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Abstract. We construct the first examples of finitely presented, residually finite groups 0 that
contain an infinite sequence of non-isomorphic finitely presented subgroups Pn ↪→ 0 such that the
inclusion maps induce isomorphisms of profinite completions P̂n ∼= 0̂.
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1. Introduction

The profinite completion of a group 0 is the inverse limit of the directed system of finite
quotients of 0; it is denoted 0̂. If 0 is residually finite then the natural map 0→ 0̂ is in-
jective. In 1970 Alexander Grothendieck [14] posed the following problem: let 01 and 02
be residually finite groups and let u : 01 → 02 be a homomorphism such that the induced
map of profinite completions û : 0̂1 → 0̂2 is an isomorphism; if 01 and 02 are finitely
presented, must u be an isomorphism? This problem was settled in 2004 by Bridson and
Grunewald [6] who showed that u need not be an isomorphism. (The corresponding result
for finitely generated groups had been established earlier by Platonov and Tavgen’ [17].)
There has since been a considerable amount of work exploring the extent to which 01 can
differ from 02, but the existence of groups of the sort described in the following theorem
has remained unknown.

Theorem A. There exists a finitely presented, residually finite group 0 and a recursive
sequence of finitely presented subgroups un : Pn ↪→ 0 such that each of the maps ûn :
P̂n→ 0̂ is an isomorphism, but Pm ∼= Pn if and only if m = n.

The analogous result with the Pn finitely generated was proved in [6, Section 9]
(cf. [17], [2]). The difficulties that prevented us from proving Theorem A in [6] are over-
come here using two new ideas. First, in place of the results from [3] used to establish the
finite presentability of fibre products in [6], we use the Effective Asymmetric 1-2-3 The-
orem proved in [8]; this breaking of symmetry is compatible with the Platonov–Tavgen’
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criterion for profinite equivalence [17] as distilled in [2] and [6]. The other new idea is in-
spired by classical results concerning Nielsen equivalence and is described in two forms,
the first of which involves the construction of a particular type of non-Hopfian group (Sec-
tion 4), while the second involves Nielsen equivalence more directly (Section 8). In each
case, we construct a finitely presented group Q that admits epimorphisms p0 : G → Q

and pn : 3 → Q (n ∈ N) such that the fibre products Pn < 0 := G × 3 of (p0, pn)

satisfy Theorem A.
Using recent work of Agol [1] and Wise [20] (alternatively [15]), one can arrange for

0 = G×3 to be the fundamental group of a special cube complex and hence deduce the
following (see Section 7).

Addendum B. One can assume that the group 0 in Theorem A is residually torsion-free
nilpotent, and each un : Pn→ 0 induces an isomorphism of pro-nilpotent completions.

Fritz Grunewald and I tried to prove Theorem A when writing [6] but had insufficient
tools at the time. If Fritz were still alive, the present paper would surely have been a joint
one. He is sorely missed.

2. Asymmetric fibre products

Given two epimorphisms p1 : 01 → Q and p2 : 02 → Q, one has the fibre product

P = {(x, y) ∈ 01 × 02 | p1(x) = p2(y)}.

The 1-2-3 Theorem of [3] gives conditions under which P is finitely presentable. These
are too restrictive for our purposes but the following refinement from [8] will serve us
well.

Theorem 2.1. There exists an algorithm that, given the following data describing group
homomorphisms fi : 0i → Q (i = 1, 2), will output a finite presentation of the fibre
product P of these maps, together with a map P → 01 × 02 defined on the generators,
provided that both the fi are surjective and at least one of the kernels ker fi is finitely
generated. (If either of these conditions fails, the procedure will not halt.)

Input:
• A finite presentation Q ≡ 〈X | R〉 for Q.
• A finite presentation 〈a(i) | r(i)〉 for 0i (i = 1, 2).
• For each a ∈ a(i), a word ã in the free group on X such that ã = fi(a) in Q.
• A finite set of identity sequences that generates π2Q as a ZQ-module.

We shall only need this theorem in the case where Q is aspherical, i.e. π2Q = 0, in which
case the algorithm simplifies considerably. The algorithmic nature of the construction is
needed to justify the word “recursive” in the statement of Theorem A.

The above theorem allows us to present fibre products. We shall use it in combination
with the following criterion for proving that the inclusions of certain fibre products induce
isomorphisms of profinite completions. This criterion is essentially due to Platonov and
Tavgen’ [17]. They dealt only with the case G1 = G2 and p1 = p2, but the distillation of
their argument described in [6, Section 5] applies directly to the asymmetric case.



Strong profinite genus 1911

Theorem 2.2. Let p1 : G1 → Q and p2 : G2 → Q be epimorphisms and let P ⊂
G1 ×G2 be the associated fibre product. If G1 and G2 are finitely generated, Q has no
finite quotients, and H2(Q,Z) = 0, then the inclusion u : P ↪→ G1 × G2 induces an
isomorphism û : P̂ → Ĝ1 × Ĝ2.

3. A Rips construction

We assume that the reader is familiar with the theory of (Gromov) hyperbolic groups.
We shall use a version of the well-known Rips construction [18] to construct hyperbolic
groups with controlled properties. In the current setting we need to control the automor-
phisms of the groups constructed, and for this we appeal to the following lemma, the
essence of which is taken from [7].

Lemma 3.1. Let 0 be a torsion-free hyperbolic group and let N C 0 be a non-trivial
subgroup that is finitely generated and normal. If Out(0) is infinite, then 0/N is virtually
cyclic.

Proof. It follows from Rips’s theory of group actions on R-trees and Paulin’s Theorem
[16], [11] that if Out(0) is infinite then 0 acts on a simplicial tree with cyclic arc stabiliz-
ers (see [5, Corollary 1.3]). Let A be the stabilizer of an edge in this tree. Proposition 2.2
of [7] implies that either N is contained in A, or else NA has finite index in 0. The first
possibility cannot occur, because it would imply that N was an infinite cyclic normal
subgroup of 0, and the only torsion-free hyperbolic group with such a subgroup is Z.
Thus NA has finite index in 0 and 0/N is commensurable with a quotient of A, which is
cyclic. ut

The original Rips construction was an algorithm that took as input a finite presentation Q
for a group Q and gave as output a small cancellation presentation for a group 0 and
an epimorphism 0 → Q with finitely generated kernel. There have since been many
refinements of this construction in which extra properties are imposed on 0. The most
important of these from our point of view is Haglund and Wise’s proof [15] that one
can require 0 to be virtually special. (An alternative proof of this can be obtained by
combining Wise’s results about cubulating small cancellation groups [20] with Agol’s
proof [1] that cubulated hyperbolic groups are virtually special.) For us the key properties
of virtually special groups are that they are residually finite and (what is more) that each
has a subgroup of finite index that is residually torsion-free-nilpotent [13]. We summarize
this discussion as follows:

Proposition 3.2. There exists an algorithm that, given a finite group-presentation Q ≡
〈X | R〉, will construct a finite presentation P ≡ 〈X ∪ A | R′ ∪ V 〉 for a group 0 so that

(1) 0 is torsion-free, hyperbolic and residually finite.
(2) N := 〈A〉 is normal in 0.
(3) 0/N is isomorphic to the group with presentation Q.
(4) If Q is not virtually cyclic, then Out(0) is finite.
(5) If Q has no finite quotients, then one may assume that 0 is special; in particular it is

residually torsion-free-nilpotent.
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Proof. The only item that is not covered by the preceding discussion and Lemma 3.1
is (5), where the phrase “one may assume” needs explaining. Rips’s original construction
gives a short exact sequence 1 → N → 0 → Q → 1 satisfying items (1) to (4) but
even with the work of Agol and Wise in hand one knows only that 0 is virtually special.
To remedy this, we pass to a subgroup of finite index 00 < 0 that is special. Since Q
has no finite quotients, 00 → Q is still onto. And the kernel, being of finite index in N ,
is still finitely generated. Thus we may replace 0 and N by 00 and 00 ∩ N preserving
properties (1) to (4). ut

4. Non-Hopfian groups with no finite quotients

A group H is termed non-Hopfian if there is an epimorphism H � H with non-trivial
kernel. Let

S = 〈a, t | ta2t−1
= a3
〉.

Famously, Baumslag and Solitar [4] recognised that this group is non-Hopfian.

Lemma 4.1. The given presentation of S is aspherical, S/〈〈t〉〉 is trivial, andψ : a 7→ a2,
t 7→ t defines an epimorphism with non-trivial kernel.

Proof. To see thatψ is onto, observe that t and a = a3a−2
= ta2t−1a−2 are in the image.

Britton’s lemma assures us that c := [a, tat−1
] ∈ kerψ is non-trivial. It is obvious that

S/〈〈t〉〉 is trivial. A standard topological argument shows that the natural presentations
of HNN extensions of free groups are aspherical (cf. [6, p. 364]). Alternatively, we can
appeal to the fact that 1-relator presentations where the relation is not a proper power are
aspherical. ut

The group S belongs to the family of groups considered in section 4.2 of [6], where it
is proved that a certain amalgamated free product B = S1 ∗L S2 has no non-trivial fi-
nite quotients. Here, S1 and S2 are isomorphic copies of S (with subscripts to distinguish
them), L is a free group of rank 2, and the amalgamation makes the identification c1 = t2
and t1 = c2, where c = [a, tat−1

], as above. Thus B admits the following aspherical
presentation:

B = 〈a1, t1, a2, t2 | t1a
2
1 t
−1
1 a−3

1 , t2a
2
1 t
−1
2 a−3

2 , t−1
2 [a1, t1a1t

−1
1 ], t

−1
1 [a2, t2a2t

−1
2 ]〉.

The features of B that we need in this section are the following, which are established in
[6, p. 365]. (Other features will be used in Section 8.) A finite presentation of a group is
termed balanced if it has the same number of generators as relations.

Lemma 4.2. B is an infinite group that has a balanced, aspherical presentation
and no non-trivial finite quotients. In particular, B is torsion-free and H1(B,Z) =
H2(B,Z) = 0.
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4.1. The group we seek

Let B be a group satisfying the hypotheses of Lemma 4.2, fix an element of infinite order
b ∈ B and define

Q = S ∗Z B

where the amalgamation identifies t ∈ S with b ∈ B.

Proposition 4.3. Q is a non-Hopfian group that has a balanced, aspherical presenta-
tion and no non-trivial finite quotients. In particular, Q is torsion-free and H1(Q,Z) =
H2(Q,Z) = 0.

Proof. Let B = 〈X | R〉 be a balanced aspherical presentation and let β be a word in the
generators that equals b−1

∈ B. Then

Q ≡ 〈a, t, X | ta2t−1a−3, tβ, R〉

is an aspherical balanced presentation for Q. In any finite quotient of Q, the image of B
is trivial, hence the image of t = b is trivial. And since S is in the normal closure of t , it
too has trivial image.

To see that Q is non-Hopfian we consider the homomorphism 9 : Q → Q whose
restriction to S is the epimorphism ψ of Lemma 4.1 and whose restriction to B is the
identity: 9 is well-defined because ψ(t) = t and S ∩B = 〈t〉; it is onto because S and B
lie in the image; and it has non-trivial kernel because ψ does. ut

5. Isomorphisms between fibre products

A subgroup H < G1×G2 of a direct product is termed a subdirect product if the coordi-
nate projections map it ontoG1 andG2, and it is said to be full if both of the intersections
H ∩ Gi are non-trivial. The fibre product of any pair of epimorphisms G1 → Q and
G2 → Q is a subdirect product, and it is full provided both maps have non-trivial kernel.
(All subdirect products of G1 ×G2 arise in this way: see [9, p. 632].)

Lemma 5.1. Let 01 and 02 be torsion-free, non-elementary hyperbolic groups, let P, P ′

< 01 × 02 be full subdirect products, let Ni = P ∩ 0i and let N ′i = P
′
∩ 0i . Then every

isomorphism φ : P → P ′ mapsN1×N2 isomorphically ontoN ′1×N
′

2 (sending the direct
summands to direct summands) and extends uniquely to an isomorphism 8 : 01 × 02 →

01 × 02.

Proof. Let Ni = P ∩ 0i and N ′i = P ′ ∩ 0i and note that these are the kernels of the
coordinate projections restricted to P and P ′. Note too that Ni and N ′i are normal in
0i because, for example, N1 is normal in P and the projection of P onto 01 fixes N1.
A non-trivial normal subgroup of a torsion-free, non-elementary hyperbolic group con-
tains a non-abelian free group, so the centraliser in P of any n ∈ N1 contains such a free
group (since it contains N2). On the other hand, elements of P that do not lie in N1 ∪N2
are of the form (γ1, γ2) with γi ∈ 0i r {1}, and non-trivial elements of torsion-free hy-
perbolic groups have cyclic centralisers. Thus N1 ∪N2 consists of precisely those x ∈ P
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with non-abelian centraliser. And N ′1∪N
′

2 ⊂ P
′ can be characterised similarly. It follows

that every isomorphism φ : P → P ′ sends N1 ∪N2 bijectively to N ′1 ∪N
′

2, and therefore
maps N1×N2 isomorphically onto N ′1×N

′

2. Further consideration of centralisers shows
that φ sends direct factors to direct factors: either φ(N1) = N

′

1 and φ(N2) = N
′

2 or else
φ(N1) = N

′

2 and φ(N2) = N
′

1.
If φ(N1) = N ′1 and φ(N2) = N ′2, then the coordinate projections give us natural

identifications

P/N2 = 01 = P
′/N ′2 and P/N1 = 02 = P

′/N ′1,

via which the maps pN2 7→ φ(p)N ′2 and pN1 7→ φ(p)N ′1 define the unique isomor-
phisms φ1 : 01 → 01 and φ2 : 02 → 02 such that 8 := (φ1, φ2) ∈ Aut(01)× Aut(02)

restricts to φ : P → P ′.
If φ(N1) = N

′

2 and φ(N2) = N
′

1 then instead we obtain isomorphisms φ̃1 : 01 → 02

and φ̃2 : 02 → 01 such that 8 := φ̃1 × φ̃2 ∈ Aut(01 × 02) restricts to φ : P → P ′. ut

6. The first proof of Theorem A

We shall need the following elementary lemma.

Lemma 6.1. Let G be a group, let K C G be a normal subgroup and let φ : G→ G be
an automorphism. If K ( φ(K), then φ has infinite order in Out(G).

Proof. If φm were an inner automorphism for some m > 0 then, since K is normal, we
would have φm(K) = K , whereas K ( φ(K) implies K ( φm(K) . ut

We turn to the main argument. Let Q be the aspherical presentation described in Proposi-
tion 4.3 and let

1→ N → 0
π0
−→ Q→ 1

be the short exact sequence obtained by applying the Rips construction to it. Let 9 :
Q → Q be the epimorphism described in the proof of Proposition 4.3 and define πn =
π0 ◦ 9

n. Let Pn < 0 × 0 be the fibre product of the maps π0 : 0 × {1} → Q and
πn : {1} × 0 → Q. The kernel of π0 is finitely generated, so we have all of the data
required to apply Theorem 2.1. Thus we obtain, in a recursive manner, finite presentations
for the fibre products Pn. Theorem 2.2 assures us that the inclusion Pn ↪→ 0×0 induces
an isomorphism of profinite completions. Thus the following claim completes the proof
of Theorem A.

Claim. Pn ∼= Pm if and only if m = n.

The intersection of Pn with 0×{1} is kerπ0 while its intersection with {1}×0 is kerπn.
Thus Pn contains the subgroup Kn := kerπ0 × kerπn, which is normal in 0 × 0. Note
that Kn ( Km if m > n.

Lemma 5.1 tells us that any isomorphism φ : Pn → Pm is the restriction to Pn of an
automorphism8 of 0×0. The automorphism group of 0×0 contains Aut(0)×Aut(0)
as a subgroup of index 2, and Lemma 3.1 tells us that the group of inner automorphisms
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has finite index in this. In particular, 8 has finite order in the outer automorphism group
of 0 × 0. But then 8(Kn) = Km, by Lemma 5.1, which contradicts Lemma 6.1 unless
m = n. This completes the proof of Theorem A. ut

7. Pro-nilpotent equivalences

The pro-nilpotent completion of a group G is the inverse limit of its system of nilpo-
tent quotients; equivalently, it is the inverse limit of the sequence G/Gc → G/Gc−1
where Gc is the c-th term of the lower central series of G. If a homomorphism of finitely
generated groups induces an isomorphism of profinite completions, then it induces an iso-
morphism of pro-nilpotent completions [10, Proposition 3.2]. Thus Addendum B will be
proved if we can arrange for the group 0 of the previous section to be residually torsion-
free-nilpotent. Proposition 3.2(5) assures us that we can do so.

8. Nielsen equivalence and T -equivalence

The proof of Theorem A presented in Section 6 is an implementation of the following
naive idea: if one has a group Q of type F3 and an infinite family of epimorphisms from
finitely presented groups π0 : 0 → Q and πn : G → Q, where π0 has a non-trivial
finitely generated kernel and the πn are “truly inequivalent”, then one expects the fibre
products Pn < 0 × G of pairs (π0, πn) to be non-isomorphic. The most direct way in
which one might try to implement this strategy is to let G be a free group and take the
πn to be Nielsen-inequivalent choices of generating sets, but this approach is fraught with
technical difficulties. In this section we consider an alternative implementation of the
naive strategy that takes up the idea of Nielsen equivalence more directly than our first
proof of Theorem A, providing us with different examples.

Let F be a free group with ordered basis {x1, . . . , xn} and let G be a group. Ordered
generating sets 6 = {s1, . . . , sn} ⊂ G of cardinality n correspond to epimorphisms
q6 : F � G; one defines q6(xi) = si . The automorphism groups Aut(F ) and Aut(G) act
on the set of such epimorphisms by pre-composition and post-composition, respectively.
These actions commute. By definition, 6 = {s1, . . . , sn} and 6′ = {s′1, . . . , s

′
n} (or q6

and q6′ ) are Nielsen equivalent if they lie in the same Aut(F )-orbit, and T -equivalent
if they lie in the same orbit under the action of Aut(F ) × Aut(G). In other words, they
are T -equivalent if there are automorphisms φ : F → F and ψ : G → G making the
following diagram commute:

F
φ
−→ F

q6

y yq6′
G

ψ
−→ G

There is a considerable literature on Nielsen equivalence but it is a notoriously difficult
invariant to compute and little is known when n > 2. For 2-generator, 1-relator groups,
the situation is better understood.
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Example 8.1. Let S = 〈a, t | ta2t−1
= a3

〉. Because a = a3a−2
= ta2t−1a−2, for

every positive integer n > 0 the 2-element set 6n = {t, a2n
} generates G. Brunner [12]

proves that 6n is not T -equivalent to 6m if n 6= m.

In Section 4 we considered the group

B = 〈a1, t1, a2, t2 | t1a
2
1 t
−1
1 a−3

1 , t2a
2
1 t
−1
2 a−3

2 , t−1
2 [a1, t1a1t

−1
1 ], t

−1
1 [a2, t2a2t

−1
2 ]〉,

which is an amalgam of the form S ∗L S with L free of rank 2. Although Nielsen equiva-
lence behaves well with respect to free products [19], it does not behave well with respect
to amalgamated free products, so there is no obvious way of adapting the generating sets
in Example 8.1 so as to produce an infinite sequence of T -inequivalent generating sets
for B. To circumvent this problem, we pass from consideration of maps from the free
group of rank 4 to B to consideration of maps 3 → B, where 3 is obtained from the
free group of rank 4 taking a trivial HNN extension that distinguishes a free factor F of
rank 2.

Let 3 = 〈α1, τ1, α2, τ2, ζ | [α1, ζ ] = [τ1, ζ ] = 1〉 and let F = 〈α1, τ1〉 < 3.

Lemma 8.2. For every automorphism φ : 3 → 3 there exists l ∈ 3 such that adl ◦ φ
sends ζ to ζ±1 and restricts to an automorphism of C3(ζ ) = F × 〈ζ 〉.

Proof. A simple calculation with HNN normal forms shows that the only elements λ ∈ 3
whose centraliser C3(λ) contains a non-abelian free group are the conjugates of powers
of ζ . And 〈ζ 〉 is maximal among cyclic subgroups of 3 (as one can see by abelianising,
for example). So φ(ζ ) = lζ±1l−1 for some l ∈ 3, which implies that adl ◦ φ preserves
C3(ζ ) = F × 〈ζ 〉. ut

Lemma 8.3. Let Q be a group, let G < Q be a subgroup with trivial centraliser, let
q, q ′ : 3 � Q be epimorphisms with kernels N and N ′, and suppose that q(F ) =
q ′(F ) = G. If q|F and q ′|F are not T -equivalent, then there is no automorphism φ :

3→ 3 with φ(N) = N ′.

Proof. By definition, ζ commutes with F and we are assuming that q(F ) = q ′(F ) = G
has trivial centraliser, so q(ζ ) = q ′(ζ ) = 1 and both q and q ′ factor through the retraction
ρ : F × {ζ } → F .

Towards a contradiction, suppose that there is an automorphism φ : 3→ 3 such that
φ(N) = N ′. Then q(x) 7→ q ′(φ(x)) defines an automorphism φ : Q→ Q. Lemma 8.2
tells us that there is an element l ∈ 3 such that the inner automorphism adl conjugates
φ(F × 〈ζ 〉) to F × 〈ζ 〉. Thus, we obtain the following commutative diagram:

F ↪−→ F × 〈ζ 〉
φ
−→ φ(F × 〈ζ 〉)

adl
−→ F × 〈ζ 〉

ρ
−→ Fyq yq yq′ yq′ yq′

G
id
−→ G

φ
−→ φ(G)

adq′(l)
−−−→ G

id
−→ G

This diagram shows that q|F and q ′|F are T -equivalent, contrary to hypothesis. ut
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The vertex groups in the decomposition B = S ∗L S are centreless, and each is a maximal
elliptic subgroup (in the sense of Bass–Serre theory), therefore each has trivial centraliser
in B. Thus we may apply the preceding lemma to maps 3→ B with the first factor S in
the role of G.

Working with the presentations of 3 and B displayed above, we define qn : 3→ B

by setting
qn(αi) = a

2n
i , qn(τi) = ti, qn(ζ ) = 1.

Corollary 8.4. If n 6= m, there is no automorphism φ : 3 → 3 such that φ(ker qn) =
ker qm.

Proof. The discussion in Example 8.1 shows that each qn is surjective and that the restric-
tion of qn to F = 〈α1, τ1〉 is T-equivalent to the restriction of qm if and only ifm = n. ut

9. A second proof of Theorem A

We apply the Rips construction to the finite presentation ofB given above to obtain a short
exact sequence 1→ N → 0

π0
−→ B → 1 satifying the conditions of Proposition 3.2. As

0 is special, it is a subgroup of a right-angled Artin group (RAAG). 3 itself is a RAAG,
and hence 0×3 is special; in particular it is residually finite and residually torsion-free-
nilpotent. B is given by a finite aspherical presentation and it has no non-trivial finite
quotients, so, as in Section 6, we will be done if we can prove that the fibre products

5n = {(x, y) | π0(x) = qn(y)} < 0 ×3

associated to the epimorphisms qn : 3 → B from Corollary 8.4 have the property that
5n 6∼= 5m if n 6= m.

By arguing with centralisers, as in the proof of Lemma 5.1, one sees that every iso-
morphism φ : 5n → 5m is the restriction of an ambient automorphism (φ1, φ2) ∈

Aut(0)× Aut(3) with
φ2(5n ∩3) = 5m ∩3.

(Here we have taken account of the fact that 0 and 3 are not isomorphic.) But 5i ∩3 =
ker qi , so this contradicts Corollary 8.4 unless n = m. ut
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