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Abstract. We give a description of the model-theoretic relation of forking independence in terms
of JSJ decompositions in non-abelian free groups.
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1. Introduction

In this paper we examine the model-theoretic notion of forking independence in non-
abelian free groups.

Forking independence was introduced by Shelah as part of the machinery needed in
his classification program (see Section 2). It is an abstract independence relation between
two tuples of a structure over a set of parameters.

In the tame context of stable first-order structures, forking independence enjoys cer-
tain nice properties (see Fact 2.11). As a matter of fact, the existence of an indepen-
dence relation having these properties characterizes stable theories and the relation in this
case must be exactly forking independence. So it is not surprising that forking indepen-
dence has grown to have its own ontology and many useful notions have been introduced
around it, first within the context of stable theories and then adapted and developed more
generally.

In some stable algebraic structures, such as a module or an algebraically closed field,
forking independence admits an algebraic interpretation. In the latter case this is easily
described: if b̄, c̄ are finite tuples in an algebraically closed field K andL is a subfield, then
b̄ is independent of c̄ over L if and only if the transcendence degree of L(b̄c̄) over L(c̄)
is the same as the transcendence degree of L(b̄) over L. For a description in the case of
modules we refer the reader to [Gar81], [PP83].
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Philosophically speaking, in every “natural” stable structure one should be able to
understand forking independence in terms of the underlying geometric or algebraic na-
ture. Sela [Sel13] proved that (non-cyclic) torsion-free hyperbolic groups are stable, thus
it is natural to ask whether the forking independence relation can be given an algebraic
interpretation in these groups. This paper, following this line of thought, gives such an in-
terpretation in free groups and in some torsion-free hyperbolic groups in terms of Grushko
and JSJ decompositions.

The first main result of this paper is:

Theorem 1. Let b̄, c̄ be tuples of elements in the free group Fn and let A be a free factor
of Fn. Then b̄ and c̄ are independent over A if and only if Fn admits a free decomposition
Fn = F ∗ A ∗ F′ with b̄ ∈ F ∗ A and c̄ ∈ A ∗ F′.

Thus two finite tuples are independent over A if and only if they live in “essentially dis-
joint” parts of the Grushko decomposition of Fn relative to A (i.e. the maximal decompo-
sition of Fn as a free product in which A is contained in one of the factors). The essential
ingredients of the proof of our first result is the homogeneity of non-abelian free groups
and a result of independent interest concerning the stationarity of types in the theory of
non-abelian free groups (see Theorem 3.1).

The relative Grushko decomposition of a group with respect to a set of parameters is a
way to see all the splittings of the group as a free product in which the set of parameters is
contained in one of the factors. The relative cyclic JSJ decomposition is a generalization
of this: it is a graph of group decompositions which encodes all the splittings of the
group as an amalgamated product or an HNN extension over a cyclic group, for which
the parameter set is contained in one of the factors (see Section 4).

The second result deals with the case where the parameter set is not contained in any
proper free factor, so that the relative Grushko decomposition is trivial, and tells us that
two tuples are then independent over A if and only if they live in “essentially disjoint”
parts of the cyclic JSJ decomposition of Fn relative to A.

Theorem 2. Let Fn be freely indecomposable with respect to A. Let (3, vA) be the
pointed cyclic JSJ decomposition of Fn with respect to A. Let b̄ and c̄ be tuples in Fn,
and denote by 3Ab̄ (respectively 3Ac̄) the minimal subgraphs of groups of 3 whose fun-
damental group contains the subgroups 〈A, b̄〉 (respectively 〈A, c̄〉) of Fn. Then b̄ and c̄
are independent over A if and only if each connected component of 3Ab̄ ∩3Ac̄ contains
at most one non-Z-type vertex, and such a vertex is of non-surface type.

This is a special case of Theorem 8.2, where we prove it for torsion-free hyperbolic groups
which are concrete over a set A of parameters. A group is said to be concrete with respect
to the set A of parameters if it is freely indecomposable with respect to A, and does not
admit an extended hyperbolic floor structure over A—that is, A is not contained in a
proper retract of G which satisfies certain properties (see [LPS11]).

In this second result, the middle step between the purely model-theoretic notion of
forking independence and the purely geometric one of JSJ decomposition is that of un-
derstanding the automorphism group of Fn relative to A. Indeed, the JSJ decomposition
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enables us to give in this setting a very good description (up to a finite index) of the
group of automorphisms which fix A pointwise. On the other hand, in many cases the
model-theoretic definitions bear a strong relation to properties of invariance under auto-
morphisms (as can be seen in Section 2).

It is remarkable that once more the tools of geometric group theory prove so conve-
nient to understand the first-order theory of torsion-free hyperbolic groups. The proof of
Theorem 2 makes use of recent deep results of this field, such as Masur and Minsky’s
results on the curve complex of a surface.

The paper is organised as follows. Section 2 gives a thorough exposition of the model-
theoretic notions needed, and the necessary background on forking independence. Sec-
tion 3 is devoted to the proof of Theorem 1. Section 4 gives relations between the automor-
phisms and JSJ decomposition. In Section 5 we prove that torsion-free hyperbolic groups
are atomic over sets of parameters with respect to which they are concrete. Section 6
recalls some properties of algebraic closures, and a description of algebraic closures in
torsion-free hyperbolic groups. Section 7 gives a brief introduction to the curve complex
and states the results needed in Section 8, which is devoted to the proof of Theorem 2. In
the final section we give some examples and make some further remarks on our results.

2. An introduction to forking independence

In this section we give an almost complete account of the model-theoretic background
needed for the rest of the paper.

2.1. Basic notions

We first recall and fix notation for the basic notions of model theory. Let M be a structure,
and T h(M) its complete first-order theory (the set of all first-order sentences that hold
in M).

An n-type p(x̄) of T h(M) is a set of formulas without parameters in n variables
which is consistent with T h(M). A type p(x̄) is called complete if for every φ(x̄) either
φ or ¬φ is in p(x̄). For example, if ā is a tuple in M, the set tpM(ā) of all formulas
satisfied by ā is a complete type.

If A ⊂M is a set of parameters, we denote by SMn (A) the set of all complete n-types
of T h((M, {a}a∈A)) (where (M, {a}a∈A) is the structure obtained from M by adding
the elements of A as constant symbols). We also note that the set of n-types over the
empty set of a first-order theory T is usually denoted by Sn(T ).

It is easy to see that SMn (A) is a Stone space when equipped with the topology defined
by the basis of open sets [φ(x̄)] = {p ∈ SMn (A) : φ ∈ p}, where φ(x̄) is a formula with
parameters in A. A type p ∈ SMn (A) is isolated if there is a formula φ ∈ p such that
[φ] = {p}.

Definition 2.1. Let A be a subset of a structure M. Then M is called atomic over A if
every type in SMn (A) which is realized in M is isolated.
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Equivalently, if M is a countable structure, then M is atomic if the orbit Aut(M).b̄ of
every finite tuple b̄ ∈M is ∅-definable. If the orbits are merely ∅-type-definable (i.e. the
solution set of a type in M), then we obtain the notion of homogeneity.

Definition 2.2. A countable structure M is said to be homogeneous if for any two finite
tuples b̄, c̄ ∈M such that tpM(b̄) = tpM(c̄) there is an automorphism of M sending b̄
to c̄.

Let ā, A ⊂M. We say ā is algebraic (respectively definable) over A if there is a formula
φ(x̄) with parameters in A such that ā ∈ φ(M) and φ(M) is finite (respectively has
cardinality one). We denote the set of algebraic (respectively definable) tuples over A by
aclM(A) (respectively dclM(A)). The following lemma is immediate.

Lemma 2.3. Let M be countable and atomic over A. Then for any ā ∈ M, ā is alge-
braic (respectively definable) over A if and only if {f (ā) : f ∈ Aut(M/A)} is finite
(respectively has cardinality one).

Proof. Just note that the orbit of any tuple under Aut(M/A) is a definable set overA. ut

2.2. Stability theory

Stability theory is an important part of modern model theory. The rudiments of stability
can be found in the seminal work of Morley proving the Łoś conjecture, namely that a
countable theory is categorical in an uncountable cardinal if and only if it is categorical
in all uncountable cardinals. A significant aspect of Morley’s work is that he assigned
an invariant (a dimension for some independence relation) to a model that determined the
model up to isomorphism. In full generality most of the results concerning stability are at-
tributed to Shelah [She90]. Shelah has established several dividing lines separating “well
behaved” theories from theories which do not have a structure theorem classifying their
models. One such dividing line is stable versus unstable, where if a first-order theory T is
unstable then it has the maximum number of models, 2κ , for each cardinal κ ≥ 2|T |.

A first-order theory T is stable if it prevents the definability of an infinite linear order.
To state it more formally, we say that a first-order formula φ(x̄, ȳ) in a structure M has
the order property if there are sequences (ān)n<ω, (b̄n)n<ω such that M |= φ(ān, b̄m) if
and only if m < n.

Definition 2.4. A first-order theory T is stable if no formula has the order property in a
model of T .

By the discussion above it is apparent that the development of an abstract independence
relation enabling us to assign a dimension to several sets will be useful. This is what
brought Shelah to define forking independence.

The rest of the subsection is devoted to a thorough description of forking indepen-
dence in stable theories. Unless otherwise stated, all the results in this subsection which
are stated without a proof can be found in [Pil96, Chapter 1, Sections 1–2].

We fix a stable first-order theory T and we work in a “big” saturated model M of T ,
which is usually called the monster model (see [Mar02, p. 218]).

We write tp(ā/A) for tpM(ā/A) and Sn(A) for SMn (A).
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Definition 2.5. A formula φ(x̄, b̄) forks over A if there are n < ω and an infinite se-
quence (b̄i)i<ω such that tp(b̄/A) = tp(b̄i/A) for i < ω, and the set {φ(x̄, b̄i) : i < ω} is
n-inconsistent.

A tuple ā is independent of B over A (denoted ā |
Â

B) if there is no formula in
tp(ā/B) which forks over A.

In Section 2 of [LPS11] we give an intuitive account of the above definition.
The following observation is immediate.

Remark 2.6. Let M |= φ(x̄)→ ψ(x̄) and suppose ψ(x̄) forks over A. Then φ(x̄) forks
over A.

Definition 2.7. If p ∈ Sn(A) and A ⊆ B, then q := tp(ā/B) is called a non-forking
extension of p if p ⊆ q and ā |

Â

B.

Definition 2.8. A type p ∈ Sn(A) is called stationary if for any B ⊇ A, p has a unique
non-forking extension over B.

Definition 2.9. Let C = {c̄i : i ∈ I } be a set of tuples. We say that C is an independent
set over A if for every i ∈ I , c̄i |

Â

⋃
C \ {c̄i}.

If p is a type over A which is stationary and (ai)i<κ , (bi)i<κ are both independent sets
overA of realizations of p, then tp((ai)i<κ/A) = tp((bi)i<κ/A). This allows us to denote
by p(κ) the type of κ-independent realizations of p. It is not hard to see that if p is
stationary then so is p(κ).

We observe the following behavior of forking independence inside a countable atomic
model of T .

Lemma 2.10. Let M |= T . Let b̄, A ⊂ M, and suppose M is countable and atomic
over A. Suppose X := φ(M, b̄) contains a non-empty almost A-invariant subset (i.e.
one with finitely many images under Aut(M/A)). Then φ(x̄, b̄) does not fork over A.

Proof. Suppose it does; then there is an infinite sequence (b̄i)i<ω in M such that tp(b̄i/A)
= tp(b̄/A) and {φ(x̄, b̄i) : i < ω} is k-inconsistent for some k < ω. Since M is atomic
over A, we infer that tp(b̄/A) is isolated, say by ψ(ȳ). Thus, for arbitrarily large λ the
following sentence (over A) is true:

M |= ∃ȳ1, . . . , ȳλ [(ψ(ȳ1) ∧ · · · ∧ ψ(ȳλ))

∧ “any k-subset of {φ(x̄, ȳ1), . . . , φ(x̄, ȳλ)} is inconsistent”].

But the above sentence is true in M, and this contradicts the hypothesis that φ(x̄, b̄)
contains a non-empty almost A-invariant set. ut

We list some properties of forking independence (recall that we have assumed that the
theory T is stable).
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Fact 2.11. (i) (Existence of non-forking extensions) Let p ∈ Sn(A) and A ⊆ B. Then
there is a non-forking extension of p over B.

(ii) (Symmetry) ā |^
A

b̄ if and only if b̄ |^
A

ā.

(iii) (Local character) For any ā, A, there is A′ ⊆ A with |A′| ≤ |T | such that ā |^
A′
A.

(iv) (Transitivity) Let A ⊆ B ⊆ C. Then ā |^
A

C if and only if ā |^
A

B and ā |^
B

C.

(v) (Boundedness) Every type over a model is stationary.

In fact the above properties of forking independence characterize stable theories in the
sense that if a theory T admits a sufficiently saturated model on which we can define an
independence relation on triples of sets satisfying (i)–(v), then T is stable and the relation
is exactly forking independence.

The following lemma is useful in practice.

Lemma 2.12. Let A ⊆ B. Then ā |^
A

B if and only if acl(āA) |^
acl(A)

acl(B).

The following theorem answers the question of how much “information” a type should
include in order to be stationary.

Theorem 2.13 (Finite Equivalence Relation Theorem). Let p1, p2 ∈ Sn(B) be two dis-
tinct types, let A ⊆ B and suppose that neither p1 nor p2 forks over A. Then there is a
finite equivalence relationE(x̄, ȳ) definable overA such that p1(x̄)∪p2(ȳ) |= ¬E(x̄, ȳ).

Shelah observed that “seeing” equivalence classes of definable equivalence relations as
real elements gives a mild expansion of our theory, which we denote by T eq, with many
useful properties (we refer the reader to [Pil96, p. 10] for the construction). In this set-
ting we denote by acleq (respectively dcleq) the algebraic closure (respectively definable
closure) calculated in Meq (the monster model of T eq, which actually is an expansion
of M).

The following lemma is an easy application of the finite equivalence relation theorem.

Lemma 2.14. Let A be a set of parameters in M. Then acleq(A) = dcleq(A) if and only
if every type p ∈ Sn(A) is stationary.

Proof. (⇒) Suppose, for the sake of contradiction, that there is a type q in Sn(A) which
is not stationary. Let q1, q2 be distinct non-forking extensions of q to some set B ⊃ A. By
the finite equivalence relation theorem, we may takeB to be acleq(A). Now the hypothesis
yields a contradiction as a type over A extends uniquely to dcleq(A).

(⇐) Suppose that there is e in acleq(A) \ dcleq(A). Then tp(e/A) is not stationary.
Indeed, consider two distinct images of e under automorphisms fixing A. Then these
images have different types over acleq(A) and these types do not fork over A. By the
construction of T eq, there is a tuple b̄ in M such that e ∈ dcleq(b̄). Now, it is easy to see
that tp(b̄/A) is not stationary. ut
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2.3. Stable groups

A group, G := (G, ·, . . .), in the sense of model theory is a structure equipped with a
group operation, but possibly also with some additional relations and functions. In the
case where the additional structure is definable by multiplication alone, we speak of a
pure group.

We define a stable group to be a group whose first-order theory T h(G, ·, . . .) is stable.
Although for the purpose of this paper it would be enough to consider pure groups, there
is no harm in developing stable group theory in greater generality. All results in this
subsection can be found in [Poi01].

Definition 2.15. Let G be a group. We say G is connected if there is no definable proper
subgroup of finite index.

Definition 2.16. Let G be a stable group. LetX be a definable subset ofG. ThenX is left
[right] generic if finitely many left [right] translates of X by elements of G cover G.

As in a stable group G a definable set X ⊆ G is left generic if and only if it is right
generic, we simply say generic.

Definition 2.17. Let G be a stable group and let A ⊆ G. A type p(x) ∈ S1(A) is generic
if every formula in p(x) is generic.

Lemma 2.18. Let p(x) be a generic type of the stable group G. Then any non-forking
extension of p(x) is generic.

It is not hard to see the following:

Fact 2.19. Let G be a stable group. Then G is connected if and only if there is, over any
set of parameters, a unique generic type.

This has an immediate corollary.

Corollary 2.20. Let G be a connected stable group. Then every generic type is stationary.
In fact, generic types are exactly the non-forking extensions of the generic type over ∅.

2.4. Torsion-free hyperbolic groups

In this subsection we see torsion-free hyperbolic groups as L-structures in their natural
language L := {·,−1 , 1}, i.e. the language of groups. We denote by Fn := 〈e1, . . . , en〉

the free group of rank n and we assume that n > 1. We start with the deep result of
Kharlampovich–Myasnikov [KM06] and Sela [Sel06].

Theorem 2.21. Let F be a non-abelian free factor of Fn. Then F ≺ Fn.

This allows us to denote by Tfg the common theory of non-abelian free groups. Since
connectedness (in the sense defined in the previous subsection) is a first-order property,
we can state a result of Poizat [Poi83] in the following way.
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Theorem 2.22. Tfg is connected.

As a matter of fact, the theory of every (non-cyclic) torsion-free hyperbolic group is con-
nected (see [O11]).

Theorem 2.23. Let G be a torsion-free hyperbolic group not elementarily equivalent to
a free group. Then T h(G) is connected.

On the other hand, Sela [Sel13] proved the following:

Theorem 2.24. Let G be a (non-cyclic) torsion-free hyperbolic group. Then T h(G) is
stable.

Thus, in every theory of a (non-cyclic) torsion-free hyperbolic group there is a unique
generic type over any set of parameters.

We specialize to Tfg and we denote by p0 the generic type over the empty set. By
Corollary 2.20 the generic type p0 is stationary, thus we can define p(κ)0 to be the type of
κ-independent realizations of p0. Pillay [Pil09] gave an interpretation of the generic type
in terms of its solution set in Fn; in fact, he proved more generally

Theorem 2.25. An m-tuple a1, . . . , am realizes p(m)0 in Fn if and only if a1, . . . , am is
part of a basis of Fn.

In particular, the above theorem states that tpFn(e1) is generic.
An immediate consequence is that if Fn = F ∗ F′ ∗ F′′, then F |

F̂′
F′′. We note that

the above theorem has been generalized by the authors to finitely generated models of Tfg
with appropriate modifications (see [PS12]).

The following theorem has been proved by the authors [PS12] and Ould Houcine
[O11] independently.

Theorem 2.26. Fn is homogeneous.

As a matter of fact, we will see in Section 5 that the proof of this result can be adapted to
give the following

Theorem 2.27. Let G be a torsion-free hyperbolic group concrete with respect to a sub-
group A. Then G is atomic over A.

3. Forking over free factors

In this section we describe forking independence in non-abelian free groups over (possi-
bly trivial) free factors. We begin with a result of more general interest.

Theorem 3.1. Let A ⊂ Fn. Then every type in Sm(A) is stationary if and only if
tpFn(e1, . . . , en/A) is stationary.
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Proof. For the non-trivial direction it is enough, by Lemma 2.14, to prove that acleq(A) =

dcleq(A). Let a ∈ acleq(A). Then a ∈ dcleq(e1, . . . , en), and since tpFn(e1, . . . , en/A) is
stationary, we find that tpF

eq
n (a/A) is stationary. Thus, a ∈ dcleq(A) as desired. ut

We get the following corollaries.

Corollary 3.2. Let p(x̄) ∈ Sm(Tfg). Then p(x̄) is stationary.

Proof. Since p0(x) is stationary, it follows that p(2)0 (x, y) := tpF2(e1, e2) is. Now use
Theorem 3.1 for A = ∅. ut

Corollary 3.3. Suppose a realizes p0 in some model of Tfg and p ∈ Sm(a). Then p is
stationary.

Proof. Suppose b realizes the unique non-forking extension of p0 over a. Then
〈a, b〉 ∼= F2, and tp〈a,b〉(a, b/a) is stationary. Now use Theorem 3.1 for A = {a}. ut

We are now ready to describe forking independence over free factors. For m < n < ω,
we will denote the free group of rank n−m generated by em+1, . . . , en by Fm,n.

Theorem 3.4. Let ā, b̄ ∈ Fn and let A be a free factor of Fn. Then ā |^
A

b̄ if and only if

Fn admits a free decomposition Fn = F ∗ A ∗ F′ with ā ∈ F ∗ A and b̄ ∈ A ∗ F′.
Proof. (⇐) This direction is immediate as a basis of Fn is an independent set over ∅ by
Theorem 2.25.

(⇒) We may assume that A = Fm for some m < n (we also include the case
where Fm is trivial). Let ā(x1, . . . , xn) be a tuple of words in variables x1, . . . , xn such
that ā(e1, . . . , en) = ā. We consider the tuple ā′ := ā(e1, . . . , em, en+1, . . . , e2n−m)

in F2n−m. As en+1, . . . , e2n−m is independent of e1, . . . , en over e1, . . . , em, we de-
duce that ā′ is independent of Fmb̄ over Fm. We also note that p := tpF2n−m(ā/Fm) =
tpF2n−m(ā′/Fm) as there is an automorphism of F2n−m fixing Fm taking ā to ā′. But p
is stationary (for Fm trivial this follows from Corollary 3.2, for Fm ∼= Z from Corol-
lary 3.3, and in any other case Fm is a model, so this follows from Fact 2.11(v)), thus
tpF2n−m(ā/Fmb̄) = tpF2n−m(ā′/Fmb̄). By homogeneity of F2n−m there is an automor-
phism f ∈ Aut(F2n−m/b̄) which sends ā′ to ā. We consider the decomposition F2n−m =

Fm ∗Fm+1,n ∗Fn+1,2n−m. Applying f we get F2n−m = Fm ∗ f (Fm+1,n) ∗ f (Fn+1,2n−m)

with b̄ ∈ Fm ∗ f (Fm+1,n) and ā ∈ Fm ∗ f (Fn+1,2n−m). But Fn is a subgroup of F2n−m,
thus by the Kurosh subgroup theorem we get a decomposition of Fn as desired. ut

4. JSJ decompositions and modular groups

The main theme of this section is the description of the modular group ModA(G) of
automorphisms of a torsion-free hyperbolic groupGwhich is freely indecomposable with
respect to a subgroup A. We briefly explain the outline of the section and the tools used.

In the first subsection we are concerned with cyclic JSJ splittings of G relative to A.
These are splittings of a group G which in some sense encode all the splittings of G over
cyclic subgroups in which A is elliptic.
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The next three subsections are devoted to “elementary” automorphisms associated to
a splitting of a group. These are automorphisms that can be read off locally from the
splitting, namely Dehn twists and vertex automorphisms. Under certain conditions we
prove that “elementary” automorphisms almost commute.

In the final subsection we prove that one can read off the modular group of G from
its JSJ splitting relative to A, and we moreover give a normal form theorem for modular
automorphisms. These results are not new (see [Lev05] and [GL15]), but the hands-on
proofs we give in this specific setting hopefully helps to gain low-level intuition. We
also describe the normal form of automorphisms which fix pointwise a subgroup of G
containing A.

4.1. G-trees and JSJ decompositions

We will use definitions and results about graphs of groups from [Ser83]. Let 0 be a graph;
we will denote by V (0) and E(0) respectively its vertex and edge sets. The set E(0) is
always assumed to be stable under the involution which to an edge e associates its inverse
edge ē.

Let G be a finitely generated group. A G-tree is a simplicial tree T endowed with an
action of G without inversions of edges. We say T is minimal if it admits no proper G-
invariant subtree. A cyclic G-tree is a G-tree whose edge stabilizers are infinite cyclic. If
A is a subset of G, a (G,A)-tree is a G-tree in which A fixes a point. Following [GL07],
we call a (not necessarily simplicial) surjective equivariant map d : T1 → T2 between two
(G,A)-trees a domination map. A surjective simplicial map p : T1 → T2 which consists
in collapsing some orbits of edges to points is called a collapse map. In this case, we also
say that T1 refines T2.

We also define:

Definition 4.1 (Bass–Serre presentation). Let G be a finitely generated group, and let
T be a G-tree. Denote by 3 the corresponding quotient graph of groups and by p the
quotient map T → 3. A Bass–Serre presentation for 3 is a triple (T 1, T 0, (te)e∈E1)

consisting of

• a subtree T 1 of T which contains exactly one edge of p−1(e) for each edge e of 3;
• a subtree T 0 of T 1 which contains exactly one vertex of p−1(v) for each vertex v of3;
• for each edge e ∈ E1 := {e = uv | u ∈ T

0, v ∈ T 1
\T 0
}, an element te ofG such that

t−1
e · v lies in T 0.

We call te the stable letter associated to e.

One can give an explicit presentation of the group G whose generating set is the union of
the stabilizers of vertices of T 0 together with the stable letters te, hence the name.

For JSJ decompositions, we will use the framework described in [GL09a] and
[GL09b] (see also the brief summary given in Section 3 of [PS12]). We recall here the
main definitions and results we will use. Unless mentioned otherwise, all G-trees are
assumed to be minimal.
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Deformation space. The deformation space of a cyclic (G,A)-tree T is the set of all
cyclic (G,A)-trees T ′ such that T dominates T ′ and T ′ dominates T . A cyclic (G,A)-
tree is universally elliptic if its edge stabilizers are elliptic in every cyclic (G,A)-tree. If
T is a universally elliptic cyclic (G,A)-tree, and T ′ is any cyclic (G,A)-tree, it is easy to
see that there is a tree T̂ which refines T and dominates T ′ (see [GL09a, Lemma 3.2]).

JSJ trees. A cyclic relative JSJ tree forGwith respect toA is a universally elliptic cyclic
(G,A)-tree which dominates any other universally elliptic cyclic (G,A)-tree. All these
JSJ trees belong to the same deformation space, which we denote DJSJ. Guirardel and
Levitt show that ifG is finitely presented and A is finitely generated, the JSJ deformation
space always exists (see [GL09a, Theorem 5.1]). It is easily seen to be unique.

Rigid and flexible vertices. A vertex stabilizer in a (relative) JSJ tree is said to be rigid
if it is elliptic in any cyclic (G,A)-tree, and flexible if not. In the case of a torsion-free
hyperbolic group G and a finitely generated subgroup A of G with respect to which G is
freely indecomposable, the flexible vertices of a cyclic JSJ tree ofG with respect to A are
surface type vertices [GL09a, Theorem 8.20], i.e. their stabilizers are fundamental groups
of hyperbolic surfaces with boundary, any adjacent edge group is contained in a maximal
boundary subgroup, and any maximal boundary subgroup contains either exactly one
adjacent edge group, or exactly one conjugate of A [GL09a, Remark 8.19]. Note that
(since the vertices are not rigid) these surfaces cannot be thrice punctured spheres [GL09a,
Remark 8.19]. Nor can they be once punctured Klein bottles or twice punctured projective
planes. Indeed, otherwise the JSJ tree T can be refined to a tree T̂ by the splitting of this
surface corresponding to one or two curves bounding Möbius bands. This new (G,A)-
tree is still universally elliptic, since there are no incompatible splittings of the surface,
but T does not dominate T̂ ; we get a contradiction.

We give a simple example of a JSJ decomposition at the level of graph of groups.

Fig. 1. A JSJ decomposition of the free group F4 on e1, . . . , e4 relative to A = 〈[e1, e2], [e3, e4]〉.

The tree of cylinders. In [GL11], cylinders in cyclic G-trees are defined as equivalence
classes of edges under the equivalence relation given by commensurability of stabilizers,
and to any G-tree T is associated its tree of cylinders. It can be obtained from T as
follows: the vertex set is the union V0(Tc) ∪ V1(Tc) where V0(Tc) contains a vertex w′
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for each vertex w of T contained in at least two distinct cylinders, and V1(Tc) contains a
vertex vc for each cylinder c of T . There is an edge between vertices w′ and vc lying in
V0(Tc) and V1(Tc) respectively if and only if w belongs to the cylinder c.

We get a tree which is bipartite: every edge in the tree of cylinders joins a vertex from
V0(Tc) (which is cyclically stabilized) to a vertex of V1(Tc). Since the action of G on T
sends cylinders to cylinders, the tree of cylinders admits an obvious G-action. Note also
that ifH stabilizes an edge e of T , its centralizerC(H) preserves the cylinder containing e
since the translates of e are also stabilized byH ; in particular there is a vertex in Tc whose
stabilizer is C(H). It is moreover easy to see that this vertex is unique.

It turns out that the tree of cylinders is in fact an invariant of the deformation space
[GL11, Corollary 4.10].

Case of freely indecomposable torsion-free hyperbolic groups. By [GL11, Theo-
rem 2], if G is a torsion-free hyperbolic group freely indecomposable with respect to a
finitely generated subgroupA, the tree of cylinders Tc of the cyclic JSJ deformation space
of G with respect to A is itself a JSJ tree, and it is moreover strongly 2-acylindrical: if a
non-trivial element stabilizes two distinct edges, they are adjacent to a common cyclically
stabilized vertex.

Moreover, in this case the tree of cylinders is not only universally elliptic, but in fact
universally compatible: given any cyclic (G,A)-tree T , there is a refinement T̂ of Tc
which collapses onto T [GL11, Theorem 6].

The JSJ deformation space being unique, it must be preserved under the action of
AutA(G) on (isomorphism classes of) (G,A)-trees defined by twisting the G-actions.
Thus the tree of cylinders is a fixed point of this action, that is, for any automorphism
φ ∈ AutA(G), there is an automorphism f : Tc → Tc such that for any x ∈ Tc and g ∈ G
we have f (g · x) = φ(g) · f (x).

JSJ relative to a non-finitely generated subgroup. Let G be a torsion-free hyperbolic
group freely indecomposable with respect to a subgroup A. By [PS12, Proposition 3.7],
there is a finitely generated subgroup A0 of A such that G is freely indecomposable with
respect to A0 and A is elliptic in any cyclic JSJ tree of G with respect to A0. The tree of
cylinders of the cyclic JSJ deformation space with respect to A0 clearly admits a common
refinement with any cyclic (G,A)-tree, and has all the properties described above in the
case A was finitely generated. So whenever we refer to the tree of cylinders of the cyclic
JSJ deformation space with respect to A (for a possibly non-finitely generated group), we
tacitly mean the tree of cylinders of the cyclic JSJ deformation space with respect to A0.

The pointed cyclic JSJ tree. For our purposes, we need a tree with a basepoint which is
a slight variation of the tree of cylinders. Note that this tree is not minimal.

Definition 4.2. Let G be a torsion-free hyperbolic group freely indecomposable with
respect to a subgroup A. Let Tc be the tree of cylinders of the cyclic JSJ deformation
space of G with respect to A.

We define the pointed cyclic JSJ tree (T , v) of G with respect to A as follows:

• If A is cyclic, let u be either (if it exists) the unique vertex whose stabilizer is exactly
the centralizer C(A) of A, or otherwise the unique vertex fixed by C(A). We take T to
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be the tree Tc to which we add one orbit of vertices G.v, one orbit of edges G.e with
e = vu, and we set Stab(v) = Stab(e) = C(A).
• If A is not cyclic, we take T = Tc and we let v be the unique vertex fixed by A.

Definition 4.3. A vertex of the pointed cyclic JSJ tree is said to be a Z-type vertex if it is
cyclically stabilized and distinct from the basepoint v.

Remark 4.4. It is not hard to see that the pointed cyclic JSJ tree of G with respect to
A is strongly 2-acylindrical, universally compatible, and a fixed point of the action of
AutA(G) on (G,A)-trees defined by twisting the G-action.

4.2. Dehn twists

Let G be a finitely generated group.

Definition 4.5. Let e = uv be an edge in a G-tree T , and let a be an element in the
centralizer in G of Stab(e). The G-tree T ′ obtained from T by collapsing all the edges
not in the orbit of e induces a splitting ofG as an amalgamated productG = U ∗Stab(e) V

or as an HNN extension U∗Stab(e) with stable letter t , where U is the stabilizer of the
image vertex of u in T ′.

The Dehn twist by a about e is the automorphism of G which restricts to the identity
on U and to conjugation by a on V (respectively sends t to at in the HNN case).

The proof of the following lemma is immediate. We first recall that aG-tree is called non-
trivial if there is no globally fixed point. It is not hard to see that ifG is finitely generated
and T is a non-trivial G-tree then T contains a unique minimal G-invariant subtree.

Lemma 4.6. Let G be a finitely generated group, and let T be a cyclic G-tree. Suppose
H is a finitely generated subgroup of G whose minimal subtree TH in T contains no
translate of e. Then any Dehn twist about e restricts to a conjugation on H by an element
which depends only on the connected component of T \G.e containing TH .

The following lemma describes Dehn twists with respect to Bass–Serre presentations.

Lemma 4.7. Let G be a finitely generated group, and let T be a cyclic G-tree with a
Bass–Serre presentation (T 1, T 0, (tf )f∈E1). Let τe be a Dehn twist by an element a about
an edge e = uv of T 1. Then

• for each vertex x of T 0, the restriction of τe to Gx is a conjugation by an element gx
which is 1 if x and u are in the same connected component of T 1

\{e}, and a otherwise;
• for any edge f = xy′ of T 1 with x ∈ T 0 and t−1

f · y
′
= y ∈ T 0, we have

τe(tf ) =


gx tf g

−1
y if f 6= e,

atf if f = e,
tf a
−1 if f = ē.

Proof. The proof is straightforward, it suffices to note that the images of x, y and y′ under
the map p which collapses all the edges not in the orbit of e all belong to {p(u), p(v)},
and to consider the various possibilities. ut



1996 Chloé Perin, Rizos Sklinos

Fig. 2. A choice of T 1 and T 0 (thick subtree).

Remark 4.8. If τ is the Dehn twist by a about e, and τ ′ the Dehn twist by a−1 about ē,
we have τ = Conj(a) ◦ τ ′.

In particular, if (T 1, T 0, (tf )f ) is a Bass–Serre presentation for T such that e is in T 1,
and if R is a connected component of T 0

\ {e}, then there exists an element g such that
Conj(g) ◦ τ is a Dehn twist about e or ē which restricts to the identity on Gx for any
vertex x of R.

The next lemma gives a useful relation between Dehn twists about edges adjacent to a
common cyclically stabilized vertex:

Lemma 4.9. Let G be a finitely generated group, and let T be a G-tree. Suppose v is a
vertex of T whose stabilizer is cyclic, and let e1 = u1v, . . . , er = urv be representatives
of the orbits of edges adjacent to v. Let z be an element in the centralizer of Stab(v), and
denote by τi the Dehn twist about ei by z. Then

τ1 . . . τr = Conj(zr−1).

Proof. Choose a Bass–Serre presentation (T 1, T 0, (tf )f ) such that v ∈ T 0 and all the
edges ei are contained in T 1.

It is easy to see that both τ1 . . . τr and Conj(zr−1) restrict to the identity on Stab(v)
and on 〈z〉. If w is a vertex of T 0 other than v, the Dehn twist τei restricts on Stab(w) to
a conjugation by an element giw which is 1 if w lies in the same connected component
of T 1

\ {ei} as ui , and z otherwise. Now the first alternative holds for exactly one value
of i, thus τe1 . . . τer restricts to a conjugation by zr−1 on Stab(w).



Forking and JSJ decomposition in the free group 1997

If f = wx′ is an edge of T 1
\ T 0 with w in T 0, note first that f is different from all

the edges ei (though we may have f = ēi). By Lemma 4.7, if x = t−1
f · x

′ we have

τi(tf ) =

{
giwtf (g

i
x)
−1 if f 6= ēi,

tf z
−1 if f = ēi .

If f is different from ēi for all values of i, we conclude as before by noting that giw
(respectively gix) is z for all but one value of i. If f = ēi , then w = v, x′ = ui and x
is not in the same connected component as ui , so gjw = z for all j , and gjx = z for all
but one value of j , and this value cannot be i. Thus in both cases, we get τ1 . . . τr(tf ) =

zr−1tf z
1−r . ut

4.3. Vertex automorphisms

We want to extend automorphisms of stabilizers of vertices in aG-tree to automorphisms
of G. For this we give

Definition 4.10. Let G be a finitely generated group acting on a tree T , and let v be a
vertex in T . Denote by p the map collapsing all the orbits of edges of T except those of
the edges adjacent to v.

An automorphism σ of G is called a vertex automorphism associated to v if σ(Gv)
= Gv , and if for every edge e = vw of p(T ) adjacent to v, it restricts to a conjugation
by an element ge on the stabilizer of e, as well as on the stabilizer of w if w is not in the
orbit of v.

Remark 4.11. If v is a vertex in a G-tree T , and if σ0 is an automorphism of StabG(v)
which restricts to a conjugation by an element ge on the stabilizer of each edge e adjacent
to v, we can extend σ0 to a vertex automorphism σ of G. For this, choose a Bass–Serre
presentation (T 1, T 0, (tf )f ) for G with respect to p(T ) such that p(v) ∈ T 0, and such
that the orbits of edges adjacent to p(v) are represented in T 1 by edges adjacent to p(v).
We then define σ as follows:

• on Gp(v), σ restricts to σ0;
• for any vertex x of T 0 distinct from p(v), σ restricts onGx to conjugation by ge where
e = p(v)x;
• for f = p(v)x′ an edge of T 1

\ T 0 with x = t−1
f · x

′ in T 0, we set

σ(tf ) =

{
gf tf g

−1
e where e = p(v)x if x 6= p(v),

gf tf g
−1
f ′

where f ′ = t−1
f f if x = p(v).

Remark 4.12. If σ ′ is another vertex automorphism associated to v such that σ |Gv =
σ ′|Gv , then for any vertex w of p(T ) adjacent to p(v) by an edge e, the restriction of σ
to Gw is conjugation by an element g′w such that g−1

w g′w lies the centralizer of Ge.
It is therefore easy to deduce that σ−1

◦ σ ′ is a product of Dehn twists about edges
of p(T ).
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Fig. 3. A Bass–Serre presentation (T 1, T 0, (tf )f ) for the action ofG on T together with the trans-
lates of the edges in T 1

\ T 0 by the stable letters.

Fig. 4. A Bass–Serre presentation for the corresponding action of G on p(T ).

We now give an analogue of Lemma 4.6 for vertex automorphisms.

Lemma 4.13. Let H be a finitely generated subgroup of G, and denote by TH the mini-
mal subtree ofH in T . If no translate of TH contains v, then any vertex automorphism σv
associated to v restricts to a conjugation on H .

Proof. The image of TH by p is a vertex x of p(T ), thus σv restricts to a conjugation on
Stab(x) which contains H . ut
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The following lemma describes vertex automorphisms with respect to Bass–Serre presen-
tations.

Lemma 4.14. Let G be a finitely generated group, and let T be a G-tree. Let
(T 1, T 0, (tf )f∈E1) be a Bass–Serre presentation for G with respect to T . Let σ be a
vertex automorphism of G associated to a vertex v of T 0. For a vertex u or an edge e of
T \G.v, denote by [u] (respectively [e]) the connected component of T \G.v containing
u (respectively e). Then there exists an element gR of Gv associated to each connected
component R of T \G.v adjacent to v such that

• for each vertex u of T 0
\ {v}, the restriction of σ to Gu is conjugation by g[u];

• for any edge f of T 1
\ T 0 with f ′ = t−1

f · f , we have σ(tf ) = g[f ]ztf (g[f ′])−1 for z
in C(Stab(f )).

Proof. Let R be a connected component of T \G · v adjacent to v. The collapse map p
sends all the vertices in R to the same vertex xR of p(T ) adjacent to p(v) and different
from p(v), so their stabilizers are contained in Stab(xR), on which σ restricts to conjuga-
tion by an element gR ofGv by definition. If R does not contain any vertices, it is reduced
to a single edge e adjacent to v and we let gR be such that σ restricts to a conjugation by
gR on the stabilizer of e.

For the second point, note that σ restricts to conjugation by g[f ] on Stab(f ), and to
conjugation by g[f ′] on Stab(f ′) = t−1

f Stab(f )tf . Hence for any h ∈ Stab(f ) we have

g[f ′]t
−1
f h tf g

−1
[f ′]
= σ(t−1

f htf ) = σ(tf )
−1g[f ] h g

−1
[f ′]
σ(tf ).

This implies that σ(tf ) = g[f ]ztf g−1
[f ′]

for some z in the centralizer of Stab(f ). ut

Remark 4.15. Let σ be a vertex automorphism with support v ∈ T , and let R be a
connected component of T \G.v adjacent to v; for any vertex x of R, σ restricts onGx to
conjugation by an element gR of Stab(v). Then Conj(g−1

R ) ◦ σ is a vertex automorphism
with support v, and it restricts to the identity on Gx for any vertex x of R.

4.4. Elementary automorphisms

Definition 4.16. Let T be a G-tree. If ρ is a Dehn twist about an edge e of T , or a vertex
automorphism associated to a vertex v of T , we say it is an elementary automorphism
associated to T . We call the edge e (respectively the vertex v) the support of ρ and denote
it Supp(ρ).

Lemma 4.17. Suppose ρ is an elementary automorphism associated to aG-tree T . Then
for any g ∈ G, Conj(gρ(g−1)) ◦ ρ is an elementary automorphism of g · Supp(ρ).

Proof. Denote by ρ′ the automorphism Conj(g) ◦ ρ ◦ Conj(g−1) = Conj(gρ(g−1)) ◦ ρ.
It is easy to check (for example using Lemmas 4.7 and 4.14) that if ρ is the Dehn twist
about an edge e by z ∈ C(Stab(e)), then ρ′ is the Dehn twist about g · e by gzg−1, and if
ρ is a vertex automorphism associated to v, then ρ′ is a vertex automorphism associated
to g · v which restricts to Conj(g) ◦ ρ|Gv ◦ Conj(g−1) on Gg·v . ut
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Under some conditions on G and T , elementary automorphisms commute up to conjuga-
tion.

Proposition 4.18. Let T be a cyclic G-tree whose edge stabilizers have cyclic central-
izers. Let ρ and σ be two elementary automorphisms associated to T with supports in
distinct orbits. Then there exists g ∈ G such that

ρ ◦ σ = Conj(g) ◦ σ ◦ ρ.

Proof. Choose a Bass–Serre presentation (T 1, T 0, (te)e) for G with respect to T . By
Lemma 4.17, we may assume that both ρ and σ have support in T 1.

Let R0, . . . , Rm denote the connected components of T 1
\ {Supp(ρ)}, and S0, . . . , Sn

the connected components of T 1
\ {Supp(σ )}, and assume without loss of generality that

Supp(σ ) lies in R0 and Supp(ρ) lies in S0. Note that S1, . . . , Sn are contained in R0, and
R1, . . . , Rm are contained in S0.

By Lemmas 4.7 and 4.14, there are elements gj (respectively hk) such that ρ (re-
spectively σ ) restricts to conjugation by gj (respectively hk) on the stabilizer Gu of each
vertex u which lies in Rj (respectively Sk) and is not in the orbit of the support of ρ
(respectively σ ). Also, if f is an edge of T 1 which lies in Rj (respectively Sk), then ρ
(respectively σ ) restricts to conjugation by gj (respectively hk) on the stabilizer Gf of f .

Moreover, we claim that σ(gj ) = h0gjh
−1
0 and ρ(hk) = g0hkg

−1
0 . If ρ is a vertex

automorphism associated to a vertex v, Lemma 4.14 shows that gj is an element of Gv
on which σ restricts to conjugation by h0. If ρ is a Dehn twist about e = Supp(ρ), the
element gj is in C(Ge); since C(Ge) is cyclic by hypothesis, and since σ restricts to
conjugation by h0 on Ge, it must also send gj to h0gjh

−1
0 .

Let u be a vertex of T 0 which lies in R0
∩ Sk . On Gu, we see that ρ ◦ σ restricts to

conjugation by ρ(hk)g0 = g0hk . Similarly σ ◦ ρ restricts to conjugation by σ(g0)hk =

h0g0h
−1
0 hk . Thus ρ ◦ σ restricts to Conj(g0h0g

−1
0 h−1

0 ) ◦ σ ◦ ρ on Gu. The case of u in
Rj ∩ S0 is symmetric.

If u is the support of one of the two elementary automorphisms, without loss of gen-
erality σ , the restriction of σ ◦ ρ on Gu is Conj(σ (g0)) ◦ σ |Gu , while the restriction
of ρ ◦ σ on Gu is Conj(g0) ◦ σ |Gu . Thus for any vertex u of T 0, ρ ◦ σ restricts to
Conj(g0h0g

−1
0 h−1

0 ) ◦ σ ◦ ρ on Gu.
Let now e = uv′ be an edge of T 1

\ T 0 such that v′ lies in T 1 but not in T 0, and
v = t−1

e ·v
′ is in T 0. Suppose u lies in R0

∩Sk and v in Rj ∩S0. By Lemmas 4.7 and 4.14,
we know that ρ(te) = g0zteg

−1
j and σ(te) = hkwteh

−1
0 for some z,w in C(Stab(f )).

Note that ρ and σ restrict on C(Stab(f )) to conjugation by g0 and hk respectively. From
this we see that ρ ◦ σ(te) = Conj(g0h0g

−1
0 h−1

0 ) ◦ σ ◦ ρ(te).
The remaining cases (when both u and v lie in R0

∩Sk , and where one or both of u, v
coincide with the support of ρ or σ ) are dealt with in a similar way. ut

4.5. Modular groups

Let G be a torsion-free hyperbolic group which is freely indecomposable with respect
to a subgroup H . As in [PS12], we define the relative modular group ModH (G) as the
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subgroup of AutH (G) generated by Dehn twists about one-edge cyclic splittings of G in
which H is elliptic.

Recall that we have the following result [RS94, Corollary 4.4]:

Theorem 4.19. Let G be a torsion-free hyperbolic group freely indecomposable with
respect to a (possibly trivial) subgroup H . Then the modular group ModH (G) has finite
index in AutH (G).

We now relate cyclic JSJ decompositions and modular groups. This will enable us to give
a “normal form” for modular automorphisms.

First we define a group of automorphisms associated to a G-tree.

Definition 4.20. Let G be a finitely generated group, H a subgroup of G, and T a cyclic
(G,H)-tree with a distinguished set of orbits of vertices which are of surface type.

The group of elementary automorphisms of G with respect to T , AutTH (G), is the
subgroup of AutH (G) generated by the Dehn twists about edges of T , the vertex auto-
morphisms associated to surface type vertices, and the inner automorphisms.

Lemma 4.21 (Normal Form Lemma). Let T be a cyclic (G,H)-tree whose edge sta-
bilizers have cyclic centralizers. Let (T 1, T 0, (tf )f ) be a Bass–Serre presentation for G
with respect to T . Then any element θ of AutTH (G) can be written as a product of the form

Conj(z) ◦ ρ1 ◦ · · · ◦ ρr

where the ρj are Dehn twists about distinct edges of T 1 or vertex automorphisms associ-
ated to distinct surface type vertices of T 0. Moreover, we can permute the list of supports
of the ρj . Finally, ifH fixes a non-surface type vertex x of T 0, we can in fact choose the ρj
to fix StabG(x) pointwise, and thus z to lie in the centralizer of H .

Proof. This follows easily from Lemma 4.17 and Proposition 4.18. The last statement
follows from Remarks 4.8 and 4.15. ut

The universal properties of the JSJ imply the following result, which can be seen as a
special case of [GL15, Theorem 5.4].

Proposition 4.22. Let G be a torsion-free hyperbolic group and let H be a subgroup
of G with respect to which G is freely indecomposable. Let T be the pointed cyclic JSJ
tree of G with respect to H . Then AutTH (G) = ModH (G).

To prove it, we will use the following lemmas, which relate elementary automorphisms
associated toG-trees T̂ and T when T̂ is a refinement of T . The proof of the first of these
results is immediate.

Lemma 4.23. Let T̂ and T be two G-trees and suppose p : T̂ → T is a collapse map.
Let τ be a Dehn twist by an element a about an edge e of T . Then τ is the Dehn twist
by a about the unique edge ê such that p(ê) = e.
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Lemma 4.24. Let T̂ and T be two G-trees and suppose p : T̂ → T is a collapse map.
Let τ̂ be a Dehn twist by an element a about an edge ê of T̂ . If p(ê) is an edge, then τ̂
is a Dehn twist by a about p(ê). If p(ê) is a vertex v and a ∈ Stab(ê), then τ̂ is a vertex
automorphism associated to v. Its restriction toGv is the Dehn twist by a about the edge ê
of the minimal subtree T̂v of Stab(v) in T̂ .

Proof. If p(ê) is an edge e, it is easy to see that the one-edge splittings induced by ê and
by p(ê) are the same, which proves the claim. Suppose now that p(ê) is a vertex v.

We choose a Bass–Serre presentation (T̂ 1, T̂ 0, (tf )f ) for G with respect to T̂ such
that

• ê is in T̂ 1;
• if T i = p(T̂ i) for i = 0, 1, the triple (T 1, T 0, (tf )f ) is a Bass–Serre presentation for
G with respect to T

(this can be done by taking for T 0 the lift of a maximal subtree of T̂ /G which contains a
maximal subtree of each of the maximal subgraphs collapsed under p).

The minimal subtree T̂v of Gv in T̂ is contained in the preimage of v by p. In par-
ticular, any translate of T̂v by an element of G \ Gv is disjoint from T̂v , so two ver-
tices (respectively two edges) of T̂v are in the same orbit under Gv if and only if they
are in the same orbit under the action of G. By our choice of Bass–Serre presentation,
(T̂ 1
∩ T̂v, T̂

0
∩ T̂v, (tf )f∈E((T̂ 1\T̂ 0)∩T̂v)

) is a Bass–Serre presentation for Gv with respect

to T̂v .
From this it is easy to check that the restriction of τ̂ to Gv is the Dehn twist by a

about ê with respect to the action of Gv on T̂v .
Consider now the map π : T → π(T ) which collapses all the orbits of edges of T

which are not adjacent to v. Let f = π(v)w be an edge adjacent to π(v). There is a unique
edge f̂ of T such that π ◦ p(f̂ ) = f . Then τ̂ restricts on Stab(f̂ ) to a conjugation by an
element which is either 1 or a; both fix π(v). If w is not in the orbit of π(v), the subtree
π−1(w) of T is stabilized by Gw and does not meet any translates of e. By Lemma 4.6,
τ̂ restricts on Gw to a conjugation by 1 or by a, which both fix π(v). Thus τ̂ is a vertex
automorphism with respect to π(v). ut

Lemma 4.25. Let G be a torsion-free hyperbolic group which is freely indecomposable
with respect to a subgroup H . Suppose T is a cyclic (G,H)-tree with a distinguished set
of orbits of vertices which are of surface type. Then AutTH (G) is a subgroup of ModH (G).

Proof. Suppose τ is a Dehn twist about an edge e of T which fixes H pointwise. By
definition, τ is the Dehn twist by a associated to the one-edge splitting obtained from T

by collapsing all the edges which are not in the orbit of e, thus it lies in ModH (G).
Now let σ be a vertex type automorphism associated to a surface type vertex v of T ,

with corresponding surface 6. It is a classical result that the group of automorphisms
of the fundamental group of a surface is generated by the Dehn twists δc by elements c
corresponding to simple closed curves γ on the surface. Thus it is enough to show the
result for a vertex type automorphism σ which restrict to a Dehn twist δc on Gv .

Denote by T + the refinement of T obtained by refining v by the Gv-tree dual to the
curve γ on 6, and let e+ be the edge of T + stabilized by c. By Lemma 4.24, the Dehn
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twist τ+ by c about e+ is an elementary automorphism associated to T with support v,
whose restriction to Gv is exactly δc. By Remark 4.12, σ and τ+ differ by a product
of Dehn twists about edges of T . These Dehn twists as well as τ+ are all elements of
ModH (G) by the first part of the proof, thus so is σ . ut

Proof of Proposition 4.22. By Lemma 4.25, we have AutTH (G) ≤ ModH (G).
Conversely, let T ′ be a cyclic G-tree with a unique orbit of edges in which H is

elliptic. Let a be an element in the centralizer of the stabilizer of some edge e, and denote
by τ the Dehn twist about e by a.

As noted in Remark 4.4, T is universally compatible, so it admits a refinement T̂
which collapses onto T ′ via some map p : T̂ → T ′. By Lemma 4.23, τ is a Dehn twist
about an edge ê of T̂ . Note that if p(ê) is a vertex, then it must be a surface type vertex,
so in particular the stabilizer of ê is maximal cyclic. By Lemma 4.24, this Dehn twist is
an elementary automorphism associated to T . Hence τ is in AutTH (G). ut

Lemma 4.26. Let A ≤ H be subgroups of a torsion-free hyperbolic group G which
is freely indecomposable with respect to A. Let T be a cyclic (G,A)-tree with a dis-
tinguished set of orbits of vertices which are of surface type. Suppose ρ is an elemen-
tary automorphism associated to T whose support does not lie in any translate of the
minimal subtree TH of H in T . Then there exist g ∈ G and σ ∈ ModH (G) such that
ρ = Conj(g) ◦ σ .

Proof. Consider the tree T ′ obtained from T by collapsing each subtree in the orbit of TH .
It is a (G,H)-tree with a distinguished set of orbits of vertices which are of surface type
(inherited from T ) and ρ is an elementary automorphism associated to T ′. By Remarks
4.8 and 4.15 there is g ∈ G and an elementary automorphism σ associated to T ′ such that
ρ = Conj(g) ◦ σ and σ fixes H pointwise. By Lemma 4.25, σ ∈ ModH (G). ut

The following result can be seen as a generalization of Lemma 4.21.

Proposition 4.27. Let G be a torsion-free hyperbolic group, freely indecomposable with
respect to a subgroup A. Let T be the pointed JSJ tree of G with respect to A. Let H be
a finitely generated subgroup of G containing A, and denote by TH the minimal subtree
of H in T . If θ is an element of ModH (G), it can be written as

θ = Conj(z) ◦ τe1 ◦ · · · ◦ τep ◦ σv1 ◦ · · · ◦ σvq

where each τei is a Dehn twist about an edge ei of T and each σvj is a vertex automor-
phism σvj associated with a flexible vertex vj of T such that:

• the edge ei does not lie in any translate of TH for any i,
• if vj lies in some translate of TH then the restriction of σvj to the corresponding surface

group fixes an element representing a non-boundary parallel simple closed curve.

Proof. By definition of the modular group, and by Proposition 4.18, it is enough to prove
the result when θ = τ is the Dehn twist by some element a about an edge e of a cyclic
(G,H)-tree T ′ which has a unique orbit of edges. Since G is torsion-free hyperbolic,
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we may further assume that the stabilizer of e is maximal cyclic so that the tree T ′ is
1-acylindrical.

Note that T ′ is in particular a cyclic (G,A)-tree; by universal compatibility of the
pointed JSJ tree, T admits a refinement T̂ which collapses onto T ′. We thus have collapse
maps p : T̂ → T and p′ : T̂ → T ′. The tree T̂ is obtained by refining each surface type
vertex v by the minimal subtree Tv in T ′ of its stabilizer Gv .

Let x be a vertex of T ′ stabilized by H . Let x̂ be a vertex of T̂ such that p′(x̂) = x.
Denote by T̂H the minimal subtree ofH in T̂ ; it is covered by translates of paths [x̂, h · x̂].
We have p′(h · x̂) = x for all h ∈ H , so p′(T̂H ) = {x}.

By Lemma 4.23, τ is a Dehn twist by a about an edge ê such that p′(ê) = e. Note
that ê does not lie in T̂H since the image of T̂H by p is a single vertex.

By Lemma 4.24, if p(ê) is an edge, τ is a Dehn twist about p(ê). Also, if p(ê) is an
edge, it lies outside of p(T̂H ) which contains TH , so it lies outside of TH .

If p(ê) is a vertex, it must be a surface type vertex, and Stab(e) is generated by an el-
ement corresponding to a simple closed curve on the corresponding surface; in particular
it is maximal cyclic and a is in Stab(e). Thus by Lemma 4.24, τ is a vertex automorphism
associated to the vertex p(ê) of T . Moreover, the restriction of τ to Stab(v) is a Dehn twist
about an edge of the minimal tree of Stab(v) in T̂ which is dual to a set of non-boundary
parallel simple closed curves on the corresponding surface; this finishes the proof. ut

5. Isolating types

In this section, we show that if G is a torsion-free hyperbolic group which is freely inde-
composable with respect to A and does not admit the structure of an extended hyperbolic
tower over A, then the orbits of tuples of elements of G under AutA(G) are definable
over A (equivalently, G is atomic over A).

For the notion of an extended hyperbolic floor we refer the reader to [LPS11]. We
give the following definition:

Definition 5.1. Let G be a torsion-free hyperbolic group and let A ⊂ G. Then G is
concrete with respect to A if:

(i) G is freely indecomposable with respect to A;
(ii) G does not admit the structure of an extended hyperbolic floor over A.

Lemma 5.19 of [Per11] shows that if G = F is a free group and A is not contained in a
free factor, then F is concrete with respect to A.

Here are some further examples where G is concrete with respect to A:

Example 5.2. (i) G is the fundamental group of the connected sum of four projective
planes, and A is any set of parameters that contains a non-cyclic subgroup (see [LPS11,
Lemma 3.12]).

(ii) G := 〈a, b, c, d | [a, b] = [c, d]〉 is the fundamental group of the connected sum
of two tori, and A is any set of parameters that contains a subgroup of the form 〈a, b, g〉
with g 6∈ 〈a, b〉 (see the proof of [LPS11, Lemma 6.1]).
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The proof of the result below is essentially contained in [PS12], but we include it here for
reference. For the special case of free groups see also [O11, Proposition 5.9].

Theorem 5.3. Let G be a torsion-free hyperbolic group. Suppose G is concrete with
respect to A. Then for any b̄ ∈ G, the orbit of b̄ under AutA(G) is definable over A, so
in particular tpG(b̄/A) is isolated.

Proof. By Lemma 3.7 in [PS12], there is a finite subset A0 of A such that G is freely
indecomposable with respect to A0, A is elliptic in anyG-tree in which A0 is elliptic, and
ModA0(G) = ModA(G). By [PS12, Corollary 4.5], we can assume moreover that any
embedding j : G→ G which restricts to the identity on A0 restricts to the identity on A.

By [PS12, Theorem 4.4], there is a finite set {ηj : G → Qj }
m
j=1} of quotient maps

such that any non-injective endomorphism θ : G → G which restricts to the identity
on A0 factors through one of the maps ηj after precomposition with an element σ of
ModA(G). For each j , choose a non-trivial element uj in Ker(ηj ).

Let γ1, . . . , γr be a generating set for G. Write each element a of A0, each ele-
ment uj , and the tuple b̄ as a word wa(γ1, . . . , γr) (respectively wuj (γ1, . . . , γr) and a
tuple w̄b̄(γ1, . . . , γr)).

Let 3 be a JSJ decomposition of G with respect to A. Two endomorphisms h and h′

of F are said to be3-related if h and h′ coincide up to conjugation on rigid vertex groups
of 3, and for any flexible vertex group S of 3, h(S) is non-abelian if and only if h′(S)
is non-abelian. It is easy to see that there is a formula Rel(x̄, ȳ) such that for any pair
of endomorphisms h and h′ of G, the morphism h′ is 3-related to h if and only if G |=
Rel(h(γ1, . . . , γr), h

′(γ1, . . . , γr)) (see [Per08, Lemma 5.18]).
Consider now the following formula φ(z̄, A0):

∃x1, . . . , xr

{
z̄ = w̄b̄(x1, . . . , xr) ∧

∧
a∈A0

a = wa(x1, . . . , xr)
}

∧ ∀y1, . . . , yr

{
Rel(x̄, ȳ)→

∨
j

wuj (y1, . . . , yr) 6= 1
}
.

Suppose G |= φ(c̄, A0). Then the endomorphism h : G → G given by γj 7→ xj
sends b̄ to c̄ and fixes A0, moreover no endomorphism h′ which is 3-related to h factors
through one of the maps ηi . This implies that h is injective; but by the relative co-Hopf
property for torsion-free hyperbolic groups (see [PS12, Corollary 4.2]), this in turn im-
plies that h is an automorphism fixing A0. By our choice of A0, in fact h ∈ AutA(G).
Thus the set defined by φ(z̄, A0) is contained in the orbit of b̄ under AutA(G).

To finish the proof it is enough to show that G |= φ(b̄, A0).
It is obvious that the first part of the sentence φ(b̄) is satisfied by G (just take xj to

be γj ). If the second part is not satisfied, this means that there exists an endomorphism
h′ : G → G which is 3-related to the identity, and which kills one of the elements uj .
Thus h′ restricts to conjugation on the rigid vertex groups of3, sends surface type flexible
vertex groups to non-abelian images, and is non-injective; it is a non-injective preretrac-
tion G→ G with respect to 3. By [Per11, Proposition 5.11], this implies that G admits
a structure of a hyperbolic floor over A0, thus over A, a contradiction. ut
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We further remark that if A ⊂ G is not contained in any proper retract of G, then the
isolating formula can be taken to be Diophantine, i.e. ∃ȳ (6(x̄, ȳ, ā) = 1). This follows
easily from a recent result of Groves [Gro12]:

Theorem 5.4. Let G be a torsion-free hyperbolic group. Suppose A is not contained in
any proper retract of G. Then any endomorphism of G that fixes A is an automorphism.

6. Algebraic closures

As Lemma 2.12 shows, the notion of forking independence is preserved under taking
algebraic closures of the triple under consideration. For instance, in order to prove that
two tuples b̄, c̄ fork over a set A of parameters, it is enough (by transitivity of forking
and the above mentioned lemma) to show that some elements b′ and c′ in the respective
algebraic closures acl(Ab̄) and acl(Ac̄) fork over A. Thus, it will be useful to understand
acl(A) for A a subset of a torsion-free hyperbolic group G.

It is not hard to see that if the subgroup generated by A is cyclic, the algebraic closure
of A is the maximal cyclic subgroup containing A (see [OV11, Lemma 3.1]).

IfG is concrete with respect to A, we can use the results of the previous section to get

Proposition 6.1. LetG be a torsion-free hyperbolic group which is concrete with respect
to a subgroup A. Let (T , vA) be the pointed cyclic JSJ tree of G with respect to A. Then
Stab(vA) is contained in the algebraic closure of A in G.

Proof. Let b̄ be a tuple in Stab(vA). By Proposition 4.22, ModA(G) is generated by ele-
mentary automorphisms associated to (T , vA) which fix the vertex group Stab(vA) point-
wise, thus b̄ is fixed by ModA(G).

Since ModA(G) has finite index in AutA(G), the orbit of b̄ under AutA(G) is finite.
But by Theorem 5.3, this orbit is definable over A, thus b̄ is in aclA(G) ut

The converse to this result does not hold: there could be some roots of elements of
Stab(vA) which are not in Stab(vA), yet in torsion-free hyperbolic groups, algebraic clo-
sures are closed under taking roots. But this is the only obstruction: this was proved by
Ould Houcine and Vallino in the case of free groups [OV11], and extends easily to the
case considered here.

We continue with an easy corollary of the above proposition.

Corollary 6.2. Let G be a torsion-free hyperbolic group which is concrete with respect
to a subgroup A. Then there is a finitely generated subgroup A0 of A such that A ⊆
aclG(A0). In particular aclG(A) = aclG(A0).

Proof. Take A0 to be the finitely generated subgroup of A given by [PS12, Proposi-
tion 3.7]. It is not hard to see that G is concrete with respect to A0. Let (T , vA0) be the
pointed cyclic JSJ tree of G with respect to A0. By Proposition 6.1 we have Stab(vA0) ⊆

aclG(A0); but A fixes vA0 , thus we get the result. ut
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Proposition 6.3. Let G be a torsion-free hyperbolic group concrete with respect to a
subgroup A, and let H be a finitely generated non-abelian subgroup of G which con-
tains A. Let (T , vA) and (T ′, vH ) be the pointed cyclic JSJ trees ofG relative to A andH
respectively. Denote by TH the minimal subtree of H in T .

• If U is the non-cyclic stabilizer of a rigid vertex of TH , then U ⊆ Stab(vH ).
• If S is the stabilizer of a flexible vertex of TH with corresponding surface 6, then there

is an element γ of S corresponding to a non-boundary parallel simple closed curve
on 6 which is contained in Stab(vH ).

In particular U and γ are fixed by ModH (G), and contained in aclG(H).

Proof. The tree T ′ is a cyclic tree in which A is elliptic, thus the JSJ tree T admits a
refinement T̂ which collapses onto T ′. We have collapse maps p : T̂ → T and p′ :
T̂ → T ′.

Denote by T̂H the minimal subtree of H in T̂ ; we have p(T̂H ) = TH and p′(T̂H )
= {vH }. Let now x be a vertex of TH .

If x is a rigid vertex of T with non-cyclic stabilizer U , then p−1(x) is reduced to a
point x̂ which must lie in T̂H , and also has stabilizer U . Now p′(x̂) = vH so U lies in
Stab(vH ) ⊆ aclG(H).

If x is a surface type vertex of T , the action of Stab(x) on p−1(x) is dual to a set
of disjoint simple closed curves on 6, so the stabilizer of any vertex x̂ in p−1(x) ∩ T̂H
corresponds to a subsurface of 6 which is not an annulus parallel to the boundary. In par-
ticular, Stab(x̂) contains an element γ corresponding to a non-boundary parallel simple
closed curve on 6. Again p′(x̂) = vH , so Stab(x̂) lies in aclG(H). In particular γ is in
Stab(vH ) ⊆ aclG(H). ut

We finish this section with a result which generalizes Proposition 6.3:

Proposition 6.4. LetG be a torsion-free hyperbolic group concrete with respect to a sub-
group A, and let H be a finitely generated non-abelian subgroup of G which contains A.
Let (T , vA) be the pointed cyclic JSJ tree of G relative to A. Denote by TH the minimal
subtree of H in T . Let v be a vertex of T such that the path from TH to v consists of
edges which all lie in translates of TH , and does not contain any surface type vertices.
Then Stab(v) ⊆ aclG(H).

Proof. Let (T ′, vH ) be the pointed cyclic JSJ tree of G relative to H .
The JSJ tree T admits a refinement T̂ which collapses onto T ′. We have collapse

maps p : T̂ → T and p′ : T̂ → T ′. Any non-surface type vertex y of T (respectively any
edge e of T ) has as preimage by p a single vertex (respectively a unique edge), which we
denote by ŷ (respectively ê). Moreover, Stab(ŷ) = Stab(y).

The hypotheses on v imply that the path between T̂H and v̂ consists exactly of the
lifts ê of the edges e of the path [u, v] between TH and v.

Now each ê lies in a translate of the path [v̂A, h · v̂A] for some h ∈ H , and this path is
collapsed under the map p′. Thus all the edges ê are collapsed under p′ so p′(v̂) = p′(û).

Finally, as in the proof of Proposition 6.3, we can see that for any vertex y of TH which
is of non-surface type we have p′(ŷ) = vH . Thus p′(û) = vH , and Stab(v) = Stab(v̂) is
contained in Stab(vH ) ⊆ aclG(H). ut
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7. The curve complex

In this section we give some basic definitions and results about the curve complex as-
signed to a surface, introduced by Harvey [Har81]. These will be useful for the proof of
Theorem 8.2.

Definition 7.1. Let 6 be a surface with (possibly empty) boundary. Then the curve com-
plex C(6) is the simplicial complex defined as follows:

(i) 0-simplices are simple closed curves (up to free homotopy) on6 which do not bound
a disk, an annulus, or a Möbius band,

(ii) A subset {γ0, . . . , γk} of the set of 0-simplices forms a k-simplex if the curves in the
subset can be realized disjointly.

Fig. 5. Part of the curve complex of the orientable surface of genus 2.

Remark 7.2. Let6g,n be the orientable surface of genus g with n boundary components.
In the following sporadic cases Definition 7.1 gives a degenerate discrete set or even the
empty set:

• 60,n for n ≤ 4;
• 61,n for n ≤ 1;
• the n-punctured projective plane for n ≤ 2;
• the n-punctured Klein bottle with n ≤ 1.

If 6 is the once-punctured torus 61,1 or the four-punctured sphere 60,4 we modify the
second part of the definition: a subset of the set of 0-simplices forms a simplex if the
corresponding curves can be realized with intersection number at most 1 (respectively 2
in the case of 60,4). Note that in both cases the resulting simplicial complex is the well
known Farey graph.

Combining [MM99, Theorem 1.1] and the results in [BF07, appendix] we get

Theorem 7.3. Let 6 be a surface which either is a punctured torus or has Euler charac-
teristic at most −2. Then C(6) has infinite diameter.
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The mapping class group MCG(6) of the surface 6, that is, the group of isotopy classes
of self-homeomorphisms of 6 (fixing each boundary component pointwise), acts on the
curve complex of 6 in the obvious way. We observe the following:

Lemma 7.4. Let 6 be a surface which either is a punctured torus or has Euler char-
acteristic at most −2. Let R ≥ 0, and let x be a vertex of C(6). Then there exists a
sequence (hn)n<ω of elements of MCG(6) such that the translates hn(BR(x)) of the ball
of radius R around x are pairwise disjoint.

Proof. It is immediate that there are only a finite number of orbits of vertices in C(6)
under the action of MCG(6). Let M be such that any ball of radius M in C(6) meets
each of these orbits.

Since C(6) has infinite diameter, we can find a sequence yn of vertices such that
d(yn, ym) > 2(M+R) form 6= n. By our choice ofM , each of the balls BM(yn) contains
a vertex xn = hn(x) in the orbit of x. Thus the balls BR(xn) are pairwise disjoint. ut

Before proving our next lemma we recall the correspondence between the geometric no-
tions mentioned above and their algebraic counterparts.

We fix a surface with a basepoint, (6, ∗). We note that the free homotopy class of
a simple closed curve α on 6 corresponds to the conjugacy class [a] of an element a
representing α in S := π1(6, ∗).

Moreover, a mapping class h in MCG(6) gives rise to an outer automorphism of
the fundamental group S as a surface group with boundary (that is, an outer automor-
phism that fixes the conjugacy classes corresponding to the boundary components). It is a
classical result that this induces an isomorphism between MCG(6) and Out(S). So, we
have:

Lemma 7.5. Let6 be a surface which either is a punctured torus or has Euler character-
istic at most −2. Let [a], [b] be conjugacy classes representing simple closed curves α, β
in 6. Then there is a sequence (ρn)n<ω ⊂ Out(S) such that ρi ◦ f1([a]) 6= ρj ◦ f2([a])

for any f1, f2 ∈ Out[b](S) (i.e. outer automorphisms fixing the conjugacy class of b) and
i 6= j .

Proof. We apply Lemma 7.4 for R = dC(6)(α, β) and x = β. It is a straightforward
exercise to see that the sequence (ρn)n<ω of outer automorphisms corresponding to the
sequence (hn)n<ω of mapping classes given by Lemma 7.4 satisfies the conclusion. ut

8. Forking over big sets

In this section we bring results from previous sections together in order to prove Theo-
rem 2.

We start with a lemma that connects forking independence with the modular group of
a torsion-free hyperbolic group concrete with respect to a set of parameters.

Lemma 8.1. Let G be a torsion-free hyperbolic group, and let A be a subset of G with
respect to whichG is concrete. Let b̄, c̄ be tuples inG. Suppose that the orbit ModAc̄(G).b̄
is preserved by ModA(G). Then b̄ |^

A

c̄.
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Proof. Let X := AutAc̄(G).b̄. By Proposition 5.3, X is definable over Ac̄. By Re-
mark 2.6, since X implies any other formula in tp(b̄/Ac̄), it is enough to prove that X
does not fork over A.

Now ModAc̄(G).b̄ is a non-empty subset of X preserved by ModA(G); since
ModA(G) has finite index in AutA(G), this subset is almost A-invariant; by Lemma 2.10,
we get the result. ut

We can now state and prove the second main result of the paper.

Theorem 8.2. Let G be a torsion-free hyperbolic group, and let A be a subset of G with
respect to whichG is concrete. Let (3, vA) be the pointed cyclic JSJ decomposition of G
with respect to A. Let b̄ and c̄ be tuples of G, and denote by 3Ab̄ (respectively 3Ac̄)
the minimal subgraphs of groups of 3 whose fundamental group contains the subgroups
〈A, b̄〉 (respectively 〈A, c̄〉) of G. Then b̄ and c̄ are independent overA if and only if each
connected component of 3Ab̄ ∩3Ac̄ contains at most one non-Z-type vertex, and such a
vertex is of non-surface type.

Note that since free groups are concrete over any set of parameters with respect to which
they are freely indecomposable, Theorem 2 is a corollary of this result.

Remark 8.3. We note that by Corollary 6.2 coupled with Lemma 2.12, there exists a
finitely generated subgroup A0 of A such that tuples b̄ and c̄ fork over A if and only if
they fork over A0. This easily extends to any finitely generated subgroup of A which is
“sufficiently large” (i.e. which contains A0) .

On the other hand, by [PS12, Proposition 3.6], there exists a finitely generated sub-
group A0 of A such that the minimal subgraph of groups of 3 whose fundamental group
contains 〈A, b̄〉 (respectively 〈A, c̄〉) is the same as the the minimal subgraph of groups
whose fundamental group contains 〈A0, b̄〉 (respectively 〈A0, c̄〉). Again this extends to
any “sufficiently large” finitely generated subgroup of A.

Thus, in proving Theorem 8.2, we can always assume that the set of parameters is a
finitely generated group.

We first prove the “if” direction.

Lemma 8.4. In the setting of Theorem 8.2, suppose that3Ab̄∩3Ac̄ contains at most one
non-Z-type vertex, and such a vertex is of non-surface type. Then b̄ |^

A

c̄.

Proof. Let (T , vA) be the pointed cyclic JSJ tree of G with respect to A. Let TAb̄ (re-
spectively TAc̄) denote the minimal subtree of the subgroup of G generated by A and b̄
(respectively A and c̄) in T . Note that by definition, vA lies in both TAb̄ and TAc̄.

Choose a Bass–Serre presentation (T 1, T 0, (tf )f ) for G with respect to 3 such that
vA ∈ T

0.
By Lemma 8.1, it is enough to show that ModAc̄(G).b̄ is preserved by ModA(G). For

this, it is enough to show that for any θ in ModA(G), we can find α in ModAc̄(G) such
that θ(b̄) = α(b̄).

By Lemma 4.21, θ can be written as a product of the form

Conj(z) ◦ ρ1 ◦ · · · ◦ ρt
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where the ρj fix A pointwise, are Dehn twists about distinct edges of T 1 or vertex auto-
morphisms associated to distinct surface type vertices of T 0.

The hypothesis on 3Ab̄ ∩ 3Ac̄ implies that the intersection of
⋃
g∈G g · TAb̄ with⋃

h∈G h · TAc̄ contains no surface type vertex. Also, it implies that this intersection meets
at most one orbit of an edge of each cylinder of T .

In this light, we may assume that the supports of the ρj lie outside of
⋃
g∈G g · TAb̄ ∩⋃

h∈G h · TAc̄. Indeed, suppose that Supp(ρj ) is in g · TAb̄ ∩ h · TAc̄; it must be an edge
by the remark above. By Lemma 4.9 it can be replaced by a product of a conjugation and
Dehn twists whose supports are edges in the same cylinder which are not in the orbit of e;
they must lie outside of

⋃
g∈G g · TAb̄ ∩

⋃
h∈G h · TAc̄.

Since for each j , either ρj does not belong to any translate of TAb̄, or it does not
belong to any translate of TAc̄, we may assume (using Lemma 4.26 and Proposition 4.18)
that there exists r such that ρi ∈ ModAc̄(G) for any i ≤ r and ρj ∈ ModAb̄(G) for any
j > r .

Also observe that since θ and each ρj fix A, either z is trivial, or A is cyclic and
z ∈ C(A). In the first case we can take α to be ρ1 ◦ · · · ◦ ρr .

In the second case we let τ be the product of the Dehn twists by z about the edges
of T 1 which are in the unique cylinder containing vA, but do not lie in TAc̄. Then τ satisfies
τ(b̄) = Conj(z)(b̄), and lies in ModAc̄(G). Thus we can take α to be ρ1 ◦ · · · ◦ ρr ◦ τ . ut

To prove the second direction of Theorem 8.2, it is enough to consider the following three
cases: (i) for some g, TAb̄ ∩ g · TAc̄ contains a surface type vertex, (ii) for some g, h, h′,
there are edges from distinct orbits e = xz and e′ = yz contained in TAb̄ ∩ h · TAc̄ and
g · TAb̄ ∩ h

′
· TAc̄ respectively, where each of x and y is either the basepoint, or a non-

cyclically stabilized vertex of rigid type, and (iii) for some g, TAb̄ ∩ g · TAc̄ contains an
edge e = vAx where vA is the basepoint and x is non-cyclically stabilized of rigid type.

The following lemma deals with the latter case. Note that in this case, A is cyclic.

Lemma 8.5. In the setting of Theorem 8.2, let TAb̄ (respectively TAc̄) denote the min-
imal subtree of 〈A, b̄〉 (respectively 〈A, c̄〉) in T . Suppose that there exists g such that
TAb̄ ∩ g · TAc̄ contains an edge e = vAx where vA is the basepoint and x is a non-
cyclically stabilized vertex of rigid type. Then b̄ forks with c̄ over A.

Proof. By definition of the pointed cyclic JSJ tree, since vA is at distance 1 of a non-
cyclically stabilized vertex, it follows that A is cyclic and e is the unique edge adjacent
to vA. Now vA and e are stabilized by the centralizer C(A) of A, and the stabilizer of x is
not cyclic.

By Proposition 6.3, Stab(x) ⊆ aclG(Ab̄), and by Proposition 6.4, Stab(x) ⊆
aclG(Ac̄), but Stab(x) 6⊆ aclG(A). This implies that b̄ forks with c̄ over A. ut

We can now show that if we are in case (ii), the tuples b̄ and c̄ fork over A.

Lemma 8.6. In the setting of Theorem 8.2, let TAb̄ (respectively TAc̄) denote the minimal
subtree of 〈A, b̄〉 (respectively 〈A, c̄〉) in T . Suppose that there exist g, h, h′ and edges
from distinct orbits e = xz and e′ = yz contained in TAb̄ ∩ h · TAc̄ and g · TAb̄ ∩ h

′
· TAc̄

respectively, where x and y are non-cyclically stabilized vertices which are either the
basepoint, or of rigid type. Then b̄ and c̄ fork over A.
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Proof. Choose a Bass–Serre presentation (T 1, T 0, (tα)α) for G with respect to 3 such
that e and e′ are in T 1.

Denote the stabilizers of x and y by U and V respectively, and let ū, v̄ denote gener-
ating tuples of U and V respectively. We assume without loss of generality that x 6= vA
so that U is not cyclic.

Let X denote the orbit of the pair (ū, v̄) under AutAc̄(G). We will show that X admits
infinitely many pairwise disjoint translates by a sequence of automorphisms in AutA(G);
since X is definable over Ac̄ and contains (ū, v̄), this will imply that (ū, v̄) forks with c̄
over A. Now by Propositions 6.3 and 6.4 respectively, both ū and v̄ are in acl(Ab̄), so this
implies that b̄ forks with c̄ over A.

Let τe be a Dehn twist about e by some element ε of Stab(e).
By uniqueness of the tree T , for any element φ of AutA(G) there is an automor-

phism f of T such that for any w ∈ T and g ∈ G we have f (g · w) = φ(g) · f (w).
Recall now that ModAc̄(G) has finite index in AutAc̄(G); pick φ0, . . . , φl such that the
classes ModAc̄(G)φj cover AutAc̄(G), and denote by f1, . . . , fl the corresponding auto-
morphisms of T . Since φj fixes Ac̄, the automorphism fj must preserve TAc̄. Now e lies
in g · TAc̄, so the edges fj (e) also lie in a translate of TAc̄.

Denote by τfk(e) the automorphism φkτeφ
−1
k ; it is a Dehn twist about fk(e). Choose

j1, . . . , jl′ minimal such that {fj1(e), . . . , fjl′ (e)} = {f1(e), . . . , fl(e)} and define

τ = τfj1 (e)
◦ · · · ◦ τfj

l′
(e).

We will show that for r large enough the sequence {τ rn(X)}n∈N of translates consists
of pairwise disjoint sets. For this it is enough to show that form large enough,X∩ τm(X)
is empty. Suppose that there exist j, k and α, β in ModAc̄(G) such that

α(φj (u, v)) = τ
mβ(φk(u, v)).
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By Proposition 4.27, any element of ModAc̄(G) can be written as a product of (a conju-
gation and) elementary automorphisms whose supports, if they are edges, are not in any
translate of TAc̄, hence not in the orbit of the edges fj (e). In particular β commutes with τ
(up to conjugation). Thus there exists θ = β−1α in ModAc̄(G) such that θ(φj (ū, v̄)) is
conjugate to τm(φk(ū, v̄)).

Since e and e′ are not in the same orbit, we can choose a Bass–Serre presentation forG
with respect to T such that fj (e) and fj (e′) are in T 1. The automorphism θ can be written
as a product of a conjugation and elementary automorphisms whose supports are not in the
orbits of the edges fj (e) and fj (e′). Thus Lemmas 4.7 and 4.14 imply that θ(φj (ū, v̄))
is conjugate to the tuple φj (ū, v̄). On the other hand, by definition of τ we know that
τm(φk(ū, v̄)) is conjugate to φk(ū, εmv̄ε−m), so finally there exists an element γ such
that

γφj (ū, v̄)γ
−1
= φk(ū, ε

mv̄ε−m).

For j and k fixed, this holds for at most one value of γ , since γφj (ū)γ−1
= φk(ū), and ū

generates a non-abelian subgroup. But then γφj (v̄)γ−1
= φk(ε

mv̄ε−m) can only be true
for a single value ofm (for each j, k). Thus form large enough, X∩ τm(X) is empty. ut

To finish the proof of Theorem 8.2, we need to deal with the case where translates of the
minimal subtrees intersect in a surface type vertex. For this, we will use the results about
the curve complex given in Section 7.

Lemma 8.7. In the setting of Theorem 8.2, let TAb̄ (respectively TAc̄) denote the minimal
subtree of 〈A, b̄〉 (respectively 〈A, c̄〉) in T . Suppose that there exists g ∈ G such that
(g−1
· TAb̄) ∩ TAc̄ contains a surface type vertex. Then b̄ and c̄ fork over A.

Proof. Denote by v the surface type vertex, by S its stabilizer and by6 the corresponding
surface with boundary. Fix a Bass–Serre presentation (T 1, T 0, (tf )f ) such that v lies
in T 0. Denote by vAb̄ and vAc̄ the basepoints of the pointed cyclic JSJ trees of G with
respect to 〈A, b̄〉 and 〈A, c̄〉 respectively.

By Proposition 6.3, there exist b0, c0 ∈ S which correspond to non-boundary parallel
simple closed curves on 6 such that bg0 is contained in Stab(vAb̄) ⊆ aclG(Ab̄), and c0 is
contained in Stab(vAc̄) ⊆ aclG(Ac̄).

Denote by X the orbit of bg0 under AutAc̄(G). We will show that X admits infinitely
many pairwise disjoint translates by a sequence of automorphisms in AutA(G); since X
is definable over Ac̄, this implies that b̄ forks with c̄ over A.

As in the proof of Lemma 8.6, pick φ1, . . . , φl such that the classes ModAc̄(G)φi
cover AutAc̄(G) and denote by f1, . . . , fl the corresponding automorphisms of T . Since
φi fixes Ac̄, the automorphism fi must preserve TAc̄, hence fi(v) is a surface type vertex
in TAc̄.

Let {v1, . . . , vs} be the vertices of T 0 which lie in the orbit of one of the vertices fi(v).
Up to reindexing we may assume vj is in the orbit of fj (v). Denote by Sj the stabilizer
of vj , and by bj , cj the images of b0, c0 by φj .

Note that φj fixes Ac̄, so cj = φj (c0) is also in Stab(vAc̄). Any element of ModAc̄(G)
fixes Stab(vAc̄) pointwise, so it preserves the conjugacy class of cj .
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By applying Lemma 7.5 to6 for the conjugacy classes of b0 and c0, we get a sequence
of automorphisms ρvn in Aut(S) such that for any two automorphisms σ, σ ′ of S which
preserve the conjugacy class of c0, if m 6= n the elements ρvnσ(b0) and ρvmσ

′(b0) are not
conjugate in S (and thus in G).

Let ρ
vj
n be a vertex automorphism associated to vj whose restriction to Sj is

φj ◦ ρ
v
n ◦ φ

−1
j and define

ρn = ρ
v1
n . . . ρ

vs
n .

We will show that ρn(X) ∩ ρm(X) is empty. Suppose not; then there exist j, k and
θ, θ ′ in ModAc̄(G) such that

ρnθ(φj (b
g

0 )) = ρmθ
′(φk(b

g

0 )). (8.1)

By Remark 4.21, the automorphism θ can be written as a product of a conjugation and
elementary automorphisms τe1 . . . τepσu1 . . . σuq associated to T where σuj is a vertex au-
tomorphism supported on vj , and τei is a Dehn twist about the edge ei . All the elementary
automorphisms with support distinct from vj restrict to conjugations on Sj , so θ(φj (b

g

0 ))

and θ(cj ) are conjugates of σvj (bj ) and σvj (cj ) respectively.
Now θ ∈ ModAc̄(G), so as noted above, it preserves the conjugacy class of cj ; hence

so does σvj . Let σ = φ−1
j ◦ σvj ◦ φj ; the automorphism σ preserves the conjugacy class

of c0.
Similarly, θ ′ fixes ck , so in its normal form θ ′ = Conj(g)τ ′

e′1
. . . τ ′

e′
p′
σ ′
u′1
. . . σ ′

u′
q′

, the

factor σ ′vk is such that σ ′ = φ−1
k ◦ σ

′
vk
◦ φk preserves the conjugacy class of c0.

Now ρnθ(φj (b
g

0 )) is conjugate to

ρnθ(bj ) = ρnσvj (bj ) = ρnσvjφj (b0) = ρnφjσ(b0),

which is itself equal to ρ
vj
n φjσ(b0) = φjρ

v
nσ(b0). Similarly ρmθ ′(φk(b

g

0 )) is conjugate to
φkρ

v
mσ
′(b0).

Thus (8.1) implies that φjρvnσ(b0) is conjugate to φkρvmσ
′(b0).

Now these are elements representing non-boundary parallel simple closed curves in Sj
and in Sk respectively. Thus Sj and Sk are conjugate, so we must have j = k. Hence
φjρ

v
mσ(b0) is conjugate to φjρvmσ

′(b0) in Sj , which contradicts our choice of ρvn . ut

9. Examples and further remarks

We start by giving some simple examples of forking independence between tuples in
non-abelian free groups.

Example 9.1. (i) Let γ̄1 ∈ 〈e1, e2〉 and γ̄2 ∈ 〈e3, e4〉. Then γ̄1 is independent of γ̄2 over
〈[e1, e2], [e3, e4]〉 in F4 (see Figure 1).

(ii) Let γ̄1, γ̄2 ∈ F2 \ 〈[e1, e2]〉. Then γ̄1 forks with γ̄2 over [e1, e2] (see Figure 6).
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Fig. 6. A graph of groups decomposition of the pointed tree of cylinders of F2 relative to Hk =
〈[e1, e2]

k
〉 for any k 6= 0.

We moreover note that our results give a complete description of forking independence
(for any two tuples in F2) over any set of parameters in F2. The reason is that for any set
A ⊆ F2 of parameters, either F2 is freely indecomposable with respect to A, or acl(A) is
a free factor of F2. We would like to connect this observation with the following question
we heard from K. Tent.

Question 1. Is it possible to prove that Tfg is stable using the geometric/algebraic de-
scription of forking independence?

Of course, following our discussion after Fact 2.11 one needs to find an independence
relation (satisfying the properties of Fact 2.11) in a “saturated enough” model of Tfg; still
the intuition coming from F2 might be useful.

One of the difficulties in characterizing forking (between tuples of elements) in a
given torsion-free hyperbolic group G, or indeed in any structure which is not saturated,
is that the sequence (c̄i)i<ω of tuples witnessing the forking of a formula φ(x, c̄) with
parameters inG does not have to belong toG, but in general lies in a saturated elementary
extension.

Thus, it is possible that one needs to move to and understand automorphisms of sat-
urated elementary extensions (which are known to be non-finitely generated). But in the
case of torsion-free hyperbolic groups, we are far from understanding non-finitely gener-
ated models, let alone their automorphism groups.
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