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Abstract. We prove that for locally defined singular SU(n+ 1) Toda systems in R2, the profile of
fully bubbling solutions near the singular source can be accurately approximated by global solu-
tions. The main ingredients of our new approach are the classification theorem of Lin–Wei–Ye [22]
and the non-degeneracy of the linearized Toda system [22], which let us overcome the difficulties
that come from lack of symmetry and the singular source.
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1. Introduction

Let (M, g) be a compact Riemann surface, 1 the Beltrami–Laplace operator of the met-
ric g, and K the Gauss curvature. The SU(n+ 1) Toda system is the nonlinear PDE

1ui +

n∑
j=1

aijhj e
uj −K(x) = 4π

∑
j

γij δqj , 1 ≤ i ≤ n, (1.1)

where hi (i = 1, . . . , n) are positive smooth functions on M , δq stands for the Dirac
measure at q ∈ M , and A = (aij ) is the Cartan matrix given by

A =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 0
...

...
...

0 · · · −1 2 −1
0 · · · 0 −1 2

 .
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The Toda system (1.1) has aroused a lot of attention in recent years because of its close
connection to many different fields of mathematics and physics. For n = 1, (1.1) reduces
to the Gauss curvature equation in two-dimensional surfaces. Without the singular source
and for M = S2, it is the well-known Nirenberg problem. In general it is related to the
existence of a metric of positive constant curvature with conic singularities [10, 11, 36,
37]. In the past three decades, equation (1.1) with n = 1 has been extensively studied (see
[5], [7], [21] for example). For general n and hi ≡ 1 (i = 1, . . . , n) equation (1.1) is con-
nected with holomorphic curves in CP n via the classical infinitesimal Plücker formulae
(see [15]). This geometric connection is important because from it, it has been found out
that equation (1.1) with hi ≡ 1 is an integrable system (see [13], [16], for example). Re-
cently, by using this connection, Lin–Wei–Ye [22] have been able to completely classify
all the entire solutions of (1.1) in R2 with one singular source and finite energy.

In mathematical physics, equation (1.1) has also played an important role in Chern–
Simons gauge theory. For example, in the relativistic SU(n + 1) Chern–Simons model
proposed by physicists (see [17] for n = 1 and [14] for n > 1), (1.1) governs the limiting
equations as physical parameters tend to 0 and is used to explain the physics of high tem-
perature superconductivity. In the past twenty years, the connections of (1.1) with n = 1
and the Chern–Simons-Higgs equation have been explored extensively. See [33] and [26].
However, for n ≥ 2 only very few works are devoted to this direction of research. See [1],
[27] and [34]. For recent developments on equation (1.1) and related subjects, we refer
the readers to [3, 4, 18, 19, 22, 23, 24, 28, 29, 30, 31, 32, 40] and the references therein.

One of the fundamental issues concerning (1.1) is the bubbling phenomenon, which
could lead to a priori bounds for solutions of (1.1). For n = 1, the bubbling phenomenon
has been studied thoroughly in the past twenty years. Basically there are two kinds of
bubbling behavior of solutions near blowup points. One is called “simple blowup”, which
means the bubbling profile could be well controlled locally by entire bubbling solutions
in R2. For the case without singular sources, this was proved by Y. Y. Li [21], applying
the method of moving planes. If there is a singular source 4πγ δ0 on the right hand side
of the equation, this was proved by Bartolucci–Chen–Lin–Tarantello [2] for γ 6∈ N, and
recently by Kuo–Lin [20] if γ ∈ N. On the other hand, the non-simple blowup could
occur at γ ∈ N only. The sharp profile of the non-simple blowup has been proved in [20].
The study of the bubbling phenomenon is important not only to a priori bounds; it also
provides a lot of geometric information near blowup points [6, 8, 27].

For n ≥ 2, (1.1) is an elliptic system. It is expected that the behavior of bubbling
solutions is more complicated than for n = 1. One major difficulty comes from the partial
blowup phenomenon, that is, after a suitable scaling, blowup solutions may converge to
a global solution of a smaller system. To understand the partial blowup phenomenon, we
have to first study the full blowup behavior, and to obtain an accurate description of this
class of bubbling solutions. When n = 2 and (1.1) has no singular sources, the bubbling
behavior of fully bubbling solutions has been studied by Jost–Lin–Wang [18] and Lin–
Wei–Zhao [24]. In [18] it is proved that any sequence of fully bubbling solutions is a
simple blowup at any blowup point. The proof in [18] uses a deep application of holonomy
theory, which is a very effective generalization of the Pohozaev identity. Unfortunately,
the holonomy method cannot be extended to cover the case with singular sources.
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The purpose of this article is to extend the results of [18] to any n ≥ 2 and to include
(1.1) with singular sources. Before stating our main results, we set up the problem. Since
this is a local problem, for simplicity we consider

1uki +

n∑
j=1

aijh
k
j e
ukj = 4πγiδ0, B1 ⊂ R2, (1.2)

where B1 is the unit ball. We shall use Br to denote the ball centered at the origin with
radius r .

For uk = (uk1, . . . , u
k
n), h

k
= (hk1, . . . , h

k
n) and γi (i = 1, . . . , n) we make the usual

assumptions:

(H) (i) 1/C ≤ hki ≤ C, ‖h
k
i ‖C2(B1)

≤ C, hki (0) = 1, i = 1, . . . , n,
(ii) γi > −1, i = 1, . . . , n,
(iii)

∫
B1
hki e

uki ≤ C, i = 1, . . . , n, C is independent of k,
(iv) |uki (x)− u

k
i (y)| ≤ C for all x, y ∈ ∂B1, i = 1, . . . , n,

(v) maxK⊂⊂B1\{0} u
k
i ≤ C, and 0 is the only blowup point.

If (uk1, . . . , u
k
n) is a global solution of (1.1) in M , it is easy to see that all assumptions

of (H) are satisfied. We also note that assumption (iv) in (H) is necessary for our analysis:
Chen [12] proved that without it, even for n = 1, blowup solutions can be very compli-
cated near their blowup points. The assumption hki (0) = 1 in (i) is just for convenience.

Let

−2 log εk = max
x∈B1, i=1,...,n

ũki (x)

1+ γi
, where ũki (x) = u

k
i (x)− 2γi log |x|, (1.3)

and
ṽki (y) = ũ

k
i (εky)+ 2(1+ γi) log εk, i = 1, . . . , n. (1.4)

Then clearly ṽki satisfies

1ṽki (y)+

n∑
j=1

aij |y|
2γjhkj (εky)e

ṽkj = 0, |y| ≤ ε−1
k . (1.5)

Our major assumption is that ṽk = (ṽk1, . . . , ṽ
k
n) converges to an SU(n+ 1) Toda system

uniformly over all compact subsets of R2:

Definition 1.1. We say uk of (1.2) is a fully bubbling sequence if ṽk converges in
C

1,α
loc (R

2) to ṽ = (ṽ1, . . . , ṽn) that solves the following SU(n+ 1) Toda system in R2:

1ṽi +

n∑
j=1

aij |y|
2γj eṽj = 0 in R2, i = 1, . . . , n,∫

R2
|y|2γi eṽi <∞, i = 1, . . . , n.

(1.6)
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The main purpose of this paper is to show that a fully bubbling sequence uk can be closely
approximated by a sequence of global solutions U k = (U k1 , . . . , U

k
n ) of

1U ki +

n∑
j=1

aij e
U kj = 4πγiδ0, in R2, i = 1, . . . , n. (1.7)

Theorem 1.2. Let (H) hold, and let uk be a fully bubbling sequence as in Defini-
tion 1.1 and εk as defined in (1.3). Then there exists a sequence of global solutions
U k = (U k1 , . . . , U

k
n ) of (1.7) such that for |y| ≤ ε−1

k and i = 1, . . . , n,

|uki (εky)− U
k
i (εky)| ≤{

C(σ)εσk (1+ |y|)
σ if min{γ1, . . . , γn} ≤ −3/4, σ ∈ (0,min{2+ 2γ1, . . . , 2+ 2γn}),

Cεk(1+ |y|) if min{γ1, . . . , γn} > −3/4.
(1.8)

Moreover, there exists C > 0, independent of k, such that∣∣Ũ ki (εky)+ 2(1+ γi) log εk + 2(2+ γi + γn+1−i) log(1+ |y|)
∣∣ ≤ C (1.9)

for |y| ≤ ε−1
k and i = 1, . . . , n, where Ũ ki (x) = U

k
i (x) − 2γi log |x| is the regular part

of U ki .

The global solutions

(Ũ k1 (εky)+ 2(1+ γ1) log εk, . . . , Ũ kn (εky)+ 2(1+ γn) log εk) (1.10)

in Theorem 1.2 are perturbations of ṽ = (ṽ1, . . . , ṽn) in (1.6). In fact, the sequence in
(1.10) converges uniformly to ṽ over any fixed compact subset of R2. Thus Theorem 1.2
clearly leads to the following

Corollary 1.3. Let uk , εk be as in Theorem 1.2, and let ṽk be defined by (1.4). Then for
i = 1, . . . , n,∣∣ṽki (y)+ 2(2+ γi + γn+1−i) log(1+ |y|)

∣∣ ≤ C for |y| ≤ ε−1
k . (1.11)

Remark 1.4. The estimate in (1.11) holds trivially over any fixed compact subset of R2.
So the strength of Corollary 1.3 lies in the fact that the estimate is over |y| ≤ ε−1

k . Such
type of estimate was first established by Li [21] for single Liouville equations.

Estimates similar to (1.8) and (1.11) can be found in [21, 6, 2, 41, 42] for single Liouville
equations and in [18, 24] for Toda systems. The proof of Theorem 1.2 is almost entirely
different from all the approaches in these works. For example the estimates for single
Liouville equations use ODE theory, which is based on the symmetry of global solutions.
Lin–Wei–Zhao’s [24] sharp estimates are tailored for regular SU(3) Toda systems because
they need to differentiate blowup solutions at blowup points twice (which cannot be ex-
pected when a singular source exists), and a lot of algebraic computation to fix the Cauchy
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data of blowup solutions. For general singular SU(n + 1) Toda systems, first, the ODE
method cannot be used because global solutions may not have any symmetry. Second,
fixing the Cauchy data of blowup solutions at a blowup point is impossible, because in
addition to the differentiation issue mentioned before, the algebraic computation required
to fix the Cauchy data depends on n2

+ 2n parameters and is extremely complicated if n
is large. Our approach is purely based on PDE methods and its essential part relies on an
important classification theorem of Lin–Wei–Ye [22] for global SU(n+ 1) Toda systems
and the non-degeneracy property of the corresponding linearized systems. The key point
is to choose a sequence of global solutions as approximating solutions. On the one hand
these global solutions all tend to a solution of the limit system (1.6), which means all the
n2
+ 2n families of parameters corresponding to these global solutions have a limit. On

the other hand, one component of the approximating global solutions is very close to the
same component of blowup solutions at n2

+ 2n carefully chosen points. The closeness
in one component leads to closeness in other components as well.

Theorem 1.2 is an extension of previous work. For example, if n = 2 and γi = 0 (i =
1, 2), Corollary 1.3 was proved by Jost–Lin–Wang [18]. It is easy to see that Theorem 1.2
is stronger than Corollary 1.3 even for this special case. Lin–Wei–Zhao proved (1.8) for
n = 2 and γi = 0 (i = 1, 2) but Theorem 1.2 also holds when the number of equations is
greater than 2 and the singular source at 0 exists.

For some applications such as constructing blowup solutions, more refined estimates
than those in Theorem 1.2 are needed. For SU(3) Toda systems with no singularity, Lin–
Wei–Zhao [24] obtained more delicate estimates based on Corollary 1.3.

The organization of the article is as follows. In Section 2 we list some facts on
SU(n + 1) Toda systems and the non-degeneracy of the linearized systems. The proof
of Theorem 1.2 is in Section 3. A key point in that proof is to determine n2

+ 2n points
in R2 in a specific way. Since this part is somewhat elaborate and elementary, we present
it separately in Section 4.

2. Some facts on the linearized SU(n+ 1) system

First we list some facts on the entire solutions of SU(n+ 1) Toda systems with singulari-
ties. For more details see [22]. Let u = (u1, . . . , un) solve{

1ui +
∑n
j=1 aij e

uj = 4πγiδ0 in R2, i = 1, . . . , n,∫
R2 e

ui <∞,
(2.1)

where A = (aij )n×n is the Cartan matrix and γi > −1. Then let

ui =

n∑
j=1

aijuj , i = 1, . . . , n,

where (aij )n×n = A−1. Clearly (u1, . . . , un) satisfies

1ui + e
∑n
j=1 aiju

j

= 4πγ iδ0, γ i =

n∑
j=1

aijγj , i = 1, . . . , n.
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The classification theorem of Lin–Wei–Ye [22] asserts that

e−u
1
= |z|−2γ 1

(
λ0 +

n∑
i=1

λi |Pi(z)|
2
)

(2.2)

where for µi = 1+ γi , i = 1, . . . , n, we have

Pi(z) = z
µ1+···+µi +

i−1∑
j=0

cijz
µ1+···+µj , i = 1, . . . , n, (2.3)

cij (j < i) are complex numbers and λi > 0 (0 ≤ i ≤ n) satisfies

λ0 . . . λn = 2−n(n+1)
∏

1≤i≤j≤n

( j∑
k=i

µk

)−2
. (2.4)

Furthermore if µj+1 + · · · + µi 6∈ N for some j < i, then cij = 0. Let

ũ1
= u1

− 2γ 1 log |z|.

Then

ũ1
= − log

(
λ0 +

n∑
i=1

λi |Pi(z)|
2
)
. (2.5)

The following lemma classifies the solutions of the linearized system under a mild
growth condition at infinity:

Lemma 2.1. Let 81, . . . , 8n solve the linearized SU(n+ 1) Toda system

18i + e
ui
( n∑
j=1

aij8j

)
= 0 in R2, i = 1, . . . , n, (2.6)

where u solves (2.1). If

|8i(x)| ≤ C(1+ |x|)σ , x ∈ R2, (2.7)

for some σ ∈ (0,min{1, 2µ1, . . . , 2µn}), then

e−u
1
81(z) =

n∑
k=0

mkk|z|
2βk + 2

n−1∑
k=1

|z|βk
n∑

l=k+1

|z|βl Re(mkle−i(µk+1+···+µl)θ ) (2.8)

where θ = arg(z),

β0 = −γ
1, βi = γ

i
− γ i+1

+ i, βn = γ
n
+ n, (2.9)

mkk ∈ R for k = 0, . . . , n, and mkl ∈ C for k < l. Obviously mkl = 0 if µk+1 + · · · +µl
6∈ N.
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Proof. This lemma is proved in [22] when all8i are bounded functions. Here we mention
the minor modifications when a mild growth condition in (2.7) is assumed. Let

wi(y) = −
1

2π

∫
R2
(log |y − η|)eui (η)

( n∑
j=1

aij8j (η)
)
dη.

From (2.8) and eui (z)=O(|z|−4−2νn+1−i ) we see that eui (z)(
∑n
j=1 aij8j (z))=O(|z|

−2−δ)

for some δ > 0 when |z| is large. Thuswi(y) = O(log |y|) for |y| large. From1(8i−wi)

= 0 in R2 and |8i(z)− wi(z)| ≤ O(|z|1−δ) for some δ > 0 we have

8i = wi + C.

Then using the integral representation of 8i we can further obtain ∇k8i = O(|z|−k) as
|z| → ∞. The remaining part of the proof is the same as in [22, proof of Lemma 6.1]. ut

From (2.9) it is easy to verify that

βi − βi−1 = µi, 1 ≤ i ≤ n. (2.10)

Thus βi is increasing because µi = 1+ γi > 0. Using (2.2) and (2.10) in (2.8), we have

81 =
1

λ0 +
∑
i λi |Pi(z)|

2

{ n∑
k=0

mkk|z|
2βk+2γ 1

+ 2
n−1∑
k=0

|z|βk+γ
1

n∑
l=k+1

|z|βl+γ
1

Re(mkle−i(µk+1+···+µl)θ )
}

=
1

λ0 +
∑
i λi |Pi(z)|

2

{ n∑
k=0

mkk|z|
2µ1+···+2µk + 2

n−1∑
k=0

|z|µ1+···+µk

×

( n∑
l=k+1

|z|µ1+···+µl Re(mkle−i(µk+1+···+µl)θ )
)}
. (2.11)

Lemma 2.2.
m00

λ0
+ · · · +

mnn

λn
= 0.

Proof. It is proved in [22] that the linearized system is non-degenerate, which means all
solutions to (2.6) are obtained by differentiating n2

+ 2n parameters of (u1, . . . , un). In
particular

81 = c1
∂u1

∂λ1
+ · · · + cn

∂u1

∂λn
+ cn+1

∂u1

∂cR01
+ · · · + cn2+2n

∂u1

∂cIn,n−1
, (2.12)

where cRij is the real part of cij , and cIij is the imaginary part. Direct computation from
(2.2) and (2.4) shows

∂u1

∂λk
= −

|Pk|
2
+

∂λ0
∂λk

λ0 +
∑n
i=1 λi |Pi |

2 = −
|Pk|

2
−

λ0
λk

λ0 +
∑n
i=1 λi |Pi |

2
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for k = 1, . . . , n. Comparing (2.11) and (2.12) we have

mkk = −ck, k = 1, . . . , n, m00 =
c1λ0

λ1
+ . . .

cnλ0

λn
.

Then it is easy to see that
m00

λ0
+
m11

λ1
+ · · · +

mnn

λn
= 0. ut

From Lemma 2.2 we see that there are n2
+ 2n unknowns in 81. We write 81 as

81 =
1

λ0 +
∑n
i=1 λi |Pi(z)|

2

{ n∑
k=1

mkk|z|
2µ1+···+2µk −

n∑
k=1

λ0

λk
mkk

+ 2
n−1∑
k=0

|z|2µ1+···+2µk
n∑

l=k+1

Re(m̄klzµk+1+···+µl )
}
. (2.13)

3. The proof of Theorem 1.2

Recall that ṽk = (ṽk1, . . . , ṽ
k
n) satisfies (1.5) and ṽk converges in C1,α

loc (R
2) to a solution

ṽ = (ṽ1, . . . ., ṽn) of (1.6). By the classification theorem of Lin–Wei–Ye [22], there exists
3 = (λi, cij ) (i = 0, . . . , n, j < i) such that ṽ1(z) is defined as in (2.5) where λi and
Pi satisfy (2.4) and (2.3), respectively. To emphasize the dependence on 3, we denote ṽi
and ṽi as ṽi(z,3) and ṽi(z,3), respectively.

The following matrix plays an important role in the argument below: For
p1, . . . , pn2+2n ∈ R2, set

M = (2(p1), . . . ,2(pn2+2n)), (3.1)

where

2(p) =

(
∂ṽ1

∂λ0
(p), . . . ,

∂ṽ1

∂λn−1
(p),

∂ṽ1

∂cR10
(p), . . . ,

∂ṽ1

∂cIn,n−1
(p)

)′
.

where ()′ stands for transpose. In Section 4 we shall show that if we choose
p1, . . . , pn2+2n appropriately with respect to 3, the matrix M is invertible.

Let ṽi,k =
∑
j a

ij ṽkj . Then ṽi,k converges uniformly to ṽi(·,3) over any fixed com-
pact subset of R2. Since the difference between ṽi,k and ṽi(·,3) is only o(1), we need
to find a sequence of global solutions that approximates better. Suppose the sequence of
global solutions is represented by 3k := (λki , c

k
ij ): the regular part of the first component

is

ṽ1(z,3k) = − log
(
λk0 +

n∑
i=1

λki |P
k
i (z)|

2
)

with

P ki (z) = z
µk1+···+µ

k
i +

i−1∑
j=0

ckijz
µk1+···+µ

k
j .
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Other components ṽi(z,3k) are determined by the equation

1ṽi(y,3k)+ |y|
2γi e

∑
j aij ṽ

j (y,3k) = 0 in R2, i = 1, . . . , n.

Finally we set

vi(z,3k) = ṽ
i(z,3k)(z)+ 2γ i log |z|, γ i =

∑
j

aijγj , i = 1, . . . , n. (3.2)

We claim that if

ṽ1(pl,3k) = ṽ
1,k(pl), l = 1, . . . , n2

+ 2n, (3.3)

then
λki → λi, ckij → cij . (3.4)

Indeed, since ṽ1,k(pl) = ṽ
1(pl,3) + o(1) for l = 1, . . . , n2

+ 2n, (3.4) clearly follows
from the invertibility of M. In other words there exist 3k → 3 such that (3.3) holds.

Let vi(·,3k) =
∑
j aijv

j (·,3k). Here we point out that

vi(·,3k) = Ũ
k
i (εk ·)+ 2(1+ γi) log εk, i = 1, . . . , n,

which is the global sequence in (1.10) and in the statement of Theorem 1.2.
In order to obtain estimates (1.8) we write (2.13) as

81(z)
(
λ0 +

∑
i

λi |Pi(z)|
2
)

=

n∑
k=1

mkk

(
|z|2µ1+···+2µk −

λ0

λk

)
+ 2

n−1∑
k=0

n∑
l=k+1

|z|2µ1+···+2µk+µk+1+···+µl

×
(
cos((µk+1 + · · · + µl)θ)m

1
kl + sin((µk+1 + · · · + µl)θ)m

2
kl

)
= X2̂(z), (3.5)

where

X = (m11, . . . , mnn, m
1
01, . . . , m

2
n−1,n), mkl = m

1
kl +
√
−1m2

kl .

So 2̂(z) is a column vector (as also is2(p)). Our choice of p1, . . . , pn2+2n (explained in
Section 4) also makes

M1 = (2̂(p1), . . . , 2̂(pn2+2n))

invertible.
Let 8ki = ṽ

i,k
− ṽi(·,3k). By (1.5) and the definition of ṽi,k we have

1ṽi,k + |y|2γihki (εky)e
∑
j aij ṽ

j,k(y)
= 0, |y| ≤ ε−1

k .
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Hence the equation for (8k1, . . . , 8
k
n) can be written as

18ki (y)+ |y|
2γi eξ

k
i (y)

(∑
j

aij8
k
j (y)

)
= O(εk|y|)|y|

2γi e
∑
j aij ṽ

j,k

(3.6)

where, by the mean value theorem,

eξ
k
i =

e
∑
j aij ṽ

j,k

− e
∑
j aij ṽ

j (·,3k)∑
j aij (ṽ

j,k − ṽj (·,3k))
=

∫ 1

0
e
∑
j aij (t ṽ

j,k
+(1−t)ṽj (·,3k)) dt.

By [23, Theorems 4.1 and 4.2], eξ
k
i converges uniformly to eṽi (·,3) over each compact

subset of R2, and moreover,

|y|2γi eξ
k
i (y) = O(1+ |y|)−4−2γn+1−i+o(1), |y| ≤ ε−1

k . (3.7)

Also by [23, Theorems 4.1 and 4.2] we can estimate the right hand side of (3.6). Thus
(3.6) can be written as

18ki + |y|
2γi eξ

k
i (y)

( n∑
j=1

aij8
k
j

)
=

O(εk)

(1+ |y|)3+2γn+1−i
, |y| ≤ ε−1

k . (3.8)

It is immediate to observe that the oscillation of 8ki on ∂B
ε−1
k

is finite. Thus for conve-
nience we use the following functions to eliminate that oscillation:1ψ

k
i = 0 in B

ε−1
k
,

ψki = 8
k
i −

1
2πε−1

k

∫
∂B

ε
−1
k

8ki on ∂B
ε−1
k
.

A standard estimate gives

|ψki (y)| ≤ Cεk|y|, |y| ≤ ε−1
k . (3.9)

Let 8̃ki = 8
k
i − ψ

k
i . Then by (3.8) and (3.9) we have

18̃ki + |y|
2γi eξ

k
i (y)

( n∑
j=1

aij 8̃
k
j

)
=

O(εk)

(1+ |y|)3+2γn+1−i
, |y| ≤ ε−1

k , (3.10)

and it follows from (3.3) and (3.9) that

8̃k1(pl) = O(εk), l = 1, . . . , n2
+ 2n. (3.11)

We consider two cases.

Case 1: min{γ1, . . . , γn} ≤ −3/4. In this case we set

Hk = max
i

max
|y|≤ε−1

k

|8̃ki (y)|

(1+ |y|)σ εσk
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for any fixed σ ∈ (0,min{1, 2µ1, . . . , 2µn}). Our goal is to show that Hk is bounded.
Indeed, suppose Hk →∞ and let the maximum be attained at yk . Let

8̂ki (y) =
8̃ki (y)

Hk(1+ |yk|)σ εσk
.

This definition immediately implies

|8̂ki (y)| =
|8̃ki (y)|

Hkε
σ
k (1+ |y|)

σ

(1+ |y|)σ

(1+ |yk|)σ
≤
(1+ |y|)σ

(1+ |yk|)σ
. (3.12)

Next we write the equation for (8̂k1, . . . , 8̂
k
n) as

18̂ki + |y|
2γi eξ

k
i

(∑
j

aij 8̂
k
j

)
=
O(ε1−σ

k )(1+ |y|)−3−2γn+1−i

Hk(1+ |yk|)σ
,

and we observe that 8̂ki has no oscillation on ∂B
ε−1
k

.
We first consider the case that along a subsequence, yk → y∗. In this case,

(8̂k1, . . . , 8̂
k
n) converges to (81, . . . , 8n) that satisfies

18i + e
vi
∑
j aij8j = 0 in R2, i = 1, . . . , n,

|8i(y)| ≤ C(1+ |y|)σ , i = 1, . . . , n, σ ∈ (0,min{1, 2µ1, . . . , 2µn}),
81(pl) = 0, l = 1, . . . , n2

+ 2n,
(3.13)

where vi(y) = ṽi(y) + 2γi log |y|. Note that the last equation in (3.13) holds because
of (3.11). From the first two conditions of (3.13) and Lemma 2.1 we obtain (2.8). Then
by (3.5),

M2̂(pl) = 0, l = 1, . . . , n2
+ 2n.

Since M is invertible, we have

m11 = · · · = mn,n = m
1
1,0 = · · · = m

2
n,n−1 = 0.

Thus 81 ≡ 0, which means 8i ≡ 0 for all i. This contradicts |8i(y∗)| = 1 for some i.
The only remaining case we need to consider is when yk →∞. To get a contradiction

we evaluate

8̂ki (yk)− 8̂
k
i (0) =

∫
B
ε
−1
k

(Gk(yk, η)−Gk(0, η))
(
|η|2γi eξ

k
i (η)

(∑
j

aij 8̃
k
j (η)

)

+
O(ε1−σ

k )(1+ |η|)−3−2γn+1−i

Hk(1+ |yk|)σ

)
dη (3.14)

where Gk is the Green function on B
ε−1
k

with the Dirichlet boundary condition. To evalu-
ate the right hand side above we use (3.12), (3.7) and the following estimate of the Green
function (see [30] for the proof):
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For y ∈ �k := B1/εk , let

61 = {η ∈ �k; |η| < |y|/2},
62 = {η ∈ �k; |y − η| < |y|/2},
63 = �k \ (61 ∪62).

Then for |y| > 2,

|Gk(y, η)−Gk(0, η)| ≤


C
(
log |y| +

∣∣log |η|
∣∣), η ∈ 61,

C
(
log |y| +

∣∣log
∣∣y − η|∣∣), η ∈ 62,

C|y|/|η|, η ∈ 63.

(3.15)

Using (3.15) to estimate the right hand side of (3.14) is standard. Here we just point
out that we use (3.12) to estimate 8̃kj (η) in the first term and it is essential to use ε1−σ

k for
the second term, as min{2µ1, . . . , 2µn} + σ may be less than or equal to 1 in this case.
After these standard estimates we see that the right hand side of (3.14) is o(1). However
we know |8̂ki (yk)| = 1 for some i and it is easy to prove |8̂ki (0)| → 0 by exactly the
same argument used in the proof of yk →∞. Thus we obtain a contradiction, proving

|8̃ki (y)| ≤ Cε
σ
k (1+ |y|)

σ .

Case 2: min{γ1, . . . , γn} > −3/4. In this case we set

Hk = max
i

max
|y|≤ε−1

k

|8̃ki (y)|

(1+ |y|)σ εk
and 8̂ki (y) =

8̃ki (y)

Hk(1+ |yk|)σ
.

Here we choose σ not only in (0,min{1, 2µ1, . . . , 2µn}), but also satisfying

min{2µ1, . . . , 2µn} + σ > 1. (3.16)

Since min{2µ1, . . . , 2µn} > 1/2, such a σ can be found. By the definition of Hk , the
estimate (3.12) still holds. The equation for 8̂ki becomes

18̂ki + |y|
2γi eξ

k
i

(∑
j

aij 8̂
k
j

)
=
O((1+ |y|)−3−2γn+1−i )

Hk(1+ |yk|)σ
.

Assume Hk is attained at yk . Then by the same argument as in Case 1, |yk| → ∞. In
order to get a contradiction, we observe that (3.14) becomes

8̂ki (yk)− 8̂
k
i (0) =

∫
B
ε
−1
k

(Gk(yk, η)−Gk(0, η))
(
|η|2γi eξ

k
i (η)

(∑
j

aij 8̃
k
j (η)

)

+
O((1+ |η|)−3−2γn+1−i )

Hk(1+ |yk|)σ

)
dη. (3.17)
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Using the same estimate onGk and (3.16) we see that the right hand side of (3.17) is o(1),
thus we get a contradiction as in Case 1, proving

|8̃ki (y)| ≤ Cεk(1+ |y|)
σ in Case 2.

Note that the main reason that the power of εk can be 1 is that (3.16) holds. Theorem 1.2
follows from the estimates of 8̃ki and (3.9). ut

4. The determination of p1, . . . , pn2+2n

In this section we explain how p1, . . .pn2+2n are chosen to make the matrices M and M1
both invertible.

First we list some facts that can be verified easily by direct computation: Using (2.4)
(recall that ṽ1

= − log(λ0 +
∑n
i=1 λi |Pi(z)|

2)) we have

∂ṽ1

∂λ0
=

λn
λ0
|Pn(z)|

2
− 1

λ0 +
∑
i λi |Pi(z)|

2 , (4.1)

∂ṽ1

∂λi
=

λn
λi
|Pn(z)|

2
− |Pi(z)|

2

λ0 +
∑
i λi |Pi(z)|

2 , i = 1, . . . , n− 1,

∂ṽ1

∂cRij
= −

2λi Re(zµ1+···+µj P̄i)

λ0 +
∑
i λi |Pi(z)|

2 , j < i, i = 1, . . . , n,

∂ṽ1

∂cIij
=

2λi Im(zµ1+···+µj P̄i)

λ0 +
∑
i λi |Pi(z)|

2 , j < i, i = 1, . . . , n.

It is easy to verify that for |z| large,

zµ1+···+µj P̄i = |z|
2µ1+···+2µj+µj+1+···+µi

(
e−
√
−1(µj+1+···+µi )θ +O(|z|−δ)

)
for some δ > 0 that depends only on µ1, . . . , µn. Thus for |z| large,

∂ṽ1

∂cRij
(z)
(
λ0 +

∑
k

λk|Pk(z)|
2
)

= −2λi |z|2µ1+···+2µj+µj+1+···+µi
(
cos((µj+1 + · · · + µi)θ)+O(|z|

−δ)
)
, (4.2)

∂ṽ1

∂cIij
(z)
(
λ0 +

∑
k

λk|Pk(z)|
2
)

= −2λi |z|2µ1+···+2µj+µj+1+···+µi
(
sin((µj+1 + · · · + µi)θ)+O(|z|

−δ)
)
. (4.3)

By the definition of Pi(z) in (2.3),

|Pi(z)|
2
= |z|2µ1+···+2µi (1+O(|z|−δ)). (4.4)

We also note that

∂ṽ1

∂λi
=
λ0

λi

∂ṽ1

∂λ0
+

λ0
λi
− |Pi(z)|

2

λ0 +
∑
i λi |Pi(z)|

2 , i = 1, . . . , n− 1.
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The idea of choosing n2
+ 2n points is to make M (defined in (3.1)) similar to a

Vandermonde type matrix. We shall use different parameters in the definition of pl , which
are either large or small, in order to make the leading terms dominate the other terms.

Now we look at M. Clearly the factor λ0+
∑
k λk|Pk(pl)|

2 can be taken out from the
lth column, thus for |pl | � 1, M is invertible if and only if,

M2 := (21(p1), . . . ,21(pn2+2n))

is invertible, where, according to (4.2)–(4.4),

21(pl) =
(
|pl |

2an(1+O(1/|pl |δ)), |pl |2an−1+an,n−1 cos(an,n−1θl)(1+O(1/|pl |δ)),

|pl |
2an−1+an,n−1 sin(an,n−1θl)(1+O(1/|pl |δ)), . . .

)′
where

a0 = 0, ai = µ1 + · · · + µi (i = 1, . . . , n),
aij = µj+1 + · · · + µi (i = 1, . . . , n, j < i),

θl = arg(pl), and δ > 0 only depends on µ1, . . . , µn. Note that aij = ai − aj and
2aj + aij = ai + aj . The powers of |pl | are arranged in non-decreasing order (so the
largest power is 2an, the second largest power is 2an−1 + an,n−1, etc.). The powers of
|pl | are either 2ai or ai + aj . Here we note that some powers appear only once (for
example 2an), some powers appear only twice (for example 2an−1 + an,n−1), and it is
possible that some powers appear more than twice.

Let
pl = s

1+εlNe
√
−1 θl , l = 1, . . . , n2

+ 2n,

where N � s � 1 � ε > 0 are constants only depending on µ1, . . . , µn, n. The
angles θl also only depend on these parameters. We shall determine these constants and
angles below.

From each row a power of N can be taken out, therefore M2 is invertible iff

(22(p1), . . . ,22(pn2+2n))

is invertible, where

22(pl) =
(
s2an(1+εl)(1+O(1/|pl |δ)),

s(2an−1+an,n−1)(1+εl) cos(an,n−1θl)(1+O(1/|pl |δ)),

s(2an−1+an,n−1)(1+εl) sin(an,n−1θl)(1+O(1/|pl |δ)), . . .
)′
.

Hence for fixed s, if N is sufficiently large and O(1/|pl |δ) is very small, then M2 is
invertible iff the following matrix is invertible:

M3 = (23(p1), . . . ,23(pn2+2n))
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where

23(pl) =(
s2an(1+εl), s(2an−1+an,n−1)(1+εl) cos(an,n−1θl), s

(2an−1+an,n−1)(1+εl) sin(an,n−1θl), . . .
)′
.

We start with the largest entry in M3: s2an(1+ε(n2
+2n)), which is in row one and column

n2
+ 2n. We divide row 1 by s2an(1+ε(n2

+2n)) (we call this Operation 1); then the entries
in row 1 become

s2anε(l−n2
−2n) for l = 1, . . . , n2

+ 2n.

Next we subtract a multiple of row 1 from the other rows to eliminate the last entry in
each row (we call this Operation 2). For any entry in the cofactor matrix of 1, if before
Operation 2 it is of the form saA, it becomes sa(A+O(s−δ)) after Operation 2. Indeed,
for example, let s2ai0 (1+εl) be an entry before Operation 2. The last entry of the same row
is s2ai0 (1+ε(n

2
+2n)). In Operation 2 we subtract the s2ai0 (1+ε(n

2
+2n)) multiple of the first

row. The entry in row 1 and the same column of s2ai0 (1+εl) is s2anε(l−n2
−2n). Thus after

Operation 2, s2ai0 (1+εl) becomes

s2ai0 (1+εl) − s2ai0 (1+ε(n
2
+2n))s2anε(l−n2

−2n)

= s2ai0 (1+εl)(1− s(2ai0−2an)ε(n2
+2n−l)) = s2ai0 (1+εl)(1+O(s−δ))

where we have used ai0 < an.
Similarly if an entry before Operation 2 is

s(2aj+aij )(1+εl) cos(aij θl),

then after Operation 2 it becomes

s(2aj+aij )(1+εl)
(
cos(aij θl)+O(s−δ)

)
for some δ > 0. Eventually s will be chosen large to eliminate the influence of all the
perturbations.

Our strategy is to use high powers of s to simplify the matrix. After the aforemen-
tioned row operations it is clear that we only need to consider the cofactor matrix of 1,
which we denote A1. The highest power of s in A1 is shared by two entries:

s(2an−1+an,n−1)(1+ε(n2
+2n−1))(cos(an,n−1θn2+2n−1)+O(s

−δ)
)

and
s(2an−1+an,n−1)(1+ε(n2

+2n−1))(sin(an,n−1θn2+2n−1)+O(s
−δ)
)
.

We recall that the former is in row 1 of A1. We choose θn2+2n−1 = 0. In A1 we divide the
first row by s(2an−1+an,n−1)(1+ε(n2

+2n−1)); then the largest entry in row 1 of A1 becomes
1 + O(s−δ). We then subtract from other rows a multiple of the first row to eliminate
the last entry of each row. For the same reason as before, after these row operations the
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invertibility ofA1 is equivalent to the invertibility of the cofactor matrixA2 of 1+O(s−δ),
an (n2

+2n−2)×(n2
+2n−2)matrix which is barely changed after these transformations.

In fact, each entry inA2 is only multiplied by a factor 1+O(s−δ) in these transformations.
As we continue this process, we face three situations. If the highest power of s without

the ε part is not repeated, we just apply the same type of row operations as in Operation 1
and Operation 2. If the highest power of s without the ε part is shared by only two entries
(one is a cosine term, one is a sine term), we just take the corresponding angle to be 0, so
the cosine term will dominate all other terms and this case is similar to the previous case.
Finally we may run into the following situation: A power of s without the ε part is shared
by more than two indices:

∃i0, j0, i1, j1 such that 2aj0 + ai0,j0 = 2aj1 + ai1,j1 , j0 6= j1.

∃i0, j0, j1 such that 2aj0 + ai0,j0 = 2aj1 .

In this case we first prove the following simple but important lemma.

Lemma 4.1. There exists ε0 > 0 that depends only on µ1, . . . , µn and n such that for
ε ∈ (0, ε0),

|p̃a|
l1/|p̃b|

l2 →∞ as s →∞,∀a, b ∈ {1, . . . , n2
+ 2n}, (4.5)

where l1, l2 are any two numbers in the set {2a1, . . . , 2an, . . . , 2aj + aij , . . . } that satisfy
l1 > l2 and where |p̃a|l1 = s(1+εa)l1 , |p̃b|l2 = s(1+εb)l2 ..

Proof. It is easy to see that for all a, b ∈ {1, . . . , n2
+2n}, we have (1+εa)l1 > (1+εb)l2

if l1 > l2 and ε is sufficiently small. The smallness of ε is clearly determined by the set

{2a1, . . . , 2an, . . . , 2aj + aij , . . . }. ut

Next we prove two more calculus lemmas.

Lemma 4.2. Let N1 < · · · < Nk be positive numbers. Then there exist θ1, . . . , θ2k+1
such that the matrix

MNk =


1 · · · 1

sin(N1θ1) · · · sin(N1θ2k+1)

cos(N1θ1) · · · cos(N1θ2k+1)

· · · · · · · · ·

sin(Nkθ1) · · · sin(Nkθ2k+1)

cos(Nkθ1) · · · cos(Nkθ2k+1)


satisfies

0 < c1(N1, . . . , Nk) < |det(MNk)| < c2(N1, . . . , Nk)

for positive constants c1 and c2 that only depend on N1, . . . , Nk .



Bubbling solutions to Toda systems 1723

Proof. We use the Taylor expansion of sin(Nθ) and cos(Nθ):

sin(Niθj ) =
k∑
l=1

(−1)l+1 (Niθj )
2l−1

(2l − 1)!
+O((Niθj )

2k+1),

cos(Niθj ) =
k∑
l=0

(−1)l
(Niθj )

2l

(2l)!
+O((Niθj )

2k+2).

We apply the following elementary operations on MNk: First we subtract a multiple of
the first row from other odd-numbered rows to eliminate the first order terms of θi (i =
1, . . . , 2k + 1). After the cancelation it is easy to see that the entry in row 2j − 1 (j > 1)
and column r (r > 1) is of the form

k∑
l=2

(−1)l+1(al,j θr)
2l−1
+O(θ2k+1

r )

for some positive constant al,j , which satisfies al,j < al,j+1. In the second step we use
row 3 to eliminate all the O(θ3) terms of other odd-numbered rows starting from row 5.
After the second step, the entry in row 2j−1 (j > 2) and column r (r > 2) is of the form

k∑
l=3

(−1)l+1(ãl,j θr)
2l−1
+O(θ2k+1

r ),

with ãl,j > 0 satisfying ãl,j < ãl,j+1.
After k − 1 such operations we see that the entry in row 2j − 1 and column r is a

multiple of θ2j−1
r plus lower order terms. Clearly we can use the terms in row 2k − 1

to eliminate all the O(θ2k−1) terms in other odd-numbered rows. Then we can use row
2k − 3 to remove the O(θ2k−3) terms in other odd number rows. After such operations
the entry in row 2j − 1 and column r is Cθ2j−1

r + O(θ2k+1
r ). Similar operations can be

applied to even-numbered rows. Thus after a finite number of elementary row operations
(including multiplying a constant on each row) the matrix MNk is transformed to

M̃Nk =



1 1 · · · 1
θ1 θ2 · · · θ2k+1
θ2

1 θ2
2 · · · θ2

2k+1
· · · · · · · · · · · ·

θ2k−1
1 θ2k−1

2 · · · θ2k−1
2k+1

θ2k
1 θ2k

2 · · · θ2k
2k+1

+ a matrix of error terms.

The (i, j) entry of the second matrix is O(θ2k+1
i ). Now we choose θi = iε for some

ε > 0 that depends only on N1, . . . , Nk . For ε sufficiently small, M̃Nk is invertible if and
only if the first matrix is invertible. Finally, we observe that the first matrix of M̃Nk is a
Vandermonde matrix. Lemma 4.2 is established. ut

The proof of the following lemma is very similar and is omitted.



1724 Chang-Shou Lin et al.

Lemma 4.3. Let N1 < · · · < Nk be positive numbers. Then there exist θ1, . . . , θ2k such
that the matrix

M2Nk =


sin(N1θ1) · · · sin(N1θ2k)

cos(N1θ1) · · · cos(N1θ2k)

· · · · · · · · ·

sin(Nkθ1) · · · sin(Nkθ2k)

cos(Nkθ1) · · · cos(Nkθ2k)


satisfies

0 < c1(N1, . . . , Nk) < |det(M2Nk)| < c2(N1, . . . , Nk)

for positive constants c1 and c2 that only depend on N1, . . . , Nk .

Now we go back to the case that after finite steps of reduction, the highest power of s
without the ε part is M and is shared by more than two indices. Our goal is to make the
following matrix invertible:

A2 =

(
B C

D F

)
· (1+O(s−d))

where 1 + O(s−d) means each entry in
(
B C
D F

)
is multiplied by a quantity of magnitude

1 + O(s−d), even though these quantities are different from one another. C is either of
the form 

sM(1+ε(l+1)) sin(N1θl+1) · · · sM(1+ε(l+2T )) sin(N1θl+2T )

sM(1+ε(l+1)) cos(N1θl+1) · · · sM(1+ε(l+2T )) cos(N1θl+2T )
· · · · · · · · ·

sM(1+ε(l+1)) sin(NT θl+1) · · · sM(1+ε(l+2T )) sin(NT θl+2T )

sM(1+ε(l+1)) cos(NT θl+1) · · · sM(1+ε(l+2T )) cos(NT θl+2T )


or 

1 · · · 1
sM(1+ε(l+1)) sin(N1θl+1) · · · sM(1+ε(l+2T+1)) sin(N1θl+2T+1)

sM(1+ε(l+1)) cos(N1θl+1) · · · sM(1+ε(l+2T+1)) cos(N1θl+2T+1)
· · · · · · · · ·

sM(1+ε(l+1)) sin(NT θl+1) · · · sM(1+ε(l+2T+1)) sin(NT θl+2T+1)

sM(1+ε(l+1)) cos(NT θl+1) · · · sM(1+ε(l+2T+1)) cos(NT θl+2T+1)


We take the first case as an example. B is of the form

B =


sM(1+ε) sin(N1θ1) · · · sM(1+εl) sin(N1θl)

sM(1+ε) cos(N1θ1) · · · sM(1+εl) cos(N1θl)
· · · · · · · · ·

sM(1+ε) sin(NT θ1) · · · sM(1+εl) sin(NT θl)
sM(1+ε) cos(NT θ1) · · · sM(1+εl) cos(NT θl)

 .
The importance of Lemma 4.1 is that it makes F minor. For matrices D and F , we just
write one row vector of (D, F ) as a representative:

(sH(1+ε), . . . , sH(1+εl), sH(1+ε(l+1)), . . . , sH(1+ε(l+2T )))
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where
(sH(1+ε), . . . , sH(1+εl))

is a row vector of D, and

(sH(1+ε(l+1)), . . . , sH(1+ε(l+2T )))

is a row vector of F . Here we note that H < M , and other rows of A2 may have sine or
cosine terms.

Now we take sM(1+ε(l+1)) out of the 2k rows of (B,C); after this operation B and C
become B̃ and C̃, where

B̃ =


s−Mεl sin(N1θl) s−Mε(l−1) sin(N1θ2) · · · s−Mε sin(N1θl)

s−Mεl cos(N1θ1) s−Mε(l−1) cos(N1θ2) · · · s−Mε cos(N1θl)

· · · · · · · · · · · ·

s−Mεl sin(NT θl) s−Mε(l−1) sin(NT θ2) · · · s−Mε sin(NT θl)
s−Mεl cos(NT θ1) s−Mε(l−1) cos(NT θ2) · · · s−Mε cos(NT θl)



C̃ =


sin(N1θl+1) sMε sin(N1θl+2) · · · sM(2T−1)ε sin(N1θl+2T )

cos(N1θl+1) sMε cos(N1θl+2) · · · sM(2T−1)ε cos(N1θl+2T )

· · · · · · · · · · · ·

sin(NT θl+1) sMε sin(NT θl+2) · · · sM(2T−1)ε sin(NT θl+2T )

cos(NT θl+1) sMε cos(NT θl+2) · · · sM(2T−1)ε cos(NT θl+2T )


After these row operations the major part of A2 becomes

A3 = (A31, A32) =

(
B̃ C̃

D F

)
.

Starting from the second column of A32 we take away the power of s. For example we
divide the second column of A32 by sMε , the third column by s2Mε and the 2T th column
by sM(2T−1)ε . Now we see the influence of the representative row vector in F . Before this
set of column operations it is

(sH(1+ε(l+1)), . . . , sH(1+ε(l+2T )))

After these column operations it becomes (using H < M)

sH(1+ε(l+1))(1,O(s−d), . . . , O(s−d)).

Note that this computation is very similar to those in the proof of Lemma 4.1. We use F̃
to represent the new matrix after the column operations on F .

After these column operations, C̃ becomes

C̃1 =


sin(N1θl+1) sin(N1θl+2) · · · sin(N1θl+2T )

cos(N1θl+1) cos(N1θl+2) · · · cos(N1θl+2T )

· · · · · · · · · · · ·

sin(NT θl+1) sin(NT θl+2) · · · sin(NT θl+2T )

cos(NT θl+1) cos(NT θl+2) · · · cos(NT θl+2T )

 .
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By Lemma 4.3, C̃1 is invertible, which means its row vectors are linearly independent.
Thus there is a combination of its row vectors to cancel the representative vector in F̃
(just the major part):

sH(1+ε(l+1))(1, 0, . . . , 0).

When this same row operation is applied to A31, the representative vector in D,

(sH(1+ε), . . . , sH(1+εl)),

after the row transformation becomes

(sH(1+ε)(1+O(s−d)), . . . , sH(1+εl)(1+O(s−d)))

where we have used H < M again. After these elementary operations, B and F turn into
matrices of error terms. Thus the invertibility of A2 is reduced to the invertibility of the
transformation of D, which is of the same nature of D. This method of reduction can be
continued and the construction of p1, . . .pn2+2n is complete for the matrix M.

The matrix M1 is very similar to M and we only require N , s to be large and ε to
be small in M1. Moreover the angles in M1 are the same as in M. Thus p1, . . . , pn2+2n
that make M invertible also make M1 invertible. The construction of p1, . . . , pn2+2n is
complete.
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