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Abstract. We study the Ricci flow on complete Kähler metrics that live on the complement of a
divisor in a compact complex manifold. In earlier work, we considered finite-volume metrics which,
at spatial infinity, are transversely hyperbolic. In the present paper we consider three different types
of spatial asymptotics: cylindrical, bulging and conical. We show that in each case, the asymptotics
are preserved by the Kähler–Ricci flow. We address long-time existence, parabolic blowdown limits
and the role of the Kähler–Ricci flow on the divisor.
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1. Introduction

Let X be a compact complex manifold of complex dimension n. Let D be a divisor in X
with normal crossings. In a series of papers, Tian and Yau gave sufficient conditions for
the quasiprojective manifoldX = X−D to admit a complete Kähler–Einstein metric. The
papers differed in the kind of spatial asymptotics that were considered. The paper [22]
gave sufficient conditions for X to admit a finite-volume Kähler–Einstein metric with
negative Ricci tensor, having cuspidal asymptotics. The papers [23] and [24] dealt with
Ricci-flat Kähler metrics. The paper [23] considered two types of spatial asymptotics,
which we call cylindrical and bulging. The paper [24] considered asymptotically conical
metrics.

In [15], we looked at the Kähler–Ricci flow on quasiprojective manifolds with cus-
pidal asymptotics. That is, the initial Kähler metric on X was assumed to be complete,
finite-volume and asymptotic to a hyperbolic cusp in directions transverse to D. Unlike
in [22], no assumptions were made on the divisor class, since we were not necessar-
ily looking for Kähler–Einstein metrics. We defined two flavors of spatial asymptotics:
“standard” spatial asymptotics, which describes the leading behavior of the Kähler form
at spatial infinity, and “superstandard” spatial asymptotics, in which the leading behavior
of the Kähler potential is also prescribed. We showed that standard and superstandard
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spatial asymptotics are both preserved by the Kähler–Ricci flow (taking into account the
Kähler–Ricci flow on D). We gave a formula for the first singularity time, if there is one,
in terms of the cohomology of X.

In the present paper we look at the technically more challenging case of the Kähler–
Ricci flow on quasiprojective manifolds with spatial asymptotics similar to those consid-
ered in [23] and [24]. As in our earlier paper, the goal is to define classes of spatial asymp-
totics that are as general as possible while being preserved under the Kähler–Ricci flow,
and about which one can say something nontrivial. We consider “cylindrical”, “bulging”
and “conical” spatial asymptotics. In each case, there are notions of “standard” asymp-
totics and “superstandard” asymptotics.

Theorem 1.1. If the initial Kähler metric has (cylindrical, bulging or conical) (standard
or superstandard) spatial asymptotics then so do the evolving Kähler metrics of the
Kähler–Ricci flow. With superstandard asymptotics,

(i) in the cylindrical or bulging case, if KX + D ≥ 0 in H(1,1)(X;R) then the Kähler–
Ricci flow exists for all positive time,

(ii) in the conical case, ifKX+ (n+1)D ≥ 0 in H(1,1)(X;R) then the Kähler–Ricci flow
exists for all positive time.

One theme of this paper is the relationship between the Kähler–Ricci flow on X and the
Kähler–Ricci flow on the divisor D. The result depends on what kind of spatial asymp-
totics we are considering, so we address them separately.

1.1. Cylindrical spatial asymptotics (cf. [23, Section 5])

In this case, each component Di , i = 1, . . . , k, of D is assumed to have a trivial normal
bundle. More precisely, we assume that there are holomorphic fiberings fi : X → Ci
from X to complex curves such that Di = f−1(si) for some si ∈ Ci . If zi is a local
coordinate forCi near si , let zi also denote its pullback toX. If I = (i1, . . . , im), 1 ≤ i1 <
· · · < im ≤ k, is an ordered set, we write DI = Di1 ∩ · · · ∩Dim . Let Dint

I be the smooth
manifold consisting of points in DI that do not lie in lower-dimensional strata. Let ωDint

I

be a complete Kähler metric on Dint
I .

Given x ∈ D, let I be such that x ∈ DI but x /∈ Di for i /∈ I . If a Kähler metric ωX
on X has cylindrical standard spatial asymptotics associated to positive numbers {ci}ki=1
and the metrics {ωDint

I
}, then for all x ∈ D, the asymptotics of ωX “near” x are

ωX ∼
∑
i∈I

2ci
√
−1

dzi ∧ dzi

|zi |2
+ ωDint

I
. (1.1)

That is, in the way of approaching spatial infinity specified by x, the metric ωX looks like
a product of Euclidean cylinders with ωDint

I
. The Kähler–Ricci flow on the divisor enters

into the Kähler–Ricci flow on X in the following way.
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Theorem 1.2. Suppose that the initial metric ωX(0) has cylindrical standard spatial
asymptotics associated to {ci}ki=1 and {ωDint

I
(0)}. Then under the Kähler–Ricci flow onX,

the metric ωX(t) has standard spatial asymptotics associated to {ci}ki=1 and {ωDint
I
(t)},

where ωDint
I
(·) is the Kähler–Ricci flow on Dint

I starting from ωDint
I
(0).

1.2. Bulging spatial asymptotics (cf. [23, Section 4])

Suppose that D is a smooth divisor, connected for simplicity. Let x0 be a basepoint in
X = X − D. Suppose that n > 1 and let ωD be a Kähler metric on D. If X has bulging
standard spatial asymptotics associated to ωD , then a sphere of large distance R from x0
is the total space of a circle bundle overD. As R→∞, the lengths of the circle fibers are
O(R−(n−1)/(n+1)). The metric on the base of the bundle is comparable to R2/(n+1)ωD .
The sectional curvatures are O(R−2/(n+1)).

If ωX(0) has bulging standard spatial asymptotics associated to ωD(0), and ωX(·) is
the ensuing Kähler–Ricci flow, then it turns out that ωX(t) has bulging standard spatial
asymptotics associated to ωD(0). That is, the divisor flow does not enter into the finite-
time spatial asymptotics on X. The proof of this uses results from Appendix B about the
preservation, under Kähler–Ricci flow, of a power law decay in the curvature. Intuitively,
in order to see a significant change in the geometry at a point x ∈ X, there must be an
elapsed time comparable to d0(x, x0)

2/(n+1), where d0 is the time-zero distance.
This suggests that to see the divisor flow, one should take a sequence {xi}∞i=1 of time-

zero points inX, going to spatial infinity, and perform a parabolic rescaling around (xi, 0)
by a factor of d0(xi, x0)

−2/(n+1), i.e.

ωi(t) = d0(xi, x0)
−2/(n+1)ωX(d0(xi, x0)

2/(n+1)t). (1.2)

The ensuing pointed limit should see the divisor flow.
There is a technical issue in taking such a blowdown limit. Namely, one needs uniform

sectional curvature bounds on forward parabolic balls in the rescaled metrics. Such curva-
ture bounds would follow from Perelman’s pseudolocality result [16, 17], if it were appli-
cable. Unfortunately, pseudolocality does not apply in this case, because of the shrinking
circle fibers.

To get uniform sectional curvature bounds, we instead use a remarkable feature of
Kähler–Ricci flow: a local biLipschitz bound implies a local curvature bound, indepen-
dent of the elapsed time. The proof of this statement is given in Appendix A, building on
work of Sherman–Weinkove [20]. To get biLipschitz estimates, it suffices to have a Ricci
curvature bound.

Theorem 1.3. Suppose that the initial metric ωX(0) has bulging standard spatial asymp-
totics associated to ωD(0). Let (X, ωX(·)) be the Kähler–Ricci flow starting from ωX(0).

(a) For any time t ≥ 0, the Kähler metric ωX(t) also has bulging standard spatial asymp-
totics associated to ωD(0).

(b) Suppose that the flow (X, ωX(·)) exists for all positive time. Given A < ∞, sup-
pose that |Ric(x, t)| = O(d0(x, x0)

−2/(n+1)) on the spacetime region {(x, t) :
t ≤ Ad0(x, x0)

2/(n+1)
}. Let {xi}∞i=1 be a sequence of points in X going
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to spatial infinity. Define ωi(·) by (1.2). Then the pointed Ricci flow limit
limi→∞(X, (xi, 0), ωi(·)) = (X∞, (x∞, 0), ω∞(·)) exists on the time interval [0, A]
and is given by

ω∞(t) =
1
2

(
n+ 1
n

)2

(
√
−1 du ∧ du+ nωD(t)). (1.3)

Here X∞ is interpreted as an étale groupoid of complex dimension n (because of the
collapsing circle fibers) with unit space C × D, so u lies in C. Alternatively, one can
express the convergence in terms of local covers; see Proposition 4.15.

1.3. Conical asymptotics (cf. [24])

Suppose that D is a smooth divisor, connected for simplicity. Let ωD be a Kähler metric
onD. IfX has conical standard spatial asymptotics associated to ωD , then it has quadratic
curvature decay. The asymptotic cone of X is a metric cone (CY, ωCY ), where Y is the
total space of a circle bundle over D, the latter having metric ωD . More precisely, the
conical metric ωCY is defined on CY − ?CY , where ?CY ∈ CY is the vertex.

If ωX(0) has conical standard spatial asymptotics associated to ωD , then ωX(t) also
has conical standard spatial asymptotics associated to ωD . To go beyond this, it is natural
to look at parabolic blowdowns. Suppose that the flow (X, ωX(·)) exists for all positive
time. Using pseudolocality, we show that one can extract a blowdown Ricci flow limit
ω∞(·) that exists on {(x, t) ∈ (CY − ?CY )× [0,∞) : 0 ≤ t ≤ εdCY (x, ?CY )2} for some
ε > 0. (One can also form such blowdown limits in the non-Kähler case.) Its initial metric
ω∞(0) is the conical metric ωCY .

One may hope to see dynamics on D entering into the asymptotic cone of the blow-
down limit. However, one finds that the asymptotic cone of a time slice (CY−?CY , ω∞(t))
of the blowdown limit is still the asymptotic cone (CY, ωCY ) of (X, ωX(0)), constructed
using the initial metric ωD on D. In this conical setting, the dynamical object associated
to D is no longer a Kähler–Ricci flow on D. Rather, we show that there is a formal gra-
dient expanding soliton ωsol(·) on CY − ?CY , which is uniquely determined by ωD . The
time-one slice of this soliton takes the form

ωsol(1) = ωCY − Ric(ωCY )+
√
−1 ∂∂

∑
k>0

u(k). (1.4)

The summation is a formal power series in a holomorphic coordinate z transverse to D
(and its complex conjugate) or, equivalently, in inverse powers of the distance to ?CY . The
vector field associated to the soliton is the radial vector field on CY .

Theorem 1.4. Suppose that the initial metric ωX(0) has conical standard spatial asymp-
totics associated to ωD . Let (X, ωX(·)) be the Kähler–Ricci flow starting from ωX(0).

(a) For any time t ≥ 0, the Kähler metric ωX(t) has conical standard spatial asymptotics
associated to ωD .

(b) Suppose that the flow (X, ωX(·)) exists for all positive time. Let ω∞(·) be a parabolic
blowdown limit. Then any asymptotic expansion of ω∞(·) in powers of z and z equals
the gradient expanding soliton ωsol(·) associated to ωD .
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1.4. Structure of the paper

In Section 2 we recall some results from [15]. In Section 3 we define cylindrical standard
spatial asymptotics and cylindrical superstandard spatial asymptotics. We show that they
are preserved by the Kähler–Ricci flow, when taking into account the flow on the divisor.
We give a formula for the first singularity time, if there is one.

In Section 4 we define bulging standard spatial asymptotics and bulging superstandard
spatial asymptotics. We show that they are preserved by the Kähler–Ricci flow. We give
a formula for the first singularity time, if there is one. With a decay assumption on the
Ricci curvature, we show that there is a parabolic blowdown limit based on a sequence
of points on the time-zero slice which go to spatial infinity. We prove that the blowdown
limit is a product flow in which the divisor flow appears.

In Section 5 we define conical standard spatial asymptotics and conical superstandard
spatial asymptotics. We show that they are preserved by the Kähler–Ricci flow. We give a
formula for the first singularity time, if there is one. We show that one can take parabolic
blowdowns of asymptotically conical Ricci flows. We construct the formal asymptotic
expansion of a gradient expanding soliton on the asymptotic cone. We show that any
formal asymptotic expansion of the parabolic blowdown equals the expanding soliton.

There are two appendices which may be of independent interest. In Appendix A we
prove a local curvature estimate in Kähler–Ricci flow, showing that a biLipschitz bound
implies a curvature bound, independent of the elapsed time. The proof is along the lines
of Sherman–Weinkove [20], with some modifications. The result of Appendix A is used
in Section 4 and Appendix B.

In Appendix B we discuss the preservation, under Ricci flow, of a power law decay
of the curvature tensor. For general Ricci flow, we show that such a decay is preserved
whenever the initial geometry has a reasonable end structure. More precisely, we need a
smooth distance-like function φ so that Hess(φ)/φ is bounded below. The proof is along
the lines of Dai–Ma [8]. Using Appendix A, we show that a power law decay of the
curvature is preserved under Kähler–Ricci flow, provided that the first derivatives of the
initial curvature tensor also have the right decay. The results of Appendix B are used in
Sections 4 and 5.

More detailed descriptions are given at the beginnings of the sections.

1.5. Further directions

One can ask about more refined asymptotics for the Kähler–Ricci flow in the cases being
considered. In the cuspidal case discussed in [15], such asymptotics were developed in
Rochon–Zhang [18].

One can also ask about long-time behavior, at least whenKX+D ≥ 0 in the cylindri-
cal and bulging cases, or when KX + (n+ 1)D ≥ 0 in the conical case. Chau [2] and the
present authors [15, Theorem 5.1] gave sufficient conditions in the noncompact case to
ensure convergence to a Kähler–Einstein metric of negative Ricci curvature. For conver-
gence to a noncompact Ricci-flat Kähler metric, the only result that we know is by Chau
and Tam [3], who prove convergence to a Ricci-flat Kähler metric if a Sobolev inequality
holds for the initial metric (relevant to conical asymptotics) and if the Ricci potential of
the initial metric has a faster-than-quadratic decay.
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2. Background material

Throughout this paper, we use the notation and conventions of [15, Section 2]. In particu-
lar, 1 is the open unit ball in C and 1∗ = 1− {0}. We let H denote the upper half-plane
{z ∈ C : Im(z) > 0}. If (Z, dZ) is a metric space then for λ > 0 we let 1

λ
Z denote Z with

the metric dZ/λ. Thus if (Z, gZ) is a Riemannian manifold then 1
λ
Z denotes Z with the

Riemannian metric gZ/λ2.
Let X be a connected complex manifold of complex dimension n. Suppose that ω0 is

a smooth complete Kähler metric on X with bounded curvature. The Kähler–Ricci flow
equation is

∂ω̃t

∂t
= −Ric(ω̃t ), ω̃0 = ω0. (2.1)

There is some T > 0 such that there is a solution of (2.1) on the time interval [0, T ]
having complete time slices and uniformly bounded curvature on [0, T ]. Furthermore,
such a solution is unique.

Set
ωt = ω0 − t Ric(ω0). (2.2)

Consider the equation
∂u

∂t
= log

(ωt +
√
−1 ∂∂u)n

ωn0
(2.3)

with the initial condition u(0, ·) = 0. It is implicit that we only consider solutions u of
(2.3) on time intervals such that ωt +

√
−1 ∂∂u > 0. The following results are from [15].

Proposition 2.4. Suppose that there is a smooth solution to (2.1) on a time interval
[0, T ], with complete time slices and uniformly bounded curvature. Then there is a smooth
solution u to (2.3) on the time interval [0, T ] such that

(i) for each t ∈ [0, T ], ωt+
√
−1 ∂∂u is a Kähler metric which is biLipschitz-equivalent

to ω0, and
(ii) for each k, the kth covariant derivatives of u (with respect to the initial metric ω0)

are uniformly bounded.

Also, ω̃t = ωt +
√
−1 ∂∂u.

Conversely, suppose that there is a smooth solution to (2.3) on a time interval [0, T ]
such that (i) and (ii) hold. Then ω̃t = ωt +

√
−1 ∂∂u is a solution to (2.1) on [0, T ], with

complete time slices and uniformly bounded curvature.

Theorem 2.1. Suppose that ω0 is a complete Kähler metric on a complex manifold X,
with bounded curvature. Let T1 be the supremum ( possibly infinite) of the numbers T ′ ≥ 0
such that there is a smooth solution for (2.3) on the time interval [0, T ′] such that

• for each t ∈ [0, T ′], ωt +
√
−1 ∂∂u is a Kähler metric which is biLipschitz-equivalent

to ω0, and
• for each k, the kth covariant derivatives of u (with respect to the initial metric ω0) are

uniformly bounded on [0, T ′].
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Let T2 be the supremum ( possibly infinite) of the numbers T ≥ 0 for which there is a
function FT ∈ C∞(X) such that

• ωT +
√
−1 ∂∂FT is a Kähler metric which is biLipschitz-equivalent to ω0, and

• for each k, the kth covariant derivatives of FT (with respect to the initial metric ω0)

are uniformly bounded.

Then T1 = T2.

3. Cylindrical Kähler–Ricci flows

This section deals with cylindrical spatial asymptotics. In Subsection 3.1 we define the
notion of cylindrical standard spatial asymptotics, and show that it is preserved under the
Kähler–Ricci flow, taking into account the divisor flow. In Subsection 3.2 we introduce
cylindrical superstandard spatial asymptotics. We show that if X admits a Kähler metric
then X admits a metric with cylindrical superstandard spatial asymptotics. We prove that
having cylindrical superstandard spatial asymptotics is preserved under the Kähler–Ricci
flow. Given a metric with cylindrical superstandard spatial asymptotics, we define a cer-
tain renormalized cohomology class on the compactification X. We use this cohomology
class to characterize the first singularity time, if there is one.

Let X be a compact connected n-dimensional complex manifold. For 1 ≤ i ≤ k, let
fi : X → Ci be a holomorphic fibering over a complex curve Ci . Given points si ∈ Ci ,
let gsi : 1→ Ci be a local parametrization of Ci with gsi (0) = si . Given an ordered set
I = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ k, set

CI = Ci1 × · · · × Cim , sI = (si1 , . . . , sim), fI = (fi1 , . . . , fim) : X→ CI .

Suppose that for each ordered set I , the point sI is a regular value for fI . Set DI =
f−1
I (sI ) andD =

⋃k
i=1Di . ThenD is an effective divisor with simple normal crossings.

Set Dint
I = DI −

⋃
I ′: |I ′|>|I |DI ′ . Then Dint

I is a smooth complex manifold of dimension
n− |I |, possibly noncompact. Set X = X −D.

Let Li be the holomorphic line bundle on Ci associated to si . Then LD =
⊗k

i=1 f
∗

i Li

is the holomorphic line bundle on X associated to D. There is a holomorphic section σi
of Li with zero set si , which is nondegenerate at si . It is unique up to multiplication by a
nonzero complex number.

Remark 3.1. In what follows, we could replace the point si by a finite subset of Ci ,
without any essential change.

Remark 3.2. In [23, Section 5], Tian and Yau considered the case of a smooth divisor,
i.e. when k = 1. They proved that if KX + D = 0 then there is a complete Ricci-flat
Kähler metric on X.
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3.1. Cylindrical standard spatial asymptotics

Suppose x ∈ Dint
I . After permutation of indices, we can assume that x ∈ (D1∩· · ·∩Dm)−

(Dm+1 ∪ · · · ∪ Dk). We write 0 for (0, . . . , 0) ∈ 1n. Let pi : 1n → 1 be projection
onto the ith factor. Then there are a neighborhood U of x in X and a biholomorphic map
Fx : 1

n
→ U such that

• U ∩Di = ∅, for i > m,
• Fx(0) = x, and
• fi ◦ Fx = gsi ◦ pi for 1 ≤ i ≤ m.

In particular, Fx((1∗)m ×1n−m) = U ∩ X. The map Gx on 1n−m, given by Gx(w) =
Fx(0, w), is a biholomorphic map from 1n−m to a neighborhood of x in Dint

I . Let zi be a
local coordinate on Ci around si , which is the local inverse of gsi . We also write zi for its
pullback under fi to a function on a neighborhood of x.

Given r ∈ (R+)m, let αr : (1∗)m→ (1∗)m be multiplication by r . IfZ is an auxiliary
space then we also write αr for (αr , Id) : (1∗)m × Z→ (1∗)m × Z.

Definition 3.1. Let {ωDint
I
} be complete Kähler metrics on {Dint

I }. Let {ci}ki=1 be positive
numbers. Then ωX has cylindrical standard spatial asymptotics associated to {ωDint

I
} and

{ci}
k
i=1 if for every x ∈ Dint

I and every local parametrization Fx ,

lim
r→0

α∗r F
∗

x ωX =
∑
i∈I

2ci
√
−1

dzi ∧ dzi

|zi |2
+G∗xωDint

I
. (3.3)

The limit in (3.3) is taken in the pointed C∞-topology around the basepoint
(1/2, . . . , 1/2)× 0 ∈ (1∗)m ×1n−m.

Proposition 3.4. The notion of cylindrical standard spatial asymptotics in Definition 3.1
is consistent under change of local coordinate.

Proof. Let {wi}n−mi=1 be local coordinates for D(1,...,m) around x. If {̂zi, ŵi} is a different
choice of coordinates then we can write ẑi = ẑi(zi) and ŵi = ŵi(z, w). Let αr be the
operation of multiplying z by r and let α̂r be the operation of multiplying ẑ by r . Then

α∗r F
∗

x ωX = α
∗
r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1α̂∗r F̂

∗

x ωX. (3.5)

Suppose that ωX has cylindrical standard spatial asymptotics with respect to (̂z, ŵ). Then

lim
r→0

α̂∗r F̂
∗

x ωX =

m∑
i=1

2ci
√
−1

dẑi ∧ dẑ
i

|̂zi |2
+ Ĝ∗xωDint

I
. (3.6)

Now
(̂α∗r )

−1̂zi = r−1̂zi . (3.7)

Expanding
ẑi = a1,iz

i
+ a2,i(z

i)2 + a3,i(z
i)3 + · · · (3.8)
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with a1,i 6= 0, we have

(F̂−1
x ◦ Fx)

∗(̂α∗r )
−1̂zi = r−1(a1,iz

i
+ a2,i(z

i)2 + a3,i(z
i)3 + · · ·

)
. (3.9)

Then

α∗r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1̂zi = a1,iz

i
+ a2,ir(z

i)2 + a3,ir
2(zi)3 + · · · . (3.10)

It follows that
lim
r→0

α∗r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1̂zi = a1,iz

i . (3.11)

Hence

lim
r→0

α∗r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1 dẑ

i
∧ dẑi

|̂zi |2
=
dzi ∧ dzi

|zi |2
, (3.12)

with smooth pointed convergence around 1/2 ∈ 1∗.
Similarly, writing ŵ = ŵ(z, w), we have

lim
r→0

α∗r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1ŵ = ŵ(0, w) (3.13)

Then
lim
r→0

α∗r (F̂
−1
x ◦ Fx)

∗(̂α∗r )
−1Ĝ∗xωDint

I
= G∗xωDint

I
. (3.14)

In view of (3.5) and (3.6), the proposition follows. ut

Remark 3.15. In the proof of Proposition 3.4, if we allowed more general coordinate
changes, of the form ẑi = ẑi(z, w), then the result of the proposition would definitely
fail. This explains why we assume that X fibers over curves, so that it makes sense to
consider coordinate changes of the form ẑi = ẑi(z). At the least, we need to assume that
Di has a trivial normal bundle.

Proposition 3.16. If X admits a Kähler metric then X admits a complete Kähler metric
with cylindrical standard spatial asymptotics.

Proof. This will follow from Proposition 3.22. ut

We now prove Theorem 1.2, showing that the property of having cylindrical standard
spatial asymptotics is preserved under the Kähler–Ricci flow.

Proposition 3.17. Suppose that ωX(0) has cylindrical standard spatial asymptotics as-
sociated to {ωDint

I
(0)} and {ci}ki=1. Suppose that the Kähler–Ricci flow ωX(t), with initial

Kähler form ωX(0), exists on a maximal time interval [0, T ) in the sense of Theorem 2.1.
Then for all t ∈ [0, T ), the metric ωX(t) has cylindrical standard spatial asymptotics
associated to {ωDint

I
(t)} and {ci}ki=1, where ωDint

I
(t) is the Kähler–Ricci flow on Dint

I with
initial Kähler form ωDint

I
(0).
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Proof. Take x ∈ Dint
I . After a change of labels we can assume that I = (1, . . . , m). Let

Fx : (1
∗)m ×1n−m→ X be a local parametrization. Let rj → 0 be any sequence.

From our assumptions, there is a uniform positive lower bound on the injec-
tivity radius of F ∗x ωX(0) at αrj (1/2, . . . , 1/2, 0) or, equivalently, on α∗rjF

∗

x ωX(0) at
(1/2, . . . , 1/2, 0). Using the curvature bounds, we can apply Hamilton’s compactness
theorem [11] to extract a subsequence of {α∗rjF

∗

x ωX(·)} that converges to a Ricci flow
solution (X∞, x∞, ωX∞(·)), defined on the time interval [0, T ). There is a technical is-
sue that a priori, the solution is only smooth on (0, T ), where we can apply Shi’s local
derivative estimates. In order to get smoothness on [0, T ), we need uniform bounds on
the derivatives of the curvature tensor of α∗rjF

∗

x ωX(t) for t in some interval [0, δ]. Since
we have uniform bounds on the derivatives of the curvature tensor of α∗rjF

∗

x ωX(0) (on
time-0 metric balls around (1/2, . . . , 1/2, 0)), the local derivative estimate of [14, Ap-
pendix D] gives the needed uniform bounds on the kth derivatives of the curvature tensor
for small but positive time. Then from the proof of [11], we can say that after passing to
a subsequence, there is a smooth pointed limit

lim
j→∞

(
α
r−1
j
((1∗)m)×1n−m, (1/2, . . . , 1/2, 0), α∗rjF

∗

x ωX(·)
)

=
(
(C∗)m ×1n−m, (1/2, . . . , 1/2, 0), ω∞,x(·)

)
(3.18)

for some Kähler–Ricci flow solution ω∞,x(·) that exists on (C∗)m × 1n−m for the time
interval [0, T ).

Covering Dint
I by a locally finite collection {Gxk (1

n−m)} of charts, we can assume
that the Ricci flow solutions ((C∗)m ×1n−m, (1/2, . . . , 1/2, 0), ω∞,xk (·)) glue together
to give a Ricci flow solution ((C∗)m × Dint

I , ωX∞(·)) with complete time slices and
bounded curvature on compact time intervals (cf. [15, proof of Theorem 7.1]). From the
assumption of cylindrical standard spatial asymptotics,

ωX∞(0) =
m∑
i=1

2ci
√
−1

dzi ∧ dzi

|zi |2
+ ωDint

I
(0). (3.19)

From the uniqueness of complete Ricci flow solutions with bounded curvature on compact
time intervals [4], it follows that

ωX∞(t) =

m∑
i=1

2ci
√
−1

dzi ∧ dzi

|zi |2
+ ωDint

I
(t). (3.20)

To return to the proof of the proposition, suppose that its conclusion is not true.
Then for some x ∈ Dint

I and some t ∈ [0, T ), there is a sequence rj → 0 with the
property that even after passing to any subsequence, α∗rjF

∗

x ωX(t) does not converge to∑m
i=1 2ci

√
−1 dzi∧dzi

|zi |
2 + G∗xωDint

I
(t) in the pointed C∞-topology. Here the basepoint

is (1/2, . . . , 1/2, 0) ∈ (1∗)m × 1n−m. However, taking x1 = x in the above con-
struction, we have shown that after passing to a subsequence, limj→∞ α∗rjF

∗

x ωX(t) =∑m
i=1 2ci

√
−1 dzi∧dzi

|zi |
2 +G

∗

xωDint
I
(t) in the pointed C∞-topology. This is a contradiction

proving the proposition. ut



Ricci flow on quasiprojective manifolds II 1823

3.2. Cylindrical superstandard spatial asymptotics

Let hi be a Hermitian metric on Li .

Definition 3.2. A Kähler metric ωX on X has cylindrical superstandard spatial asymp-
totics associated to {hi}ki=1 if it has cylindrical standard spatial asymptotics (associated to
{ωDint

I
} and {ci}ki=1) and

ωX = ηX +
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+H

)
, (3.21)

where

• ηX is a smooth closed (1, 1)-form on X, and
• H ∈ C∞(X) ∩ L∞(X).

Note that in Definition 3.2, the choice of {hi}ki=1 does matter.

Proposition 3.22. If X admits a Kähler metric then X admits a complete Kähler metric
with cylindrical superstandard spatial asymptotics.

Proof. We have

√
−1 ∂∂ log2

|σi |
−2
hi
= 2
√
−1 ∂ log |σi |−2

hi
∧ ∂|σi |

−2
hi
+ 2(log |σi |−2

hi
)Fhi , (3.23)

where Fhi is the curvature 2-form associated to hi . In terms of a local coordinate zi

around si , the right-hand side is asymptotic to 2
√
−1 dzi∧dzi

|zi |2
as zi → 0.

Let ωX be a Kähler metric on X. Given a parameter K < ∞ and positive constants
{ci}

k
i=1, set

ωX =
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi

)
+KωX. (3.24)

If we take K sufficiently large, ωX is a complete Kähler metric on X with cylindrical
standard spatial asymptotics. Then it clearly also has cylindrical superstandard spatial
asymptotics. ut

We now show that the property of having cylindrical superstandard spatial asymptotics is
preserved under the Kähler–Ricci flow.

Proposition 3.25. Suppose that ωX(0) has cylindrical superstandard spatial asymptotics
associated to {hi}ki=1. Suppose that the Kähler–Ricci flow ωX(t)with initial Kähler metric
ωX(0) exists on a maximal time interval [0, T ) in the sense of Theorem 2.1. Then for all
t ∈ [0, T ),ωX(t) has cylindrical superstandard spatial asymptotics associated to {hi}ki=1.



1824 John Lott, Zhou Zhang

Proof. Choose a Hermitian metric hKX⊗LD on KX ⊗LD . Along with {hi}ki=1, we obtain
a Hermitian metric hKX on KX. Then

Ric(ωX(0)) = −
√
−1F(hKX⊗LD )−

√
−1 ∂∂

(
log

hKX

∏k
i=1 f

∗

i |σi |
2
hi

hKX

)
(3.26)

on X. Set η′
X
= −
√
−1F(hKX⊗LD ) and H ′ = log

hK
X

∏k
i=1 f

∗
i |σi |

2
hi

hKX
. By the cylindrical

standard spatial asymptotics, H ′ ∈ C∞(X) ∩ L∞(X).
Recall the definition of ωt from (2.2). We can write

ωX(t) = ωt +
√
−1 ∂∂u(t)

= ηX − tη
′

X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+H + tH ′ + u(t)

)
. (3.27)

Since u(t) ∈ C∞(X) ∩ L∞(X), the proposition follows. ut

If ωX(0) has cylindrical superstandard spatial asymptotics then we would like to give
a characterization of the first singularity time, if there is one, by making Theorem 2.1
more explicit. For the “cuspidal” asymptotics considered in [15], the manifold (X, ωX(0))
had finite volume. Transplanting ωX(0) to X, we obtained a closed (1, 1)-current, which
represented a cohomology class onX. In the present case, (X, ωX(0)) has infinite volume
and we cannot directly obtain a cohomology class on X. However, we can subtract the
leading singularity, which is

√
−1 ∂∂ of a function, and thereby define a renormalized

cohomology class in X.
With reference to Definition 3.2, since H is a smooth bounded function on X, it

extends by zero to an integrable function on X. Then
√
−1 ∂∂H is a closed (1, 1)-

current on X (which is cohomologically trivial). Hence the form on X given by ωX(0)−√
−1 ∂∂(

∑k
i=1 cif

∗

i log2
|σi |
−2
hi
), which equals ηX +

√
−1 ∂∂H , has a natural extension

to a closed (1, 1)-current on X.
The relevant ring of functions, for cylindrical asymptotics, can be characterized in the

following way.

Definition 3.3. The ring C∞cyl(X) consists of the smooth functions f on X = X − D

such that for every x ∈ D and every local parametrization Fx , the pullback F ∗x f ∈
C∞((1∗)m × 1n−m) has the property that for any multi-index (l1, l1, . . . , ln, ln), the
function(

z1 ∂

∂z1

)l1(
z1 ∂

∂z1

)l1
. . .

(
zm

∂

∂zm

)lm(
zm

∂

∂zm

)lm
(
∂

∂w1

)lm+1
(
∂

∂w1

)lm+1

. . .

(
∂

∂wn−m

)ln( ∂

∂wn−m

)ln
F ∗x f (3.28)

is uniformly bounded.
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Proposition 3.29. Suppose that ωX(0) has cylindrical superstandard spatial asymptotics
associated to {hi}ki=1. Let ηX ∈ �

(1,1)(X) be a smooth representative of the cohomology
class represented by the closed current

ωX(0)−
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi

)
(3.30)

on X. Let η′
X
∈ �(1,1)(X) be a smooth representative of −2π [KX + D] ∈ H(1,1)(X).

Let T3 be the supremum ( possibly infinite) of the numbers T ′ for which there is some
fT ′ ∈ C

∞

cyl(X) such that

ηX − T
′η′
X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+ fT ′

)
(3.31)

is a Kähler form onX which is biLipschitz to ωX(0). Then T3 equals the numbers T1 = T2
of Theorem 2.1.

Proof. Let ωX(0) and T ′ be as in the statement of the proposition. Since the present ηX
and the ηX of Definition 3.2 differ by

√
−1 ∂∂ of a smooth function on X, we can still

write

ωX(0) = ηX +
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+H

)
(3.32)

for some H ∈ C∞(X) ∩ L∞(X). With reference to the proof of Proposition 3.25, as the
present η′

X
differs from −

√
−1F(hKX⊗LD ) by

√
−1 ∂∂ of a smooth function on X, we

can still write

ωT ′ = ηX − T
′η′
X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+H + T ′H ′

)
(3.33)

for some H ′ ∈ C∞(X) ∩ L∞(X). Then

ηX − T
′η′
X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+ fT ′

)
= ωT ′ +

√
−1 ∂∂(fT ′ −H − T ′H ′).

(3.34)

Set FT ′ = fT ′ − H − T ′H ′. By assumption, the left-hand side of (3.34), and hence also
ωT ′ +

√
−1 ∂∂FT ′ , is a Kähler metric which is biLipschitz to ωX(0). Since ωX(0) has

cylindrical standard spatial asymptotics, it follows that

−const · ωX(0) ≤
√
−1 ∂∂FT ′ ≤ const · ωX(0). (3.35)

Hence
|4ωX(0)FT ′ | ≤ const. (3.36)

Since ωX(0) has bounded geometry (including a positive injectivity radius), elliptic regu-
larity implies that for each k, the kth covariant derivatives of FT ′ (with respect to ωX(0))
are uniformly bounded. It follows that T3 ≤ T2.
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Now suppose that T ′ is as in the definition of T1 in Theorem 2.1. As ωX(0) has
cylindrical superstandard spatial asymptotics, we can write

ωT ′+
√
−1 ∂∂u(T ′) = ηX−T

′η′
X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+H+T ′H ′+u(T ′)

)
(3.37)

for some H,H ′ ∈ C∞(X) ∩ L∞(X). Set fT ′ = H + T ′H ′ + u(T ′), so

ηX − T
′η′
X
+
√
−1 ∂∂

( k∑
i=1

cif
∗

i log2
|σi |
−2
hi
+ fT ′

)
= ωT ′ +

√
−1 ∂∂u(T ′). (3.38)

From Proposition 3.25, ωT ′ +
√
−1 ∂∂u(T ′) has cylindrical superstandard spatial asymp-

totics. As before, using elliptic regularity we conclude that for each k, the kth covariant
derivatives of fT ′ (with respect to ωX(0)) are uniformly bounded. This is equivalent to
saying that fT ′ ∈ C∞cyl(X).

Thus T1 ≤ T3. This proves the proposition. ut

Corollary 3.39. Suppose that ωX(0) has cylindrical superstandard spatial asymptotics.
If [KX +D] ≥ 0 then the flow exists for all positive time.

Proof. With reference to Proposition 3.29, we can choose −η′
X

to be a nonnegative
closed (1, 1)-form. Since T3 > 0, there is some f0 ∈ C∞cyl(X) such that ηX +√
−1 ∂∂(

∑k
i=1 cif

∗

i log2
|σi |
−2
hi
+ f0) is a Kähler form on X which is biLipschitz to

ωX(0). Then for any T ′ > 0, ηX − T
′η′
X
+
√
−1 ∂∂(

∑k
i=1 cif

∗

i log2
|σi |
−2
hi
+ f0) is

also a Kähler form on X which is biLipschitz to ωX(0). By Proposition 3.29, this proves
the corollary. ut

Remark 3.40. Proposition 3.29 is only partly a statement about X, since the definition
of T3 is a statement about Kähler metrics on X with certain properties. In this sense, the
proposition is not as definitive as the corresponding statement about cuspidal asymptotics
in [15, Theorem 8.19].

4. Bulging Kähler–Ricci flows

This section deals with bulging spatial asymptotics. In Subsection 4.1 we define the notion
of bulging standard spatial asymptotics, and show that it is preserved under the Kähler–
Ricci flow, with no change in the divisor metric. In Subsection 4.2 we consider parabolic
rescalings around a sequence of points that go to spatial infinity in the time-zero slice.
Under a decay assumption on the Ricci curvature, we show that the limit is a product flow
which exhibits the Kähler–Ricci flow on the divisor.

In Subsection 4.3 we assume that D is ample. We introduce bulging superstandard
spatial asymptotics. We show that ifX admits a Kähler metric thenX admits a metric with
bulging superstandard spatial asymptotics. We prove that having bulging superstandard
spatial asymptotics is preserved under the Kähler–Ricci flow. We characterize the first
singularity time, if there is one.
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Let X be a compact connected n-dimensional complex manifold. Let D be a smooth
effective divisor in X. Let LD be the holomorphic line bundle on X associated to D.
There is a holomorphic section σ of LD with zero set D, which is nondegenerate at D. It
is unique up to multiplication by a nonzero complex number.

4.1. Bulging standard spatial asymptotics

Given x ∈ D, there are a neighborhood U of x in X and a biholomorphic map Fx :
1n→ U such that

• Fx(0) = x, and
• Fx(1

∗
×1n−1) = U ∩X.

The map Gx on 1n−1, given by Gx(w) = Fx(0, w), is biholomorphic from 1n−1 to a
neighborhood of x in D. Let z be the local coordinate on U corresponding to the first
factor in 1n.

Using the covering mapH → 1∗ given by u→ e
√
−1 u, let F̃x : H×1n−1

→ U∩X

be the lift of Fx |1∗×1n−1 .
Given r ∈ R+, let αr : C → C be the map αr(u) = ru +

√
−1 r2/2. If Z is an

auxiliary space then we also write αr for (αr , Id) : C× Z→ C× Z.

Definition 4.1. Let ωD be a Kähler metric onD. Given N > 0, ωX has bulging standard
spatial asymptotics associated to (ωD, N) if for every x ∈ D and every local parametriza-
tion Fx ,

lim
r→∞

r−2/Nα∗r F̃
∗

x ωX =
1
2

(
N + 1
N

)2

(
√
−1 du ∧ du+NG∗xωD). (4.1)

The limit in (4.1) means smooth convergence on any subset {z ∈ C : |z| < S} ×1n−1 of
C×1n−1.

Remark 4.2. Note that although F̃x is originally defined on H × 1n−1, the limit is
taken around the basepoint (0, 0) in C × 1n−1. This makes sense because αr(0) =√
−1 r2/2 ∈ H .

Proposition 4.3. If ωX has bulging standard spatial asymptotics then to leading order,
as z→ 0, the metric in local coordinates has the form

ωX ∼
1
2

(
N + 1
N

)2

(log |z|−2)1/N
(
√
−1

dz ∧ dz

|z|2 log |z|−2 +NωD

)
. (4.4)

Proof. Relating the local function z on U to the local function u on C by α∗r F̃
∗

x , we have

z = e
√
−1 (ru+

√
−1 r2/2), (4.5)

so
dz

z
=
√
−1 rdu (4.6)

and
log |z|−2

= r2
−
√
−1 r(u− u). (4.7)
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Then

1
2

(
N + 1
N

)2

r2/N (
√
−1 du ∧ du+NG∗xωD)

=
1
2

(
N + 1
N

)2

r2/N
(
√
−1

dz ∧ dz

r2|z|2
+NG∗xωD

)
∼

1
2

(
N + 1
N

)2

(log |z|−2)1/N
(
√
−1

dz ∧ dz

|z|2 log |z|−2 +NωD

)
. (4.8)

This proves the proposition. ut

One can check that the notion of bulging standard spatial asymptotics in Definition 4.1 is
consistent under change of local coordinate.

Going out the end of X corresponds to taking z→ 0. The distance from a basepoint
in X is asymptotic to

R ∼ (log |z|−2)
N+1
2N . (4.9)

Fix x ∈ D and let θ be the angular coordinate of z. Then as z → 0, i.e. as R → ∞, the
metric on X is asymptotic to

gX ∼ dR
2
+

(
N + 1
N

)2

R−2N−1
N+1 dθ2

+
(N + 1)2

2N
R

2
N+1 gD(x). (4.10)

The sectional curvatures decay as

|Rm| = O(R−2/(N+1)). (4.11)

For a given x ∈ D, as z→ 0, the geometry comes closer and closer to having a product
structure.

We now show that the property of having bulging standard spatial asymptotics is
preserved under the Kähler–Ricci flow, with no change in the divisor metric.

Proposition 4.12. Let ωX(·) be a Kähler–Ricci flow defined for t ∈ [0, T ), with bounded
curvature on compact time intervals. Suppose that ωX(0) has bulging standard spatial
asymptotics associated to (ωD, N). Then for all t ∈ [0, T ), the metric ωX(t) has bulging
standard spatial asymptotics associated to (ωD, N).

Proof. Suppose that the conclusion of the proposition is not true. Then there are some
t ∈ [0, T ), x ∈ D, Fx : 1∗ × 1n−1

→ X, S < ∞ and ri → ∞ with the property that
even after passing to any subsequence of the ri’s, the metrics r−2/N

i α∗ri F̃
∗

x ωX(t) do not
smoothly converge to 1

2

(
N+1
N

)2
(
√
−1 du∧ du+NG∗xωD) on {z ∈ C : |z| < S} ×1n−1.

From the bulging standard spatial asymptotics of ωX(0), given a nonnegative inte-
ger k, we have |∇k Rm |(x, 0) = O(d0(x, x0)

−(k+2)/(N+1)). We now want to show that

|∇
k Rm|(x, t) = O

(
d0(x, x0)

−
k+2
N+1

)
. (4.13)
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There are two arguments for this. First, given a large positive number A, set

φ(x) = (A+ log |σ(x)|−2)
N+1
2N . (4.14)

The definition of φ is motivated by (4.9). Then φ is a distance-like function that satisfies
(B.4). Proposition B.12 implies that (4.13) holds.

Alternatively, we can apply Proposition B.15 to see that (4.13) holds. Either way, we
obtain uniform bounds on the curvature of r−2/N

i α∗ri F̃
∗

x ωX(t) and its covariant derivatives,
when considered on any fixed {z ∈ C : |z| ≤ S′} ×1n−1, as i →∞. After passing to a
subsequence, we can assume that there is a Riemannian metric ω∞(t) on C×1n−1 such
that the Riemannian metrics {r−2/N

i α∗ri F̃
∗

x ωX(t)}
∞

i=1 converge smoothly to ω∞(t) on each
{z ∈ C : |z| < S′} ×1n−1.

On the interval [0, t], the curvature of X decays uniformly as O(d0(x, x0)
−2/(N+1)).

It follows from the Ricci flow equation that at a point x ∈ X, the metrics ωX(t) and
ωX(0) are econst·td0(x,x0)

−2/(N+1)
-biLipschitz to each other. Applying this to small neigh-

borhoods of points xi = F̃x(αri (0, w)) = Fx(e
−r2

i /2, w), since d0(xi, x0) → ∞, it
follows that ω∞(t) is isometric to the corresponding ω∞(0). The latter is the product
metric 1

2

(
N+1
N

)2
(
√
−1 du∧ du+NG∗xωD) on C×1n−1. Hence as i →∞, the metrics

r
−2/N
i α∗ri F̃

∗

x ωX(t) smoothly converge to this metric on {z ∈ C : |z| < S}×1n−1. This is
a contradiction. ut

4.2. Parabolic rescaling of bulging asymptotics

As mentioned in the introduction and seen in Proposition 4.12, if the initial metric has
bulging standard spatial asymptotics then the divisor flow does not enter into the asymp-
totics of the Kähler–Ricci flow onX for any finite time interval. In order to see the divisor
flow, we must rather do parabolic rescalings around points xi that tend to spatial infinity
in the initial time slice. The sectional curvature at xi decays like O(d0(xi, x0)

−2/(N+1)),
so the relevant time scale increases like d0(xi, x0)

2/(N+1).
In order to take a limit of the parabolic rescalings, we need uniform curvature es-

timates on balls centered around xi of radius comparable to d0(xi, x0)
1/(N+1), and on

a time interval of length comparable to d0(xi, x0)
2/(N+1). Such estimates would follow

from pseudolocality, if we could apply it. Unfortunately, because of the shrinking circle
fibers, the injectivity radius on such time-zero balls goes to zero as i → ∞ even before
rescaling, and even more so after rescaling. The curvature estimates from pseudolocality
can definitely fail in such a situation [16, Section 4].

Because one cannot apply pseudolocality, it appears that one must make some as-
sumption to ensure the needed sectional curvature bounds. There is some flexibility in
the precise assumption made. We assume a decay of the Ricci curvature on the relevant
spacetime region and show that it implies the needed sectional curvature bound. The Ricci
curvature assumption implies a uniform biLipschitz bound within the parabolic ball. In
view of Appendix A, this gives the sectional curvature bound.
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Proposition 4.15. Let ωX(·) be a Kähler–Ricci flow defined for t ∈ [0,∞), with bounded
curvature on compact time intervals. Suppose that ωX(0) has bulging standard spatial
asymptotics associated to (ωD(0), N). Let ωD(·) denote the Ricci flow on D. Given
A <∞, suppose that

|Ric(x, t)| = O(d0(x, x0)
−2/(N+1)) (4.16)

uniformly on the spacetime region {(x, t) : t ≤ Ad0(x, x0)
2/(N+1)

}. Given x ∈ D, Fx :
1∗ × 1n−1

→ X and r > 0, consider the Ricci flow ωr(t) = r−2/Nα∗r F̃
∗

x ωX(r
2/N t).

Then

lim
r→∞

ωr(·) =
1
2

(
N + 1
N

)2

(
√
−1 du ∧ du+NG∗xωD(·)), (4.17)

with smooth convergence on the product of the time interval [0, A] with any {z ∈ C :
|z| < S} ×1n−1.

Proof. Let x0 be the basepoint in X. As before, the Ricci flow equation and (4.11) imply
that at any x ∈ X, the metrics ωX(t) and ωX(0) are econst·td0(x,x0)

−2/(N+1)
-biLipschitz.

Using the bulging standard spatial asymptotics of ωX(0) and Proposition A.1 of the ap-
pendix (with the parameter r of the proposition equal to d0(x, x0)

1/(N+1)), the biLipschitz
bounds imply a uniform curvature bound

|Rm(x, t)| = O(d0(x, x0)
−2/(N+1)) (4.18)

on {(x, t) : t ≤ Ad0(x, x0)
2/(n+1)

}. Similarly, Proposition A.37 gives

|∇
k Rm|(x, t) = O

(
d0(x, x0)

−
2(k+1)
N+1

)
. (4.19)

Let x ∈ D and Fx be as in the statement of the proposition. The curvature bounds
imply that if ri → ∞ then we can take a subsequence of {ωri (·)}

∞

i=1 that converges
smoothly to a Ricci flow solution defined on C×1n−1

× [0, A].
This process can be globalized with respect to the divisor D (cf. [15, proof of The-

orem 7.1]). The result is that for an arbitrary x ∈ D, there is a subsequence of the
pointed Ricci flows {(r−2/N

i ωX(r
2/N
i ·), Fx(e

−r2
i /2, 0))}∞i=1 that converges, in the sense

of Ricci flows on étale groupoids, to a limiting Ricci flow ω∞(·) on the étale groupoid
(R o R) × R × D, defined for t ∈ [0, A]. Here the (R o R)-factor comes from the
real factor in C and represents the fact that the rescaled circle factor in X collapses as
R→∞. The R-factor is the imaginary factor in C and represents the radial direction on
X. The D-factor is the divisor. (Because D is compact, the choice of basepoint x ∈ D is
irrelevant.) This limiting Ricci flow will have bounded curvature.

From the bulging standard spatial asymptotics of ωX(0), on the unit space C ×D of
the groupoid we have

ω∞(0) =
1
2

(
N + 1
N

)2

(
√
−1 du ∧ du+NωD(0)). (4.20)
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From the uniqueness of Ricci flow solutions on étale groupoids with bounded curvature
on compact time intervals [13], we conclude that

ω∞(t) =
1
2

(
N + 1
N

)2

(
√
−1 du ∧ du+NωD(t)). (4.21)

To return to the proof of the proposition, if the conclusion of the proposition is not
true then there are some x ∈ D, Fx : 1∗ × 1n−1

→ X, S < ∞ and a sequence
ri → 0 with the property that even after passing to any subsequence of the ri’s, the
Ricci flows r−2/N

i α∗ri F̃
∗

x ωX(r
2/N
i ·) do not converge smoothly to 1

2

(
N+1
N

)2
(
√
−1 du ∧ du

+ NG∗xωD(·)) on the spacetime region {z ∈ C : |z| < S} × 1n−1
× [0, A]. However,

this contradicts the fact that there is a subsequence of the ri’s such that the pointed Ricci
flows {(r−2/N

i ωX(r
2/N
i ·), Fx(e

−r2
i /2, 0))}∞i=1 smoothly converge in the pointed sense to

the Ricci flow 1
2

(
N+1
N

)2
(
√
−1 du ∧ du + NωD(·)) on the unit space C ×D of the étale

groupoid (Ro R)× R×D, for the time interval [0, A]. ut

Proof of Theorem 1.3. If the theorem is not true then after replacing {xi}∞i=1 by a subse-
quence we can assume that no subsequence {xij }

∞

j=1 is such that {(X, (xij , 0), ωij (·))}
∞

j=1
has a limit given by (1.3).

Thinking of xi as an element of X, after passing to a subsequence we can assume that
limi→∞ xi = x for some x ∈ D. Then for large i, we can find (zi, wi) ∈ 1∗ × 1n−1

such that xi = Fx(zi, wi) with limi→∞ |zi | = 0.
Define ri ∈ R+ by e−r

2
i /2 = |zi |. Then limi→∞ ri = ∞ and F̃x(αri (0), wi) =

Fx(|zi |, wi). Applying Proposition 4.15 with N = n gives

lim
i→∞

ωri (·) =
1
2

(
n+ 1
n

)2

(
√
−1 du ∧ du+ nG∗xωD(·)). (4.22)

This is a contradiction. ut

Remark 4.23. The only role of the Ricci curvature bound (4.16) is to ensure an appro-
priate biLipschitz condition between ωX(x, t) and ωX(x, 0), in order to apply Proposition
A.1 of the appendix. Other curvature conditions imply this. For example, given any con-
tinuous function f : [0,∞)→ [0,∞), it would be enough to assume that

|Ric(x, t)| ≤ d0(x0, x)
−2/(N+1) f (d0(x0, x)

−2/(N+1)t). (4.24)

Equation (4.16) is the special case when f is a constant function.

Remark 4.25. One can ask how generally the Ricci curvature assumption in Proposition
4.15 holds. It obviously holds if the initial metric is Ricci-flat, as in the work of Tian and
Yau [23]. We expect that it also holds, at least, if the initial metric is a perturbation of the
Ricci-flat metric.
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4.3. Bulging superstandard spatial asymptotics

We now specialize to the case when D is ample. Let h be a Hermitian metric on LD with
positive curvature form. Let ωD be the restriction, to D, of the curvature form associated
to h. As before, σ is a holomorphic section of LD with zero setD. Let L1

D denote the unit
circle bundle of LD .

Definition 4.2. A Kähler metric ωX on X has bulging superstandard spatial asymptotics
associated to h if it has bulging standard spatial asymptotics associated to (ωD, N) and

ωX = ηX +
√
−1 ∂∂

(
N + 1

2
(log |σ |−2

h )(N+1)/N
+H

)
, (4.26)

where

• ηX is a smooth closed (1, 1)-form on X, and
• H ∈ C∞(X) ∩ L∞(X).

Note that in Definition 4.2, the choice of h does matter.

Proposition 4.27. If X admits a Kähler metric then X admits a complete Kähler metric
with bulging superstandard spatial asymptotics.

Proof. Let ωX be a Kähler metric onX. By assumption,−
√
−1 ∂∂̄(log |σ |2h) is a positive

(1, 1)-form on X. Set

ωX =
N + 1

2

√
−1 ∂∂(log |σ |−2

h )(N+1)/N . (4.28)

We first claim that ωX is a complete Kähler metric on X with bulging standard spatial
asymptotics. To see this, note that

ωX =
(N + 1)2

2N

√
−1 (log |σ |−2

h )1/N∂∂(log |σ |−2
h )

+
1
2

(
N + 1
N

)2

(log |σ |−2
h )(1−N)/N

√
−1 ∂(log |σ |−2

h ) ∧ ∂(log |σ |−2
h ). (4.29)

Since −
√
−1 ∂∂̄(log |σ |2h) is positive, it follows that ωX is a Kähler form. One can check

that it is complete.
To see that ωX has bulging standard spatial asymptotics, given x ∈ D, let

(z, w1, . . . , wn−1) be the local holomorphic coordinates for a neighborhood of x in X
coming from Fx . In this coordinate system, |σ |2h = azz for some smooth positive func-
tion a(z,w1, . . . , wn−1). On H ×1n−1, we have

log |σ |−2
h = log

1
azz
= log

1

ae
√
−1 ue−

√
−1 u
= log a−1

−
√
−1 u+

√
−1 u. (4.30)
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Then

α∗r log |σ |−2
h = α

∗
r log a−1

−
√
−1 ru+

√
−1 ru+ r2, (4.31)

α∗r ∂(log |σ |−2
h ) = ∂α∗r log a−1

−
√
−1 rdu, (4.32)

α∗r ∂(log |σ |−2
h ) = ∂α∗r log a−1

+
√
−1 rdu. (4.33)

It follows that

lim
r→∞

r−2/Nα∗r F̃
∗

x ωX =
1
2

(
N + 1
N

)2

(
√
−1 du ∧ du+NG∗xωD). (4.34)

Hence ωX has bulging standard spatial asymptotics.
From (4.28), it is now clear that ωX also has bulging superstandard spatial asymp-

totics. This proves the proposition. ut

In the rest of this section, we assume that N = n, the complex dimension of X. The next
proposition shows that the property of having bulging superstandard spatial asymptotics
is preserved under the Kähler–Ricci flow.

Proposition 4.35. Suppose that ωX(0) has bulging superstandard spatial asymptotics
associated to h. Suppose that the Kähler–Ricci flow ωX(t), with initial Kähler metric
ωX(0), exists on a maximal time interval [0, T ) in the sense of Theorem 2.1. Then for all
t ∈ [0, T ), ωX(t) has bulging superstandard spatial asymptotics, associated to h.

Proof. Choose a Hermitian metric hKX⊗LD on KX ⊗ LD . Along with h, we obtain a
Hermitian metric hKX on KX. Then

Ric(ωX(0)) = −
√
−1F(hKX⊗LD )−

√
−1 ∂∂

(
log

hKX |σ |
2
h

hKX

)
(4.36)

onX. Set η′
X
= −
√
−1F(hKX⊗LD ) andH ′ = log

hK
X
|σ |2h

hKX
. By (4.4), the bulging standard

spatial asymptotics imply that H ′ ∈ C∞(X) ∩ L∞(X). This is the place where we use
the assumption that N = n.

Recall the definition of ωt from (2.2). We can write

ωX(t) = ωt +
√
−1 ∂∂u(t)

= ηX − tη
′

X
+
√
−1 ∂∂

(
n+ 1

2
(log |σ |−2

h )(n+1)/n
+H + tH ′ + u(t)

)
. (4.37)

The proposition follows. ut

Proposition 4.38. Suppose that ωX(0) has bulging superstandard spatial asymptotics
associated to h. Let ηX ∈ �

(1,1)(X) be a smooth representative of the cohomology class
represented by the closed current

ωX(0)−
√
−1 ∂∂

(
n+ 1

2
(log |σ |−2

h )(n+1)/n
)

(4.39)
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on X. Let η′
X
∈ �(1,1)(X) be a smooth representative of −2π [KX + D] ∈ H(1,1)(X).

Let T3 be the supremum ( possibly infinite) of the numbers T ′ for which there is some
fT ′ ∈ C

∞(X)∩L∞(X) with bounded covariant derivatives (with respect to ωX(0)) such
that

ηX − T
′η′
X
+
√
−1 ∂∂

(
n+ 1

2
(log |σ |−2

h )(n+1)/n
+ fT ′

)
(4.40)

is a Kähler form onX which is biLipschitz to ωX(0). Then T3 equals the numbers T1 = T2
of Theorem 2.1.

Proof. The proof is similar to that of Proposition 3.29. We omit the details. ut

Corollary 4.41. Suppose that ωX(0) has bulging superstandard spatial asymptotics. If
[KX +D] ≥ 0 then the flow exists for all positive time.

Proof. The proof is similar to that of Corollary 3.39. We omit the details. ut

Remark 4.42. In [23, Section 4], Tian and Yau showed that if KX +D = 0 then there is
a complete Ricci-flat Kähler metric on X.

5. Conical Kähler–Ricci flows

This section deals with conical spatial asymptotics. We begin by defining asymptotically
conical Riemannian metrics. In Subsection 5.1 we show that this property is preserved
under Ricci flow, with no change in the asymptotic cone. In Subsection 5.2 we use pseu-
dolocality to show that if the initial metric of an immortal solution is asymptotically
conical then a parabolic blowdown limit always exists, defined on the complement of the
vertex in a cone.

Passing to the Kähler case, in Subsection 5.3 we define conical standard spatial
asymptotics and show that this property is preserved under the Kähler–Ricci flow. Start-
ing with Subsection 5.4, we assume that D is ample. We introduce conical superstandard
spatial asymptotics. We show that if X admits a Kähler metric then X admits a metric
with conical superstandard spatial asymptotics. We prove that having conical superstan-
dard spatial asymptotics is preserved under the Kähler–Ricci flow. We characterize the
first singularity time, if there is one.

In Subsection 5.5 we consider an ample line bundle E over a compact complex man-
ifold D. We show that there is a unique formal asymptotic expansion for an expanding
Kähler soliton on the complement of the zero section of E, whose associated vector field
generates rescaling of the line bundle. The soliton turns out to be a gradient soliton. Given
an asymptotic expansion for a Kähler–Ricci flow on the complement of the zero section,
we show that its blowdown limit is the expanding soliton. We apply this to the case of
conical asymptotics.

5.1. Asymptotically conical metrics

Let (Y, gY ) be a compact Riemannian manifold. Let CY denote the cone over Y , i.e.
CY = ((0,∞)× Y ) ∪ {?}, with the metric gCY = dR2

+ R2gY on CY − ?.
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Let X be a smooth manifold with a basepoint x0. Let gX be a complete Riemannian
metric on X. Given 0 < R1 < R2 <∞, set A(R1, R2) = B(x0, R2)− B(x0, R1).

Definition 5.1. We say that (X, x0, gX) is asymptotically conical, with asymptotic cone
(CY, gCY ), if there is a pointed Gromov–Hausdorff limit

lim
λ→∞

(
1
λ
X, x0, g

)
= (CY, ?, gCY )

such that for 0 < R1 < R2 <∞, there is a smooth limit

lim
λ→∞

1
λ
A(λR1, λR2) = B(?,R2)− B(?,R1). (5.1)

In Definition 5.1, it is implicit that the same maps are used to define the Gromov–
Hausdorff limit and the smooth limits. From the definition, (X, gX) automatically has
quadratic curvature decay.

Remark 5.2. If we instead assumed that (X, gX) has quadratic curvature decay, Y is a
compact metric space whose Hausdorff dimension is dim(X) − 1, and there is a pointed
Gromov–Hausdorff limit limλ→∞

( 1
λ
X, x0, g

)
= (CY, ?, gCY ), then we would conclude

that Y is a smooth manifold with a C1,α-regular Riemannian metric gY . For simplicity, in
Definition 5.1 we will just assume that gY is smooth.

Proposition 5.3. Let gX(·) be a Ricci flow that exists for t ∈ [0, T ) and whose initial
condition gX(0) is asymptotically conical with asymptotic cone CY . Suppose that gX(·)
has complete time slices and bounded curvature on compact time intervals. Then for all
t ∈ [0, T ), the time slice (X, g(t)) is asymptotically conical with asymptotic cone CY .
Proof. Suppose that the conclusion is not true. Then for some t ∈ [0, T ), there is a se-
quence λi →∞ with the property that even after passing to any subsequence of the λi’s,
either
(i) the sequence

{( 1
λi
X, x0, g(t)

)}∞
i=1 does not have a pointed Gromov–Hausdorff limit

isometric to CY , or
(ii) there are 0 < R1 < R2 < ∞ such that the sequence

{( 1
λi
A(λiR1, λiR2)

)}∞
i=1 does

not have a smooth limit.
Let φ be a slight smoothing of the function 1+ d0(·, x0). Because of the conical asymp-
totics, we can assume that the Hessian of φ is bounded in norm. Then φ is a distance-like
function that satisfies (B.4). From Proposition B.10, on the time interval [0, t], the cur-
vature of X decays uniformly as O(d0(x, x0)

−2). It follows from the Ricci flow equation
that at a point x ∈ X, the metrics gX(t) and gX(0) are econst·td0(x,x0)

−2
-biLipschitz to each

other. Hence limi→∞

( 1
λi
X, x0, g(t)

)
= CY in the pointed Gromov–Hausdorff topology,

so we can assume that (ii) holds.
Since gX(0) is asymptotically conical, given a k ≥ 0, we have |∇k Rm|(x, 0) =

O(d0(x, x0)
−2−k). From Proposition B.12, |∇k Rm|(x, t) = O(d0(x, x0)

−2−k). This im-
plies that there are uniform bounds for |∇k Rm |

λ−2
i gX(t)

on A
( 1

2R1, 2R2
)
⊂
( 1
λi
X, x0

)
.

After passing to a subsequence and using the noncollapsing, we can assume that there is
smooth convergence as i →∞ of the metrics λ−2

i gX(t) on A(R1, R2) ⊂
( 1
λi
X, x0

)
. This

is a contradiction. ut
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5.2. Parabolic blowdowns of asymptotically conical Ricci flows

We now use pseudolocality to show that we have the curvature bounds needed to take a
blowdown limit of an immortal Ricci flow solution whose initial metric is asymptotically
conical.

Proposition 5.4. Suppose that the Ricci flow gX(·) of Proposition 5.3 is defined for all
t ≥ 0. Then there are R <∞ and ε > 0 such that |Rm(x, t)| ≤ (εd0(x, x0))

−2 whenever
d0(x, x0) ≥ R and t ≤ εd0(x, x0)

2.

Proof. From Definition 5.1, there are C,R′ < ∞ such that |Rm(x, 0)| ≤ Cd0(x, x0)
−2

whenever d0(x, x0) ≥ R
′. Hence we can find α > 0 such that whenever d0(x, x0) ≥ 2R′,

we have |Rm| ≤ (αd0(x, x0))
−2 on B0(x, αd0(x, x0)). From [16, Proposition 1], there

is some ε0 > 0 such that |Rm(x, t)| ≤ (ε0αd0(x, x0))
−2 whenever d0(x, x0) ≥ 2R′ and

t ≤ (ε0αd0(x, x0))
2. After redefining the constants, the proposition follows. ut

Proposition 5.5. There are R < ∞ and ε > 0 such that for each k > 0, there is
some Ck < ∞ such that |∇k Rm| ≤ Ckd0(x, x0)

−2−k whenever d0(x, x0) ≥ R and
t ≤ εd0(x, x0)

2.

Proof. Given k > 0, Proposition 5.4 and Shi’s local derivative estimates imply that for
any εk ∈ (0, ε), there is a bound |∇k Rm| ≤ C′k(εk)d0(x, x0)

−2−k whenever d0(x, x0)

≥ 2R and εkd0(x, x0)
2
≤ t ≤ εd0(x, x0)

2. Now by the smooth convergence in Definition
5.1, we know that there is some C′k < ∞ such that |∇k Rm|(x, 0) ≤ C′kd0(x, x0)

−2−k

whenever d0(x, x0) ≥ R. From the local derivative estimate in [14, Appendix D], there are
some εk > 0 andC′′k <∞ so that |∇k Rm| ≤ C′′k d0(x, x0)

−2−k whenever d0(x, x0) ≥ 2R
and t ≤ εkd0(x, x0)

2. The proposition follows. ut

Proposition 5.6. Let ε be as in Proposition 5.5. For any sequence ri → ∞, after pass-
ing to a subsequence there is a smooth Ricci flow solution g∞ defined on {(x, t) ∈
(CY − ?)× [0,∞) : 0 ≤ t ≤ εd(x, ?)2} such that

(i) g∞(0) = gCY and
(ii) limi→∞ r

−2
i g(r2

i t) = g∞(t), with smooth convergence on annuli.

More precisely, given 0 < R1 < R2 < ∞, for large i there are smooth embeddings
φR1,R2,i : (R1, R2) × Y → X such that limi→∞ r

−2
i φ∗R1,R2,i

g(r2
i t) = g∞(t) provided

that t ≤ εR2
2 .

Proof. This follows from Proposition 5.5 and the proof of Hamilton’s compactness the-
orem [11]. In our case, we apply a diagonal argument to annuli (cf. [11, Section 2]).
Note that g∞(0) is defined on the complement of the vertex in the asymptotic cone of
(X, gX(0)). The asymptotic cone is CY . ut

Proposition 5.7. For any t ≥ 0, g∞(t) is asymptotically conical with asymptotic
cone CY .
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Proof. We first remark that the estimate |∇k Rm| ≤ Ckd0(x, x0)
−2−k on gX(0), for

k ≥ 0, passes to g∞. Hence for any t ≥ 0 and any sequence sj → ∞, after pass-
ing to a subsequence the limit limj→∞(X, x0, s

−2
j g∞(t)) = CY is smooth away from

? ∈ CY . At x ∈ CY − ?, the metrics g∞(t) and g∞(0) are econst·tdCY (x,?)−2
-biLipschitz

equivalent. It follows that any asymptotic cone of g∞(t) is isometric to the asymptotic
cone of g∞(0), which is CY . ut

Example 5.8. Suppose that (X, g0) is an asymptotically conical Ricci-flat manifold. Its
asymptotic cone is the Ricci-flat cone CY . The Ricci flow starting from g0 is the static
Ricci flow gX(t) = g0. The blowdown limit is the static Ricci flow g∞(t) = gCY . This is
an expanding gradient soliton with respect to the function f = R2/(4t).

Example 5.9. Consider the metrics constructed in [9, Section 5]. They live on an
n-dimensional complex manifold X, n ≥ 2, which is a complex line bundle over CP n−1.
Given k > n and p ∈ R+, there is a Ricci flow solution whose metric on X − CP n−1 is
the Zk-quotient of the following metric on Cn:

gX(t) =
{
|z|−2+2pB

(
4(t + t0)|z|−2p)δαβ

+ [(p− 1)|z|2pB
(
4(t + t0)|z|−2p)

− 4(t + t0)pB ′
(
4(t + t0)|z|−2p)]

|z|−4zαzβ
}
dzαdzβ .

(5.10)

Here t0 > 0 and B is a certain smooth function with B(0) > 0. Going out the end of X
corresponds to taking z → ∞. For all t ≥ 0, the metric gX(t) is asymptotically conical
with asymptotic cone CY = Cn/Zk , where the Zk-action on Cn is multiplication by
scalars, and the metric on the asymptotic cone is

gCY = B(0){|z|−2+2pδαβ + (p − 1)|z|2p|z|−4zαzβ}dzα dzβ . (5.11)

Given a sequence ri →∞, set φi(z) = r
1/p
i z. Then the blowdown limit is

lim
i→∞

1
r2
i

φ∗i gX(r
2
i t) = g∞(t), (5.12)

where

g∞(t) = {|z|
−2+2pB(4t |z|−2p)δαβ

+ [(p − 1)|z|2pB(4t |z|−2p)− 4tpB ′(4t |z|−2p)]|z|−4zαzβ}dzα dzβ . (5.13)

For t > 0, this is an expanding gradient soliton solution. At t = 0, we have g∞(0) = gCY .

Example 5.14. With reference to Example 5.8, in the case n = 2 let g0 be a k-center
Eguchi–Hanson metric [10]. Then CY = C2/Zk , where a generator of Zk acts on C2 by(
e2π
√
−1/k 0

0 e−2π
√
−1/k

)
, and g∞(·) is the static flow on CY − ?.

Example 5.15. In [19], it was shown that if gX(0) has nonnegative curvature operator
then any blowdown limit is a smooth gradient expanding soliton. In [1, Remark 7.3], this
result was extended to nonnegative complex sectional curvature. In [5], it was shown that
in the Kähler case, if one assumes positive holomorphic bisectional curvature then the
soliton is U(n)-invariant.
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5.3. Conical standard spatial asymptotics

We now specialize to the Kähler case. LetX be a compact connected n-dimensional com-
plex manifold. Let D be a smooth effective divisor in X. Let LD be the holomorphic line
bundle on X associated to D. There is a holomorphic section σ of LD with zero set D,
which is nondegenerate at D. It is unique up to multiplication by a nonzero complex
number. Let h be a Hermitian metric on LD . Let ∇ be the corresponding Hermitian holo-
morphic connection. Let ∇D be its restriction to D. Let L1

D denote the unit circle bundle
of LD .

Suppose that x ∈ D. There are a neighborhood U of x in X and a biholomorphic map
Fx : 1

n
→ U such that

• Fx(0) = x, and
• Fx(1

∗
×1n−1) = U ∩X.

The map Gx on 1n−1, given by Gx(w) = Fx(0, w), is biholomorphic from 1n−1 to a
neighborhood of x in D. Let z be the local coordinate on U corresponding to the first
factor in 1n.

Given r ∈ R+, let αr : 1∗ → 1∗ be multiplication by r . If Z is an auxiliary space
then we also write αr for (αr , Id) : 1∗ × Z→ C× Z.

Definition 5.2. Let ωD be a Kähler metric on D. Let hD be the restriction of h to LD
∣∣
D

.
We identify z with a local multiple of σ . We say that ωX has conical standard spatial
asymptotics associated to (ωD, hD) if for every x ∈ D and every local parametrization Fx ,
after possibly multiplying z by a constant, we have

lim
r→0

1
r2α
∗
r F
∗

x ωX =
√
−1

hD(∇Dz ∧ ∇Dz)

|z|4h
+
G∗xωD

|z|2h
. (5.16)

The limit in (5.16) means smooth convergence on any subset {z ∈ 1∗ : 0 < R1 < |z| <

R2 < 1} ×1n−1 of 1∗ ×1n−1.

Going out the end of X corresponds to taking z → 0. One can check that the notion of
conical standard spatial asymptotics in Definition 5.2 is consistent under change of local
coordinate.

Proposition 5.17. If (X, ωX) has conical standard spatial asymptotics then it is asymp-
totically conical in the sense of Definition 5.1. The asymptotic cone is CY , where Y is the
unit circle bundle L1

D .

Proof. In terms of the local coordinates (w1, . . . , wn−1) on 1n−1, there is a function
h(w) such that hD(z, z) = h(w)|z|2. Then

√
−1

hD(∇Dz∧∇Dz)

|z|4h
+
G∗xωD

|z|2h
=
√
−1

h(dz+ zh−1∂wh)∧ (dz+ zh
−1∂wh)

(h|z|2)2
+
ωD

h|z|2

=
√
−1

(
dz
z
+
∂wh
h

)
∧
(
dz
z
+
∂wh
h

)
h|z|2

+
ωD

h|z|2
. (5.18)
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Write z = αe
√
−1 θ , so

dz

z
=
dα

α
+
√
−1 dθ. (5.19)

Define R by

R2
=

1
h|z|2

=
1
hα2 . (5.20)

Then
dR

R
= −

dα

α
−

1
2
∂wh

h
−

1
2
∂wh

h
. (5.21)

It follows that(
dz
z
+

∂wh
h

)(
dz
z
+

∂wh
h

)
h|z|2

+
gD

h|z|2
= dR2

+ R2
{[
dθ +

1

2
√
−1

(
∂wh

h
−
∂wh

h

)]2

+ gD

}
.

(5.22)

The right-hand side of (5.22) is the conical metric on CY − ?, where Y = L1
D has the

Sasaki metric. ut

Proposition 5.23. Let ωX(·) be a Kähler–Ricci flow defined for t ∈ [0, T ), with bounded
curvature on compact time intervals. Suppose that ωX(0) has conical standard spatial
asymptotics associated to (ωD, hD). Then for all t ∈ [0, T ), the metric ωX(t) has conical
standard spatial asymptotics associated to (ωD, hD).

Proof. The proof is similar to that of Proposition 4.12. We omit the details. ut

5.4. Conical superstandard spatial asymptotics

We now assume that D is ample. Let h be a Hermitian metric on LD with positive curva-
ture form. Let ωD be the restriction toD of the curvature form associated to h. As before,
σ is a holomorphic section of LD with zero set D.

Definition 5.3. A Kähler metric ωX on X has conical superstandard spatial asymptotics
associated to h and a number k ∈ R if it has conical standard spatial asymptotics (associ-
ated to (ωD, hD)) and

ωX = ηX +
√
−1 ∂∂(|σ |−2

h + k log |σ |−2
h +H), (5.24)

where

• ηX is a smooth closed (1, 1)-form on X, and
• H ∈ C∞(X) ∩ L∞(X).

Remark 5.25. In [24], in order to construct Kähler–Einstein metrics, a class
√
−1 ∂∂|σ |−2α

h of model metrics was considered. These metrics are also asymptotically
conical. In terms of the asymptotic cone CY , the manifold Y is again a circle bundle
over D and the parameter α determines the length of the circle fiber in Y . For simplicity,
we only consider the case α = 1. The discussion below can be easily extended to general
α > 0.
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Specializing the results of [24] to the case when α = 1, they showed that ifD admits a
Kähler metric ωD with Ric(ωD) = nωD then there is a complete Ricci-flat Kähler metric
on X [24].

Note that
√
−1 ∂∂ log |σ |−2

h is bounded with respect to gX.

Proposition 5.26. If X admits a Kähler metric then X admits a complete Kähler metric
with conical superstandard spatial asymptotics.

Proof. Let ωX be a Kähler metric on X. By assumption,
√
−1Fh = −

√
−1 ∂∂̄(log |σ |2h)

is a positive (1, 1)-form on X. Set

ωX =
√
−1 ∂∂|σ |−2

h =
√
−1

h(∇σ ∧ ∇σ)

|σ |4h
+

√
−1Fh
|σ |2h

. (5.27)

Taking the local coordinate z to be σ , we obtain

lim
r→0

1
r2α
∗
r F
∗

x ωX =
√
−1

hD(∇Dz ∧ ∇Dz)

|z|4h
+
ωD

|z|2h
. (5.28)

Hence ωX has conical standard spatial asymptotics. It clearly also has conical superstan-
dard spatial asymptotics. ut

We now show that the property of having conical superstandard spatial asymptotics is
preserved under the Kähler–Ricci flow.

Proposition 5.29. Suppose that ωX(0) has conical superstandard spatial asymptotics as-
sociated to (h, k). Suppose that the Kähler–Ricci flow ωX(t), with initial Kähler metric
ωX(0), exists on a maximal time interval [0, T ) in the sense of Theorem 2.1. Then for all
t ∈ [0, T ), ωX(t) has conical superstandard spatial asymptotics associated to (h, k+nt).

Proof. Choose a Hermitian metric hKX⊗LD on KX ⊗ LD . Along with h, we obtain a
Hermitian metric hKX on KX. Then

Ric(ωX(0)) = −
√
−1F(hKX⊗LD )−

√
−1 ∂∂

(
n log |σ |−2

h +log
hKX |σ |

2(n+1)
h

hKX

)
(5.30)

on X. Set η′
X
= −
√
−1F(hKX⊗LD ) and H ′ = log

hK
X
|σ |

2(n+1)
h

hKX
. By (5.16), the conical

standard spatial asymptotics imply that H ′ ∈ C∞(X) ∩ L∞(X).
Recall the definition of ωt from (2.2). We can write

ωX(t) = ωt +
√
−1 ∂∂u(t)

= ηX − tη
′

X
+
√
−1 ∂∂

(
|σ |−2

h + (k+ nt) log |σ |−2
h +H + tH

′
+ u(t)

)
. (5.31)

The proposition follows. ut

We now give a characterization of the first singularity time, if there is one. The relevant
ring of functions, for conical asymptotics, can be characterized in the following way.
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Definition 5.4. The ring C∞cone(X) consists of the smooth functions f on X = X − D

such that for every x ∈ D and every local parametrization Fx , the pullback F ∗x f ∈
C∞(1∗ ×1n−1) is such that for any multi-index (l1, l1, . . . , ln, ln), the function

(
z2 ∂

∂z

)l1(
z2 ∂

∂z

)l1(
z
∂

∂w1

)l2(
z
∂

∂w1

)l2
. . .

(
z

∂

∂wn−1

)ln(
z

∂

∂wn−1

)ln
F ∗x f

is uniformly bounded.

Proposition 5.32. Suppose that ωX(0) has conical superstandard spatial asymptotics as-
sociated to (h, k). Let ηX ∈ �

(1,1)(X) be a smooth representative of the cohomology class
represented by the closed current

ωX(0)−
√
−1 ∂∂(|σ |−2

h + k log |σ |−2
h ) (5.33)

on X. Let η′
X
∈ �(1,1)(X) be a smooth representative of −2π [KX + D] ∈ H(1,1)(X).

Let T3 be the supremum ( possibly infinite) of the numbers T ′ for which there is some
fT ′ ∈ C

∞
cone(X) such that

ηX − T
′η′
X
+
√
−1 ∂∂

(
|σ |−2

h + (k + nT
′) log |σ |−2

h + fT ′
)

(5.34)

is a Kähler form onX which is biLipschitz to ωX(0). Then T3 equals the numbers T1 = T2
of Theorem 2.1.

Proof. The proof is similar to that of Proposition 3.29. We omit the details. ut

Corollary 5.35. Suppose that ωX(0) has conical superstandard spatial asymptotics. If
[KX + (n+ 1)D] ≥ 0 then the flow exists for all positive time.

Proof. The proof is similar to that of Corollary 3.39. We omit the details. ut

5.5. Formal asymptotics

In this subsection we discuss the asymptotics of the Kähler–Ricci flow on the comple-
ment of the zero section in the total space of a line bundle. We then apply this to the
quasiprojective case, where the relevant line bundle is the normal bundle to the divisor.

Let π : E→ D be an ample holomorphic line bundle E over a complex manifold D.
Let h be a Hermitian metric on E with curvature 2-form F , so that the representative
√
−1F of 2πc1(E) is a Kähler form ωD . In terms of a local holomorphic section σ of E,

we have ωD = −
√
−1 ∂∂ log |σ |2h.

There is a canonical section S of the bundle π∗E over E so that for e ∈ E, we have
S(e) = e ∈ (π∗E)e ∼= Eπ(e). Let E′ be the complement of the zero section of E. Define
ω0 ∈ �

2(E′) by ω0 =
√
−1 ∂∂|S|−2

π∗h. In terms of a local holomorphic trivialization
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E|U = U × C of E over a coordinate chart U , let {wα}n−1
α=1 denote coordinates on U and

let z denote the coordinate of the C-factor. Then |S|2π∗h = h(w)zz and

ω0 =
√
−1 ∂∂

(
1
hzz

)
=
ωD

hzz
+
√
−1

1
(hzz)2

h(dz+ zh−1∂wh) ∧ (dz+ zh
−1∂wh). (5.36)

There is a universal constant C = C(n) such that

ωn0 = Ch
−n(zz)−(n+1)dz ∧ dz ∧ ωn−1

D . (5.37)

If we write the metric in terms of the local coordinates {w1, . . . , wn−1, z} as gij , the Ricci
curvature of ω0 is

Ric(ω0) = −
√
−1 ∂∂ log det(gij ) = −

√
−1 ∂∂ log(h−n det(gD

αβ
))

= π∗(Ric(ωD)− nωD). (5.38)

Set V = z∂z+z∂z, which is globally defined onE′. One can check that LVω0 = −2ω0
and LV Ric(ω0) = 0. We use the notion of formal weight with respect to LV , which is
the same as the grading in the Taylor series expansion of a function in terms of z and z.
Note that going out the conical end of E′ corresponds to taking z→ 0. An expansion in z
(and z) is effectively an expansion in inverse powers of the distance from the basepoint.

The expanding soliton equation for ω, with respect to the vector field V , is

Ric(ω)+ 1
2LVω = −ω. (5.39)

Proposition 5.40. Given ω0, set ω = ω0−Ric(ω0)+
√
−1 ∂∂u. There is a unique asymp-

totic expansion
u ∼

∑
k>0

u(k), (5.41)

with LV u(k) = ku(k), such that ω formally satisfies (5.39).

Proof. We have

LVω = −2ω0 +
√
−1

∑
k>0

LV ∂∂u(k) = −2ω0 +
√
−1

∑
k>0

∂∂LV u(k)

= −2ω0 +
√
−1

∑
k>0

k∂∂u(k). (5.42)

Substituting into (5.39) gives

Ric
(
ω0 − Ric(ω0)+

√
−1 ∂∂u

)
− ω0 +

√
−1

∑
k>0

k

2
∂∂u(k)

= −ω0 + Ric(ω0)−
√
−1

∑
k>0

∂∂u(k), (5.43)
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or

−∂∂ log

(
ω0 − Ric(ω0)+ ∂∂

∑
k>0 u(k)

)n
ωn0

+

∑
k>0

k

2
∂∂u(k) = −

∑
k>0

∂∂u(k). (5.44)

Hence it suffices to solve

log

(
ω0 − Ric(ω0)+

√
−1 ∂∂

∑
k>0 u(k)

)n
ωn0

=

∑
k>0

(
k

2
+ 1

)
u(k). (5.45)

Equivalently,

Tr log
(
I − ω−1

0 Ric(ω0)+
√
−1ω−1

0 ∂∂
∑
k>0

u(k)

)
=

∑
k>0

(
k

2
+ 1

)
u(k). (5.46)

The term ω−1
0 Ric(ω0) has formal weight 2 with respect to LV , and ω−1

0 ∂∂u(k) has
formal weight k + 2. We can expand the left-hand side of (5.46) with respect to the
LV -weighting, as

−Tr(ω−1
0 Ric(ω0))+

[
−

1
2 Tr

(
(ω−1

0 Ric(ω0))
2)
+Tr(

√
−1ω−1

0 ∂∂u(2))
]
+· · · . (5.47)

It is easy to see directly that u(2k−1) = 0 for k = 1, 2, . . . . Also

u(2) = −
1
2 Tr(ω−1

0 Ric(ω0)). (5.48)

For k = 2, 3, . . . , the term of weight 2k on the left-hand side of (5.46) can be expressed
in terms of u(2), . . . , u(2k−2). Equating it with the term (k + 1)u(2k) of weight 2k on the
right-hand side determines u(2k) inductively in terms of u(2), . . . , u(2k−2). For example,

u(4) =
1
3

[
−

1
2 Tr

(
(ω−1

0 Ric(ω0))
2)
+ Tr(

√
−1ω−1

0 ∂∂u(2))
]
. (5.49)

That gives the existence and uniqueness. ut

Proposition 5.50. The formal expanding soliton of Proposition 5.40 is a gradient ex-
panding soliton.

Proof. Let V = V (1,0)+V (0,1) be the splitting into the (1, 0) and (0, 1) components, i.e.
V (1,0) = z∂z. We need to find a function F such that

iV (1,0)ω =
√
−1 ∂F. (5.51)
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We first claim that ω is invariant under the U(1)-action given by multiplying z by
complex numbers of norm one. To see this, note that ω0 and Ric(ω0) are U(1)-invariant.
Then from the inductive procedure to construct u(k) in the proof of Proposition 5.40, it
follows that u(k) is U(1)-invariant. Hence ω is U(1)-invariant.

From the U(1)-invariance,

iV (1,0)∂u(k) = iV (0,1)∂u(k). (5.52)

We know that

LV u(k) = iV du(k) = iV (1,0)∂u(k) + iV (0,1)∂u(k) = ku(k), (5.53)

so

iV (1,0)∂u(k) =
k

2
u(k). (5.54)

Then

iV (1,0)(∂∂u(k)) = ∂(iV (1,0)∂u(k)) =
k

2
∂u(k). (5.55)

From the definition of ω0,

iV (1,0)ω0 =
√
−1 iV (1,0)∂∂|S|

−2
π∗h =

√
−1 ∂(iV (1,0)∂|S|

−2
π∗h)

=
√
−1 ∂(−|S|−2

π∗h). (5.56)

From (5.38), we have iV (1,0) Ric(ω0) = 0. Hence (5.51) is satisfied with

F = −|S|−2
π∗h +

∑
k>0

k

2
u(k). (5.57)

This proves the proposition. ut

Now consider the Kähler–Ricci flow on E′. Set ω(t) = ω0 − t Ric(ω0) +
√
−1 ∂∂u(t).

The flow equation for the potential function u is

∂u

∂t
= log

(
ω0 − t Ric(ω0)+

√
−1 ∂∂u

)n
ωn0

= Tr log
(
I − tω−1

0 Ric(ω0)+
√
−1ω−1

0 ∂∂u
)
. (5.58)

Proposition 5.59. There is a unique asymptotic expansion

u(t) ∼

∞∑
k=0

u(k)(t), (5.60)

where LV u(k) = ku(k), such that u(·) formally satisfies (5.58). The blowdown limit
u∞(w, z, t) = lims→∞ s

−2u(w, s−1z, s2t) exists and equals the Ricci flow generated
by the gradient expanding soliton of Proposition 5.40.
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Proof. Substituting (5.60) into (5.58) and equating the terms of various weights gives

∂u(0)

∂t
= 0,

∂u(1)

∂t
= 0,

∂u(2)

∂t
= − t Tr(ω−1

0 Ric(ω0))+
√
−1 Tr(ω−1

0 ∂∂u(0)),

∂u(3)

∂t
=
√
−1 Tr(ω−1

0 ∂∂u(1)),

∂u(4)

∂t
= −

1
2 t

2 Tr
(
(ω−1

0 Ric(ω0))
2)
+
√
−1 t Tr[(ω−1

0 Ric(ω0))(ω
−1
0 ∂∂u(0))]

+
1
2 Tr(ω−1

0 ∂∂u(0))
2
+
√
−1 Tr(ω−1

0 ∂∂u(2)),

...

(5.61)

The solution is

u(0) = c0,

u(1) = c1,

u(2) = −
1
2 t

2 Tr(ω−1
0 Ric(ω0))+

√
−1 t Tr(ω−1

0 ∂∂c0)+ c2,

u(3) =
√
−1 t Tr(ω−1

0 ∂∂c1)+ c3,

u(4) = −
1
6 t

3
[Tr
(
(ω−1

0 Ric(ω0))
2)
+
√
−1 Tr(ω−1

0 ∂∂ Tr(ω−1
0 Ric(ω0)))] + · · · + c4,

...

(5.62)

where LV ck = kck .
If u∞(w, z, t) = lims→∞ s

−2u(w, s−1z, s2t), then u∞ has an asymptotic expansion

u∞(t) ∼

n∑
k=1

u∞(k)(t) (5.63)

with

u∞(0) = 0,

u∞(1) = 0,

u∞(2) = −
1
2 t

2 Tr(ω−1
0 Ric(ω0)),

u∞(3) = 0,

u∞(4) = −
1
6 t

3[Tr
(
(ω−1

0 Ric(ω0))
2)
+
√
−1 Tr

(
ω−1

0 ∂∂ Tr(ω−1
0 Ric(ω0))

)]
,

...

(5.64)

Note that the construction of u∞(w, z, t) amounts to keeping only the terms in u with the
highest power of t , i.e. tk/2+1 for u(k). That is, we remove the terms involving the ci’s.
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Then one sees that ω0−Ric(ω0)+
√
−1 ∂∂u∞(1) is the formal gradient expanding soliton

of Proposition 5.40. Hence ω0 − Ric(ω0) +
√
−1 ∂∂u∞(t) is the time-t solution for the

flow of the expanding soliton. ut

Proposition 5.65. In the setting of Subsection 5.3, suppose that (X, ωX(·)) is a Kähler–
Ricci flow with conical standard spatial asymptotics that exists on the time interval
[0,∞). Suppose that there is an asymptotic expansion

ωX(t) ∼ ω0 − t Ric(ω0)+
√
−1

∞∑
k=0

∂∂u(k)(t), (5.66)

where LV u(k) = ku(k), with V = z∂z + z∂z. Let (CY − ?, ωX∞(·)) be a parabolic
blowdown limit of ωX(·). Then the asymptotic expansion of ωX∞(·) is the formal gradient
expanding soliton of Proposition 5.40.
Proof. Let E be the restriction of LD to D, i.e. the normal bundle of D in X. Then the
proposition follows from Proposition 5.59. ut

We have now proved Theorem 1.4.

Example 5.67. With reference to Example 5.9, consider the case when p = 1. The
asymptotic cone is flat. The corresponding formal expanding soliton is also flat. This
is consistent with the explicit solution of Example 5.9, which approaches the asymptotic
cone exponentially fast. Note that in this case, the parabolic blowdown limit is also an
expanding soliton, which differs from the formal expanding soliton of its asymptotic ex-
pansion.

If we took p 6= 1 in Example 5.9 (see Remark 5.25) then the asymptotic cone, and
also the formal expanding soliton, would be nonflat.

Appendix A. Local curvature estimates in Kähler–Ricci flow

In this section we prove a curvature estimate for the Kähler–Ricci flow. The assumptions
are that the curvature and its first covariant derivative are bounded on an initial ball, and
that on the given time interval, the metric on the ball is uniformly biLipschitz to the initial
metric.

Proposition A.1. Let (X, p, ω(·)) be a pointed Kähler–Ricci flow on a complex n-dimen-
sional manifold X, defined on a time interval [0, T ], with possibly incomplete time slices.
Given C1 <∞, there is some C2 = C2(C1, n) <∞ with the following property. If r > 0,
suppose that the time-zero ball B0(p, r) has compact closure in X, and at time zero we
have
(i) |Rm| ≤ C1r

−2 on B0(p, r), and
(ii) |∇ Rm| ≤ C1r

−3 on B0(p, r).
Furthermore, assume that for all t ∈ [0, T ],

C−1
1 ω(0) ≤ ω(t) ≤ C1ω(0). (A.2)

Then |Rm(x, t)| ≤ C2r
−2 for all x ∈ B0(p, r/4) and t ∈ [0, T ].
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Remark A.3. In [20], Sherman and Weinkove prove a related result in which C2 de-
pends, in an unspecified way, on ω(0). Since we will apply Proposition A.1 to a compact-
ness theorem, we need a uniformity result for C2.

Remark A.4. The point of Proposition A.1 is that C2 does not depend on T . We do not
know whether the analog of Proposition A.1 holds for non-Kähler Ricci flows.

Proof of Proposition A.1. After rescaling, we can assume that r = 1.
In the following, we use ·̃ for notations including g, | · |, ∇, Rm and 1 to indicate

that they are with respect to the initial metric ω(0). Otherwise, they are with respect
to the evolving flow metric ω(·). Indices are in terms of any local holomorphic coordi-
nates on X. We let 〈·, ·〉 denote the Euclidean inner product and (·, ·) a Hermitian in-
ner product. We let ∇ denote the (1, 0) component of the covariant derivative, and ∇
denote the (0, 1) component of the covariant derivative. For example, if f1 and f2 are
smooth real functions then (∇f1,∇f2) = g

j̄ i∂if1∂j̄f2, 〈df1, df2〉 = Re(∇f1,∇f2) and
〈df1, df1〉 = |∇f1|

2
= |∇f1|

2.
The letter C will denote a positive constant that can depend on C1 and n, but does

not depend on ω(0) in any other way. The value of C is allowed to change from place to
place.

Define the tensor 9 by

9kij = (∇ − ∇̃)
k
ij = g

l̄k
∇̃igj l̄ . (A.5)

In view of (A.2), a bound on 9 is equivalent to a first derivative bound on ω(t), relative
to ω(0). Set S = |9|2. From [21, Proposition 2.8],

(∂/∂t −4)S = −|∇9|2 − |∇9|2 − 2 Re
(
gj̄ igq̄pgkl̄∇

b̄R̃ib̄p
k9 ljq

)
. (A.6)

In view of (A.2) and (A.5),

−2 Re
(
gj̄ igq̄pgkl̄∇

b̄R̃ib̄p
k9 ljq

)
≤ C|∇̃R̃m| · |9| + C|R̃m| · |9|2. (A.7)

Then using assumptions (i) and (ii) of the proposition, we get

(∂/∂t −4)S ≤ −|∇9|2 − |∇9|2 + C · S + C. (A.8)

From [21, (2.43)],
∇b̄9

k
ip = R̃ib̄p

k
− Rib̄p

k. (A.9)

Hence

(∂/∂t −4)S ≤ −|∇9|2 + C · S + C ≤ − 1
2 |Rm|2 + C · S + C. (A.10)

We will need a cutoff function. Let 8 : [0,∞)→ [0,∞) be a smooth nonincreasing
function such that 8|[0,1/2] = 1 and 8|[1,∞] = 0. We can and will assume that where
8 6= 0,

(8′)2/8 = 4((81/2)′)2 ≤ C. (A.11)

Set
φ(x) = 8(d0(x, p)), (A.12)
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a time-independent Lipschitz function. Let dp denote the time-zero distance function
from p, i.e. dp(x) = d0(x, p). At time zero,

|∇̃φ|2 = g̃j̄ i∂iφ∂j̄φ = (8
′)2 ◦ dp. (A.13)

At time t , |∇φ|2 = gj̄ i∂iφ∂j̄φ. Then by (A.2), |∇φ| ≤ C on B0(p, 1)× [0, T ].
Next, the (1, 1) component of Hess(φ) is given by

√
−1 ∂∂φ =

√
−1 (8′′ ◦ dp)∂dp ∧ ∂dp +

√
−1 (8′ ◦ dp)∂∂dp. (A.14)

Assumption (i) of the proposition and Hessian comparison imply an estimate
√
−1 ∂∂dp ≤ Cω(0) (A.15)

in the barrier sense. As 8′ ≤ 0, using (A.2) and (A.14) we obtain

4φ = gj̄ i∂i∂j̄φ ≥ −C. (A.16)

Then on B0(p, 1)× [0, T ], we have

(∂/∂t −4)(φ · S)

= φ(∂/∂t −4)S − S4φ − 2 Re(∇φ,∇S)

≤ φ(−|∇9|2 − |∇9|2 + C · S + C)+ C · S + 2|∇φ| · |∇S|

≤ φ(−|∇9|2 − |∇9|2 + C · S + C)+ C · S + 4|∇φ| · (|∇9| + |∇9|) · |9|. (A.17)

Let ε > 0 be small enough that ε|∇φ|2−φ ≤ 0, which is possible from (A.11). Since

φ(−|∇9|2 − |∇9|2 + C · S + C)+ C · S + 4|∇φ| · (|∇9| + |∇9|) · |9|

≤ φ(−|∇9|2−|∇9|2+C ·S+C)+C ·S+ ε|∇φ|2 · (|∇9|2+|∇9|2)+C(ε) ·S,

(A.18)

we conclude that
(∂/∂t −4)(φ · S) ≤ C · S + C. (A.19)

From assumption (i) of the proposition, (A.2) and [21, (2.26) and (2.27)], we have

(∂/∂t −4)Tr(ω−1
0 ω) ≤ C − C · S. (A.20)

Choosing A large enough, we have the following differential inequality on B0(p, 1) ×
[0, T ]:

(∂/∂t −4)(φ · S + ATr(ω−1
0 ω)) ≤ −S + C. (A.21)

On ∂B0(p, 1) × [0, T ], the function φ vanishes. On B0(p, 1) × {0}, the function S
vanishes. By (A.2),

A|Tr(ω−1
0 ω)| ≤ C′ (A.22)

for some constant C′ <∞. In particular,

φ · S + ATr(ω−1
0 ω) ≤ C′ (A.23)

on the parabolic boundary (∂B0(p, 1)× [0, T ]) ∪ (B0(p, 1)× {0}).
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With reference to the constant C of the right-hand side of (A.21), suppose that

φ(x, t) · S(x, t)+ ATr(ω−1
0 ω)(x, t) ≥ C + C′ (A.24)

for some (x, t). Then φ(x, t) · S(x, t) ≥ C, so S(x, t) ≥ C, so −S(x, t) + C ≤ 0.
The reasoning in the proof of the parabolic maximum principle, applied to (A.21), now
implies that

φ · S + ATr(ω−1
0 ω) ≤ C + C′ (A.25)

on B0(p, 1)×[0, T ]. Reverting to the use of C to denote a generic positive constant, since
φ = 1 on B0(p, 1/2)× [0, T ], we conclude that

S ≤ C (A.26)

on B0(p, 1/2)× [0, T ], independent of T .
Hereafter we work on B0(p, 1/2)× [0, T ]. From (A.10) and (A.26),

(∂/∂t −4)S ≤ − 1
2 |Rm|2 + C. (A.27)

From [21, (2.58)],

(∂/∂t −4)|Rm|2 ≤ −|∇ Rm|2 − |∇ Rm|2 + C|Rm|3. (A.28)

Set H = |Rm|2/(C − S)1/2 where C is large enough that C − S ≥ 1 in B0(p, 1/2)
× [0, T ]. Since 1 ≤ C − S ≤ C, a bound on H is equivalent to a bound on |Rm|2. Then

(∂/∂t −4)H =
1

(C − S)1/2
(∂/∂t −4)|Rm|2 + |Rm|2(∂/∂t −4)

1
(C − S)1/2

− 2 Re
(
∇|Rm|2,∇

1
(C − S)1/2

)
=

1
(C − S)1/2

(∂/∂t −4)|Rm|2 +
1
2
|Rm|2

(C − S)3/2
(∂/∂t −4)S

−
3
8
|Rm|2(|∇S|2 + |∇S|2)

(C − S)5/2
−

Re(∇|Rm|2,∇S)
(C − S)3/2

≤
1

(C − S)1/2
(−|∇ Rm|2 − |∇ Rm|2 + C|Rm|3)+

1
2
|Rm|2

(C − S)3/2

(
−

1
2
|Rm|2 + C

)
−

3
8
|Rm|2(|∇S|2 + |∇S|2)

(C − S)5/2
+

√
|∇ Rm|2 + |∇ Rm|2 · |Rm| ·

√
|∇S|2 + |∇S|2

(C − S)3/2

= −
11
36
|∇ Rm|2 + |∇ Rm|2

(C − S)1/2
−

3
200
|Rm|2(|∇S|2 + |∇S|2)

(C − S)5/2

−

(
5
6

√
|∇ Rm|2 + |∇ Rm|2

(C − S)1/4
−

3
5
|Rm| ·

√
|∇S|2 + |∇S|2

(C − S)5/4

)2

+
1
2
|Rm|2

(C − S)3/2

(
−

1
2
|Rm|2 + 2|Rm|(C − S)+ C

)
≤ −

1
100
|∇ Rm|2 + |∇ Rm|2

(C − S)1/2
−

1
100
|Rm|2(|∇S|2 + |∇S|2)

(C − S)5/2
− CH 2

+ C. (A.29)
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Define φ̂ ∈ C(X) by
φ̂(x) = 8(2d0(x, p)), (A.30)

so supp(φ̂) ⊂ B0(p, 1/2). Then

(∂/∂t −4)(φ̂ ·H) = φ̂(∂/∂t −4)H −H4φ̂ − 2 Re(∇φ̂,∇H)

≤ φ̂(∂/∂t −4)H + C ·H + 2|∇φ̂| · |∇H |. (A.31)

Now

∇H =
∇|Rm|2

(C − S)1/2
+

1
2
|Rm|2∇S
(C − S)3/2

, (A.32)

so

2|∇φ̂|·|∇H | ≤ 2|∇φ̂|·
(
√

2
|Rm|

√
|∇ Rm|2+|∇ Rm|2

(C−S)1/2
+

1

2
√

2

|Rm|2
√
|∇S|2+|∇S|2

(C−S)3/2

)
≤

ε

100
|∇φ̂|2

(
|∇ Rm|2+|∇ Rm|2

(C−S)1/2
+
|Rm|2(|∇S|2+|∇S|2)

(C−S)5/2

)
+

100
ε

(
2|Rm|2

(C−S)1/2
+
|Rm|2

8(C−S)1/2

)
(A.33)

for any ε > 0. From (A.11), we can choose ε so that ε|∇φ̂|2 − φ̂ ≤ 0. Using (A.29),
(A.31) and (A.33), we arrive at

(∂/∂t −4)(φ̂ ·H) ≤ φ̂(−CH 2
+ C)+ C ·H ≤ C|Rm|2 + C. (A.34)

For large B <∞, equation (A.10) now gives

(∂/∂t −4)(φ̂ ·H + B · S) ≤ −|Rm|2 + C. (A.35)

Using the parabolic maximum principle as in the proof of (A.26), we conclude that

|Rm| ≤ C (A.36)

on B0(p, 1/4)× [0, T ]. This proves the proposition. ut

We now extend the preceding proposition to include higher derivative curvature bounds.

Proposition A.37. Let (X, p, ω(·)) be a pointed Kähler–Ricci flow on a complex n-
dimensional manifold X, defined on a time interval [0, T ], with possibly incomplete time
slices. Given l ≥ 1 and C̃l < ∞, there is some Ĉl = Ĉl(C̃l, n) < ∞ with the following
property. If r > 0, suppose that the time-zero ball B0(p, r) has compact closure in X,
and at time zero, for all 0 ≤ k ≤ l we have

|∇
k Rm| ≤ C̃l/rk+2 (A.38)

on B0(p, r). Further assume that for all t ∈ [0, T ],

C̃−1
l ω(0) ≤ ω(t) ≤ C̃lω(0). (A.39)

Then
|∇
k Rm|(x, t) ≤ Ĉl/rk+2 (A.40)

for all k ≤ l, x ∈ B0(p, r/8) and t ∈ [0, T ].
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Proof. After rescaling, we can assume that r = 1. Proposition A.1 gives a uniform cur-
vature bound on B0(p, 1/4) × [0, T ]. For any k ≥ 1 and ε > 0, Shi’s local derivative
estimate implies a bound

|∇
k Rm|(x, t) ≤ Ĉ′′k (A.41)

on B0(p, 1/8)×[ε, T ], where Ĉ′′k depends on n, ε and the parameter C2 in the conclusion
of Proposition A.1. Given α > 0, the local derivative estimate in [14, Appendix D] gives
a bound

|∇
k Rm|(x, t) ≤ Ĉ′l (A.42)

on B0(p, 1/8) × [0, α], where 1 ≤ k ≤ l and Ĉ′l depends on n, α, C2 and C̃l . Taking
ε < α yields the conclusion. ut

Appendix B. Power law decay of curvature and Ricci flow

In this section we give sufficient conditions for Ricci flow to preserve a power law decay
of curvature. In Subsection B.1 we show that this is true under a technical condition,
which will be satisfied in the cases of interest. The proof is along the lines of Dai–Ma [8].
In Subsection B.2 we show it is always true for the Kähler–Ricci flow.

We remark that Hamilton [12, Theorem 18.2] showed that Ricci flow preserves the
property that the curvature decays to zero at spatial infinity.

B.1. Power law decay in Ricci flow

Suppose that (X, x0, gX) is a complete pointed n-dimensional Riemannian manifold with
|Rm| ≤ k0. From [6, Lemma 12.30], there are C = C(n, k0) < ∞ and a function
φ ∈ C∞(X) such that

C−1(d(x, x0)+ 1) ≤ φ(x) ≤ C(d(x, x0)+ 1),
|dφ|gX ≤ C, HessgX (φ) ≤ CgX.

(B.1)

Note that there is an upper bound on Hess(φ) but generally not a lower bound.
Now let (X, gX(·)) be a Ricci flow defined on a time interval [0, T ), with complete

time slices and bounded curvature on compact time intervals. Let dt (·, ·) denote the time-t
distance function. For any T ′ ∈ [0, T ), the identity map from (X, gX(0)) to (X, gX(t)) is
uniformly biLipschitz for t ∈ [0, T ′].

Let φ be a distance-like function as above, relative to the time-zero metric gX(0).
From [6, Lemma 12.5], given T ′ ∈ [0, T ), there is some CT ′ < ∞ such that for all
t ∈ [0, T ′], we have

C−1
T ′
(dt (x, x0)+ 1) ≤ φ(x) ≤ CT ′(dt (x, x0)+ 1),

|dφ|gX(t) ≤ CT ′ , HessgX(t)(φ) ≤ CT ′gX.
(B.2)

In particular, the notion of power law decay is the same as measured with φ, d0 or dt . For
future convenience, we will only state results in terms of d0.
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Lemma B.3. If there is some B0 ∈ R such that at time zero, we have

φ−1 Hessgx (0)(φ) ≥ B0gX(0), (B.4)

then for any T ′ ∈ [0, T ), there is some BT ′ ∈ R such that for all t ∈ [0, T ′],

φ−1 HessgX(t)(φ) ≥ BT ′gX(t). (B.5)

Proof. By the same argument as in [6, part (iii) of proof of Lemma 12.5], there is some
CT ′ <∞ such that for all t ∈ [0, T ′],

HessgX(t)(φ)− HessgX(0)(φ) ≥ −CT ′ · gX(0). (B.6)

The lemma follows. ut

Proposition B.7 (cf. [8, Theorem 4]). Let (X, g(·)) be a Ricci flow solution on a con-
nected manifold X, defined for t ∈ [0, T ], with uniformly bounded curvature and com-
plete time slices. Let F(x, t) and u(x, t) be smooth bounded functions, with u nonnega-
tive. Given C <∞, suppose that

(∂/∂t −4g(t))u ≤ F
√
u+ Cu. (B.8)

Let x0 ∈ X be a basepoint. For some β > 0, suppose that as x → ∞, F(x, t) =
O(d0(x, x0)

−β/2), uniformly in t . Suppose that u(x, 0) = O(d0(x, x0)
−β). Suppose that

the time-zero distance-like function φ can be chosen to satisfy (B.4) for some B0 ∈ R.
Then u(x, t) = O(d0(x, x0)

−β) uniformly in t ∈ [0, T ].

Proof. One calculates that

(∂/∂t −4g(t))(φ
βu)

≤

(
−β
4φ

φ
+ β(β + 1)

|∇φ|2

φ2

)
φβu− 2β

〈
∇φ

φ
,∇(φβu)

〉
+ φ

β
2 F
√
φβu+ Cφβu.

(B.9)

By the weak maximum principle [6, Theorem 12.14], φβu is uniformly bounded above
for all t ∈ [0, T ]. This proves the proposition. ut

Proposition B.10 (cf. [8, Theorem 1A]). Let (X, g(·)) be a Ricci flow solution on a con-
nected manifold X, defined for t ∈ [0, T ], with uniformly bounded curvature and com-
plete time slices. Let x0 ∈ X be a basepoint. For some α > 0, suppose that as x → ∞,
|Rm(x, 0)| = O(d0(x, x0)

−2α). Suppose that the time-zero distance-like function φ can
be chosen to satisfy (B.4) for some B0 ∈ R. Then |Rm(x, t)| = O(d0(x, x0)

−2α) uni-
formly in t ∈ [0, T ].

Proof. From [7, (6.1)],

(∂/∂t −4g(t))|Rm|2 ≤ 16|Rm| · |Rm|2. (B.11)

By assumption, there is some K < ∞ such that |Rm(x, t)| ≤ K for all (x, t). Set
u(x, t) = |Rm(x, t)|2. Applying Proposition B.7 with F = 0 and C = 16K yields
the claim. ut
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Proposition B.12. Under the hypotheses of Proposition B.10, suppose |∇k Rm|(x, 0)
= O(d0(x, x0)

−(k+2)α) for all 0 ≤ k ≤ l. Then for all 0 ≤ k ≤ l and t , we have
|∇
k Rm|(x, t) = O(d0(x, x0)

−(k+2)α), uniformly in t ∈ [0, T ].

Proof. Given 1 ≤ k ≤ l, set u(x, t) = |∇k Rm(x, t)|2.
By assumption, u(x, 0) = O(d0(x, x0)

−2(k+2)α). From [7, (6.24)],

(∂/∂t −4g(t))u ≤ c(n)

k−1∑
l=1

|∇
l Rm| · |∇k−l Rm|

√
u+ c(n)|Rm|u. (B.13)

By induction, we can assume that

|∇
l Rm| · |∇k−l Rm| = O(d0(x, x0)

−(k+4)α), (B.14)

uniformly in t ∈ [0, T ]. The claim now follows from Proposition B.7. ut

B.2. Power law decay in Kähler–Ricci flow

Proposition B.15. Let X be a complex manifold. Let (X, g(·)) be a Kähler–Ricci flow
onX, defined for t ∈ [0, T ), with complete time slices and bounded curvature on compact
time intervals. Let x0 ∈ X be a basepoint. For some α ∈ (0, 1] and l ≥ 1, suppose that
|∇
k Rm|(x, 0) = O(d0(x, x0)

−(k+2)α) for all 0 ≤ k ≤ l. Then for all 0 ≤ k ≤ l and t , we
have |∇k Rm|(x, t) = O(d0(x, x0)

−(k+2)α), uniformly in t ∈ [0, T ].

Proof. Given p ∈ X − B0(x0, 1), set r = 1
2d(p, x0)

α . By assumption, there is some
C̃l < ∞ such that the hypotheses of Proposition A.37 are satisfied for all such p. (Hy-
pothesis (A.39) is satisfied because the bounded curvature assumption implies biLips-
chitzness on a finite time interval.) Then Proposition A.37, applied at the center of the
ball B0(p, r/8), implies the proposition. ut
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