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Abstract. Inspired by work of McMullen, we show that any orbit of the diagonal group in the
space of lattices accumulates on the set of stable lattices. As consequences, we settle a conjecture
of Ramharter concerning the asymptotic behavior of the Mordell constant, and reduce Minkowski’s
conjecture on products of linear forms to a geometric question, yielding two new proofs of the
conjecture in dimensions up to 7.
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1. Introduction

Let n ≥ 2 be an integer, let G := SLn(R), 0 := SLn(Z), let A ⊂ G be the subgroup of
positive diagonal matrices and let Ln := G/0 be the space of unimodular lattices in Rn.
The purpose of this paper is to present a dynamical result regarding the action ofA on Ln,
and to present some consequences in the geometry of numbers.

A lattice x ∈ Ln is called stable if for any subgroup 3 ⊂ x, the covolume of 3
in span(3) is at least 1. In particular the length of the shortest nonzero vector in x is at
least 1. Stable lattices have also been called ‘semistable’, they were introduced in a broad
algebro-geometric context by Harder, Narasimhan and Stuhler [Stu76, HN74], and were
used to develop a reduction theory for the study of the topology of locally symmetric
spaces. See Grayson [Gra84] for a clear exposition.

Theorem 1.1. For any x ∈ Ln, the orbit-closure Ax contains a stable lattice.

Theorem 1.1 is inspired by a breakthrough result of McMullen [McM05]. Recall that a
lattice in Ln is called well-rounded if its shortest nonzero vectors span Rn. In connection
with his work on Minkowski’s conjecture, McMullen showed that the closure of any
bounded A-orbit in Ln contains a well-rounded lattice. The set of well-rounded lattices
neither contains, nor is contained in, the set of stable lattices; while the set of well-rounded
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lattices has no interior, the set of stable lattices does, and in fact it occupies all but an
exponentially small volume of Ln for large n. Our proof of Theorem 1.1 closely follows
McMullen’s. Note however that we do not assume that Ax is bounded.

We apply Theorem 1.1 to two problems in the geometry of numbers. Let x ∈ Ln be a
unimodular lattice. By a symmetric box in Rn we mean a set of the form [−a1, a1]×· · ·×

[−an, an], and we say that a symmetric box is admissible for x if it contains no nonzero
points of x in its interior. The Mordell constant of x is defined to be

κ(x) :=
1
2n

sup
B

Vol(B), (1.1)

where the supremum is taken over admissible symmetric boxes B, and where Vol(B)
denotes the volume of B. We also write

κn := inf{κ(x) : x ∈ Ln}. (1.2)

The infimum in this definition is in fact a minimum, and as with many problems in the
geometry of numbers, it is of interest to compute the constants κn and identify the lattices
realizing the minimum. However, this appears to be a very difficult problem, which so far
has only been solved for n = 2, 3, the latter in a difficult paper of Ramharter [Ram96].
It is also of interest to provide bounds on the asymptotics of κn; in [Ram00], Ramharter
conjectured that lim supn→∞ κ

1/(n log n)
n > 0. As a simple corollary of Theorem 1.1, we

validate Ramharter’s conjecture, with an explicit bound:

Corollary 1.2. For all n ≥ 2,
κn ≥ n

−n/2. (1.3)

In particular

κ
1/n log n
n ≥ n−1/(2 log n)

−−−→
n→∞

1
√
e
.

We remark that Corollary 1.2 could also be derived from McMullen’s results and a theo-
rem of Birch and Swinnerton-Dyer. We refer the reader to [SW15] for more information
on the possible values of κ(x), x ∈ Ln, and to the preprint [SW, §4] for slight improve-
ments.

Our second application concerns Minkowski’s conjecture,1 which posits that for any
unimodular lattice x, one has

sup
u∈Rn

inf
v∈x
|N(u− v)| ≤

1
2n
, (1.4)

where N(u1, . . . , ud) :=
∏
j uj . Minkowski solved the question for n = 2 and several

authors resolved the cases n ≤ 5. In [McM05], McMullen settled the case n = 6. In fact,
using his theorem on theA-action on Ln, McMullen showed that in arbitrary dimension n,

1 It is not clear to us whether Minkowski actually made this conjecture.
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Minkowski’s conjecture is implied by the statement that any well-rounded lattice x ⊂ Rd
with d ≤ n satisfies

covrad(x) ≤
√
d/2, (1.5)

where covrad(x) := maxu∈Rd minv∈x ‖u − v‖ and ‖ · ‖ is the Euclidean norm on Rd .
At the time of writing [McM05], (1.5) was known to hold for well-rounded lattices in di-
mension at most 6, and in recent work of Hans-Gill, Raka, Sehmi and Kathuria [HGRS09,
HGRS11, KR], (1.5) has been proved for well-rounded lattices in dimensions n = 7, 8, 9,
thus settling Minkowski’s question in those cases.

Our work gives two new approaches to Minkowski’s conjecture, each yielding a new
proof of the conjecture in dimensions n ≤ 7. A direct application of Theorem 1.1 (see
Corollary 5.1) shows that the conjecture in dimension n follows from the assertion that
(1.5) holds for any stable x ∈ Ln. Note that we do not require (1.5) in dimensions less
than n. Using the strategy of Woods and Hans-Gill et al., in Theorem 5.8 we define a
compact subset KZS ⊂ Rn and a collection {W(I)} of 2n−1 subsets of Rn. We show that
the inclusion KZS ⊂

⋃
I W(I) implies Minkowski’s conjecture in dimension n. This

provides a computational approach to Minkowski’s conjecture.
Secondly, an induction using the naturality of stable lattices leads to the following

sufficient condition:

Corollary 1.3. Suppose that for some dimension n, for all d ≤ n, any stable lattice
x ∈ Ld which is a local maximum of the function covrad satisfies (1.5). Then (1.4) holds
for any x ∈ Ln.

The local maxima of the function covrad have been studied in depth in recent work of
Dutour Sikirić, Schürmann and Vallentin [DSSV12], who characterized them and showed
that there are finitely many in each dimension. Dutour Sikirić has formulated a conjecture
as to which of these have the largest covering radius (see Conjecture 5.9), and has verified
his conjecture computationally in dimensions n ≤ 7. Our results imply that Minkowski’s
conjecture is a consequence of Conjecture 5.9.

2. Orbit closures and stable lattices

Given a lattice x ∈ Ln and a subgroup 3 ⊂ x, we denote by r(3) the rank of 3 and by
|3| the covolume of 3 in the linear subspace span(3). Let

V(x) := {|3|1/r(3) : 3 ⊂ x}, α(x) := minV(x). (2.1)

Since we may take 3 = x we have α(x) ≤ 1 for all x ∈ Ln, and x is stable precisely if
α(x) = 1. Observe that V(x) is a countable discrete set of positive reals, and hence the
minimum in (2.1) is attained. Also note that the function α is a variant of the ‘length of
the shortest vector’; it is continuous and the sets {x : α(x) ≥ ε} are an exhaustion of Ln
by compact sets.

We begin by explaining the strategy for proving Theorem 1.1, which is identical to
the one used by McMullen. For a lattice x ∈ X and ε > 0 we define an open cover
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Ux,ε = {Ux,εk }
n
k=1 of the diagonal group A, where if a ∈ Ux,εk then α(ax) is ‘almost

attained’ by a subgroup of rank k. In particular, if a ∈ Ux,εn then ax is ‘almost stable’.
The main point is to show that Ux,εn 6= ∅ for any ε > 0; for then, taking εj → 0 and
aj ∈ A such that aj ∈ U

x,εj
n , we find (passing to a subsequence) that ajx converges to a

stable lattice.
In order to establish that Ux,εn 6= ∅, we apply a topological result of McMullen (The-

orem 3.3) regarding open covers, which is reminiscent of the classical result of Lebesgue
that asserts that in an open cover of Euclidean n-space by bounded balls there must be a
point which is covered n+ 1 times. We will work to show that the cover Ux,ε satisfies the
assumptions of Theorem 3.3. We will be able to verify these assumptions when the orbit
Ax is bounded. In §2.1 we reduce the proof of Theorem 1.1 to this case.

2.1. Reduction to bounded orbits

Using a result of Birch and Swinnerton-Dyer, we will now show that it suffices to prove
Theorem 1.1 under the assumption that the orbit Ax ⊂ Ln is bounded, that is, that Ax is
compact. In this subsection we will denote A,G by An,Gn as various dimensions will
appear.

For a matrix g ∈ Gn we denote by [g] ∈ Ln the corresponding lattice. If

g =


g1 ∗ . . . ∗

0 g2 . . .
...

...
. . . ∗

0 . . . 0 gk

 (2.2)

where gi ∈ Gni for each i, then we say that g is in upper triangular block form and refer
to the gi’s as the diagonal blocks. Note that in this definition, we insist that each gi is of
determinant one.

Lemma 2.1. Let x = [g] ∈ Ln where g is in upper triangular block form as in (2.2) and
for each 1 ≤ i ≤ k, [gi] is a stable lattice in Lni . Then x is stable.

Proof. By induction, we may assume that k = 2. Let e1, . . . , en be the standard basis
of Rn, write n = n1 + n2, V1 := span{e1, . . . , en1}, V2 := span{en1+1 . . . , en}, and let
π : Rn → V2 be the natural projection. By construction we have x ∩ V1 = [g1] and
π(x) = [g2].

Let 3 ⊂ x be a subgroup, write 31 := 3 ∩ V1 and choose a direct complement
32 ⊂ 3, that is,

3 = 31 +32, 31 ∩32 = {0}.

We claim that
|3| = |31| · |π(32)|. (2.3)

To see this we recall that one may compute |3| via the Gram–Schmidt process. Namely,
one begins with a set of generators vj of 3 and successively defines u1 = v1 and uj is
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the orthogonal projection of vj on (span(v1, . . . , vj−1)
⊥). In these terms, |3| =

∏
j ‖uj‖.

Since π is an orthogonal projection and 3 ∩ V1 is in kerπ , (2.3) is clear from the above
description.

The discrete subgroup 31, when viewed as a subgroup of [g1]∈Ln1 satisfies |31|≥1
because [g1] is assumed to be stable. Similarly π(32)⊂[g2]∈Ln2 satisfies |π(32)|≥1,
hence |3| ≥ 1. ut

Lemma 2.2. Let x ∈ Ln and assume that Ax contains a lattice [g] with g of upper
triangular block form as in (2.2). For each 1 ≤ i ≤ k, suppose [hi] ∈ Ani [gi] ⊂ Lni .
Then there exists a lattice [h] ∈ Ax such that h has the form (2.2) with hi as its diagonal
blocks.

Proof. Let � be the set of all lattices [g] of a fixed triangular form as in (2.2). Then � is
a closed subset of Ln and there is a projection

τ : �→ Ln1 × · · · × Lnk , τ ([g]) = ([g1], . . . , [gk]).

The map τ has a compact fiber and is equivariant with respect to the action of Ã :=
An1 × · · · × Ank . By assumption, there is a sequence ãj = (a

(j)

1 , . . . , a
(j)
k ), a(j)i ∈ Ani ,

in Ã such that a(j)i [gi] → [hi]; then after passing to a subsequence, ãj [g] → [h] where

h has the required properties. Since Ax ⊃ Ã[g], the claim follows. ut

Lemma 2.3. Let x ∈ Ln. Then there is [g] ∈ Ax such that, up to a possible permutation
of the coordinates, g is of upper triangular block form as in (2.2) and each Ani [gi] ⊂ Lni
is bounded.

Proof. If the orbit Ax is bounded there is nothing to prove. According to Birch and
Swinnerton-Dyer [BSD56], if Ax is unbounded then Ax contains a lattice with a rep-
resentative as in (2.2) (up to a possible permutation of the coordinates) with k = 2. Now
the claim follows by using induction and Lemma 2.2. ut

Proposition 2.4. It is enough to establish Theorem 1.1 for lattices having a bounded
A-orbit.

Proof. Let x ∈ Ln be arbitrary. By Lemma 2.3, Ax contains a lattice [g] with g of upper
triangular block form (up to a possible permutation of the coordinates) with diagonal
blocks representing lattices with bounded orbits under the corresponding diagonal groups.
Assuming Theorem 1.1 for lattices having bounded orbits, and applying Lemma 2.2, we
may take g whose diagonal blocks represent stable lattices. By Lemma 2.1, [g] is stable
as well. ut

2.2. Some technical preparations

We now discuss the subgroups of a lattice x ∈ Ln which almost attain the minimum α(x)

in (2.1).
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Definition 2.5. Given a lattice x ∈ Ln and δ > 0, let

Minδ(x) := {3 ⊂ x : |3|1/r(3) < (1+ δ)α(x)},

Vδ(x) := span
(⋃
{3 : 3 ∈ Minδ(x)}

)
,

dimδ(x) := dim Vδ(x).

We will need the following technical statement.

Lemma 2.6. For any ρ > 0 there exists a neighborhood W of the identity in G with the
following property. Suppose 2ρ ≤ δ0 ≤ d + 1 and x ∈ Ln is such that dimδ0−ρ(x) =

dimδ0+ρ(x). Then for any g ∈ W and any δ ∈ (δ0 − ρ/2, δ0 + ρ/2) we have

Vδ(gx) = gVδ0(x). (2.4)

In particular, there is 1 ≤ k ≤ n such that dimδ(gx) = k for any g ∈ W and any
δ ∈ (δ0 − ρ/2, δ0 + ρ/2) .

Proof. Let c > 1 be chosen close enough to 1 so that for 2ρ ≤ δ0 ≤ d + 1 we have

c2(1+ δ0 + ρ/2) < 1+ δ0 + ρ and
1+ δ0 − ρ/2

c2 > 1+ δ0 − ρ. (2.5)

Let W be a small enough neighborhood of the identity in G, so that for any discrete
subgroup 3 ⊂ Rn we have

g ∈ W ⇒ c−1
|3|1/r(3) ≤ |g3|1/r(g3) ≤ c|3|1/r(3). (2.6)

Such a neighborhood exists since the linear action of G on
⊕n

k=1
∧k Rn is continuous,

and since we can write |3| = ‖v1 ∧ · · · ∧ vr‖ where v1, . . . , vr is a generating set for 3.
It follows from (2.6) that for any x ∈ Ln and g ∈ W we have

c−1α(x) ≤ α(gx) ≤ cα(x). (2.7)

Let δ ∈ (δ0 − ρ/2, δ0 + ρ/2) and g ∈ W . We will show below that

gMinδ0−ρ(x) ⊂ Minδ(gx) ⊂ gMinδ0+ρ(x). (2.8)

Note first that (2.8) implies the assertion of the lemma: indeed, since Vδ1(x) ⊂ Vδ2(x)

for δ1 < δ2, and since we have assumed that dimδ0−ρ(x) = dimδ0+ρ(x), we see that
Vδ0(x) = Vδ(x) for δ0 − ρ ≤ δ ≤ δ0 + ρ. So by (2.5), the subspaces spanned by the two
sides of (2.8) are equal to gVδ0(x) and (2.4) follows.

It remains to prove (2.8). Let 3 ∈ Minδ0−ρ(x). Then we find

|g3|1/r(g3)
(2.6)
≤ c|3|1/r(3) ≤ c(1+ δ0 − ρ)α(x)

(2.5)
≤ c−1(1+ δ0 − ρ/2)α(x)

(2.7)
< (1+ δ)α(gx).

By definition this means that g3 ∈ Minδ(gx), which establishes the first inclusion
in (2.8). The second inclusion is similar and is left to the reader. ut
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2.3. The cover of A

Let x ∈ Ln and ε > 0. Define Ux,ε = {Ux,εi }
n
i=1 where

U
x,ε
k := {a ∈ A : dimδ(ax) = k for δ in a neighborhood of kε}. (2.9)

Theorem 2.7. Let x ∈ Ln have Ax bounded. Then Ux,εn 6= ∅ for any ε ∈ (0, 1).

In this subsection we will reduce the proof of Theorem 1.1 to Theorem 2.7. This will
be done via the following statement, which could be interpreted as saying that a lattice
satisfying dimδ(x) = n is ‘almost stable’.

Lemma 2.8. For each n, there exists a positive function ψ(δ) with ψ(δ)
δ→0
−−→ 0 such

that for any x ∈ Ln,

{3i}
`
i=1 ⊂ Minδ(x) ⇒ 31 + · · · +3` ∈ Minψ(δ)(x). (2.10)

In particular, if dimδ(x) = n then α(x) ≥ (1+ ψ(δ))−1.

Proof. Let 3,3′ be two discrete subgroups of Rd . The following inequality is straight-
forward from the Gram–Schmidt procedure for computing |3|:

|3+3′| ≤
|3| · |3′|

|3 ∩3′|
. (2.11)

Here we adopt the convention that |3 ∩ 3′| = 1 when 3 ∩ 3′ = {0}. By induction on

` ≤ n, we now prove the existence of a function ψ`(δ)
δ→0
−−→ 0 such that for any x ∈ Ln

and any {3i}`i=1 ⊂ Minδ(x), we have 31 + · · · +3` ∈ Minψ`(δ)(x). For ` = 1 one can
trivially pick ψ1(δ) = δ. Assuming the existence of ψ`−1, set

ψ`(δ) := max
(
(1+ δ)r(3)(1+ ψ`−1(δ))

r(3′)
)1/r(3+3′)

− 1,

where the maximum is taken over all possible values of r(3), r(3′), r(3+3′). Clearly
ψ`(δ) −−→

δ→0
0, and given x ∈ Ln and 31, . . . , 3` ∈ Minδ(x), set 3 = 31, 3′ =

32 + · · · + 3`, α = α(x) and note that r(3 + 3′) = r(3) + r(3′) − r(3 ∩ 3′). We
deduce from (2.11) and the definitions that

|3+3′| ≤
|3| · |3′|

|3 ∩3′|
≤
((1+ δ)α)r(3)((1+ ψ`−1(δ))α)

r(3′)

αr(3∩3
′)

= (1+ δ)r(3)(1+ ψ`−1(δ))
r(3′)αr(3+3

′),

and so 3+3′ ∈ Minψ`(δ)(x) as desired. This completes the inductive step.
We take ψ(δ) := maxn`=1 ψ`(δ). If ` ≤ n then (2.10) holds by construction. If ` > n

one can find a subsequence 1 ≤ i1 < · · · < id ≤ n such that r(
∑`
i=13i) = r(

∑d
j=13ij ),

and in particular
∑d
j=13ij is of finite index in

∑`
i=13i . From the first part of the argu-

ment we see that
∑d
j=13ij ∈ Minψ(δ)(x) and as the covolume of

∑`
i=13i is not larger

than that of
∑d
j=13ij we deduce that

∑`
i=13i ∈ Minψ`(δ)(x) as well.
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To verify the last assertion, note that when dimδ(x) = n, (2.10) implies the existence
of a finite index subgroup x′ of x belonging to Minψ(δ)(x). In particular, 1 ≤ |x′|1/n ≤
(1+ ψ(δ))α(x) as desired. ut

Proof of Theorem 1.1 assuming Theorem 2.7. By Proposition 2.4 we may assume that
Ax is bounded. Let εj ∈ (0, 1) with εj → 0. By Theorem 2.7 we know that U

x,εj
n 6= ∅.

This means there is a sequence aj ∈ A such that dimδj (ajx) = n where δj = nεj → 0.
The sequence {ajx} is bounded, and hence has limit points, so passing to a subsequence
we let x′ := lim ajx. By Lemma 2.8 we have

1 ≥ lim sup
j

α(ajx) ≥ lim inf
j

α(ajx) ≥ lim
j
(1+ ψ(δj ))−1

= 1,

which shows that limj α(ajx) = 1. The function α is continuous on Ln and therefore
α(x′) = 1, i.e. x′ ∈ Ax is stable. ut

3. Covers of Euclidean space

In this section we will prove Theorem 2.7, thus completing the proof of Theorem 1.1.
Our main tool will be McMullen’s Theorem 3.3. Before stating it we introduce some
terminology. We fix an invariant metric on A, and let R > 0 and k ∈ {0, . . . , n− 1}.

Definition 3.1. We say that a subset U ⊂ A is (R, k)-almost affine if it is contained in
an R-neighborhood of a coset of a connected k-dimensional subgroup of A.

Definition 3.2. An open cover U of A is said to have inradius r > 0 if for any a ∈ A
there exists U ∈ U such that Br(a) ⊂ U , where Br(a) denotes the ball in A of radius r
around a.

Theorem 3.3 ([McM05, Theorem 5.1]). Let U be an open cover of A with inradius
r > 0 and let R > 0. Suppose that for any 1 ≤ k ≤ n − 1, every connected compo-
nent V of the intersection of k distinct elements of U is (R, (n − 1 − k))-almost affine.
Then there is a point inA which belongs to at least n distinct elements of U . In particular,
there are at least n distinct nonempty sets in U .

3.1. Verifying the hypotheses of Theorem 3.3

Below we fix a compact set K ⊂ Ln and a lattice x for which Ax ⊂ K . Furthermore, we
fix ε > 0 and denote the collection Ux,ε defined in (2.9) by U = {Ui}ni=1.

Lemma 3.4. The collection U forms an open cover of A with positive inradius.

Proof. The fact that the sets Ui ⊂ A are open follows readily from the requirement
in (2.9) that dimδ is constant for δ in a neighborhood of kε. Given a ∈ A, let 1 ≤ k0 ≤ n

be the minimal number k for which dim(k+1/2)ε(ax) ≤ k (this inequality holds trivially
for k = n). From the minimality of k0 we conclude that dimδ(ax) = k0 for any δ ∈
[(k0 − 1/2)ε, (k0 + 1/2)ε]. This shows that a ∈ Uk0 , so U is indeed a cover of A.
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We now show that the cover has positive inradius. Let W ⊂ G be the open neighbor-
hood of the identity obtained from Lemma 2.6 for ρ := ε/2. Taking δ0 := k0ε we find
that for any g ∈ W and δ ∈ ((k0 − 1/4)ε, (k0 + 1/4)ε) we have dimδ(gax) = k0. This
shows that (W ∩ A)a ⊂ Uk0 . Since W ∩ A is an open neighborhood of the identity in A
and the metric on A is invariant under translation by elements of A, there exists r > 0
(independent of k0 and a) such that Br(a) ⊂ Uk0 . In other words, the inradius of U is
positive as desired. ut

The following will be used for verifying the second hypothesis of Theorem 3.3.

Lemma 3.5. There exists R > 0 such that any connected component of Uk is (R, k−1)-
almost affine.

Definition 3.6. For a discrete subgroup 3 ⊂ Rd of rank k, let

c(3) := inf{|a3|1/k : a ∈ A},

and say that 3 is incompressible if c(3) > 0.

Lemma 3.5 follows from:

Theorem 3.7 ([McM05, Theorem 6.1]). For any positive c, C there exists R > 0 such
that if 3 ⊂ Rn is an incompressible discrete subgroup of rank k with c(3) ≥ c then
{a ∈ A : |a3|1/k ≤ C} is (R, j)-almost affine for some j ≤ gcd(k, n)− 1.

Proof of Lemma 3.5. We first claim that there exists c > 0 such that for any discrete
subgroup 3 ⊂ x we have c(3) ≥ c. To see this, recall that Ax is contained in a com-
pact subset K , and hence by Mahler’s compactness criterion, there is a positive lower
bound on the length of any nonzero vector belonging to a lattice in K . On the other hand,
Minkowski’s convex body theorem shows that the shortest nonzero vector in a discrete
subgroup 3 ⊂ Rn is bounded above by a constant multiple of |3|1/r(3). This implies the
claim.

In light of Theorem 3.7, it suffices to show that there is C > 0 such that if V ⊂ Uk is
a connected component, then there exists 3 ⊂ x such that V ⊂ {a ∈ A : |a3|1/k ≤ C}.
For any 1 ≤ k ≤ n, write grk for the Grassmannian of k-dimensional subspaces of Rn.
Define

M : Uk → grk, M(a) := a−1Vkε(ax).

Observe that M is locally constant on Uk . Indeed, by definition of Uk , for a0 ∈ Uk there
exists 0 < ρ < ε/2 such that dimδ(a0x) = k for any δ ∈ (kε − ρ, kε + ρ). Applying
Lemma 2.6 for the lattice a0x with ρ and δ0 = kε we see that for any a in a neighborhood
of the identity in A,

M(aa0) = a
−1
0 a−1Vkε(aa0x) = a

−1
0 Vkε(a0x) =M(a0).

Now let3 := x ∩M(a) where a ∈ V ;3 is well-defined since M is locally constant.
Then for a ∈ V ,

a3 = a(x ∩M(a)) = a(x ∩ a−1Vkε(ax)) = ax ∩ Vkε(ax).
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By Lemma 2.8 we have

|a3|1/k = |ax ∩ Vkε(ax)|1/k < (1+ ψ(kε))α(ax).

Since α(ax) ≤ 1 we may take C := 1+ ψ(kε) to complete the proof. ut

Proof of Theorem 2.7. Assume for contradiction that Ax is bounded but Ux,εn = ∅ for
some ε ∈ (0, 1). Then by Lemma 3.4,

U := {U1, . . . , Un−1}, where Uj := U
x,ε
j ,

is a cover of A of positive inradius. Moreover, if V is a connected component of Uj1 ∩ · · ·

∩Ujk with j1 < · · · < jk ≤ n−1, then Vk ⊂ Uj1 and j1 ≤ n−k. So in light of Lemma 3.5,
the hypotheses of Theorem 3.3 are satisfied. We deduce that U = {U1, . . . , Un−1} con-
tains at least n elements, which is impossible. ut

4. Bounds on Mordell’s constant

In analogy with (2.1) we define for any x ∈ Ln and 1 ≤ k ≤ n,

Vk(x) := {|3|1/r(3) : 3 ⊂ x, r(3) = k}, (4.1)
αk(x) := minVk(x). (4.2)

The following is clearly a consequence of Theorem 1.1:

Corollary 4.1. For any x ∈ Ln, any ε > 0 and any k ∈ {1, . . . , n} there is a ∈ A such
that αk(ax) ≥ 1− ε.

As the lattice x = Zn shows, the constant 1 appearing in this corollary cannot be improved
for any k. Note also that the case k = 1 of Corollary 4.1, although not stated explicitly in
[McM05], could be derived easily from McMullen’s results in conjunction with [BSD56].

Proof of Corollary 1.2. Since the A-action maps a symmetric box B to a symmetric box
of the same volume, the function κ : Ln→ R in (1.1) isA-invariant. By the case k = 1 of
Corollary 4.1, for any ε > 0 and any x ∈ Ln there is a ∈ A such that ax does not contain
nonzero vectors of Euclidean length at most 1 − ε, and hence does not contain nonzero
vectors in the cube [−(1/

√
n− ε), (1/

√
n− ε)]n. This implies that κ(x) ≥ (1/

√
n)n, as

claimed. ut

The bound (1.3) is not tight for any n. This is shown in [SW], along with several slight
improvements of (1.3). For example we prove that if n ≥ 5 is congruent to 1 modulo 4,
then

κn ≥
1

√
2n− 1 (n− 1)(n−1)/2

.

Similar slight improvements can be obtained for all n not divisible by 4. See [SW] for
more details.
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5. Two strategies for Minkowski’s conjecture

We begin by recalling the well-known Davenport–Remak strategy for proving Minko-
wski’s conjecture. The function N(u) =

∏n
i=1 ui is clearly A-invariant, and it follows

that the quantity
Ñ(x) := sup

u∈Rn
inf
v∈x
|N(u− v)|

appearing in (1.4) is A-invariant. Moreover, it is easy to show that if xj → x in Ln then
Ñ(x) ≥ lim supj Ñ(xj ). Therefore, in order to show the estimate (1.4) for x′ ∈ Ln, it is
enough to show it for some x ∈ Ax′. Suppose that x satisfies (1.5) with d = n, that is, for
every u ∈ Rn there is v ∈ x such that ‖u− v‖ ≤

√
n/2. Then applying the inequality of

arithmetic and geometric means one finds
n∏
i=1

(|ui − vi |
2)1/n ≤

1
n

n∑
i=1

|ui − vi |
2
≤

1
4
,

which implies |N(u − v)| ≤ 1/2n. The upshot is that in order to prove Minkowski’s
conjecture, it is enough to prove that for every x′ ∈ Ln there is x ∈ Ax satisfying (1.5).
So in light of Theorem 1.1 we obtain:

Corollary 5.1. If all stable lattices in Ln satisfy (1.5), then Minkowski’s conjecture is
true in dimension n.

In the next two subsections, we outline two strategies for establishing that all stable lat-
tices satisfy (1.5). Both yield affirmative answers in dimensions n ≤ 7, thus providing
new proofs of Minkowski’s conjecture in these dimensions.

5.1. Using Korkin–Zolotarev reduction

Korkin–Zolotarev reduction is a classical method for choosing a basis v1, . . . , vn of a
lattice x ∈ Ln. Namely one takes for v1 a shortest nonzero vector of x and denotes its
length by A1. Then, proceeding inductively, for vi one takes a vector whose projection
onto (span(v1, . . . , vi−1))

⊥ is shortest (among those with nonzero projection), and one
denotes the length of this projection by Ai . In case there is more than one shortest vector
the process is not uniquely defined. Nevertheless we call A1, . . . , An the diagonal KZ
coefficients of x (with the understanding that these may be multiply defined for some
measure zero subset of Ln). Since x is unimodular we always have∏

Ai = 1. (5.1)

Korkin and Zolotarev proved the bounds

A2
i+1 ≥

3
4A

2
i , A2

i+2 ≥
2
3A

2
i . (5.2)

A method introduced by Woods and developed further in [HGRS09] leads to an upper
bound on covrad(x) in terms of the diagonal KZ coefficients. The method relies on the
following estimate. Below, γn := supx∈Ln α

2
1(x) (where α1 is defined via (4.1)) is the

Hermite constant.
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Lemma 5.2 ([Woo65, Lemma 1]). Suppose that x is a lattice in Rn of covolume d , and
suppose that 2An1 ≥ dγ

(n+1)/2
n+1 . Then

covrad2(x) ≤ A2
1 −

A2n+2
1

d2γ n+1
n+1

.

Woods also used the following observation:

Lemma 5.3 ([Woo65, Lemma 2]). Let x be a lattice in Rn, let 3 be a subgroup, and let
3′ denote the projection of x onto (span3)⊥. Then

covrad2(x) ≤ covrad2(3)+ covrad2(3′).

As a consequence of Lemmas 5.2 and 5.3, we obtain:

Proposition 5.4. Suppose A1, . . . , An are diagonal KZ coefficients of x ∈ Ln and sup-
pose n1, . . . , nk are positive integers with n = n1 + · · · + nk . Set

mi := n1 + · · · + ni and di :=

mi∏
j=mi−1+1

Aj . (5.3)

If
2Ami−1+1 ≥ diγ

(ni+1)/2
ni+1 (5.4)

for each i, then

covrad2(x) ≤

k∑
i=1

(
A2
mi−1+1 −

A
2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

)
. (5.5)

Proof. Let v1, . . . , vn be the basis of x obtained by the Korkin–Zolotarev reduction pro-
cess. Let 31 be the subgroup of x generated by v1, . . . , vn1 , and for i = 2, . . . , k let 3i
be the projection onto (

⊕i−1
j=13j )

⊥ of the subgroup of x generated by vmi−1+1, . . . , vmi .
This is a lattice of dimension mi , and arguing as in the proof of (2.3) we see that it has
covolume di . The assumption (5.4) says that we may apply Lemma 5.2 to each 3i . We
obtain

covrad2(3i) ≤ A
2
mi−1+1 −

A
2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

for each i, and we combine these estimates using Lemma 5.3 and an obvious induction.
ut

Remark 5.5. Note that it is an open question to determine the numbers γn; however, if
we have a bound γ̃n ≥ γn we may substitute it into Proposition 5.4 in place of γn, as this
only makes the requirement (5.4) stricter and the conclusion (5.5) weaker.

Our goal is to apply this method to the problem of bounding the covering radius of stable
lattices. We note:
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Proposition 5.6. If x is stable then

A1 ≥ 1, A1A2 ≥ 1, . . . , A1 · · ·An−1 ≥ 1. (5.6)

Proof. In the above terms, the number A1 · · ·Ai is equal to |3| where 3 is the subgroup
of x generated by v1, . . . , vi . ut

This motivates the following:

Definition 5.7. We say that an n-tuple of positive real numbers A1, . . . , An is KZ stable
if the inequalities (5.1), (5.2), (5.6) are satisfied. We denote the set of KZ stable n-tuples
by KZS.

Note that KZS is a compact subset of Rn. Recall that a composition of n is an ordered
k-tuple (n1, . . . , nk) of positive integers such that n = n1 + . . . + nk . As an immediate
application of Corollary 5.1 and Propositions 5.4 and 5.6 we obtain:

Theorem 5.8. For each composition I := (n1, . . . , nk) of n, define mi, di by (5.3) and
let W(I) denote the set{

(A1, . . . , An) : ∀i, (5.4) holds, and
k∑
i=1

(
A2
mi−1+1 −

A
2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

)
≤
n

4

}
.

If
KZS ⊂

⋃
I

W(I) (5.7)

then Minkowski’s conjecture holds in dimension n.

Rajinder Hans-Gill has informed the authors that using arguments as in [HGRS09,
HGRS11], it is possible to verify (5.7) in dimensions up to 7, thus reproving Minkowski’s
conjecture in these dimensions.

5.2. Local maxima of covrad

The aim of this subsection is to prove Corollary 1.3, which shows that in order to establish
that all stable lattices in Rn satisfy the covering radius bound (1.5), it suffices to check
this on a finite list of lattices in each dimension d ≤ n.

The function covrad : Ln → R is proper, but nevertheless has local maxima, in the
usual sense, that is, lattices x ∈ Ln for which there is a neighborhood U of x in Ln
such that for all x′ ∈ U we have covrad(x′) ≤ covrad(x). Dutour Sikirić, Schürmann
and Vallentin [DSSV12] gave a geometric characterization of lattices which are local
maxima of the function covrad, and showed that there are finitely many of them in each
dimension. Corollary 1.3 asserts that Minkowski’s conjecture would follow if all local
maxima of covrad satisfy the bound (1.5).

Proof of Corollary 1.3. We prove by induction on n that any stable lattice satisfies the
bound (1.5) and apply Corollary 5.1. Let S denote the set of stable lattices in Ln. It is
compact, so the function covrad attains a maximum on S, and it suffices to show that
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this maximum is at most
√
n/2. Let x ∈ S be a point at which the maximum is attained.

If x is an interior point of S then necessarily x is a local maximum for covrad and the
required bound holds by hypothesis. Otherwise, there is a sequence xj → x such that
xj ∈ LnrS; thus each xj contains a discrete subgroup3j with |3j | < 1 and r(3j ) < n.
Passing to a subsequence we may assume that r(3j ) = k < n is the same for all j , and
3j converges to a discrete subgroup 3 of x. Since x is stable we must have |3| = 1. Let
π : Rn→ (span3)⊥ be the orthogonal projection and let 3′ := π(x).

It suffices to show that both 3 and 3′ are stable. Indeed, if this holds then by the
induction hypothesis, both 3 and 3′ satisfy (1.5) in their respective dimensions k, n− k,
and by Lemma 5.3, so does x. To see that 3 is stable, note that any subgroup 30 ⊂ 3 is
also a subgroup of x, and since x is stable, it satisfies |30| ≥ 1. To see that 3′ is stable,
note that if 30 ⊂ 3

′ then 3̃0 := x ∩ π
−1(30) is a discrete subgroup of x, so it satisfies

|3̃0| ≥ 1. Since |3| = 1 and π is orthogonal, we argue as in the proof of (2.3) to obtain

1 ≤ |3̃0| = |3| · |30| = |30|,

so 3′ is also stable, as required. ut

In [DSSV12], it was shown that there is a unique local maximum for covrad in dimen-
sion 1, none in dimensions 2–5, and a unique one in dimension 6. Local maxima of covrad
in dimension 7 are classified in [DS13]; there are two such lattices. Thus in total, in di-
mensions n ≤ 7 there are four local maxima of the function covrad. We were informed
by Mathieu Dutour Sikirić that these lattices all satisfy the covering radius bound (1.5).
Thus Corollary 1.3 yields another proof of Minkowski’s conjecture in dimensions n ≤ 7.
In [Dut05] an infinite list of lattices, one in each dimension n ≥ 6, is defined. It was
shown in [DSSV12, §7] that each of these lattices (denoted there by [Ln,Qn]) is a lo-
cal maximum for the function covrad, and satisfies the bound (1.5). Dutour Sikirić has
conjectured:

Conjecture 5.9 (M. Dutour Sikirić). For each n ≥ 6, the lattice [Ln,Qn] has the largest
covering radius among all local maxima in dimension n.

In light of Corollary 1.3, the validity of Conjecture 5.9 would imply Minkowski’s conjec-
ture in all dimensions.
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