=1

∫ 1

0
∂l∂m(ḡ∞,ij ◦ ȳ

−1)(su)ul ds

∣∣∣∣ ≤ Ct−1

on B1(0). Thus
‖e−2K(∂k ḡij ◦ ȳ

−1)‖CN−1[B1(0)] ≤ CN t
−1. (10.6)

Due to (10.2), we also have

‖(k̄ij −Hḡij ) ◦ ȳ
−1
‖CN [B1(0)] ≤ CN t

−1, (10.7)

where k̄ij denotes the components of the second fundamental form k̄ calculated using
the coordinates ȳ. In the end, we shall choose KVl = (ln t)/2. As a consequence, (10.6)
and (10.7) imply that (1.39) holds with a margin (note that the T2-symmetric background
solution is such that φ̄i , i = 0, 1, vanish), assuming N ≥ 5; note that in order to prove
Theorem 1.35, it is sufficient to apply Theorem 1.29 with k0 = 4.

Let us turn to the distribution function. First of all, recall that if 6 is a spacelike
hypersurface in a Lorentz manifold, and f is a distribution function defined on the mass
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shell, then the initial datum for the distribution function (denoted f̄ and defined on T6)
induced by f on 6 is given by

f̄ = f ◦ pr−1
6 ,

where pr6 is the projection from the mass shell over 6 to T6; in other words, if p ∈ Pr
for some r ∈ 6 and Nr is the future directed unit normal to 6 at r , then pr6(p) is the
element of Tr6 corresponding to p + g(p,Nr)Nr . In our case, we are interested in the
hypersurface 6 = {t} × T3. If z = (t, θ, x, y), then

f̄(p̄iei |z) = f(pαeα|z) = f (t, θ, p̄),

where p̄ = (p̄1, p̄2, p̄3),

p0
= [1+ (p̄1)2 + (p̄2)2 + (p̄3)2]1/2

and pi = p̄i . However, in the application of Theorem 1.29, we need to express f̄ in the
coordinates ȳ. Consequently, we are interested in

f̄ (z̄, p̄) = f̄(p̄i∂ȳi |z) = f̄(p̄iA
j
i (z̄)ej |z) = f [t, θ, v(z̄, p̄)],

where z = (t, z̄),
v(z̄, p̄) = (p̄iA 1

i (z̄), p̄
iA 2
i (z̄), p̄

iA 3
i (z̄))

and A j
i is defined by the requirement that

∂ȳi |z = A
j
i (z̄)ej |z.

Thus

A
j
i (z̄) = 〈∂ȳi |z, ej |z〉 = e

K t−1/2
〈∂x̄i |z, ej |z〉 = e

K t−1/2 ∂ z̄
l

∂ x̄i
(z)〈∂z̄l |z, ej |z〉,

where z̄ correspond to the standard coordinates on the torus (which are locally well de-
fined). In particular, ∂z̄1 = ∂θ , ∂z̄2 = ∂x and ∂z̄3 = ∂y . By the observations at the begin-
ning of the proof, (1.7) and Theorem 1.7, it is clear that all derivatives of A j

i up to order
N are uniformly bounded on the domain of ȳ, the bound being independent of the base
point x̄ and time t (assuming t is sufficiently large). What we need to estimate is∑

|α|+|β|≤k0

∫
R3

∫
ȳ(U)

(e−w)2|β|〈ewp̄〉2µ+2|β|
| ∂α
ξ̄
∂
β
p̄ f̄ȳ|

2(ξ̄ , p̄) dξ̄ dp̄

(cf. (1.37) and (1.40)), where

f̄ȳ(ξ̄ , p̄) = f̄ [ȳ
−1(ξ̄ ), p̄] = f̄ [x̄−1(eK t−1/2ξ̄ ), p̄]

= f
[
t, z̄1
◦ x̄−1(eK t−1/2ξ̄ ), v(x̄−1(eK t−1/2ξ̄ ), p̄)

]
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and the constant w remains to be specified. Note that all derivatives of x̄−1 and z̄1
◦ x̄−1

up to order N are uniformly bounded. As a consequence,

∂
β
p̄ f̄ȳ(ξ̄ , p̄) =

∑
|γ |=|β|

∂γv f
[
t, z̄1
◦ x̄−1(eK t−1/2ξ̄ ), v(x̄−1(eK t−1/2ξ̄ ), p̄)

]
ψγ (t

−1/2ξ̄ )

for functions ψγ with bounded derivatives; note that

∂vi

∂p̄j
(x̄−1(eK t−1/2ξ̄ ), p̄) = A

i
j ◦ x̄

−1(eK t−1/2ξ̄ ).

Hence, ∂α
ξ̄
∂
β
p̄ f̄ȳ(ξ̄ , p̄) consists of sums of terms of the form

t−|α|/2∂ lθ∂
γ+δ
v f

[
t, z̄1
◦ x̄−1(eK t−1/2ξ̄ ), v(x̄−1(eK t−1/2ξ̄ ), p̄)

]
φγ,δ,l(t

−1/2ξ̄ )p̄λ,

where |λ| = |δ|, |γ | = |β|, l + |δ| ≤ |α|, φγ,δ,l are bounded functions and p̄λ =
(p̄1)λ1(p̄2)λ2(p̄3)λ3 . On the other hand,

f (t, θ, v) = fsc(t, θ, t
1/2v),

where fsc converges to a smooth function with compact support in every Ck-norm. More-
over, fsc has uniformly compact support. Note also that

∂ lθ∂
γ+δ
v f (t, θ, v) = t (|γ |+|δ|)/2∂ lθ∂

γ+δ
v fsc(t, θ, t

1/2v).

Since there is a uniform constant C > 1 (independent of t (large enough) and the base
point x̄) such that

C−1
|p̄| ≤ |v(x̄−1(eK t−1/2ξ̄ ), p̄)| ≤ C|p̄|,

we conclude that

t−|α|/2
∣∣∂ lθ∂γ+δv f

[
t, z̄1
◦ x̄−1(eK t−1/2ξ̄ ), v(x̄−1(eK t−1/2ξ̄ ), p̄)

]
φγ,δ,l(t

−1/2ξ̄ )p̄λ
∣∣

≤ Cα,β t
(|γ |−|α|)/2χ(t1/2p̄),

where χ is a smooth function with compact support. As a consequence,

|∂α
ξ̄
∂
β
p̄ f̄ȳ(ξ̄ , p̄)| ≤ Cα,β t

(|β|−|α|)/2χ(t1/2p̄)

for ξ̄ ∈ B1(0). Let us now define w = K +KVl, where KVl = (ln t)/2. Then∫
R3

∫
ȳ(U)

(e−w)2|β|〈ewp̄〉2µ+2|β|
|∂α
ξ̄
∂
β
p̄ f̄ȳ|

2(ξ̄ , p̄) dξ̄ dp̄

≤ C2
α,β

∫
R3

∫
B1(0)

e−2|β|K t−|β|〈eK t1/2p̄〉2µ+2|β|t |β|−|α|χ2(t1/2p̄) dξ̄ dp̄

≤ Cµ,α,β t
−|α|−3/2.
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The square root of the right hand side of this expression should be compared with the
right hand side of (1.40):

H2ε5/2e−3K/2−KVl = H2ε5/2e−3K/2t−1/2.

Clearly, we have a margin. As a consequence, for t large enough, every x̄ ∈ T3 has a
neighbourhood such that (1.40) holds with a margin. From (10.5)–(10.7), we also know
that (1.38) and (1.39) hold with a margin. We can thus apply Theorem 1.29 with the given
µ > 5/2 and k0 = 4. In addition, the covering of T3 obtained by taking the neigh-
bourhoods ȳ−1

[B1/4(0)] corresponding to varying base points x̄ has a finite subcovering.
Appealing to Cauchy stability, Theorem 1.34, we conclude that there is an ε > 0 with the
properties stated in the theorem. ut

Appendix A. Derivation of the equations

The purpose of this appendix is to compute the Einstein tensor associated with the metric
(1.1), and to derive an expression for the Vlasov equation. Let us begin by expressing g
in terms of suitable one-form fields. Let

ξ0
= t−1/4eλ/4dt,

ξ1
= t−1/4eλ/4α−1/2 dθ,

ξ2
= t1/2eP/2(dx +Qdy + (G+QH) dθ),

ξ3
= t1/2e−P/2(dy +H dθ).

With these one-form fields, the metric can be written

g = −ξ0
⊗ ξ0

+

3∑
i=1

ξ i ⊗ ξ i .

Using the orthonormal frame {eα} introduced in (1.7), it can be verified that ξα(eβ) = δαβ .

A.1. Commutators

Let us compute the commutators, in other words the functions γ αβζ such that

[eβ , eζ ] = γ
α
βζ eα.

Clearly, γ αβζ = −γ
α
ζβ . Consequently, it is sufficient to compute γ αβζ for β < ζ . By a

straightforward computation,

γ 0
01 =

1
4 t

1/4e−λ/4α1/2λθ , (A.1)

γ 1
01 = −

1
4 t

1/4e−λ/4(λt − 2αt/α − t−1), (A.2)

γ 2
01 = t

−3/2e−P/2J, (A.3)

γ 3
01 = t

−3/2eP/2(K −QJ), (A.4)
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where we have used the notation (2.2). Turning to γ α02, the only α for which this object is
non-zero is α = 2, and we have

γ 2
02 = −

1
2 t

1/4e−λ/4(t−1
+ Pt ).

The only α’s for which γ α03 is non-zero are α = 2 and α = 3, and

γ 2
03 = −t

1/4e−λ/4ePQt , γ 3
03 = −

1
2 t

1/4e−λ/4(t−1
− Pt ).

The only α for which γ α12 is non-zero is α = 2, and

γ 2
12 = −

1
2 t

1/4e−λ/4α1/2Pθ .

The only α’s for which γ α13 is non-zero are α = 2 and α = 3, and

γ 2
13 = −t

1/4e−λ/4α1/2ePQθ , γ 3
13 =

1
2 t

1/4e−λ/4α1/2Pθ .

Finally, γ α23 = 0. For future reference, let us record the following observations:

γA0A = −t
−3/4e−λ/4,

γ i0i = γ
1
01 − t

−3/4e−λ/4,

γ α0α = γ
1
01 − t

−3/4e−λ/4,

γA1A = 0,

γ i1i = 0,

γ α1α = −γ
0
01,

where Greek indices range from 0 to 3, lower case Latin indices range from 1 to 3 and
capital Latin indices range from 2 to 3; moreover, Einstein’s summation convention is
in force.

Non-zero components. Note that for γ αβζ to be non-zero, one of the following conditions
has to be satisfied:

• {β, ζ } = {0, 1},
• one of β and ζ is in {0, 1}, the other is in {2, 3}, and α is in {2, 3}.

A.2. Connection coefficients

Define the connection coefficients 0αβζ by the relation

∇eβ eζ = 0
α
βζ eα,

where ∇ is the Levi-Civita connection associated with the metric g. Note that

00
βζ = −〈∇eβ eζ , e0〉, 0iβζ = 〈∇eβ eζ , ei〉,

since the frame is orthonormal. Let us record some symmetries of these objects.

Symmetries of connection coefficients. Since the connection is metric and the basis is
orthonormal, we have

0αβα = 0 (no summation over α).

For similar reasons, 0iαj is antisymmetric in i and j . Moreover, since [ei, ej ] is perpen-
dicular to e0, we have

0ij0 = 〈∇ej e0, ei〉 = −〈e0,∇ej ei〉 = −〈e0,∇ei ej 〉 = 〈∇ei e0, ej 〉 = 0
j

i0.
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Thus, 0ij0 is symmetric in i and j . Note that the computation also shows that 0ij0 = 0
0
ij .

Similarly, since [eA, eB ] = 0, we have

0AB1 = 〈∇eB e1, eA〉 = −〈e1,∇eB eA〉 = −〈e1,∇eAeB〉 = 〈∇eAe1, eB〉 = 0
B
A1.

In particular, 0AB1 is symmetric in A and B, and 0AB1 = −0
1
AB .

Connection coefficients including two or more zero indices. That 00
α0 = 0 follows

from the above. Moreover, using the Koszul formula, it can be computed that

00
01 = 0

1
00 = γ

0
01

and the remaining components satisfy 00
0A = 0

A
00 = 0.

Connection coefficients including exactly one zero index. As already mentioned, 0i0j
is antisymmetric and 0ij0 = 00

ij is symmetric. It is thus sufficient to compute 0i0j for
i < j and 0ij0 for i ≤ j . We have

01
0A = −

1
2γ

A
01, 02

03 =
1
2γ

2
03.

Moreover,

0ii0 = −γ
i
0i (no summation over i), 01

A0 = −
1
2γ

A
01, 02

30 = −
1
2γ

2
03.

Connection coefficients including no zero index. Note that, due to the Koszul formula
and the properties of the commutators, the only 0ijk’s which are non-zero are the ones that
have one index equalling 1 and two indices in {2, 3}. Moreover, since 0BA1 = −0

1
AB is

symmetric and 0A1B is antisymmetric, it is sufficient to calculate that

02
13 =

1
2γ

2
13, 0AA1 = −γ

A
1A (no summation over A), 02

31 = −
1
2γ

2
13.

For future reference, note that

0αα1 = γ
0
01, (A.5)

0ii1 = 0, (A.6)

0αα0 = −γ
1
01 + t

−3/4e−λ/4, (A.7)
0ααA = 0. (A.8)

A.3. Twist quantities

The quantities J and K have been defined in two different ways: in (1.2) and in (2.2). In
this subsection, we verify that these two definitions yield the same result. In the proof, it is
useful to introduce different notation for the different definitions. Let us therefore denote
the J and K defined in (1.2) by Jtw and Ktw respectively, while the quantities defined in
(2.2) will be still referred to as J andK . As we have calculated the connection coefficients
using the orthonormal frame {eα}, it is convenient to carry out the computations relative
to this frame. Note that

X = t1/2eP/2e2, Y = t1/2e−P/2e3 + t
1/2eP/2Qe2,
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where X = ∂x and Y = ∂y . In particular, if Xα and Y α denote the components of X and
Y with respect to the frame {eα}, then

• X2
= t1/2eP/2 and Xα = 0 for α 6= 2,

• Y 2
= t1/2eP/2Q, Y 3

= t1/2e−P/2 and Y 0
= Y 1

= 0.

Consequently,

Jtw = εαβζδX
αY β∇ζXδ = ε23ζ δX

2Y 3
∇
ζXδ = t (∇0X1

−∇
1X0)

= −t (∇0X
1
+∇1X

0), (A.9)

where the indices are frame indices, and we assume that the orientation of M is such that
ε0123 = 1. Similarly,

Ktw = −t (∇0Y
1
+∇1Y

0). (A.10)

It remains to calculate ∇0X
1 etc. However,

∇αX
β
= ξβ(∇eαX) = ξ

β
[eα(X

ζ )eζ +X
ζ
∇eαeζ ] = eα(X

β)+Xζ0
β
αζ .

The calculation for Y is the same. In particular,

∇0X
1
+∇1X

0
= Xζ (01

0ζ + 0
0
1ζ ) = X

2(01
02 + 0

0
12) = −X

2γ 2
01.

Combining this with (A.3) and (A.9) yields

Jtw = tX
2γ 2

01 = t
3/2eP/2t−3/2e−P/2J = J.

Next, let us calculate

∇0Y
1
+∇1Y

0
= Y ζ (01

0ζ +0
0
1ζ ) = Y

2(01
02+0

0
12)+Y

3(01
03+0

0
13) = −Y

2γ 2
01−Y

3γ 3
01.

Combining this with (A.3), (A.4) and (A.10) yields

Ktw = tY
2γ 2

01+tY
3γ 3

01 = t
3/2eP/2Qt−3/2e−P/2J+t3/2e−P/2t−3/2eP/2(K−QJ) = K.

A.4. Auxiliary computations

To simplify future calculations, let us make some observations concerning the derivatives
of the connection coefficients. Note first that

γ i0i = −t
1/4e−λ/4fi

for suitably chosen functions fi . Thus, it can be computed that

− e0(γ
i
0i) = −t

1/4e−λ/4∂t

(
− exp

(
−

1
4
λ+

1
2

lnα −
3
4

ln t
)
tα−1/2fi

)
=

1
4
t1/4e−λ/4

(
λt − 2

αt

α
−

1
t

)
γ i0i + t

1/4e−λ/4t−1γ i0i + t
−1/2e−λ/2α1/2∂t (tα

−1/2fi),
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where we do not sum over i. However, the coefficient of γ i0i in the first term is −γ 1
01 and

the coefficient of γ i0i in the second term is −γ 2
02 − γ

3
03. Consequently,

e0(0
0
ii)+ 0

α
α00

0
ii = t

−1/2e−λ/2α1/2∂t (tα
−1/2fi),

where we sum over α but not over i. In particular,

e0(0
0
11)+ 0

α
α00

0
11 =

1
4 t
−1/2e−λ/2α1/2∂t [tα

−1/2(λt − 2α−1αt − t
−1)], (A.11)

e0(0
0
22)+ 0

α
α00

0
22 =

1
2 t
−1/2e−λ/2α1/2∂t [tα

−1/2(t−1
+ Pt )], (A.12)

e0(0
0
33)+ 0

α
α00

0
33 =

1
2 t
−1/2e−λ/2α1/2∂t [tα

−1/2(t−1
− Pt )]. (A.13)

Next, note that γ 0
01, γ 2

12 and γ 3
13 can all be written as hi = t1/4e−λ/4fi for suitably chosen

functions fi . Moreover,

e1(hi) = t
1/4e−λ/4α1/2∂θ (t

1/4e−λ/4fi) = t
1/2e−λ/2α1/2∂θfi − γ

0
01hi .

Since 0αα1 = γ
0
01, we conclude that

e1(0
1
00)+ 0

α
α10

1
00 =

1
4 t
−1/2e−λ/2α1/2∂θ (tα

1/2λθ ), (A.14)

e1(0
1
22)+ 0

α
α10

1
22 = −

1
2 t
−1/2e−λ/2α1/2∂θ (tα

1/2Pθ ), (A.15)

e1(0
1
33)+ 0

α
α10

1
33 =

1
2 t
−1/2e−λ/2α1/2∂θ (tα

1/2Pθ ). (A.16)

The expressions γ 2
03 and γ 2

13 require a somewhat different treatment. However, similar
arguments yield

e1(0
1
23)+0

1
230

α
α1 = −

1
2 t
−1/2e−λ/2−Pα1/2∂θ (tα

1/2e2PQθ )−
1
2 (γ

3
13−γ

2
12)γ

2
13, (A.17)

e0(0
0
23)+0

0
230

α
α0 =

1
2 t
−1/2e−λ/2−Pα1/2∂t (tα

−1/2e2PQt )+
1
2 (γ

3
03− γ

2
02)γ

2
03. (A.18)

A.5. Ricci curvature

The Ricci curvature is given by

Ric(eβ , eζ )

=

∑
α

εα〈Reαeβ eζ , eα〉 =
∑
α

εα〈∇eα∇eβ eζ −∇eβ∇eαeζ −∇[eα,eβ ]eζ , eα〉

=

∑
α

εα〈∇eα (0
δ
βζ eδ)−∇eβ (0

δ
αζ eδ)− γ

δ
αβ0

λ
δζ eλ, eα〉

=

∑
α

εα〈eα(0
δ
βζ )eδ + 0

δ
βζ0

λ
αδeλ − eβ(0

δ
αζ )eδ − 0

δ
αζ0

λ
βδeλ − γ

δ
αβ0

λ
δζ eλ, eα〉

= eα(0
α
βζ )+ 0

δ
βζ0

α
αδ − eβ(0

α
αζ )− 0

δ
αζ0

α
βδ − γ

δ
αβ0

α
δζ ,

where ε0 = −1 and εi = 1. Let us begin by computing the 00 component:

Ric(e0, e0) = eα(0
α
00)+ 0

δ
000

α
αδ − e0(0

α
α0)− 0

δ
α00

α
0δ − γ

δ
α00

α
δ0

= e1(0
1
00)+ 0

1
000

α
α1 − e0(0

α
α0)− 0

β

α00
α
0β − γ

β

α00
α
β0.
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In order to simplify this expression, note that

e1(0
1
00)+ 0

1
000

α
α1 =

1
4 t
−1/2e−λ/2α1/2∂θ (tα

1/2λθ ),

where we have used (A.14). Moreover, due to (A.7),

−e0(0
α
α0) = −e0(−γ

1
01 + t

−3/4e−λ/4) = e0(γ
1
01)+

1
4 t
−1/2e−λ/2(λt + 3t−1).

By the symmetries of the connection coefficients,

−0
β

α00
α
0β = −0

0
i00

i
00 − 0

i
000

0
0i − 0

j

i00
i
0j = −0

1
000

0
01 = −(γ

0
01)

2.

Finally,

−γ
β

α00
α
β0 = −γ

β

i00
i
β0 = γ

0
0i0

i
00 + γ

j

0i0
i
j0 = (γ

0
01)

2
+ γ 1

010
1
10 + γ

A
010

1
A0 + γ

B
0A0

A
B0

= (γ 0
01)

2
− (γ 1

01)
2
+ γA010

1
A0 + γ

B
0A0

A
B0

= (γ 0
01)

2
− (γ 1

01)
2
−

1
2 (γ

2
01)

2
−

1
2 (γ

3
01)

2
− (γ 2

02)
2
− (γ 3

03)
2
−

1
2 (γ

2
03)

2

−
1
2γ

2
03γ

3
02.

Since γ 3
02 = 0, we obtain

Ric(e0, e0) =
1
4 t
−1/2e−λ/2α1/2∂θ (tα

1/2λθ )+
1
4 t
−1/2e−λ/2(λt + 3t−1)+ e0(γ

1
01)

− (γ 1
01)

2
−

1
2 (γ

2
01)

2
−

1
2 (γ

3
01)

2
− (γ 2

02)
2
− (γ 3

03)
2
−

1
2 (γ

2
03)

2.

To simplify this expression, we combine (A.7) and (A.11) to conclude

e0(γ
1
01)− (γ

1
01)

2
= −

1
4 t
−1/2e−λ/2α1/2∂t [tα

−1/2(λt − 2α−1αt − t
−1)]

+
1
4 t
−1/2e−λ/2(λt − 2α−1αt − t

−1).

Let us now compute

−
1
2
(γ 2

01)
2
−

1
2
(γ 3

01)
2
− (γ 2

02)
2
− (γ 3

03)
2
−

1
2
(γ 2

03)
2

= −
1
2
t1/2e−λ/2

(
P 2
t + e

2PQ2
t +

eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
−

1
2
t−3/2e−λ/2.

Thus

Ric(e0, e0) =
1
4
t−1/2e−λ/2α1/2(∂θ (tα

1/2λθ )− ∂t [tα
−1/2(λt − 2α−1αt − t

−1)])

−
1
2
t1/2e−λ/2

(
P 2
t + e

2PQ2
t +

eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
+

1
2
t−1/2e−λ/2

(
λt −

αt

α

)
.
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Using (A.5), (A.8) and the antisymmetry of 0iαj in i and j , we get

Ric(e0, e1) = eα(0
α
01)+ 0

β

010
α
αβ − e0(0

α
α1)− 0

β

α10
α
0β − γ

β

α00
α
β1

= e0(0
0
01)+ 0

0
010

α
α0 − e0(γ

0
01)− 0

β

α10
α
0β − γ

β

α00
α
β1

= 00
010

α
α0 − 0

β

α10
α
0β − γ

β

α00
α
β1.

By (A.7),

00
010

α
α0 = γ

0
01(−γ

1
01 + t

−3/4e−λ/4) = −γ 0
01γ

1
01 + γ

0
01t
−3/4e−λ/4.

Moreover, using the symmetries of the connection coefficients, we obtain

−0
β

α10
α
0β = −0

0
110

1
00 − 0

i
j10

j

0i = γ
0
01γ

1
01.

Thus
00

010
α
α0 − 0

β

α10
α
0β = γ

0
01t
−3/4e−λ/4 = 1

4 t
−1/2e−λ/2α1/2λθ .

Finally,

−γ
β

α00
α
β1 = γ

β

0i0
i
β1 = γ

0
010

1
01 + γ

j

0i0
i
j1 = γ

2
020

2
21 + γ

2
030

3
21 + γ

3
020

2
31 + γ

3
030

3
31

= −γ 2
02γ

2
12 −

1
2γ

2
03γ

2
13 − γ

3
03γ

3
13 = −

1
2 t

1/2e−λ/2α1/2(PtPθ + e
2PQtQθ ).

Thus
Ric(e0, e1) =

1
4 t
−1/2e−λ/2α1/2

[λθ − 2t (PtPθ + e2PQtQθ )].

Using (A.8), we get

Ric(e0, eA) = eα(0
α
0A)+ 0

β

0A0
α
αβ − e0(0

α
αA)− 0

β
αA0

α
0β − γ

β

α00
α
βA

= −
1
2e1(γ

A
01)+ 0

1
0A0

α
α1 − 0

0
1A0

1
00 − 0

1
0A0

0
01 − 0

i
jA0

j

0i + γ
0
010

1
0A + γ

i
0j0

j
iA

= −
1
2e1(γ

A
01)+ (0

A
B1 + 0

B
1A)0

B
01 + γ

B
010

1
BA.

Let us begin by considering the case A = 2:

−
1
2e1(γ

2
01) = −

1
2 t
−5/4e−P/2−λ/4α1/2Jθ −

1
2γ

2
12γ

2
01,

(02
B1 + 0

B
12)0

B
01 = −

1
2γ

2
12γ

2
01 −

1
2γ

2
13γ

3
01,

γ B010
1
B2 = γ

2
01γ

2
12 +

1
2γ

3
01γ

2
13.

Thus
Ric(e0, e2) = −

1
2 t
−5/4e−P/2−λ/4α1/2Jθ .

Moreover

−
1
2e1(γ

3
01) = −

1
2 t
−5/4eP/2−λ/4α1/2(Kθ −QJθ )+

1
2γ

2
12γ

3
01 −

1
2γ

2
13γ

2
01,

(03
B1 + 0

B
13)0

B
01 = −

1
2γ

3
13γ

3
01,

γ B010
1
B3 =

1
2γ

2
01γ

2
13 + γ

3
01γ

3
13.
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Keeping in mind that γ 2
12 = −γ

3
13, we conclude that

Ric(e0, e3) = −
1
2 t
−5/4eP/2−λ/4α1/2(Kθ −QJθ ).

Using the symmetries of the connection coefficients, we obtain

Ric(e1, e1) = eα(0
α
11)+ 0

δ
110

α
αδ − e1(0

α
α1)− 0

δ
α10

α
1δ − γ

δ
α10

α
δ1

= e0(0
0
11)+ 0

0
110

α
α0 − e1(γ

0
01)− 0

A
010

0
1A − 0

0
i10

i
10 − 0

j

i10
i
1j − γ

0
010

0
01

− γ 1
010

0
11 − γ

A
010

0
A1 − γ

B
A10

A
B1

= e0(0
0
11)+ 0

0
110

α
α0 − e1(γ

0
01)+

1
4γ

A
01γ

A
01 −

1
4γ

A
01γ

A
01 + γ

1
010

0
11 − (γ

0
01)

2

− γ 1
010

0
11 − γ

A
010

0
A1 − γ

B
A10

A
B1

= e0(0
0
11)+ 0

0
110

α
α0 − e1(γ

0
01)− (γ

0
01)

2
− γA010

0
A1 − γ

B
A10

A
B1.

Due to (A.11) and (A.14), the sum of the first four terms is

1
4 t
−1/2e−λ/2α1/2(∂t [tα−1/2(λt − 2α−1αt − t

−1)] − ∂θ (tα
1/2λθ )

)
.

It can also be computed that

−γA010
0
A1 =

1
2 t
−3
[e−P J 2

+ eP (K −QJ)2],

−γ BA10
A
B1 = −

1
2 t

1/2e−λ/2α(P 2
θ + e

2PQ2
θ ).

Thus

Ric(e1, e1) =
1
4
t−1/2e−λ/2α1/2(∂t [tα−1/2(λt − 2α−1αt − t

−1)] − ∂θ (tα
1/2λθ )

)
+

1
2
t1/2e−λ/2

(
eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
−

1
2
t1/2e−λ/2α(P 2

θ + e
2PQ2

θ ).

Let us turn to

Ric(e1, eA) = eα(0
α
1A)+ 0

δ
1A0

α
αδ − e1(0

α
αA)− 0

δ
αA0

α
1δ − γ

δ
α10

α
δA

= e0(0
0
1A)+0

0
1A0

α
α0+0

1
1A0

α
α1−0

0
iA0

i
10−0

i
0A0

0
1i−0

i
jA0

j

1i−γ
0
i10

i
0A−γ

i
010

0
iA−γ

i
j10

j
iA

= −
1
2e0(γ

A
01)+0

1
A00

B
B0−0

B
A00

1
B0−0

1
0A0

1
10−0

B
0A0

1
B0−γ

1
010

0
1A−γ

B
010

0
BA.

We compute

−
1
2e0(γ

2
01) = −

1
2 t
−5/4e−λ/4−P/2Jt −

1
2γ

3
03γ

2
01 − γ

2
02γ

2
01,

−01
020

1
10 − γ

1
010

0
12 = 0,

−0B200
1
B0 − 0

B
020

1
B0 = −

1
2γ

2
02γ

2
01 −

1
2γ

2
03γ

3
01,

01
200

B
B0 − γ

B
010

0
B2 =

3
2γ

2
01γ

2
02 +

1
2γ

2
01γ

3
03 +

1
2γ

3
01γ

2
03.
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Adding up, we obtain

Ric(e1, e2) = −
1
2 t
−5/4e−λ/4−P/2Jt .

Furthermore,

−
1
2e0(γ

3
01) = −

1
2 t
−5/4eP/2−λ/4(Kt −QJt )−

1
2γ

2
03γ

2
01 −

1
2γ

2
02γ

3
01 − γ

3
03γ

3
01,

−01
030

1
10 − γ

1
010

0
13 = 0,

−0B300
1
B0 − 0

B
030

1
B0 = −

1
2γ

3
03γ

3
01,

01
300

B
B0 − γ

B
010

0
B3 =

3
2γ

3
01γ

3
03 +

1
2γ

3
01γ

2
02 +

1
2γ

2
01γ

2
03.

Adding up, we obtain

Ric(e1, e3) = −
1
2 t
−5/4eP/2−λ/4(Kt −QJt ).

Next,

Ric(eA, eB) = eα(0αAB)+ 0
δ
AB0

α
αδ − 0

δ
αB0

α
Aδ − γ

δ
αA0

α
δB

= e0(0
0
AB)+ e1(0

1
AB)+ 0

0
AB0

α
α0 + 0

1
AB0

α
α1 − 0

δ
αB0

α
Aδ − γ

δ
αA0

α
δB .

Note that if A = B = 2, the first four terms can be written

1
2 t
−1/2e−λ/2α1/2(∂t [tα−1/2(t−1

+ Pt )] − ∂θ (tα
1/2Pθ )

)
(cf. (A.12) and (A.15)). Let us therefore turn to

−0δα20
α
2δ − γ

δ
α20

α
δ2 = −0

0
i20

i
20 − 0

i
020

0
2i − 0

i
j20

j

2i − γ
2
020

0
22 − γ

2
120

1
22

= −0i20(0
i
20 + 0

i
02)− 0

1
A20

A
21 − 0

A
120

1
2A − γ

2
020

0
22 − γ

2
120

1
22.

However, it can be computed that

−0i20(0
i
20 + 0

i
02) = −

1
2 t
−3e−P J 2

−
1
2 t

1/2e−λ/2e2PQ2
t − (γ

2
02)

2,

−01
A20

A
21 − 0

A
120

1
2A =

1
2 t

1/2e−λ/2αe2PQ2
θ + (γ

2
12)

2,

−γ 2
020

0
22 − γ

2
120

1
22 = (γ

2
02)

2
− (γ 2

12)
2.

Adding up gives

Ric(e2, e2) =
1
2
t−1/2e−λ/2α1/2(∂t [tα−1/2(t−1

+ Pt )] − ∂θ (tα
1/2Pθ )

)
−

1
2
t1/2e−λ/2

eλ/2−P J 2

t7/2
−

1
2
t1/2e−λ/2e2P (Q2

t − αQ
2
θ ).

Next, consider

Ric(e2, e3) = e0(0
0
23)+ e1(0

1
23)+ 0

0
230

α
α0 + 0

1
230

α
α1 − 0

δ
α30

α
2δ − γ

δ
α20

α
δ3.
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Due to (A.17) and (A.18), the sum of the first four terms can be written

1
2 t
−1/2e−λ/2−Pα1/2

[∂t (tα
−1/2e2PQt )− ∂θ (tα

1/2e2PQθ )]

−
1
2 (γ

3
13 − γ

2
12)γ

2
13 +

1
2 (γ

3
03 − γ

2
02)γ

2
03.

We compute

−0δα30
α
2δ − γ

δ
α20

α
δ3 = −0

0
i30

i
20 − 0

i
030

0
2i − 0

i
j30

j

2i − γ
2
020

0
23 − γ

2
120

1
23

= −(0i30 + 0
i
03)0

i
20 − 0

1
A30

A
21 − 0

A
130

1
2A − γ

2
020

0
23 − γ

2
120

1
23.

However,

−(0i30 + 0
i
03)0

i
20 = −

1
2γ

3
01γ

2
01 −

1
2γ

3
03γ

2
03,

−01
A30

A
21 − 0

A
130

1
2A =

1
2γ

3
13γ

2
13,

−γ 2
020

0
23 − γ

2
120

1
23 =

1
2γ

2
02γ

2
03 −

1
2γ

2
12γ

2
13.

Adding up, we obtain

Ric(e2, e3) =
1
2 t
−1/2e−λ/2−Pα1/2

[∂t (tα
−1/2e2PQt )− ∂θ (tα

1/2e2PQθ )]

−
1
2 t
−3J (K −QJ).

Finally, let us consider

Ric(e3, e3) = e0(0
0
33)+ e1(0

1
33)+ 0

0
330

α
α0 + 0

1
330

α
α1 − 0

δ
α30

α
3δ − γ

δ
α30

α
δ3.

Due to (A.13) and (A.16), the sum of the first four terms is
1
2 t
−1/2e−λ/2α1/2(∂t [tα−1/2(t−1

− Pt )] + ∂θ (tα
1/2Pθ )

)
.

Let us therefore compute

−0δα30
α
3δ − γ

δ
α30

α
δ3 = −0

0
i30

i
30 − 0

i
030

0
3i − 0

i
j30

j

3i − γ
A
030

0
A3 − γ

A
130

1
A3

= −(0i30 + 0
i
03)0

i
30 − 0

1
A30

A
31 − 0

A
130

1
3A − γ

A
030

0
A3 − γ

A
130

1
A3.

On the other hand,

−(0i30 + 0
i
03)0

i
30 = −

1
2 (γ

3
01)

2
− (γ 3

03)
2,

−01
A30

A
31 − 0

A
130

1
3A = (γ

3
13)

2,

−γA030
0
A3 − γ

A
130

1
A3 =

1
2 (γ

2
03)

2
+ (γ 3

03)
2
−

1
2 (γ

2
13)

2
− (γ 3

13)
2.

Adding up, we obtain

−0δα30
α
3δ − γ

δ
α30

α
δ3 = −

1
2 t
−3eP (K −QJ)2 + 1

2 t
1/2e−λ/2e2P (Q2

t − αQ
2
θ ).

Thus

Ric(e3, e3) =
1
2
t−1/2e−λ/2α1/2(∂t [tα−1/2(t−1

− Pt )] + ∂θ (tα
1/2Pθ )

)
−

1
2
t1/2e−λ/2

eλ/2+P (K −QJ)2

t7/2
+

1
2
t1/2e−λ/2e2P (Q2

t − αQ
2
θ ).
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A.6. The Einstein tensor

Adding up the above, we conclude that the scalar curvature S is given by

S =
1
2
t−1/2e−λ/2α1/2(∂t [tα−1/2(λt − 2α−1αt − t

−1)] − ∂θ (tα
1/2λθ )

)
+

1
2
t1/2e−λ/2[P 2

t + e
2PQ2

t − α(P
2
θ + e

2PQ2
θ )]

+
1
2
t1/2e−λ/2

(
eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
−

1
2
t−1/2e−λ/2λt .

As a consequence, if Einαβ = Ein(eα, eβ), then

Ein00 = −
1
4
t1/2e−λ/2

·

[
P 2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )+

eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

]
+

1
4
t−1/2e−λ/2

(
λt − 2

αt

α

)
,

Ein11 = −
1
4
t1/2e−λ/2

·

[
P 2
t + αP

2
θ + e

2P (Q2
t + αQ

2
θ )−

eλ/2−P J 2

t7/2
−
eλ/2+P (K −QJ)2

t7/2

]
+

1
4
t−1/2e−λ/2λt ,

Ein22 =
1
2
t−1/2e−λ/2α1/2

·

(
∂t

[
tα−1/2

(
Pt −

1
2
λt +

αt

α
+

3
2t

)]
− ∂θ

[
tα1/2

(
Pθ −

1
2
λθ

)])
−

1
4
t1/2e−λ/2[P 2

t + 3e2PQ2
t − α(P

2
θ + 3e2PQ2

θ )]

−
1
4
t1/2e−λ/2

(
3
eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
+

1
4
t−1/2e−λ/2λt .

The last diagonal component is given by

Ein33 = −
1
2
t−1/2e−λ/2α1/2

·

(
∂t

[
tα−1/2

(
Pt +

1
2
λt −

αt

α
−

3
2t

)]
− ∂θ

[
tα1/2

(
Pθ +

1
2
λθ

)])
−

1
4
t1/2e−λ/2[P 2

t − e
2PQ2

t − α(P
2
θ − e

2PQ2
θ )]

−
1
4
t1/2e−λ/2

(
eλ/2−P J 2

t7/2
+ 3

eλ/2+P (K −QJ)2

t7/2

)
+

1
4
t−1/2e−λ/2λt .
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Note that

Ein22 − Ein33 = t
−1/2e−λ/2α1/2(∂t (tα−1/2Pt )− ∂θ (tα

1/2Pθ )
)

− t1/2e−λ/2e2P (Q2
t − αQ

2
θ )

−
1
2
t1/2e−λ/2

(
eλ/2−P J 2

t7/2
−
eλ/2+P (K −QJ)2

t7/2

)
.

We also have

Ein22 + Ein33 = −
1
2
t−1/2e−λ/2α1/2

(
∂t

[
tα−1/2

(
λt − 2

αt

α
−

3
t

)]
− ∂θ (tα

1/2λθ )

)
−

1
2
t1/2e−λ/2[P 2

t + e
2PQ2

t − α(P
2
θ + e

2PQ2
θ )]

− t1/2e−λ/2
(
eλ/2−P J 2

t7/2
+
eλ/2+P (K −QJ)2

t7/2

)
+

1
2
t−1/2e−λ/2λt .

The remaining components of the Einstein tensor equal the corresponding components
of the Ricci tensor, and so have already been computed. The above calculations yield the
expressions (2.3)–(2.12) for Einstein’s equations, Ein+3g = T .

A.7. The Vlasov equation

The distribution function f characterising the Vlasov matter is defined on the mass shell.
The mass shell, in its turn, is given by the future directed unit timelike vectors. Since a
tangent vector in this set can be written vαeα , where

v0
= [1+ (v1)2 + (v2)2 + (v3)2]1/2,

we can think of f as depending on vi , i = 1, 2, 3, and the base point. However, due to
the symmetry requirements, the distribution function only depends on the tθ -coordinates
of the base point. As a consequence, the distribution function can be considered to be
a function of (t, θ, v), where v = (v1, v2, v3). In order to derive an equation for f ,
recall that the Vlasov equation is equivalent to f being constant along future directed unit
timelike geodesics. Consider, therefore, a future directed unit timelike geodesic

γ (s) = [t (s), θ(s), x(s), y(s)]

in a T2-symmetric spacetime. Define the functions vα(s) by the equality

γ̇ (s) = vα(s)eα|γ (s).

Note that

dt

ds
(s) = t1/4(s)(e−λ/4) ◦ γ (s) v0(s), (A.19)

dθ

ds
(s) = t1/4(s)(e−λ/4α1/2) ◦ γ (s) v1(s). (A.20)
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Let
ν(s) = [t (s), θ(s), v(s)], h = f ◦ ν,

where v(s) = [v1(s), v2(s), v3(s)]. The requirement that f be constant along geodesics
is equivalent to dh/ds = 0 regardless of the choice of future directed unit timelike
geodesic γ . On the other hand,

dh

ds
=
∂f

∂t
◦ ν

dt

ds
+
∂f

∂θ
◦ ν

dθ

ds
+

3∑
i=1

∂f

∂vi
◦ ν

dvi

ds
.

Keeping (A.19) and (A.20) in mind, the requirement that dh/ds = 0 is equivalent to

∂f

∂t
◦ ν + α1/2

◦ γ
v1

v0
∂f

∂θ
◦ ν +

3∑
i=1

v̇i

t1/4e−λ◦γ /4v0
∂f

∂vi
◦ ν = 0.

In order to derive an expression for v̇, note that

0 = γ̈ =
d

ds
(vαeα) = v̇

αeα + v
β
∇γ̇ eβ = v̇

αeα + v
βvµ∇eµeβ = (v̇

α
+ vβvµ0αµβ)eα.

The geodesic equation can thus be written

v̇α = −vβvµ0αβµ.

Using this formula, it can be calculated that

v̇1
= −γ 0

01v
0v0
+ γ 1

01v
0v1
+ γ 2

01v
0v2
+ γ 3

01v
0v3
− γ 2

12v
2v2
− γ 3

13v
3v3
− γ 2

13v
2v3.

Using the formulae for γ αλµ, we conclude that

v̇1

t1/4e−λ/4v0 = −
1
4
α1/2λθ v

0
−

1
4

(
λt − 2

αt

α
−

1
t

)
v1
+ α1/2ePQθ

v2v3

v0

−
1
2
α1/2Pθ

(v3)2 − (v2)2

v0 + t−7/4eλ/4
(
e−P/2Jv2

+ eP/2(K −QJ)v3),
where we have omitted composition with γ for brevity. We also have

v̇2
= γ 2

02v
0v2
+ γ 2

12v
1v2,

so that
v̇2

t1/4e−λ/4v0 = −
1
2

(
Pt +

1
t

)
v2
−

1
2
α1/2Pθ

v1v2

v0 .

Finally,
v̇3
= γ 2

03v
0v2
+ γ 3

03v
0v3
+ γ 2

13v
1v2
+ γ 3

13v
1v3,

so that

v̇3

t1/4e−λ/4v0 = −
1
2

(
1
t
− Pt

)
v3
+

1
2
α1/2Pθ

v1v3

v0 − e
P v2

(
Qt + α

1/2Qθ

v1

v0

)
.

Adding up the above computations, we conclude that the Vlasov equation is equivalent to
the requirement that (2.19) holds.
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Appendix B. Notation

Metric variables, twist quantities, cosmological constant, frame, manifold

• α > 0, λ, P , Q, G and H . These are the functions characterising the metric (cf. (1.1)).
• λ̂ is defined in (3.7).
• J and K . These are the twist quantities defined in (1.2). They also satisfy (2.2).
• 3 and H. 3 is the positive cosmological constant and H = (3/3)1/2.
• {eα} is the orthonormal frame defined in (1.7).
• t0, t1. In the situations of interest in this paper, the metric (1.1) is defined on (t0,∞)×
T3, where t0 ≥ 0. When speaking of a T2-symmetric solution, we take it for granted
that t0 is defined in this way. Moreover, t1 = t0 + 2.

Variables for the characteristic system

• 2, V 1, V 2, V 3 are the basic variables of the characteristic system (4.1)–(4.4). The
symbols 2(s; t, θ, v), V (s; t, θ, v) denote a solution to the characteristic system cor-
responding to initial data (t, θ, v). In other words, 2(s; t, θ, v), V (s; t, θ, v), con-
sidered as functions of s, are solutions to (4.1)–(4.4). Moreover, 2(t; t, θ, v) = θ ,
V (t; t, θ, v) = v.
• 9 and Zi , i = 1, 2, 3. Given a choice of derivative (∂t , ∂θ or ∂vi ), say ∂ , the variables
9 and Z = (Z1, Z2, Z3) are defined by (6.3)–(6.6).
• 9̂ and Ẑ are the rescaled versions of 9 and Z, and they are defined in (6.22).
• 9j , Zij , V ij and2j are the higher order derivatives of 9, Z, V and2. They are defined

in (8.8).
• Ẑ1

N and 9̂N are the rescaled versions of Z1
N and 9N , and they are defined in (8.23).

Matter quantities

• ρ, Ji , Pi and Sij . The quantities ρ, Ji , Pi and Sij are defined in general in (2.1). In the
case of Vlasov matter, they are defined in (2.21).

Vlasov matter

• P denotes the mass shell (the set of future directed unit timelike vectors).
• f denotes the distribution function. For T2-symmetric solutions, f , however, denotes

the symmetry reduced version of the distribution function. In other words, f is con-
sidered to be a function of t , θ , v1, v2 and v3, where, if p is an element of the mass
shell, (t, θ, x, y) is the base point of p, and vα are the components of p relative to the
orthonormal frame {eα}.
• fsc is the rescaled distribution function. It is given by fsc(t, θ, v) = f (t, θ, t

−1/2v).
• T Vl

αβ is the stress energy tensor associated with the Vlasov matter. It is given by (1.4).
The components of the stress energy tensor with respect to the frame {eα} are given by
(2.1) and (2.21); see also (2.20).
• Li . The functions Li are given by (9.3)–(9.5).

The initial value formulation

• pr6 is the projection defined in Remark 1.26.
• ρVl and J̄Vl are defined in (1.33) and (1.34).
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Auxiliary notation

• 〈h〉. If h is a scalar function, its mean value is denoted 〈h〉 (cf. (1.3)).
• 〈p̄〉. If p̄ is a vector, 〈p̄〉 = (1+ |p̄|2)1/2.

Energies controlling the metric variables, the distribution function and solutions to
the characteristic system

• The H l
Vl,µ-norm is defined in (1.22).

• ∂± and A± are defined in (2.15). They are given by

∂± = ∂t ± α
1/2∂θ , A± = (∂±P)2 + e2P (∂±Q)

2.

• Ebas is the L2-based energy introduced in (3.8).
• Q1 controls the size of the support of f in the v1-direction (cf. (4.7)). It is given by

Q1(t) := sup{|v1
| : (t, θ, v1, v2, v3) ∈ suppf }.

• F . The sup-norm energy F is introduced in (4.8). It is given by

F(t) = sup
θ∈S1

A+(t, θ)+ sup
θ∈S1

A−(t, θ).

• Â± and F̂ are introduced in (4.14) and (4.15) respectively. They are given by

Â± = t4A± + t, F̂ (t) = sup
θ∈S1

Â+(t, θ)+ sup
θ∈S1

Â−(t, θ).

• R1 and Q̂1 are defined in (4.17). They are given by

R1(s) = [s(V 1(s))2 + 1]1/2, Q̂1(s) = [s(Q1(s))2 + 1]1/2.

• G is defined in (4.19).
• Ê is introduced in (6.23). It is given by Ê =

∑3
i=1(Ẑ

i)2 + (9̂)2.
• AN+1,± is introduced in (7.16). It is given by

AN+1,± = [∂
N
θ Pt ± ∂

N
θ (α

1/2Pθ )]
2
+ e2P

[∂Nθ Qt ± ∂
N
θ (α

1/2Qθ )]
2.

• ÂN+1,± and F̂N+1 are introduced in (7.17). They are given by

ÂN+1,± = t
7/2AN+1,± + t

1/2, F̂N+1 = sup
θ∈S1

ÂN+1,+ + sup
θ∈S1

ÂN+1,−.

• ÊN is defined in (8.24). It is given by ÊN = (9̂N )2 + (Ẑ1
N )

2.
• Ek and E. These energies control suitably weighted Sobolev norms of the distribution

function. Ek is defined in (9.6). Moreover, E = E0.

Acknowledgments. The second author would like to acknowledge the support of the Göran Gustafs-
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