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Abstract. We prove that any convex domain of C2 carries properly embedded complete complex
curves. In particular, we give the first examples of complete bounded embedded complex curves
in C2.
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1. Introduction

Let Mk be a k-dimensional connected complex manifold, k ∈ N. A holomorphic immer-
sion X : Mk

→ Cn, n ≥ k, is said to be complete if the pull back X∗g of the Euclidean
metric g on Cn is a complete Riemannian metric on Mk . This is equivalent X ◦ γ having
infinite Euclidean length for any divergent arc γ in Mk . (Given a non-compact topolog-
ical space W , an arc γ : [0, 1) → W is said to be divergent if γ (t) leaves any compact
subset of W when t → 1.)

An immersion X : Mk
→ Cn is said to be an embedding if X : Mk

→ X(Mk) is a
homeomorphism. In this caseX(Mk) is said an embedded submanifold of Cn. If� ⊂ Cn
is a domain, a map X : Mk

→ � is said to be proper if X−1(K) is compact for any
compact set K ⊂ �. Proper injective immersions Mk

→ � are embeddings.
In 1977, Yang [28, 29] asked whether there exist complete holomorphic embeddings

Mk
→ Cn, 1 ≤ k < n, with bounded image. The first affirmative answer was given

two years later by Jones [21] for k = 1 and n ≥ 3. Only recently have Alarcón and
Forstnerič [4], as application of Jones’ result, provided examples for any k ∈ N and
n ≥ 3k. The problem has remained open in the lowest dimensional case: complex curves
in C2 (see [4, Question 1]). This particular case is especially interesting for topological
and analytical reasons that will be more apparent later in this introduction.

The aim of this paper is to fill this gap, proving considerably more:

Theorem 1.1. Any convex domain B ⊂ C2 carries complete properly embedded complex
curves.
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The topology of the curves in Theorem 1.1 is not controlled (see Question 1.5 below).
The conclusion of Theorem 1.1 is obvious when B = � × C, where � ⊂ C is a convex
domain (the flat curve {p} × C, p ∈ �, is complete and properly embedded in � × C).
Further, complete holomorphic graphs over�were constructed in [1, 2, 3]. Regarding the
case B = C2, Bell and Narasimhan [8] conjectured that any open Riemann surface can be
properly holomorphically embedded in C2 (obviously, this is possible in no other convex
domain of C2). This classical problem is still open (cf. [13, 14, 10, 7] and references
therein). Anyway, all the complex curves in these particular instances are far from being
bounded.

Following Yang’s results [29], no complete complex hypersurface of Cn, n > 1,
has strongly negative holomorphic sectional curvature, and the existence of a complete
bounded complex k-dimensional submanifold of Cn, n > k, implies the existence of such
a submanifold of C2n with strongly negative holomorphic sectional curvature. Related
existence results can be found in [4]. Theorem 1.1 has nice consequences regarding these
questions:

Corollary 1.2. Let k ∈ N. There exist

(i) complete bounded embedded complex k-dimensional submanifolds of C2k , and
(ii) complete bounded embedded complex k-dimensional submanifolds of C4k with

strongly negative holomorphic sectional curvature.

Proof. Let X : R → B be a complete holomorphic embedding given by Theorem 1.1,
where R is an open Riemann surface and B ⊂ C2 is the Euclidean open ball of ra-
dius 1/

√
k centered at the origin. Denote by Rk

= R × · · · × R the cartesian product
of k copies of R and likewise for Bk . Then the map

ϕ : Rk
→ Bk ⊂ C2k, ϕ(p1, . . . , pk) = (X(p1), . . . , X(pk)),

is a complete bounded holomorphic embedding, proving (i) (see [4, Corollary 1]).
To check (ii), notice that ϕ(Rk) ⊂ B1, where B1 ⊂ C2k is the Euclidean open ball

of radius 1 centered at the origin. Setting F : B1 → C4k, F (z1, . . . , z2k) = (z1, . . . , z2k,

ez1 , . . . , ez2k ). Then the map F ◦ ϕ : Rk
→ C4k proves (ii) (see [29, Sec. 1]). ut

An interesting question is whether, given k ∈ N, the dimensions 2k and 4k in the above
corollary are optimal.

There are many known examples of complete bounded immersed complex curves
in C2: Jones [21] constructed a simply-connected one, Martı́n, Umehara, and Yamada [22]
provided examples with some finite topologies, and Alarcón and López [6] gave examples
of arbitrary topological type. On the other hand, Alarcón and Forstnerič [4] showed that
every bordered Riemann surface is a complete curve in a ball of C2. Furthermore, the
curves in [6, 4] have the extra property of being proper in any given convex domain.
However, the construction of complete bounded embedded complex curves in C2 turns
out to be a much more involved problem. The main reason is that (in contrast to what
happens in Cn, n ≥ 3, where the general position of complex curves is embedded) self-
intersections of complex curves in C2 are stable under deformations. Nevertheless, there
is a simple self-intersection removal method which consists in replacing every normal



Complete bounded embedded complex curves in C2 1677

crossing in a complex curve by an embedded annulus. Unfortunately, this surgery does
not necessarily preserve the length of divergent arcs (hence completeness); indeed, self-
intersection points of immersed complex curves generate shortcuts in the arising desin-
gularized curves, so divergent arcs of shorter length.

In order to overcome this difficulty, we consider a stronger notion of completeness
(Def. 1.3). Given a holomorphic immersion X : Mk

→ Cn, we denote by distX(Mk) the
(intrinsic) induced Euclidean distance in X(Mk) given by

distX(Mk)(p, q) = inf{`(γ ) : γ ⊂ X(Mk) a rectifiable arc connecting p and q}

for any p, q ∈ X(Mk), where `(·) means Euclidean length in Cn. If X is injective, the
function distX(Mk) ◦(X,X) : M

k
× Mk

→ R is the intrinsic distance in Mk induced
by X; otherwise it is a pseudo-distance. We call distX(Mk) and (X(Mk), distX(Mk)) the
image distance and the image metric space of X : Mk

→ Cn.

Definition 1.3. A holomorphic immersion X : Mk
→ Cn is said to be image complete

if (X(Mk), distX(Mk)) is a complete metric space (in other words, if every rectifiable
divergent arc in X(Mk) has infinite Euclidean length).

Obviously, image completeness implies completeness, and both notions are equivalent
for injective immersions. The image distance is very convenient for our purposes since
it is preserved by self-intersection removal procedures. As a matter of fact, the proof
of Theorem 1.1 is connected with the general existence theorem 1.4 below. As far as
the authors’ knowledge extends, the following are the first known examples of image
complete bounded immersed complex curves in C2.

Theorem 1.4. Let S be an open orientable smooth surface and let B ⊂ C2 be a convex
domain. Then there exist a complex structure J on S and an image complete proper
holomorphic immersion (S,J )→ B.

Let us say a few words about the proof of Theorem 1.1 (see the more general Theorem 3.1
in Sec. 3). The proof relies on a recursive process involving approximation by embedded
complex curves in C2 (Lemma 3.2), which is the core of the paper. In that lemma we prove
that any embedded compact complex curve C with boundary bC in the frontier FrD of
a regular strictly convex domain D can be approximated by another embedded complex
curve C ′ with bC ′ ⊂ FrD′, where D′ is any given larger convex domain. The curve C ′

has possibly higher topological genus than C and contains a biholomorphic copy of it,
roughly speaking C ⊂ C ′. Furthermore, this procedure can be done so that C ′ \C lies in
D′ \D and the intrinsic Euclidean distance in C ′ from C to bC ′ is suitably larger than the
distance between D and FrD′ in C2. These facts will be the key to obtaining properness
and completeness while preserving boundedness in the proof of Theorem 3.1.

In order to prove Lemma 3.2 (see Sec. 4), we introduce some configurations of slabs
in C2 that we call tangent nets (see Subsec. 4.1). Given a regular strictly convex domain
D b C2, a tangent net T for D is a tubular neighborhood of a finite collection of (affine)
hyperplanes tangent to the frontier FrD (see Def. 4.1 and Fig. 4.1). Given another regular
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strictly convex domain D′ with D b D′ b C2, we show the existence of tangent nets T
for D with the property that any Jordan arc in T connecting FrD and FrD′ has large
length compared to the distance between D and FrD′ in C2 (see Lemma 4.2). The second
step in the proof of Lemma 3.2 is approximation by immersed complex curves along tan-
gent nets (see Lemma 4.3 in Subsec. 4.2). We show that any immersed compact complex
curve6 in C2 with boundary b6 ⊂ FrD can be approximated by another one 6̃ such that
b6̃ ⊂ FrD′ and 6̃ ∩ (D′ \D) is contained in a suitable tangent net for D. This allows us
to estimate the growth of the image diameter (according to Def. 1.3) of 6̃, and conclude
that it is large compared to the distance between D and FrD′. This represents a clear
innovation with respect to previous constructions where only the growth of the intrinsic
diameter could be estimated (cf. [26, 6, 4] and references therein). We conclude the proof
of Lemma 3.2 by combining the above two results with a desingularization adapted to
our setting (see Lemma 4.5 in Subsec. 4.3). To the best of the authors’ knowledge, this
is the first such application of the surgery technique in the literature. Since this method
increases the topology, the complex curves in Theorem 1.1 could have infinite genus.

On the other hand, Theorem 1.4 follows from a standard recursive application of
Lemmas 4.2 and 4.3 (see the more precise Theorem 5.1 in Sec. 5).

Since complex curves in C2 are area-minimizing surfaces in R4, our results are con-
nected with the so-called Calabi–Yau problem for embedded surfaces. This problem deals
with the existence of complete embedded minimal surfaces in bounded domains of R3.
Although it still remains open, it is known that solutions must have either infinite genus or
uncountably many ends (see Colding and Minicozzi [9] and Meeks, Pérez, and Ros [23]).
On the other hand, the construction of embedded complex discs in C2 is a subject with
vast literature: see for instance [15, 12, 11, 16, 17]. Thus, in view of Theorem 1.1, one is
led to ask:

Question 1.5. Do there exist complete bounded holomorphic embeddings M → C2

with M an open Riemann surface of finite topology? What if M is the complex unit disc?

Our main tools are the classical Runge and Mergelyan approximation theorems for holo-
morphic functions and basic convex body theory.

2. Preliminaries

We denote by ‖ · ‖, 〈·, ·〉, dist(·, ·), `(·), and diam(·) the Euclidean norm, inner product,
distance, length, and diameter in Rn, n ∈ N. Given two points p and q in Rn, we denote
by [p, q] (resp., ]p, q[) the closed (resp., open) straight line segment in Rn connecting p
and q.

In the complex Euclidean space Cn ∼= R2n we denote by L·, ·M : Cn × Cn → C the
bilinear Hermitian product defined by L(ζ1, . . . , ζn), (ξ1, . . . , ξn)M =

∑n
i=1 ζiξ i , where

· means complex conjugation. Observe that 〈·, ·〉 = <L·, ·M. Given p ∈ Cn, we denote
LpM⊥ = {q ∈ Cn : Lp, qM = 0}, spanR(p) = {tp : t ∈ R}, and spanC(p) = {ζp : ζ ∈ C}.

Given an n-dimensional topological real manifold M with boundary, we denote
by bM the (n− 1)-dimensional topological manifold determined by its boundary points.
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For any subset A ⊂ M , we denote by A◦, A, and FrA = A \ A◦ the interior, the closure,
and the frontier of A in M , respectively. Given subsets A and B of M , we write A b B

if A is compact and A ⊂ B◦. By a domain in M we mean an open connected subset of
M \ bM . By a region in M we mean a proper topological subspace of M which is an
n-dimensional compact manifold with non-empty boundary.

A topological surface S is said to be open if it is non-compact and bS = ∅. A do-
main R in an open connected Riemann surface N is said to be a bordered domain if
R b N and R is a region with smooth boundary bR = FrR. In this case, bR consists
of finitely many smooth Jordan curves.

Given a compact topological space K and a continuous map f : K → Rn, we denote
by

‖f ‖0,K := max
p∈K
‖f (p)‖

the maximum norm of f onK. The corresponding space of continuous functionsK→Rn
will be endowed with the C0 topology associated to ‖ · ‖0,K .

Let N be an open Riemann surface endowed with a nowhere-vanishing holomorphic
1-form ϑN (such a 1-form exists by the Gunning–Narasimhan theorem [20]). Let K be
a compact set in N . A function f : K → Cn, n ∈ N, is said be holomorphic if it is the
restriction to K of a holomorphic function defined on a domain in N containing K . In
that case, we denote by

‖f ‖1,K;ϑN := max
P∈K

max
{
‖f (P )‖,

∥∥∥∥ dfϑN (P )

∥∥∥∥} (2.1)

the C1 maximum norm of f onK (with respect to ϑN ). If there is no ambiguity, we write
‖f ‖1,K instead of ‖f ‖1,K;ϑN . The space of holomorphic functions K → Cn will be
endowed with the C1 topology associated to the norm ‖ · ‖1,K;ϑN , which does not depend
on the choice of ϑN .

Given a holomorphic immersion f : K → Cn, a point w ∈ f (K) is said to be a
double point of f (or of f (K)) if f−1(w) contains more than one point. A double point
w ∈ f (K) is said to be a normal crossing if f−1(w) consists of precisely two points, P
and Q, and dfP (TPN ) and dfQ(TQN ) are transverse.

Remark 2.1. It is well known that any holomorphic function K → Cn, n ≥ 3, can be
approximated in the C1 topology on K by holomorphic embeddings.

However, this is no longer true in the lowest dimensional case: double points of an
immersed complex curve in C2 are stable under deformations. Anyway, any holomorphic
function K → C2 can be approximated in the C1 topology on K by holomorphic im-
mersions all whose double points are normal crossings. We call this property the general
position argument.

Throughout this paper we will deal with regular convex domains D b C2, bordered
domains R b N , and holomorphic immersions X : R → C2 with X(R) ⊂ D. In this
setting, it is interesting to notice the following:

Remark 2.2. If X(bR) ⊂ FrD then X(R) and FrD meet transversally.
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Indeed, assume for a moment that X(R) and FrD meet tangentially at p := X(P ),
P ∈ bR. By the basic theory of harmonic functions, there exists a sufficiently small
neighborhood U of P in M such that α := X−1(p + Tp FrD) ∩ U consists of a system
of at least two analytical arcs intersecting equiangularly at P . Furthermore, contiguous
components of U \α lie on opposite sides of p+Tp FrD. On the other hand, since R has
smooth boundary and X(bR) ⊂ FrD, we have X(U ∩R) ⊂ D, and so X(U ∩R) must
lie on one side of p + Tp FrD, a contradiction.

A compact (in most cases arcwise-connected) subset K of an open Riemann sur-
face N is said to be Runge if N \ K has no relatively compact connected compo-
nents in N ; equivalently, if the inclusion map i : K ↪→ N induces a group monomor-
phism i∗ : H1(K,Z) → H1(N ,Z) on homology. In this case we consider H1(K,Z) ⊂
H1(N ,Z) via this monomorphism. Two Runge compact sets K1 and K2 of N are said
to be (homeomorphically) isotopic if there exists a homeomorphism η : K1 → K2 such
that the induced homology morphism η∗ equals IdH1(K1,Z). Such an η is said to be an iso-
topical homeomorphism. Two Runge regions K1 and K2 of N are (homeomorphically)
isotopic if and only if H1(K1,Z) = H1(K2,Z).

2.1. Convex domains

A convex domain D ⊂ Rn, D 6= Rn, n ≥ 2, is said to be regular (resp., analytic) if its
frontier FrD = D \D is a regular (resp., analytic) hypersurface of Rn.

Let D be a regular convex domain of Rn, D 6= Rn, n ≥ 2.
For any p ∈ FrD we denote by Tp FrD the tangent space to FrD at p. Recall that

D ∩ (p + Tp FrD) = ∅ for all p ∈ FrD.
We denote by νD : FrD → Sn−1 the outward pointing unit normal to FrD. For any

p ∈ FrD and v ∈ (Tp FrD) ∩ Sn−1, we denote by κD(p, v) the normal curvature at p
in the direction of v with respect to −νD; obviously κD(p, v) ≥ 0 since D is convex. Let
κ(p) ≥ 0 be the maximum of the principal curvatures of FrD at p with respect to −νD,
and set

κ(D) := sup{κ(p) : p ∈ FrD} ≥ 0. (2.2)

The domain D is said to be strictly convex if κD(p, v) > 0 for all p ∈ FrD and
v ∈ (Tp FrD) ∩ Sn−1. In this case, D ∩ (p + Tp FrD) = {p} for all p ∈ FrD. If D is
bounded (i.e., D b Rn) and strictly convex, then 0 < κ(D) <∞.

Assume that D is bounded and strictly convex. For any t > −1/κ(D) we denote by
Dt the bounded regular strictly convex domain in Rn with frontier FrDt = {p+ tνD(p) :
p ∈ FrD}, that is, the parallel convex domain to D at (oriented) distance t . Observe that
D = D0 and Dt1 b Dt2 if t1 < t2.

For any couple of compact subsetsK andO in Rn, the Hausdorff distance betweenK
and O is given by

dH(K,O) := max
{

sup
x∈K

inf
y∈O
‖x − y‖, sup

y∈K

inf
x∈O
‖x − y‖

}
.

A sequence {Kj
}j∈N of (possibly unbounded) closed subsets of Rn is said to converge

in the Hausdorff topology to a closed subset K0 of Rn if {Kj
∩ B}j∈N → K0

∩ B in the
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Hausdorff distance for any closed Euclidean ball B ⊂ Rn. If Kj b Kj+1
⊂ K0 for all

j ∈ N and {Kj
}j∈N→ K0 in the Hausdorff topology, then we write {Kj

}j∈N ↗ K0.

Theorem 2.3 ([25, 24]). Let B ⊂ Rn be a (possibly neither bounded nor regular) con-
vex domain. Then there exists a sequence {Dj

}j∈N of bounded strictly convex analytic
domains in Rn with {Dj }j∈N ↗ B.

The following distance type function for convex domains will play a fundamental role
throughout this paper.

Definition 2.4. Let D and D′ be bounded regular strictly convex domains in Rn (n ≥ 2)
with D b D′. We denote

d(D,FrD′) :=
(

dist(D,FrD′)+
1

κ(D)

)√
dist(D,FrD′)

dist(D,FrD′)+ 2/κ(D)

(see (2.2)).

Remark 2.5. Observe that d(D,FrD′) > dist(D,FrD′). Furthermore, d(D, ·) and
√

dist(D, ·) are infinitesimally comparable in the sense that

lim
n→∞

√
dist(D,FrDn)

d(D,FrDn)
=

√
2κ(D) > 0

for any sequence {Dn
}n∈N of bounded regular strictly convex domains such that D b Dn

for all n ∈ N and {Dn}n∈N→ D in the Hausdorff topology.

Lemma 2.7 below will simplify the exposition of the proof of our main results. Its proof
relies on Remark 2.5.

Definition 2.6. Let B be a (possibly neither bounded nor regular) convex domain in Rn.
A sequence {Dk

}k∈N of convex domains in Rn is said to be d-proper in B if Dk is bounded,
regular, and strictly convex for all k ∈ N, {Dk}k∈N ↗ B in the Hausdorff topology, and∑

k∈N
d(Dk,FrDk+1) = ∞.

Lemma 2.7. Any convex domain in Rn admits a d-proper sequence of convex domains.

Proof. Let B be a convex domain in Rn. Let {Cj }j∈N be a sequence of bounded strictly
convex analytic domains in Rn with {Cj }j∈N ↗ B (cf. Theorem 2.3). For the sake of
simplicity write dj := dist(Cj ,FrCj+1) and κj := κ(Cj ) for all j ∈ N.

For each j ∈ N choose mj ∈ N large enough that

mj∑
a=1

1
a
≥

√
6djκ2

j + 2π2κj

6dj
. (2.3)
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Denote da,j = dj
6
π2

∑a
h=1 1/h2, and notice that da,j < dj (take into account that∑

∞

h=1 1/h2
= π2/6). Set C0,j

:= Cj and Ca,j := (Cj )da,j , for all a = 1, . . . , mj ,
the outer parallel convex domain to Cj at distance da,j . Observe that Ca,j is analytic and
strictly convex,

Cj b Ca,j b Ca+1,j b Cj+1, (2.4)

dist(Ca,j ,FrCa+1,j ) = da+1,j − da,j = 6dj/(π(a + 1))2, (2.5)

and

κ(Ca,j ) = κj/(1+ da,jκj ) ≤ κj for all j ∈ N and a ∈ {0, . . . , mj − 1}. (2.6)

Set

f : ]0,∞[ × ]0,∞[ → ]0,∞[, f (d, κ) = (d + 1/κ)

√
d

d + 2/κ
,

and note that f (d, ·) is decreasing for all d > 0 and f (6dj/(π(a + 1))2, κ(Ca,j )) =
d(Ca,j ,FrCa+1,j ) for all j ∈ N and a ∈ {1, . . . , mj − 1} (see (2.5)). Therefore,

mj−1∑
a=0

d(Ca,j ,FrCa+1,j ) =

mj−1∑
a=0

f
(
6dj/(π(a + 1))2, κ(Ca,j )

)
(2.6)
≥

mj−1∑
a=0

f
(
6dj/(π(a + 1))2, κj

)
>

√
6dj

6djκ2
j + 2π2κj

(mj−1∑
a=0

1
a + 1

) (2.3)
≥ 1.

Let {Dk
}k∈N denote the enumeration of {Ca,j : j ∈ N, a ∈ {0, . . . , mj }} such that

Dk b Dk+1 for all k ∈ N (see (2.4)). Then

∑
k∈N

d(Dk,FrDk+1) ≥
∑
j∈N

(mj−1∑
a=0

d(Ca,j ,FrCa+1,j )
)
≥

∑
j∈N

1 = ∞.

This property and the fact that {Cj }j∈N ↗ B imply that the sequence {Dk
}k∈N is d-proper

in B. ut

3. Complete properly embedded complex curves in convex domains of C2

In this section we prove the main result of this paper, Theorem 1.1. It will be a particular
instance of the following more precise result.
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Theorem 3.1. Let B be a (possibly neither bounded nor regular) convex domain in C2.
Let D b B be a strictly convex bounded regular domain. Let N be an open Riemann
surface equipped with a nowhere-vanishing holomorphic 1-form ϑN , and let R be a
bordered domain in N . Then, for any ε ∈ ]0,min{dist(D,FrB), 1/κ(D)}[ and any holo-
morphic embedding X : R→ C2 such that

X(bR) ⊂ FrD, (3.1)

there exist an open Riemann surface M (possibly of infinite topological genus) and a
complete holomorphic embedding Y :M→ C2 enjoying the following properties:

(i) R ⊂M.
(ii) ‖Y −X‖1,R;ϑN < ε (see (2.1)).

(iii) Y (M) ⊂ B and Y :M→ B is a proper map.
(iv) Y (M \R) ⊂ B \D−ε.

Theorem 3.1 follows from a recursive process involving the following result on approxi-
mation by embedded complex curves.

Lemma 3.2 (Approximation by embedded complex curves). Let D and D′ be bounded
regular strictly convex domains in C2 with D b D′. Let N be an open Riemann surface
equipped with a nowhere-vanishing holomorphic 1-form ϑN and let U be a bordered
domain in N . Then, for any ε ∈ ]0,min{dist(D,FrD′), 1/κ(D)}[ and any holomorphic
embedding X : U → C2 such that

X(bU) ⊂ FrD, (3.2)

there exist an open Riemann surface N ′, a bordered domain U ′ b N ′, and a holomorphic
embedding X′ : U ′→ C2 enjoying the following properties:

(i) U ⊂ U ′.
(ii) ‖X′ −X‖1,U;ϑN < ε.

(iii) X′(bU ′) ⊂ FrD′.
(iv) X′(U ′ \ U) ∩D−ε = ∅.
(v) `(X′(γ )) > d(D,FrD′)− ε for any Jordan arc γ in U ′ connecting bU and bU ′.

Roughly speaking, this lemma ensures that any embedded compact complex curve X :
U → C2 with boundary in the frontier of a regular strictly convex domain D b C2 can be
approximated by another embedded complex curve X′ : U ′ → C2 with boundary in the
frontier of a larger convex domain D′. This can be done so that X′(U ′ \ U) lies outside D
and the intrinsic Euclidean diameter of X′(U ′) exceeds in d(D,FrD′) the one of X(U)
(see Def. 2.4). These facts will be the key to obtaining properness and completeness while
preserving boundedness in the proof of Theorem 3.1. We point out that U ′ has a possibly
higher topological genus than U .

Lemma 3.2 will be proved later in Sec. 4 (see in particular Subsec. 4.4). We are now
ready to prove our main result.
Proof of Theorem 3.1. Denote D0

:= D and let {Dn
}n∈N be a d-proper sequence of

convex domains in B with D0 b D1 (see Def. 2.6 and Lemma 2.7). Set N0 = N ,
ϑ0 = ϑN , U0 = R, and X0 = X. Fix any ε0 ∈ ]0, ε/2[.
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Let us recursively construct a sequence {4n = (Nn, ϑn,Un, Xn, εn)}n∈N, where

• Nn is an open Riemann surface,
• ϑn is a nowhere-vanishing holomorphic 1-form on Nn,
• Un b Nn is a bordered domain,
• Xn : Un→ C2 is a holomorphic embedding, and
• εn ∈ ]0,min{dist(Dn−1,FrDn), 1/κ(Dn−1)}[,

so that the following properties are satisfied for all n ∈ N:

(An) Un−1 ⊂ Un (in particular, the closure of Un−1 in Nn−1 agrees with the one in Nn).
(Bn) minUn−1

|ϑn−1/ϑn| > 1.
(Cn) εn satisfies

(C.1n) εn < εn−1/2 < ε/2n+1 and
(C.2n) every holomorphic function F : Un−1 → C2 with ‖F−Xn−1‖1,Un−1;ϑn−1

<

2εn is an embedding on Un−1.

(Dn) ‖Xn −Xn−1‖1,Un−1;ϑn−1
< εn.

(En) Xn(bUn) ⊂ FrDn; hence Xn(Un) and FrDn meet transversally (see Remark 2.2).
(Fn) Xn(Ua \ Ua−1) ∩Da−1

−εa
= ∅ for all a ∈ {1, . . . , n}.

(Gn) `(Xn(γ )) > d(Da−1,FrDa) − εa for any Jordan arc γ in Ua connecting bUa−1
and bUa , for all a ∈ {1, . . . , n}.

The basis of the induction is given by setting 40 = (N0, ϑ0,U0, X0, ε0). Remark 2.2
shows that X0(U0) and FrD0 meet transversally, proving (E0). Properties (j0), j 6= E,
are empty.

For the inductive step, let n ∈ N, assume that we have already constructed 4m for all
m ∈ {0, . . . , n− 1}, and let us construct 4n.

Let εn be a real number in ]0,min{dist(Dn−1,FrDn), 1/κ(Dn−1)}[ and satisfying
(Cn) to be specified later. By (En−1), Lemma 3.2 applies to the data

(D,D′,N , ϑN ,U , ε,X) = (Dn−1,Dn,N n−1, ϑn−1,Un−1, εn, Xn−1),

furnishing an open Riemann surface N n, a bordered domain Un b N n, and a holomor-
phic embedding Xn : Un → C2 satisfying (An), (Dn), (En), and properties (Fn) and (Gn)
for a = n. Further, (Fn) and (Gn) for a ∈ {1, . . . , n − 1} are ensured by (Fn−1), (Gn−1),
and (Dn), provided that εn is chosen small enough. Up to taking any nowhere-vanishing
holomorphic 1-form ϑn in Nn satisfying (Bn), this closes the induction and concludes the
construction of the sequence {4n}n∈N.

Denote by M the open Riemann surface
⋃
n∈N Un; observe that properties (An),

n ∈ N, imply Theorem 3.1(i). The sequence {Xn : Un → C2
}n∈N converges uniformly

on compact sets of M to a holomorphic map Y :M → C2; just observe that properties
(Bn), (C.1n), and (Dn) guarantee that

‖Xn −Xn−1‖1,Uk;ϑk < εn < ε/2n+1 for any k < n. (3.3)

Let us show that the map Y satisfies all the requirements in the theorem.



Complete bounded embedded complex curves in C2 1685

• Y is an injective immersion. Indeed, for every k ∈ N, (3.3) and (C.1n), n > k, give

‖Y −Xk‖1,Uk;ϑk ≤
∑
n>k

‖Xn −Xn−1‖1,Uk;ϑk <
∑
n>k

εn < 2εk+1 < εk. (3.4)

This and (C.2n) ensure that Y |Uk : Uk → C2 is an embedding for all k ∈ N, hence Y is
an injective immersion as claimed.

• Y is complete. Indeed, from (Gn), n ∈ N, and taking limits as n → ∞, we infer that
`(Y (γ )) ≥ d(Dn−1,FrDn)− εn for any Jordan arc γ in Un connecting bUn−1 and bUn,
for all n ∈ N. Therefore, if α ∈M is a divergent arc in M with initial point in R = U0,
one infers that `(Y (α)) ≥

∑
n∈N(d(Dn−1,FrDn) − εn) = ∞: take into account that

{Un}n∈N is an exhaustion by compact sets of M, the series
∑
n∈N εn is convergent (see

(C.1n)), and
∑
n∈N d(Dn−1,FrDn) is divergent (recall that {Dn

}n∈N is d-proper in B; see
Def. 2.6). This ensures the completeness of Y .

• Item (ii) is given by (3.4) for k = 0 (recall that ε0 < ε).

• Y (M) ⊂ B and Y : M → B is proper. For the first assertion, let P ∈ M and take
k ∈ N such that P ∈ Uk . From (En) and the Convex Hull Property, Xn(P ) ∈ Dn for all
n ≥ k. Letting n → ∞, we find that Y (P ) ∈ B and so, by the convexity of B and the
maximum principle for harmonic functions, Y (P ) ∈ B.

Then, properties (Fn), n ∈ N, and the fact that {Dn−1
−εn
}n∈N is an exhaustion of B by

compact sets imply that

Y (M \ Uk−1) ⊂ B \Dk−1
−εk

for all k ∈ N. (3.5)

This inclusion for k = 1 proves (iv). To check that Y : M → B is proper, let K ⊂ B
be a compact subset. Since {Dn−1

−εn
}n∈N is an exhaustion of B, there exists k ∈ N such

that K ⊂ Dn−1
−εn

for all n ≥ k. Therefore, (3.5) gives Y−1(K) ⊂ Uk−1. This shows that
Y−1(K) is compact and proves (iii). ut

4. Approximation by embedded complex curves

In this section we prove Lemma 3.2. The proof consists of three main steps. In the first
step (Subsec. 4.1), we introduce the notion of tangent net for a convex domain, and prove
existence of tangent nets with useful geometrical properties. The second step is approxi-
mation by complex curves along tangent nets (see Subsec. 4.2). In the final step we prove
desingularization for complex curves in C2 (see Subsec. 4.3). Lemma 3.2 will follow by
combining these results (see Subsec. 4.4).

4.1. Tangent nets

The aim of this section is to introduce the notion of tangent net (Def. 4.1) and prove
existence of tangent nets with useful properties (see Lemma 4.2).
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Definition 4.1. Let D be a bounded regular strictly convex domain in Rn, n ≥ 2. Let
1 ⊂ FrD be a finite set and define

0 :=
⋃
p∈1

(p + Tp FrD) ⊂ Rn \D.

The set
T := {q ∈ Rn : dist(q, 0) < ε}

is said to be a tangent net of radius ε > 0 for D (see Fig. 4.1). Observe that if ε < 1/κ(D)
then T ⊂ Rn \D−ε .

Fig. 4.1. A tangent net.

The sets T 0
:= 1 and T 1

:= 0 are called the 0-skeleton and the 1-skeleton of T ,
respectively. For any p ∈ T 0, the set T (p) := {q ∈ Rn : dist(q, p+ Tp FrD) < ε} is the
slab of T based at p.

The following Pythagoras’ type result will be crucial.

Lemma 4.2. Let D and D′ be bounded regular strictly convex domains in Rn (n ≥ 2)
with D b D′. Let A ⊂ FrD consist of a finite collection of smooth immersed compact
arcs and closed curves. Then for any ε > 0 there exists a tangent net T of radius < ε for
D such that

(i) A ⊂ T and
(ii) `(γ ) > d(D,FrD′)− ε for any Jordan arc γ ⊂ T connecting FrD and FrD′.
Proof. For the sake of simplicity, denote d0 := dist(D,FrD′) and κ0 := κ(D).

Write A =
⋃µ
i=1 αi , where αi is either a smooth closed immersed curve or a smooth

immersed compact arc in FrD for all i ∈ {1, . . . , µ}, µ ∈ N. Denote

L := 1+max{`(αi) : i = 1, . . . , µ} <∞. (4.1)

For any m ∈ N set

εm :=
1
κ0

(
1− cos

(
Lκ0

m

))
. (4.2)

Since limm→∞mεm = 0, we have

max
{
εm,

4(mµ+ 1)εm√
(d0κ0 + 1)2 − 1

}
< ε (4.3)

for large enough m.
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Let m ∈ N satisfy (4.3) and set I := {1, . . . , µ} × {1, . . . , m}.
From (4.1), for any i ∈ {1, . . . , µ} there exist m points pi,1, . . . , pi,m splitting αi into

m arcs of the same length < L/m. Denote 1 := {pi,j : (i, j) ∈ I }, let T be the tangent
net of radius εm for D with 0-skeleton T 0

= 1, and observe that

distFrD(q, T 0) < L/m for all q ∈ A, (4.4)

where distFrD is the intrinsic distance in FrD.
Let us show that T is as required.
First, let us check item (i). In view of (4.4), it suffices to check that the slab T (pi,j )

contains the intrinsic geodesic ball in FrD with center pi,j and radius L/m, for all
(i, j) ∈ I . Indeed, let Si,j ⊂ D denote the Euclidean sphere in Rn of radius 1/κ0 tangent
to FrD at pi,j . Basic trigonometry and (4.2) imply that T (pi,j ) contains the intrinsic
geodesic ball in Si,j with center pi,j and radius L/m. Then the assertion follows from
Rauch’s theorem and the definition of κ0 (see (2.2)).

Let us show that T satisfies item (ii). Let γ ⊂ T be as in (ii) and denote by p0 ∈ FrD
and q0 ∈ FrD′ the endpoints of γ . Without loss of generality, assume that γ ⊂ T ∩ D′.
Let C be the cone in Rn given by

C :=
⋃
x∈3

[x, q0], where 3 := {x ∈ FrD : q0 ∈ x + Tx FrD}.

Denote by � the compact region in Rn \D bounded by FrD and C (see Figure 4.2).

Fig. 4.2. Proof of Lemma 4.2.

Assume first that p0 ∈ FrD \ Fr�. In this case there exists x0 ∈ 3 such that
`(γ ) ≥ `([x0, q0]). Since D and D′ are strictly convex, the definition of κ0 and Pythago-
ras’ theorem give

`([x0, q0]) ≥

√
d2

0 + 2d0/κ0 > d(D,FrD′),

and we are done; the latter inequality follows from a straightforward computation.
Assume now that p0 ∈ FrD ∩ Fr�. Let B1 ⊂ D be the Euclidean open ball in Rn of

radius 1/κ0 tangent to FrD at p0. Let B2 be the Euclidean open ball in Rn with the same
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center as B1 and such that q0 ∈ FrB2. Denote

3̂ := {x ∈ FrB1 : q0 ∈ x + Tx FrB1}, Ĉ :=
⋃
x∈3̂

[x, q0], T̂ := T ∪ Ĉ. (4.5)

Denote by �̂ the compact region in Rn \ B1 bounded by FrB1 and Ĉ, and notice that
�̂ ⊂ D′ (see Figure 4.2). Since [p0, q0] ∩ D = {p0} and p0 ∈ B1 ⊂ D, we have
[p0, q0] ∩ B1 = {p0} as well, and so p0 ∈ FrD ∩ Fr �̂.

If γ ∩ (Rn \ �̂) 6= ∅, let p1 be the first point of γ in Ĉ and let γ0 ⊂ γ ∩ �̂ be the
subarc of γ with endpoints p0 and p1. Observe that the arc γ̂0 := γ0 ∪ [p1, q0] ⊂ T̂ ∩ �̂
connects p0 and q0 and satisfies `(γ̂0) ≤ `(γ ). Therefore, to finish the proof it suffices to
show that `(γ̂ ) > d(D,FrD′) − ε for any compact arc γ̂ ⊂ T̂ ∩ �̂ with endpoints p0
and q0. Let γ̂ be such an arc.

Up to a rigid motion, assume that B1 and B2 are centered at E0 ∈ Rn and q0 =

(E0, r2) ∈ Rn−1
× R, where r2 is the radius of B2. Since the radius of B1 equals 1/κ0,

p0 ∈ FrB1 ∩ FrD, and q0 ∈ FrB2 ∩ FrD′, it follows that

r2 ≥ d0 + 1/κ0. (4.6)

In this setting, the set 3̂ in (4.5) is

3̂ =

{(
Ex,

1
r2κ

2
0

)
∈ Rn−1

× R : ‖Ex‖ =

√
r2

2κ
2
0 − 1

r2κ
2
0

}
. (4.7)

Since the endpoint q0 of γ̂ is the vertex of the cone Ĉ (see (4.5)), there exist a ∈ N
satisfying

a − 1 ≤ ]I = mµ, (4.8)

a compact polygonal arc β =
⋃a
i=1 Li ⊂ T̂ ∩ �̂ with endpoints p0 and q0, and an

injective map {1, . . . , a − 1} 3 i 7→ σi ∈ I , such that:
• Li = [(Exi, yi), (Exi+1, yi+1)] ⊂ Rn−1

× R, i = 1, . . . , a.
• (Ex1, y1) = p0 and (Exa+1, ya+1) = q0 = (E0, r2) in Rn−1

× R.
• Li ⊂ Tσi for all i = 1, . . . , a − 1.
• La ⊂ Ĉ (possibly La = {q0}).
• `(β) ≤ `(γ̂ ).
To finish it suffices to show that `(β) > d(D,FrD)− ε.

Since T is a tangent net of radius εm for D and the slope of any segment in T 1
∩ �̂ is

at most the one of the cone Ĉ (that is, the slope of the segment [q1, q0] over Rn−1
×{0} for

any q1 = (Exq1 , yq1) ∈ 3̂, which equals (r2 − yq1)/‖Exq1‖ =

√
r2

2κ
2
0 − 1), basic trigonom-

etry gives

hi := |yi+1 − yi | ≤ ‖Exi+1 − Exi‖

√
r2

2κ
2
0 − 1+ 2r2κ0εm ∀i ∈ {1, . . . , a}. (4.9)

Since (Ex1, y1) = p0 ∈ FrB1 = Sn−1(1/κ0), we have y1 ≤ 1/κ0; and since ya+1 = r2,
we see that

a∑
i=1

hi ≥ r2 − 1/κ0. (4.10)
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From (4.9), we obtain

`(β) =

a∑
i=1

`(Li) =

a∑
i=1

√
‖Exi+1 − Exi‖2 + h

2
i ≥ F −G, (4.11)

where

F =
r2κ0√
r2

2κ
2
0 − 1

a∑
i=1

hi,

G =
r2κ0√
r2

2κ
2
0 − 1

a∑
i=1

(
hi −

1
r2κ0

√
(hi − 2εmr2κ0)2 + (r

2
2κ

2
0 − 1)h2

i

)
.

On the one hand, since the function

f : ]1/κ0,∞[ → ]0,∞[, f (t) =
t2κ0 − t√
t2κ2

0 − 1
,

is increasing, we infer from (4.10) and (4.6) that

F ≥
r2

2κ0 − r2√
r2

2κ
2
0 − 1

= f (r2) ≥ f (d0 + 1/κ0) = d(D,FrD′). (4.12)

On the other hand,

G =
r2κ0√
r2

2κ
2
0 − 1

a∑
i=1

−4ε2
m +

4εm
r2κ0

hi

hi +
1
r2κ0

√
(hi − 2εmr2κ0)2 + (r

2
2κ

2
0 − 1)h2

i

<
4εm√
r2

2κ
2
0 − 1

a∑
i=1

hi

hi +
1
r2κ0

√
(hi − 2εmr2κ0)2 + (r

2
2κ

2
0 − 1)h2

i

≤
4εma√
r2

2κ
2
0 − 1

.

Therefore, taking into account (4.6), (4.8), and (4.3), we get

G <
4(mµ+ 1)εm√
(d0κ0 + 1)2 − 1

< ε.

This inequality, (4.11), and (4.12) prove the lemma. ut

4.2. Deforming curves along tangent nets

The following approximation result is the second key to the proof of Lemma 3.2 (see Def.
4.1 for notation).
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Lemma 4.3. Let D and D′ be bounded regular strictly convex domains in C2 with
D b D′. Let ε ∈ ]0,min{dist(D,FrD′), 1/κ(D)}[ and let T be a tangent net of ra-
dius ε for D. Let δ ∈ ]0, ε[, let N be an open connected Riemann surface equipped with
a nowhere-vanishing holomorphic 1-form ϑN , let R b N be a bordered domain, and let
X : R→ C2 be a holomorphic immersion such that

X(bR) ⊂ T ∩Dδ (hence X(R) ⊂ Dδ). (4.13)

Then there exist a bordered domain S b N and a holomorphic immersion Y : S → C2

enjoying the following properties:

(a) R b S and R and S are homeomorphically isotopic (i.e., S \R consists of a finite
collection of pairwise disjoint compact annuli).

(b) ‖Y −X‖1,R;ϑN < δ (see (2.1)).

(c) Y (S \R) ⊂ D′ \D−ε.
(d) Y (bS) ⊂ FrD′, hence Y (S) ⊂ D′.
(e) Y (S) ⊂ Dδ ∪ T .

Before going into the proof of Lemma 4.3, a few words about its geometrical implica-
tions. Roughly speaking, the lemma ensures that an immersed compact complex curve
X(R) ⊂ C2 with boundary X(bR) lying close to the frontier of a regular strictly convex
domain D b C2 can be approximated by another one Y (S) ⊂ C2 with boundary Y (bS)
in the frontier of a larger convex domain D′. The main point is that this can be done in
such a way that the piece of Y (S) outside D lies in a given tangent net T for D containing
X(bR) (see Lemma 4.3(e)).

Notice that the intrinsic Euclidean diameter of the complex curve Y : S → C2 exceeds
in dist(D,FrD′) the one of X : R → C2. Combining this lemma with a suitable choice
of T according to Lemma 4.2, one can also guarantee that the image diameter of the curve
exceeds in d(D,FrD′) the one of the initial curve X (see Defs. 2.4 and 1.3). This will be
the key to obtaining image completeness while preserving boundedness in the proof of
Theorem 1.4 (Sec. 5). The main novelty of Lemma 4.3 with respect to previous related
constructions (cf. [26, 6, 4] and references therein) is to estimate the image diameter of
the curve instead of the intrinsic one.

From the technical point of view, the proof of the lemma relies on approximating
X(R) by another immersed curve 6 ⊂ C2 with boundary b6 in C2

\ D′ such that
6 ⊂ Dδ ∪ T . Lemma 4.3 will then follow up to trimming off the curve 6 in order to
ensure item (d). The construction of 6 depends on the classical Runge and Mergelyan
approximation theorems, and consists of three main steps that we now roughly describe.

First, we split bR into a finite collection of pairwise disjoint Jordan arcs αi,j so that
X(αi,j ) lies in a slab T (pi,j ) of T with pi,j ∈ T 0 (see items (i)–(iv) below).

In the second step (properties (v)–(vii) below), we attach to X(R) a family of Jordan
arcs λi,j ⊂ C2 with initial point at an endpoint of X(αi,j ) ⊂ X(bR) and final point in
C2
\D′. Each λi,j is chosen to be close to a segment inside T (pi,j ). We then approximate

X(R) ∪
⋃
i,j λi,j by a new curve F(M), R b M b N (see properties (viii)–(xiii)
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below). The bordered domain M is chosen so that the final point of ri,j = F−1(λi,j ) lies
in bM.

In the final step, we first split the boundary bM into finitely many arcs βi,j in ac-
cordance with the αi,j ’s and the ri,j ’s (properties (xiv)–(xvi) below). The arcs ri,j ’s split
M \ R into a finite collection of topological discs Ai,j , where αi,j ∪ βi,j ⊂ FrAi,j .
Then, we stretch F(Ai,j ) outside of D′ along the slab T (pi,j ) in a complex direction or-
thogonal to λi,j , hence preserving what was already done in the second step. This gives
a curve 6 as announced above (6 corresponds to Yn(M) for n = IJ, see properties
(1n)–(6n) below).

Proof of Lemma 4.3. Recall that L·, ·M denotes the bilinear Hermitian product of C2 and
νD : FrD → S3 the outward pointing unit normal to FrD. Denote by J : C2

→ C2,
J (ζ, ξ) = (ıζ, ıξ), the canonical complex structure of C2.

We begin with the following reduction. Since νD : FrD → S3 is a diffeomorphism,
we can assume without loss of generality that

LνD(p1)M⊥ ∩ LνD(p2)M⊥ = {0} ∀{p1, p2} ⊂ T 0, p1 6= p2. (4.14)

Indeed, just replace T by another tangent net T̂ for D satisfying X(bR) ⊂ T̂ , T̂ ∩D′ ⊂
T ∩D′, and (4.14). To do so, choose T̂ with 0-skeleton and radius (< ε) close enough to
the ones of T and use the fact that condition (4.14) determines an open and dense subset
in the space of tangent nets for D.

Since LνD(p)M⊥ = Tp FrD ∩J (Tp FrD) for all p ∈ FrD, condition (4.14) implies
that (Tp1 FrD∩Tp2 FrD)\(LνD(p1)M⊥∪LνD(p2)M⊥) 6= ∅ for any couple {p1, p2} ⊂ T 0,
p1 6= p2. For every such couple, fix

v{p1,p2} ∈
(
(Tp1 FrD ∩ Tp2 FrD) \ (LνD(p1)M⊥ ∪ LνD(p2)M⊥)

)
∩ S3. (4.15)

The first step of the proof consists in suitably splitting the boundary curves of R.
Denote by α1, . . . , αI, I ∈ N, the connected components of bR, which are smooth Jordan
curves in N . From (4.13), there exist a natural number J ≥ 3, a family {αi,j ⊂ αi :

(i, j) ∈ H := {1, . . . , I} × ZJ} of Jordan subarcs (here ZJ = {0, 1, . . . , J − 1} denotes
the additive cyclic group of integers modulo J), and points {pi,j : (i, j) ∈ H} ⊂ T 0,
meeting the following requirements:

(i)
⋃J
j=1 αi,j = αi for all i ∈ {1, . . . , I}.

(ii) αi,j ∩ αi,k = ∅ for all (i, j) ∈ H and k ∈ ZJ \ {j − 1, j, j + 1}.
(iii) αi,j and αi,j+1 have a common endpoint Qi,j and are otherwise disjoint for all

(i, j) ∈ H.
(iv) X(αi,j ) ⊂ T (pi,j ) ∩ Dδ for all (i, j) ∈ H, where T (pi,j ) is the slab of T based at

pi,j ∈ T 0 (see Def. 4.1).

To find such a partition, choose the arcs αi,j so that X(αi,j ) ⊂ C2 has sufficiently small
diameter for all (i, j) ∈ H. Take into account (4.13) in order to ensure (iv). Notice that
the map H 3 (i, j) 7→ pi,j ∈ T 0 is not necessarily either injective or surjective.

In the second step we attach toX(R) a suitable family of Jordan arcs. In the Riemann
surface N , take for every (i, j) ∈ H an analytic Jordan arc ri,j ⊂ N \ R attached



1692 Antonio Alarcón, Francisco J. López

transversally to bR at Qi,j and otherwise disjoint from R. In addition, choose those arcs
to be pairwise disjoint. Denote by Pi,j the other endpoint of ri,j , (i, j) ∈ H.

For every (i, j) ∈ H, there exists a smooth regular embedded arc λi,j in C2 enjoying
the following properties:

(v) λi,j ⊂ T (pi,j )∩T (pi,j+1). In particular, λi,j+Tpi,k FrD :=
⋃
q∈λi,j

(q+Tpi,k FrD)
⊂ T (pi,k) ⊂ T for k = j, j + 1.

(vi) λi,j is attached transversally to X(bR) at X(Qi,j ) and matches smoothly with
X(R) at X(Qi,j ).

(vii) |〈oi,j − X(Qi,j ),J (νD(pi,k))〉| > 1 + diam(D′) for k = j, j + 1, where oi,j is
the endpoint of λi,j , oi,j 6= X(Qi,j ) (recall that 〈·, ·〉 denotes the Euclidean inner
product).

Indeed, the arc λi,j can be obtained as a slight deformation of the segment

[X(Qi,j ), X(Qi,j )+ ci,jv{pi,j ,pi,j+1}] ⊂ C2,

where v{pi,j ,pi,j+1} is given by (4.15) and ci,j > 0 is a large enough constant so that
the above segment formally meets (vii) (notice that 〈v{pi,j ,pi,j+1},J (νD(pi,k))〉 6= 0,
k = j, j + 1; see (4.15)). For item (v), take into account (iii), (iv), and (4.15). Further,
(vi) trivially follows up to a slight deformation of the segment.

ExtendX, with the same name, to a smooth function R∪
⋃
(i,j)∈H ri,j → C2 mapping

the arc ri,j diffeomorphically onto λi,j for all (i, j) ∈ H. In this setting, Mergelyan’s the-
orem furnishes a bordered domain M b N and a holomorphic immersion Y0 :M→ C2,
as close as desired to X in the C1 topology on R ∪

⋃
(i,j)∈H ri,j , such that:

(viii) R b M and M \R consists of I pairwise disjoint compact annuli A1, . . . ,AI.
(ix) αi ⊂ FrAi , ri,j ⊂ Ai , and ri,j ∩ FrAi = {Qi,j , Pi,j } for all (i, j) ∈ H.
(x) ‖Y0 −X‖1,R;ϑN < δ/(1+ IJ), where δ > 0 is as in the statement of the lemma.

(xi) Y0(ri,j ) ⊂ T (pi,j ) ∩ T (pi,j+1) for all (i, j) ∈ H (see (v)).
(xii) Y0(αi,j ) ⊂ T (pi,j ) ∩Dδ for all (i, j) ∈ H (take into account (iv)).

(xiii) |〈Y0(Pi,j ) − Y0(Qi,j ),J (νD(pi,k))〉| > 1 + diam(D′) for all (i, j) ∈ H and k ∈
{j, j + 1} (see (vii)).

Write βi = (FrAi) \ αi for the connected component of FrAi disjoint from αi ,
i = 1, . . . , I. For every (i, j) ∈ H denote by Ai,j the connected component of
Ai \ (αi ∪

⋃
j∈ZJ

ri,j ) containing αi,j in its frontier. Observe that Ai,j is a closed disc
in Ai bounded by ri,j−1, αi,j , ri,j , and a subarc βi,j of βi connecting the points Pi,j−1
and Pi,j (see Fig. 4.3).

In the final step of the construction, we stretch F(Ai,j ) outside of D′ along the slab
T (pi,j ). For every (i, j) ∈ H, choose a closed discKi,j ⊂ Ai,j with FrKi,j close enough
to FrAi,j so that:

(xiv) Ki,j ∩ βi,j is a Jordan arc containing neither Pi,j−1 nor Pi,j .
(xv) Y0(Ai,j \Ki,j ) ⊂ T (pi,j ) (use (xi), (xii), and a continuity argument).
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Fig. 4.3. Ai .

(xvi) πi,j (Y0(βi,j \Ki,j )) ∩ πi,j (D′) = ∅, where

πi,j : C2
→ spanR(J (νD(pi,j )))

denotes the orthogonal projection (use {Y0(Qi,j−1), Y0(Qi,j )} ⊂ D′ (see (xii)),
property (xiii), and a continuity argument again; see Fig. 4.3).

Let σ : {1, . . . , IJ} → H be a bijective map. To finish, we construct in a recursive pro-
cess a sequence of holomorphic immersions Yn :M→ C2, n ∈ {0, 1, . . . , IJ}, enjoying
the following properties:
(1n) ‖Yn − Yn−1‖1,M\Aσ(n);ϑN

< δ/(1+ IJ).
(2n) LYn − Yn−1, νD(pσ(n))M = 0.
(3n) Yn(Aσ(a) \Kσ(a)) ⊂ Tσ(a) for all a ∈ {1, . . . , IJ}.
(4n) πσ(a)(Yn(βσ(a) \Kσ(a))) ∩ πσ(a)(D′) = ∅ for all a ∈ {1, . . . , IJ}.
(5n) Yn(Kσ(a)) ∩D′ = ∅ for all a ∈ {1, . . . , n}.
(6n) Yn(R) ⊂ Dδ .
The basis of the induction corresponds to the already given immersion Y0. Indeed, notice
that (60) is implied by (xii) and the Convex Hull Property; (30) and (40) agree with (xv)
and (xvi); and (10), (20), and (50) are empty conditions.

For the inductive step, assume that we have constructed Ym :M → C2 for all m ∈
{0, . . . , n − 1} meeting the above requirements for some n ∈ {1, . . . , IJ}. Let us find an
immersion Yn satisfying (1n), . . . , (6n).

For simplicity, write wn := νD(pσ(n)), and fix un ∈ LwnM⊥ ∩ S3
⊂ Tpσ(n) FrD. Since

{un, wn} is a L·, ·M-orthonormal basis of C2, we have

Yn−1 = LYn−1, unMun + LYn−1, wnMwn. (4.16)

Recall that M \ Aσ(n) ∩ Kσ(n) = ∅, and consider the holomorphic function
φ :M \ Aσ(n) ∪Kσ(n)→ C given by

φ|M\Aσ(n)
= LYn−1, unM|M\Aσ(n)

and φ|Kσ(n) = ζn, (4.17)

where ζn ∈ C is a constant with modulus large enough that

(ζnun + spanC(wn)) ∩D′ = ∅. (4.18)
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Such a constant exists since D′ is compact. Since M \ Aσ(n) ∪ Kσ(n) is a Runge subset
of a domain in N containing M, Runge’s theorem furnishes a holomorphic function
ϕ :M→ C as close to φ as desired in the C1 topology on M \ Aσ(n) ∪Kσ(n).

Claim 4.4. If ϕ is chosen close enough to φ in the C1 topology on M \ Aσ(n) ∪ Kσ(n),
then the function Yn :M→ C2 given by

Yn := ϕun + LYn−1, wnMwn (4.19)

satisfies properties (1n), . . . , (6n).

Indeed, first of all observe that, up to slightly modifying ϕ, Yn can be assumed to be an
immersion by a general position argument. Since ϕ ≈ φ = LYn−1, unM on M \ Aσ(n), we
have Yn ≈ Yn−1 on M \ Aσ(n), and (1n) and (6n) hold (take into account (4.17), (4.19),
(4.16), and (6n−1)). Property (2n) directly follows from (4.19), (4.16), and the definition
of un and wn.

To check (3n) we distinguish two cases. If a 6= n, then Yn ≈ Yn−1 on M \ Aσ(n) ⊃
Aσ(a) \Kσ(a); hence (3n−1) implies that Yn(Aσ(a) \Kσ(a)) ⊂ Tσ(a). If a = n then the
inclusion Yn(Aσ(n) \Kσ(n)) ⊂ Tσ(n) is ensured by (2n), (3n−1), and the fact that Tσ(n) is
foliated by affine hyperplanes 〈·, ·〉-orthogonal to νD(pσ(n)).

For (4n) we distinguish two cases again. If a 6= n, then (4n−1) and the fact that
Yn ≈ Yn−1 on M \ Aσ(n) ⊃ βσ(a) \Kσ(a) give πσ(a)(Yn(βσ(a) \Kσ(a)))∩πσ(a)(D′) = ∅
as well. If a = n then the assertion follows from (2n), (4n−1), and the definition of πσ(n).

Finally, property (5n) for a < n is guaranteed by (5n−1) and the fact that Yn ≈ Yn−1
on Kσ(a); whereas for a = n it is ensured by (4.18) and ϕ ≈ φ on Kσ(n).

This proves the claim, closes the induction, and concludes the construction of the
immersions Yn :M→ C2, n ∈ {1, . . . , IJ}.

Let S denote the connected component of Y−1
IJ (D′) ⊂ M b N containing R (see

(6IJ)). Up to a slight deformation of YIJ, assume that S b N is a bordered domain.
Define Y := YIJ|S : S → C2 and let us check that Y meets all the requirements in the
statement of the lemma.

Indeed, properties (x) and (1n), n ∈ {1, . . . , IJ}, give

‖YIJ −X‖1,R;ϑN < δ, (4.20)

proving Lemma 4.3(b).
Properties (4IJ) and (5IJ) imply that YIJ(bM) ∩ D′ = ∅; observe that bM =⋃IJ

a=1 βσ(a). This property and the definition of S ensure item (d) in the lemma.
From (6IJ) it follows that

Y (R) ⊂ Dδ b D′, (4.21)

hence R b S and Lemma 4.3(a) holds by the maximum principle. Furthermore, (4.21)
and (5IJ) show that bS ⊂M\(R∪

⋃IJ
a=1Kσ(a)) =

⋃IJ
a=1 Aσ(a) \Kσ(a), and so S \R ⊂⋃IJ

a=1 Aσ(a) \Kσ(a) as well. Then (3IJ) gives

Y (S \R) ⊂ T ∩D′ ⊂ D′ \D−ε (4.22)

(for the latter inclusion, take into account that T has radius ε), proving Lemma 4.3(c).
Finally, (4.21) and (4.22) guarantee item (e). ut
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4.3. The desingularization lemma

In this subsection we prove the following desingularization for complex curves in C2; it
is the third key to the proof of Lemma 3.2.

Lemma 4.5. Let D ⊂ C2 be a strictly convex bounded regular domain. Let N be an open
Riemann surface, let ϑN be a nowhere-vanishing holomorphic 1-form on N , and let R
and M be bordered domains in N with R b M. Let X : N → C2 be a holomorphic
immersion satisfying

(I) X(bM) ⊂ FrD (hence X(R) ⊂ D) and
(II) there are no double points of X(M) in X(R); in particular, X|R is an embedding.

Then for any ε > 0 there exist an open Riemann surface W, a bordered domain S b W,

and a holomorphic embedding F : W → C2 such that:

(A) R ⊂ S.
(B) ‖F −X‖1,R;ϑN < ε and the Hausdorff distance dH(X(M \R), F (S \R)) < ε. In

particular, dH(X(M), F (S)) < ε.
(C) F(bS) ⊂ FrD.

The proof of the lemma consists in replacing every normal crossing in X(M) by an
embedded annulus. It is important to point out that although this surgery increases the
topology, the arising embedded complex curve F(S) contains a biholomorphic copy of R,
which is C1 close to X(R).

Roughly speaking, we take a holomorphic defining function P0 : D → C of X(M)

so that X(M) ≡ {(ζ, ξ) ∈ D : P0(ζ, ξ) = 0}. Then we take a nearby smooth level set
Cλ := {(ζ, ξ) ∈ D : P0(ζ, ξ) = λ}, with λ close to 0. If λ is close enough to 0, Cλ
is an embedded complex curve containing a biholomorphic copy of R, and the surface
F(S) := Cλ is as desired.

Proof of Lemma 4.5. Let M′ b N be a bordered domain such that M b M′,

X(bM′) ∩D = ∅, and there are no double points of X(M′) in X(R) (4.23)

(take into account properties (I) and (II)).
Let F0 :M′→ C2 be a slight deformation of X :M′→ C2 such that:

(i) F0 :M′→ C2 is a holomorphic immersion.
(ii) F0(R) ⊂ D, F0(bM′) ∩ D = ∅ (see (4.23)), and F0(M′) and FrD meet transver-

sally.
(iii) F0 is as close to X as desired in the C1 topology on M′; in particular

• ‖F0 −X‖1,R;ϑN < ε/2,

• there are no double points of F0(M′) in F0(R) (in particular, F0|R : R→ C2 is
an embedding), and
• dH(X(M \R), F0(S0 \R)) < ε/2, where S0 b M′ is the connected component

of F−1
0 (D) containing R.
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(iv) All the double points of F0(S0) are normal crossings and lie in D (take into account
Remark 2.1).

Denote by A := {{P, P ∗} ⊂ S0 : P 6= P ∗ and F0(P ) = F0(P
∗)} the (finite) double

points set of F0|S0
, and write F0(A) := {F0(P ) : {P, P

∗
} ∈ A} ⊂ C2. Notice from (ii)

and (iii) that

F0(S0) and FrD meet transversally and F0(A) ∩ (F0(R) ∪ FrD) = ∅. (4.24)

Without loss of generality, S0 can be assumed to be homeomorphic to M, but not biholo-
morphic.

The domain D is a Stein manifold whose second cohomology group H2(D,Z) van-
ishes. This implies that any divisor in D is principal (see for instance [27, p. 98]), hence
there exists a holomorphic function P0 : D→ C such that

F0(S0) = {(ζ, ξ) ∈ D : P0(ζ, ξ) = 0}.

From (iv) and the fact that F0 is an immersion, it is not hard to check that q ∈ F0(A0) if
and only if

∂P0

∂ζ
(q) =

∂P0

∂ξ
(q) =P0(q) = 0 and H(P0)q 6= 0, (4.25)

where H(P0)q denotes the Hessian of P0 at q.
The next step of the proof consists in removing from F0(S0) all the normal crossings.

To do so, we deform this curve in an appropriate way. For each λ ∈ C \ {0} consider the
holomorphic function

Pλ : D→ C, Pλ(ζ, ξ) :=P0(ζ, ξ)− λ,

and set
Sλ := {(ζ, ξ) ∈ D : Pλ(ζ, ξ) = 0}.

Obviously,
lim
λ→0

Pλ =P0 uniformly on C2. (4.26)

Claim 4.6. If |λ| > 0 is small enough, then there exists an open embedded complex
curve Cλ in C2 such that Cλ and FrD meet transversally and Cλ ∩D = Sλ.

Proof. To prove the claim, it suffices to check that 0 is a regular value for Pλ|D.
Consider the holomorphic function f : D × C→ C3 given by

f (p, λ) =

(
∂P0

∂ζ
,
∂P0

∂ξ
,Pλ

)
(p).

Obviously, 0 is a regular value for Pλ|D if and only if f−1(0, 0, 0) ⊂ S0 (take into
account that Sλ ∩ F0(S0) = ∅ for λ 6= 0). Since any double point p of Sλ satisfies
∂P0
∂ζ
(p) =

∂P0
∂ξ
(p) = 0, conditions (4.24)–(4.26) imply that the double points set of Sλ
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converges, as λ goes to 0, to F0(A). On the other hand, the Jacobian of f satisfies

Jacf(q,0) = −H(P0)q 6= 0 for any q ∈ F0(A)

(see (iv) and (4.25)). Therefore, f is a local biholomorphism around all points (q, 0),
q ∈ F0(A), and we are done.

The claim follows from (4.24), (4.26), and the fact that Sλ is a submanifold of D. ut

As a consequence of Claim 4.6, the embedded complex curve Sλ is a (connected) bor-
dered domain in Cλ with bSλ ⊂ FrD.

On the other hand,

lim
λ→0

dH(Sλ ∩K, F0(S0) ∩K) = 0 for any compact K ⊂ D. (4.27)

It is interesting to notice that the convergence of Sλ to F0(S0) as λ → 0 is nice outside
the double points set F0(A), as the following claim shows:

Claim 4.7. Let � b S0 be a bordered domain such that F0(�) ∩ F0(A) = ∅ (in partic-
ular, F0|� : � → C2 is an embedding). Then, if |λ| > 0 is small enough, there exist a
bordered domain �λ b Sλ and a biholomorphism σλ : �→ �λ such that

lim
λ→0
‖σλ − F0‖1,�;ϑN = 0.

Proof. Write F0 = (z0, w0) and choose any holomorphic G := (f1, f2) : �→ C2 such
that

f2dz0 − f1dw0 vanishes nowhere on �; (4.28)

existence of such a G follows from the fact that F0 is an immersion on � and from
Riemann–Roch’s theorem. For any δ > 0, set Dδ = {t ∈ C : |t | < δ} and consider the
holomorphic function

8 : �× D1 → C2, 8(P, t) = F0(P )+ tG(P ).

Notice that 8 is a local biholomorphism around (P, 0), P ∈ � (see (4.28)). Denote
Vδ = 8(�× Dδ), δ ∈ ]0, 1[, and choose δ small enough that V δ ⊂ D, Vδ ∩ F0(A) = ∅,
and

9 : �× Dδ → Vδ, 9(P, t) = 8(P, t),

is a biholomorphism; take into account that F0|� : �→ C2 is an embedding and F0(�)∩

F0(A) = ∅. Write π : �× D1 → � for the natural holomorphic projection.
If δ is small enough, then 0 is a regular value for Pλ|Vδ for any λ (take into account

(4.25) and the fact that F0(�) ∩ F0(A) = ∅). Therefore, 0 := {Sλ ∩ Vδ : λ ∈ C} is a
regular holomorphic foliation of Vδ transverse to the field G ◦ π ◦ 9−1 (see (4.28)), and
so π is one-to-one on sheets of 0. To finish, it suffices to set �λ := Vδ ∩ Sλ and observe
that for |λ| > 0 small enough:

• �λ b Sλ and ρλ := (π ◦9−1)|�λ : �λ→ � is a biholomorphism, and
• limλ→0 ‖σλ − F0‖1,�;ϑN = 0, where σλ := ρ−1

λ

(see (4.26)). ut
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In view of Claim 4.6, to finish it suffices to find a bordered domain Rλ b Sλ b Cλ
biholomorphic to R such that Rλ converges to F0(R) as λ→ 0 (see (4.29) below).

Indeed, Claim 4.7 applies to R, furnishing a bordered domain Rλ b Sλ and a bi-
holomorphism σλ : R → Rλ for |λ| > 0 small enough. Furthermore, if λ0 ∈ C \ {0} is
sufficiently close to 0, the following conditions are satisfied:

• σλ0 : R→ Rλ0 is a biholomorphism.
• ‖σλ0 − F0‖1,R;ϑN < ε/2.
• dH(F0(S0 \R),Sλ0 \Rλ0) < ε/2.

For the last item, take into account that F0(A) ∩ F0(R) = ∅ (see (4.24)), (4.27), and

lim
λ→0
‖σλ − F0‖1,R;ϑN = 0. (4.29)

Set S := Sλ0 and W = Cλ0 . Up to identifying R with Rλ0 via σλ0 (hence R ⊂ S)
and taking into account (iii) and Claim 4.6, the open Riemann surface W, the bordered
domain S b W, and the holomorphic embedding F := Id : W → W ↪→ C2 satisfy all
the requirements of the lemma. ut

4.4. Proof of Lemma 3.2

By (3.2), X(U) and FrD meet transversally (see Remark 2.2). Thus, we can find a small
ρ ∈ ]0, ε/2[ and a bordered domain V b N such that Dρ b D′, U b V , X extends as a
holomorphic embedding X : V → C2, X(bV) ⊂ FrDρ , X(V \ U) ⊂ Dρ \D, and

|d(Dρ,FrD′)− d(D,FrD′)| < ε/2. (4.30)

Take ε0 ∈ ]0, ρ/2[, and notice that

X(U) ⊂ D ⊂ Dρ−ε0 (4.31)

(see (3.2) and use the maximum principle). Since X(bV) ⊂ FrDρ , Lemma 4.2 furnishes
a tangent net T of radius µ ∈ ]0,min{ε0, dist(Dρ,FrD′), 1/κ(Dρ)}[ for Dρ such that:

(A1) X(bV) ⊂ T , and
(A2) `(α) > d(Dρ,FrD′)− µ for any Jordan arc α in T connecting FrDρ and FrD′.

Take ς ∈ ]0, µ[ small enough that Dρ+ς b D′ and

(B1) `(α) > d(Dρ,FrD′)− µ for any Jordan arc α in T connecting FrDρ+ς and FrD′
(see (A2)), and

(B2) any holomorphic map G : V → C2 with ‖G−X‖1,V;ϑN < ς satisfies

(B2.1) G is an embedding in V (recall that X : V → C2 is an embedding and use
the Cauchy estimates),

(B2.2) G(U) ⊂ Dρ−ε0 , and G(V \ U) ∩ D−ε = ∅ (see (4.31) and use the fact
X(V \ U) ⊂ Dρ \D is disjoint from D−ε).
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From (A1) and (3.2), Lemma 4.3 applies to the data

(D,D′, ε, T , δ,N , ϑN ,R, X) = (Dρ,D′, µ, T , ς,N , ϑN ,V, X),

providing a bordered domain W b N and a holomorphic immersion Y : W → C2 such
that:

(C1) V b W and V and W are homeomorphically isotopic.
(C2) ‖Y −X‖1,V;ϑN < ς ; in particular, Y |V is an embedding (see (B2)).

(C3) Y (W \ V) ⊂ D′ \Dρ−µ.
(C4) Y (bW) ⊂ FrD′.
(C5) Y (W) ⊂ Dρ+ς ∪ T .

Notice that

Y (U) ⊂ Dρ−ε0 and Y (V \ U) ∩D−ε = ∅ (4.32)

(take into account (C2) and (B2.2)). Since µ < ε0 < ρ, (C3) and the latter assertion in
(4.32) give

Y (W \ U) ∩D−ε = ∅. (4.33)

The fact that Y |V is an embedding (see (C2)), property (C3), the first assertion in (4.32),
and the fact µ < ε0 ensure that there are no double points of Y (W) in Y (U). From this
fact and (C4), Lemma 4.5 applies to the data

(D,N , ϑN ,R,M, X, ε) = (D′,N , ϑN ,U ,W, Y, η),

where η ∈ ]0, ε − ς [ will be specified later, furnishing an open Riemann surface N ′,
a bordered domain U ′, and a holomorphic embedding F : N ′→ C2 satisfying:

(D1) U b U ′.
(D2) ‖F − Y‖1,U;ϑN < η and dH(Y (W \ U), F (U ′ \ U)) < η.

(D3) F(bU ′) ⊂ FrD′.

Let us check that the embedding X′ := F |U ′ : U ′ → C2 is as desired. (D1) and (D3)
agree with Lemma 3.2(i) and (iii), respectively. Property (ii) follows from (C2) and (D2);
recall that η < ε − ς . Property (iv) is given by (4.33) and (D2) provided that η is chosen
small enough.

Finally, let us check (v). Let γ be a Jordan arc in U ′ connecting bU and bU ′. From
(C5), (D2), and the first assertion in (4.32), it follows that X′(U ′) ⊂ Dρ+ς ∪ T and
X′(U) ⊂ Dρ−ε0 b Dρ+ς , provided that η is small enough. Taking also (D3) into ac-
count, we deduce that γ contains a subarc γ ′ such that X′(γ ′) is contained in T and
connects FrDρ+ς and FrD′. By (B1), `(X′(γ )) ≥ `(X′(γ ′)) > d(Dρ,FrD′) − µ >

d(D,FrD′)−ε. For the last inequality, take into account thatµ < ε/2 and d(Dρ,FrD′) >
d(D,FrD′)− ε/2 (see (4.30)). This concludes the proof.
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5. Image complete complex curves in convex domains

In this section we make use of Lemmas 4.2 and 4.3 in order to prove Theorem 5.1 below.
Observe that Theorem 1.4 in the introduction is a particular instance of it.

Let N be an open Riemann surface. A domain U ⊂ N is said to be homeomorpically
isotopic to N if there exists a homeomorphism µ : U → N satisfying µ∗ = i∗, where
i : U ↪→ N is the inclusion map and µ∗, i∗ : H1(U,Z) → H1(N ,Z) are the induced
group morphisms. In this case, H1(U,Z) and H1(N ,Z) will be identified via µ∗.

Theorem 5.1. Let B be a (possibly neither bounded nor regular) convex domain in C2

and let D b B be a bounded regular strictly convex domain. Let N be an open Riemann
surface equipped with a nowhere-vanishing holomorphic 1-form ϑN , let M b N be a
Runge bordered domain, and let X :M→ C2 be a holomorphic immersion such that

X(bM) ⊂ FrD. (5.1)

Then, for any ε ∈ ]0,min{dist(D,FrB), 1/κ(D)}[ there exist a domain U ⊂ N and a
holomorphic immersion Y : U → C2 with the following properties:

(A) M b U and U is homeomorphically isotopic to N .
(B) ‖Y −X‖1,M;ϑN < ε (see (2.1)).
(C) Y (U) ⊂ B and Y : U → B is a proper map.
(D) Y (U \M) ⊂ B \D−ε .
(E) Y is image complete (see Def. 1.3).

Proof. Denote D0
:= D and let {Dn

}n∈N be a d-proper sequence of convex domains in
B with D0 b D1 (see Def. 2.6 and Lemma 2.7).

Set N0 :=M and let {Nn}n∈N be an exhaustion of N by bordered domains such that
Nn ⊂ N is Runge, Nn−1 b Nn and the Euler characteristic χ(Nn \ Nn−1) is in {−1, 0}
for all n ∈ N (cf. [7, Lemma 4.2]).

Write U0 := N0, X0 := X, and η0 := IdU0 : U0 → U0, let ε0 ∈ ]0, ε/2[, and let us
construct a sequence {ϒn = (Un, ηn, Xn, εn)}n∈N, where

• Un b N is a bordered domain and Un is Runge in N ,
• ηn : Un→ Nn is an isotopical homeomorphism,
• Xn : Un→ C2 is a holomorphic immersion, and
• εn > 0,

such that the following properties hold for all n ∈ N:

(1n) Un−1 b Un.
(2n) ηn|Un−1

= ηn−1.
(3n) εn is a positive real number such that

• εn < min{εn−1/2, 1/κ(Dn−1), dist(Dn−1,FrDn)} (< ε/2n+1) and
• any holomorphic function G : Un−1 → C2 with ‖G−Xn−1‖1,Un−1;ϑN

< 2εn is
an immersion.

(4n) ‖Xn −Xn−1‖1,Un−1;ϑN
< εn.
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(5n) Xn(Ua \ Ua−1) ⊂ Da+1
\Da−1
−εa

for all a ∈ {1, . . . , n}.

(6n) Xn(bUn) ⊂ FrDn; hence Xn(Un \ Un−1) ⊂ Dn \Dn−1
−εn

.
(7n) `(γ ) > d(Da−1,FrDa) − εa for any Jordan arc γ ⊂ Xn(Un) ⊂ C2 connecting

FrDa−1 and FrDa , for all a ∈ {1, . . . , n}.

The sequence will be constructed in a recursive way. For the basis of the induction take
ϒ0 = (U0, η0, X0, ε0). Notice that (60) agrees with (5.1), and the remaining proper-
ties (j0), j 6= 6, are empty.

For the inductive step, fix n ∈ N and assume that we have already constructed ϒm
satisfying the above properties for all m ∈ {0, . . . , n− 1}. Let us construct ϒn.

Choose any εn > 0 satisfying (3n) and

(i) `(γ ) > d(Dn−2,FrDn−1) − εn−1 for any Jordan arc γ in Xn−1(Un−1) connecting
FrDn−2 and FrDn−1

−εn
; take into account (7n−1). When n = 1, this condition is empty.

Such an εn exists since Xn−1 : Un−1 → C2 is an immersion.
We distinguish two cases.

• Assume that χ(Nn \ Nn−1) = 0. From (6n−1) and Lemma 4.2, there exists a tangent
net Tn of radius < εn for Dn−1 such that

(ii) Xn−1(bUn−1) b Tn and
(iii) `(γ ) > d(Dn−1,FrDn) − εn for any Jordan arc γ ⊂ Tn connecting FrDn−1 and

FrDn.

Let δn ∈ ]0, εn[ to be specified later, and small enough that

(iv) `(γ ) > d(Dn−1,FrDn) − εn for any Jordan arc γ ⊂ Tn connecting FrDn−1
δn

and
FrDn (see (iii)).

By properties (ii) and (6n−1), one can apply Lemma 4.3 to the data

D = Dn−1, D′ = Dn, ε = εn, T = Tn, δ = δn, R = Un−1, and X = Xn−1.

The bordered domain Un (which is Runge since Un−1 is) and the holomorphic immersion
Xn : Un → C2 furnished by Lemma 4.3 enjoy properties (1n) and (4n)–(7n). Indeed,
properties (1n), (4n), and (6n) follow straightforwardly.

Property (5n) for a = n is given by Lemma 4.3(c), whereas for a < n it is ensured by
(5n−1) and Lemma 4.3(b) provided that δn is small enough.

Property (7n) for a = n follows from Lemma 4.3(e) and (iv); for a = n − 1 it is
guaranteed by (i) and Lemma 4.3(b),(c) provided that δn is chosen small enough; and for
a < n− 1 by (7n−1) and Lemma 4.3(b) provided that δn is small enough.

Finally we choose any isotopical homeomorphism ηn : Un → Nn satisfying (2n);
such exists since χ(Nn \Nn−1) = 0 = χ(Un \ Un−1).

• Assume that χ(Nn \ Nn−1) = −1. Consider a smooth Jordan curve α̂ ∈ H1(Nn,Z) \
H1(Nn−1,Z) contained in Nn and intersecting Nn \ Nn−1 in a Jordan arc α with end-
points a, b in bNn−1 and otherwise disjoint from Nn−1. Notice that since Nn−1 and Nn
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are Runge subsets of N and χ(Nn \Nn−1)=−1, we have H1(Nn,Z)=H1(Nn−1∪α,Z)
and Nn−1 ∪ α ⊂ N is Runge as well.

Likewise, we choose a smooth Jordan arc γ ⊂ N \ Un−1 attached transversally to
bUn−1 at the points η−1

n−1(a) and η−1
n−1(b) and otherwise disjoint from Un−1. We take γ

such that there exists an isotopical homeomorphism τ : Un−1 ∪ γ → Nn−1 ∪ α such that
τ |Un−1

= ηn−1 and τ(γ ) = α.
In C2, choose a smooth regular Jordan arc λ ⊂ FrD attached transversally to

Xn−1(bUn−1) at the points Xn−1(η
−1
n−1(a)) and Xn−1(η

−1
n−1(b)) and otherwise disjoint

from Xn−1(Un−1).
From (6n−1) and the fact that λ ⊂ FrD, there exist a tangent net T̂n of radius < εn

for Dn−1 and a positive δ̂n < εn such that

(ii′) Xn−1(bUn−1) ∪ λ b T̂n and
(iv′) `(γ ) > d(Dn−1,FrDn) − εn for any Jordan arc γ ⊂ T̂n connecting FrDn−1

δ̂n
and FrDn.

Extend Xn−1, with the same name, to a smooth function Un−1 ∪ γ → C2 mapping γ
diffeomorphically to λ. In this setting, Mergelyan’s theorem furnishes a bordered domain
Vn−1 ⊂ N with Un−1 ∪ γ b Vn−1 b Un, χ(Un \ Vn−1) = 0, and a holomorphic immer-
sion X̂n−1 : V n−1 → C2, as close as desired toXn−1 in the C0 topology on Un−1∪γ and
in the C1 topology on Un−1, such that X̂n−1(bV n−1) ⊂ T̂n ∩ Dn−1

δ̂n
. We finish by using

Lemma 4.3 as in the previous case for small enough δ̂n.
This concludes the construction of the sequence {ϒn}n∈N.
Set U :=

⋃
n∈N Un. For Theorem 5.1(A), use (2n), n ∈ N, and the fact that {Nn}n∈N

is an exhaustion of N ; take into account that M = U0.
From (4n) and (3n), n ∈ N, the sequence {Xn}n∈N converges uniformly on compact

subsets of U to a holomorphic function Y : U → C2 satisfying item (B).
Let us check that Y meets all the requirements in the theorem.

• Y is an immersion. Indeed, for any k ∈ N, properties (3n) and (4n), n > k, give

‖Y −Xk‖1,U k;ϑN ≤
∑
n>k

‖Xn −Xn−1‖1,U k;ϑN <
∑
n>k

εn < 2εk+1 < εk; (5.2)

hence the latter assertion in (3n) implies that Y |U k is an immersion for all k ∈ N, and so
is Y .

• Y (U) ⊂ B and Y : U → B is proper. To see this, we proceed as in the proof of The-
orem 3.1. Up to taking limit as n→ ∞, the inclusion Y (U) ⊂ B follows from (6n) and
the Convex Hull Property. Likewise, properties (5n), n ∈ N, and the fact that {Dn−1

−εn
}n∈N

is an exhaustion of B by compact sets imply that

Y (U \ U k−1) ⊂ B \Dk−1
−εk

for all k ∈ N. (5.3)

This inclusion for k = 1 proves (D). The properness of Y : U → B follows from the fact
that {Dn−1

−εn
}n∈N is an exhaustion of B and (5.3). This yields (C).
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• Y is image complete. Indeed, let α be a locally rectifiable divergent arc in Y (U), and
let us check that `(α) = ∞. Since Y : U → B is proper, α is a divergent arc in B as well.
Let n0 ∈ N be large enough that the initial point of α lies in Dn0 . For every a ∈ N with
a > n0, let αa denote a compact subarc of α in Da \Da−1 connecting FrDa−1 and FrDa .
Since {Dn

}n∈N is d-proper in B (see Def. 2.6) and
∑
n∈N εn converges, it suffices to show

that `(αa) ≥ d(Da−1,FrDa)− εa for all a > n0.
Indeed, fix a > n0. Let n1 ∈ N, n1 ≥ a, be large enough that αa ⊂ Y (Un1); recall that

Y : U → B is proper. Let βa =
⋃k
j=1 βa,j ⊂ Un1 be a finite union of compact arcs with

Y (βa) = αa . Without loss of generality, we can suppose that the arcs {αa,j := Y (βa,j ) :
j = 1, . . . , k} are laid end to end and the endpoints of αa,j , j = 2, . . . , k− 1, are double
points of Y (Un1).

Since the double points of Y are isolated and stable under deformations and since
{‖Y − Xn‖1,Un1 ;ϑN

}n≥n1 → 0 (see (5.2)), for any sufficiently large n ≥ n1 we can find
compact arcs βna,j , j = 1, . . . , k, in Un1 such that

• αna := Xn(β
n
a ) is a Jordan arc in Da \ Da−1 connecting FrDa−1 and FrDa , where

βna =
⋃k
j=1 β

n
a,j , and

• {`(αna )}n>n1 → `(αa).

To see this, just observe that the double points of Xn|Un1
converge to the ones of Y |Un1

as
n→∞, and choose βna,j as a sufficiently slight deformation of βa,j inUn1 so that {αna,j =
Xn(β

n
a,j ) : j = 1, . . . , k} are laid end to end, the endpoints of αna,j , j = 2, . . . , k − 1, are

double points of Xn(U), and {`(Xn(βna,j ))− `(Xn(βa,j ))}n>n1 → 0.

By property (7n), `(αna ) > d(Da−1,FrDa)− εa for any large enough n ≥ n1. Letting
n→∞ yields `(αa) = `(Y (βa)) ≥ d(Da−1,FrDa)− εa as claimed.

This shows item (E) and concludes the proof of the theorem. ut

Added in proof. After this paper was written, Globevnik [18, 19], with a different method,
proved that every pseudoconvex domain in Cn, for any n ≥ 2, contains a complete closed
complex hypersurface; in particular, this answers in the optimal way the question just be-
low Corollary 1.2 as regards assertion (i). More recently, Alarcón, Globevnik, and López
[5], also with a new different method, constructed complete closed complex hypersurfaces
in the unit ball of Cn, for any n ≥ 2, with certain control on the topology; in particular,
they affirmatively answered Question 1.5 by giving examples with any finite topology.

Acknowledgments. A. Alarcón is supported by the Ramón y Cajal program of the Spanish Min-
istry of Economy and Competitiveness, he is also partially supported by MCYT-FEDER grants
MTM2007-61775 and MTM2011-22547, MINECO/FEDER grant no. MTM2014-52368-P, Junta
de Andalucı́a Grant P09-FQM-5088, and the grant PYR-2012-3 CEI BioTIC GENIL (CEB09-
0010) of the MICINN CEI Program, Spain.
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[14] Forstnerič, F., Wold, E. F.: Embeddings of infinitely connected planar domains into C2. Anal.
PDE 6, 499–514 (2013) Zbl 1277.32009 MR 3071396

[15] Globevnik, J.: Relative embeddings of discs into convex domains. Invent. Math. 98, 331–350
(1989) Zbl 0681.32019 MR 1016268

[16] Globevnik, J.: Interpolation by proper holomorphic embeddings of the disc into C2. Math.
Res. Lett. 9, 567–577 (2002) Zbl 1026.32030 MR 1928876

[17] Globevnik, J.: On growth of holomorphic embeddings into C2. Proc. Roy. Soc. Edinburgh
Sect. A 132, 879–889 (2002) Zbl 1041.32010 MR 1926920

[18] Globevnik, J.: A complete complex hypersurface in the ball of Cn. Ann. of Math. (2) 182,
1067–1091 (2015) Zbl 06514751 MR 3418534

[19] Globevnik, J.: Holomorphic functions unbounded on curves of finite length. Math. Ann. 364,
1343–1359 (2016) Zbl 06559841 MR 3466869

[20] Gunning, R. C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann. 174,
103–108 (1967) Zbl 0179.11402 MR 0223560

[21] Jones, P. W.: A complete bounded complex submanifold of C3. Proc. Amer. Math. Soc. 76,
305–306 (1979) Zbl 0418.32006 MR 0537094

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1230.53012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2831994
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1252.49064&format=complete
http://www.ams.org/mathscinet-getitem?mr=2984575
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.53060&format=complete
http://www.ams.org/mathscinet-getitem?mr=3044138
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=3118624
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1269.53061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3010135
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1277.32008&format=complete
http://www.ams.org/mathscinet-getitem?mr=3107678
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0733.32021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1095089
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.53012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2373154
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1247.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2975791
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1027.32018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1839476
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0859.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1839476
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1157.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2487902
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1277.32009&format=complete
http://www.ams.org/mathscinet-getitem?mr=3071396
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0681.32019&format=complete
http://www.ams.org/mathscinet-getitem?mr=1016268
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1026.32030&format=complete
http://www.ams.org/mathscinet-getitem?mr=1928876
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1041.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1926920
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06514751&format=complete
http://www.ams.org/mathscinet-getitem?mr=3418534
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06559841&format=complete
http://www.ams.org/mathscinet-getitem?mr=3466869
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0179.11402&format=complete
http://www.ams.org/mathscinet-getitem?mr=0223560
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0418.32006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0537094


Complete bounded embedded complex curves in C2 1705

[22] Martı́n, F., Umehara, M., Yamada, K.: Complete bounded holomorphic curves immersed in
C2 with arbitrary genus. Proc. Amer. Math. Soc. 137, 3437–3450 (2009) Zbl 1177.53056
MR 2515413
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