
DOI 10.4171/JEMS/635

J. Eur. Math. Soc. 18, 1961–1982 c© European Mathematical Society 2016

Marina Ghisi ·Massimo Gobbino · Alain Haraux

Optimal decay estimates for the general solution
to a class of semi-linear dissipative hyperbolic equations

Received October 7, 2013 and in revised form April 24, 2014

Abstract. We consider a class of semi-linear dissipative hyperbolic equations in which the operator
associated to the linear part has a nontrivial kernel.

Under appropriate assumptions on the nonlinear term, we prove that all solutions decay to 0, as
t →∞, at least as fast as a suitable negative power of t . Moreover, we prove that this decay rate is
optimal in the sense that there exists a nonempty open set of initial data for which the corresponding
solutions decay exactly as that negative power of t .

Our results are stated and proved in an abstract Hilbert space setting, and then applied to partial
differential equations.

Keywords. Semi-linear hyperbolic equations, dissipative hyperbolic equations, slow solutions, de-
cay estimates, energy estimates

1. Introduction

The present work has its origin in the search for decay estimates of solutions to some
evolution equations of the general form

u′′(t)+ u′(t)+ Au(t)+ f (u(t)) = 0, (1.1)

whereH is a real Hilbert space, A is a nonnegative self-adjoint linear operator onH with
dense domain, and f is a nonlinearity tangent to 0 at the origin.

When f ≡ 0, for rather general classes of strongly positive operators A it is known
that all solutions decay to 0 (as t →∞) exponentially in the energy norm. Therefore, by
perturbation theory it is reasonable to expect that also all solutions of (1.1) which decay
to 0 have an exponential decay rate. The situation is different when A has a nontrivial
kernel. In this case solutions tend to 0 if f fulfils suitable sign conditions, but we do not
expect all solutions to have an exponential decay rate. Let us consider for example the
hyperbolic equation

ut t + ut −1u+ |u|
pu = 0 (1.2)
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with homogeneous Neumann boundary conditions in a bounded domain �. In [13], by
relying on the so-called Łojasiewicz gradient inequality [16, 17], it was established that,
for any sufficiently small integer p, all solutions of this problem tend to 0 in the energy
norm at least as fast as t−1/p. Showing the optimality of this estimate means exhibiting a
“slow solution”, namely one decaying exactly as t−1/p.

The existence of slow solutions for the Neumann problem was proved in [13] in the
special case p = 2. The main idea is that each solution v(t) to the ordinary differential
equation

v′′ + v′ + |v|pv = 0 (1.3)

corresponds to the spatially homogeneous solution u(t, x) := v(t) of (1.2), so that it is
enough to exhibit a family of solutions of (1.3) decaying exactly as t−1/2. It was later
shown in [11] that actually any solution of (1.2) tends to 0 either exponentially or exactly
as t−1/p. This is the so-called “slow-fast alternative”. Moreover on this occasion the set
of initial data producing exponentially decaying solutions was shown to be closed with
empty interior. In particular the set of “slow" solutions corresponds to an open set of
initial data, but apart from the spatially homogeneous solutions no explicit condition on
the initial data was found in [11].

The proofs of these results seem to exploit in an essential way the fact that the kernel
of the linear part (in this case the set of constant functions) is an invariant space for (1.2).
Without this assumption, both the alternative and the optimality of decay rates remained
open problems.

Indeed, let us consider, as a model case, the hyperbolic equation

ut t + ut −1u− λ1u+ |u|
pu = 0 (1.4)

with homogeneous Dirichlet boundary conditions (here λ1 denotes the first eigenvalue
of −1 in H 1

0 (�)). Now the kernel of the operator is the first eigenspace, which is not
invariant by the nonlinear term, and even the existence of a slow solution decaying exactly
as t−1/p has been unknown until now.

In this paper we consider a general evolution equation of type (1.1), with f a gradient
operator satisfying some regularity and structure conditions. Our aim is twofold. First, in
Theorem 2.2 we establish a general upper estimate of the energy, valid for all solutions.
This estimate is proved in a quite general context through a modified Lyapunov functional,
without any analyticity assumption on f . Then in Theorem 2.3 we prove the existence of
slow solutions. This is the main result of this paper.

Our abstract theory applies to both (1.2) and (1.4). This shows in particular that
the natural upper energy estimate for solutions of these problems is in general optimal,
thereby settling an open problem raised in [13] and not solved, even for the special case
(1.4), by the results of [11].

The problem of slow solutions has already been considered in the parabolic setting,
and in particular in the case of the equation

ut −1u+ |u|
pu = 0 (1.5)



Optimal decay, hyperbolic equations 1963

with homogeneous Neumann boundary conditions in a bounded domain �, and in the
case of the equation

ut −1u− λ1u+ |u|
pu = 0 (1.6)

with homogeneous Dirichlet boundary conditions. In the case of (1.5), an easy applica-
tion of the maximum principle shows that all solutions decay to 0 in L∞(�) at least as
fast as t−1/p as t → ∞. The same is true for (1.6) but is more delicate to establish
(see for example [14]). With Neumann boundary conditions, the optimality of this decay
rate can be confirmed by looking at spatially homogenous solutions as in the hyperbolic
setting. With Dirichlet boundary conditions, a comparison with suitable sub-solutions
proves that all solutions with nonnegative initial data are actually slow solutions (see [14]
for the details), which proves the optimality of the upper estimate also in this second
case. Moreover, in the case of Neumann boundary conditions, the slow-fast alternative is
known (see [2]), fast solutions are known to be “exceptional”, and some explicit classes
of slow solutions with a sign changing initial datum were found in [3]. By contrast, in the
case of Dirichlet boundary conditions, even the slow-fast alternative is presently an open
problem.

All results for these parabolic problems rely on the existence of special invariant sets,
or on comparison arguments. Neither tool extends easily to second order equations of the
general form (1.1). For this reason, in this paper we follow a different path. The main idea
is to look for slow solutions in the place where they are more likely to be, namely close to
the kernel of A. Thus, under the assumption that |f (u)| ∼ |u|p+1, we look for solutions
of (1.1) such that

〈Au(t), u(t)〉 ≤ C|u(t)|2p+2
∀t ≥ 0 (1.7)

for a suitable constant C. Roughly speaking, under this condition the term Au(t) in (1.1)
can be neglected, and the dynamical behavior is decided by the nonlinearity only. Thus we
are in a situation analogous to the ordinary differential equation (1.3), for which the exis-
tence of slow solutions can be easily established. In order to prove (1.7), one is naturally
led to consider the quotient

Qp(t) :=
〈Au(t), u(t)〉

|u(t)|2p+2 ,

which seems to be a p-extension of the Dirichlet quotient (the same quantity with p = 0),
well known in many questions concerning parabolic problems (see for example the clas-
sical papers [1, 5] or the more recent [15, 9]).

The Dirichlet quotient is nonincreasing in the case of linear homogeneous parabolic
equations. This could naively lead one to expect the monotonicity, or at least bounded-
ness, of Qp(t) also in the case of the second order problem (1.1). Of course this is not
true as stated, but it is true for a hyperbolic version of Qp(t) with a kinetic term in the
numerator. Thus we obtain the energy G(t) defined by (3.22), which in turn we perturb
by adding a mixing term, in such a way that the final energy Ĝ(t) given by (3.23) satisfies
a reasonable differential inequality. This strategy is inspired by similar modified Dirichlet
quotients introduced in [6], and then widely exploited in [7, 8] in the context of Kirch-
hoff equations. In the same context, many classes of energies with potentially vanishing
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denominators had been used by many authors, starting from the seminal paper [18]. In
Kirchhoff equations the setting is different (quasi-linear instead of semi-linear), the goal
is different (in [6] the main problem is the existence of global solutions), but the strat-
egy is the same (comparing solutions of partial differential equations with solutions of
ordinary differential equations), thus similar tools can be applied.

Our method produces not only some special slow solution, but an open set in the basic
energy space. This is the first step towards proving that slow solutions are in some sense
generic, in accordance with the general idea that the slowest decay rate is dominant, and
faster solutions are somewhat atypical. We plan to consider this issue in future research.

This paper is organized as follows. In Section 2 we clarify the functional setting, we
recall the notion of weak solutions, and we state our main abstract results. In Section 3
we prove them. In Section 4 we present some applications of our theory to dissipative
hyperbolic equations.

2. Functional setting and main abstract results

We consider the semilinear abstract second order equation

u′′(t)+ u′(t)+ Au(t)+∇F(u(t)) = 0 ∀t ≥ 0, (2.1)

with initial data
u(0) = u0, u′(0) = u1. (2.2)

We always assume that H is a Hilbert space, and A is a self-adjoint linear operator
on H with dense domain D(A). We assume that A is nonnegative, 〈Au, u〉 ≥ 0 for every
u ∈ D(A), so that for every α ≥ 0 the power Aαu is defined provided that u lies in a
suitable domain D(Aα), which is itself a Hilbert space with norm

|u|D(Aα) := (|u|
2
+ |Aαu|2)1/2.

We assume that F : D(A1/2)→ R. When we write ∇F(u), we mean that there exists
a function ∇F : D(A1/2)→ H such that

lim
|v|
D(A1/2)→0

F(u+ v)− F(u)− 〈∇F(u), v〉

|v|
= 0 ∀u ∈ D(A1/2). (2.3)

The existence of ∇F(u) in the sense of (2.3) is enough to guarantee the continuity
of F with respect to the norm of D(A1/2). Moreover, for every u ∈ C1([0,∞);H) ∩
C0([0,∞);D(A1/2)) the function t 7→ F(u(t)) is of class C1, and its time-derivative
can be computed with the usual chain rule

d

dt
[F(u(t))] = 〈∇F(u(t)), u′(t)〉 ∀t ≥ 0.

We always assume that ∇F : D(A1/2)→ H is locally Lipschitz continuous,

|∇F(u)−∇F(v)| ≤ L(|u|D(A1/2), |v|D(A1/2)) · |u− v|D(A1/2) (2.4)
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for all u and v in D(A1/2), for a suitable function L : R2
→ R which is bounded on

bounded sets. Under these hypotheses, one obtains the following result concerning global
existence, regularity and derivatives of energies.

Proposition 2.1. Let H be a Hilbert space, let A be a self-adjoint nonnegative operator
on H with dense domain D(A), and let F : D(A1/2)→ R. Assume that

(i) F(u) ≥ 0 for every u ∈ D(A1/2),
(ii) F has a gradient ∇F : D(A1/2)→ H in the sense of (2.3),

(iii) ∇F is locally Lipschitz continuous in the sense of (2.4).

Then, for every (u0, u1) ∈ D(A
1/2) × H , problem (2.1)–(2.2) admits a unique global

weak solution
u ∈ C0([0,∞);D(A1/2)) ∩ C1([0,∞);H). (2.5)

In addition the functions

E0(t) :=
1
2 (|u

′(t)|2 + |A1/2u(t)|2), F0(t) := E0(t)+ F(u(t)) (2.6)

are of class C1, and their time-derivatives are given by

E′0(t) = −|u
′(t)|2 − 〈∇F(u(t), u′(t)〉, F ′0(t) = −|u

′(t)|2. (2.7)

The first main result of this paper is an upper energy estimate, valid for all weak
solutions of (2.1).

Theorem 2.2 (Upper decay estimate for weak solutions). Assume that

(Hp1) H is a Hilbert space, and A is a self-adjoint nonnegative operator on H with
dense domain D(A),

(Hp2) F : D(A1/2)→ [0,∞) is a function with F(0) = 0,
(Hp3) F has a gradient ∇F : D(A1/2)→ H in the sense of (2.3),
(Hp4) ∇F is locally Lipschitz continuous in the sense of (2.4),
(Hp5) there exists a constant K > 0 such that

〈∇F(u), u〉 ≥ K · F(u) ∀u ∈ D(A1/2), (2.8)

(Hp6) there exist p > 0 and a function R1 : R→ R, which is bounded on bounded sets,
such that

|u|p+2
≤ R1(|u|D(A1/2)) · (|A

1/2u|2 + F(u)) ∀u ∈ D(A1/2). (2.9)

Let (u0, u1) ∈ D(A
1/2)×H , and let u(t) be the unique global weak solution of problem

(2.1)–(2.2) provided by Proposition 2.1. Then there exist constants M1 and M2 such that

|u′(t)|2 + |A1/2u(t)|2 + F(u(t)) ≤
M1

(1+ t)1+2/p ∀t ≥ 0, (2.10)

|u(t)| ≤
M2

(1+ t)1/p
∀t ≥ 0. (2.11)
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Our second main result is the existence of an open set of slow solutions, namely solutions
for which (2.11) is optimal.

Theorem 2.3 (Existence of slow solutions). Assume that hypotheses (Hp1) through
(Hp4) of Theorem 2.2 are satisfied. In addition, assume that

kerA 6= {0}, (2.12)

∃ν > 0 such that |A1/2u|2 ≥ ν|u|2 ∀u ∈ D(A1/2) ∩ ker(A)⊥, (2.13)

and that there exist real numbers ρ,R, α > 0 such that

|∇F(u)| ≤ R(|u|p+1
+ |A1/2u|1+α) (2.14)

for every u ∈ D(A1/2) with |u|D(A1/2) ≤ ρ. Then there exist a nonempty open set S ⊆
D(A1/2) × H and a constant M3 such that, for every (u0, u1) ∈ S, the unique global
solution of problem (2.1)–(2.2) provided by Proposition 2.1 satisfies

|u(t)| ≥
M3

(1+ t)1/p
∀t ≥ 0. (2.15)

Remark 2.4. Condition (2.13) is known to be equivalent to the property thatA has closed
range R(A) = (kerA)⊥.

Let P : H → kerA denote the orthogonal projection on kerA, and let Q = I − P
denote the orthogonal projection on R(A). From (2.13) and (2.10) it follows that

|Qu(t)|2 ≤
1
ν
|A1/2u(t)|2 ≤

M1

ν

1
(1+ t)1+2/p .

Since |u|2 = |Pu|2 + |Qu|2 for every u ∈ H , comparing with (2.15) we find that there
exists a constant M4 such that

|Pu(t)| ≥
M4

(1+ t)1/p
∀t ≥ 0.

In other words, the range component decays faster, and the slow decay of u(t) is due to
its component with respect to kerA. This extends to the general abstract setting what was
previously observed in the special case studied in [11].

3. Proofs

3.1. Proof of Proposition 2.1

Local existence. We consider the Hilbert space H := D(A1/2) × H , endowed with the
norm defined by

|U |2H = |(u, v)|
2
H = |u|

2
D(A1/2)

+ |v|2,

the subspace D(A) := D(A)×D(A1/2), the linear operator

A(u, v) := (−v,Au+ u) ∀(u, v) ∈ D(A),
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and the operator

F(u, v) := (0, u−∇F(u)− v) ∀(u, v) ∈ H.

It is easy to check that A is a skew-adjoint linear operator, hence in particular a max-
imal monotone linear operator on H with dense domain D(A), and F : H → H is a
locally Lipschitz continuous operator. Introducing U(t) := (u(t), u′(t)), one can rewrite
problem (2.1)–(2.2) in the form

U ′(t)+AU(t) = F(U(t)) ∀t ≥ 0,

with initial datum U(0) = U0 := (u0, u1). Thus we have reduced our problem to the
framework of Lipschitz perturbations of maximal monotone operators. At this point, local
existence follows from classical results, for which we refer to [4, Theorem 4.3.4 and
Proposition 4.3.9]. More precisely, we obtain the following.

• (Local existence of weak solutions) For every (u0, u1) ∈ D(A
1/2) × H , there exists

T > 0 such that problem (2.1)–(2.2) has a unique weak solution

u ∈ C0([0, T );D(A1/2)) ∩ C1([0, T );H).

• (Continuation) The local solution can be continued to a solution defined in a maximal
interval [0, T∗), with either T∗ = ∞, or

lim sup
t→T −∗

(|u′(t)|2H + |u(t)|
2
D(A1/2)

) = ∞.

Differentiation of energies. We show that for all weak solutions the functions E0(t) and
F0(t) defined by (2.6) are of class C1, and their time-derivatives are given by (2.7) for
every t ∈ [0, T ). Indeed, for the first result we can consider the isometry group generated
on H by A. Then Lemma 11 of [10] (see also [19] for an earlier more general result in
the same direction) gives

E′0(t)+ 〈u(t), u
′(t)〉 = 〈F(U(t)), U(t)〉H = 〈u(t)−∇F(u)− u′(t), u′(t)〉,

yielding the result for E0. The result for F0 also follows since 〈∇F(u(t)), u′(t)〉 is the
derivative of the C1 function F(u(t)) as a consequence of the chain rule, as already ob-
served.

Global existence. Thanks to the continuation result, all we need to show is that E0(t) is
bounded uniformly in time. This follows at once from the nonincreasing character of F0
and our assumption that F(u) ≥ 0.

3.2. A basic a priori estimate

The next simple a priori estimate will be useful in the proof of both main theorems.
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Proposition 3.1. Let H be a Hilbert space, let A be a self-adjoint nonnegative operator
on H with dense domain D(A), and let F : D(A1/2)→ R. Assume that

(i) F(u) ≥ 0 for every u ∈ D(A1/2),
(ii) F has a gradient ∇F : D(A1/2)→ H in the sense of (2.3),

(iii) 〈∇F(u), u〉 ≥ 0 for every u ∈ D(A1/2).

Let (u0, u1) ∈ D(A
1/2)×H , and let u(t) be the local weak solution of problem (2.1)–(2.2)

in some time-interval [0, T ). Then

|u′(t)|2+|u(t)|2+|A1/2u(t)|2+F(u(t)) ≤ 16
(
|u1|

2
+|u0|

2
+|A1/2u0|

2
+F(u0)

)
(3.1)

for every t ∈ [0, T ).

Proof. Let us consider two different energies:

Ẽ(t) := |u′(t)|2 + 1
2 |u(t)|

2
+ |A1/2u(t)|2 + 2F(u(t))+ 〈u′(t), u(t)〉,

Ê(t) := |u′(t)|2 + |u(t)|2 + |A1/2u(t)|2 + F(u(t)).

Due to assumption (i) and the inequality

|〈u′(t), u(t)〉| ≤ 3
8 |u(t)|

2
+

2
3 |u
′(t)|2,

it is easy to see that
1
8 Ê(t) ≤ Ẽ(t) ≤ 2Ê(t) ∀t ∈ [0, T ). (3.2)

The function Ẽ(t) is of classC1, even in the case of weak solutions, and its time-derivative
is

Ẽ′(t) = −|u′(t)|2 − |A1/2u(t)|2 − 〈∇F(u(t)), u(t)〉.

From assumption (iii) we see that Ẽ′(t) ≤ 0, hence Ẽ(t) ≤ Ẽ(0) for every t ∈ [0, T ).
Keeping (3.2) into account, we have proved that

Ê(t) ≤ 8Ẽ(t) ≤ 8Ẽ(0) ≤ 16Ê(0) ∀t ∈ [0, T ),

which is exactly (3.1). ut

3.3. Proof of Theorem 2.2

Let us describe the strategy of the proof before entering into details. We consider the
energies

E(t) := |u′(t)|2 + |A1/2u(t)|2 + 2F(u(t)) = 2F0(t), (3.3)

Êε(t) := E(t)+ ε[E(t)]
β
〈u′(t), u(t)〉, (3.4)

where ε > 0 is a parameter and
β :=

p

p + 2
. (3.5)

Now we claim three facts (from now on, all positive constants ε0, ε1, c0, . . . , c10 depend
on p, |u0|, E(0), K , and on the function R1).
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Claim 1. There exist c0 and c1 such that

E(t) ≤ c0 ∀t ≥ 0, (3.6)

|u(t)|p+2
≤ c1E(t) ∀t ≥ 0. (3.7)

Claim 2. There exists ε0 > 0 such that

1
2E(t) ≤ Êε(t) ≤ 2E(t) ∀t ≥ 0, ∀ε ∈ (0, ε0]. (3.8)

Claim 3. There exist ε1 ∈ (0, ε0] and a constant c2 > 0 such that

Ê′ε(t) ≤ −c2ε[Êε(t)]
1+β

∀t ≥ 0, ∀ε ∈ (0, ε1]. (3.9)

If we prove these three claims, then we easily obtain (2.10) and (2.11). Indeed, let us
integrate the differential inequality (3.9) with ε = ε1. We obtain the inequality

Êε1(t) ≤
c3

(1+ t)1/β
∀t ≥ 0.

Thanks to (3.8) and (3.5), this proves (2.10). At this point, (2.11) follows from (2.10) and
(3.7). So it remains to prove our three claims.

Proof of Claim 1. We can apply Proposition 3.1. Thus we obtain estimate (3.6) and the
boundedness of |u(t)|D(A1/2). Then (3.7) follows from (3.6) and assumption (2.9).

Proof of Claim 2. From (3.7) and (3.3) we have

|〈u′(t), u(t)〉| ≤ |u′(t)| · |u(t)| ≤ [E(t)]1/2 · c4[E(t)]
1/(p+2), (3.10)

hence
[E(t)]β |〈u′(t), u(t)〉| ≤ c4[E(t)]

p/(2p+4)
· E(t).

Since p > 0, with the help of (3.6) we deduce

[E(t)]β |〈u′(t), u(t)〉| ≤ c5E(t) ∀t ≥ 0.

This implies that (3.8) holds true provided that c5ε0 ≤ 1/2.

Proof of Claim 3. The time-derivative of (3.4) is

Ê′ε(t) = −2|u′(t)|2 − 2εβ[E(t)]−2/(p+2)
〈u′(t), u(t)〉|u′(t)|2 + ε[E(t)]β |u′(t)|2

− ε[E(t)]β〈u′(t), u(t)〉 − ε[E(t)]β
(
|A1/2u(t)|2 + 〈∇F(u(t)), u(t)〉

)
=: F1 + F2 + F3 + F4 + F5. (3.11)

Let us estimate separately the sum F2 + F3 and the two last terms. First (3.10) implies

[E(t)]−2/(p+2)
|〈u′(t), u(t)〉| ≤ c4[E(t)]

p/(2p+4).

Then, since p > 0, by using (3.6) we derive

F2 + F3 ≤ ε|u
′(t)|2

(
c6[E(t)]

p/(2p+4)
+ [E(t)]β

)
≤ c7ε|u

′(t)|2. (3.12)
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Moreover from (3.7) and (3.5) we infer

ε[E(t)]β |〈u′(t), u(t)〉| ≤ 1
2 |u
′(t)|2 + 1

2ε
2
[E(t)]2β |u(t)|2

≤
1
2 |u
′(t)|2 + c8ε

2
[E(t)]2β+2/(p+2).

Since 2β + 2/(p + 2) = β + 1, this means that

F4 ≤
1
2 |u
′(t)|2 + c8ε

2
[E(t)]β+1. (3.13)

Finally, from assumption (2.8) and the inequality (3.6), we deduce

[E(t)]β
(
|A1/2u(t)|2 + 〈∇F(u(t)), u(t)〉

)
≥ c9[E(t)]

β
(
|A1/2u(t)|2 + F(u(t))

)
≥

1
2c9[E(t)]

β(E(t)− |u′(t)|2) ≥ c10[E(t)]
β+1
− c11|u

′(t)|2,

hence
F5 ≤ −c10ε[E(t)]

β+1
+ c11ε|u

′(t)|2. (3.14)

Plugging (3.12) through (3.14) into (3.11), we now find

Ê′ε(t) ≤ −|u
′(t)|2(3/2− c7ε − c11ε)+ ε(c8ε − c10)[E(t)]

β+1.

If we choose ε1 ∈ (0, ε0] small enough so that

c7ε1 + c11ε1 ≤ 3/2 and c8ε1 − c10 ≤ −c10/2,

then (3.9) holds true with c2 = c10/2 > 0. This completes the proof of Theorem 2.2. ut

3.4. Proof of Theorem 2.3

Let us describe the strategy of the proof before entering into details. Let ν, ρ, R, α be the
constants appearing in (2.13) and (2.14). First of all, choose δ > 0 such that

δ ≤
ν

2ν + 1
. (3.15)

Note that this condition implies in particular that

δ ≤ 1 and δ ≤
√
ν/2. (3.16)

Let Q denote the orthogonal projection from H to (kerA)⊥. Assuming (u0, u1) ∈

D(A1/2)×H and u0 6= 0, we set

σ0 := 4
(
|u1|

2
+ |u0|

2
+ |A1/2u0|

2
+ F(u0)

)1/2
,

σ1 :=
1

|u0|2p+2

( 1
2 |u1|

2
+

1
2 |A

1/2u0|
2
+ δ|〈u1,Qu0〉|

)
+ 128R2/δ2.

Let S ⊆ D(A1/2)×H be the set of initial data such that

σ0 < ρ, 2σα0 R < δ/4, 4(p + 1)σp0
√
σ1 < δ/32. (3.17)
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It is clear that these smallness assumptions define an open set. This open set is nonempty
because it contains at least all pairs (u0, u1) with u1 = 0 and u0 ∈ kerA with u0 6= 0 and
|u0| small enough. This is the point where assumption (2.12) and the fact that F(0) = 0
are essential.

Now we claim that, for every (u0, u1) ∈ S, the global weak solution of (2.1)–(2.2)
satisfies

u(t) 6= 0 ∀t ≥ 0, (3.18)

1
2
|u′(t)|2 + |A1/2u(t)|2

|u(t)|2p+2 ≤ 2σ1 ∀t ≥ 0. (3.19)

This is enough to prove (2.15). Indeed, setting y(t) := |u(t)|2, we observe that

|y′(t)| = 2|〈u′(t), u(t)〉| ≤ 2
|u′(t)|

|u(t)|1+p
· |u(t)|2+p ≤ 4

√
σ1 · |y(t)|

1+p/2, (3.20)

and in particular
y′(t) ≥ −4

√
σ1 · |y(t)|

1+p/2
∀t ≥ 0. (3.21)

Since y(0) > 0, this inequality concludes the proof.
So it remains to prove (3.18) and (3.19). To this end, we set

G(t) :=
1
2
|u′(t)|2 + |A1/2u(t)|2

|u(t)|2p+2 , (3.22)

and
T := sup{t ≥ 0 : ∀τ ∈ [0, t], u(τ ) 6= 0 and G(τ) ≤ 2σ1}.

Since u(0) 6= 0 and G(0) < σ1 (because of our definition of σ1), we have T > 0. We
claim that T = ∞, which is equivalent to (3.18) and (3.19). Assume for contradiction
that this is not the case. Due to the maximality of T , this means that either u(T ) = 0 or
G(T ) = 2σ1. Now we show that both choices lead to an impossibility.

Set as usual y(t) := |u(t)|2. For every t ∈ [0, T ) we have u(t) 6= 0 and G(t) ≤ 2σ1.
Therefore, arguing as in (3.20), we find that the differential inequality in (3.21) holds true
for every t ∈ [0, T ). Since y(0) > 0, and 1+p/2 ≥ 1, this differential inequality implies
that y(T ) 6= 0, hence u(T ) 6= 0.

So it remains to show that G(T ) < 2σ1. To this end, we introduce the perturbed
energy

Ĝ(t) :=
1
2
|u′(t)|2 + |A1/2u(t)|2

|u(t)|2p+2 + δ
〈u′(t),Qu(t)〉

|u(t)|2p+2 . (3.23)

Due to the second condition in (3.16), the energy Ĝ(t) is a small perturbation of G(t) in
the sense that

1
2G(t) ≤ Ĝ(t) ≤ 2G(t) ∀t ∈ [0, T ). (3.24)

The correcting term 〈u′(t),Qu(t)〉 appears frequently when looking for boundedness or
decay properties for equations whose generator has a nontrivial kernel (see [20] or [12]).
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The time-derivative of Ĝ is

Ĝ′(t) = −
|u′(t)|2

|u(t)|2p+2 − δ
|A1/2u(t)|2

|u(t)|2p+2 −
〈∇F(u(t)), u′(t)+ δQu(t)〉

|u(t)|2p+2

+ δ
|Qu′(t)|2 − 〈u′(t),Qu(t)〉

|u(t)|2p+2 − 2(p + 1)
〈u′(t), u(t)〉

|u(t)|2
· Ĝ(t)

=: I1 + · · · + I5. (3.25)

Let us estimate I3, I4, and I5. First of all, from Proposition 3.1 we obtain

|u(t)|2 + |A1/2u(t)|2 ≤ σ 2
0 ∀t ≥ 0. (3.26)

Therefore, the first smallness condition in (3.17) and assumption (2.14) imply

|∇F(u(t))| ≤ R
(
|u(t)|p+1

+ |A1/2u(t)|1+α
)
≤ R

(
|u(t)|p+1

+ |A1/2u(t)| · σα0
)
,

hence

|∇F(u(t))|

|u(t)|p+1 ≤ R

(
1+
|A1/2u(t)|

|u(t)|p+1 · σ
α
0

)
≤ R

(
1+

√
2G(t) · σα0

)
. (3.27)

On the other hand, from assumption (2.13) and the fact that δ ≤
√
ν, it follows that

δ|Qu(t)| ≤
δ
√
ν
|A1/2u(t)| ≤ |A1/2u(t)|,

hence
|u′(t)| + δ|Qu(t)|

|u(t)|p+1 ≤
|u′(t)| + |A1/2u(t)|

|u(t)|p+1 ≤

√
2G(t). (3.28)

From (3.27) and (3.28) we get

I3 ≤
|∇F(u(t))|

|u(t)|p+1 ·
|u′(t)| + δ|Qu(t)|

|u(t)|p+1 ≤ R
√

2G(t)+ 2Rσα0 G(t)

≤
4R2

δ
+
δ

8
G(t)+ 2Rσα0 G(t).

From the second smallness assumption in (3.17) we finally conclude that

I3 ≤
4R2

δ
+

3δ
8
G(t) ∀t ∈ [0, T ). (3.29)

Now for I4, we exploit |Qu′(t)| ≤ |u′(t)| and |Qu(t)| ≤ ν−1/2
|A1/2u(t)|, hence

|Qu′(t)|2 + |u′(t)| · |Qu(t)| ≤ |u′(t)|2 +
1
√
ν
|u′(t)| · |A1/2u(t)|

≤

(
1+

1
2ν

)
|u′(t)|2 +

1
2
|A1/2u(t)|2.
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Thus from (3.15) we deduce that

I4 ≤ δ
|Qu′(t)|2 + |u′(t)| · |Qu(t)|

|u(t)|2p+2 ≤
1
2
|u′(t)|2

|u(t)|2p+2 +
δ

2
|A1/2u(t)|2

|u(t)|2p+2 ∀t ∈ [0, T ).

(3.30)
In order to estimate I5, we exploit once again (3.26) to obtain

I5 ≤ 2(p + 1)
|u′(t)|

|u(t)|p+1 · |u(t)|
p
· Ĝ(t) ≤ 2(p + 1)

√
2G(t) · σp0 · Ĝ(t).

Since G(t) ≤ 2σ1 for every t ∈ [0, T ), the third smallness condition in (3.17) gives

I5 ≤ 4(p + 1)
√
σ1 · σ

p

0 · Ĝ(t) ≤
δ

32
Ĝ(t) ∀t ∈ [0, T ). (3.31)

Plugging (3.29) through (3.31) into (3.25) we obtain

Ĝ′(t) ≤ −
1
2
|u′(t)|2

|u(t)|2p+2 −
δ

2
|A1/2u(t)|2

|u(t)|2p+2 +
4R2

δ
+

3δ
8
G(t)+

δ

32
Ĝ(t).

Due to the first inequality in (3.16), this implies

Ĝ′(t) ≤ −
δ

2
G(t)+

4R2

δ
+

3δ
8
G(t)+

δ

32
Ĝ(t) = −

δ

8
G(t)+

4R2

δ
+
δ

32
Ĝ(t),

hence by (3.24),

Ĝ′(t) ≤ −
δ

32
Ĝ(t)+

4R2

δ
∀t ∈ [0, T ).

Integrating this differential inequality we easily deduce that

Ĝ(t) ≤

(
Ĝ(0)−

128R2

δ2

)
exp

(
−
δ

32
t

)
+

128R2

δ2 ∀t ∈ [0, T ). (3.32)

Since we already know that u(T ) 6= 0, we see that G(t) and Ĝ(t) are defined and con-
tinuous at least up to t = T . Letting t → T − in (3.32), and exploiting (3.24) and our
definition of σ1, we deduce that

G(T ) ≤ 2Ĝ(T ) < 2
(
Ĝ(0)+

128R2

δ2

)
≤ 2σ1.

This excludes that G(T ) = 2σ1, thus concluding the proof. ut
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4. Applications to partial differential equations

The following statement represents a bridge between the abstract theory and partial differ-
ential equations. Here H is a space of real valued functions, and we explicitly write |u|H
for the norm of the function u ∈ H (not to be confused with the absolute value |u| of the
same function). Now the abstract assumptions on∇F are replaced by suitable inequalities
between norms, which are going to become Sobolev type inequalities in concrete settings.

Theorem 4.1 (Semi-abstract result for local equations). Let X be a set and µ be a mea-
sure in X with µ(X) <∞. Let H := L2(X, µ), and let A be a linear operator on H with
dense domain D(A) satisfying assumptions (2.12) and (2.13) of Theorem 2.3. Let p > 0,
and consider the second order equation

u′′(t)+ u′(t)+ Au(t)+ |u(t)|pu(t) = 0. (4.1)

Assume that

(i) D(A1/2) ⊆ L2(p+1)(X, µ), and there exists a constant K1 such that

‖u‖L2(p+1)(X,µ) ≤ K1|u|D(A1/2) ∀u ∈ D(A1/2), (4.2)

(ii) there exists a constant K2 such that∥∥|u|pv2∥∥
L1(X,µ) ≤ K2|u|

p

D(A1/2)
· |v|D(A1/2) · |v|H ∀(u, v) ∈ [D(A1/2)]2, (4.3)∥∥|u|2pv2∥∥

L1(X,µ) ≤ K2|u|
2p
D(A1/2)

· |v|2
D(A1/2)

∀(u, v) ∈ [D(A1/2)]2. (4.4)

Then we have the following conclusions.

(1) (Decay for all weak solutions) For every (u0, u1) ∈ D(A
1/2) × H , problem (4.1),

(2.2) has a unique global weak solution with regularity prescribed by (2.5). Moreover
there exists a constant M1 such that

‖u(t)‖L2(X,µ) ≤
M1

(1+ t)1/p
∀t ≥ 0.

(2) (Existence of slow solutions) There exist a nonempty open set S ⊆ D(A1/2)×H and
positive constants M2 and M3 with the following property. For every (u0, u1) ∈ S,
the unique global solution of problem (4.1), (2.2) satisfies

M2

(1+ t)1/p
≤ ‖u(t)‖L2(X,µ) ≤

M3

(1+ t)1/p
∀t ≥ 0.

Proof. Set

F(u) :=
1

p + 2

∫
X
|u(x)|p+2 dµ(x).

We claim that
[∇F(u)](x) = |u(x)|pu(x) (4.5)
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is the gradient of F in the sense of (2.3), and that all the assumptions of our abstract
results (Theorems 2.2 and 2.3) are satisfied. All constants c1, . . . , c8 in the following
depend only on µ(X), p, K1, K2, and on the coerciveness constant ν which appears in
(2.13). Assumption (Hp1) is trivial, so that we can concentrate on the remaining ones.

Verification of (Hp2). Assumption (i) and the fact that µ(X) <∞ imply

D(A1/2) ⊆ L2(p+1)(X, µ) ⊆ Lp+2(X, µ) ⊆ L2(X, µ). (4.6)

Thus F is finite at least for every u ∈ D(A1/2). Moreover, it is trivial that F(0) = 0 and
F(u) ≥ 0 for every u ∈ D(A1/2).

Verification of (Hp3). Assumption (i) implies that ∇F(u), as defined by (4.5), is in H
for every u ∈ D(A1/2). Now we show that for all u and v in D(A1/2),

|F(u+ v)− F(u)− 〈∇F(u), v〉|H ≤ c1(|u|
p

D(A1/2)
+ |v|

p

D(A1/2)
)|v|D(A1/2) · |v|H , (4.7)

which clearly implies (2.3). To this end, we start from the inequality∣∣∣∣ 1
p + 2

(|a+ b|p+2
−|a|p+2)−|a|pab

∣∣∣∣ ≤ (p+ 1) · 2p−1(|a|p+|b|p)b2
∀(a, b) ∈ R2,

which follows from the second order Taylor’s expansion of the function |σ |p+2. Setting
a := u(x), b := v(x), and integrating over X, we obtain

|F(u+ v)− F(u)− 〈∇F(u), v〉|H ≤ c2

∫
X
(|u(x)|p + |v(x)|p)|v(x)|2 dx. (4.8)

From (4.3) we deduce

‖(|u|p + |v|p) · v2
‖L1(X,µ) ≤ c3(|u|

p

D(A1/2)
+ |v|

p

D(A1/2)
) · |v|D(A1/2) · |v|H .

Plugging this estimate into (4.8), we obtain (4.7).

Verification of (Hp4). We prove that for all u and v in D(A1/2),

|∇F(u)−∇F(v)|2H ≤ c4(|u|
2p
D(A1/2)

+ |v|
2p
D(A1/2)

)|u− v|2
D(A1/2)

, (4.9)

which implies (2.4). To this end, we start from the inequality∣∣|a|pa − |b|pb∣∣ ≤ (p + 1)(|a|p + |b|p)|a − b| ∀(a, b) ∈ R2,

which easily follows from the mean value theorem applied to the function |σ |pσ . Setting
a := u(x), b := v(x), and integrating over X, we obtain

|∇F(u)−∇F(v)|2H =

∫
X

∣∣|u(x)|pu(x)− |v(x)|pv(x)∣∣2 dx
≤ c5

∫
X
(|u(x)|2p + |v(x)|2p)|u(x)− v(x)|2 dx. (4.10)
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From (4.4) we infer∥∥(|u|2p + |v|2p) · |u− v|2∥∥
L1(X,µ) ≤ c6(|u|

2p
D(A1/2)

+ |v|
2p
D(A1/2)

) · |u− v|2
D(A1/2)

.

Plugging this estimate into (4.10), we obtain (4.9).

Verification of (Hp5). This is trivially satisfied.

Verification of (Hp6). Exploiting (4.6) once again, we find

|u|
p+2
H = ‖u‖

p+2
L2(X,µ) ≤ c7‖u‖

p+2
Lp+2(X,µ) = c7(p + 2)F (u)

for every u ∈ D(A1/2), which proves (2.9).

Verification of assumption (2.14). From (4.6) we find

|∇F(u)|H = |u|
p+1
L2(p+1)(X,µ) ≤ c8|u|

p+1
D(A1/2)

for every u ∈ D(A1/2), which proves (2.14) with α = p for any ρ > 0. ut

We are finally ready to apply our theory to hyperbolic partial differential equations. We
concentrate on the model examples presented in the introduction. We recall that in the
Dirichlet case even the existence of a single slow solution was an open problem. Also in
the Neumann case, where existence of slow solutions was already known, the method of
this paper gives the explicit conditions (3.17) for a solution to decay slowly, conditions
which were not known before.

Theorem 4.2 (Neumann problem). Let � ⊆ Rn be a bounded open set with the cone
property. Let p be a positive exponent, with no further restriction if n ∈ {1, 2}, and
p ≤ 2/(n− 2) if n ≥ 3. Consider the damped hyperbolic equation

ut t (t, x)+ut (t, x)−1u(t, x)+|u(t, x)|
pu(t, x) = 0 ∀(t, x) ∈ [0,∞)×�, (4.11)

with homogeneous Neumann boundary conditions

∂u

∂n
(t, x) = 0 ∀(t, x) ∈ [0,∞)× ∂� (4.12)

and initial data

u(0, x) = u0(x), ut (0, x) = u1(x) ∀x ∈ �. (4.13)

Then we have the following conclusions.

(1) (Decay for all weak solutions) For every (u0, u1) ∈ H
1(�)×L2(�), problem (4.11)

through (4.13) has a unique global weak solution

u ∈ C0([0,∞);H 1(�)) ∩ C1([0,∞);L2(�)).

Moreover there exists a constant M1 such that

‖u(t)‖L2(�) ≤
M1

(1+ t)1/p
∀t ≥ 0. (4.14)



Optimal decay, hyperbolic equations 1977

(2) (Existence of slow solutions) There exist a nonempty open set S ⊆ H 1(�)×L2(�)

and positive constants M2 and M3 with the following property. For every (u0, u1)

in S, the unique global weak solution of problem (4.11) through (4.13) satisfies

M2

(1+ t)1/p
≤ ‖u(t)‖L2(�) ≤

M3

(1+ t)1/p
∀t ≥ 0. (4.15)

Theorem 4.3 (Dirichlet problem). Let � ⊆ Rn be a bounded open set with the cone
property, and let λ1 be the first eigenvalue of−1 in�with Dirichlet boundary conditions.
Let p be a positive exponent, with no further restriction if n ∈ {1, 2}, and p ≤ 2/(n− 2)
if n ≥ 3. Consider the damped hyperbolic equation

ut t (t, x)+ ut (t, x)−1u(t, x)− λ1u(t, x)+ |u(t, x)|
pu(t, x) = 0 (4.16)

in [0,∞)×� with homogeneous Dirichlet boundary conditions

u(t, x) = 0 ∀(t, x) ∈ [0,∞)× ∂� (4.17)

and initial data (4.13). Then we have the following conclusions.

(1) (Decay for all weak solutions) For every (u0, u1) ∈ H
1
0 (�)×L

2(�), problem (4.16),
(4.17), (4.13) has a unique global weak solution

u ∈ C0([0,∞);H 1
0 (�)) ∩ C

1([0,∞);L2(�))

and this solution satisfies (4.14).
(2) (Existence of slow solutions) There exist a nonempty open set S ⊆ H 1

0 (�))×L
2(�)

and positive constants M2 and M3 with the following property. For every (u0, u1)

in S, the unique global weak solution of problem (4.16), (4.17), (4.13) satisfies (4.15).

Proof of Theorems 4.2 and 4.3. We plan to apply Theorem 4.1 with X = � and µ equal
to the Lebesgue measure on �. Concerning the operator A, we distinguish two cases.

• In the case of Theorem 4.2 the operator is Au = −1u with Neumann boundary condi-
tions, so that D(A) = {u ∈ H 1(�) : 1u ∈ L2(�)} (this is just H 2(�) if � is convex
or its boundary is smooth enough), D(A1/2) = H 1(�), and kerA 6= {0} because it
consists of all (locally) constant functions.
• In the case of Theorem 4.3 the operator is Au = −1u− λ1u with Dirichlet boundary

conditions, so thatD(A) = {u ∈ H 1
0 (�) : 1u ∈ L

2(�)} (which is justH 2(�)∩H 1
0 (�)

if� is convex or its boundary is smooth enough),D(A1/2) = H 1
0 (�), and kerA 6= {0}

because it consists of the first eigenspace of −1.

In both cases, the norms |u|H and |u|D(A1/2) are equivalent to the norms ‖u‖L2(�) and
‖u‖H 1(�), respectively, and the coerciveness assumption (2.13) is satisfied because � is
bounded and the eigenvalues are an increasing sequence.

Now we proceed to the verification of the assumptions of Theorem 4.1, which is the
same in both cases. The cone property and the boundedness of � guarantee the usual
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Sobolev embeddings

H 1(�) ⊆ Lq(�)

{
∀q <∞ if n ≤ 2,
∀q ≤ 2∗ = 2n/(n− 2) if n ≥ 3.

(4.18)

All constants c1, c2, c3 below depend only on p, and on the Sobolev constants.

Verification of (4.2). It follows from (4.18) with q = 2(p+ 1) (note that our assumption
on p is equivalent to 2(p + 1) ≤ 2∗ if n ≥ 3).

Verification of (4.3). Let u and v be in D(A1/2). If n ≤ 2, we apply Hölder’s inequality
with three terms and exponents 4, 4, 2 to obtain∥∥|u|p · v · v∥∥

L1(�)
≤ ‖u‖

p

L4p(�)
· ‖v‖L4(�) · ‖v‖L2(�).

Thus from (4.18) with q = 4p and q = 4 we conclude that∥∥|u|p · v · v∥∥
L1(�)

≤ ‖u‖
p

H 1(�)
· ‖v‖H 1(�) · ‖v‖L2(�),

which is exactly (4.3). If n ≥ 3, we apply Hölder’s inequality with three terms and expo-
nents n, 2∗, 2 to obtain∥∥|u|p · v · v∥∥

L1(�)
≤ ‖u‖

p

Lnp(�) · ‖v‖L2∗ (�) · ‖v‖L2(�).

Thus from (4.18) with q = np (note that np ≤ 2∗) and q = 2∗ we conclude that∥∥|u|p · v · v∥∥
L1(�)

≤ c1‖u‖
p

H 1(�)
· ‖v‖H 1(�) · ‖v‖L2(�),

which proves (4.3) also in the case n ≥ 3.

Verification of (4.4). Let u and v be in D(A1/2). If n ≤ 2, we apply Hölder’s inequality
with exponents 2 and 2, and then (4.18). We derive∥∥|u|2p · v2∥∥

L1(�)
≤ ‖u‖

2p
L4p(�)

· ‖v‖2
L4(�)

≤ c2‖u‖
2p
H 1(�)

· ‖v‖2
H 1(�)

,

which proves (4.4) in this case. If n ≥ 3, we apply Hölder’s inequality with exponents
n/2 and n/(n− 2), and then (4.18). Since np ≤ 2∗, we find∥∥|u|2p · v2∥∥

L1(�)
≤ ‖u‖

2p
Lnp(�) · ‖v‖

2
L2∗ (�)

≤ c3‖u‖
2p
H 1(�)

· ‖v‖2
H 1(�)

,

which proves (4.4) also in the case n ≥ 3. ut

Remark 4.4. For simplicity and brevity, we have limited ourselves to the model nonlin-
earity gp(σ ) = |σ |pσ . On the other hand, all results can be easily extended, with standard
adjustments (such as the restriction to L∞-small initial data in low dimension), to equa-
tions with nonlinear terms which behave as gp(σ ) just in a neighborhood of the origin.
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4.1. Some nonlocal equations involving projection operators

The following result is suited to nonlocal partial differential equations where a power
nonlinearity is applied to some integral of the unknown, and not to the unknown itself.

Theorem 4.5 (Semi-abstract result for nonlocal equations). Let H be a Hilbert space,
and let A be a linear operator on H with dense domain D(A) satisfying assump-
tions (2.12) and (2.13) of Theorem 2.3, and such that

dim(kerA) <∞. (4.19)

Let M be a closed vector subspace of H such that

M⊥ ∩ kerA = {0}. (4.20)

Let PM : H → M denote the orthogonal projection. Let p > 0, and consider the second
order equation

u′′(t)+ u′(t)+ Au(t)+ |PMu(t)|
pPMu(t) = 0. (4.21)

Then we have the following conclusions.

(1) (Decay for all weak solutions) For every (u0, u1) ∈ D(A
1/2) × H , problem (4.21),

(2.2) has a unique global weak solution with regularity prescribed by (2.5). Moreover
there exists a constant M1 such that

|u(t)| ≤
M1

(1+ t)1/p
∀t ≥ 0.

(2) (Existence of slow solutions) There exist a nonempty open set S ⊆ D(A1/2)×H and
positive constants M2 and M3 with the following property. For every (u0, u1) ∈ S,
the unique global weak solution of problem (4.21)–(2.2) satisfies

M2

(1+ t)1/p
≤ |u(t)| ≤

M3

(1+ t)1/p
∀t ≥ 0.

Proof. Set

F(u) :=
1

p + 2
|PMu|

p+2.

We claim that
[∇F(u)](x) = |PMu|

pPMu

is the gradient of F in the sense of (2.3), and that all the assumptions of our abstract results
(Theorems 2.2 and 2.3) are satisfied. The constants c1, c2, c3 in what follows depend only
on the operator A, on the subspace M , on p, and on the coerciveness constant ν which
appears in (2.13).

Assumptions (Hp1) and (Hp2) are trivial in this case.
Assumptions (Hp3) and (Hp4) require a completely standard verification, based on

the simple fact that the real function |σ |pσ is of class C1 when p > 0. We omit the
details.
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Assumption (Hp5) follows from the equality

〈∇F(u), u〉 = |PMu|
p
〈PMu, u〉 = |PMu|

p
|PMu|

2
∀u ∈ H.

We have now to verify (Hp6). This requires three steps. Let P : H → kerA denote
the orthogonal projection on kerA. The first step is just observing that assumption (2.13)
is equivalent to

|A1/2u|2 ≥ ν|u− Pu|2 ∀u ∈ D(A1/2). (4.22)

The second step consists in proving that there exists c1 > 0 such that

|v|2 ≤ c1|PMv|
2
∀v ∈ kerA. (4.23)

To this end we set
c2 := min{|PMv|2 : v ∈ kerA, |v| = 1},

and we observe that the minimum exists because of assumption (4.19), and it is positive
in view of (4.20). This is enough to prove that (4.23) holds true with c1 = c

−1
2 .

Applying (4.23) with v := Pu, we obtain

|Pu|2 ≤ c1|PM(Pu)|
2
= c1|PMu− PM(u− Pu)|

2

≤ 2c1|PMu|
2
+ 2c1|PM(u− Pu)|

2

≤ 2c1|PMu|
2
+ 2c1|u− Pu|

2.

If u ∈ D(A1/2), we can now apply (4.22) to conclude that

|u|2 = |Pu|2 + |u− Pu|2 ≤ 2c1|PMu|
2
+ (2c1 + 1)|u− Pu|2

≤ 2c1|PMu|
2
+

2c1 + 1
ν
|A1/2u|2,

hence

|u|p+2
≤ c3(|PMu|

p+2
+ |A1/2u|p+2) ≤ c3(p + 2+ |A1/2u|p)(F (u)+ |A1/2u|2),

which proves (Hp6).
Finally, (2.14) is obviously satisfied with R = 1, independently of ρ and α. ut

We conclude with two examples of application of Theorem 4.5. In a certain sense they
represent two extremes, namely the case where M = H , hence as large as possible, and
the case where M is one-dimensional. We omit the simple proofs.

Theorem 4.6. Let� ⊆ Rn and p be as in Theorem 4.2. Consider the integro-differential
damped hyperbolic equation

ut t (t, x)+ ut (t, x)−1u(t, x)+

(∫
�

u2(t, x) dx

)p/2
u(t, x) = 0

in [0,∞) × �, with Neumann boundary conditions (4.12) and initial data (4.13). Then
the conclusions of Theorem 4.2 hold.
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Theorem 4.7. Let � ⊆ Rn and p be as in Theorem 4.2. Let {�i}i∈I be the set of all
connected components of �, and let ϕ ∈ H 1(�) be such that∫

�i

ϕ(x) dx 6= 0 ∀i ∈ I. (4.24)

Let gp : R → R be defined by gp(σ ) := |σ |pσ for every σ ∈ R, and consider the
integro-differential damped hyperbolic equation

ut t (t, x)+ ut (t, x)−1u(t, x)+ gp

(∫
�

u(t, x)ϕ(x) dx

)
ϕ(x) = 0,

in [0,∞) × �, with Neumann boundary conditions (4.12) and initial data (4.13). Then
the conclusions of Theorem 4.2 hold.

One can state similar results also for the Dirichlet problem, namely by replacing the
nonlinear term in Theorem 4.3 with the nonlinear terms appearing in Theorem 4.6 or
Theorem 4.7. The only difference is that in the Dirichlet case the nonorthogonality con-
dition (4.24) becomes ∫

�

ϕ(x)e(x) dx 6= 0

for every nonzero function e(x) in the first eigenspace of the Dirichlet Laplacian.
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