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Abstract. The moduli space of genus 3 translation surfaces with a single zero has two connected
components. We show that in the odd connected component Hodd(4) the only GL+(2,R) orbit
closures are closed orbits, the Prym locus Q̃(3,−13), and Hodd(4).

Together with work of Matheus–Wright, this implies that there are only finitely many non-
arithmetic closed orbits (Teichmüller curves) in Hodd(4) outside of the Prym locus.

Keywords. Translation surface, abelian differential, Teichmüller dynamics, affine invariant sub-
manifold, orbit closure, Prym locus, Teichmüller curves

1. Introduction

An affine invariant submanifold is a subset of a stratum of translation surfaces that is
defined locally by real linear homogeneous equations in period coordinates (see Section 2
for a more precise definition). We say that an affine invariant submanifold N is rank 1
if the only way to deform a translation surface in N so that the deformed surface is also
in N is to combine the GL+(2,R) action with deformations that fix absolute periods.
Otherwise we say N is higher rank.

In minimal strata H(2g − 2), rank 1 affine invariant submanifolds are closed orbits.
The purpose of this paper is to show

Theorem 1.1. The only proper higher rank affine invariant submanifold of Hodd(4) is
the Prym locus Q̃(3,−13).

By proper, we mean not equal to a connected component of a stratum. Together with
recent work of Eskin–Mirzakhani–Mohammadi, discussed below, Theorem 1.1 implies
that in Hodd(4), every GL+(2,R)-orbit is either closed, dense in Q̃(3,−13), or dense
in Hodd(4).

The Prym locus Q̃(3,−13) is the set of all holonomy double covers of genus 1
quadratic differentials with one zero of order 3 and three simple poles. (The holonomy
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double cover of a quadratic differential is a possibly branched double cover equipped
with an abelian differential whose square is the pullback of the quadratic differential.)
Equivalently, the Prym locus is the set of all translation surfaces in the minimal stratum
in genus 3 that admit a flat involution with derivative −1 and four fixed points. It follows
from work of Lanneau [Lan08] (and, without too much work, from the methods in this
paper) that Q̃(3,−13) is connected.

Below we will indicate an application of Theorem 1.1 to finiteness of Teichmüller
curves, and explain that it provides evidence for a conjecture of Mirzakhani. Theorem 1.1
confirms this conjecture in the special case of Hodd(4), which is the first connected com-
ponent of a stratum analyzed so far that actually contains a higher rank affine invariant
submanifold. Now we give the context for our work.

Ten years ago, McMullen and Calta independently found and studied infinitely many
rank 1 affine invariant submanifolds in each of the two strata in genus 2 [Cal04, McM03]
(they did not use this terminology). Prior to this, it had been known that almost every
translation surface has dense orbit [Mas82, Vee82], but the only examples of proper orbit
closures not coming from covering constructions were the non-arithmetic Teichmüller
curves of Veech and Ward [Vee89, War98].

McMullen went on to classify orbit closures in genus two [McM05, McM06b,
McM07]. A very particular consequence of his work is that no proper higher rank affine
invariant submanifolds exist in genus 2.

Some generalizations of McMullen’s techniques were made in genus 3 [HLM09,
HLM12, Ngu11], showing that some especially interesting translation surfaces have dense
orbits. This made it reasonable to conjecture that few truly new orbit closures exist in
genus greater than 2.

Recently, progress has been obtained in arbitrary genus.

Theorem 1.2 (Eskin–Mirzakhani–Mohammadi [EM, EMM]). Every GL+(2,R) orbit
closure of a translation surface is an affine invariant submanifold.

This result and its proof give almost no information that might be useful in classifying
affine invariant submanifolds.1

The linear equations that locally define an affine invariant submanifold may be taken
to have coefficients in a number field [Wri14]. However, the earlier work mentioned above
suggests that affine invariant submanifolds are incredibly special: most sets of linear equa-
tions with coefficients in a number field should not locally define part of an affine invariant
submanifold. The most precise such conjecture in this direction is due to Mirzakhani. We
paraphrase it here.

Conjecture 1.3 (Mirzakhani). Any higher rank affine invariant submanifold N is ei-
ther a stratum, or is “not primitive” in the sense that every translation surface covers a
quadratic differential of lower genus.

1 Added in proof: After the completion of the present work, Filip proved that affine invariant
submanifolds are varieties [Fil16, Fil]. This work does give a great deal of algebro-geometric infor-
mation; however it is at this moment still unclear how to apply it to the classification problem.
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In the non-primitive case, N should arise from a “covering construction”, but it is an open
problem to determine exactly which sorts of such constructions are possible.

The third author showed that in rank 1 affine invariant submanifolds, all translation
surfaces are completely periodic [Wri15]. This is one reason why rank 1 is very spe-
cial. The Cylinder Deformation Theorem of [Wri15] (Theorem 2.1 below) supports the
conjecture that only few affine invariant submanifolds of higher rank exist.

Our work builds upon recent work of the last two authors on the hyperelliptic con-
nected component of the minimal stratum in genus 3.

Theorem 1.4 (Nguyen–Wright [NW14]). There are no proper higher rank affine invari-
ant submanifolds in Hhyp(4).

The analysis of Hodd(4) is more complicated than that of Hhyp(4), due to the existence of
a greater number of cylinder diagrams. Consequently, we have developed new techniques
capable of handling many cases at once. However, the main novelty of this paper is to
start with a rank 2 affine invariant submanifold N , and to establish sufficient symmetry
in the flat geometry to show that any M ∈ N must cover a surface of lower genus.

An immediate corollary of our work, together with recent work of Matheus–Wright
[MW15], is

Theorem 1.5. There are only finitely many non-arithmetic Teichmüller curves in Hodd(4)
outside of the Prym locus.

McMullen has constructed infinitely many non-arithmetic Teichmüller curves in the Prym
locus [McM06a], which have been studied by Möller [Möl14] and Lanneau–Nguyen
[LN14]. There are at present no known non-arithmetic Teichmüller curves in Hodd(4)
outside of the Prym locus. For the context of Theorem 1.5, including work of Bainbridge,
Bouw, Calta, McMullen, Möller, and Veech [BM12, Cal04, McM03, McM06b, Möl06b,
Möl06a, Möl08, Vee89], see [MW15] and the introduction to [NW14]. A list of all known
non-arithmetic Teichmüller curves can be found in the introduction to [Wri13].

2. Affine invariant submanifolds and cylinder deformations

This section reviews relevant background.
Every stratum H admits a finite orbifold cover H′ to which the GL+(2,R) action

lifts, such that H′ is a fine moduli space. (Passing to such a cover allows us to assume
that H′ has no orbifold points and is a fine moduli space. This avoids any subtleties in
the discussion of local coordinates below. The cover must typically be finite to ensure
that, for example, the lift of an orbit is a finite union of orbits.) For example, H′ can be
taken to be the moduli space of translation surfaces in H together with a choice of level 3
structure. Anyone not familiar with this issue is advised to pretend H′ = H. In minimal
strata, one can indeed take H = H′, and hence we will soon ignore the distinction.

Near any M ∈ H′, local coordinates may be defined as follows. Pick a basis
γ1, . . . , γn for the relative homology group H1(M,6;Z), where 6 is the set of zeros
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of M . The local coordinates are

M ′ = (X′, ω′) 7→

(∫
γi

ω′
)
∈ Cn.

An affine invariant submanifold in H′ is a submanifold that is defined in these local
coordinates by homogeneous linear equations with real coefficients. An affine invariant
submanifold of H is the image of one in H′ under the covering map.

Let us fix some standard notation. A cylinder on a translation surface is the image of
an isometric injection from an open Euclidean cylinder (R/cZ)×(0, h). The height of the
cylinder is h, the circumference is c, and the modulus is h/c. We will always assume that
cylinders on translation surfaces are maximal, so that their height cannot be increased.
A core curve of a cylinder is defined to be the image of any circle (R/cZ)× {x0}.

A saddle connection on a translation surface is a line segment connecting two zeros.
The holonomy of a relative homology class on (X, ω) is the integral of ω over any cycle
representing this class. The holonomy of a saddle connection is the holonomy of the
associated relative homology class; this is a vector in C. For more basic definitions, see
[MT02, Zor06].

Now suppose that N is an affine invariant submanifold, and take M ∈ N . Suppose
thatX is a cylinder onM . On small deformationsM ′ ofM (i.e., for allM ′ in a sufficiently
small simply connected neighborhood of M), the cylinder X persists. That is, there is a
corresponding cylinderX′ onM ′ whose height, circumference, and direction are all close
to those of X, and such that the core curves of X and X′ represent the same homology
class. Sometimes we may speak of X′ as being “the cylinder X on M ′.”

Two cylinders X and Y on M ∈ N are said to be N -parallel if they are parallel,
and remain parallel on all deformations ofM . The deformations are assumed to be small,
so that X and Y persist. Two cylinders X and Y are N -parallel if and only if there is a
constant c ∈ R such that on all deformations in N , the holonomy of the core curve of
Y is c times that of X. In other words, two cylinders on M ∈ N are N -parallel if and
only if one of the linear equations defining N in local period coordinates makes it so.
The relation of being N -parallel is an equivalence relation, and when we speak of the
equivalence class of a cylinder, we mean the set of all cylinders N -parallel to it.

Define the matrices

ut =

(
1 t

0 1

)
, as =

(
1 0
0 es

)
, rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Let C be a collection of parallel cylinders on a translation surfaceM . Suppose they are all
of angle θ ∈ [0, π), meaning that plus or minus the holonomy of all the core curves have
angle θ measured counterclockwise from the positive real direction. Define aCs (u

C
t (M))

to be the translation surface obtained by applying r−θ toM , then applying the matrix asut
to the images of the cylinders in C, and then applying rθ .

Theorem 2.1 (The Cylinder Deformation Theorem [Wri15]). Suppose that C is an
equivalence class of N -parallel cylinders on M ∈ N at angle θ . Then for all s, t ∈ R,
the surface aCs (u

C
t (M)) is in N .

We call aCs the cylinder stretch, and uCt the cylinder shear.
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If C = {C} consists of a single cylinder on M ∈ N , and aCs (u
C
t (M)) ∈ N for all s

and t , then we will say that C is N -free. If N is clear from context, we will call C free.
A corollary of the Cylinder Deformation Theorem, which we shall use frequently, is that
if a cylinder is not N -parallel to any other then it must be free.

Suppose that E is an equivalence class of N -parallel cylinders on M , and X is a
cylinder on M . Denote by P(X, E) the proportion of X which lies in E . That is,

P(X, E) =
Area(X ∩

⋃
C∈E C)

Area(X)
.

An elementary consequence of the Cylinder Deformation Theorem is

Proposition 2.2 (Nguyen–Wright [NW14]). Let X and Y be N -parallel cylinders
on M , and let E be an equivalence class of N -parallel cylinders on M . Then P(X, E) =
P(Y, E).

This proposition is one of the main tools in this paper.
Let TM(N ) denote the tangent space to N at M ∈ N . This is naturally a sub-

space of H 1(M,6;C) which is defined by linear equations with real coefficients. There-
fore we can write TM(N ) = C ⊗R T R

M(N ), where T R
M(N ) ⊂ H 1(M,6;R). Let p :

H 1(M,6;R)→ H 1(M;R) be the natural projection. Some of the results we cite in this
paper, including Theorem 1.2, use

Theorem 2.3 (Avila–Eskin–Möller [AEM]). Let N be an affine invariant submanifold,
and let M ∈ N . Then p(T R

M(N )) is symplectic.

In [Wri15] the third author first suggested that the number 1
2 dimR p(T R

M(N )) be called
the (cylinder) rank of N . Any proper affine invariant submanifold of H(4) has rank 1 or 2.

3. Periodic directions in Hodd(4)

This section discusses the combinatorics of periodic translation surfaces in Hodd(4), set-
ting the foundation for our analysis.

A translation surface is said to be periodic in some direction if the surface is the
union of saddle connections and closed trajectories in this direction. After rotation, every
periodic direction gives a horizontally periodic translation surface.

In this paper, we consider horizontally periodic translation surfaces to be (combinato-
rially) equivalent if there is a homeomorphism between them, taking positively oriented
horizontal leaves to positively oriented horizontal leaves. Thus the lengths of the hori-
zontal saddle connections and the circumferences of horizontal cylinders can be changed,
and the horizontal cylinders can be individually sheared and stretched, to yield equivalent
horizontally periodic translation surfaces.

Equivalence classes under this notion of equivalence are called cylinder diagrams. We
emphasize that cylinder diagrams do not contain any metric information: they indicate
only the number of cylinders, and the cyclic order of saddle connections on the top and
bottom of each cylinder. Cylinder diagrams do however contain an orientation, so that
“left” and “up” have meaning in these diagrams. Frequently, some saddle connections are
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labeled to indicate gluings, but the exact labels used are not considered part of the data of
the cylinder diagram.

Some years ago, Samuel Lelièvre used Sage to enumerate the 22 cylinder diagrams
in H(4), and produced a beautiful document illustrating all of these possibilities. This
document inspired and facilitated this work. Recently it has appeared as Appendix C
in [MMY15].

Lelièvre gives seven cylinder diagrams in Hodd(4) with three cylinders, and seven
with two cylinders. However, there is some additional symmetry which can be exploited.
There is a Z2 × Z2 action on the set of cylinder diagrams, where the two generators act
by reflection in the x-axis and in the y-axis respectively.

These symmetries are most easily thought of by drawing the cylinder diagram on the
page, and then reflecting this picture. This is easily shown to be well defined. The effect
of “reflection in the x-axis” is to switch the roles of top and bottom saddle connections
on each cylinder. The effect of “reflection in the y-axis” is to reverse the cyclic order of
saddle connections on each boundary component of each cylinder.

Proposition 3.1. Every cylinder diagram in Hodd(4) with at least two cylinders is equal
to one of those in Figure 3.1, possibly after horizontal or vertical reflection (or both).

We have checked this proposition using Lelièvre’s list, and also by an independent anal-
ysis without the use of computers, which is tedious but straightforward.

A surface in H(4) can have at most three parallel cylinders in any given direction.
Proposition 3.1 can be restated as follows: Let M ∈ Hodd(4) be horizontally periodic

with at least two horizontal cylinders. Then possibly after horizontal or vertical reflection
(or both), the cylinder diagram of M is equal to one of the eight diagrams listed in Fig-
ure 3.1. A horizontal or vertical reflection of a translation surface is defined to be an affine
self-map whose derivative is the desired reflection on R2.

To acknowledge the possible need to vertically and horizontally reflect a translation
surface, we will add the phrase “up to symmetry”. It is worth noting that reflecting a
translation surface may change its orbit closure; but nonetheless such reflections will not
affect our arguments.
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Fig. 3.1. Up to symmetry, there are eight cylinder diagrams in Hodd(4) with either two or three
cylinders. In all such pictures in this paper, opposite vertical edges of polygons are identified, and
horizontal edge labeling indicate additional edge identifications.
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4. Getting three cylinders

In this section we show that any rank 2 affine invariant submanifold of Hodd(4) has a
horizontally periodic surface with three horizontal cylinders.

Theorem 4.1 (Wright [Wri15]). Let N be an affine invariant submanifold. Then N con-
tains a horizontally periodic translation surface with at least rank(N ) horizontal cylin-
ders.

Theorem 4.2 (Smillie–Weiss [SW04]). The ut orbit closure of every translation surface
contains a horizontally periodic translation surface.

Proposition 4.3 (Nguyen–Wright [NW14]). If every surface in an affine invariant sub-
manifold N contains at most rank(N ) horizontal cylinders, then every cylinder on every
surface in N is free.

Proposition 4.4. Let N be a rank 2 affine invariant submanifold of Hodd(4). Then N
contains a horizontally periodic surface with three horizontal cylinders.
Proof. By Theorem 4.1, there is a horizontally periodic surfaceM in N with at least two
horizontal cylinders. If M has three horizontal cylinders the result is proved, so we will
assume thatM has only two horizontal cylinders. Thus by Proposition 4.3, every cylinder
on every surface in N is free.

By Proposition 3.1, M has one of the four 2-cylinder diagrams in Figure 3.1 (up to
symmetry). Figure 4.1 shows that, in each of these four cases, the two horizontal cylinders
on M can be sheared to give a surface M ′ with two vertical cylinders whose union is not
all of M ′.

1

2 3

4

1 2 4 3

1

2

3 4

1 2 4 3

1 2 3

4

2 1 3 4

1

2 3 4

1 2 4

3

Fig. 4.1. In any horizontally periodic translation surface in Hodd(4) with two horizontal cylinders,
it is possible to twist the horizontal cylinders so that there are two vertical cylinders whose union is
not the whole surface.

Rotate M ′ by π/2 to get a surface M ′′ with two horizontal cylinders whose union
is not the whole surface. By Theorem 4.2, there is a horizontally periodic translation
surface M ′′′ in the ut orbit closure of M ′′. This M ′′′ must have three horizontal cylinders.

ut

5. Setting up a case by case analysis

The section outlines the structure of our analysis, which follows that of [NW14] up to a
point. The cases given in this section are the topic of the remainder of the paper.

Proposition 5.1 (Nguyen–Wright [NW14]). Let N be an affine invariant submanifold
of H(4). If N contains a horizontally periodic surface with three free horizontal cylin-
ders, then N is equal to a connected component of H(4).
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Let N be a rank 2 affine invariant submanifold of Hodd(4). Proposition 4.4 shows that
there is an M ∈ N with three horizontal cylinders. Proposition 5.1 implies that these
three horizontal cylinders cannot all be free. On the other hand, [Wri15, Section 8] shows
that not all three horizontal cylinders on M can be N -equivalent to each other. (This is
explained in more detail in [NW14].) Hence, we get

Proposition 5.2. Let N be an affine invariant submanifold of H(4), and supposeM ∈ N
has three horizontal cylinders. Then one of them is free, and the other two are N -parallel
to each other.

We now have a number of not necessarily disjoint cases. By Proposition 4.4, N contains a
horizontally periodic surface whose cylinder diagram is equal to one of the four 3-cylinder
diagrams in Figure 3.1, up to symmetry. On this surface, one of the three cylinders is free.
Thus we have twelve cases: three choices of a free cylinder in each of the four 3-cylinder
diagrams. In Figure 5.1 these cases are enumerated.

1
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1 2

3

A

B

C

(O1)

1 2

3
1

2 3

A

B

C
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1 2

3

1

2 3

A

B

C

(O3)

1

2 3

3

2 1

A

B

C

(O4)

Fig. 5.1. In each of the four (up to symmetry) 3-cylinder diagrams there are three choices of a free
cylinder according to Proposition 5.2. We fix a label for each of the four 3-cylinder diagrams here,
and a label for each cylinder in each such diagram. The shading will be explained later.

Convention 5.3. Let N ∈ {1, 2, 3, 4} and L ∈ {A,B,C}. We will say we are “in case
ONL” if N contains a horizontally periodic translation surface whose cylinder diagram
is of type ON in Figure 5.1, and cylinder L is free. (As explained above, this necessarily
means that the other two horizontal cylinders are N -parallel.) The “O” in “ONL” stands
for “odd”; we have chosen to include it to simplify any future attempts to unify our no-
tation and analysis with that of [NW14] (an “H” prefix could be used for the cases that
occur for Hhyp(4)).

We emphasize again that the cases are not mutually exclusive. Here N is a fixed rank 2
affine invariant submanifold of Hodd(4). We have already shown that for any such N ,
we must be in at least one of the cases above. Theorem 1.1 will be established in the
following sections by showing that some of the cases are impossible, and in the remaining
cases N = Q̃(3,−13).

Guide to the case analysis. Lemma 6.1 will rule out Cases O1A, O1C, O3A, O3C, O4C;
Lemma 6.3 will rule out Cases O2A, O2C, O4A; and Lemma 6.5 will rule out Case O4B.
Proposition 7.1 will give conditions under which, in Cases O1B, O2B and O3B, N must
be the Prym locus. Lemmas 8.2 and 9.1 verify these conditions for Cases O1B and O3B
respectively, showing that N is in fact the Prym locus. Lemma 8.3 achieves the same
conclusion by reduction to Case O2B.
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Whenever an argument rules out several cases simultaneously, the reader may find it
helpful to refer to pictures of one of the cases, and first trace through the argument in
that particular case. We have chosen not to illustrate these arguments with specific cases
because we wish to focus on the crucial common features in the various groups of cases.

6. Impossible cases

This section rules out all cases in Figure 5.1 which are shaded in any way (leaving only
the “white” cases O1B, O2B and O3B).

Lemma 6.1. Let N be an affine invariant submanifold, and let M ∈ N . Suppose that
onM there are horizontal cylinders F and L such that F is free, and the bottom boundary
of F is contained in the top boundary of L. Suppose additionally that there is a horizontal
saddle connection that is in the top of F and the bottom of L. Then L is free.

The same statement holds with the roles of top and bottom reversed (so the top bound-
ary of F is contained in the bottom boundary of L, and there is a saddle connection in
the bottom of F and the top of L).

L

F

Fig. 6.1. A special case of Lemma 6.1, see for instance O1A or O3A with F = A,L = B. After
shearing F and the equivalence class of L, there is a vertical cylinder V , shaded above, contained
in the closure of F ∪ L. The dashed lines indicate that we do not have complete information on
the boundaries of the horizontal cylinders. Lemma 6.1 is somewhat more general than this picture,
since the bottom of F could be contained in the top of L in a more complicated way.

Proof. After shearing F and the cylinders in the equivalence class of L, there is a vertical
cylinder V that is contained in the closure of F ∪ L. (This uses the fact that there is
a saddle connection s in the top boundary of F and the bottom boundary of L. First
cylinders in the equivalence class of L may be sheared so that some vertical trajectories
which start at s travel upwards through L and into F . Then F may be sheared so that
these vertical trajectories hit s and close up to form a cylinder.)

Let V ′ be a vertical cylinder that is N -parallel to V . Let LF denote the subset of L
of points whose upward vertical trajectories enter F before entering any other cylinder.
(Thus LF may be thought of as the part of L which lies directly below F .) Every time V ′

goes through F , it must go down through LF . This gives the final equality in

P(V ′, F ) =
Area(V ′ ∩ F)

Area(V ′ ∩ (M \ F))+ Area(V ′ ∩ F)

≤
Area(V ′ ∩ F)

Area(V ′ ∩ LF )+ Area(V ′ ∩ F)
= P(V, F ).

(The final two quantities are equal to the height of F divided by the sum of the heights
of L and F .) Equality occurs if and only if V ′ is contained in the closure of LF ∪ F . By
Proposition 2.2 (with E = {F }, X = V , Y = V ′), the proportion of V ′ in F is equal to
the proportion of V in F . Hence V ′ is contained in the closure of LF ∪ F .
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Thus the equivalence class V of all cylinders N -parallel to V is contained in the
closure of F ∪L. By Proposition 2.2 (with E = V ,X = L, and Y any cylinder N -parallel
to L), the proportion of L in V is equal to the proportion of any cylinder N -parallel to L
in V . Hence, we see that L is not N -parallel to any horizontal cylinder except itself and
possibly F . Since F is free, L cannot be N -parallel to F . We conclude that L is free. ut

Corollary 6.2. In the analysis of rank 2 affine invariant submanifolds of Hodd(4), the
following cases are impossible: O1A, O1C, O3A, O3C, O4C.

These cases are shaded solid in Figure 5.1.

Proof. In all five cases, set L = B. In each case, let F be the choice of free cylinder,
for example F = A in case O1A. Then in each case Lemma 6.1 shows that L is free.
However in each of these cases F is the only free horizontal cylinder. ut

Lemma 6.3. Let N be an affine invariant submanifold, and suppose M ∈ N has two
horizontal cylinders K and L such that the closure of the union of K and L is not the
whole surface. Suppose that there is a saddle connection s which is both on the top and
bottom of L. Suppose that the top boundary of L is equal to s union the bottom boundary
of K . Then {K,L} is not an equivalence class of N -parallel cylinders.

The same statement holds with the roles of top and bottom reversed.

s

s

V

K

L

Fig. 6.2. A special case of Lemma 6.3, see for instance case O2 with K = B and L = C, or
case O4 with K = C and L = B.

Proof. Suppose for contradiction that {K,L} is an equivalence class of N -parallel cylin-
ders.

After shearing the whole surface, there is a vertical cylinder V that contains s. Let V be
the equivalence class of cylinders N -parallel to V . By Proposition 2.2 (with E = {K,L},
X = V , and Y ∈ V), the proportion of V in E must be equal to the proportion of any
cylinder Y that is N -parallel to V . Since P(V, E) = 1, it follows that P(Y, E) = 1.
Hence, each cylinder in V is contained in the closure of K ∪ L.

SinceK∪L is not the whole surface, we see that V does not coverK∪L. It follows by
an argument similar to that in the proof of the previous lemma that P(K,V) < P (L,V).
By Proposition 2.2 this contradicts the assumption that K and L are N -parallel. ut

Corollary 6.4. In the analysis of rank 2 affine invariant submanifolds of Hodd(4), the
following cases are impossible: O2A, O2C, O4A.

These cases are shaded with horizontal lines in Figure 5.1.

Proof. In case O2A, set K = B,L = C. In case O2C, set K = B,L = A. In case O4A,
set K = C,L = B. The assumption of these cases is that {K,L} is an equivalence class
of N -parallel cylinders, but Lemma 6.3 shows that this is impossible. ut
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Lemma 6.5. In the analysis of rank 2 affine invariant submanifolds of Hodd(4), case O4B
is impossible.
Proof. After shearing B and {A,C} there is a vertical cylinder V which contains the
saddle connection (2). There is also a cylinder K which is contained in B, and contains
the saddle connection (3). See Figure 6.3.

1

2 3

3

2 1

(O4)

V
K

K

Fig. 6.3. In the proof of Lemma 6.5, eventually there is a vertical cylinder V shaded with vertical
lines above, and a cylinder K shaded solid above.

By Proposition 2.2 (with E = {B}, X = K and Y any cylinder N -parallel to K),
since the proportion of K in E is one, and the proportion of any cylinder N -parallel to K
cannot be one, we see that K is free. By deforming K (stretching it horizontally using a
product of cylinder shear and cylinder stretch), we may assume that the length of (3) is
equal to the length of (1).

Since any vertical cylinder other than V must intersect K , Proposition 2.2 (with
E = {K}, X = V and Y any cylinder N -parallel to V ) implies that V is free because
the proportion of V in {K} is zero, while the proportion of any cylinder N -parallel to V
cannot be zero. Then Proposition 2.2 (with E = {V }, X = C, Y = A) implies that the
proportion of A in {V }, which is zero, equals the proportion of C in {V }, which is non-
zero, and contradicts the assumption that A and C are N -parallel. ut

7. The Prym locus

This section describes the conditions under which, in the remaining cases, we may assume
that N is the Prym locus Q̃(3,−13).

Proposition 7.1. In cases O1B, O2B and O3B, suppose that the cylinders A and C are
affinely equivalent via an affine map with derivative −1, and assume this map sends the
saddle connection (1) to the saddle connection (3). Then N = Q̃(3,−13).

In the assumption of the proposition, the involution is not required a priori to extend to
the whole surface. The proposition will show this, and this will imply that the surface is
in the Prym locus.

In terms of our pictures, the assumption says that the top rectangle can be rotated by π
and placed exactly on top of the bottom cylinder, so that the saddle connection (1) ends
up exactly on top of (3).
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Proof. Let M ∈ N be the translation surface of the specified type, depending on the
case. Under the given condition, we see that M admits an involution which fixes B and
exchanges A and C. This involution has four fixed points as indicated in Figure 7.1, and
M can be easily seen to lie in the Prym locus Q̃(3,−13).

1

2 3

1 2

3

(O1)

1 2

3
1

2 3

(O2)

1 2

3

1

2 3

(O3)

Fig. 7.1. Under appropriate assumptions on the top and bottom cylinders, the surfaces in the cases
above admit involutions with four fixed points. These fixed points are the zero, together with the
large dots drawn above. In these pictures, the involution is given by rotation by π about the central
point.

By stretching the middle cylinder B (which is free), we may assume that the ratio
of the modulus of A to the modulus of B is irrational. Hence the Veech Dichotomy
[Vee89] implies that M does not lie on a closed orbit. Thus the orbit closure of M
is a 4-(complex)-dimensional affine invariant submanifold, which must be contained in
both N and Q̃(3,−13). Since both N and Q̃(3,−13) are 4-dimensional, we see that
N = Q̃(3,−13). ut

8. Cases O1B and O2B, and two slit tori

In this section we show that cases O1B and O2B imply N = Q̃(3,−13).

Lemma 8.1. Let P1 and P2 be two flat slit tori, as shown in Figure 8.1. The correspond-
ing vertical edges in both pictures are assumed to have the same length. Suppose that
Area(P1) ≥ Area(P2), and for every cylinder L1 on P1 there is a cylinder L2 on P2 of
the same slope, with

Area(L1)

Area(P1)
=

Area(L2)

Area(P2)
.

Then P2 is isometric to P1.

Proof. Let Ti = C/3i be the torus obtained by filling in the slit on Pi , so that Ti is equal
to Pi with a vertical slit. Let r = Area(P2)/Area(P1).

Let L1 and H1 be the cylinders shown in Figure 8.2. Let α, β ∈ C be the holonomies
of the core curves of H1 and L1, respectively. (Any orientation for these core curves can
be fixed.) Note that 31 = αZ⊕ βZ.

Since the lengths of the vertical edges are the same for both P1 and P2, we see that
rα is the holonomy of the horizontal cylinder on P2.

By assumption, there is a cylinder L2 on P2 in the same direction as L1. In this
direction P2 is the cylinder L2 union a parallelogram from the slit to itself, as shown in
Figure 8.3. In Figure 8.3, the height of the white strips is the same on P1 and P2, and
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a a

b

b

(P1)
a a

b1

b1

b2

b2

(P2)

Fig. 8.1. Statement of Lemma 8.1: two slit tori. The identifications within each are given by the
letters. The bottom (unlabeled) vertical saddle connections are not identified with anything; they
are the slits. The slits are vertical, and of the same length on both P1 and P2. The saddle connection
a has the same length on both P1 and P2. On P2, it may be that one of b1 and b2 has zero length.
On P2, the individual segments b1 and b2 are not saddle connections, although their union is. In
P1 the upper corners of the rectangle correspond to the endpoint of a slit. In P2 the upper corners
correspond to a non-singular point. This is indicated by making the dots slightly smaller.

a a

b

b

(P1)
a a

b

b

(P1)

Fig. 8.2. Proof of Lemma 8.1. On the left, a cylinder L1 on P1 in the direction of the line from the
bottom left to the top right corner of the rectangle. On the right, a horizontal cylinder H1 on P1.

a

a

b

b

a′

a′

b′2

b′1

b′1

b′2

Fig. 8.3. Proof of Lemma 8.1. On the left, P1 in the direction of L1, shaded solid. On the right,
P2 in the direction of L2, shaded solid. L1 and L2 are in the same direction. The slits are the same
length on both pictures, and it is assumed that the shaded solid region occupies an equal fraction of
each picture.

by assumption the shaded solid regions (and hence their complements) occupy the same
fraction of the area on both P1 and P2. Elementary geometry shows that the length of the
top boundary of the parallelogram defining P2 in Figure 8.3 is r times the corresponding
quantity for P1. Thus the core curve of L2 is rβ.

Hence 32 ⊇ r(αZ⊕ βZ) = r31. In particular, we have covol(r31) = r
2covol(31)

≥ covol(32). Since r is the ratio of the covolumes of 32 and 31, and r ≤ 1 by assump-
tion, this gives r = 1 and 32 = 31. Therefore P1 and P2 are isometric as desired. ut

Lemma 8.2. In Case O1B, N = Q̃(3,−13).

Proof. By Proposition 7.1, it suffices to show that cylindersA andC are isometric. Shear-
ing B we may assume that there is a vertical cylinder V which is contained in the closure
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1

2 3

1 2

3

(O1) V

P1

P2

Fig. 8.4. Proof of Lemma 8.2.

of B as shown in Figure 8.4. Shearing the complement of B we may assume that there is
a vertical cylinder through (1). Let M be the resulting surface, shown in Figure 8.4.

There are three vertical saddle connections homologous to the core curve of V ; these
are drawn with dotted lines in Figure 8.4. Cutting along these three saddle connections
gives one vertical cylinder V , and two slit tori, which we denote by P1 and P2. Without
loss of generality we can assume that Area(P1) ≥ Area(P2).

We now claim that P1 and P2 satisfy the assumptions of Lemma 8.1. Indeed, suppose
that there is a cylinder L1 ⊂ P1. We also consider L1 as a cylinder on M . By Proposi-
tion 2.2 (with E the equivalence class of cylinders N -parallel to L1, X = A, Y = C),
the proportion of A in the equivalence class of cylinders N -parallel to L1, which is non-
zero, must be equal to the proportion of C in the equivalence class of cylinders N -parallel
toL1. Since the proportion ofC in the cylinderL1 is zero, there must be some cylinderL2
which is N -parallel to L1 which crosses C.

By Proposition 2.2 (with E = {B}, X = V ), the proportion of V in E is one, and
since there are no cylinders parallel to V which are entirely contained in B, we see that
V is free. Proposition 2.2 (with E = {V }, X = L1, Y = L2) also implies that L2 does not
intersect V because the proportion of L1 in V is zero and L2 is N -parallel to L1. Hence,
L2 does not intersect any of the saddle connections homologous to the core curve of V .
Thus, L2 is contained entirely in P2.

Consider the vertical cylinder VA which contains A. By Proposition 2.2 (with E equal
to the equivalence class of VA, X = A, Y = C), the proportion of A in the equivalence
class of cylinders parallel to VA, which is one, must be equal to the proportion of C in
that equivalence class. Hence, there must be a vertical cylinder VC which contains C. The
closure of VC is equal to the closure of P2. By Proposition 2.2 (with E = {B}, X = VA,
Y = VC), the equation that the proportion of VA in B is equal to the proportion of VC in
B can be simplified with elementary algebra to prove that the height of C is equal to the
height of A.

By Proposition 2.2 (with E = {L1, L2}, X = VA, Y = VC), the proportion of VA in
L1 ∪ L2 is equal to the proportion of VC in L1 ∪ L2, or equivalently

Area(L1)

Area(P1)
=

Area(L2)

Area(P2)
.

Thus the claim is proved, and Lemma 8.1 implies that P1 and P2 are isometric. Propo-
sition 7.1 now gives N = Q̃(3,−13). ut
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Lemma 8.3. In Case O2B, N = Q̃(3,−13).

Proof. We start by shearing A (and C) so that there is a vertical cylinder VA that contains
the saddle connection (1) and is contained in the closure of A. Since B is free, we can
shear it so that it contains a vertical saddle connection (see Figure 8.5). Since A and

1 2

3

1

3 2

A

B

C

(O2)

1

1

2

2

4

5

VA

VC

Fig. 8.5. On the left, we have reproduced the cylinder diagram for Case O2. On the right, we have
illustrated the switching of cylinder decompositions into Case O1B in the vertical direction.

C are N -parallel, by Proposition 2.2 (with E the equivalence class of VA, and X = A,
Y = C), the proportion ofA in the equivalence class of cylinders N -parallel to VA, which
is non-zero, is equal to the proportion of C in E , which implies that there exists a vertical
cylinder VC in the equivalence class of VA that intersects C. Also by Proposition 2.2 (with
E = {B}, X = VA, Y = VC), the proportion of VA in {B}, which is zero, must be equal to
the proportion of VC in {B}. Hence, VC cannot intersect B, since VA does not. Therefore,
VC does not cross any of the saddle connections (2), (4), (5). We can then conclude that
VC is entirely contained in the closure of C. But C is a slit torus, hence it is the union
of VC and a rectangle bounded by (2), (5) and the boundaries of VC . Thus the surface
admits a cylinder decomposition in the vertical direction in model O1. Moreover, since
VA and VC are N -parallel, we are in Case O1B. We can now use Lemma 8.2 to conclude
that N = Q̃(3,−13). ut

9. Case O3B

In this section we show

Lemma 9.1. Case O3B implies that N = Q̃(3,−13).

Proof. We will again show that A and C are isometric.
We begin by shearing cylindersA and B so that the saddle connection (1) lies directly

above itself. Then there is a vertical cylinder V1 passing through A and B, but not C (see
Figure 9.1). Call this Model I. By Proposition 2.2 (with E the equivalence class of V1 and
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1

1

2

2

3

3

V1

1

1

2

2

3

3

Fig. 9.1. Proof of Lemma 9.1: Model I is pictured on the left and Model II on the right.

X = A, Y = C), the proportion of A in the equivalence class of cylinders N -parallel
to V1, which is nonzero, is equal to the proportion of C in E . Since C does not intersect
the cylinder V1, there is a vertical cylinder V2 that is N -parallel to V1 that intersects C.

Every trajectory ascending vertically from C must pass through B, and so V2 passes
through each of B and C an equal number of times, say m > 0 times. Say that V2 passes
through A n ≥ 0 times. Note that m ≥ n.

Let E = {A,C}. Let h(·) denote the height of a cylinder, and let `(·) denote the length
of a saddle connection. By Proposition 2.2, P(V1, {A,C}) = P(V2, {A,C}). This yields

h(A)

h(A)+ h(B)
=

nh(A)+mh(C)

nh(A)+m(h(B)+ h(C))
,

which holds if and only if
h(C)

h(A)
=
m− n

m
.

Hence, h(C) ≤ h(A).
On the other hand, if we shear B and C so that (3) lies directly above itself, and if we

repeat the same argument above, then we get h(A) ≤ h(C). Call this Model II (depicted
in Figure 9.1). Hence, h(A) = h(C). Moreover, n = 0, which means that V2 is contained
in the closure of B ∪ C.

Next consider the arrangement of Model I. Recall that we proved there is another
cylinder V2 that is N -parallel to V1. If we use Smillie–Weiss [SW04] to get a third
cylinder in the vertical direction, then we are done unless the resulting surface satis-
fies Case O3B. In this case V1 and V2 play the roles of A and C. Hence, by the argu-
ment above, we have h(V1) = h(V2). Recall that `(1) = h(V1). It is easy to see that
`(3) = mh(V2). This implies that `(1) ≤ `(3).

On the other hand, if we apply this exact argument to Model II, we get `(3) ≤ `(1),
which implies `(1) = `(3).

To show that A and C are isometric, it only remains to show that they are sheared by
equal amounts. Recalling again that V2 ⊂ B ∪ C and h(V2) = `(3), we see that every
vertical trajectory descending from (3) on the top of B hits (3) on the bottom of C. Hence,
neither A nor C are twisted, which implies that they are isometric. The lemma follows
from Proposition 7.1. ut
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