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Abstract. Developing an original idea of De Giorgi, we introduce a new and purely variational ap-
proach to the Cauchy problem for a wide class of defocusing hyperbolic equations. The main novel
feature is that the solutions are obtained as limits of functions that minimize suitable functionals in
spacetime (where the initial data of the Cauchy problem serve as prescribed boundary conditions).
This opens up the way to new connections between the hyperbolic world and that of the calculus
of variations. Also dissipative equations can be treated. Finally, we discuss several examples of
equations that fit into this framework, including nonlocal equations, in particular equations with the
fractional Laplacian.
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1. Introduction

In this paper we introduce a new and purely variational approach to the Cauchy problem
for a wide class of defocusing hyperbolic PDEs having the formal structure

w′′(t, x) = −∇W(w(t, ·))(x), (t, x) ∈ R+ × Rn, (1.1)

with prescribed initial conditions

w(0, x) = w0(x), w′(0, x) = w1(x) (1.2)

(for notation, see the remark at the end of this section). While a precise setting with all
formal details and our main results are given in Section 2, here we confine ourselves to a
rather informal description of our approach, focusing on the main ideas that lie behind it
and on the possible new perspectives that it opens up, especially some new connections
between the variational world and hyperbolic PDEs of the kind (1.1).

In (1.1), ∇W is the Gâteaux derivative of a functional (e.g. one from the calculus of
variations) W : W → [0,∞), where W is some Banach space of functions in Rn, typi-
cally a Sobolev space. If, for instance, W(u) = 1

2

∫
|∇u|2 dx is the Dirichlet integral and

W = H 1(Rn) then, formally, −∇W(u) = 1u, and (1.1) reduces to the wave equation
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w′′ = 1w, much in the same spirit as the heat equation u′ = 1u is the gradient flow of
the Dirichlet integral. Thus, in a sense, (1.1) can be considered as a “second order gradient
flow” for the functional W .

Our aim is to initiate and try to develop a rather general program, suggested by
De Giorgi in [2] (see also [3]), that offers a new, purely variational approach to equa-
tions of the kind (1.1), possibly with the addition of a dissipative term (see below). We
alert the reader that in this paper the term “variational” refers, in the spirit of De Giorgi,
to minimization, rather than critical point theory.

The main idea, the abstract counterpart to a specific conjecture stated in [2] and proved
in [10] (see also [11] for a related partial result), is to associate with the abstract evolution
equation (1.1) the functional

Fε(w) =
ε2

2

∫
∞

0

∫
Rn
e−t/ε|w′′(t, x)|2 dx dt +

∫
∞

0
e−t/εW(w(t, ·)) dt. (1.3)

This functional is to be minimized, for fixed ε > 0, over all functionsw(t, x) in spacetime
R+×Rn subject to the constraints (1.2), which now play the role of boundary conditions.
Assuming the existence of an absolute minimizer wε, the Euler–Lagrange equation of
(1.3) formally reads

ε2(e−t/εw′′ε )
′′
+ e−t/ε∇W(wε(t, ·))(x) = 0,

that is, the fourth order in time equation

ε2w′′′′ε − 2εw′′′ε + w
′′
ε +∇W(wε(t, ·))(x) = 0. (1.4)

The connection with (1.1) is clear: letting ε ↓ 0, one formally obtains (1.1) in the limit.
This motivates the following

Problem 1 (De Giorgi, [2, 3]). Letwε be a minimizer of Fε in (1.3) subject to the bound-
ary conditions (1.2). Investigate the existence of the limit function

w(t, x) = lim
ε→0+

wε(t, x), (1.5)

and see if it solves the Cauchy problem (1.1)&(1.2).

In its generality, as long as the structure of the functional W is unknown, this may sound
a little vague. In fact, De Giorgi [2] raised this general question taking cue from a precise
conjecture in a particular case, namely when

W(w) =
1
2

∫
Rn
|∇w(x)|2 dx +

1
p

∫
Rn
|w(x)|p dx (p ≥ 2)

and (1.1) becomes the nonlinear wave equation

w′′ = 1w − w|w|p−2 (p ≥ 2).

In this case, Problem 1 has an affirmative answer [10]. As we will show, however, much
can be said on Problem 1 under very mild assumptions on W , and a robust theory can
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be built that provides several a priori estimates on the minimizers wε. In some cases,
basically when W(w) is quadratic in the highest order derivatives of w, Problem 1 can
be completely solved without any other assumption. In all cases, however, up to subse-
quences the limit (1.5) always exists and estimates on wε entail the fulfillment of (1.2).
When (1.1) is highly nonlinear, the general estimates still apply, but additional work is
needed to get stronger compactness onwε and possibly obtain (1.1) in the limit (of course
such further estimates, if any, will depend on the particular structure of W(w), and should
be obtained ad hoc on a case-by-case basis).

The variational approach suggested by Problem 1 is by genuine minimization, a com-
pletely new and unconventional feature, when it comes to hyperbolic equations. The typ-
ical case is when W is a convex (lower semicontinuous, etc.) functional of the calculus of
variations (possibly depending on x,w and some of its spatial derivatives): in this case Fε
in (1.3) inherits the good properties of W , and the existence ofwε (a minimizer of Fε sub-
ject to (1.2)) is not an issue. Moreover, one may try to exploit several powerful techniques
such as the theory of regularity for minimizers to get strong compactness on wε and pass
to the limit in (1.5).

We believe that these features are a major point of interest of the present work. Indeed,
on the one hand our results provide a new, general starting point for the investigation of
a wide class of hyperbolic problems, and on the other they allow one to use methods
(coming from the elliptic theory) that have never been applied before in this context.
Thus, our framework might shed a new light on several long-standing open problems in
the theory of nonlinear hyperbolic equations.

We also point out that although the fourth order equation (1.4) has the structure of
a singularly perturbed equation, this fact is never used in our results, which are simply
based on the properties of minimizers of the functional Fε. For instance, no estimates on
the third and fourth order derivatives are required.

Our approach also works with an extra (dissipative) term on the right hand side of
(1.1), namely

w′′(t, x) = −∇W(w(t, ·))(x)−∇H(w′(t, ·))(x), (t, x) ∈ R+ × Rn, (1.6)

where H : H → [0,∞) is a Gâteaux differentiable functional, defined on a suitable
Hilbert space H ↪→ L2(Rn). For simplicity, in contrast to W , we will assume that H is a
quadratic form on H . Note that while ∇W is computed at w, ∇H is computed at w′; if,
for instance, both W and H are the Dirichlet integral, then (1.6) reduces to the strongly
damped wave equationw′′ = 1w+1w′. The reader is invited to look at Section 7, where
we discuss several examples of hyperbolic problems (with or without dissipative terms)
that fit into our scheme.

For equations with dissipative terms the counterpart to Problem 1 is

Problem 2 (Dissipative case). Let wε be a minimizer of the functional

ε2

2

∫
∞

0

∫
Rn
e−t/ε|w′′(t, x)|2 dx dt +

∫
∞

0
e−t/ε{W(w(t, ·))+ εH(w′(t, ·))} dt (1.7)

subject to the boundary conditions (1.2). Investigate the existence of a limit for wε as in
(1.5), and see if it solves the Cauchy problem (1.6)&(1.2).
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As before, the functional (1.7) relates to (1.6) via its Euler–Lagrange equation

ε2(e−t/εw′′ε )
′′
+ e−t/ε∇W(wε(t, ·))(x)− ε

(
e−t/ε∇H(w′ε(t, ·))(x)

)′
= 0,

namely,

ε2w′′′′ε −2εw′′′ε +w
′′
ε +∇W(wε(t, ·))(x)+∇H(w′ε(t, ·))(x)− ε

(
∇H(w′ε(t, ·))(x)

)′
= 0,

which formally reduces to (1.6) when ε ↓ 0.
Also in the dissipative cases our results provide estimates for the minimizers wε,

existence of a limit w, and in general all the properties described above.
A further point of interest is that, as is well known, the energy

E(t) =
1
2

∫
Rn
|w′(t, x)|2 dx +W(w(t, ·))

is formally preserved by the solutions of equation (1.1), while for equation (1.6) the pres-
ence of dissipative terms entails that the preserved quantity is

E(t)+ 2
∫ t

0
H(w′(s, ·)) ds.

Generally, however, energy conservation is purely formal, since weak solutions are not
regular enough to justify the computations needed in its proof. Our solutions are no ex-
ception, but in all cases they satisfy the “energy inequalities”

E(t) ≤ E(0) and E(t)+ 2
∫ t

0
H(w′(s, ·)) ds ≤ E(0)

for equations (1.1) and (1.6) respectively.
Finally, we point out that our results are stated for functions defined in the whole

of Rn. This choice is motivated by the fact that this is a model case of particular inter-
est. However, our results hold, without significant changes, also in different contexts, for
instance for functions defined on an open subset � of Rn with Dirichlet or Neumann
conditions imposed on ∂�.

The paper is organized as follows. The main results are stated in Section 2 and proved
in Sections 5 and 6. Section 3 contains preliminary results and Section 4 is devoted to the
key argument for the construction of the a priori estimates. Finally, several examples are
reported in Section 7.

Remark on notation. Throughout the paper, a prime as in v′, v′′ etc. denotes partial
differentiation with respect to the time variable t . For functions defined in spacetime we
will write freely u(t, x) or u(t). So if u(t, ·) is an element of a space X, and G is a
functional on X, we will write indiscriminately G(u(t, ·)) or G(u(t)). Moreover, through
the rest of the paper symbols like

∫
v dx will always denote spatial integrals extended to

the whole of Rn, and short forms such as L2, H 1 etc. will denote L2(Rn), H 1(Rn) etc.
Finally, 〈·, ·〉 will denote the duality pairing between a Banach space X and its dual X′,
the space X being clear from the context.
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2. Functional setting and main results

The functional Fε(w) to be minimized, subject to the boundary conditions (1.2), is defined
by (1.3) in the nondissipative case, and by (1.7) in the dissipative case. We shall treat the
two cases simultaneously, by letting

Fε(w) =
ε2

2

∫
∞

0

∫
Rn
e−t/ε|w′′(t, x)|2 dx dt

+

∫
∞

0
e−t/ε{W(w(t, ·))+ κεH(w′(t, ·))} dt (κ ∈ {0, 1}), (2.1)

where the parameter κ ∈ {0, 1} plays the role of an on/off variable. Dealing with Prob-
lem 2 (dissipative case) one should let κ = 1, while dealing with Problem 1 (non-
dissipative case) one should let κ = 0 and ignore the functional H.

Concerning the functionals W and H, we make the following assumptions:

(H1) The functional W : L2
→ [0,∞] is lower semicontinuous in the weak topology,

i.e.,
W(v) ≤ lim inf

k→∞
W(vk) whenever vk ⇀ v in L2. (2.2)

Moreover we assume that W(v) <∞⇔ v ∈ W , a Banach space with

C∞0 ↪→ W ↪→ L2 (dense and continuous inclusions). (2.3)

We also assume that W is Gâteaux differentiable onW , and that its derivative∇W :
W → W ′ satisfies the estimate

‖∇W(v)‖W ′ ≤ C(1+W(v)θ ), C ≥ 0, θ ∈ (0, 1), ∀v ∈ W. (2.4)

(H2) If κ = 1, we assume that H : L2
→ [0,∞] is a quadratic functional

H(v) =
{

1
2B(v, v) if v ∈ H ,
∞ if v ∈ L2

\H ,
(2.5)

where B : H × H → R is a symmetric, bounded, nonnegative bilinear form on a
Hilbert space H with the norm ‖v‖2H = ‖v‖

2
L2 + 2H(v), and such that

C∞0 ↪→ H ↪→ L2 (dense and continuous inclusions). (2.6)

If κ = 0, for definiteness we set H ≡ 0 and H = L2.

Remark 2.1. If ∇kv denotes the tensor of all k-th partial derivatives of v, the Dirichlet-
like functional

W(v) =
1
p

∫
Rn
|∇
kv(x)|p dx (p > 1)
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satisfies assumption (H1) with W the Banach space of all L2 functions v such that
∇
kv ∈ Lp, endowed with its natural norm. Since

〈∇W(v), η〉 =

∫
Rn
|∇
kv(x)|p−2

∇
kv(x) · ∇kη(x) dx, v, η ∈ W, (2.7)

we see that (2.4) holds with θ = 1 − 1/p. In view of the embeddings (2.3), the term
∇W(w(t, ·)) in equations (1.1) and (1.6), as a distribution (note that W ′ ↪→ D′ by (2.3)),
acts as a differential operator (linear when p = 2) of order 2k. Note also that the func-
tional W need not be convex.

Remark 2.2. A typical functional H fulfilling (H2) has the form

H(v) =
1
2

∑
j∈S

∫
Rn
|∂jv|2 dx (2.8)

where S ⊂ Nn is any finite set of multi-indices and ∂j denotes partial differentiation. Here
H is the space of those v ∈ L2 such that H(v) <∞, and ∇H(v), as a distribution (note
that H ′ is a space of distributions by (2.6)), is the differential operator

∑
j∈S(−1)|j |∂2j .

Remark 2.3. Assumptions (H1) and (H2) are additively stable. More precisely, if Wi :

L2
→ [0,∞] (i = 1, 2) are two functionals each satisfying (H1) (with Banach spacesWi ,

constants θi etc.), then the sum W =W1+W2 still satisfies (H1), now withW = W1∩W2
normed by ‖ · ‖W = ‖ · ‖W1 + ‖ · ‖W2 (this makes sense, in view of (2.3)). In particular,
by the Young inequality, (2.4) will hold true with θ = max{θ1, θ2}.

Finally, a similar argument applies to (H2).

Theorem 2.4 (nondissipative case). Given w0, w1 ∈ W and ε ∈ (0, 1), under as-
sumption (H1) the functional Fε defined in (1.3) has a minimizer wε in the space
H 2

loc([0,∞);L
2) subject to (1.2). Moreover:

(a) (Estimates) There exists a constant C, independent of ε, such that∫ τ+T

τ

W(wε(t, ·)) dt ≤ CT ∀τ ≥ 0, ∀T ≥ ε, (2.9)∫
Rn
|w′ε(t, x)|

2 dx ≤ C,

∫
Rn
|wε(t, x)|

2 dx ≤ C(1+ t2) ∀t ≥ 0, (2.10)

‖w′′ε‖L∞(R+;W ′) ≤ C. (2.11)

(b) (Convergence) Every sequence wεi (with εi ↓ 0) admits a subsequence which is
convergent, in the weak topology of H 1((0, T );L2) for every T > 0, to a function w
such that

w ∈ H 1
loc([0,∞);L

2), w′ ∈ L∞(R+;L2), w′′ ∈ L∞(R+;W ′). (2.12)

Moreover, w satisfies the initial conditions (1.2).



A minimization approach to hyperbolic Cauchy problems 2025

(c) (Energy inequality) Let

E(t) =
1
2

∫
Rn
|w′(t, x)|2 dx +W(w(t, ·)). (2.13)

Then the function w(t, x) satisfies the energy inequality

E(t) ≤ E(0) =
1
2

∫
Rn
|w1(x)|

2 dx +W(w0) for a.e. t > 0. (2.14)

Theorem 2.5 (dissipative case). Given w0 ∈ W , w1 ∈ W ∩ H and ε ∈ (0, 1), under
assumptions (H1) and (H2) the functional Fε defined in (1.7) has a minimizer wε in the
space H 2

loc([0,∞);L
2) subject to (1.2). Moreover, all claims of Theorem 2.4 apply, with

the following extensions and modifications:

(a) The additional estimate ∫
∞

0
H(w′ε(t)) dt ≤ C (2.15)

holds true, while (2.11) should be replaced with

‖w′′ε‖L∞(R+;W ′)+L2(R+;H ′) ≤ C. (2.16)

(b) The part on w′′ in (2.12) should be replaced with

w′′ ∈ L∞(R+;W ′)+ L2(R+;H ′). (2.17)

Moreover, the convergence w′ε → w′ holds in a stronger sense, namely

w′ε ⇀ w′ weakly in L2((0, T );H), for every T > 0. (2.18)

(c) With the same E(t), the inequality (2.14) is replaced with

E(t)+ 2
∫ t

0
H(w′(t, ·)) dt ≤ E(0) for a.e. t > 0. (2.19)

Observe that, under so general assumptions as in Theorem 2.4 (or 2.5), we do not claim
that the limit function w satisfies (1.1) (or (1.6)). On the other hand, to our knowledge
there are no counterexamples that rule out this possibility. Of course, to perform this step
(by which one would completely solve Problem 1 or 2) one should obtain extra estimates
exploiting the particular structure of the functional W , on a case-by-case basis. In some
cases, however, the estimates of Theorem 2.4 (or 2.5 if κ = 1) are enough to pass to the
limit in the main equation, as the following result illustrates.

Theorem 2.6. Assume that, for some real number m > 0,

W(v) =
1
2
‖v‖2

Ḣm +

∑
0≤k<m

λk

pk

∫
Rn
|∇
kv(x)|pk dx (λk ≥ 0, pk > 1). (2.20)

Then assumption (H1) is fulfilled if W is the space of those v ∈ Hm with ∇kv ∈ Lpk
(0 ≤ k < m), endowed with its natural norm.

Moreover, the limit function w obtained via Theorem 2.4 (or 2.5 if κ = 1) solves, in
the sense of distributions, the hyperbolic equation (1.1) (or (1.6) if κ = 1).
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Remark 2.7. In (2.20), as usual, ‖v‖Ḣm is the L2 norm of |ξ |mv̂(ξ), where v̂ is the
Fourier transform of v. The typical case is whenm is an integer, so that ‖v‖2

Ḣm reduces to
‖∇

mv‖2
L2 . In this case (see Remark 2.1) the first term in (2.20) gives rise to a differential

operator of order 2m in equations (1.1) and (1.6).
On the other hand, in (2.20),mmay fail to be an integer. In this case, however, one can

interpret the distribution ∇W(w) in 1.1 or (1.6) as a fractional differential operator; this
enables us to treat, for instance, equations with the fractional Laplacian (see Example 7
in Section 7).

Several variants are possible in the same spirit. For instance, one may introduce noncon-
stant coefficients in (2.20) (and possibly exploit Gårding-type inequalities to make W(v)

coercive), or consider more general lower order terms with suitable convexity and growth
assumptions (e.g. powers of single partial derivatives as in (2.8)). Indeed, the central as-
sumption is that W be quadratic (and coercive) in the highest order terms, which makes
the hyperbolic PDEs (1.1) and (1.6) quasilinear.

We end this section by discussing some consequences of assumptions (H1) and (H2)
which will be used in the following. First, (2.4) implies the linear control

‖∇W(v)‖W ′ ≤ C(1+W(v)), C ≥ 0, ∀v ∈ W. (2.21)

Moreover, (2.4) entails Lipschitz continuity of W along rays, as follows. Given a, b ∈ W
with ‖b‖W = 1, the function f (λ) =W(a+λb) is differentiable and estimate (2.4) gives
|f ′| ≤ C(1 + f θ ). From well known variants of the Gronwall Lemma, one finds that
f (λ) ≤ C(1+ f (0)+ λ1/(1−θ)) and so

sup
[a,a+b]

W ≤ C(1+W(a)+ ‖b‖
1/(1−θ)
W ), ∀a, b ∈ W, (2.22)

where [a, a + b] is the segment in W from a to a + b. Combining this with (2.21) yields

sup
[a,a+b]

‖∇W‖W ′ ≤ C(1+W(a)+ ‖b‖
1/(1−θ)
W ), a, b ∈ W. (2.23)

Then, from the Lagrange mean value theorem, for every δ 6= 0,∣∣∣∣W(a + δb)−W(a)

δ

∣∣∣∣ ≤ ‖b‖W sup
[a,a+δb]

‖∇W‖W ′ ,

and together with (2.23) this gives∣∣∣∣W(a + δb)−W(a)

δ

∣∣∣∣ ≤ C‖b‖W (1+W(a)+ δ1/(1−θ)
‖b‖

1/(1−θ)
W

)
, (2.24)

a quantitative bound for the Lipschitz constant of W . Thus, in particular,

W(a + δb) ≤W(a)+ Cδ‖b‖W
(
1+W(a)+ δ1/(1−θ)

‖b‖
1/(1−θ)
W

)
. (2.25)

Finally, assumption (H2) entails that H is differentiable in H , with

〈∇H(v), η〉 = B(v, η), ‖∇H(v)‖H ′ ≤
√

2H(v), v, η ∈ H. (2.26)

Moreover, H is a fortiori weakly lower semicontinuous in L2, namely

H(v) ≤ lim inf
k→∞

H(vk) whenever vk ⇀ v in L2. (2.27)
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3. Existence of minimizers and preliminary estimates

Since the spaceH 2
loc([0,∞);L

2) is invariant under time dilations t 7→ εt , it is convenient
to introduce the simpler functional

Jε(u) =

∫
∞

0
e−t

(∫
|u′′(t, x)|2

2ε2 dx +W(u(t))+
κ

ε
H(u′(t))

)
dt, (3.1)

equivalent to Fε in (2.1) in that Fε(w) = εJε(u) whenever u,w ∈ H 2
loc([0,∞);L

2) are
related by the change of variable u(t, x) = w(εt, x). Of course, the boundary conditions
in (1.2) must be scaled accordingly, namely as in (3.3) below.

The existence of minimizers wε for Fε (as claimed in Theorems 2.4 and 2.5) then
follows from the existence of minimizers uε for Jε and

uε(t, x) = wε(εt, x), t ≥ 0, x ∈ Rn. (3.2)

Lemma 3.1. Given ε ∈ (0, 1) and w0, w1 ∈ W (with w1 ∈ W ∩ H if κ = 1)
the functional Jε has an absolute minimizer uε in the class of those functions u ∈
H 2

loc([0,∞);L
2) satisfying the boundary conditions

u(0) = w0, u′(0) = εw1. (3.3)

Moreover,
Jε(uε) ≤W(w0)+ Cε. (3.4)

Remark 3.2. Throughout, the symbol C will always denote (possibly different) con-
stants that are independent of ε (but may depend on all the other data, including the
initial conditions w0, w1).

Proof of Lemma 3.1. The function ψ(t, x) = w0(x) + εtw1(x) satisfies the boundary
conditions (3.3). We also deduce from (2.25), applied with a = w0, b = w1 and δ = εt ,
that

W(w0 + εtw1) ≤W(w0)+ Cεt(1+W(w0)+ (εt)
1/(1−θ))

with ‖w1‖W absorbed into C. Multiplying by e−t and integrating, we find that∫
∞

0
e−tW(ψ(t)) dt ≤W(w0)+ Cε.

Moreover, if κ = 1, since ψ ′ = εw1 and w1 ∈ H , from (2.5) we see that

κ

ε

∫
∞

0
e−tH(ψ ′(t)) dt =

ε

2
B(w1, w1)

∫
∞

0
e−t dt ≤ Cε.

Summing up, we obtain Jε(ψ) ≤ W(w0) + Cε: in particular, Jε has a finite infimum
and (3.4) follows as soon as Jε has an absolute minimizer uε. To show this, consider a
minimizing sequence uk and fix T > 0. Combining the estimate∫ T

0
‖u′′k(t)‖

2
L2 dt ≤ e

T

∫ T

0
e−t‖u′′k(t)‖

2
L2 dt ≤ 2ε2eT Jε(uk)
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with the initial conditions (3.3) satisfied by uk , we see that {uk} is bounded in the space
H 2

loc([0,∞);L
2), whence, up to subsequences, uk(t) ⇀ u(t) and u′k(t) ⇀ u′(t) in L2 for

every t ≥ 0, for some u ∈ H 2
loc([0,∞);L

2) that fulfills (3.3). Now the term involving u′′

in (3.1) is lower semicontinuous, and the same is true of the other two terms by Fatou’s
Lemma and weak convergence in L2 of uk(t) and u′k(t) for fixed t , using (2.2) and (2.27).
This shows that Jε(u) ≤ lim inf Jε(uk), hence u = uε is a global minimizer. ut

In some cases, a weaker version of (3.4) will be used, namely

Jε(uε) ≤ C. (3.5)

Remark 3.3. To simplify notation, given a minimizer uε, we define, for t ≥ 0,

Wε(t) :=W(uε(t, ·)) and Hε(t) := H(u′ε(t, ·)). (3.6)

We also set
Dε(t) :=

1
2ε2

∫
|u′′ε (t, x)|

2 dx for a.e. t > 0, (3.7)

so that we write
Lε(t) := Dε(t)+Wε(t)+

κ

ε
Hε(t) (3.8)

for the locally integrable “Lagrangian”. Finally, we introduce the kinetic energy function

Kε(t) :=
1

2ε2

∫
|u′ε(t, x)|

2 dx ∀t ≥ 0.

The notation just introduced will be used systematically in what follows.

Note that, due to Lemma 3.4 below, Kε ∈ W 1,1(0, T ) for all T > 0 and

K ′ε(t) =
1
ε2

∫
u′ε(t, x)u

′′
ε (t, x) dx for a.e. t > 0. (3.9)

Lemma 3.4. The minimizers uε defined by Lemma 3.1 satisfy∫
∞

0
e−tDε(t) dt =

∫
∞

0
e−t

∫
|u′′ε |

2

2ε2 dx dt ≤ C, (3.10)∫
∞

0
e−tKε(t) dt =

∫
∞

0
e−t

∫
|u′ε|

2

2ε2 dx dt ≤ C. (3.11)

Proof. Estimate (3.10) follows immediately from (3.5). The inequality (see [10])∫
∞

0

∫
e−t |v(t, x)|2 dx dt ≤ 2

∫
|v(0, x)|2 dx + 4

∫
∞

0

∫
e−t |v′(t, x)|2 dx dt,

applied with v(t, x) = u′ε(t, x), shows, using (3.3) and (3.10), that∫
∞

0

∫
e−t |u′ε|

2 dx dt ≤ 2ε2
∫
|w1(x)|

2 dx + Cε2,

and (3.11) is established since w1 ∈ L
2 by (2.3). ut
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4. The approximate energy

Since integrals with an exponential weight play a major role in our investigation, it is
convenient to introduce the following average operator.

Definition 4.1. If f : R+→ [0,∞] is measurable, we let

Af (s) :=
∫
∞

s

e−(t−s)f (t) dt, s ≥ 0.

Note that Af is well defined (possibly∞) as f ≥ 0. However, since

Af (0) =
∫
∞

0
e−tf (t) dt, (4.1)

if Af (0) <∞ then Af is absolutely continuous on intervals [0, T ], and

(Af )′ = Af − f. (4.2)

In any case, since Af ≥ 0, starting from f ≥ 0 one can iterate A, and a simple compu-
tation gives

A2f (s) =

∫
∞

s

e−(t−s)(t − s)f (t) dt, (4.3)

and in particular

A2f (0) =
∫
∞

0
e−t tf (t) dt. (4.4)

We now introduce a fundamental quantity for our approach.

Definition 4.2. Let uε be a minimizer of Jε. The approximate energy is the function

Eε := Kε +A2Wε, (4.5)

or, more explicitly,

Eε(s) = Kε(s)+

∫
∞

s

e−(t−s)(t − s)W(uε(t)) dt, s ≥ 0. (4.6)

Remark 4.3. In (4.6), the kinetic energy Kε is evaluated pointwise at time s, while the
potential energy Wε is averaged over times t ≥ s via the probability kernel e−(t−s)(t−s).
However, recalling the time scaling t 7→ εt that links the functionals Fε and Jε, in the
original time scale the probability kernel in (4.6) concentrates close to s as ε→ 0. Thus,
heuristically, from (3.2) one expects that Eε(t/ε) ≈ E(t) where E is the physical energy
defined in (2.13).

Observe that, from (3.8) and (4.1), we have

AWε (0) ≤ ALε (0) = Jε(uε) ≤ C,
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and so AWε is well defined. But since A is iterated twice in (4.5), it is not even clear why
Eε(s) should be finite. In fact, as we will show, Eε(s) is finite and decreasing, and this
monotonicity will be the key to our estimates.

The monotonicity of Eε will be deduced from the following proposition.

Proposition 4.4. Let uε be a minimizer of Jε. For every g ∈ C2([0,∞)) such that
g(0) = 0 and g(t) is constant for large t ,∫
∞

0
e−s(g′(s)− g(s))Lε(s) ds

−

∫
∞

0
e−s(4Dε(s)g′(s)+K ′ε(s)g

′′(s)+
2κ
ε
Hε(s)g

′(s)) ds = g′(0)R(uε), (4.7)

where

R(uε) = −ε

∫
∞

0
e−ss〈∇W(uε(s)), w1〉 ds − κ

∫
∞

0
e−s〈∇H(u′ε(s)), w1〉 ds. (4.8)

The quantity R(uε) is finite, and satisfies the estimate

|R(uε)| ≤ C(ε + κ
√
ε) ≤ C

√
ε. (4.9)

Proof. For every δ ∈ R with |δ| small enough, the function

ϕ(t) = ϕ(t, δ) = t − δg(t) (4.10)

is a diffeomorphism of R+ of class C2. We denote by ψ its inverse,

ψ(s) = ϕ−1(s), s ≥ 0

(the dependence on δ, which is fixed, is omitted to simplify the notation). For small δ, we
consider the competitor

U(t) = uε(ϕ(t))+ tδεg
′(0)w1,

which satisfies the boundary conditions U(0) = w0 and U ′(0) = εw1, because ϕ(0) = 0
and ϕ′(0) = 1− δg′(0). We have

U ′(t) = u′ε(ϕ(t))ϕ
′(t)+ δεg′(0)w1,

U ′′(t) = u′′ε (ϕ(t))|ϕ
′(t)|2 + u′ε(ϕ(t))ϕ

′′(t),

and hence

Jε(U) =

∫
∞

0
e−t

{
1

2ε2

∥∥u′′ε (ϕ(t))|ϕ′(t)|2 + u′ε(ϕ(t))ϕ′′(t)∥∥2
L2

+W
(
uε(ϕ(t))+ tδεg

′(0)w1
)
+
κ

ε
H
(
u′ε(ϕ(t))ϕ

′(t)+ δεg′(0)w1
)}
dt.
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Changing variable in the integral letting t = ψ(s), that is, s = ϕ(t), we obtain

Jε(U) =

∫
∞

0
ψ ′(s)e−ψ(s)

{
1

2ε2

∥∥u′′ε (s)|ϕ′(ψ(s))|2 + u′ε(s)ϕ′′(ψ(s))∥∥2
L2

+W
(
uε(s)+ δεg

′(0)w1ψ(s)
)
+
κ

ε
H
(
u′ε(s)ϕ

′(ψ(s))+ δεg′(0)w1
)}
ds. (4.11)

Note that, from (4.10), s = ϕ(ψ(s)) = ψ(s)− δg(ψ(s)), that is,

ψ(s) = s + δg(ψ(s)). (4.12)

In view of the assumptions on g, we have ψ(s) ≥ s − δ‖g‖∞, and hence e−ψ(s) ≤
eδ‖g‖∞e−s . Furthermore, by (2.22) and (2.5),

W
(
uε(s)+ δεg

′(0)w1ψ(s)
)
≤ C

(
1+W(uε(s))+ ψ(s)

1/(1−θ))
and

H
(
u′ε(s)ϕ

′(ψ(s))+ δεg′(0)w1
)
≤ 2ϕ′(ψ(s))2H(u′ε(s))+ CH(w1).

These inequalities, together with (3.10), (3.11) and the finiteness of ‖ϕ′‖∞ and ‖ϕ′′‖∞,
show that Jε(U) is finite and hence U is an admissible competitor.

Since U(t) reduces to uε(t) when δ = 0, the minimality of uε implies that

d

dδ
Jε(U)

∣∣∣∣
δ=0
= 0. (4.13)

To compute this derivative, we differentiate under the integral sign in (4.11) (reasoning as
above for the finiteness of Jε(U), it is easy to prove that this is possible). From (4.12),

∂

∂δ
(ψ ′(s)e−ψ(s))

∣∣∣∣
δ=0
= g′(s)e−s − g(s)e−s .

Moreover, elementary computations give

∂

∂δ
|ϕ′(ψ(s))|2

∣∣∣∣
δ=0
= −2g′(s),

∂

∂δ
ϕ′′(ψ(s))

∣∣∣∣
δ=0
= −g′′(s).

Denoting by 2(s) the function within braces in (4.11), and recalling (3.8), we have

2(s)|δ=0 =
1

2ε2 ‖u
′′
ε (s)‖

2
L2 +Wε(s)+

κ

ε
Hε(s) = Lε(s)

and, recalling (3.7) and (3.9),

∂

∂δ
2(s)

∣∣∣∣
δ=0
= −

1
ε2 〈u

′′
ε (s), 2u′′ε (s)g

′(s)+ u′ε(s)g
′′(s)〉L2 −

2κ
ε
g′(s)Hε(s)

+ εg′(0)s〈∇W(uε(s)), w1〉 + κg
′(0)〈∇H(u′ε(s)), w1〉

= −4Dε(s)g′(s)−K ′ε(s)g
′′(s)−

2κ
ε
g′(s)Hε(s)

+ εg′(0)s〈∇W(uε(s)), w1〉 + κg
′(0)〈∇H(u′ε(s)), w1〉.
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Combining these facts, we obtain

∂

∂δ
(ψ ′(s)e−ψ(s)2(s))

∣∣∣∣
δ=0
= e−s(g′(s)− g(s))Lε(s)

− e−s
(

4Dε(s)g′(s)+K ′ε(s)g
′′(s)+

2κ
ε
g′(s)Hε(s)

)
+ e−s

(
εg′(0)s〈∇W(uε(s)), w1〉 + κg

′(0)〈∇H(u′ε(s)), w1〉
)
.

Finally, integrating in s we see that (4.13) reduces to (4.7).
We now prove estimate (4.9). For the first integral in (4.8), from (2.4) and the Young

inequality we have∣∣∣∣∫ ∞
0

e−ss〈∇W(uε(s)), w1〉 ds

∣∣∣∣ ≤ ‖w1‖W

∫
∞

0
e−ss‖∇W(uε(s))‖W ′ ds

≤ C

∫
∞

0
e−ss(1+Wε(s)

θ ) ds = C + C

∫
∞

0
e−ssWε(s)

θ ds

≤ C + C

∫
∞

0
e−ss1/(1−θ) ds +

∫
∞

0
e−sWε(s) ds ≤ C + Jε(uε) ≤ C,

where we have used (3.5), and thus |R(uε)| ≤ Cε when κ = 0. If, on the other hand,
κ = 1, we also estimate the second integral in (4.8):∣∣∣∣∫ ∞

0
e−s〈∇H(u′ε(s)), w1〉 ds

∣∣∣∣ ≤ ‖w1‖H

∫
∞

0
e−s‖∇H(u′ε(s))‖H ′ ds

≤ C

∫
∞

0
e−s

√
Hε(s) ds ≤ C

(∫
∞

0
e−sHε(s) ds

)1/2

≤ C(εJε(uε))
1/2
≤ C
√
ε,

where we have used (2.26), the Jensen inequality and (3.5). ut

Corollary 4.5. If g ≥ 0 is of class C1,1, satisfies g(0) = 0 and is affine for large t , then
(4.7) remains true (all integrals being finite). In particular, when g(t) = t ,

A2Lε (0)+
2κ
ε
AHε (0)+ 4ADε (0) = ALε (0)− R(uε). (4.14)

Remark 4.6. Since Lε(t) ≥ Wε(t), the finiteness of A2Lε (0) in (4.14) entails that the
approximate energy Eε(s) is finite for every s ≥ 0 (in fact, it is absolutely continuous on
intervals [0, T ], see the discussion after (4.1)).

Proof of Corollary 4.5. By smoothing a truncation of g, one can find an increasing se-
quence gk of C2 functions, each eventually constant, such that as k→∞,

gk(t) ↑ g(t), g′k(t) ↑ g
′(t), g′′k (t)→ g′′(t) for almost every t ≥ 0,

with g′k and g′′k uniformly bounded. We now write (4.7) for gk and let k →∞. Since the
functions

e−tLε(t), e−tDε(t), e−t |K ′ε(t)|, e−tHε(t)



A minimization approach to hyperbolic Cauchy problems 2033

are all in L1(R+) (either by the finiteness of Jε(uε) or by Lemma 3.4) and g′k(0)R(uε)
does not depend on k, all integrals pass to the limit, except for the integral of
e−tgk(t)Lε(t) because the gk are not uniformly bounded. For this term, however, one
can use monotone convergence, and the integral of e−tg(t)Lε(t) in the limit is finite, by
finiteness of all other terms. In particular, one can let g(t) = t in (4.7), which (after re-
calling (4.1) and (4.4)) yields (4.14). ut

Corollary 4.7. For almost every T > 0,

A2Lε (T )−ALε (T )+K ′ε(T ) = −4ADε (T )−
2κ
ε
AHε (T ). (4.15)

Proof. Consider the function g ∈ C1,1(R) defined as

g(t) =


0 if t ≤ 0,
t2/2 if t ∈ (0, 1),
t − 1/2 if t ≥ 1,

and for T > 0 and δ > 0 (we will let δ ↓ 0), set

gδ(t) = δg((t − T )/δ). (4.16)

Each gδ satisfies the assumptions of Corollary 4.5, and g′′δ (t) =
1
δ
χ(T ,T+δ). Letting g = gδ

in (4.7) and rearranging terms, gives∫
∞

T

e−t (gδ(t)− g
′
δ(t))Lε(t) dt +

1
δ

∫ T+δ

T

e−tK ′ε(t) dt

= −

∫
∞

T

e−t
(

4Dε(t)g′δ(t)+
2κ
ε
Hε(t)g

′
δ(t)

)
dt.

Note that, as δ → 0, gδ(t) → (t − T )+ while g′δ(t) → χ(T ,∞), with bounds |gδ(t)| ≤
(t − T )+ and |g′δ(t)| ≤ 1. By dominated convergence we can let δ ↓ 0, thus obtaining,
for a.e. T ,∫

∞

T

e−t (t − T )Lε(t) dt −

∫
∞

T

e−tLε(t) dt + e
−TK ′ε(T )

= −

∫
∞

T

e−t
(

4Dε(t)+
2κ
ε
Hε(t)

)
dt,

and multiplying by eT one obtains (4.15). ut

Theorem 4.8. The function Eε is finite and decreasing. More precisely,

E′ε(T ) ≤ −
κ

ε

(
AHε(T )+A2Hε (T )

)
, (4.17)

and

Eε(T )+
2κ
ε

∫ T

0
Hε(t) dt ≤

1
2‖w1‖

2
L2 +W(w0)+ Cε + Cκ

√
ε, ∀T ≥ 0. (4.18)
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Proof. From Remark 4.6 we know that Eε is absolutely continuous on intervals [0, T ].
Hence, differentiating (4.5) and using (4.2) written with f = AWε yields

E′ε = K
′
ε −AWε +A2Wε.

But since Wε = Lε −Dε −
κ
ε
Hε, using (4.15) we obtain

E′ε = −3ADε −A2Dε −
κ

ε
AHε −

κ

ε
A2Hε,

and (4.17) follows. Choose now f = κ
ε
Hε, so that (4.17) reads E′ε + Af + A2f ≤ 0.

Integrating we find

Eε(T )+

∫ T

0
Af dt +

∫ T

0
A2f dt ≤ Eε(0). (4.19)

For the former integral, using (4.2) we have∫ T

0
Af dt =

∫ T

0
f dt +Af (T )−Af (0).

For the latter, iterating twice the same argument gives∫ T

0
A2f dt =

∫ T

0
f dt +A2f (T )+Af (T )−A2f (0)−Af (0),

so that (4.19) in particular yields

Eε(T )+ 2
∫ T

0
f (t) dt ≤ Eε(0)+A2f (0)+ 2Af (0)

= Kε(0)+A2Wε (0)+A2f (0)+ 2Af (0) ≤ 1
2‖w1‖

2
L2 +A2Lε (0)+

2κ
ε
AH (0).

Therefore, since 4Dε(t) ≥ 0, using (4.14) we find that

Eε(T )+ 2
∫ T

0
f (t) dt ≤ 1

2‖w1‖
2
L2 +ALε (0)− R(uε),

and since ALε (0) = Jε(uε), from (3.4) we see that (4.18) follows from (4.9). ut

5. Proof of the a priori estimates

In this section we prove part (a) of Theorems 2.4 and 2.5.
As discussed at the beginning of Section 3, the minimizers wε of Fε in (2.1) (subject

to (1.2)) are related to the minimizers uε of Jε in (3.1) (subject to (3.3)) by the change of
variable (3.2), and in particular the functions wε satisfy the boundary conditions

wε(0, x) = w0(x), w′ε(0, x) = w1(x). (5.1)

So the estimates on wε will follow from analogous estimates on uε by scaling.
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Proof of (2.10). Scaling as in (3.2) and using (4.18) and (4.6) yields

1
2

∫
|w′ε(t, x)|

2 dx = Kε(t/ε) ≤ C,

which proves the first estimate in (2.10). The second estimate follows immediately from
the first and the boundary condition in (5.1), since w0 ∈ W ↪→ L2. ut

Proof of (2.15). When κ = 1, observe that (4.18) gives∫
∞

0
Hε(t) dt =

∫
∞

0
H(u′ε(t)) dt ≤ Cε, (5.2)

and (2.15) follows from (3.2) and scaling, with the use of (2.5). ut

Proof of (2.9). Since Lε ≥ 0, from (3.5) we have

e−2
∫ 2

0
Wε(t) dt ≤

∫ 2

0
e−tLε(t) dt ≤ Jε(uε) ≤ C. (5.3)

In the same spirit, for every s ≥ 0, we have

e−2
∫ s+2

s+1
Wε(t) dt ≤

∫ s+2

s+1
(t − s)e−(t−s)Wε(t) dt ≤ A2Wε (s) ≤ Eε(s) ≤ C,

which combined with (5.3) yields∫ s+1

s

Wε(t) dt ≤ C ∀s ≥ 0. (5.4)

Writing s = τ/ε and scaling, recalling (3.6) we obtain∫ τ+ε

τ

W(wε(z)) dz ≤ Cε ∀τ ≥ 0. (5.5)

Now, if τ ≥ 0 and T ≥ ε as in (2.9), by covering [τ, τ + T ] with consecutive intervals of
length ε and using (5.5) in each interval, one obtains (2.9). ut

In the next lemma we are going to use the inequality∫ t+1

t

‖∇W(uε(s))‖
1/θ
W ′
ds ≤ C ∀t ≥ 0, (5.6)

which follows immediately on combining (2.4) and (5.4).

Lemma 5.1 (Euler–Lagrange equation). Suppose that η(t, x) = ϕ(t)h(x) with ϕ ∈
C1,1([0,∞)), ϕ(0) = ϕ′(0) = 0 and h ∈ W ∩H . Then∫

∞

0
e−t

(
1
ε2 〈u

′′
ε , η
′′
〉L2 + 〈∇W(uε(t)), η〉 +

κ

ε
〈∇H(u′ε(t)), η′〉

)
dt = 0. (5.7)

Moreover, the same conclusion holds if η ∈ C∞0 (R
+
× Rn).
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Proof. The Euler–Lagrange equation (5.7) corresponds to the condition f ′(0) = 0 where
f (δ) = Jε(uε + δη); it is enough to justify differentiation under the integral sign in (3.1)
in the term involving W (the term with H is quadratic due to (2.5)).

First consider the case where η = ϕ(t)h(x), and set v = uε + δη with, say, |δ| ≤ 1.
As ϕ ∈ C1,1, ϕ(t) grows at most quadratically as t →∞; applying (2.25) with a = uε(t)
and b = ϕ(t)h, multiplying by e−t and integrating, one sees that Jε(v) is finite (and v
satisfies the boundary conditions (3.3)). For a.e. t > 0, we have

d

dδ
W(uε(t)+ δη(t))

∣∣∣∣
δ=0
= 〈∇W(uε(t)), η(t)〉 = ϕ(t)〈∇W(uε(t)), h〉,

and this function, multiplied by e−t , is integrable on R+ due to (5.6). Indeed, one can
easily check that differentiation in δ under the integral sign is justified, now using (2.24)
with a and b as before.

Now consider a generic test function η ∈ C∞0 (R
+
× Rn). Due to (5.6) and (2.3),

the left hand side of (5.7) defines a distribution on R+ × Rn. If η = ϕ(t)h(x) with
ϕ ∈ C∞0 (R

+) and h ∈ C∞0 (R
n), then in particular ϕ ∈ C1,1([0,∞)) and (5.7) has just

been established. The general case then follows from the fact that test functions of the
form ϕ(t)h(x) are dense in C∞0 (R

+
×Rn) (see [9, Chap. IV, and in particular Thm. III]).

ut

Proof of (2.11), (2.16). These estimates will follow from the following representation
formula (proved below) for u′′ε , valid for a.e. T > 0:

1
ε2 〈u

′′
ε (T ), h〉L2 = −A2f1 (T )−

κ

ε
Af2 (T ), h ∈

{
W if κ = 0,
W ∩H if κ = 1,

(5.8)

where
f1(t) = 〈∇W(uε(t)), h〉, f2(t) = 〈∇H(u′ε(t)), h〉. (5.9)

Note that in view of (2.21),

|f1(t)| ≤ ‖h‖W‖∇W(uε(t))‖W ′ ≤ C‖h‖W (1+Wε(t)).

But since A21 = 1 by (4.3), and A2Wε ≤ Eε ≤ C by (4.5) and (4.18), we have

|A2f1(T )| ≤ A2
|f1|(T ) ≤ C‖h‖W ∀T ≥ 0. (5.10)

Thus, if κ = 0, (5.8) can be seen (via the second inclusion in (2.3)) as a representation
formula for u′′ε (T ) as an element of W ′, and the last estimate gives

1
ε2 ‖u

′′
ε (T )‖W ′ ≤ C for a.e. T ≥ 0.

Then, scaling according to (3.2), one obtains (2.11).
In addition, if κ = 1 and h ∈ W ∩H , using (2.26) we have

|f2(t)| ≤ ‖h‖H‖∇H(u′ε(t))‖H ′ ≤ C‖h‖H
√
Hε(t),
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and thus, by (5.2), ‖f2‖L2(R+) ≤ C
√
ε‖h‖H . Therefore, since the operator A maps

L2(R+) continuously into itself, we find that

‖Af2‖L2(R+) ≤ C
√
ε‖h‖H .

Then, recalling (2.6), formula (5.8) can be written as u′′ε/ε
2
= 81 +82, with the bounds

‖81‖L∞(R+;W ′) ≤ C by (5.10), and ‖82‖L2(R+;H ′) ≤ C/
√
ε by the previous inequality.

On scalling according to (3.2), this means that w′′ε (t) = 81(t/ε) + 82(t/ε), and (2.16)
follows since ‖82(t/ε)‖L2 =

√
ε‖82‖L2 .

It remains to prove (5.8). For T , δ > 0, we take the C1,1 function gδ defined in (4.16).
Given h as in (5.8), we set η(t, x) = gδ(t)h(x) and we apply Lemma 5.1.

As g′′δ (t) = δ
−1χ(T ,T+δ)(t), (5.7) multiplied by eT reads

eT

ε2δ

∫ T+δ

T

e−t 〈u′′ε (t), h〉L2 dt = −

∫
∞

T

e−(t−T )
(
gδ(t)f1(t)+

κ

ε
g′δ(t)f2(t)

)
dt

with f1, f2 as in (5.9). Since |gδ(t)| ≤ (t − T )+ and |g′δ(t)| ≤ χ(T ,∞), one can dominate
the integrands as done above for f1 and f2. Finally, letting δ ↓ 0, since gδ → (t − T )+

and g′δ → χ(T ,∞), one obtains (5.8) for a.e. T . ut

6. Proof of convergence and energy inequality

In this section we first prove parts (b) and (c) of Theorems 2.4 and 2.5. Then, we prove
Theorem 2.6.

Below, we deal with a sequence of minimizers wεi as in (b) of Theorem 2.4, and we
will tacitly extract several subsequences. For ease of notation, however, we will denote
by wε the original sequence, as well as the subsequences we extract.

Proof of part (b): passage to the limit. Regardless of κ ∈ {0, 1}, (2.10) shows that the
wε are equibounded in H 1

loc([0,∞);L
2). More precisely, for every T > 0 there exists a

constant CT such that

‖wε‖
2
H 1((0,T );L2)

=

∫ T

0
(‖w′ε(t)‖L2 + ‖wε(t)‖L2) dt ≤ CT . (6.1)

Thus there exists a function w ∈ H 1
loc([0,∞);L

2) such that

wε ⇀ w in H 1
loc([0,∞);L

2) and wε(t) ⇀ w(t) in L2
∀t ≥ 0 (6.2)

as ε → 0. Clearly, the claims on w′, w′′ in (2.12) and (2.17) follow from the uniform
bounds in (2.10), (2.11) and (2.16). Moreover, when κ = 1, since H is normed by
‖v‖2H = ‖v‖

2
L2 + 2H(v), (2.15) combined with (6.1) provides a uniform bound for w′ε in

L2((0, T );H) for every T > 0, whence (2.18).
To prove that w satisfies conditions (1.2), we recall that they are satisfied, by assump-

tion, by each wε; then the first condition for w follows easily from the second part of
(6.2), considering t = 0.
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For the second condition, if κ = 0 then (2.11) and (2.10) (combined with L2 ↪→ W ′,
which follows from (2.3)) yield a uniform bound for w′ε in W 1,∞(R+;W ′), which guar-
antees the maintenance, in the limit, of w′ε(0) = w1 (now viewed as an equality in W ′).
If κ = 1 then the argument is similar; since W ∩H ↪→ L2 densely by (2.3) and (2.6), in
particular (2.16) yields a uniform bound for w′′ε in L2((0, 1); (W ∩ H)′), hence a bound
for w′ε in H 1((0, 1); (W ∩H)′), sufficient to guarantee that w′(0) = w1 (now seen as an
equality in (W ∩H)′). ut

Proof of part (c): energy inequality. To obtain (2.14) and (2.19) we need the following
lemma, proved in [10] and reformulated here in terms of the operator A.

Lemma 6.1. Let l(t), m(t) be nonnegative functions in L1
loc such that

(A2l)(t) ≤ m(t) for a.e. t > 0. (6.3)

Then, for any a > 0 and δ ∈ (0, 1),(∫ δa

0
se−s ds

)∫ T+a

T+δa

l(t) dt ≤

∫ T+a

T

m(t) dt ∀T ≥ 0.

Recalling (4.5) and (4.18), we can apply Lemma 6.1 with l(t) =Wε(t) and

m(t) = −Kε(t)−
2κ
ε

∫ t

0
Hε(s) ds +

1
2‖w1‖

2
L2 +W(w0)+ C

√
ε

(assumption (6.3) corresponds to (4.18) via (4.5)). This gives, for every T ≥ 0, every
a > 0 and every δ ∈ (0, 1),

Y (δa)

∫ T+a

T+δa

Wε(t) dt ≤ −

∫ T+a

T

(
Kε(t)+

2κ
ε

∫ t

0
Hε(s) ds

)
dt + aE(0)+ aC

√
ε,

where, for simplicity, Y (z) =
∫ z

0 se
−s ds and E(0) is defined as in (2.14). Now, recalling

(3.2), we want to rewrite this estimate in terms of wε instead of uε; in view of this, it is
convenient to first replace T with T/ε and a with a/ε, and then change variable in the
integrals according to (3.2), thus obtaining, after rearranging terms,

Y (δa/ε)

∫ T+a

T+δa

W(wε(t)) dt +

∫ T+a

T

(
1
2‖w

′
ε(t)‖

2
L2 + 2κ

∫ t

0
H(w′ε(s)) ds

)
dt

≤ aE(0)+ aC
√
ε, ∀T ≥ 0, ∀a > 0, ∀δ ∈ (0, 1).

Now, for fixed T , a, δ, recalling (6.2) we let ε → 0 in the previous estimate. Since
Y (δa/ε)→ 1, by semicontinuity we obtain∫ T+a

T+δa

W(w(t)) dt +

∫ T+a

T

(
1
2‖w

′(t)‖2
L2 + 2κ

∫ t

0
H(w′(s)) ds

)
dt ≤ aE(0)

(for the integral involving W one uses Fatou’s Lemma, (6.2) and (2.2), while the double
integral with H is a convex and strongly continuous function of w′ε in L2((0, T + a);H),
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and one may use (2.18)). Now we let δ → 0+ (with T and a fixed), then we divide by a
and finally we let a→ 0+, to obtain

W(w(T ))+ 1
2‖w

′(T )‖2
L2 + 2κ

∫ T

0
H(w′(s)) ds ≤ E(0) for a.e. T ≥ 0.

When κ = 0 this reduces to (2.14), while when κ = 1 it reduces to (2.19). ut

Lemma 6.2. For every η ∈ C∞0 (R
+
×Rn),∫

∞

0
〈w′ε(τ ), ε

2η′′′(τ )+ 2εη′′(τ )+ η′(τ )〉L2 dτ

=

∫
∞

0

(
〈∇W(wε(τ )), η(τ )〉 + κ〈∇H(w′ε(τ )), η(τ )+ εη′(τ )〉

)
dτ. (6.4)

Proof. Let ψ ∈ C∞0 (R
+
×Rn). Choosing η = etψ in (5.7) gives∫

∞

0

1
ε2 〈u

′′
ε (t), ψ

′′(t)+ 2ψ ′(t)+ ψ(t)〉L2 dt

= −

∫
∞

0

(
〈∇W(uε(t)), ψ(t)〉 +

κ

ε
〈∇H(u′ε(t)), ψ(t)+ ψ ′(t)〉

)
dt.

Now we replace uε withwε using (3.2) and, accordingly, we takeψ of the formψ(t, x) =

η(εt, x) for an arbitrary test function η. Plugging into the last equation and changing
variable τ = εt in each integral, one obtains (6.4) after integrating by parts the first term.

ut

Proof of Theorem 2.6. The functional v 7→ 1
2‖v‖

2
Ḣm clearly satisfies assumption (H1),

on letting W = Hm and θ = 1/2; then the first part of the claim follows on combining
Remarks 2.1 and 2.3. Thus, one may apply Theorem 2.4 (or 2.5, if κ = 1). We wish to
pass to the limit in (6.4), in particular in the nonlinear term involving ∇W , namely we
wish to prove that (up to subsequences)

lim
ε→0

∫
∞

0
〈∇W(wε(τ )), η(τ )〉 dτ =

∫
∞

0
〈∇W(w(τ)), η(τ )〉 dτ, (6.5)

where w is the limit function obtained by Theorem 2.4 (or 2.5). Due to (2.20) (see also
Remark 2.1 and (2.7)), we have∫
∞

0
〈∇W(wε(τ )), η(τ )〉 dτ =

∫
∞

0
〈wε(τ ), η(τ )〉Ḣm dτ

+

∑
0≤k<m

λk

∫
∞

0

∫
|∇
kwε(τ )|

pk−2
∇
kwε(τ ) · ∇

kη(τ) dx dτ.

Thus, to prove (6.5), we need strong convergence of |∇kwε|pk−2
∇
kwε (k < m) in L1(Q),

for every cylinder Q = (0, T ) × B (B being a ball in Rn), and weak convergence of wε
in L2((0, T );Hm).
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Now, due to (2.20), the bounds in (2.9) (with τ = 0) take the concrete form∫ T

0

(
‖wε(t)‖

2
Ḣm +

∑
0≤k<m

λk

∫
Rn
|∇
kwε(t, x)|

pk dx

)
dt ≤ CT (T ≥ 1),

so that, in view of the second part of (2.10), wε is weakly compact in L2((0, T );Hm),
while ∇kwε is bounded in Lpk (Q) (we focus on those k for which λk > 0). Thus, to
conclude, it suffices to check the strong convergence of ∇kwε in L2(Q) (this condition is
even stronger than necessary if pk < 3). Now fix a cylinderQ = (0, T )×B. If 0 ≤ k < m

we have Hm(B) ↪→ H k(B) ↪→ L2(B), and the first injection is compact; thus, combin-
ing the bound for wε in L2((0, T );Hm) with the bound for w′ε in L2((0, T );L2(B))

(from 2.10), we obtain the strong compactness of wε in L2((0, T );H k(B)) (see e.g. [7,
Thm. 5.1]), whence ∇kwε converges strongly in L2(Q).

The terms in (6.4) other than ∇W(wε) are linear in wε, and using Theorem 2.4(b)
one can pass to the limit in (6.4) when κ = 0. Finally, if κ = 1, recalling (2.5) and (2.26),
also the term involving ∇H(wε) passes to the limit in (6.4), using (2.18) and (2.26). In
either case, taking the limit in (6.4) one obtains∫

∞

0
〈w′(τ ), η′(τ )〉L2 dτ =

∫
∞

0

(
〈∇W(w(τ)), η(τ )〉 + κ〈∇H(w′(τ )), η(τ )〉

)
dτ,

that is, w is a weak solution of (1.1) (or (1.6) if κ = 1). ut

7. Examples

In this section we show how several concrete problems fit into the general scheme de-
scribed above. Let us begin with equations without dissipative terms.

1. Linear equations. These are obtained when W is a quadratic functional, e.g.

W(v) =
1
2

∑
j∈R

∫
|∂jv|2 dx,

where R ⊂ Nn is a finite set of multi-indices and ∂j denotes partial differentiation. In
this case the natural choice for the domain of W is W = {v ∈ L2

| ∂jv ∈ L2, ∀j ∈ R},
and assumption (H1) is fulfilled (in particular, (2.4) is satisfied with θ = 1/2).

Reasoning as in Remark 2.1, we see that the hyperbolic equation corresponding to
(1.1) is

w′′ = −
∑
j∈R

(−1)|j |∂2jw.

In this case Theorem 2.6 applies (κ = 0), and Problem 1 can be completely solved.
Concrete instances are the linear wave equation w′′ = 1w, the Klein–Gordon equation
w′′ = 1w − w, or the biharmonic wave equation w′′ = −12w.
2. Defocusing NLW. This matches De Giorgi’s original conjecture in [2], and has been
dealt with in [10]. It corresponds to the choice

W(v) =

∫ (
1
2
|∇v|2 +

1
p
|v|p

)
dx
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in (1.3), for some p > 2. Here, by Remark 2.1, (1.1) takes the concrete form

w′′ = 1w − |w|p−2w.

If we let W = H 1
∩Lp, assumption (H1) is satisfied (with θ = 1− 1/p in (2.4)), and all

the results in [10] are recovered as an application of Theorem 2.6.

3. Sine-Gordon equation. If we let

W(v) =

∫ ( 1
2 |∇v|

2
+ 1− cos v

)
dx

with domain W = H 1, then (1.1) becomes the sine-Gordon equation

w′′ = 1w − sinw.

Then (H1) is fulfilled with θ = 1/2, and (a slight variant of) Theorem 2.6 applies. Note
that the functional W associated with this problem is not convex.

4. Quasilinear wave equations. Powers other than 2 on the gradient term in W give rise
to quasilinear wave equations. For example

W(v) =
1
p

∫
|∇v|p dx or W(v) =

∫ (
1
p
|∇v|p +

1
q
|v|q

)
dx (p, q > 1)

correspond, respectively, to the quasilinear wave equations

w′′ = 1pw and w′′ = 1pw − |w|
q−2w,

where 1p is the p-laplacian. Assumption (H1) is satisfied, for the former equation, if
we let W = {v ∈ L2

| ∇v ∈ Lp} and θ = 1 − 1/p, while for the latter one may
set W = {v ∈ L2

| ∇v ∈ Lp, v ∈ Lq} and θ = 1 − 1/max{p, q}. In both cases
Theorem 2.4 applies, while Theorem 2.6 cannot be applied (unless p = 2). It is an open
problem, however, to establish if the last claim of Theorem 2.6 (passage to the limit in
the equation) still applies when p 6= 2. A positive answer would settle the long-standing
open question of global existence of weak solutions for this kind of equations (see [1]).

5. Higher order nonlinear equations. Just to give an example (see for instance [8]), con-
sider

W(v) =

∫ (
1
2
|1v|2 +

1
p
|∇v|p +

1
q
|v|q

)
dx (p, q > 1).

Then (1.1) becomes the nonlinear vibrating-beam equation

w′′ = −12w +1pw − |w|
q−2w,

where 12 is the biharmonic operator. Here W = {v ∈ H 2
| ∇v ∈ Lp, v ∈ Lq }, while

θ = 1− 1/max{2, p, q}. Here Theorem 2.6 applies, and provides global existence.
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6. Kirchhoff equations. The general scheme presented in this paper allows one to treat
also nonlocal problems. A typical example is the Kirchhoff equation

w′′ =

(∫
|∇w|2 dx

)
1w.

Here one chooses

W(v) =
1
4

(∫
|∇v|2 dx

)2

, W = H 1

(note that (2.4) holds with θ = 3/4), and Theorem 2.4 applies (while it is an open problem
whether the last claim of Theorem 2.6 is true in this case). More generally, if W(v) =
1
28(

∫
|∇v|2 dx) for some appropriate function 8, one formally obtains the equation

w′′ = 8′
(∫
|∇w|2 dx

)
1w

(the appropriate constant θ in (2.4) will depend on 8).

7. Wave equations with the fractional Laplacian. Given s ∈ (0, 1), we may consider the
nonlocal energy

W(v) = c

∫∫
|v(x)− v(y)|2

|x − y|n+2s dxdy +
λ

p

∫
|v|p dx (c > 0, λ ≥ 0, p > 1),

with domain W = H s
∩ Lp (or simply H s if λ = 0). It is well known (see e.g. [4]) that

the first integral is the natural energy associated with the fractional Laplacian (−1)s , so
that (for a proper choice of c, see [4]) (1.1) becomes

w′′ = (−1)sw − λ|w|p−2w,

a (nonlinear if λ > 0) wave equation with the fractional Laplacian. One may check that
assumption (H1) is satisfied with θ = 1/2 (or θ = 1 − 1/max{2, p} if λ > 0) in (2.4).
Here one may apply Theorem 2.6, thus obtaining global existence.

The next examples concern dissipative equations with a structure as in (1.6); these
are related to the functional in (1.7), as stated in Problem 2. We will mainly focus on the
choice of the functional H, thus obtaining dissipative variants of the previous examples.

8. Telegraph type equations. These are obtained by letting

H(v) =
1
2

∫
|v|2 dx (with domain H = L2),

thus fulfilling assumption (H2). Since 〈∇H(v), ·〉 = 〈v, ·〉L2 , by Remark 2.2 this choice
of H generates the term −w′ on the right hand side of (1.6).

If, for instance, W is as in Example 2, then we can obtain the nonlinear telegraph
equation

w′′ = 1w − |w|p−2w − w′.
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In this case one can solve Problem 2 completely, since Theorem 2.6 can now be applied
with κ = 1. See also [6] for related results on bounded domains.

If, on the other hand, W is as in Example 4, then one obtains

w′′ = 1pw − |w|
q−2w − w′

and so on. In fact, in practice, the term −w′ can be inserted in any of the above examples
(Theorem 2.5 can always be applied, while Theorem 2.6 should now be applied with
κ = 1, when possible).

9. Strongly damped wave equations. The term “strongly damped” usually denotes the
presence of 1w′ in the equation (see e.g. [5]). We can treat this case by letting

H(v) =
1
2

∫
|∇v|2 dx (with domain H = H 1),

so that ∇H(v) corresponds to −1v by Remark 2.2. Then, building on Example 2, we
may consider

w′′ = 1w − |w|p−2w +1w′

(for which Theorem 2.6 applies with κ = 1), or quasilinear versions such as

w′′ = 1pw − |w|
q−2w +1w′.

The last equation does not satisfy the assumptions of Theorem 2.6 (unless p = 2). In a
forthcoming paper, however, we will show that the claim of Theorem 2.6 is in fact true
for every p, q > 1.

10. Other damped equations. In each of Examples 1–3 one can add several dissipative
terms. For example, by Remark 2.2, the choice

H(v) =
1
2

∫
(|1v|2 + |∇v|2 + |v|2) dx

would introduce, in any given equation, the term −12w′ +1w′ − w′.
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