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Abstract. We study Hardy classes on the disk associated to the equation ∂̄w = αw̄ for α ∈ Lr
with 2 ≤ r < ∞. The paper seems to be the first to deal with the case r = 2. We prove an analog
of the M. Riesz theorem and a topological converse to the Bers similarity principle. Using the
connection between pseudo-holomorphic functions and conjugate Beltrami equations, we deduce
well-posedness on smooth domains of the Dirichlet problem with weighted Lp boundary data for
2D isotropic conductivity equations whose coefficients have logarithm in W1,2. In particular these
are not strictly elliptic. Our results depend on a new multiplier theorem for W1,2

0 -functions.
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1. Introduction

Pseudo-holomorphic functions of one complex variable, i.e. solutions to a ∂̄ equation
whose right hand side is a real linear function of the unknown variable, are perhaps
the simplest generalization of holomorphic functions. They received early attention
in [41, 11] and extensive treatment in [6, 42] when the coefficients are Lr -summable,
r > 2. While [6] takes on a function-theoretic viewpoint, [42] dwells on integral equa-
tions and leans to applications to geometry, elasticity and hydrodynamics. Recent devel-
opments and applications to various boundary value problems can be found in [31, 15].
Hardy classes for such functions were introduced in [35] and subsequently considered in
[27, 28, 29, 5] in the range of exponents 1 < p <∞; see [14, 30, 16, 4] for further gener-
alizations to multiply connected domains. The connection between pseudo-holomorphic
functions and conjugate Beltrami equations makes pseudo-holomorphic Hardy classes a
convenient framework to solve Dirichlet problems with Lp boundary data for isotropic
conductivity equations [5, 14, 4]. These are also instrumental in [17, 18, 19, 16] to ap-
proach certain inverse boundary problems.
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As reported in [7], I. N. Vekua stressed on several occasions an interest in developing
the theory for Lr coefficients when 1 < r ≤ 2. However, solutions then need no longer
be continuous, which has apparently been an obstacle to such extensions; see [7, 36] for
classes of coefficients that ensure such continuity. The present paper seems to be the first
to deal with the critical exponent r = 2. We develop a theory of pseudo-holomorphic
Hardy spaces on the disk in the range 1 < p < ∞, prove existence of Lp boundary val-
ues, and give an analog of the M. Riesz theorem in this context. As a byproduct, we obtain
a Liouville-type theorem. We also develop a topological parametrization by holomorphic
Hardy functions which is new even for r > 2. We apply our result to well-posedness
of the Dirichlet problem with weighted Lp boundary data for 2D conductivity equations
whose coefficients have logarithm inW 1,2. In particular these are not bounded away from
zero nor infinity and no strict ellipticity occurs, which makes for results of a novel type.
Accordingly, solutions may be locally unbounded.

As in previous work on pseudo-holomorphic functions, we make extensive use of the
Bers similarity principle, but in our case it requires a thorough analysis of smoothness
and boundedness properties of exponentials of W 1,2 functions which is carried out in
a separate appendix. There we prove a theorem, one of the main technical results of
the paper, asserting that the exponential of a W 1,2

0 function in the disk is a multiplier
from the space of functions with Lp maximal function on the unit circle to the space of
functions satisfying a Hardy condition of order p on the unit disk. This would have higher
dimensional analogs, but we make no attempt at developing them and stick to dimension 2
throughout the paper.

In Section 2 we introduce main notation and discuss numerous facts on Sobolev
spaces we use later on. In Section 3 we formulate the classical similarity principle (fac-
torization) for pseudo-holomorphic functions. A converse statement is given in Section 4.
Section 5 is devoted to pseudo-holomorphic Hardy spaces; we give there a topologi-
cal converse to the similarity principle. In Section 6 we obtain a generalization of the
M. Riesz theorem on the conjugate operator. Section 7 contains an application of our re-
sults to the conductivity equation with exp-Sobolev coefficients. Finally, several technical
results and a multiplier theorem are contained in the appendix, Section 8.

2. Notation and preliminaries

Let C ∼ R2 be the complex plane and C := C ∪ {∞}. We designate by Tξ,ρ and Dξ,ρ
respectively the circle and the open disk centered at ξ of radius ρ. We simply write Tρ , Dρ
when ξ = 0, and if ρ = 1 we omit the subscript. If f is a function on Dρ , we often denote
by fρ the function on D defined by fρ(ξ) := f (ρξ). Given ξ ∈ T and γ ∈ (0, π/2), we
let 0̃ξ,γ indicate the open cone with vertex ξ and opening 2γ , symmetric with respect to
the line (0, ξ). We define 0ξ,γ = Aξ,γ ∪ Dsin γ , where Aξ,γ is the bounded component
of 0̃ξ,γ \ Dsin γ .

A complex-valued function f on D has nontangential limit ` at ξ if f (z) tends to `
as z→ ξ inside 0ξ,γ for every γ . The nontangential maximal function of f (with open-
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ing 2γ ) is the real-valued map Mγ f on T given by

Mγ f (ξ) := sup
z∈D∩0ξ,γ

|f (z)|, ξ ∈ T. (2.1)

For E ⊂ C and f a function on a set containing E, we let f|E indicate the restriction of f
to E. We write |E| for the planar Lebesgue measure of E, as no confusion can arise with
complex modulus. The differential of that measure is denoted interchangeably by

dm(z) = dx dy = (i/2) dz ∧ dz̄, z = x + iy.

When � ⊂ C is an open set, we denote by D(�) the space of C∞-smooth complex-
valued functions with compact support in �, equipped with the usual topology.1 Its dual
D′(�) is the space of distributions on �. For p ∈ [1,∞], we let Lp(�) and W 1,p(�) be
the usual Lebesgue and Sobolev spaces with respect to dm; we sometimes consider their
subspaces of real-valued functions LpR(�) and W 1,p

R (�). The space W 1,p(�) consists of
functions in Lp(�) whose first distributional derivatives lie in Lp(�), with the norm

‖f ‖W 1,p(�) = ‖f ‖Lp(�) + ‖∂f ‖Lp(�) + ‖∂̄f ‖Lp(�).

Here ∂ and ∂̄ stand for the usual complex derivatives:

∂f := ∂zf =
1
2 (∂x − i∂y)f and ∂̄f := ∂z̄f =

1
2 (∂x + i∂y)f, z = x + iy.

Setting ∇f := (∂xf, ∂yf ) to mean the (C2-valued) gradient of f , observe that the point-
wise relation ‖∇f ‖2C2 = 2|∂f |22 + 2|∂̄f |22 holds. Note also the identities ∂f = ∂̄ f̄ and
1 = 4∂∂̄ , where 1 is the Euclidean Laplacian. By Weyl’s lemma [20, Theorem 24.9],
the distributions u ∈ D′(�) such that 1u = 0 are exactly the harmonic functions on �.
Consequently, the distributions ψ ∈ D′(�) such that ∂̄ψ = 0 are exactly the holomorphic
functions on �. The space D(R2) is dense in W 1,p(R2) for p ∈ [1,∞), and in general
we let W 1,p

0 (�) indicate the closure of D(�) inW 1,p(�). The spaceW 1,∞(�) identifies
with the Lipschitz-continuous functions on � [40, Section V.6.2].

We also introduce the spaces Lploc(�) and W 1,p
loc (�) of distributions whose restriction

to any relatively compact open subset�0 ⊂ � lies in Lp(�0) andW 1,p(�0) respectively.
They are topologized by the family of seminorms ‖f�n‖Lp(�n) and ‖f�n‖W 1,p(�n)

, where
{�n} is a sequence of relatively compact open subsets exhausting �.

Below we indicate some properties of Sobolev functions, most of them standard. They
are valid on bounded Lipschitz domains (i.e. domains � whose boundary ∂� is locally
isometric to the graph of a Lipschitz function).

• For 1 ≤ p ≤ ∞, every f ∈ W 1,p(�) is the restriction to � of some f̃ ∈ W 1,p(R2). In
fact, there is a continuous linear map

E : W 1,p(�)→ W 1,p(R2) such that (Ef )|� = f (2.2)

1 That is, the inductive topology of subspaces DK consisting of functions supported by the com-
pact set K , each DK being topologized by uniform convergence of all derivatives [38, Section I.2].
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(the extension theorem [12, Proposition 2.70]). When � = Dρ , we may simply set
(Ef )|C\Dρ (z) = ϕ(z)f (ρ

2/z̄), where ϕ ∈ D(R2) and ϕ|Dρ ≡ 1. The extension theorem
entails that smooth functions on � are dense in W 1,p(�) when 1 ≤ p <∞.
• For p > 2, W 1,p(�) embeds continuously in the space of Hölder-smooth functions

with exponent 1 − 2/p on �, in particular functions in W 1,p(�) extend continuously
to �, and W 1,p(�) is an algebra where multiplication is continuous and derivatives
can be computed by the chain rule. For 1 ≤ p < 2 the embedding is in Lp

∗

(�) with
p∗ = 2p/(2− p), while W 1,2(�) is embedded in all L`(�), ` ∈ [1,∞) (the Sobolev
embedding theorem [1, Theorems 4.12, 4.39]).
• For p ≤ 2 the embedding W 1,p(�) → L`(�) is compact when ` ∈ [1, p∗) (the

Rellich–Kondrashov theorem [1, Theorem 6.3]); p∗ = ∞ for p = 2.
• If g ∈ D′(�) has derivatives in Lp(�) for some p ∈ [1,∞), then g ∈ W 1,p(�) [12,

Theorem 6.74].2 Moreover, there exists C = C(�, p) such that

‖g − g�‖Lp(�) ≤ C(‖∂g‖Lp(�) + ‖∂̄g‖Lp(�)) with g� :=
1
|�|

∫
�

g dm (2.3)

(the Poincaré inequality [43, Theorem 4.2.1]). Let C1 = C1(p) be a number for which
(2.3) holds for � = D; it is easily seen by homogeneity that if ξ ∈ C, ρ > 0, and
g ∈ W 1,p(Dξ,ρ), then(

1
|Dξ,ρ |

∫
Dξ,ρ
|g− gDξ,ρ |

p dm

)1/p

≤ C1ρ
1−2/p(‖∂g‖Lp(Dξ,ρ ) + |∂̄g‖Lp(Dξ,ρ )). (2.4)

In particular, if p = 2 and ∂g, ∂̄g ∈ L2(�), then the right hand side of (2.4) is bounded
and arbitrarily small as ρ → 0, thereby showing that g lies in VMO(�), the space of
functions with vanishing mean oscillation on � [10].
• W 1,p(�)-functions need not be continuous nor even locally bounded when p ≤ 2;

however, if p > 1, their non-Lebesgue points form a set of Bessel B1,p-capacity zero
[43, Theorem 3.10.2]. Such sets are very thin: not only do they have measure zero but
also their Hausdorff H 2−p+ε-dimension is zero for each ε > 0 [43, Theorem 2.6.16].
When speaking of pointwise values of f ∈ W 1,p(�), we pick a representative such
that f (z) = limε→0 fDz,ε outside a set of B1,p-capacity zero. At such a z, f is said to
be strictly defined.
• If Lλ(∂�) is understood with respect to arclength, then W 1,λ(∂�) is naturally defined

using local coordinates since any Lipschitz-continuous change of variable preserves
Sobolev classes [43, Theorem 2.2.2]. Each f ∈ W 1,p(�) with 1 < p ≤ ∞ has a trace
on ∂� (denoted again by f or sometimes by tr∂� f for emphasis), which lies in the
Sobolev space W 1−1/p,p(∂�) of nonintegral order.3 The latter is a real interpolation

2 The proof given there for bounded C1-smooth � carries over to the Lipschitz case.
3 We leave out the case p = 1 where the trace is merely defined in L1(∂�). The space
W1−1/p,p(∂�) coincides with the Besov space B1−1/p,p

p (∂�), but we need not introduce Besov
spaces here.
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space between Lp(∂�) and W 1,p(∂�), with the norm given by [1, Theorem 7.47]

‖g‖W 1−1/p,p(∂�) = ‖g‖Lp(∂�)+

(∫
∂�×∂�

|g(t)− g(t ′)|p

(3(t, t ′))p
d3(t) d3(t ′)

)1/p

, (2.5)

where 3(t, t ′) indicates the length of the arc (t, t ′) on ∂�. Note that |t − t ′| ∼ 3(t, t ′)
since ∂� is Lipschitz. The trace operator defines a continuous surjection fromW 1,p(�)

onto W 1−1/p,p(∂�) [24, Theorem 1.5.1.3]. The pointwise definition of tr∂� f 3-a.e.
is based on the extension theorem and the fact that the non-Lebesgue points of Ef (see
(2.2)) have HausdorffH 1-measure zero [43, Remark 4.4.5]. Of course tr∂� f coincides
with the restriction f|∂� whenever f is smooth on �. The subspace of functions with
zero trace is none but W 1,p

0 (�).
Since the integral on the right hand side of (2.5) does not change if we add a constant
to g, it follows from (2.3) by the continuity of the trace operator that(∫

∂�×∂�

|g(t)− g(t ′)|p

(3(t, t ′))p
d3(t) d3(t ′)

)1/p

≤ C(‖∂g‖Lp(�) + ‖∂̄g‖Lp(�)), (2.6)

where the constant C depends on � and p.
A variant of the Poincaré inequality involving the trace is as follows: wheneverE ⊂ ∂�
has arclength 3(E) > 0, there is C > 0 depending only on p, � and E such that∥∥∥∥g − ∫

E

tr∂� g
∥∥∥∥
Lp(�)

≤ C(‖∂g‖Lp(�) + ‖∂̄g‖Lp(�)). (2.7)

This follows immediately from the continuity of the trace operator, the Rellich–Kon-
drashov theorem, and [43, Lemma 4.1.3].
• For p ∈ (1,∞) the trace operator has a continuous section [24, Theorem 1.5.1.3], that

is, for each ψ ∈ W 1−1/p,p(∂�), there is g ∈ W 1,p(�) such that

‖g‖W 1,p(�) ≤ C‖ψ‖W 1−1/p,p(∂�), tr∂� g = ψ, (2.8)

with C = C(�, p). If we assume that � is C1-smooth and not just Lipschitz, then the
function g in (2.8) can be chosen to be harmonic in � (elliptic regularity theory [26,
p. 165 & Theorem 1.3]).4

• The nonintegral version of the Sobolev embedding theorem [1, Theorem 7.34] as-
serts that W 1−1/β,β(∂�) embeds continuously in Lβ/(2−β)(∂�) if 1 < β < 2, while
W 1/2,2(∂�) embeds in L`(∂�) for all ` ∈ [1,∞). The corresponding generalization
of the Rellich–Kondrashov theorem [12, Theorem 4.54] is as follows: if 1 < β ≤ 2,
then W 1−1/β,β(∂�) embeds compactly in L`(∂�) for ` < β/(2− β).

4 In fact, elliptic regularity holds for 1 < p <∞ as soon as ∂� is locally the graph of a function
with VMO derivative [33, Theorem 1.1]. If ∂� is only Lipschitz-smooth, then the range of p has to
be restricted in a manner that depends on the Lipschitz constant (see [26, 33]).
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• When p ∈ (2,∞), the nonlinear map f 7→ ef is bounded and continuous from
W 1,p(�) into itself: this follows from the Taylor expansion of exp because W 1,p(�)

is an algebra. When p = 2 this property no longer holds, but still f 7→ ef is con-
tinuous and bounded from W 1,2(�) into W 1,q(�) for each q ∈ [1, 2); in particular
tr∂� ef = etr∂� f exists in W 1−1/q,q(∂�) for 1 < q < 2. This is the content of Propo-
sition 8.4 that we could not locate in the literature.
• We use at some point the Sobolev space W 2,p(�) of functions in Lp(�) whose first

distributional derivatives lie in W 1,p(�), equipped with the norm

‖f ‖W 2,p(�) = ‖f ‖Lp(�) + ‖∂f ‖W 1,p(�) + ‖∂̄f ‖W 1,p(�).

When p ≤ 2, the Rellich–Kondrashov theorem implies that W 2,p(�) is compactly
embedded in W 1,`(�) for ` ∈ [1, p∗).

Given a bounded domain � and h ∈ Lp(�), 1 < p < ∞, let h̃ denote the extension
of h by 0 off �. The Cauchy integral operator applied to h̃ defines a function C(h) ∈
W

1,p
loc (R

2) given by

C(h)(z) =
1
π

∫
�

h(t)

z− t
dm(t) =

1
2πi

∫
�

h(ξ)

ξ − z
dξ ∧ dξ̄ , z ∈ C. (2.9)

Indeed, C(h) lies in L1
loc(C) by Fubini’s theorem. Furthermore, z 7→ 1/(πz) is a funda-

mental solution of the ∂̄ operator and it follows that ∂̄C(h) = h̃ in the sense of distribu-
tions. On the other hand (see [2, Theorem 4.3.10 and the remark thereafter]), the complex
derivative ∂C(h) is given by the singular integral

B(h)(z) := lim
ε→0
−

1
π

∫
�\D(z,ε)

h(ξ)

(z− ξ)2
dm(ξ), z ∈ C, (2.10)

which is the so-called Beurling transform of h̃. By a result of Calderón and Zygmund (see
[2, Theorem 4.5.3]) this transform mapsLp(C) continuously into itself, and altogether we
conclude that C(h) ∈ W 1,p

loc (C), as announced.
The discussion above shows in particular that ϕ := C(h)|� lies in W 1,p(�), and that

‖∂ϕ‖Lp(�) + ‖∂̄ϕ‖Lp(�) = ‖B(h)|�‖Lp(�) + ‖h‖Lp(�) ≤ c‖h‖Lp(�),

where c depends only on p. In addition, it is a consequence of Fubini’s theorem that
‖ϕ‖Lp(�) ≤ 6 diam� ‖h‖Lp(�) [2, Theorem 4.3.12]. Therefore, we have

‖C(h)‖W 1,p(�) ≤ C‖h‖Lp(�), (2.11)

where C depends only on p and �. Moreover, if � ⊂ DR , then C(h) coincides on � with
the convolution of h̃with z 7→ χD2R (z)/z, where χE denotes the characteristic function of
a set E. Therefore ∂C(ϕ)|� = C(∂ϕ)|� whenever ϕ ∈ D(�), and by a density argument
it follows that

‖C(h)‖W 2,p(�) ≤ C‖h‖W 1,p(�), h ∈ W
1,p
0 (�), (2.12)

for p ∈ (1,∞) and some C = C(p,�).
Properties of the Cauchy transform make it a basic tool to integrate ∂̄-equations in

Sobolev classes. In this connection, we record the following facts.
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• Given a bounded open set � ⊂ C and a ∈ Lp(�) with p ∈ (1,∞), a distribution
A ∈ D′(�) satisfies ∂̄A = a if and only ifA = C(a)+8where8 is holomorphic in�.
This follows from the relation ∂̄C(a) = a and Weyl’s lemma. By (2.11), A belongs to
W 1,p(�) if and only if 8 does. By localization, it follows that if f ∈ L1

loc(�) satisfies
∂̄f ∈ L

p

loc(�), then f ∈ W 1,p
loc (�).

• Given a bounded C1-smooth simply connected domain � ⊂ C and a ∈ Lp(�) with
p ∈ (1,∞), for every ψ ∈ W 1−1/p,p(∂�), λ ∈ R, θ0 ∈ R, there exists a unique
A ∈ W 1,p(�) such that ∂̄A = a with tr∂� Re(eiθ0A) = ψ , and

∫
∂�

Im(eiθ0A) = λ.
Moreover, there exists C depending only on p and � such that

‖A‖W 1,p(�) ≤ C(‖a‖Lp(�) + ‖ψ‖W 1−1/p,p(∂�) + |λ|). (2.13)

To see this, it suffices, in view of (2.11) and the previous remark, to consider the case
a = 0. Clearly, we may also assume that θ0 = 0. By elliptic regularity, there is a
unique u ∈ W 1,p

R (�), harmonic in � and such that tr∂� u = ψ . Moreover, u satisfies
‖u‖W 1,p(�) ≤ C‖ψ‖W 1−1/p,p(∂�). As � is simply connected, integrating the conjugate
differential yields a so-called harmonic conjugate to u, that is, a real-valued harmonic
function v such that A := u + iv is holomorphic in �. Since u and v are real, the
Cauchy–Riemann equations give |∂v| = |∂̄v| = |∂u|. Hence, we have v ∈ W 1,p

R (�).
Clearly v is unique up to an additive constant, and if

∫
∂�
v = λ we deduce from (2.7)

that ‖v‖W 1,p(�) ≤ C1‖u‖W 1,p(�) + c1|λ| so that (2.13) holds (with a = 0), as desired.

When h ∈ L2(C) has unbounded support, definition (2.9) of the Cauchy transform is no
longer suitable. Instead, one renormalizes the kernel and defines

C2(h)(z) :=
1
π

∫
R2

(
1

z− t
+
χC\D(t)

t

)
h(t) dm(t), z ∈ C. (2.14)

Since h ∈ L2(C), the integral in (2.14) converges for a.e. z ∈ C by Fubini’s theorem
and the Schwarz inequality. In fact, the function C2(h) belongs to the space VMO(C)
[2, Theorem 4.3.9]. Furthermore, ∂̄C2(h) = h and ∂C2(h) = B(h) [2, Theorem 4.3.10].
In particular, C2(h) lies in W 1,2

loc (C) and the map h 7→ C2(h) maps L2(C) continuously
into W 1,2

loc (C).
In Section 8.1 we prove the following estimate, valid for some absolute constant C:

‖C2(h)‖L2(DR)/R ≤ C(1+ (logR)1/2)‖h‖L2(DR), R ≥ 1. (2.15)

Hereafter, all classes of functions we consider are embedded in Lploc(�) for some
p ∈ (1,∞), and solutions to differential equations are understood in the distributional
sense.

On the disk, we often use the elementary fact that if f ∈ W 1,p(D), then fρ converges
to f in W 1,p(D) as ρ → 1−.

Here and later on we use the same symbols (like C) to denote different constants.
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3. Pseudo-holomorphic functions

Pseudo-holomorphic functions on an open set � ⊂ C are those functions 8 that satisfy
an equation of the form

∂̄8(z) = a(z)8(z)+ b(z)8(z), z ∈ �. (3.1)

We restrict ourselves to the case where � is bounded and a, b ∈ Lr(�) for some r ∈
[2,∞). Accordingly, we only consider solutions 8 which belong to Lγloc(�) for some
γ > r/(r − 1), so that, by Hölder’s inequality, the right hand side of (3.1) defines a
function in Lλloc(�) for some λ > 1. As a consequence, 8 belongs to W 1,λ

loc (�).
Let B ∈ W 1,r(�) be such that ∂̄B = b. A simple computation (using Proposition 8.4

if r = 2) shows that 8 satisfies (3.1) if and only if w := e−B8 satisfies

∂̄w = αw̄, (3.2)

where α := ae−2i ImB has the same modulus as a. Note (again from Proposition 8.4
for r = 2) that w ∈ W 1,λ′

loc (�) for some λ′ > 1. Therefore, by the Sobolev embedding

theorem, w lies in Lγ
′

loc(�) for some γ ′ > 2, and so (3.2) is a simpler but equivalent form
of (3.1) which is the one we shall really work with.

We need a factorization principle which goes back to [41], and was called by Bers the
similarity principle (similarity to holomorphic functions, that is). It was extensively used
in all works mentioned above. We provide a proof because we include the case r = 2 and
discuss normalization issues when � is smooth.

Lemma 3.1 (Bers similarity principle). Let � ⊂ C be a bounded domain, α ∈ Lr(�)
for some r ∈ [2,∞), and w ∈ Lγloc(�) be a solution to (3.2) with γ > r/(r − 1). Then:

(i) The function w admits a factorization of the form

w = esF, z ∈ �, (3.3)

where F is holomorphic in �, s ∈ W 1,r(�) with

‖s‖W 1,r (�) ≤ C‖α‖Lr (�), (3.4)

and C depends only on r and �.
(ii) Assume in addition that � is C1-smooth. If w 6≡ 0 and we fix some λ, θ0 ∈ R and

ψ ∈ W
1−1/r,r
R (∂�), then s can be uniquely chosen in (3.3) so that tr∂� Re(eiθ0s) =

ψ and
∫
∂�

Im(eiθ0s) = λ. In this case, there is a constant C depending only on r
and � such that

‖s‖W 1,r (�) ≤ C(‖α‖Lr (�) + ‖ψ‖W 1−1/r,r (∂�) + |λ|). (3.5)

(iii) Either w ≡ 0 or w 6= 0 a.e. on �.5 Moreover, w ∈ W 1,r
loc (�) if r > 2 and w ∈

W
1,q
loc (�) for all q ∈ [1, 2) if r = 2.

5 In fact, more is true: if r > 2, then es never vanishes and w has at most countably many zeros,
namely those of F . If r = 2, w is strictly defined and nonzero outside a set of Bessel B1,2-capacity
zero (containing the zeros of F and the non-Lebesgue points of s).
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Proof. We pointed out already that w ∈ W 1,`
loc (�) for some ` > 1. Set by convention

w(ξ)/w(ξ) = 0 if w(ξ) = 0, and let s := C(αw̄/w)|�. Then s ∈ W 1,r(�) with
∂̄s = αw̄/w, and (2.11) yields (3.4). To show that F = e−sw is in fact holomorphic,
we compute

∂̄(e−sw) = e−s(−∂̄s w + ∂̄w) = e−s
(
−
αw̄

w
w + αw̄

)
= 0,

where the use of the Leibniz and the chain rules is justified by Proposition 8.4 if r = 2.
This proves (i).

Since s is finite a.e. on � (actually outside of a set of B1,2-capacity zero), es is a.e.
nonzero and so is w unless the holomorphic function F is identically zero. If r > 2, then
es ∈ W 1,r(D), and since F is locally smooth we find that w ∈ W 1,r

loc (�); if r = 2, it
follows from Proposition 8.4 that es ∈ W 1,q(�) for all q ∈ [1, 2), and thus w = esF lies
in W 1,q

loc (�). This proves (iii).
Finally, if� isC1-smooth andw 6≡ 0 (hencew 6= 0 a.e. by the above argument), there

exists a unique s ∈ W 1,r(�) satisfying the equations ∂̄s = αw̄/w, tr∂� Re(eiθ0s) = ψ ,∫
∂�

Im(eiθ0s) = λ, and (2.13) yields (3.5). Moreover, if (3.3) holds for some s ∈ W 1,r(�)

and some holomorphic F , we find upon differentiating that ∂̄s = αw̄/w, therefore fac-
torization (3.3) is unique with the aforementioned conditions. This proves (ii). ut

A weak converse to the similarity principle is as follows: if s ∈ W 1,r(�) and F is holo-
morphic on �, then w = esF satisfies (3.2) with α := ∂̄s esF/(es̄ F̄ ) ∈ Lr(�). This
remark shows that, in general, we cannot expect solutions of (3.2) to lie in L∞loc(�) when
r = 2.

4. Holomorphic parametrization

When r > 2, it follows from [42, Theorem 3.13] that for each holomorphic function F on
� and each α ∈ Lr(�), there is 8 ∈ W 1,r(�) such that w := 8F satisfies (3.2). In this
section we improve this assertion to a strong converse of the similarity principle, valid for
2 ≤ r <∞, which leads to a parametrization of pseudo-holomorphic functions by holo-
morphic functions. We state the result for the disk, which is our focus in the present paper,
but we mention that it carries over at once to Dini-smooth6 simply connected domains,
granted the conformal invariance of equation (3.2) pointed out in [4, Section 3.2].

Theorem 4.1. Let α ∈ Lr(D) for some r ∈ [2,∞), and let F 6≡ 0 be holomorphic on D.
Choose ψ ∈ W 1−1/r,r

R (T) and λ ∈ R. Then there exists a unique s ∈ W 1,r(D) such that
w = esF is a solution of (3.2) with trT Im s = ψ and

∫
T Re s = λ. Moreover, (3.5) holds

with some C depending only on r .

From the proof of the theorem, we also obtain the following variant thereof.

6 A domain is Dini-smooth if its boundary has a parametrization with Dini-continuous deriva-
tive. Conformal maps between such domains have derivatives that extend continuously up to the
boundary.
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Corollary 4.2. Theorem 4.1 remains valid if, instead of trT Im s = ψ and
∫
T Re s = λ,

we prescribe trT Re s = ψ and
∫
T Im s = λ.

Before establishing Theorem 4.1, we need to take a closer look at the pairs s, F for which
(3.3) and (3.2) hold. We do this in the following subsection.

4.1. Arguments of pseudo-holomorphic functions

Letw ∈ Lγloc(D) satisfy (3.2), γ > r/(r−1), and consider the factorization (3.3) provided
by Lemma 3.1. Locally around points where F does not vanish, w has a Sobolev-smooth
argument, unique modulo 2πZ, which is given by argw = argF + Im s. Since logF is
harmonic and ∂̄s = αw̄/w, we deduce that around such points1 logw = 4∂(αe−2i argw).
In particular, argw satisfies the nonlinear (yet quasilinear) equation

1 argw = 4 Im(∂(αe−2i argw)),

and moreover log |w| is determined by argw up to a harmonic function that turns out to
be completely determined by (3.2). The lemma below depends on this observation but
avoids speaking of argF (which may not be globally defined if F has zeros).

Lemma 4.3. Let α ∈ Lr(D) for some r ∈ [2,∞) and let F be a non-identically zero
holomorphic function in D. If we set β := αF/F , then a function s ∈ W 1,r(D) is such
that w := esF satisfies (3.2) if and only if ∂̄s = βe−2i Im s . This is equivalent to saying
that s = ϕ1 + iϕ2 where ϕ1, ϕ2 ∈ W

1,r
R (D) satisfy the relations

1ϕ2 = 4 Im(∂(βe−2iϕ2)), (4.1)

ϕ1 = Re C(βe−2iϕ2)+ v, (4.2)

where v is a harmonic conjugate to the harmonic function u ∈ W 1,r
R (D) such that trT u =

trT Im C(βe−2iϕ2)− trT ϕ2.

Proof. Using Proposition 8.4 to justify the computation in case r = 2, we find that s ∈
W 1,r(D) with w = esF satisfies (3.2) if and only if ∂̄s − βes̄−s = 0. With the notation
ϕ1 := Re s and ϕ2 := Im s this is equivalent to

∂̄ϕ1 = β exp(−2iϕ2)− i∂̄ϕ2, ϕ1, ϕ2 ∈ W
1,r
R (D). (4.3)

Solving this ∂̄-equation for ϕ1 using the Cauchy operator, we can rewrite (4.3) as

ϕ1 = C(βe−2iϕ2)− iϕ2 + A, ϕ1, ϕ2 ∈ W
1,r
R (D), (4.4)

where A is holomorphic in D. Since βe−2iϕ2 ∈ Lr(D) we deduce that C(βe−2iϕ2) ∈

W 1,r(D), hence ϕ1, ϕ2 belong to W 1,r(D) if and only if A does. Therefore, given ϕ2 ∈

W
1,r
R (D), equation (4.4) gives rise to a real-valued ϕ1 in W 1,r(D) if and only if the holo-

morphic function A lies in W 1,r(D) and satisfies the relation

− Im C(βe−2iϕ2)+ ϕ2 = ImA. (4.5)
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By the discussion after (2.13) such an A exists if and only if the left hand side of (4.5) is
harmonic; since 1 commutes with taking the imaginary part, this condition amounts to

1ϕ2 − 4 Im(∂∂̄C(βe−2iϕ2)) = 1ϕ2 − 4 Im(∂(βe−2iϕ2)) = 0,

which is (4.1). Then, by (4.5), ImA is the harmonic function h ∈ W 1,r
R (D) having trace

trT ϕ2 − trT Im C(βe−2iϕ2) ∈ W 1−1/r,r(T). Consequently, ReA = Im(iA) must be a
harmonic conjugate to −h = u, and taking real parts in (4.4) yields (4.2). ut

4.2. Proof of Theorem 4.1

4.2.1. Existence part. In this subsection, we prove existence of s in the conditions of
Theorem 4.1. Note that (3.5) will automatically hold by Lemma 3.1(ii) applied with θ0 =

−π/2. Let A ∈ W 1,r(D) be holomorphic in D with trT ReA = ψ and
∫
T ImA = −λ.

Writing esF = es−iA(eiAF), we see that we may assume ψ = 0 and λ = 0 upon
replacing F by eiAF . In addition, upon changing α to αF/F , we can further suppose that
F ≡ 1 thanks to (4.1) and (4.2).

We first deal with the case r = 2 and begin with fairly smooth α, say α ∈ W 1,2(D) ∩
L∞(D). Consider the following (nonlinear) operator Gα acting on ϕ ∈ W 1,2

R (D):

Gα(ϕ)(z) := −
2
π

∫
D

log
∣∣∣∣1− z̄tz− t

∣∣∣∣ Im
(
∂(α(t)e−2iϕ(t))

)
dm(t), z ∈ D. (4.6)

Since |e−2iϕ
| = 1 and α ∈ W 1,2(D) ∩ L∞(D), we deduce from Proposition 8.4 that

∂(αe−2iϕ) ∈ L2(D), therefore the above integral exists for every z ∈ C by the Schwarz
inequality. In fact, Gα(ϕ) is the Green potential of 4 Im(∂(αe−2iϕ)) in D, that is, its dis-
tributional Laplacian is 4 Im(∂(αe−2iϕ)) and its value on T is zero (cf. [2, Section 4.8.3]).
To prove existence of s subject to the conditions ψ = 0, λ = 0, and F ≡ 1, it suffices
by Lemma 4.3 to verify that Gα has a fixed point in W 1,2

R (D). First, we check that Gα is
compact from W

1,2
R (D) into itself, meaning that it is continuous and maps bounded sets

to relatively compact ones.

Lemma 4.4. If α ∈ W 1,2(D)∩L∞(D), then the operatorGα is bounded and continuous
from W

1,2
R (D) into W 2,2

R (D) and it is compact from W
1,2
R (D) into itself.

Proof. To prove the desired boundedness and continuity, we observe from (8.17) and
the dominated convergence theorem that the map ϕ 7→ Im(∂(αe−2iϕ)) is bounded and
continuous from W

1,2
R (D) into L2

R(D). Therefore it suffices to prove the boundedness
from L2

R(D) into W 2,2
R (D) of the linear potential operator

P(ψ) := −
1

2π

∫
D

log
∣∣∣∣1− z̄tz− t

∣∣∣∣ψ(t) dm(t).
The latter is a consequence of the properties of the Cauchy and Beurling transforms listed
in Section 2 [2, Section 4.8.3]. Compactness ofGα fromL2(D) intoW 1,2(D) now follows
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from compactness of the embedding of W 2,2(D) into W 1,2(D) asserted by the Rellich–
Kondrashov theorem. ut

SinceGα is compact onW 1,2
R (D), a sufficient condition for it to have a fixed point is given

by the Leray–Schauder theorem [22, Theorem 11.3]: there is a number M for which the
a priori estimate ‖ϕ‖W 1,2(D) ≤ M holds whenever ϕ ∈ W 1,2

R (D) and ε ∈ [0, 1] satisfy

ϕ = εGα(ϕ). (4.7)

Now, if (4.7) is true, then (4.1) is satisfied with β = εα and ϕ instead of ϕ2. Therefore by
Lemma 4.3, there exist ϕ1,ε ∈ W

1,2
R (D) and sε := ϕ1,ε + iϕ such that

∂̄esε = εα esε .

Applying Lemma 3.1(ii) with � = D, F ≡ 1, s = sε, ψ ≡ 0, θ0 = −π/2 and λ = 0, we
find from (3.5) that for some absolute constant C,

‖ϕ‖W 1,2(D) ≤ ‖sε‖W 1,2(D) ≤ εC‖α‖L2(D) ≤ C‖α‖L2(D) =: M.

Thus,Gα indeed has a fixed point, which settles the case r=2 and α∈W 1,2(D)∩L∞(D).
Next, we relax our restriction on α and assume only that it belongs to L2(D). Let (αn)

be a sequence in D(D) that converges to α in L2(D). By the first part of the proof, there
is a sequence (sn) ⊂ W 1,2(D) such that Im trT sn = 0 and

∫
T Re trT sn = 0, satisfying

∂̄esn = αnesn as well as (cf. (3.5))

‖sn‖W 1,2(D) ≤ C‖αn‖L2(D) ≤ C
′. (4.8)

By the Rellich–Kondrashov theorem we can find a subsequence, again denoted by (sn),
converging pointwise and in all Lq(D), 1 ≤ q < ∞, to some function s. By dominated
convergence, the functions ∂̄sn = αne

−2i Im sn converge to αe−2i Im s in L2(D). Thus,
applying (2.13) with A = sn − sm, a = ∂̄sn − ∂̄sm, θ0 = −π/2, ψ ≡ 0, and λ = 0, we
conclude that (sn) is a Cauchy sequence in W 1,2(D) which must therefore converge to s.
Hence s ∈ W 1,2(D), Im trT s = 0,

∫
T Re s = 0, and ∂̄s = αe−2i Im s . By Lemma 4.3, this

establishes existence of s when r = 2.
Suppose finally that α ∈ Lr(D) for some r > 2. A fortiori α ∈ L2(D), so by what

precedes there is s ∈ W 1,2(D) such that Im trT s = 0,
∫
T Re s = 0, and ∂̄es = αes .

To see that in fact s ∈ W 1,r(D), we apply Proposition 8.4 to get ∂̄s = αe−2i Im s
=:

a ∈ Lr(D). Then, equation (2.13) implies that s is the unique function A ∈ W 1,r(D)
satisfying Im trTA = 0,

∫
T ReA = 0, and ∂̄A = a. �

4.2.2. Uniqueness part. In this subsection we establish uniqueness of s in the condi-
tions of Theorem 4.1. Clearly, it is enough to consider r = 2. Consider two functions
w1 = e

s1F and w2 = e
s2F satisfying (3.2) on D with sj ∈ W 1,2(D), trT Im sj = ψ , and∫

T Re sj = λ for j = 1, 2. We define

s := s1 − s2 ∈ W
1,2(D)

and we must prove that s ≡ 0. First we estimate the ∂̄-derivative of s:
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Lemma 4.5. There is a constant C > 0 such that, for a.e. z ∈ D, we have

|∂̄s(z)| ≤ C|Im s(z)| |α(z)|. (4.9)

Proof. Setting β := αF̄ /F and using again Lemma 4.3, we find that ∂̄sj = βe−2i Im sj .
Hence, ∂̄s = βe−2i Im s1(1− e2i Im s), and (4.9) follows at once. ut

Next, we extend the function s outside of D by reflection:

s(z) := s(1/z̄), z ∈ C \ D. (4.10)

Observe that since s is real-valued on T, this extension yields s ∈ W 1,2
loc (C) (see, for

example, [12, Theorem 2.54]).

Lemma 4.6. There is a constant C > 0 such that, for a.e. z ∈ C \ D,

|∂̄s(z)| ≤ C
|Im s(z)|

|z|2
|α(1/z̄)|. (4.11)

Proof. Setting ζ = 1/z̄ =: U(z) and applying the chain rule, we get (since ∂U = 0)

∂(s(1/z̄)) = ((∂ζ̄ s) ◦ U)∂Ū = −
1
z2 ∂̄s(1/z̄).

Thus,

∂̄s(z) = ∂(s(1/z̄)) = −
(
∂̄s(1/z̄)
z2

)
, |z| > 1,

and applying Lemma 4.5 gives (4.11) in view of (4.10). ut

From the previous two lemmas we derive the inequality

|∂̄s(z)| ≤ C
| Im s(z)|

1+ |z|2
|α(Q(z))|, a.e. z ∈ C, (4.12)

where Q(z) is equal to z if |z| ≤ 1 and to 1/z̄ otherwise. Since α ∈ L2(D), it follows
from (4.12) and the change of variable formula that ∂̄s/s ∈ L2(C).

Recall now definition (2.14). We introduce two auxiliary functions ψ, φ on C:

ψ := C2(∂̄s/s), φ := exp(−ψ). (4.13)

Since ∂̄s/s ∈ L2(C), we know that ψ ∈ W 1,2
loc (C) with ∂̄ψ = ∂̄s/s. Consider the

function sφ on C. By Proposition 8.4, we compute from (4.13) using the Leibniz rule that
∂̄(sφ) = 0, hence sφ is an entire function. We claim that

lim inf
R→∞

(
1
R

∫
TR

log+ |sφ(ξ)| |dξ | −
1
2

logR
)
< 0. (4.14)
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Indeed, taking into account (4.10) and the fact that s|D ∈ L`(D) for all 1 ≤ ` < ∞

by the Sobolev embedding theorem, we deduce from Jensen’s inequality upon choosing
` > 48π that

1
R2

∫
R<ρ<2R

∫
0<θ<2π

log+ |s(ρeiθ )|ρ dρ dθ

≤
12π
`

4R2

3π

∫
1/(2R)<ρ<1/R

∫
0<θ<2π

log+(|s(ρeiθ )|`)ρ dρ dθ

≤
12π
`

log
[

4R2

3π

∫
1/(2R)<ρ<1/R

∫
0<θ<2π

max{1, |s(ρeiθ )|`}ρ dρ dθ
]

≤
1
δ

logR + C (4.15)

for some δ > 2 and some C > 0, whenever R ≥ 1.
On the other hand, it follows from (2.15) and the Schwarz inequality that

1
πR2

∫
R<ρ<2R

∫
0<θ<2π

|ψ(ρeiθ )|ρ dρ dθ ≤
‖ψ‖L2(D2R)
√
πR

= O((logR)1/2), R→∞. (4.16)

Since log+ |sφ| ≤ log+ |s| + |ψ |, claim (4.14) easily follows from (4.15) and (4.16).
Since log |sφ| is subharmonic on C, for |z| < R we have

2π log |sφ(z)| ≤
R + |z|

R − |z|

∫ 2π

0
log+ |sφ(Reiθ )| dθ ≤

R + |z|

R − |z|

1
R

∫
TR

log+ |sφ(ξ)| |dξ |

(see [37, Theorem 2.4.1]), so by (4.14) there exists a sequence ρn → ∞ for which
supTρn |sφ| = O(ρ

1/2
n ). Therefore, by an easy modification of Liouville’s theorem, sφ

must be a constant.
More generally, (4.12) remains valid if we replace s by s− a for a ∈ R, entailing that∣∣∣∣ ∂̄s(z)

s(z)− a

∣∣∣∣ ≤ C∣∣∣∣α(Q(z))1+ |z|2

∣∣∣∣ ∈ L2(C), a.e. z ∈ C, a ∈ R. (4.17)

Thus, reasoning as before, we deduce that there is a complex-valued function b such that

(s(z)− a)φa(z) ≡ b(a), a ∈ R, (4.18)

with
ψa := C2(∂̄s/(s − a)), φa := exp(−ψa).

Fix R > 1. By (4.17), Corollary 8.6, and Proposition 8.4, the sets {φa|DR }a∈R and
{φ−1
a |DR }a∈R are bounded in W 1,q(DR) for q ∈ [1, 2), hence also in L2(T) by the trace

and the Sobolev embedding theorems. Fix A > 0 such that 3({ξ ∈ T : |s(ξ)| ≤ A}) =
λ > 0. For each δ > 0 we can cover the interval [−A,A] by N ≤ A/δ+ 1 open intervals
of length 2δ, hence there exists a = a(δ) ∈ [−A,A] with 3(Ea) ≥ λδ/(A + δ), where
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Ea = {ξ ∈ T : |s(ξ) − a| ≤ δ}. (We use the fact that s is real-valued on T.) Moreover,
we observe from (4.18) and the Schwarz inequality that

|b(a)|3(Ea) =

∫
Ea

|s(ξ)− a| |φa(ξ)| d3(ξ) ≤ δ‖φa‖L2(T)3(Ea)
1/2.

This lower bound on 3(Ea) now gives

|b(a)| ≤ δ1/2
√
(A+ δ)/λ sup

|a|≤A

‖φa‖L2(T),

implying that b(a(δ))→ 0 as δ → 0. By compactness, we can pick a sequence δn → 0
such that an := a(δn) → c ∈ [−A,A]. Considering the equalities s − an = b(an)φ−1

an

and taking into account the boundedness of {φ−1
an
} in L2(DR), we find that s ≡ c on DR .

Since R is arbitrary, s is constant on C, and actually s ≡ 0 because
∫
T s = 0. ut

A similar argument gives the following result which seems to be of independent interest.

Theorem 4.7. If s ∈ W 1,2
loc (C) satisfies

|∂̄s(z)| ≤ |Im s(z)|g(z)

for some nonnegative function g ∈ L2(C), and if∫
C\D

|s(ξ)|` dξ ∧ dξ̄

|ξ |4
<∞

for some ` > 48π , then Im s is of constant sign a.e. in C.

The example s(z) = i + (1 + |z|)−β , β > 0 shows that, under these conditions, s is not
necessarily a constant. On the other hand, the value 48π is not necessarily sharp.

It is interesting to compare this result with known Liouville-type theorems like
[3, Proposition 3.3] and [2, Theorem 8.5.1].

Sketch of proof of Theorem 4.7. For any real d, equality (4.18) entails for small δ > 0 that
m{ξ ∈ D : |Im s(ξ)| < δ, |Re s(ξ) − d| < δ} ≤ cδ5/infa∈R |b(a)|5 with c independent
of d; therefore, m{ξ ∈ D : |Im s(ξ)| < δ, |Re s(ξ)| < 1/δ} ≤ cδ3/infa∈R |b(a)|5. Since
s ∈ W

1,2
loc (C), by the John–Nirenberg theorem we have m{ξ ∈ D : |s(ξ)| > 1/δ} ≤ cδ3.

Finally, if Im s changes sign in D, then by the Hölder inequality we obtain m{ξ ∈ D :
|Im s(ξ)| < δ} ≥ cδ2. As a result, letting δ→ 0, we obtain infa∈R |b(a)| = 0. ut

4.3. Proof of Corollary 4.2

Uniqueness of s is established as in Theorem 4.1, except that the right hand side of (4.10)
now has a minus sign because s is pure imaginary on T. Note also that (3.5) holds by
Lemma 3.1(ii) applied with θ0 = 0.
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Passing to existence of s, the argument given early in Subsection 4.2.1 applies with
obvious modifications to show that we may assume ψ = 0, λ = 0 and F ≡ 1. Moreover,
it is enough to prove the result when r = 2 and α ∈ D(D), for then the passage to
α ∈ L2(D) and subsequently to r > 2 is as in the theorem.

So, let us set r = 2, fix α ∈ D(D), and write s(ψ, λ, F ) to emphasize the dependence
on ψ , λ and F of the function s ∈ W 1,2(D) whose existence and uniqueness is asserted
by Theorem 4.1. For u ∈ W 1/2,2

R (T), we denote by E(u) ∈ W 1,2
R (D) the harmonic ex-

tension of u, i.e. E(u) is harmonic and trT E(u) = u. We write H(u) ∈ W 1,2(D) for
the holomorphic function such that ImH(u) = E(u) and

∫
T ReH(u) = 0. Observe

that α exp(−2iE(u)) lies in W 1,2(D) ∩ L∞(D); therefore, the operator Gαe−2iE(u) de-
fined by (4.6) is compact from W

1,2
R (D) into itself by Lemma 4.4. In the course of the

proof of Theorem 4.1, we showed that it has a unique fixed point which is none but
Im s(0, 0, eH(u)) =: F(u). Furthermore, by (3.5), we have ‖F(u)‖W 1,2(D) ≤ C‖α‖L2(D)
for some absolute constant C.

Lemma 4.8. The (nonlinear) operator u 7→ F(u) acts compactly from W
1/2,2
R (T) into

W
1,2
R (D).

Proof. Pick a sequence (un) converging to u in W 1/2,2(T). By elliptic regularity, H(un)
converges to H(u) in W 1,2(D), and in particular ‖H(un) + F(un)‖W 1,2(D) is bounded
independently of n. Moreover, by (4.6) and the definition of F , we see that

F(un) = Gαe−2iE(un)(F(un)) = Gα(E(un)+ F(un)); (4.19)

hence, Lemma 4.4 implies that (F(un))n∈N is relatively compact in W 1,2
R (D). Let some

subsequence, again denoted by (F(un)), converge to ϕ in W 1,2
R (D). Then (E(un) +

F(un)) converges to E(u)+ ϕ in W 1,2
R (D), therefore by (4.19) and the continuity of Gα

we obtain ϕ = Gαe−2iE(u)(ϕ). This means that ϕ = F(u), hence the latter is the only limit
point of (F(un))n∈N, which proves the continuity of F .

If we assume only that ‖un‖W 1/2,2(T) is bounded independently of n, then elliptic
regularity still implies that ‖E(un)‖W 1,2(D) is bounded, hence (E(un) + F(un))n∈N is
again bounded in W 1,2

R (D). As before, it follows that (F(un))n∈N is relatively compact
in W 1,2

R (D), as desired. ut

Given u ∈ W 1/2,2
R (T), let ũ := − trT ReH(u) denote the conjugate function of u. That

is, ũ is the trace of the harmonic conjugate of E(u) that has zero mean on T. Write
M ⊂ W 1/2,2

R (T) for the subspace of functions with zero mean. By (2.13), the map u 7→ ũ

is continuous from W
1/2,2
R (T) into M, and since ˜̃u = −u+

∫
T u, it is a homeomorphism

of M. Pick u ∈M and let ϕ := Im s(u, 0, 1). Since s(u, 0, 1)−H(u) = s(0, 0, eH(u)),
we have ϕ = E(u) + F(u). Set for simplicity R(u) := C(α exp{−2i(E(u) + F(u))}).
Applying the trace and conjugate operators to (4.2), we see that trT Re s(u, 0, 1) = 0 if
and only if

u = trT Im
(
R(u)−

∫
T
R(u)

)
−

˜︷ ︸︸ ︷
trT Re

(
R(u)−

∫
T
R(u)

)
. (4.20)
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Let B(u) denote the right hand side of (4.20). To complete the proof, it remains to show
that the (nonlinear) operator B has a fixed point u0 in M. Then the function s(u0, 0, 1)
would satisfy the conditions of the corollary.

To prove existence of a fixed point, we claim first that B is compact from M into it-
self. Indeed, by elliptic regularity, E is linear and bounded fromW

1/2,2
R (T) intoW 1,2

R (D),
while F is compact by Lemma 4.8. A fortiori, E+F is bounded and continuous from M
into W 1,2

R (D). Moreover, as α ∈ D(D), it follows from (8.17) and the dominated con-
vergence theorem that h 7→ α exp(−2ih) is bounded and continuous from W

1,2
R (D) into

W
1,2
0 (D). In addition, we see from (2.12) that C is bounded and linear from W

1,2
0 (D) into

W 2,2(D), hence compact into W 1,2(D) by the Rellich–Kondrashov theorem. Finally, by
the trace theorem, g 7→ trT Im(g −

∫
T g) is linear and bounded from W 1,2(D) into M.

Since the conjugate operator is linear and bounded on M, and composition with bounded
continuous maps preserves compactness, the claim follows.

Appealing now to the Leray–Schauder theorem, we know that B has a fixed point if
we can find a constant M such that ‖u‖W 1/2,2(T) ≤ M whenever u = εB(u) for some
ε ∈ [0, 1]. However, such a u must be equal to Im trT sε, where sε ∈ W 1,2(D) has pure
imaginary trace with zero mean on T and esε satisfies (3.2) with α replaced by εα. Thus,
from Lemma 3.1(ii) applied with θ0 = 0, we conclude that M = C‖α‖L2(D) will do for
some absolute constant C.

5. Hardy spaces on the disk

5.1. Holomorphic Hardy spaces

For p ∈ [1,∞), let Hp
= Hp(D) be the Hardy space of holomorphic functions f on D

with

‖f ‖Hp := sup
0<ρ<1

(
1

2π

∫ 2π

0
|f (ρeiθ )|p dθ

)1/p

<∞. (5.1)

The space H∞ consists of bounded holomorphic functions endowed with the sup norm.
We refer to [13, 21] for the following standard facts on holomorphic Hardy spaces.

Each f ∈ Hp has a nontangential limit at a.e. ξ ∈ T, which is also the Lp(T) limit of
fρ(ξ) := f (ρξ) as ρ → 1− and whose norm matches the supremum in (5.1). Actually
‖fρ‖Lp(T) is nondecreasing in ρ, hence instead of (5.1) we could as well have set7

‖f ‖Hp := sup
0<ρ<1

(∫
Tρ
|f (ξ)|p |dξ |

)1/p

<∞, (5.2)

7 In fact (5.1) expresses the fact that |f |p has a harmonic majorant, whereas (5.2) bounds the
Lp-norm of f on curves tending to the boundary; the first condition defines the Hardy space and
the second the so-called Smirnov space. These coincide when harmonic measure and arclength are
comparable on the boundary [13, Chapter 10], [25], which is the case for smooth domains. The
name “Hardy space” is then more common.
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where the integral is now with respect to arclength. As usual, we keep the same notation
for f and its nontangential limit when no confusion can arise, or write sometimes f|T to
emphasize that the nontangential limit lives on T. Note that f|T coincides with tr f when
f ∈ W 1,p(D) [5]. Each function in Hp is both the Cauchy and the Poisson integral of its
nontangential limit. As regards the nontangential maximal function, for 1 ≤ p <∞ and
f ∈ Hp we have

‖Mγ f ‖Lp(T) ≤ C‖f ‖Lp(T), (5.3)

where the constant C depends only on γ and p [21, Chapter II, Theorem 3.1].
The traces of Hp-functions on T are exactly those functions in Lp(T) whose Fourier

coefficients of negative index do vanish. In particular, if f ∈ Hp and f|T ∈ Lq(T), then
f ∈ H q . It is obvious from Fubini’s theorem that Hp

⊂ Lp(D), but actually one can
state more:

‖f ‖Lλ(D) ≤ C‖f ‖Hp , p ≤ λ < 2p, (5.4)

where C = C(p, λ); for a proof see [13, Theorem 5.9]. A sequence (zl) ⊂ D is the zero
set of a nonzero Hp function, taking into account multiplicities, if and only if it satisfies
the Blaschke condition ∑

l

(1− |zl |) <∞. (5.5)

A nonnegative function h ∈ Lp(T) is of the form |fT| for some nonzero f ∈ Hp if and
only if logh ∈ L1(T). This entails that a nonzero Hp function cannot vanish on a subset
of strictly positive Lebesgue measure on T.

For 1 < p < ∞ and for every ψ ∈ LpR(T) there exists g ∈ Hp such that Re g = ψ
on T [21, Chapter III]. Such a g is unique up to an additive pure imaginary constant, and
if we normalize it so that

∫
T Im g = 0, then ‖g‖Hp ≤ C‖ψ‖Lp(T) with C = C(p). In fact

g = u+ iv on D, where u is the Poisson integral of ψ and v is the Poisson integral of

ψ̃(eiθ ) := lim
ε→0

1
2π

∫
ε<|θ−t |<π

ψ(eit )

tan
(
θ−t

2

) dt, (5.6)

which is the conjugate function ofψ . This definition carries over toLp(T) the conjugation
operator ψ 7→ ψ̃ already introduced on W 1/2,2(T) after the proof of Lemma 4.8. It is a
theorem of M. Riesz that the conjugation operator maps Lp(T) continuously into itself.
By elliptic regularity, it is also continuous from W 1−1/p,p(T) into itself.

When ψ ∈ L1(T), the conjugate function ψ̃ is still defined pointwise almost every-
where via (5.6) but it does not necessarily belong to L1(T).

For p ∈ (1,∞), a nonnegative function w ∈ L1(T) is said to satisfy the Muckenhoupt
condition Ap if

{w}Ap := sup
I

(
1

3(I)

∫
I

w d3

)(
1

3(I)

∫
I

w−1/(p−1)d3

)p−1

<∞, (5.7)

where the supremum is taken over all arcs I ⊂ T. A theorem of Hunt, Muckenhoupt and
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Wheeden [21, Chapter VI, Theorem 6.2] asserts that w satisfies condition Ap if and only
if ∫

T
|φ̃|p w d3 ≤ C

∫
T
|φ|p w d3, φ ∈ L1(T), (5.8)

where C depends only on {w}Ap . In (5.8), the assumption φ ∈ L1(T) is just a means to
ensure that φ̃ is well defined.

5.2. Pseudo-holomorphic Hardy spaces

Given α ∈ Lr(D) for some r ∈ [2,∞) and p ∈ (1,∞), we define the Hardy space
G
p
α(D) of those w ∈ Lγloc(D) with γ > r/(r − 1) that satisfy (3.2) and such that

‖w‖Gpα (D) := sup
0<ρ<1

(∫
Tρ
|w(ξ)|p |dξ |

)1/p

<∞. (5.9)

Denote by Hp the Banach space of complex measurable functions f on D such that
ess sup0<ρ<1 ρ‖fρ‖Lp(T) < ∞. Then Gpα(D) is identified with a real subspace of Hp.
The fact that this subspace is closed (hence a Banach space in its own right) is a part
of Theorem 5.1 below. Note that if w ∈ Lγloc(D) satisfies (3.2), then w ∈ W 1,q

loc (D) for
q ∈ [1, 2) by Lemma 3.1; hence the integral in (5.9) is indeed finite for each ρ by the
trace theorem. Clearly Gp0 (D) = Hp, but Gpα(D) is not a complex vector space when
α 6≡ 0. Spaces G1

α(D) and G∞α (D) could be defined similarly, but we shall not consider
them.

For r > 2, such classes of functions were apparently introduced in [35] and subse-
quently considered in [27, 28, 29, 5, 14, 16, 4]. In contrast to these studies, our definition
is modeled after (5.2) rather than (5.1), that is, integral means in (5.9) are with respect to
arclength8 and not normalized arclength. This is not important when r > 2, but becomes
essential9 if r = 2.

Below, we do consider the case r = 2 and stress topological connections with holo-
morphic Hardy spaces which are new even when r > 2 (see Theorem 5.1(iii)).

By Lemma 3.1, each solution to (3.2) in Lγloc(D), γ > r/(r − 1), factors as w = esF
where

‖s‖W 1,r (D) ≤ C(r)‖α‖Lr (D) (5.10)

and F is holomorphic in D. Moreover, if w 6≡ 0, one can impose Im trT s = 0 and∫
T Re s = 0 or Re trT s = 0 and

∫
T Im s = 0 to get unique factorization. To distinguish

between these two factorizations, we write w = es
r
F r in the first case, and w = es

i
F i

in the second one; that is, sr is real on T and si is pure imaginary there. If w ≡ 0, we

8 Thus, it would be more appropriate to call Gpα (D) a pseudo-holomorphic Smirnov space.
9 When r = 2, w may fail to satisfy condition (5.1) even though it meets (3.2) and (5.9). The

problem lies with small values of r , as w need not be locally bounded on D.
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set F r
= F i

= 0 and do not define sr and si. When w 6≡ 0 (hence w is nonzero a.e.), it
follows from the proof of Lemma 3.1 that if we let

R(β)(z) := −C(β)(1/z̄) =
1

2πi

∫
D

zβ̄(ξ)

1− ξ̄ z
dξ ∧ dξ̄ , β ∈ Lr(D), z ∈ D, (5.11)

then sr is given by
sr = C(αw̄/w)−R(αw̄/w), (5.12)

while si is given by
si = C(αw̄/w)+R(αw̄/w). (5.13)

Indeed, it is easy to check that R(αw̄/w) is a holomorphic function inW 1,r(D) having
zero mean on T and assuming conjugate values to −C(αw̄/w) there.

From (5.10) which is valid both for sr and si we find that if r > 2 then

‖e±s
r
‖W 1,r (D) ≤ C(r, ‖α‖Lr (D)) and ‖e±s

i
‖W 1,r (D) ≤ C(r, ‖α‖Lr (D)). (5.14)

For r = 2 and for 1 < q < 2, we only deduce from (5.10) and Proposition 8.4 that

‖e±s
r
‖W 1,q (D) ≤ C(q, ‖α‖L2(�)) and ‖e±s

i
‖W 1,q (D) ≤ C(q, ‖α‖L2(�)). (5.15)

• When r > 2, we conclude from (5.14) and the Sobolev embedding theorem that e±s
r

and e±s
i

are continuous and bounded independently of w on D. Hence, w belongs to
G
p
α(D) if and only if F r or F i lies in Hp (in which case both do). This way Gpα(D)

inherits many properties of Hp. In particular, each w ∈ Gpα(D) has a nontangential
limit a.e. on T, denoted again by w or wT for emphasis, which is also the limit of wρ
as ρ → 1− in Lp(T). Moreover, ‖wT‖Lp(T) is a norm equivalent to (5.2) on Gpα(D),
and we might as well have used (5.1) to define the latter. Also, from Theorem 4.1, we
infer that condition (5.5) characterizes the zeros of non-identically vanishing functions
in Gpα(D).10

• If r = 2, all we conclude a priori from (5.15), Lemma 8.7, and Hölder’s inequality
is that F r and F i belong to

⋂
1≤`<p H

` if w ∈ Gpα(D). In the other direction, w ∈⋂
1≤`<pG

p
α(D) if F r or F i lies in Hp. To clarify the matter, one should realize that

factorizations w = es
r
F r and w = es

i
F i no longer play equivalent roles, for it may

happen that w ∈ Gpα(D) and F r /∈ Hp. In fact, if we let

w(z) :=
1

log(3/|z− 1|)(z− 1)1/p
, z ∈ D, (5.16)

we get ∣∣∣∣ ∂̄w(z)
w(z)

∣∣∣∣ = (2|z− 1| log(3/|z− 1|)
)−1
;

10 When r = 2, this property has no simple analog sincew is only definedB1,2-quasi-everywhere.
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hence, w ∈ Gpα(D) with α := ∂̄w/w̄ ∈ L2(D), but the factorization

w(z) = elog log(3/|z−1|)−aea(z− 1)−1/p, a :=

∫
T

log log(3/|z− 1|) d3(z),

is such that F r
= ea(z− 1)−1/p /∈ Hp.

On the other hand, w ∈ Gpα(D) if and only if F i
∈ Hp. Assume indeed that 0 6≡

w ∈ G
p
α . Since F i

∈ H ` for 1 ≤ ` < p and es
i
ρ converges to es

i
in W 1,q(D) for all

q ∈ [1, 2) by Proposition 8.4, it follows from Lemma 8.7 and Hölder’s inequality that
trTwρ converges as ρ → 1− to etrT siF i

|T in Lλ(T), for every λ ∈ [1, p). Moreover,
as trTwρ remains bounded in Lp(T) by (5.9), it converges weakly there to etrT siF i

|T
when ρ → 1−, since this is the only weak limit possible granted the convergence of
trTwρ in Lλ(T). In particular, etrT siF i

|T ∈ L
p(T), and since |etrT si | ≡ 1 we conclude

that F i
|T ∈ L

p(T), and hence F i
∈ Hp. Conversely, if F i

∈ Hp, then w satisfies (5.9)
by Corollary 8.11.

The fact that trTwρ converges strongly in Lp(T) as ρ → 1−, and not just weakly as we
showed above, is a part of the next theorem, whose assertion (iii) is new even for r > 2.

Theorem 5.1. Let α ∈ Lr(D) with 2 ≤ r <∞ and fix p ∈ (1,∞).

(i) Each w ∈ Gpα(D) has a trace wT on T given by

wT := lim
ρ→1−

trTwρ in Lp(T). (5.17)

When r > 2, the function wT is also the nontangential limit of w a.e. on T.
(ii) For some C > 0 depending only on |α| and p we have

‖wT‖Lp(T) ≤ ‖w‖Gpα (D) ≤ C‖wT‖Lp(T), (5.18)

andGpα(D) is a real Banach space on which ‖wT‖Lp(T) is a norm equivalent to (5.9).
(iii) The map w 7→ F i is a homeomorphism fromG

p
α(D) ontoHp. When r > 2, the map

w 7→ F r is also such a homeomorphism.
(iv) If w ∈ Gpα(D) and wT ∈ Lq(T) for some q ∈ (1,∞), then w ∈ Gqα(D). A nonnega-

tive function h ∈ Lp(T) is such that h = |wT| for some nonzero w ∈ Gpα(D) if and
only if logh ∈ L1(T).

Proof. If r > 2, all the properties except (iii) follow from their Hp-analogs via the
continuity and uniform boundedness of e±s

r
or e±s

i
discussed earlier in this section (see

also [35, 27, 5, 4]).
We postpone the proof of (iii) and assume for now that r = 2. Take w ∈ Gpα(D) \ {0}

and set s = si, F = F i to simplify notation. To prove (5.17) we need to verify that given
a sequence (ρn) ⊂ (0, 1) tending to 1, one can extract a subsequence (ρnk ) such that
trTwρnk converges to etrT sF|T in Lp(T).

Since sρ converges to s in W 1,2(D), we infer from Lemma 8.7 that trT sρ converges
to trT s in L`(T ) as ρ → 1−, for all ` ∈ [1,∞). Moreover, as we pointed out before the
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theorem, F ∈ Hp, and hence (Fρ)|T converges to F|T in Lp(T). Extracting if necessary a
subsequence from (ρn) (still denoted by (ρn)), we can assume that trT sρn (resp. (Fρn)|T)
also converges pointwise a.e. on T to trT s (resp. F|T). Now, Corollary 8.11, applied with
ps instead of s, implies that ‖epsρFρ‖Lp(T) is uniformly bounded as ρ → 1−. Therefore,
as the weak limit coincides with the pointwise limit when both exist by Egoroff’s theorem,
there is a subsequence (ρnk ) such that (epRe sρnk |Fρnk |) converges weakly to |F | inLp(T).
If we let 1/p + 1/p′ = 1, this means that for each test function 2 ∈ Lp

′

(T) we have

lim
k→∞

∣∣∣∣∫
T
e
pRe sρnk (z)|Fρnk (z)|2(z) |dz| −

∫
T
|F(z)|2(z) |dz|

∣∣∣∣ = 0. (5.19)

Set 2k = |Fρnk |
p−1
∈ Lp

′

(T). Convergence of (Fρ)|T to F|T in Lp(T) implies easily

that 2k converges to |F |p−1 in Lp
′

(T). In view of (5.19), this yields

lim
k→∞

∣∣∣∣∫
T
e
pRe sρnk (z)|Fρnk (z)|

p
|dz| −

∫
T
|F(z)|p |dz|

∣∣∣∣ = 0.

Therefore, ‖trTwρnk ‖Lp(T)=‖e
Re sρnk Fρnk ‖L

p(T) tends to ‖etrT sF|T‖Lp(T) = ‖F|T‖Lp(T)
when k →∞. However, from the discussion before the theorem, we know that trTwρnk
converges weakly to etrT sF|T in Lp(T), so by uniform convexity of Lp(T) the conver-
gence must in fact be strong because, as we have just shown, the norm of the weak limit
is the limit of the norms [9, Theorem 3.32]. This proves (i).

Next, we observe by the absolute continuity of |α|2dm that for every ε > 0 there is
ω(ε) > 0 for which ‖α‖L2(Qω(ε)∩D) < ε as soon as Qω(ε) is a cube of sidelength ω(ε).
Thus, in view of (5.13), we can apply Proposition 8.5 to β := αw̄/w and obtain a strictly
positive function ω̃ on R+, depending only on |α|, such that

‖∂s‖L2(Qω̃(η)∩D) + ‖∂̄s‖L2(Qω̃(η)∩D) < η (5.20)

whenever Qω̃(η) is a cube of sidelength ω̃(η). A fortiori, (5.20) holds with Re s instead
of s. Now, picking any γ ∈ (0, π/2) and recalling that |wT| = |F|T| because Re s ∈
W

1,2
0,R(D), we deduce from (5.3) and Theorem 8.10 applied to f = Re s and g = ei Im sF

that the right inequality in (5.18) holds. On the other hand, the left inequality is obvious
from (5.17).

To show that Gpα(D) is a Banach space, consider a sequence (wn) ⊂ G
p
α(D) converg-

ing in Hp to some function w. We must prove that w ∈ Gpα . We can assume w 6≡ 0,
therefore wn 6≡ 0 for n large enough. Convergence in Hp being stronger than in Lp(D),
a fortiori wn converges to w in D′(D), and moreover some subsequence, again denoted
by wn, converges pointwise a.e. to w. Furthermore, if we write wn = esnFn where we
mean as before that sn = sin and Fn = F i

n, we deduce from (5.15) that the sequence
(esn) is bounded in W 1,q(D) for each q ∈ (1, 2). Therefore, by the Sobolev embedding
theorem, (esn) is bounded in L`(D) for each ` ∈ [1,∞). In addition, since |etrT sn | ≡ 1, it
follows from (5.18) that (Fn) is bounded inHp, hence also in L`(D) for each ` ∈ (1, 2p)
by (5.4). Altogether, by Hölder’s inequality, (wn) is bounded in Lγ (D) for some γ > 2.
Consequently, some subsequence converges weakly in Lγ (D), and since the weak limit
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coincides with the pointwise limit, if it exists, we conclude that the weak limit is w. In
particular, w ∈ Lγ (D). Moreover, by Hölder’s inequality, (αw̄n) is bounded in Lt (D)
for some t > 1, and arguing as before we find that some subsequence (again denoted
by (αw̄n)) converges weakly to αw̄ there. Thus, passing to the distributional limit in the
relation ∂̄wn = αw̄n, we obtain (3.2) so that w ∈ Gpα(D). This proves (ii).

We already know from Theorem 4.1 and the discussion before Theorem 5.1 that the
map w 7→ F i is bijective fromG

p
α(D) to Hp. Since |wT| = |F i

|T|, it is clear from (5.18)
that this map and its inverse are continuous at 0. Let nowwn converge tow 6≡ 0 inGpα(D)
and write wn = es

i
nF i
n, w = es

i
F i.

We claim that some subsequence of F i
n converges to F i in Hp and this establishes

continuity of the map at every point. As F i
n|T is bounded in Lp(T) by (5.18), some

subsequence converges weakly there to 8|T for some 8 ∈ Hp. Thus, replacing wn
by a subsequence (again denoted by wn), we may assume by the Cauchy formula that
F i
n converges locally uniformly to 8 on D. Note that 8 6≡ 0 for otherwise, in view of

(5.15), wn would converge to the zero distribution, contradicting that w 6≡ 0. In particu-
lar, αF̄ i

n/F
i
n converges in L2(D) to α8̄/8 by the dominated convergence theorem. Since

∂̄sin = αF̄
i
n/F

i
n exp(−2i Im sin) by Lemma 4.3 and ‖sin‖W 1,2(D) is uniformly bounded by

(5.10), we can argue as we did after (4.8) (set αn ≡ αF̄ i
n/F

i
n and θ0 = 0 in the dis-

cussion there) to conclude that a subsequence, again denoted by sin, converges to some
σ ∈ W 1,2(D) such that Re trT σ = 0 and

∫
T σ = 0, both a.e. and in W 1,2(D). Refining

the sequence if necessary, we can further assume that wn converges a.e. to w. Taking
pointwise limits we get w = eσ8, hence σ = si and 8 = F i by the uniqueness part of
Corollary 4.2. Thus, F i

|T is the weak limit of F i
n|T, and since ‖F i

‖Lp(T) = ‖w‖Lp(T) is the
limit of ‖F i

n‖Lp(T) = ‖wn‖Lp(T), the convergence in fact takes place in Lp(T), thereby
proving the claim.

Conversely, let wn = es
i
nF i
n be a sequence inGpα(D) such that F i

n converges to8 6≡ 0
in Hp. By Corollary 4.2, ‖sin‖W 1,2(D) is bounded uniformly in n, and, as before, a sub-
sequence, again denoted by sin, converges in W 1,2(D) to some σ such that Re trT σ = 0
and

∫
T σ = 0. Refining the sequence if necessary, we can assume in view of the trace

theorem that trT sin converges pointwise a.e. on T to trT σ . By dominated convergence,
(wn)T tends to etrT σ8|T in Lp(T). Using (5.18) we find that wn converges in Gpα(D) to
some w = es

i
F i, and by the continuity proven before we conclude that 8 = F i. This

proves (iii) when r = 2. That both w 7→ F i and w 7→ F r are homeomorphisms when
r > 2 is similar but easier because then s → es is bounded and continuous fromW 1,r(D)
into W 1,r(D) ⊂ L∞(D).

Finally, (iv) follows from the corresponding properties of Hp functions, the fact that
w ∈ G

p
α if and only if F i

∈ Hp, and the equality |wT| = |F i
|T|. ut

Remark 5.2. When r = 2, wT in Theorem 5.1 is not necessarily the nontangential limit
of w. Indeed, if (zn) ⊂ D is nontangentially dense on T, then the function s(z) :=∑
n 2−n log(log(2/|z− zn|)) lies in W 1,2(D) so that es ∈ Gpα(D) for all p ∈ (1,∞) with

α := ∂̄s by Lemma 8.7. Yet, es is not even nontangentially bounded at a single ξ ∈ T.



1942 Laurent Baratchart et al.

6. The generalized conjugation operator

The M. Riesz theorem may be rephrased as follows. Given ψ ∈ LpR(T) with p ∈ (1,∞),
the problem of finding a holomorphic function f in D such that Re trT fρ tends to ψ in
Lp(T) has a solution inHp which is unique up to an additive imaginary constant. In fact,
if we normalize it to have mean

∫
T ψ/(2π) + ic on T, then f|T = ψ + iψ̃ + ic and we

have ‖f ‖Hp ≤ C(‖ψ‖Lp(T) + |c|) for some C depending only on p.
The corresponding problem for pseudo-holomorphic functions, i.e. for solutions to

(3.2) when α 6≡ 0, turns out to have a similar answer in Gpα as long as α ∈ Lr(D) for
some r ≥ 2. When r > 2 this was essentially proven in [27] (see also [5] and [4]). More
precisely:

Theorem 6.1 ([27], [5], [4]). Let α ∈ Lr(D) with 2 < r ≤ ∞ and 1 < p < ∞. For
every ψ ∈ LpR(T) and c ∈ R there is a unique w ∈ Gpα(D) such that RewT = ψ and∫
T ImwT = c. Moreover, ‖w‖Gpα (D) ≤ C(‖ψ‖Lp(T) + |c|), where C depends only on p

and r .

Theorem 6.1 generalizes the M. Riesz theorem: for every ψ ∈ LpR(T) and c ∈ R there is
a unique ψ]c ∈ L

p

R(T) (a generalized conjugate of ψ) such that
∫
T ψ

]
c = c and ψ+ iψ]c =

wT for somew ∈ Gpα(D). Moreover, ‖ψ]‖Lp(T) ≤ C(‖ψ‖Lp(T)+|c|). The theorem below
extends this result to the case r = 2 where solutions to (3.2) may be locally unbounded.

Theorem 6.2. Let α ∈ L2(D) and 1 < p < ∞. For every ψ ∈ LpR(T) and c ∈ R there
is a unique w ∈ Gpα(D) such that RewT = ψ and

∫
T ImwT = c. Moreover,

‖w‖Gpα (D) ≤ C(‖ψ‖Lp(T) + |c|), (6.1)

where C depends only on p and |α|.

Proof. We first show existence. Assume that ψ and c are not both zero; otherwise w ≡ 0
will do.

Let (αn) be a sequence of functions in L∞(D) converging to α in L2(D). By Theo-
rem 6.1, for every n there exists wn ∈ G

p
αn(D) such that Rewn|T = ψ and

∫
T Imwn = c.

Notation being as in Section 5.2, let us write wn = es
r
nF r
n where srn ∈ W

1,2(D) is real
with zero mean on T, while F r

n ∈ H
p. Below, we drop the superscript r for simplicity.

It follows from (5.10) that ‖sn‖W 1,2(D) ≤ C0‖αn‖L2(D) for some absolute constant C0,
hence ‖sn‖W 1,2(D) is bounded uniformly in n. In view of the Rellich–Kondrashov theo-
rem, we can find a subsequence, again denoted by (sn), converging to some function s
both pointwise on D and in L`(D) for all ` ∈ [1,∞). By the trace theorem and the non-
integral version of the Rellich–Kondrashov theorem, we may further assume that trT sn
converges to some function h both pointwise a.e. on T and in L`R(T). Moreover, conver-
gence of αn to α in L2(D) entails, because of (5.15), that e±sn are bounded in W 1,q(D),
independently of n and ψ , for each q ∈ [1, 2). So, invoking again the trace and the
Rellich–Kondrashov theorems, we may assume upon refining sn further that e± trT sn con-
verges to their pointwise limits e±h in L`(T), for all ` ∈ [1,∞).
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Thus, by Hölder’s inequality, Re(Fn)|T = e− trT snψ converges to e−hψ in Lλ(T) for

any λ ∈ [1, p). Continuity of the conjugate operator now implies that ˜Re(Fn)|T in turn

converges to ẽ−hψ in Lλ(T). Since
∫
T Imwn = c, we see by inspection that Im(Fn)|T =

˜Re(Fn)|T + cn where the constant cn is such that

cn

∫
T
etrT sn +

∫
T
etrT sn ˜Re(Fn)|T = c. (6.2)

The first integral in (6.2) converges to
∫
T e

h > 0, and the second to
∫
T e

h ẽ−hψ by
Hölder’s inequality. Therefore, (cn) converges to

c0 :=

(
c −

∫
T
ehẽ−hψ

)/∫
T
eh, (6.3)

and consequently (Fn)|T converges to

FT := e
−hψ + i ẽ−hψ + ic0 (6.4)

in Lλ(T), for all λ ∈ [1, p). Thus, Fn converges in H λ to F , the Poisson integral of FT.
Note that F is not identically zero; otherwise, ψ ≡ 0 and c = 0, contrary to our initial
assumption.

The above argument and the dominated convergence theorem show that the functions
αne
−2i Im sn F̄n/Fn converge to αe−2i Im s F̄ /F in L2(D). Next, ∂̄sn = αne−2i Im sn F̄n/Fn.

By Lemma 4.3, applying (2.13) withA = sn−sm, a = ∂̄sn−∂̄sm, θ0 = −π/2,ψ ≡ 0, and
λ = 0, we conclude that (sn) is a Cauchy sequence inW 1,2(D), which must therefore con-
verge to s. Hence, s ∈ W 1,2(D) and h = trT s. Since in the limit ∂̄s = (αF̄ /F )e−2i Im s ,
we see from Lemma 4.3 that w := esF satisfies (3.2). Moreover, if we write w = es

r
F r

in the notation of Section 5.2, we find that sr = s and F r
= F because s inherits from sn

the properties Im trT s = 0 and
∫
T Re s = 0. As F ∈ H λ for all λ ∈ [1, p), we further

deduce from the discussion before (5.16) that w ∈ Gλα for all such λ. By inspection of
(6.4) we get

wT = e
trT sF|T = e

trT s(e− trT sψ + i ˜e− trT sψ + ic0) = ψ + i(e
trT s ˜e− trT sψ + etrT sc0),

(6.5)
where we use the fact that h = trT s is real-valued. In particular, (6.5) entails RewT = ψ .

To show that w ∈ Gpα(D), we must prove in view of Theorem 5.1 that wT ∈ Lp(T).
To do so, note that ψ ∈ Lp(T) by assumption, and etrT sc0 ∈ L

p(T) by the trace and
Sobolev embedding theorems. Furthermore, ptrT s ∈ W 1/2,2(T) ⊂ VMO(T) by (8.13).
By Lemma 8.2, eptrT s satisfies condition Ap. Thus, using (5.8), we obtain

‖etrT s ˜e− trT sψ‖
p
p ≤ C

′′
‖ψ‖

p
p , C′′ = C′′({eptrT s}Ap ); (6.6)

in view of (6.5) we have wT ∈ Lp(T). This gives the existence part of Theorem 6.2.
As for uniqueness, let w1, w2 ∈ G

p
α(D) be two solutions. Set v := w1 − w2 ∈

G
p
α(D), so that Re vT = 0 and

∫
T Im vT = 0. If we write v = eσ

r
8r, we observe that
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Re(8r)|T ≡ 0, and hence the H λ function 8r, 1 ≤ λ < p, is a pure imaginary constant,
say ζ . Thus, v = ζes and the relations

∫
T Im vT = 0 and

∫
T e

trT σ > 0 give ζ = 0, so that
v = 0, as desired.

Finally, we verify (6.1). By (5.18), it suffices to prove that

‖wT‖Lp(T) ≤ C(‖ψ‖Lp(T) + |c|),

where C depends only on p. By (6.6), (6.5), (6.3) and Hölder’s inequality, we need only
establish that ‖etrT s‖Lp(T), {eptrT s}Ap , and 1/

∫
T e

trT s are bounded from above indepen-
dently of ψ . We pointed out earlier in the proof that esn is bounded in W 1,q(D), inde-
pendently of n and ψ , for each q ∈ [1, 2). Since sn tends to s in W 1,2(D), boundedness
of ‖etrT s‖Lp(T) follows from Proposition 8.4 and the (nonintegral version of) the Sobolev
embedding theorem. Next, (5.10) yields ‖s‖W 1,2(D) ≤ C0‖α‖L2(D) for some absolute con-
stant C0. Thus, using concavity of log, the Schwarz inequality, and the trace theorem, we
find for some absolute constant C1 that

log
(

1
2π

∫
T
es(ξ) |dξ |

)
≥

1
2π

∫
T
s(ξ) |dξ |

≥ −‖s‖L2(T) ≥ −C1‖s‖W 1,2(D) ≥ −C0C1‖α‖L2(D),

showing that
∫
T e

trT s ≥ exp{−C0C1‖α‖L2(D)}.
Finally, to majorize {ep trT s}Ap independently of ψ , it suffices by Lemma 8.2 to prove

thatMtrT s(J ) (see definition (8.8)) can be made arbitrarily small as3(J )→ 0, uniformly
with respect to ψ , as J ranges over open arcs on T. Let ω be be a strictly positive function
on (0,∞) such that ‖α‖L2(Qω(ε)∩D) < ε as soon as Qω(ε) is a square of sidelength ω(ε).
By (5.12) and Proposition 8.5, there is a strictly positive function ω̃ on (0,∞), depend-
ing only on ω, such that (5.20) holds. Now, if 3(J ) < 1, it is elementary to check that
R(J,3(J )) (cf. definition (8.29)) is contained in a square of sidelength 3(J ). There-
fore, if we pick 3(J ) < min{1/2, ω̃(η)}, we deduce from (8.13) and Lemma 8.9 that
MtrT s(J ) ≤ C1η, where C1 is an absolute constant. This completes the proof of Theo-
rem 6.2. ut

7. Dirichlet problem for exp-W 1,2 conductivity

The following connection between pseudo-holomorphic functions and conductivity equa-
tions is instrumental in [3] and was investigated in the context of pseudo-holomorphic
Hardy spaces in [5, 4] when r > 2. We start by a 2D isotropic conductivity equation with
exp-Sobolev smooth coefficient:

div(σ∇u) = 0 in �, σ ≥ 0, log σ ∈ W 1,r(�), r ∈ [2,∞). (7.1)

When r > 2, the assumption that log σ ∈ W 1,r(�) simply means that σ ∈ W 1,r(�) and
that 0 < c < σ (strict ellipticity). If r = 2, then σ lies in W 1,q(�) for all q ∈ [1, 2)
by Proposition 8.4, but it is not necessarily bounded away from zero nor infinity, which
makes this case particularly interesting because (7.1) may no longer be strictly elliptic.
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Set ν := (1− σ)/(1+ σ) and consider the conjugate Beltrami equation

∂f = ν∂f in �, −1 ≤ ν ≤ 1, arctanh ν ∈ W 1,r(�), r ∈ [2,∞), (7.2)

where the assumptions on ν correspond to those on σ given in (7.1). The fact that σ ∈
W 1,q(�) for all q ∈ [1, 2) implies easily that the same holds for ν. If we restrict ourselves
to solutions f ∈ Lγloc(�) for some γ > r/(r − 1) and write f = u + iv to separate the
real and the imaginary parts, we find that (7.2) is equivalent to the generalized Cauchy–
Riemann system {

∂xv = −σ∂yu,

∂yv = σ∂xu,
(7.3)

whose compatibility condition is the conductivity equation (7.1). Hence, (7.2) is a means
to rewrite (7.1) as a complex equation of the first order. Now, if we set

w :=
f − νf̄
√

1− ν2
= σ 1/2u+ iσ−1/2v, α = ∂̄ log σ 1/2

∈ Lr ,

then a straightforward computation using (7.3) shows that (3.2) holds. Note that any con-
stant c solves (7.2), the corresponding solution in (3.2) being σ 1/2 Re c + iσ−1/2 Im c.

The preceding discussion makes the study of (7.2) essentially equivalent to that of
(3.2), (7.1). In particular, Theorem 6.2 translates into the following result that seems to be
the first to describe a class of non-strictly elliptic equations with unbounded coefficients
for which the Dirichlet problem is well-posed with (weighted) Lp boundary data.

Theorem 7.1. Let σ ≥ 0 be such that log σ ∈ W 1,2(D), and fix p ∈ (1,∞). For every ψ
such that ψ trT σ 1/2

∈ Lp(T), there exists a unique solution u to (7.1) such that

sup
0<ρ<1

(∫
Tρ
|u(ξ)|pσp/2(ξ) |dξ |

)1/p

<∞ (7.4)

and limρ→1 trT(uρσ
1/2
ρ ) = ψ trT σ 1/2 in Lp(T). Moreover, the supremum in (7.4) is less

than C‖ψσ 1/2
‖Lp(T) for some C = C(p, σ ).

8. Appendix

8.1. Mean growth of Cauchy transforms

In this subsection we prove estimate (2.15). First, we evaluate C2(h)DR , the mean of C2(h)

over DR , when h ∈ L2(C) and R ≥ 1. To this end, we use the following identity (see [2,
Section 4.3.2]):

C(χDR )(t) =
{
t̄ if |t | ≤ R,
R2/t if |t | > R.

(8.1)
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If h has compact support, we deduce from (2.14), (8.1) and Fubini’s theorem that

C2(h)DR =
1
πR2

∫
DR

(
1
π

∫
C

h(t)

z− t
dm(t)+

1
π

∫
C\D

h(t)

t
dm(t)

)
dm(z)

= −
1
πR2

∫
DR
h(t)t̄ dm(t)−

1
π

∫
C\DR

h(t)

t
dm(t)+

1
π

∫
C\D

h(t)

t
dm(t)

= −
1
πR2

∫
DR
h(t)t̄ dm(t)+

1
π

∫
1≤|t |≤R

h(t)

t
dm(t). (8.2)

By a density argument, (8.2) holds for every h ∈ L2(C). Next, by (8.2) and the Schwarz
inequality, we have

|C2(h)DR | ≤
‖h‖L2(C)
√

2π
+

√
2
π
‖h‖L2(C)(logR)1/2, R ≥ 1. (8.3)

On the other hand, by the Poincaré inequality, we have

‖C2(h)− C2(h)DR‖L2(DR) ≤ CR(‖h‖L2(DR) + ‖B(h)‖L2(DR)) ≤ 2CR‖h‖L2(C), (8.4)

where CR is the best constant in (2.3) for p = 2 and � = DR . Finally, since

‖C2(h)‖L2(DR)
√
πR

≤
‖C2(h)− C2(h)DR‖L2(DR)

√
πR

+ |C2(h)DR |,

(2.15) follows from (8.3), (8.4) and the fact that CR = RC1 by homogeneity.

8.2. Functions of vanishing mean oscillation

The space BMO(T) of functions with bounded mean oscillation on the unit circle consists
of the functions h ∈ L1(T) such that

‖h‖BMO(T) := sup
I

1
3(I)

∫
I

|h(t)− hI | d3(t) <∞, hI :=
1

3(I)

∫
I

h(t) d3(t),

(8.5)
where 3 indicates arclength and I ranges over all subarcs of T. Note that ‖ · ‖BMO(T) is
a genuine norm modulo additive constants only. The space VMO(T) of functions with
vanishing mean oscillation is the subspace of BMO(T) consisting of those h for which

lim
ε→0

sup
3(I)<ε

1
3(I)

∫
I

|h(t)− hI | d3(t) = 0. (8.6)

Actually, VMO(T) is the closure in BMO(T) of the set of continuous functions [21,
Chapter VI, Corollary 1.3 & Theorem 5.1]. The John–Nirenberg theorem asserts that
there exist absolute constants C, c such that, for every h ∈ BMO(T), every arc I ⊂ T,
and any λ > 0,

3({ξ ∈ I : |h(ξ)− hI | > λ})

3(I)
≤ C exp

(
−cλ

‖h‖BMO(T)

)
; (8.7)
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in fact one can take C = e and c = 1/(2e) (see [23, Theorem 7.1.6]11). We also need
a quantitative version of the so-called integral form of the John–Nirenberg inequality.12

Given h ∈ L1(T) and an arc I ⊂ T, let us define

Mh(I ) := sup
I ′⊂I

1
3(I ′)

∫
I ′
|h− hI ′ | d3, (8.8)

where the supremum is taken over all subarcs I ′ ⊂ I .

Lemma 8.1. If h ∈ BMO(T) \ {0} and I ⊂ T is an arc, then∫
I

e|h|/(4eMh(I )) d3 ≤ (1+ e)3(I)e|hI |/(4eMh(I )). (8.9)

Proof. Inspecting the standard proof of the John–Nirenberg inequality that uses recur-
sively the Calderón–Zygmund decomposition on dyadic subdivisions of I [21, Chapter
VI, Theorem 2.1], one checks that (8.7) remains valid if we replace ‖h‖BMO(T) byMh(I ):

3({ξ ∈ I : |h(ξ)− hI | > λ})

3(I)
≤ C exp

(
−cλ

Mh(I )

)
. (8.10)

Pick c′ ∈ (0, c) with c as in (8.10), and set g := c′|h − hI |/Mh(I ). We compute as in
[23, Corollary 7.1.7]:

1
3(I)

∫
I

eg d3 = 1+
1

3(I)

∫
I

(eg − 1) d3

= 1+
1

3(I)

∫
∞

0
eλ3({ξ ∈ I : g(ξ) > λ}) dλ,

where the second equality follows from Fubini’s theorem. Using (8.10) to estimate the
distribution function of g, we find that

1
3(I)

∫
I

ec
′
|h−hI |/Mh(I )d3 =

1
3(I)

∫
I

eg d3 ≤ 1+C
∫
∞

0
eλe−cλ/c

′

dλ = 1+
C

c/c′ − 1
.

Choosing C = e, c = 1/(2e), and c′ = 1/(4e), we obtain

1
3(I)

∫
I

e|h−hI |/(4eMh(I )) d3 ≤ 1+ e, (8.11)

from which (8.9) follows at once. ut

By definition, Mh(I ) tends to zero uniformly with 3(I) if h ∈ VMO(T), and then
Lemma 8.1 makes it clear that in this case eh ∈ Lp(T) for every p ∈ [1,∞).

When h ∈ VMOR(T), where the subscript “R” means “real-valued” as usual, it is
well known that eh satisfies condition Ap given in (5.7) for all p ∈ (1,∞). This follows
for instance from (8.11) and [21, Chapter VI, Corollary 6.5]. Below, we record for later
use a specific estimate for the Ap norm in terms of (8.8).

11 The argument there is given on the line but it applies mutatis mutandis to the circle.
12 WhenMh(I ) gets replaced by supI ′⊂I ((3(I

′))−1 ∫
I ′ |h−hI ′ |

2 d3)1/2 (a different but in fact
equivalent quantity), the sharp constants in (8.9) were obtained in [39].
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Lemma 8.2. Let h ∈ VMOR(T) and p ∈ (1,∞). Let η = η(h, p) > 0 be so small that
4eMh(I )max(1, 1/(p − 1)) ≤ 1 for every arc I ⊂ T satisfying 3(I) < η. Then

{eh}Ap := sup
I

(
1

3(I)

∫
I

eh d3

)(
1

3(I)

∫
I

e−h/(p−1) d3

)p−1

≤ C (8.12)

where C depends only on η, p, and ‖eh‖L1(T).

Proof. If we set p′ = p/(p− 1), then 1/(p− 1) = p′ − 1 and it follows easily from the
definition that {eh}Ap = {e

−h/(p−1)
}
(p−1)
Ap′

. Therefore we may assume that p ≥ 2.
Now, the left hand side of (8.12) can be rewritten as

sup
I

(
1

3(I)

∫
I

eh−hI d3

)(
1

3(I)

∫
I

e−(h−hI )/(p−1) d3

)p−1

.

If 3(I) < η, then 4eMh(I ) < 1 and 4eMh(I )/(p − 1) < 1, thus by (8.11) and Hölder’s
inequality we have

1
3(I)

∫
I

eh−hI d3 ≤

(
1

3(I)

∫
I

e|h−hI |/(4eMh(I )) d3

)4eMh(I )

≤ (1+ e)4eMh(I ) ≤ 1+ e

and(
1

3(I)

∫
I

e−(h−hI )/(p−1) d3

)p−1

≤

(
1

3(I)

∫
I

e|h−hI |/(4eMh(I )) d3

)4eMh(I )

≤ 1+ e.

This shows that (8.12) holds with C = (1+ e)2 when the supremum is restricted to those
I of length less than η. On the other hand, if 3(I) ≥ η, then obviously

1
3(I)

∫
I

eh d3 ≤ η−1
‖e|h|‖L1(T)

and likewise, taking into account that p ≥ 2 and using Hölder’s inequality, we obtain(
1

3(I)

∫
I

e−h/(p−1) d3

)p−1

≤
1

3(I)

∫
I

e|h| d3 ≤ η−1
‖e|h|‖L1(T).

Thus, (8.12) holds with C = (‖e|h|‖L1(T)/η)
2 in this case. ut

When 0 is a Jordan curve locally isometric to a Lipschitz graph, the definitions of
BMO(0), VMO(0), and condition Ap on 0 which are modeled after (8.5), (8.6), and
(5.7) coincide with the standard ones [8, Section 2.5].13 Lemmas 8.1 and 8.2 carry over
mechanically to this more general setting, but the significance of condition Ap with re-
spect to the weighted Lp continuity of the conjugate operator is no longer the same if

13 In the standard definition, arcs I ⊂ 0 are replaced by sets of type D(ξ, ρ) ∩ 0 with ξ ∈ 0. It
is in this form that condition Ap is necessary and sufficient for weighted Lp boundedness of the
singular Cauchy integral operator on 0 (see [8, Chapter 5]).
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0 is nonsmooth.14 Such considerations are not needed in this paper, but we make use
at some point of the following estimate showing that W 1/2,2(0) embeds contractively in
VMO(0) [10]:

1
3(I)

∫
I

|h− hI | d3 ≤
1

(3(I))2

∫
I×I

|h(t)− h(t ′)| d3(t) d3(t ′)

≤
1

3(I)

∫
I×I

|h(t)− h(t ′)|

3(t, t ′)
d3(t) d3(t ′)

≤

(∫
I×I

|h(t)− h(t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤ ‖h‖W 1/2,2(0), (8.13)

where the next to last step uses the Schwarz inequality. Note that if h ∈ W 1/2,2(0), then

‖h‖W 1/2,2(I ) :=

(∫
I×I

|h(t)− h(t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

tends to 0 as 3(I)→ 0 by the absolute continuity of |h(t)−h(t
′)|2

(3(t,t ′))2
d3(t)d3(t ′).

8.3. Exp-summability of Sobolev functions at the critical exponent

Given a bounded open set � ⊂ C, the Trudinger–Moser inequality [34] asserts that

sup
h∈W

1,2
0 (�)

‖∂h‖2
L2(�)

+‖∂̄h‖2
L2(�)

≤1/2

∫
�

e4π |h|2dm ≤ CTM|�| (8.14)

for some absolute constant CTM. Now, given a nonzero f ∈ W 1,2
0 (�), set for simplic-

ity N1(f ) := (2‖∂f ‖2
L2(�)

+ 2‖∂̄f ‖2
L2(�)

)1/2 and let further f1 = f/N1(f ). For each

ξ ∈ � such that f (ξ) is defined, we have either |f (ξ)| ≤ N2
1 (f )/(4π) or exp(|f (ξ)|) <

exp(4π |f1(ξ)|
2). Thus, applying (8.14) with h = f1, we deduce for f ∈ W

1,2
0 (�)

a fortiori that ∫
�

e|f | dm ≤ |�|

(
CTM + exp

(
‖∂f ‖2

L2(�)
+ ‖∂̄f ‖2

L2(�)

2π

))
. (8.15)

Lemma 8.3. Let � ⊂ C be a bounded and Lipschitz open set. Then there exist C1 =

C1(�) and C2 = C2(�) such that, for every ` ∈ [1,∞) and f ∈ W 1,2(�),

‖e|f |‖L`(�) ≤ C1 exp(C2`‖f ‖
2
W 1,2(�)

). (8.16)

14 Even if we restrict ourselves to constant weights (which certainly satisfy Ap for all p ∈
(1,∞)), the conjugate operator is generally Lp-continuous for a restricted range of p only. This
follows from [32, Theorem 2.1] and the fact that the Szegő projection has the same weighted Lp
type as the conjugate operator on T.
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Proof. Let �1 ⊃ � be open and, say, |�1| ≤ 2|�|. Pick ϕ ∈ D(R2) to have support
in�1, values in [0, 1], and to be identically 1 on�. By the extension theorem, there exists
f̃ ∈ W 1,2(R2) such that f̃|� = f and ‖f̃ ‖W 1,2(R2) ≤ C‖f ‖W 1,2(�), where C = C(�).
Then h := `ϕf̃ lies in W 1,2

0 (�1) and satisfies

‖∂h‖2
L2(�1)

+ ‖∂̄h‖2
L2(�1)

≤ `2C′‖f ‖2
W 1,2(�)

,

where C′ depends on C and ϕ. Applying (8.15) to h, we find on setting C2 = C
′/(2π)

that ∫
�

e`|f |dm ≤

∫
�1

e|h|dm ≤
(
e
`2C2‖f ‖

2
W1,2(�) + CTM

)
|�1|,

which yields (8.16) upon setting C1 := 2(1+ CTM)|�|. ut

With the help of Lemma 8.3, we now prove that ef is fairly smooth when f ∈ W 1,2(�).
Recall that a (possibly nonlinear) operator between Banach spaces is said to be bounded
if it maps bounded sets into bounded sets.

Proposition 8.4. Let � ⊂ R2 be a bounded Lipschitz smooth open set. Fix p ∈ (1,∞)
and ` ∈ [1,min(p, 2)). Then the map (g, f ) 7→ gef is continuous and bounded from
W 1,p(�) ×W 1,2(�) into W 1,`(�), and derivatives are computed using the Leibniz and
the chain rules:

∂(gef ) = ef ∂g + gef ∂f, ∂̄(gef ) = ef ∂̄g + gef ∂̄f. (8.17)

In particular, for every q ∈ [1, 2), the map f 7→ ef is continuous and bounded from
W 1,2(�) intoW 1,q(�) and so is the map f 7→ etr∂� f fromW 1,2(�) intoW 1−1/q,q(∂�).

Proof. Let g ∈ W 1,p(�), f ∈ W 1,2(�), and let (fn), (gn) be two sequences of smooth
functions on � converging respectively to f and g in W 1,2(�) and W 1,p(�).

We claim that efn converges to ef in L`(�) for all ` ∈ [1,∞). To see this, con-
sider first the case of real-valued functions. By the mean-value theorem and convexity of
t 7→ et , we have∫

�

|ef − efn |` dm ≤

∫
�

|f − fn|
`
|ef + efn |` dm

≤ ‖f − fn‖
`
L2`(�)

‖ef + efn‖`
L2`(�)

, (8.18)

where we use the Schwarz inequality. By the Sobolev embedding theorem, ‖f−fn‖L2`(�)

tends to 0 as n→∞. Moreover, ‖fn‖W 1,2(�) tends to ‖f ‖W 1,2(�), hence ‖ef +efn‖L2`(�)

is uniformly bounded by Lemma 8.3, and the right hand side of (8.18) indeed goes to zero
as n → ∞. Next, if f , fn are complex-valued, say f = u + iv and fn = un + ivn, we
write

‖ef − efn‖L`(�) ≤ ‖e
u(eiv − eivn)‖L`(�) + ‖e

ivn(eu − eun)‖L`(�).

By what precedes, the last term on the right hand side tends to 0 as n → ∞, and so
does the first one since we can extract pointwise convergent subsequences from any sub-
sequence of vn and apply the dominated convergence theorem. This proves the claim.
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Next, we observe that gnefn is smooth on � and

∂(gne
fn) = efn∂gn + gne

fn∂fn. (8.19)

Assume first that p < 2. Then, by the Sobolev embedding theorem, (gn) converges to g
in Lp

∗

(�) where p∗ = 2p/(2−p) > 2. From this and the previous claim, we deduce by
Hölder’s inequality that (gnefn) converges to gef in L`(�) for ` ∈ [1, p∗), hence also in
the sense of distributions. By the same token, the right hand side of (8.19) converges to
ef ∂g+gef ∂f in L`(�) for each ` ∈ [1, p). The case p = 2 is similar except that p∗ can
be taken arbitrarily large, hence the convergence on the right hand side of (8.19) takes
place in L`(�) for all ` < 2. If p > 2, then g is even bounded, but this does not im-
prove the estimate. Repeating the argument for ∂̄(gef ) proves that (gnefn) converges to
gef in W 1,` for ` ∈ [1,min(p, 2)) and that (8.17) holds. Hence, the map (g, f ) 7→ gef

is defined from W 1,p(�) × W 1,2(�) into W 1,`(�) and (8.17) is valid. Moreover, by
Lemma 8.3 and Hölder’s inequality, this map is bounded. Relaxing the smoothness as-
sumption on fn, gn and arguing as before shows that it is also continuous. This proves the
first assertion of the proposition. On setting g ≡ 1, the second assertion follows by the
Sobolev embedding and the trace theorems. ut

8.4. Equicontinuity properties of Cauchy transforms

Proposition 8.5. Let β ∈ L2(D) and let ω be a strictly positive function on (0,∞) such
that ‖β‖L2(Qω(ε)∩D) < ε whenever Qω(ε) is a square of sidelength ω(ε).

(i) If we set (cf. (2.9))

C(β)(z) =
1

2πi

∫
D

β(ξ)

ξ − z
dξ ∧ dξ̄ , z ∈ C,

then there exists a strictly positive function ω1 on (0,∞), depending only on ω, such
that

‖∂C(β)‖L2(Qω1(η))
+ ‖∂̄C(β)‖L2(Qω1(η))

< η (8.20)

whenever Qω1(η) is a square of sidelength ω1(η).
(ii) If we set (cf. (5.11))

R(β)(z) :=
1

2πi

∫
D

zβ̄(ξ)

1− ξ̄ z
dξ ∧ dξ̄ , z ∈ D,

then R(β) ∈ W 1,2(D) is holomorphic in D and there exists a strictly positive function
ω2 on (0,∞), depending only on ω, such that

‖∂R(β)‖L2(Qω2(η)∩D)
< η

whenever Qω2(η) is a square of sidelength ω2(η).
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Proof. Since β ∈ L2(D), we know that C(β) ∈ W
1,2
loc (C). Fix η > 0 and set δ =

min(1/3, ω(η/3), η/(6‖β‖)). For any square Qδ , we have a nested concentric square
with parallel sides Qδ2 ⊂ Qδ . Let β̃ be the extension of β by 0 off D. Since ∂̄C(β) = β̃,
we obtain

‖∂̄C(β)‖L2(Q
δ2 )
< η/3. (8.21)

Next, we write
∂C(β) = B(β̃) = B(χQδ β̃)+ B(χC\Qδ β̃) (8.22)

where B indicates the Beurling transform (cf. (2.10)). As B is an isometry on L2(C), we
get

‖B(χQδ β̃)‖L2(C) = ‖β‖L2(Qδ∩D) < η/3. (8.23)

Moreover, formula (2.10) and the Schwarz inequality give the pointwise estimate

B(χC\Qδ β̃)(z) ≤
2
δ
‖β‖L2(D), z ∈ Qδ2 .

Integrating over Qδ2 yields

‖B(χC\Qδ β̃)‖L2(Q
δ2 )
≤ 2δ‖β‖L2(D) < η/3. (8.24)

Inequality (8.20) with ω1(η) = δ follows now from (8.21)–(8.24), proving (i).
Consider next R(β). Clearly it is holomorphic in D and vanishes at 0. Furthermore,

R(β)(z) = −C(β)(1/z̄) and since C(β) ∈ W 1,2
loc (C) we get R(β) ∈ W 1,2(D).

Once again, fix η > 0 and set δ = min(ω1(η)/4, η/(16‖β‖)). First, every square
Qδ has diameter at most 1/4, hence is disjoint from D1/2 if it meets A3/4 := {z : 1 ≥
|z| ≥ 3/4}. In this case the reflection (z 7→ 1/z̄) of Qδ ∩ D is contained in a square of
sidelength 4δ ≤ ω1(η), and since

∂R(β)(z) =
(∂(Cβ))(1/z̄)

z2 , z 6= 0,

we deduce from (8.20) and the change of variable formula that ‖∂R(β)‖L2(Qδ)
≤ η.

Assume now that Qδ ⊂ D3/4. Differentiating under the integral sign we obtain

∂R(β) =
1

2πi

∫
D

β̄(ξ)

1− ξ̄ z
dξ ∧ dξ̄ +

1
2πi

∫
D

zξ̄ β̄(ξ)

(1− ξ̄ z)2
dξ ∧ dξ̄ ,

so that if z ∈ D3/4, we infer by the Schwarz inequality that |∂R(β)(z)| ≤ 16‖β‖L2(D).
Integrating over Qδ yields

‖∂R(β)‖L2(Qδ)
≤ 16δ‖β‖L2(D) ≤ η,

as desired. It remains to set ω2(η) = δ. ut
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Corollary 8.6. Let β ∈ L2(C) and let ω be a strictly positive function on (0,∞) such
that ‖β‖L2(Qω(ε))

< ε wheneverQω(ε) is a square of sidelength ω(ε). If we let (cf. (2.14))

C2(β)(z) =
1
π

∫
R2

(
1

z− t
+
χC\D(t)

t

)
β(t) dm(t), z ∈ C,

then there exists a strictly positive function ω1 on (0,∞), depending only on ω, such that

‖∂C2(β)‖L2(Qω1(η))
+ ‖∂̄C2(β)‖L2(Qω1(η))

< η

whenever Qω1(η) is a square of sidelength ω1(η).

Proof. This is proved in the same way as (8.20), replacing β̃ by β. ut

8.5. Integral estimates on circular arcs

Lemma 8.7. If f ∈ W 1,q(D) for some q ∈ (1, 2) and ` := q/(2− q), then

sup
ρ∈(0,1]

(∫
Tρ
|f (ξ)|` |dξ |

)1/`

≤ C‖f ‖W 1,q (D),

where C = C(q).

Proof. Set fρ(ξ) := f (ρξ) so that(∫
Tρ
|f (ξ)|` |dξ |

)1/`

= ρ1/`
(∫

T
|fρ(ξ)|

`
|dξ |

)1/`

. (8.25)

By the trace theorem and (the nonintegral version of) the Sobolev embedding theorem we
have (∫

T
|fρ(ξ)|

`
|dξ |

)1/`

≤ C‖fρ‖W 1,q (D) (8.26)

with C = C(q), and from the change of variable formula we deduce for ρ > 0 that

‖fρ‖W 1,q (D) = ρ
−2/q
‖f ‖Lq (Dρ ) + ρ

1−2/q(‖∂f ‖Lq (Dρ ) + ‖∂̄f ‖Lq (Dρ )). (8.27)

Since 1/`− 2/q = −1, in view of (8.25)–(8.27) it remains to majorize ρ−1
‖f ‖Lq (Dρ ) by

C‖f ‖W 1,q (D) for some C = C(q). From (2.4) we see that this is equivalent to checking
the estimate

ρ2/q−1
|fDρ | =

∣∣∣∣ 1
πρ3−2/q

∫
Dρ
f dm

∣∣∣∣ ≤ C1‖f ‖W 1,q (D), 0 < ρ ≤ 1, (8.28)

with C1 = C1(q). Now, the Sobolev embedding theorem implies that for some C2 =

C2(q) we have ‖f ‖L2q/(2−q)(D) ≤ C2‖f ‖W 1,q (D), and so by Hölder’s inequality,∣∣∣∣ ∫
Dρ
f dm

∣∣∣∣ ≤ C2π
3/2−1/qρ3−2/q

‖f ‖W 1,q (D),

which is exactly (8.28) with C1 = C2π
1/2−1/q . ut
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For J ⊂ T an open arc and δ ∈ (0, 1), we denote byR(J, δ) the open curvilinear rectangle
in D (an annulus if J = T) defined by

R(J, δ) = {z : z = ρξ, ξ ∈ J, 1− δ < ρ < 1}. (8.29)

Lemma 8.8. If f ∈ W 1,2
0 (D) and ρ ∈ (0, 1], then for every arc I ⊂ Tρ we have∣∣∣∣ 1

3(I)

∫
I

f (ζ ) |dζ |

∣∣∣∣ ≤ (1− ρ)1/2(3(I))1/2
(‖∂f ‖L2(R(J,1−ρ)) + ‖∂̄f ‖L2(R(J,1−ρ))), (8.30)

where J ⊂ T is the arc such that ρJ = I .

Proof. By density it suffices to prove (8.30) when f ∈ D(D). If we write ζ ∈ I as
ζ = ρξ with ξ ∈ J , we get

f (ζ ) = −

∫ 1

ρ

(
∂f (tξ)ξ + ∂̄f (tξ)ξ̄

)
dt

and integrating with respect to |dζ | = ρ|dξ | yields∣∣∣∣∫
I

f (ζ ) |dζ |

∣∣∣∣ = ∣∣∣∣ρ ∫
J

∫ 1

ρ

(
∂f (tξ)ξ + ∂̄f (tξ)

)
dt |dξ |

∣∣∣∣
≤

∫
R(J,1−ρ)

(
|∂f (tξ)| + |∂̄f (tξ)|

)
t dt |dξ |.

Since m(R(J, 1 − ρ)) = 3(I)(1 − ρ2)/2, estimate (8.30) follows from the Schwarz
inequality. ut

Lemma 8.9. Let J be a proper open subarc of T and let δ0 ∈ (0, 1). For every δ ∈ (0, δ0]

there exists C > 0 depending only on δ0 and3(J )/δ such that for all f ∈ W 1,2(R(J, δ))

(cf. definition (8.29)) we have(∫
∂R(J,δ)×∂R(J,δ)

|f (t)− f (t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤ C(‖∂f ‖L2(R(J,δ)) + ‖∂̄f ‖L2(R(J,δ))). (8.31)

Proof. Pick δ ∈ (0, δ0], and write eia , eib for the endpoints of J with a < b and
|a − b| < 2π . The map ϕ(ρ, θ) := (ρ cos θ, ρ sin θ) is a diffeomorphism from R :=

(1− δ, 1)× (a, b) onto R(J, δ) satisfying |||Dϕ||| ≤ 1 and |||(Dϕ)−1
||| ≤ c/(1− δ0), where

Dϕ indicates the derivative and ||| · ||| is the operator norm. In particular, ϕ−1 extends to
a Lipschitz homeomorphism from ∂R(J, δ) onto ∂R with Lipschitz constant depending
only on δ0, and by the change of variable formula it is enough to show that if h := f ◦ ϕ,
then (∫

∂R×∂R

|h(t)− h(t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤ C(‖∂h‖L2(R) + ‖∂̄h‖L2(R)),

where the constant C depends only on 3(J )/δ = 2π(b − a)/δ. The result now follows
from the fact that if p = 2 and � is a rectangle, then the constant in (2.6) depends only
on the ratio of sidelengths, a fact which is obvious by homogeneity. ut
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8.6. A multiplier theorem

The next theorem is fundamental to our study ofGpα when α ∈ L2(D), but is also of inde-
pendent interest. It is best stated in terms of multipliers. We use the definition (2.1) of the
nontangential maximal function Mγ f . Denote by Mγ,p the Banach space of complex-
valued functions on D such that ‖Mγ f ‖Lp(T) < ∞. Furthermore, we use the Banach
space Hp of functions satisfying a Hardy condition, introduced in Section 5.2.

Theorem 8.10. Let γ ∈ (0, π/2) and p ∈ [1,∞). Given f ∈ W 1,2
0,R(D), multiplication

by ef is continuous from Mγ,p into Hp. More precisely, for any function g on D, we have

sup
0<ρ<1

(∫
Tρ
epf (ξ)|g(ξ)|p |dξ |

)1/p

< C‖Mγ g‖Lp(T), (8.32)

where C depends on p, γ , and on ε > 0 so small that ‖∂f ‖L2(Qε∩D) < C′/p whenever
Qε is a square of sidelength ε, with C′ depending only on γ .

Proof. First, let ρ ∈ (0, sin γ ). For ζ ∈ T, 0ζ,γ contains Tρ and we have∫
Tρ
epf (ξ)|g(ξ)|p |dξ | ≤Mp

γ g(ζ )

∫
Tρ
epf (ξ) |dξ |.

Averaging over ζ ∈ T yields∫
Tρ
epf (ξ)|g(ξ)|p |dξ | ≤

1
2π

(∫
T
Mp

γ g(ζ ) |dζ |

)(∫
Tρ
epf (ξ) |dξ |

)
. (8.33)

By Lemma 8.7 applied to ef in the place of f with ` = p and q := 2p/(p + 1), we get(∫
Tρ
epf (ξ) |dξ |

)1/p

≤ c0‖e
f
‖W 1,q (D) (8.34)

for some c0 = c0(p). Moreover, Lemma 8.3, Proposition 8.4, Hölder’s inequality, and the
fact that f is real-valued together imply that for some absolute constants C1, C2 we have

‖ef ‖W 1,q (D) = ‖e
f
‖Lq (D) + 2‖∂f ef ‖Lq (D) ≤ ‖e|f |‖L2p(D)(1+ 2‖∂f ‖L2(D))

≤ C1
(
1+ exp(C2p‖∂f ‖

2
L2(D))

)
(1+ ‖∂f ‖L2(D)). (8.35)

By (8.33)–(8.35) we conclude that

sup
0<ρ<sin γ

(∫
Tρ
epf (ξ)|g(ξ)|p |dξ |

)1/p

≤ C0‖Mγ g‖Lp(T) (8.36)

for some C0 = C0(p, ‖∂f ‖L2(D)).
Assume next that ρ ≥ sin γ . Now 0ζ,γ cuts out two disjoint open arcs on Tρ one

of which is centered at ξ = ρζ . Denote this arc by Aξ . Its length 3(Aξ ) is inde-
pendent of ζ and it is easy to check that K1(1 − ρ) ≤ 3(Aξ ) ≤ K2(1 − ρ) for
strictly positive numbers K1, K2 depending only on γ . Take an integer Nρ in the interval
[4πρ/3(Aξ ), 4πρ/3(Aξ ) + 1), and divide Tρ into Nρ semi-open arcs of equal length,
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say Iξ1 , . . . , IξNρ , centered at equidistant points ξ1, . . . , ξNρ ∈ Tρ . Set ζj = ξj/ρ ∈ T,
and consider the partition of T into Nρ semi-open arcs Jζj := Iξj /ρ centered at ζj . By
construction, if ζ ∈ Jζj , then Iξj ⊂ 0ζ,γ . Consequently,∫

Iξj

epf (ξ)|g(ξ)|p |dξ | ≤Mp
γ g(ζ )

∫
Iξj

epf (ξ) |dξ |,

and averaging over ζ ∈ Jζj gives∫
Iξj

epf (ξ)|g(ξ)|p |dξ | ≤
1

3(Jζj )

(∫
Jζj

Mp
γ g(ζ ) |dζ |

)(∫
Iξj

epf (ξ) |dξ |

)
.

Since 3(Jζj ) = 3(Iξj )/ρ we deduce upon summing over j that∫
Tρ
epf (ξ)|g(ξ)|p |dξ | ≤ ρ

(∫
T
Mp

γ g(ζ ) |dζ |

)
sup

1≤j≤Nρ

(
1

3(Iξj )

∫
Iξj

epf (ξ) |dξ |

)
.

(8.37)

Let R(J, δ) be defined as in (8.29), and let C be the constant in Lemma 8.9 associated
to δ0 = 1 − sin γ and 3(J )/δ = K2/(2 sin γ ); note that C depends only on γ . Since
3(Jζj )/(1− ρ) ≤ K2/(2 sin γ ), the arc J ′ζj ⊂ T of length (1− ρ)K2/(2 sin γ ) centered
at ζj does contain Jζj . Therefore, R(Jζj , 1 − ρ) is contained in R(J ′ζj , 1 − ρ) and Iξj is
contained in I ′ξj := J ′ζj /ρ. Hence, (8.31) a fortiori implies for some K depending only
on γ that(∫

Iξj×Iξj

|f (t)− f (t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤ K(‖∂f ‖L2(R(J ′ζj
,1−ρ)) + ‖∂̄f ‖L2(R(J ′ζj

,1−ρ))). (8.38)

Now, it is elementary to check that R(J ′ζj , 1 − ρ) is contained in a square of side-
length K3(1 − ρ) (where K3 depends only on γ ), one side of which is tangent to T
at ζj . So, if we let ε1 be so small that ‖∂f̃ ‖L2(Qε1 )

< 1/(8Kep) wheneverQε1 is a square
of sidelength ε1, we get (since f is real-valued)

‖∂f ‖L2(R(J ′ζj
,1−ρ)) + ‖∂̄f ‖L2(R(J ′ζj

,1−ρ)) ≤
1

4Kep
when max(sin γ, 1− ε1/K3) = ρ0 ≤ ρ < 1.

(8.39)

Then, from (8.13), (8.38), and (8.39), we see that for all subarcs I ⊂ Iξj ,

1
3(I)

∫
I

|f − fI | d3 ≤

(∫
I×I

|f (t)− f (t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤

(∫
Iξj×Iξj

|f (t)− f (t ′)|2

(3(t, t ′))2
d3(t) d3(t ′)

)1/2

≤ 1/(4ep), ρ0 ≤ ρ < 1. (8.40)
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If we let h := trTρ f , inequality (8.40) asserts that

Mh(Iξj ) ≤ 1/(4ep), ρ0 ≤ ρ < 1, (8.41)

with Mh(Iξj ) defined by (8.8) where T is replaced by Tρ . By Lemma 8.1, (8.41), and
Hölder’s inequality, for ρ ∈ [ρ0, 1) we have(

1
3(Iξj )

∫
Iξj

epf (ξ) |dξ |

)1/p

≤ (1+ e)1/p exp
(∣∣∣∣ 1
3(Iξj )

∫
Iξj

f (ζ ) |dζ |

∣∣∣∣). (8.42)

On the other hand, keeping in mind (8.39) and the inclusionR(Jζj , 1−ρ) ⊂ R(J ′ζj , 1−ρ),
an application of (8.30) yields∣∣∣∣ 1

3(Iξj )

∫
Iξj

f (ζ ) |dζ |

∣∣∣∣ ≤ (1− ρ)1/2

(3(Iξj ))
1/2

1
4Kep

. (8.43)

Set ρ1 := max(ρ0,K1/(K1 + π)), and assume for a while that ρ ≥ ρ1; in particular,
πρ/(K1(1− ρ)) > 1, and therefore

3(Iξj ) ≥
2πρ

1+ 4πρ/|Aξ |
≥

2πρ
1+ 4πρ/(K1(1− ρ))

≥
K1(1− ρ)

3
. (8.44)

Using (8.43) and (8.44), we obtain∣∣∣∣ 1
3(Iξj )

∫
Iξj

f (ζ ) |dζ |

∣∣∣∣ ≤
√

3
4
√
K1Kep

, ρ1 ≤ ρ < 1. (8.45)

Plugging (8.45) into the right hand side of (8.42) and using (8.37) now gives

sup
ρ1≤ρ<1

(∫
Tρ
epf (ξ)|g(ξ)|p |dξ |

)1/p

≤ (1+ e)1/p exp
( √

3
4
√
K1Kep

)
‖Mγ g‖Lp(T).

To obtain (8.32), it remains to treat the case ρ ∈ [sin γ, ρ1) when the latter interval is
nonempty. First, in this range of ρ, the first two inequalities in (8.44) imply that

3(Iξj ) ≥ c(γ, ρ1). (8.46)

On the other hand, (8.34) and (8.35) give(∫
Iξj

epf (ξ) |dξ |

)1/p

≤

(∫
Tρ
epf (ξ) |dξ |

)1/p

≤ C0 (8.47)

with C0 as in (8.36). Therefore by (8.46) and (8.47) we have(
1

3(Iξj )

∫
Iξj

epf (ξ) |dξ |

)1/p

≤ [c(γ, ρ1)]
−1/pC0, sin γ ≤ ρ < ρ1,

and using this in (8.37) completes the proof. ut
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Corollary 8.11. If w = esF , where s ∈ W 1,2(D) with Re trT s ≡ 0 and F ∈ Hp, then

sup
0<ρ<1

(
1

2π

∫
Tρ
|w(ξ)|p |dξ |

)1/p

<∞.

Proof. This follows from (5.3) and Theorem 8.10 applied with f = Re s and g =
ei Im sF . ut
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