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Abstract. We describe explicit relations in the symplectomorphism groups of hypersurfaces in
toric stacks. To define the elements involved, we construct a proper stack of these hypersurfaces
whose boundary represents stable pair degenerations. Our relations arise through the study of the
one-dimensional strata of this stack. The results are then examined from the perspective of ho-
mological mirror symmetry where we view sequences of relations as maximal degenerations of
Landau—Ginzburg models. We then study the B-model mirror to these degenerations, which gives
a new mirror symmetry approach to the minimal model program.
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1. Introduction

The mapping class groups of punctured Riemann surfaces have been studied from a vari-
ety of perspectives for many years. Following the ideas of Hatcher, Thurston and others,
Wajnryb gave a finite presentation for these groups [49]. Generalizations of these results
to diffeomorphism groups in higher dimensions are much less tractable; moreover, if the
manifold is equipped with a symplectic structure, there exist subtle distinctions between
the group of diffeomorphisms and the group of symplectomorphisms [46]. However, by
considering symplectic manifolds in the context of toric or tropical geometry, structures
which produce meaningful relations in the symplectomorphism group arise. This paper
aims to introduce a systematic approach for studying such generators and relations in
appropriate symplectomorphism groups, valid in all dimensions.

Let )Y denote a suitably generic hypersurface in a toric variety (or toric orbifold) X
Note that ) has a boundary divisor d) obtained by the intersection with the toric bound-
ary, and ) may be viewed as a symplectic orbifold (), w) if X is itself equipped with
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a symplectic form. We then introduce generators and relations for a subgroup G of the
symplectic mapping class group mo(Symp(), 3))). Our method is to consider a stack V
whose points correspond to (orbifold) smooth hypersurfaces )V moving in a fixed linear
system on X and which obey appropriate transversality conditions with respect to the
toric boundary of X'. We find a symplectic connection on the universal hypersurface over
V and employ symplectic parallel transport:

P: Q. (V) — Symp(Y, ). ey

where €2, is the based loop space.

Taking the group G = mo(im(P)), we find generators and relations by studying them
in 71 (V). The moduli space V is constructed following the techniques of Alexeev [3], and
is studied via the combinatorial methods of Gelfand, Kapranov and Zelevinsky [24].

Let Q be an integral polytope and A C Q a subset of lattice points such that the
convex hull of A is Q. This data defines a linear system on the toric variety X . We
construct a toric stack Xs(4) which has the affine toric DM substack V4 containing V.
In fact, V arises as the complement of a particular discriminant locus in V4 C Xx(4).
Unfortunately, there are precious few cases where the fundamental groups of comple-
ments of discriminant loci are completely understood (see e.g. [18, 39]). We bypass this
difficulty by considering only the one-dimensional strata of the toric boundary of Xx(4).
Combinatorially, these strata correspond to the circuits of A [24].

In the case of curves, the generators of the mapping class group can be taken to
be Dehn twists and braids. One expects a more complicated set of generators to occur
in higher dimensions. Indeed, the generators we obtain fall into two different classes:
hypersurface degeneration monodromy and stratified Morse function monodromy. The
former refers to monodromy around the points in d Xs(4). Combinatorially, this means
monodromy obtained from degenerations of hypersurfaces which correspond to subdi-
visions of Q. This monodromy was studied in the case of a maximal triangulation by
Abouzaid [1] in terms of tropical geometry. The geometric description of these symplec-
tomorphisms is obtained by first breaking the hypersurface up into its degenerate compo-
nents and then convolving along the degenerating vanishing cycle to obtain a global map.
For curves, this amounts to a combination of a Dehn twist and a finite order map. The
other generators corresponding to stratified Morse function monodromy arise from mon-
odromy around the discriminant locus in X’s(4). The local model for monodromy here
is a generalization of the usual monodromy around a Morse singularity to that around a
stratified Morse singularity as defined in Goresky and Macpherson’s work [27]. Its de-
scription is that of a generalized braid about a Lagrangian submanifold which is a join
of a sphere and simplex. This gives twists about Lagrangian discs and balls, as well as
other interesting joins, and thus these twists are generalizations of Seidel’s symplectic
Dehn twists about Lagrangian spheres [45]. We emphasize that these generalized spheri-
cal twists come from vanishing loci which are not topological spheres, but which actually
appear to be quite natural from the contributing toric geometry.

We summarize the above discussion with the following abridged version of Theo-
rem 2.14 in Section 2.1.
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Theorem 1.1. Let A be a circuit affinely spanning 7¢, X  the associated toric stack,
and Y C X4 a general hypersurface in the , linear system given by A. Then there are
symplectomorphisms Ty, T1, To € Symp(), 0Y) with Ty and T hypersurface degen-
eration monodromy maps and T| the monodromy about a stratified Morse singularity. In
the mapping class group wo(Symp(Y, 0))), these satisfy the relation

ToTh Too = (1) 2
where T (t) is a rotation about the boundary 9.

For brevity, the above theorem was only stated for the case of a circuit itself; this is
a very small class of toric varieties. In order to put the generators and relations into a
symplectomorphism group of any smooth hypersurface in a toric variety, we address the
process of regeneration of circuits. This allows us to import relations obtained from the
one-dimensional boundary strata of AXs;(4) into the interior, and thus to study the topology
of general hypersurfaces in toric varieties. In this way, we obtain a host of geometrically
meaningful relations between generators in the subgroup G. More specifically, taking a
general map ¢ : P! — X’z (4) and pulling back the universal hypersurface gives a framed
Lefschetz pencil over P!. We describe a presentation of the monodromy group associated
to such pencils by performing an isotopy near the boundary of Xx(4) and relating the
bubbled components to circuits. This gives a combinatorial description not only of the
groups involved, but their action on the hypersurface.

A supplemental goal of this work is to study these ideas in the context of homological
mirror symmetry, and more specifically, to give applications to the study of Landau—
Ginzburg (short: LG) models and their A-model Fukaya—Seidel categories. The mirrors
of Fano toric varieties are open subsets of certain pencils of hypersurfaces in toric varieties
[26, 31]. Our perspective takes a fiberwise compactification of such a LG model as a curve
i : C = Xx(a). More precisely, the mirrors of Fano toric varieties which arise from the
Hori—Vafa construction are obtained as compactifications of one-parameter torus orbits
in Xx(4). Following results of [35], we observe that the coarse moduli space of these
LG models has a natural compactification as a toric variety whose moment polytope is
the monotone path polytope of X(A) [6, 7]. The vertices of the monotone path polytope
of X (A) correspond to particular sequences of circuits on A or equivalently to sequences
of edges on X (A). One main application of our work is to use any such sequence to
describe an associated semiorthogonal decomposition of the Fukaya—Seidel category of
the LG model.

For the mirror description, i.e. the corresponding structure on a mirror toric variety,
this semiorthogonal decomposition complements recent developments in the study of de-
rived categories of toric varieties. Work of Bondal-Orlov [9] and Kawamata [36] demon-
strated relations between birational transformations coming from the minimal model pro-
gram and semiorthogonal decompositions. One goal of this paper is thus to supply a
mirror A-model interpretation of Kawamata’s work. In the toric case, the equivariant bira-
tional geometry is well-understood combinatorially, going back to the work of Reid [44],
and is also dictated by the combinatorics of secondary polytopes. We show concretely
that degenerations of LG model mirrors to a toric variety Xs, correspond bijectively to



2170 Colin Diemer et al.

certain runs of the minimal model program for X;. The particular runs are those given
by running the minimal model program with scaling. As a consequence we obtain a con-
cise description of the mirrors of toric flips and toric divisorial contractions in terms of
circuits. We conjecture that there is an equivalence of categories which restricts to this
identification of semiorthogonal components, giving a clear picture of the geometry un-
derlying homological mirror symmetry for toric DM stacks. We give evidence for this
conjecture by computing ranks in K -theory, extending results of Borisov—Horja [11].

We summarize the relationship between the minimal model sequences of Xy and
the mirror A-model LG degenerations on Xg‘ir in Theorem 3.18, which in simple cases
reduces to the following statement.

Theorem 1.2. The set of regular minimal model sequences for a Fano toric stack Xs, are
in bijective correspondence with the set of maximal degenerations of the LG models on the
mirror stack Xg‘ir. Both are in bijective correspondence with the vertices of a monotone
path polytope X ,(X(A)).

2. The circuit relation

This section will give one main result of this paper which is a detailed description of
a class of relations that occur in the symplectic mapping class groups of hypersurfaces
in a toric stack. These relations involve a combination of stable pair degeneration mon-
odromy and twisting about a stratified Morse singularity, both of whose local models are
investigated in Appendix B. After stating the relation, we work through three examples
in dimension 1. Finally, we conclude with a brief investigation of regenerations which
incorporate various relations into a finite presentation.

2.1. Circuit stacks

This section will be concerned with establishing a relation between certain elements of the
mapping class group of a hypersurface Z in the toric stack Xp where Q is the convex hull
of what is known as an affine circuit A. The elements in this relation arise as monodromy
transformations around singular values of a function 7. This function appears naturally
as the universal hypersurface over a moduli stack of hypersurfaces. In particular, in Ap-
pendix A.3 we define a compactified moduli space X'z (4) of hypersurfaces in Xp and a
total space Xg(4) with a universal hypersurface V4. The stacks Xs;(4) and Xg(4) are both
toric and are referred to as the secondary and Lafforgue stacks respectively. There is an
equivariant toric morphism 7 : Xg(4) — Xx(a) which restricts to the universal hyper-
surface w : Y4 — A'sa). The fibers of this map represent hypersurfaces associated to
sections of a natural line bundle O 4 (1) over X, and their degenerations. As we will see,
there are three critical points around which symplectic parallel transport yields interesting
symplectomorphisms of the fiber. We will refer to Appendices A and B for the important
details concerning the construction and properties of toric moduli stacks and symplectic
mapping class groups respectively.
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G

oa=(1,3) op=(2,3) oa=221)
C:(3,—1,_1,_1) c=(3737_23_27_2) c:(_lv_lsl’lvo)

Fig. 1. Examples of extended circuits.

We begin by recalling the definition and basic properties of a circuit from [24, Chap-
ter 7.1.B] and detailing the Lafforgue and secondary stack of a circuit. The map 7 :
Xo) — Xx(a) will also be reexpressed in concrete terms and its monodromy will be
studied. In what follows, we will assume that A = Z is a rank d affine lattice.

Definition 2.1. A circuit A C A is an affinely dependent set such that every proper
subset is affinely independent.

We will say that a subset A C A has rank r if rk(Affz(A)) = r where Affz(A) is the
integral affine span of A. A circuit is non-degenerate if its rank equals that of A. In what
follows, we will consider both non-degenerate and degenerate circuits.

Definition 2.2. An extended circuit is a subset A C A such that |[A] = d 4+ 2 and
rk(Affz(A)) =d.

Alternatively, an extended circuit is an affinely spanning subset A = {ao, ..., as+1}
whose lattice of affine relations has rank 1, generated by ¢ = (cop, ..., cq+1) € 74+2
where

d+1 d+1

Z cia; = 0, Z Ci = 0. (3)

i=0 i=0

Given the relation (3), we may write A as the disjoint union A = A_ U Ag U A4 where
a;i € Ay if and only if +¢; > 0, and a; € Ay if and only if ¢; = 0. The signature of
an extended circuit is defined to be o (A) = (|A+|, |A—_[; |Ag|). When A is a circuit, it is
clear that |Ag| = 0 and we then write 0 (A) = (JA4|, |A_|). The signature does depend
on the sign of ¢ up to transposing |A4| and |A_|.

We will call a marked polytope (Q, A) a circuit, or an extended circuit, if A is one.
Our convention is not to take ¢ as a primitive element, but to force the greatest common
divisor of the ¢; to be |K 4|, where K 4 is defined in (54). This then implies that the
volume of Q is

v = Vol(Q) =% > ¢,
a;€eA4
where we normalize the volume of the standard simplex to 1.

We note that an extended circuit is not generally a circuit unless Ag = @. This moti-

vates the following definition.
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Definition 2.3. The core of an extended circuit A is the circuit
Core(A) ;= AL UA_.

For any extended circuit A, there are precisely two regular triangulations 71 of (Q, A) as
in Definition A.10. These are given by

Ty = {Conv(A — {ai}D}aeAs- “

The union of the vertices of the simplices in 7+ equals A unless |[A4| = 1or [A_| = 1,
in which case the respective triangulation is marked by A — Ay.

While we will deal with the geometry of extended circuits (Q, A) in isolation for
most of this and the next section, the primary reason for us to investigate them is how
they relate to a larger marked polytope (Q, A) containing (Q, A). The key fact in this
regard is that every edge of the secondary polytope ¥ (A) from (56) corresponds to a
circuit modification. We recall this theorem and the necessary definitions from [24].

Definition 2.4. Let T be a triangulation of (Q, A) and A C A a circuit with triangula-
tions 7. We say that T is positively (resp. negatively) supported on A if:

(i) T4 (resp. T— ) consists of faces of simplices in T.
(i) Forevery J C A,ifo € T4 (resp. T— ) with JNo = @ and J Uo a maximal simplex
of Tthen J Uo’ € T for every o’ € Ty (resp. T— ).

For any J satisfying (ii), we say that J U A is a separating extended circuit of T.

If T is positively supported on A, then one may define a new triangulation m 4(T) := T’
which is negatively supported on A by changing the triangulations of every separating
extended circuit. Such a change is referred to as a circuit modification along A.

Theorem 2.5 ([24, Theorem 7.2.10]). Let T and T’ be two regular triangulations
of (Q,A). The vertices o1, o € X(A) are joined by an edge if and only if there is
a circuit A C A such that T is supported on A and T' = m 4(T).

Example 2.6. Let
A= {(17 0)3 (Os 1)5 (]’ 1)’ (_11 _1)7 (09 O)}

and Q be its convex hull. As an extended circuit in 7? must have four elements, we
see that A contains five extended circuits, namely the 4-element subsets of A. How-
ever, A only contains four circuits, as A := {(1, 1), (—1, —1), (0, 0)} is the core of
both A := {(1,0), (1, 1), (=1, —1), (0,0)} and A := {(0, 1), (1, 1), (—1, —1), (0, 0)}.
Choosing ¢ = (—1, —1, 2) for the affine relation of A, the two triangulations of the in-
terval A are given by 7_ which breaks A into two intervals and Ty which is all of A, but
with the marked set {(—1, —1), (1, 1)}. Consider the regular triangulations T and T’ illus-
trated in Figure 2. The triangulation T is negatively supported on A, while T’ is positively
supported on A. Clearly J; := {(1, 0)} and J> := {(0, 1)} satisfy Definition 2.4(ii) so that
both extended circuits A1 and A; are separating. To see the secondary polytope of A, the
remaining circuits and their modifications, we refer the reader to Figure 10.
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T T

Fig. 2. Circuit modification along A.

In equation (44), we define the principal A-determinant E4 on the linear system of sec-
tions L4 C I'(Xg, O4(1)). This polynomial vanishes on elements of £4 whose zero
locus intersects an orbit orbr non-transversely for some face F of Q. In Definition A.28,
we extend E 4 to a section E i‘ of a line bundle over the secondary stack X'y (1) with zero
loci £4. Now, the edges of the secondary polytope correspond to one-dimensional orbits
of X5;(ay. Thus Theorem 2.5 indicates that if we aim to understand the symplectic mon-
odromy of a hypersurface as we loop around £, = {E} = 0}, it is a reasonable first
step to understand the monodromy around circuits, extended circuits and, more generally,
circuit modifications.

We now take a moment to study basic properties of the toric stack Xp associated to
an extended circuit by investigating the normal fan to Q.

Definition 2.7. Suppose I' = I'1 & "> where the rank of I'; is d; and (Q;, A;) are marked
polytopes in I'; ® R. If (Q1, A1) is a (d; — 1)-dimensional simplex which does not con-
tain 0, we say that

(Conv((Q1 x {0}) U ({0} x Q2)). (A1 x {0}) U ({0} x A2))
is a d-simplicial extension of (Q», A3).

Combinatorially, a d;-simplicial extension of (Q», A>) is the same as the join of O, with
a (d; —1)-simplex. Note that an extended circuit A of signature (p, g; r) is an 7-simplicial
extension of its core.

Example 2.8. Take A; = {—1,0, 1} and A> = {(1, 0), (0, 1)} with QO and Q5 their re-
spective convex hulls. Then the tetrahedron illustrated in Figure 3 is a simplicial extension
of the interval (Q1, Ay).

simplicial
extension

(01,AD (02, A2)

Fig. 3. A 2-simplicial extension of Q.
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If both (Q1, A1) and (Q», Aj) are d;- and d>-dimensional simplices in I'r which span
complementary affine subspaces, we say (Q1 + Q2, A1 + A») is a (dy, d2)-prism. We
also recall some terminology from convex polytopes. Given a polytope P C I'g which
contains 0 in its interior, its polar dual is the polytope

P°:={uely:(uv)>—1foralve P}

Proposition 2.9. If (Q, A) is an extended circuit with signature (p, q; r), then there ex-
ists ug € I'r such that the polar dual polytope (Q — u4)° to the translation Q — u 4 of
Q is an r-simplicial extension of a (p — 1, g — 1)-prism.

Proof. We begin with the case of a non-degenerate circuit A. We claim that, in this case,
any facet of Q arises as the convex hull F;; = Conv(A — {a;, a;}) where a; € Ay and
aj € A_. To see this, first observe that every such Fj; is a facet, which is clear from the
description of the triangulations 74 in (4). Conversely, observe that the element

1 1
up = — Z ciaj = —— Z cjaj
VA vA

a; €At ajeA_

lies in the convex hull of both A4 and A_ and the interior of Q. Thus no facet F can
contain Ay or A_, which implies that there existi and j with F;; C F. As every boundary
facet of Q is a simplex with vertices in A, this implies ' = F;; for some a@; € A and
Aj e A_.

Let Ai ={a—up:aeAs}and AL = LinR(Ai). It is obvious that the convex hull
(Q+, A+) isa (p — 1)-simplex and (Q,, A,) is a (g — 1)-simplex. We write By = {v :
v(w) > —1forw e Ay} C AY ® R for their polar duals. Since A affinely spans Ag, we
see that Ai affinely span A+ and that Ay + A_ = Ar. If u € A4y N A_, we find that

there exist coefficients r; € R for a; € A such that ) aeas i = 1 and
Y rilai—up)=u= Y riaj—ua).
a €Ay ajeA_
This implies
Z ria; — Z riaj =0
a,-eA+ ajEA,

where the coefficients can be seen to add to zero. Since the affine relations of A are
generated by those in (3), this implies that there exists A € R such that ; = *X¢; for
every a; € Ay. Furthermore, the fact that ri = 1 implies A = 1/v4. But then

a; €A+
Ci
U= E —ai—(Z rl-)uA:O.
a,-eA+ va a;eA+

Thus AR = Ay ®& A_. ~ ~ ~
Fora; € Ay andaj € A_, let Ff and ij be the convex hulls of Ay — {a; —u 4} and

A_— {a; — ua} respectively. These form the facets of Q. and, from the description of
the facets of Q as Fj;, we see that

Ej—qu{rv+sw:veﬁi+,wel*:j_,r+s=1}.
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Now, if b; € By and b; € B_ are vertices dual to FiJr and I:"j+ respectively, then one easily
sees that b; + b; is constantly equal to —1 on F;; — u . Thus the vertices of B_ & B4
are contained in the set of those of the polar polytope of O — u 4, but as these define all
facets of Q — u 4, their convex hull must equal (Q — u4)°.

Now, if A has signature (p, g; r) with r # 0, we take Ao ={a—up:ae Ap}and
Ao = Ling{a —u4 : a € Ap}. Since Ay is not full dimensional, there is no dual polytope
in Ay, but we stillhave A @ R = A @& A_ @ Ag and Ay is a basis for Ag. If By C Ay
denotes the negatives of the linear duals to Ag, then the polar dual for A is the simplicial
extension (B4 & B_) + Bp. ]

For later reference, we utilize the previous proposition to index the boundary facets of Q.

Corollary 2.10. If (Q, A) is an extended circuit of signature (p, q; r), then it has pq +r
facets Q = {b;j ta; € A_, aj € Ay} U {by : o € Ag}.

Proof. Suppose A’ C T'} & I'; and (Q’, A’) is a d-simplicial extension of (Q3, Az) by
(Q1, Ay). The vertices of Q' consist of the d| points in A along with the vertices of Q5.
Thus the number of vertices of Q” equals d| plus the number of vertices of Q5. Of course,
as a (p, q)-prism is the Minkowski sum of a (p — 1)-simplex and a (¢ — 1)-simplex
in complementary subspaces, it has precisely pg vertices. As the vertices of the polar
polytope Q° index the facets of Q, we have the result. O

One important consequence of Proposition 2.9 is that Xy fails to be smooth as a stack
unless the signature of A has p = 1, ¢ = 1 oris (2, 2; r). Indeed, for a circuit (Q, A), the
maximal normal cones to Q are cones over products of simplices, and are therefore not
simplicial. Nevertheless, as X is toric, the normal fan of Q has a simplicial refinement.
This follows from the elementary fact that any rational convex polyhedral cone supports a
simplicial fan. Indeed, intersecting the cone with a hyperplane to obtain a codimension 1
polytope, one can triangulate this polytope and take the fan which consists of cones over
the simplices in this triangulation. This implies that (X, dX) is a standard symplectic
stack as discussed in Definition B.9.

We now examine the secondary and Lafforgue stacks associated to A as defined in
Appendix A.4. The key ingredient leading to the definition of these stacks is the funda-
mental sequence (54). For the circuit A C A and A = {(a, 1) : a € A}, this is the exact
sequence

024 7A P4 Aoz kK - 0. )
Here we have B 4(e,1)) = (a, 1) fora € A and
1
as(l) = — cie(g; 1)- (6)
|KA|Q;4 eh

In concert with this sequence, we must examine the polyhedra X (A), ®(A) and
©,(A), all of which lie in RA. By applying (55), the triangulations 7+ correspond to
the vertices g+ € X (A) given by

d+1

P+ =4 Zei F Z ciei. (N
i=0

aeAt
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Hence, by (56), £(A) = Conv({¢—, ¢+}). Thus the coarse space of the corresponding
toric variety is isomorphic to P!, To obtain the secondary stack X'z (a), we first study
Xo(a) and Xg,(4). From Definition A.24 the stacks Xg(4) and Xg,(4) arise as modi-
fications of the toric stacks defined from the polyhedra ®(A) and ©,(A). In particular,
Xo,(4) is given by the stacky fan

Zo,0 = (20, @MY, B,y Teo,m) ®)

where ,ém is defined in (63).

By (65) and Definition A.24, the Lafforgue stack Xg4) comes equipped with a map to
PIAI=1 and the universal hyperplane section ), C Xo(a) is the pullback of s = Zli‘o Z;.
In the next proposition, we will see that this morphism can be thought of as the coarsen-
ing map from a weighted projective space along with a blowdown along codimension 2
planes. To state the proposition, we first introduce some notation. Let

L4 =lemic; :a; € Ay}, )
L= lcm{ﬁi/ci La; € Ai}, (10)

and define the constants

~ cilt/e ifa; € Ay,

oo frettres ifa e Ay an
14 if a; € Ap.

To simplify our exposition, we will assume K 4 = 0 for the remainder of the section. For

convenience, we also index the elements of A so that A = {ao, ..., d4+1}-

Proposition 2.11. Given an extended circuit A C A of signature (p, q; r) for which

K4 =0, Xg(a) is a stacky blowup of P(Co, .. ., Ca+1) along pq codimension 2 projective

subspaces. The universal line bundle Q4 (1) and section are the pullbacks of O(£) and
bx/cil

SA = Zd,‘EAi Zii + Zajer Z]

Proof. We recall that ©,(A) C R4 is a polyhedron of dimension |A|. By Lemma A.20,
the supporting primitives defining the facets of ®,(A) can be partitioned as

©,(A) = {04} U, (A) UB,(A)".

Here 04 = ) _ e,/ , the elements of © p(A)v correspond to vertical hyperplanes, and those

of ®, (A)h correspond to horizontal hyperplanes. The former are indexed by pointed sub-
divisions (S, Ap) for which § is a coarse subdivision of (Q, A). Since A is an extended
circuit, these are given by {(T+, A — {a}) : a € A1+}. By Lemma A.21(ii) the primitive
N(Ty,A—{a}) N ®p(A)v corresponding to (74, A — {a}) must vanish on A1 — {a}. Itis then

simple to see that 1(7, a—(4)) = €, and {e} }aca,ua_ = ®,,(A)v.

While this gives the vertical primitives, equation (63) for ﬁm takes the basis ele-
ment corresponding to 1(7, A—{q;)) and sends it to (7, 4—{q;})- The latter element can be
expressed as m;e;” and must be a primitive A-defining function for the triangulation 7'+
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as defined in (62) (here we denote ¢, € 7ZA by e;). To obtain the coefficient m;, first note
that since K4 = 0, A spans A. Thus if a; € Ay U A_ is not equal to a; and A; ; =
Linz{(a,1) : a € A — {a;, aj}}, then (a;, 1) and (a;, 1) generate (A @ Z)/A;; = Z.
Using the isomorphism with Z, denote the equivalence classes [(a;, 1)] and [(a;, 1)] by
t; and t; respectively and note that the A-defining function (7, A—{s;}) = m,-el.v for T4
must satisfy #; | m;. Since they generate Z, we have ged(#;, ;) = 1. Also, since |¢;| and
|cj| are the normalized volumes of Conv(A — {g;}) and Conv(A — {a;}) respectively, it
follows that the volume of Conv(A —{a;, a;}) in A; j isd; j := gcd(c;, cj). Consequently,
t; = £c;/d;j = £lem(c;, ¢j)/c; and, as mieiv is a primitive A-defining function for 74,
we find that m; = €1 /|c;|.

By Proposition 2.9, the primitive hyperplane supporting functions in Q correspond
to the facets F;; := Conv(A — {a;, a;}) where a; € A, and a; € A_ along with the
facets Fy := Conv(A — {ax}) where a; € Ag. Writing b;; and by for the corresponding
hyperplane primitives and appealing to Proposition A.21(i) gives

- _ _
Op(A) = {Cbi/.lﬂjl(bij, np;) ai € A_, aj € Ay} U {Cbklﬂjt(bk, np) :ax € Ao}

To compute ,gm, it suffices to find ¢, ’ and cp,, . We first evaluate ¢, where a; € Ag.
Let Ay = Lingz(A—{(ax, 1)}) and note that, since K 4 = 0, [(ax, 1)] generates ABZ/A.
This implies that, while by |, = —ny by definition, b (ax) = 1 —ny so that the evaluation
pairing ((bx, np,), (ak, 1)) equals 1 and ¢, = 1. Moreover, ((bk, np, ), (a, 1)) = 0 for all
a € Anot equal to a so that BY (b, ny,) = € € (ZH)".

Before proceeding to the constants cp,;, we observe that the morphism G: Xo,a) =
Oplai-1(—=1) in (65) factors through a morphism to the equivariant line bundle O(—1)
over P(cy, ..., Cq+1)- Indeed, coarsening the Lafforgue fan by considering only

B = {oa}U{(x/lcil)e;" 1 ai € Ax}U{e) ax € Ao} C ©p(A) 12)
gives the stacky fan

(28, (zHhY, Bmlz& o).

where () is the same fan in RB as that for Oplai-1(—1). Note that the stack associated
to this fanis Op(z,.... z,,,)(—1). Quotienting by 04 leads to the factorization G : Xg () —
PlAI-T yig

.....

Iy N -
Xo(a) = P, ..., E11) —> PAITL (13)

It b = (€x/|ci)e) , the map f» takes Z, to Z)"** implying that
f5 (Opiai-1 (1) = Opg,...30.1) (). (14)

We now interpret the map f as a weighted blowdown by considering the elements
Cb_ijl ﬁ;/t(b,-j, nh,._/) € 0, (A)h where b;; € Q is the supporting primitive for F;;. By defi-
nition, for any a € A — {a;, a;} witha; € Ay and a; € A_ we have (b;j,a) = —Np;;,
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or ((bij, np,;), (a, 1)) = 0. Taking s; = ((bij, np;;), (a;, 1)) and s; = ((bij, np;;), (aj, 1))
we then have ,Bjt(b,-j, np;) = sie; +sj ejv. Letting r;; be the volume of Fj;, we deduce
that ¢; = Vol(A — {a;}) = r;js; and —c; = Vol(A — {a;}) = rijs;, so that

_ 1
. \% \Y% Vv
bij =8 (bij, I’lbk) = _r‘~' (cieaj — cjea,-)'
)

Thus the stacky fan for Xg(4) is obtained by refining the fan for P(Co, ..., C4+1) by
subdividing it along 1-cones contained in the 2-cones Ling_, (e, e/.v) for every a; € Ay
and a; € A_. This implies that the divisor corresponding to b;; contracts to

Vij =1{Zi =0 = Z;} s)
under fi. From the factorization of G through fi and f, and equation (14), we see that
04(1)is OW) and 54 = Ycn, Z N+ 5, a0 2 O
Recall that the hypersurface Y4 C Xgca) is defined as the zero locus of sy €
H O(X@)( 4), 04(1)), which implies that YV, is the proper transform of the zero locus

Zo+--+Zy11=0

on P4+ along G : Xeay — P?*!. Using the previous proposition, we easily obtain
t~he secondary stack associated to an extended circuit. For this, let » = ged(€, £_) and
by =4Ly)r.

Proposition 2.12. Assume A C A is an extended circuit and K 4 = 0. Then
Pl 0)

X = —.
D= T

Proof. By Lemma A.30 and the assumption that K 4 = 0, we have E 4 = Ayqv = LJV4
= Z. From Lemma A.31, a stacky fan for X’s(4) is given by

Txm) = 2P, B4, Bsip- ZB). (16)

Siince Eq = LJV4, diagram (72) is a colimit diagram and Bm can be identified with
ﬁm. In the case of a circuit, this reduces to

207 @ LD g

|

Bt
72— .7

where a; (e, ) = ¢; and, by (71),
eq ifb= Ty, A—{a;}) for a; € A+,

pi(ep) = yer ifb=na_ a—{4) fora; € A_,
0 otherwise.
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By the second paragraph of the proof of Proposition 2.11, we have
Bm(n(Ti,A—{a[})) = Lx/lcil.

Thus, using the commutativity of diagram (17), we conclude ﬁm = lye) — L ey
and fz(A) = (7%, 7Z, Cie] — L_ey, Xp). This is the stacky fan for the toric stack
Py, _)/(Z]rZ). O

We now give an explicit description of the map w : Xg) — X's(a) from Definition
A.28. Write D" C Xg(a) for the union of the horizontal divisors in Xga)s X5 =
Xow) — D" and YVi=XVa—QaNn Dh). From Lemma A.20 the components of Dh
are indexed by the facets of Q, which are in bijection with the set (A_ x A4) U Ag. By

Proposition 2.11, restricting f7 in (13) gives an isomorphism

XG0 =P, .. éas1) — [( U v,~j) u ( UA (Z = 0})]. (18)
ageAg

aeA_, a_/€A+

where V;; is defined in (15). Now, the map p; in diagram (17) yields the expres-
sion for m : Xga) — A&'x(a) from the homogeneous coordinates of Xg4) to those
of X5 (4). Including only those coordinates associated to the vertical divisors then gives

° Xé(A) — X (4) as a weighted pencil on P(Co, ..., €4+1) given by
[ 1_[ Z;: l_[ Zi].
ai€A+ a;eA_

The base locus of the pencil is the union | V;; of cycles that are blown up in Proposition
2.11, which give some of the components of D" (and all of them when A is a circuit).
Passing to coarse spaces, P4*! for Xg)( A) and P! for X'z (), leads to the diagram

f2 d-1
B(A) Pt _vaj

nl ﬁl (19)

XZ(A) —}P]

Xg

Here the map 7 has the especially simple form as the pencil

ossol = [T 27+ T 2] (20)

aj EAJr a;€A_

As neither Xg(4) nor X'y (4) have generic stabilizers, this pencil describes the map 7 up
to isomorphism on the maximal torus. Moreover, from the description of the components
of D" indexed by Ag in Proposition 2.11, 7 is isomorphic to 77 when we include these
divisors as well. This pencil also describes 7 restricted to the universal hypersurface V§
away from its degenerations at 0 and co. We note that these fibers of the pencil give
toric degenerations of X corresponding to 7 and 7_. These are both singular as stacks
unless p =1org = 1.
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Our main interest is not in the morphism s, but rather its restriction to Y4 = {s4 = 0}
C Xo(a)- Abusing notation, we will also denote this restriction as 7. We note that, off
0Ya = Ya N 3dXp(a), the map 7 is described by the pencil in (20). We let c4 € X'x(a)
be the point whose coarse point is represented by [[];c 4, c;j : [Lica_ ¢ 1€ Pl Using
notation introduced in Definitions A.11 and B.23, we establish the following proposition.

Proposition 2.13. Let A be an extended circuit of signature (p, q;r) with K 4 = 0. The
morphism 1w . (Ya, 0Ya) — Xx(a) is a 9-framed pencil. The critical values of w consist
of a unique stratified Morse singularity over c 4, and

(1) if p > 1 the fiber over 0 is a stable pair degeneration,
(2) if g > 1 the fiber over o0 is a stable pair degeneration.

Proof. We first address the statements concerning the critical values of . If p > 1 (resp.
q > 1), then T} (resp. T_) is a triangulation of (Q, A) with more than one simplex. Then
[0: 1] € 0 X5 (4) (resp. [1 : 0]) does not represent a full section, implying it is contained
in the compactifying divisor of the moduli of full sections V4 C Xx(4). By Theorem
A.39, it then represents a stable pair degeneration.

Now, let y; = Y3 — (Fp U F) be the universal hypersurface away from the fibers
over 0 and co. The function 7 : )} — C* is represented by the pencil in (20) restricted
to YV, = {Z?:OI Z; = 0}. The critical points of this function can then be calculated to
be C*-orbits in the zero locus of A := d(}_ Z;) A d(s0/sc0). Writing f = s0/s00 and
computing, we obtain

d+1 d+1
A= d(z Zl) /\d(sO/soo) = (Z Zl) AN f(ZCIZl_lel>
i=0 i=0
_ fZ(CiZfl — ch]TI)dZi NdZ;.
i<j

Note that the functions Z;” I are well defined on JJA for a; € A4, while when a; € Ay,
the coefficient ¢; = 0 renders a zero term for ¢; Z; ! This 2-form is zero if and only
if c,‘Zl._l = chj_l forall0 < i,j < d+ 1.If r # 0, then there are no zeros of A.
Indeed, if Ao = {ag+1—r,.-.,aq+1}, then coz(;‘dzo A dZg441 will always be a non-
zero summand of A. One checks that forany I C {d +1 —r,...,d + 1}, taking C; =

N <71Zi = 0} and restricting A|c,, we still obtain a non-zero 2-form. However, when
I={d+1—-r,...,d+ 1},

Mo, =f ) (cl-z;l—cjzjf‘).

O<i<j<d+1-r

This is zero if and only if ¢;Z; = ¢;Z; forall 0 < i < j < d + 1 — r, which holds

precisely when [Zg : -+ : Zg+1] = [co : - -+ : cg+1]- Evaluating f at this point gives cy4.
To see that this is a stratified Morse singularity, we restrict the Hessian of f at
[co:--:car1]1t0{d.Zi =0} N Cyyi—r,.. d+1. One computes

Hess e, ....cqr) () = fco, - -, cat1) (i j)ij
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where h; ; = cicj if i # j and ci2 — ¢; otherwise. As we are restricting to C7, we may
assume that r = 0 so that ¢; # 0 for all i. From the expression for Hess( f), we see that it
can be written as H; — H, where Hj is a rank 1 matrix with image Ling{(co, - . ., c4+1)}
and H, is the diagonal matrix Diag(cy, ..., c4+1). As H is invertible, a tangent vector
v € TY4 will be in the kernel of this difference only if Hy(v) € im(H3). This implies
v is a multiple of Z,dio] dz,, and as this vector does not pair with ) dZ; to equal zero,
it is not tangent to V4 and we must have v = 0. Thus Hess, ....c,,) (f) restricted to
3" Z; =0}NCy41—r... 4+1 is non-degenerate and, by Proposition B.19, 7 has a stratified
Morse singularity at [co : --- : cg+1]. The statement that 7 is a d-framed pencil then
follows immediately from Definition B.23. O

We write 7 : (C*)4+1 — C* for the restriction of 7 to the complement of the coordinate
divisors on P41, We now fix a point 7y € X5 (4)(R) near infinity and let 8¢, 61 and 5o be
paths, based at 7y, around O, c4 and oco. Here &1 and 8, are straight line paths and § is a
concatenation of a straight line path to an e-neighborhood of c4, a clockwise semicircle
around c4 and a straight line path to 0. These are pictured in Figure 4.

Xs(a)

0 CA 00
10

51 800
)

Fig. 4. Distinguished basis on Xy, (4).
Our main theorem now appears as a consequence of Proposition B.31.
Theorem 2.14. Let (Q, A) be an extended circuit with K 4 = 0, T; = P(8;) and

_ ( 2m ged(c, ¢j)

1¢i >0,¢,<0).
lem(c;, cj)

Then
ToTiToo = T(x)  in wo(Symp* (Z4(10), 324 (10))).

Proof. By Proposition B.31, the only result needed is the computation of the Chern num-
bers for the rigid boundary divisors associated to b; ;- In the proof of Proposition 2.11,
we saw that b;; :_(l/rij)(cie;/j — cje;/l_). By Proposition B.27, the divisor D;; C Xg(a)
corresponding to b;; is isomorphic to the product of Xy (4) and the boundary divisor
Djj C X corresponding to the facet F;; = Conv(A — {a;, a;}). Let X;; be the stacky
fan in (ZS, 72, Bij,» Zij) where {e;, ej, ep} is the standard basis for 73. Define Bij to be
the map B;j(e;) = (L4 /ci)er, Bij(ej) = —(€—_/cj)ez and Bij(ep) = (1/rij)(ciea —cjey).
Take the fan X;; to consist of two maximal cones Ling_,{e;, ep} and Ling_,{e;, ep}
whose image under B;; gives the fan pictured in Figure 5.
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0, =€ /cj)
(=¢j/rij, ci/rij)

(L+/ci, 0)

Fig. 5. The stacky fan X;;.

By Proposition 2.11 and (12), the star of b;; is the product of X;; and the fan for D;;.
Thus the toric stack associated to the fan X;; is isomorphic to the normal bundle of a
section of 7 lying on D;;. The Chern number of the normal bundle of the divisor D
corresponding to ep is then computed as D- D = —rizj /(cicj), which equals the indicated
factor under the assumption K 4 = 0. O

2.2. Examples in dimension 1

In this section we explore three examples in dimension 1 of the circuit relation in full
detail. These circuits are illustrated in Figure 6. The first relation is known as the lantern
relation for mapping class groups of marked curves and, to a large degree, is the case that
inspired this paper. The next example yields the star relation. We observe that the circuit
stack in this example, as well as its higher dimensional generalizations, arise naturally
in the context of homological mirror symmetry. We refer to [22, Chapter 2] for general
background on the mapping class groups of marked curves and classical proofs of these

relations.

Fig. 6. Examples in dimension 1.

For every example, we take a fiber 7o € R. | near oo and choose the distinguished
basis of paths §p, §1 and 8o on X’x;(4) as in Theorem 2.14 and Figure 4.

2.2.1. Circuit of signature (2,2). Here we take A = {(0, 0), (1, 0), (1, 1), (0, 1)} and fix
the orientation of A as ¢ = (1, —1,1, —1). We have Y4 = {Zo + Z1 + Z» + Z3 = 0}
c P3 and 7 is defined as the pencil [ZoZ, : Z1Z3]. Taking the coordinate ¢ for the
point [z : 1] € P! we utilize (20) to find r = w([Zo : Z1 : Z» : Z3]) = g?%, so that
every fiber Z4(t) = Y4 N1 (t) for t € C* — {1} is isomorphic to P'. The boundary
divisor 0 Z4 (t) consists of four points given as the intersection with U?:o D; where D; =
{Z; =0 = Z;41} using an index in Z/47Z. Thus, using a Mobius transformation, we can
find a coordinate x for each fiber so that
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q1=D1NZ4(t) ={x =0},
g2 =Dy N Z5(1) = {x =1}, 2D
g3 = D3N Z4(t) = {x = oo}.
Parameterizing Z4 (¢) so that Z; is at most quadratic in x and satisfies (21) gives
Za)y={[1—tx:(tx—Dx:tx(1 —x):x—1]:x € C}
with remaining boundary divisor component
qo=DoNZs(t) ={x=1""}.

Over the limiting degeneration values of + = 0 and oo, one sees that this converges to give
parameterizations of the intersections {Z, = 0} N V4 and {Z3 = 0} N V4, respectively.

As tg > 0 was chosen close to oo, we see that gg > 0 is close to zero and indeed tends
to g1 as ¢t tends to oo. This reflects the bubbling of the intersection Y4 N {Zy = 0} off in
the limit and we see that the vanishing cycle of o is a loop y encircling gg and 0 in
the x-plane. In a similar vein, we may follow the path §; from g to 1 and observe that the
point go follows the straight line path to g;. Thus the vanishing cycle associated to §; is
isotopic to yj illustrated in Figure 7. Finally, as ¢ tends from #( to O along the path &y, go
passes above g and towards g3. The vanishing cycle may be pulled back along this path
and is seen to be equivalent to yp which, up to isotopy, is illustrated in Figure 7.

Yoo Y1
e © /) 92

Yo

Fig. 7. The (2, 2) circuit relation or the lantern relation.

Applying Theorem 2.14 in this example yields the well known lantern relation arising
in mapping class groups.

2.2.2. Circuit of signature (1,3). In our example of a (1, 3) circuit, we take the set
A = {(0,0), (1,0), (0, 1), (—=1,—1} and fix ¢ = (3, —1, —1, —1). We have the same
hypersurface V4 C IP? as before, but with n([Zo : Z1: Zy : Z3]) = [Zg : Z172>73].
The smooth fibers Z4(¢) of  are elliptic curves with boundary points indexed by the
divisors D; = {Z; = 0 = Zo} = {g;} fori = 1,2,3. Near t = 00, Z4(t) approaches
the intersection of )4 with the three divisors in {Z{ = 0}, {Z, = 0} and {Z3 = 0} which
subdivides it into three pairs of pants. On the other hand, at t = 0, Z4(t) — 0Z4(¢) is the
quotient of the elliptic curve {(x,y) : x + y + x~'y~! = 0} c (C*)? by a Z/3Z action.
We note that there is one component of Z 4 (0) and three components of Z4 (c0). This oc-
curs generally as the signature corresponds to (|A+|, |A_|) and the number of simplices
in the triangulation 75 is |A4|. The fiber over O (resp. 0o) is a stable pair degeneration
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corresponding to the triangulation 7 (resp. 7_), and the number of components of this
degeneration equals the number of simplices in the triangulation.

For the moment, we consider the case of a more general signature (1, d + 1) circuit
with A4 = {ap} and let

yX(R) = {[ro:---:rqr1) € Ya :ri € R* andfori < j, rir; < 0iff i = 0}.
In particular, yj{ (R) is isomorphic to the positive simplex in R‘fgl using the coordinates
{([(=1:r:--:rgpml:>ri=1¢€ JJX(R) . One checks that the assumption on the
signature of A gives [co :---:cq41] € y;; (R). Furthermore, following the computations

of the critical points and Hessian of  in the proof of Proposition 2.13, which do not rely
on whether we work over R or C, shows that 7|+ g YI(@®R) — P} has a unique
Morse singularity at [cg : --- : cg4+1] with critical value cq4 € IP’]}{. Furthermore, along
the boundary of the closure of yj (R) (where one of the coordinates equals zero), &
evaluates to oo = [1 : 0]. Finally, since = does not take the value of [0 : 1] on yj{ (R),
we can conclude that the unique critical point is a maximum (resp. a minimum) point if
ap is odd (resp. even) and that y;; (R) is the stable (resp. unstable) manifold associated
to c4. As such a manifold is obtained by gradient flow using the Hermitian metric, this
flow equals that of the symplectic parallel transport map along the real line. Thus yj (R)
is contained in the vanishing thimble of &1, and as it is a smooth manifold of the correct
dimension, it must equal the vanishing thimble. Alternatively, one could observe this
fact by considering y;{ (R) as the fixed locus of an anti-holomorphic involution which is
equivariant with respect to 7.

The boundary of yj (R) is the union of three arcs contained in the three components
of Z4(0c0). After symplectic transport from #( to oo, these arcs lie in three pairs of pants
which converge to the degenerate components giving y; in Figure 8. The three circles
denoted y are the vanishing cycles associated to the degeneration. The circuit relation
in this example is known as the star relation.

=/ 40
Fig. 8. The (1, 3) circuit relation or the star relation.

In higher dimensions, we may consider the signature (1,d + 1) case with ¢ =

(co. €1, .., cay1) where o = vs > 0. Again the hypersurface Y4 is {3"{") Z; = 0} in
P4+! and
T Zo: -t Zap) = (25" - Z7 - Z 040,
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If K4 = 0, the secondary stack X'y4) is P(va/r, ll)/(Z/rZ) and we may take an
orbifold chart around zero to be the map z%. Pulling v back along this chart we obtain a
map w : (C*)? — C. Indeed, taking 7 = [z% : 1] and restricting to Zfl -~-Z§‘f:11 =1
yields Zp = t, so that we may express w as

1

c1/¢d+1 cd/cd+1’
0 - Zy

Referring to [31, (1.4)] we find that, up to a scale, the map 7 is the equivariant quotient of
the homological mirror LG model of the weighted projective space P(cy, ..., c4+1). This
will appear again as one piece of a general conjectural program for homological mirror
symmetry in the final section.

d
Wzt Z) = Z0= =) Zi—
i=1

2.2.3. Circuit of signature (1,2; 1). In our only degenerate example, we observe a rela-
tion between braids and Dehn twists. We take A = {(0, 0), (1, 0), (—1,0), (0, 1)} and
¢ = (2,—1,—-1,0). Here Xg4) is the blowup of P3 along the two coordinate lines
L ={Zy =0 = Z}and L, = {Zyp = 0 = Z;} which are the base locus of the
pencil 77 given as
7#([Zo: Z1: Za: Z3) = [Z3 : Z1 Z1).

The secondary stack of A is Xs4) =P(2, 1).

Since A is a degenerate circuit, the divisor {Z3 = 0} is not contained in a fiber over 0
or infinity, but rather intersects Z4 (¢) in two points everywhere except over the degenerate
point [2 : —1 : —1 : O] with value c4 = 4. We give Z4 () coordinates,

Za(t) = {[tx cxiti—tx —x*—1t]:x e C}.
The boundary points on Z4(¢) are then
g1 =Za0)N{Z =0} = {x =0},
g2 = Za(t) N{Zy =0} = {tx = o0},

3.+ = {x = —1t £V1* —4t/2}.

As t tends from cy4 to 7o, we see that g3 + splits along the real axis. The vanishing cycle
y1 for §; thus forms an interval stretching between g3 4. This can be seen from the lo-
cal description of vanishing cycles for stratified Morse singularities given in Proposition
B.21 and its proof. Tending from #( to 0o, one observes g3, 4 converging to —1 and g3 —
bubbling off with co. This parameterization converges to the component Y4 N {Z; = 0}.
Thus we may draw a vanishing cycle y, around oo and g3, corresponding to .

At t = 0 we have a Z/2Z orbifold point where, in the coordinates given by x, we
have quotiented by the action. This implies that the monodromy map satisfies 7> = 1. As
Tyz, (1) is supported near the boundary {g1, g2, g3,+}, it commutes with Tp, T1 and T
In fact, ignoring the framing on the endpoints g3 + of the braid, Tjz, () is a half-twist
about g and g>. Thus we may take the relation ToT1 T = Tjz, () from Theorem 2.14
and rewrite it as T Too = TO_l Ty 2, (1) Squaring both sides gives the relation (T} Too)? =
TaZZA (t0)" This does not seem to have a direct analog in the literature, but can be thought
of as a hyperelliptic relation for a braid and a loop.
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Fig. 9. The (1, 2; 1) circuit relation.

2.3. Regeneration

In contrast to the topology of discriminant complements (see [18]), the geometry of the
principal A-determinant complement seems relatively unexplored. For extended circuits,
we have completed the project of understanding X4y — £4 in Proposition 2.13 as the
once punctured quotient of a weighted projective line. On the other hand, as one considers
more complicated sets A, the complexity of the topology of their determinant comple-
ments grows rapidly. In order to retain the information obtained from more basic cases of
A’ C A such as circuits, we require a method of regeneration. To a large extent, the toric
and symplectic preliminaries in Appendices A and B are designed to make such a method
possible and accessible.

Let A C Z% and A’ C A be finite subsets and § = {(Qi, A;) : i € I} aregular
subdivision of Q such that (Q;, A;) is a marked simplex for all A; not containing A’, and
A, is a simplicial extension of A’ otherwise. Call such a subdivision a friangular extension
of A’. Such a subdivision induces a map of affine polytopes X (A’) — X (A) which is
obtained by taking the vertex @7/ corresponding to the regular triangulation 7”7 of (Q’, A”)
to the vertex @7, where T’ is the unique refinement of S which restricts to 77 on (Q’, A’).
This map of secondary polytopes induces a natural inclusion iy : Xx4y — &x(a) of
secondary stacks. By the definition of triangular extensions and [24, Theorem 10.1.12],
we have ig(Ea) = Ea Nis(Xxa)). Let Xg(A) be the maximal torus orbit of X5 (4

and £ be the intersection £4 N XE(A). Given ¢ > 0, let If‘, C X)‘:’(A,) — 52, be the
complement of the e-neighborhood of £%,. For sufficiently small e, Z¢, is diffeomorphic
o X3 4 — &L

Definition 2.15. Let B C C be a disc around the origin and Z a complex manifold.
A regeneration of A’ relative to A is a pair (Z, ¥) where . : B x T — Xx(a) is
holomorphic with ¥ : Z — ig(Z%,) a covering map onto its image and v; : Z — XE(A)
injective for all # # 0.

The following proposition shows that there exist many distinct regenerations of A’ relative
to A.

Proposition 2.16. Let S be a triangular extension of A’ C A and n € 7. There exists a
regeneration (I, V) of A’ with ¥y a (Z/nZ)-cover.

Proof. This result follows from general facts about stacky fans. In particular, suppose
Y = (Z', A, B, X) is a canonical stacky fan for a complete toric stack where the rank
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of Aisd.Leto = Ling_g(ey, ..., e5) be an s-dimensional cone in X where s < d and
el, ..., e, is the standard basis of Z". The stacky subfan X, = (Z", A, B, o) gives the
normal neighborhood of the orbit corresponding to o.

Now suppose T = Ling_,(e1, ..., €5, e541) € X and let I' = Ling(eq, ..., es41).
Take (es) to be the ray in R generated by e; and define the stacky fan X,y =
(ZST1,T, B, (es4+1)). The stack associated to X, is clearly isomorphic to C x (C*)*.
Define (g1, g2) : 541 — X5 by

e ifi <,
g1(ei) = { ney ifi =y, (22)
es+esy1 ifi=s+1,

and take g to be the unique map satisfying § o g1 = g2 o 8. The associated map on
stacks g : C x (C*)* — Xy, is an n-fold cover on 0 x (C*)* and is injective elsewhere.
Composing with the inclusion Xy, < Xy and taking X to be the stacky secondary fan
Y 5 (a) from Lemma A.31 with o the cone Cg gives the result. O

The next proposition gives a functorial viewpoint on symplectic parallel transport and
regeneration. As in Appendix B.4, we take I1(X) to be the path category of the stack X,
and Symp to be the category of symplectic manifolds. If X C Xxa) — (€4 U 0X5(4)),
then we take Py : TI(X) — Symp to be the parallel transport functor taking p to
Za(p)—0Z24(p) =1 |5)f1‘7 9V (p) and a path to symplectic parallel transport. Denote the
essential image of Py by C(X).

Proposition 2.17. Assume A’ affinely spans R¢ and let (I, V) be a regeneration of A’
relative to A and X = igl(l/fo(z)) C Xs(ar). Then for any t # O, there is a functor
Far : C(Y (2)) — C(X) which completes the diagram

() —2 C(y (D))

islolpOJ( FA/l

nw) —2 . cw)

Furthermore, this diagram commutes up to isotopy.

Proof. Let S = {(Q;, A;) : i € I} and consider the singular symplectic fiber bundle
F = ¢*(Ya — dY4) over B x Z. Note that F is smooth over (B — {0}) x Z, while over
{0} x Z, the fibers of F are singular unions | J;.; Z; where Z; C Xg,. By Proposition
B.17, these fibers are stable pair degenerations. After excising the intersections Z; N Z;,
this decomposition can be made global on F by taking symplectic parallel transport along
rays in B to the origin and removing the vanishing cycle W. From Proposition B.17, we
deduce that W is the singular coisotropic hypersurface consisting of all points that flow
into the critical locus of ¥§Va. Set 7/ = F — W. Then ' = | |;.; F/ is a smooth
symplectic bundle over B x Z whose connected components are indexed by the polytopes
(Qi, A;) in S. By using symplectic parallel transport along rays in B, the fiber of F;
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over (t, p) for any p € T is symplectomorphic to Z; — 3 Z; over (0, p). As A’ affinely
spans R?, we have (Q’, A") = (Qiy, Aiy) for some ig € I. For p € I, take Fu/(p) to
be the fiber of }"{0 over (0, p). While parallel transport along F'/{t} x Z may not strictly
commute with parallel transport along the rays [0, ] x p for p € Z, they do commute up
to isotopy, yielding the homotopy commutative diagram in the proposition. O

Proposition 2.17 suggests a general method of approaching the symplectomorphism
group of a hypersurface in a toric stack through an analysis of the groups on degener-
ate pieces. Of course, the general case of A is exceptionally complex as it requires an
understanding of groups for all smaller sets A’ C A. In this section we will see to what
extent this approach is accessible in an example where A is minimally more complicated,
namely A contains d + 3 points.

The general case of d + 3 points has been studied and explicit formulas for E4 are
known [16]. At this level of generality, the formulas do not immediately render the ge-
ometry of the principal A-determinant or its complement accessible. However, it is worth
mentioning that the A-discriminant component is always a rational curve in an Xx4),
usually with complicated singularities [32].

Example 2.18. We continue to explore Example 2.6 and take
A={(1,0),(0,1, 1), (=1 -1), (0,0} (23)

Any non-degenerate hypersurface Z4(p) is an elliptic curve with four boundary points.
By writing out the set of regular triangulations of (Q, A) and applying (55), one ob-
tains the vertices of X (A) in R4, Translating and pulling back to L 4 via o4 gives the
secondary polytope 2, (A) on the right of Figure 10. To obtain the stacky fan of the sec-
ondary stack, first observe that, for each coarse subdivision S = {(Q;, A;) : i € I} of
(Q, A) and pointing set A;, the unique primitive function defining S and zero on A; is a
A-defining function so that 7(s,4,) = 71(s,4;)- Thus, by (63), ﬁm(eﬂ(m;)) = 1(s,A;)-
Also, since K4 = 0, Lemma A.30 implies that E 4 = LJV4. Finally, applying Lemma
A.31 shows that the stacky fan for A5 4y equals the normal fan of X,(A) which has
1-cone generators

Fsay = {v1, ..., va) = {(1, 1), (0, 1), (=2, =3), (1,0)} C Z2.

The secondary fan and polytope are illustrated in Figure 10.

To simplify the cumbersome notation, we order A as in (23) and write y; for the mono-
mial which evaluates the i-th coefficient. For example, y4 = x(_1,_1) is regarded as the
projection L4 = CA to the (=1, —1)-coordinate. Then, utilizing [24, Theorem 10.1.2],
one can compute the A-discriminant and the principal A-determinant to be

Aa = y1y204Y3 — y3y4ys + 2797 v3vi — 36y12y3V3y5 + 8y3y3yv2 — 16y33,

Eq = y12y22y3y4AA-

From Definition A.28, the principal A-determinant induces a section of O yy ( A)(1) de-
noted EY. By taking the unique interior point of X, (A) to be zero, and taking the lattice
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n=2o p P

Fig. 10. The secondary fan and polytope of A.

points in the right side of Figure 10 as the exponents of the Laurent monomials, we ob-
tain coordinates (i1, us) of the maximal (C*)2-orbit of X5 4) over which OX):(A)(I) is
trivialized. Then the principal A-determinant restricts to the Laurent polynomial

u2_1 — ul_l + 27u1_1u2 — 36 + 8u1u2_1 — l6u%u2_l.

As was pointed out in Example 2.6, there are five extended circuits contained in A and
four circuits {C1, C2, C3, C4}; in this case they correspond bijectively to the four bound-
ary divisors of X5 (4). Denote the facet of X (A) corresponding to v; by F;, the subdivision
defining the facet by S;, and the divisor in X (4) by D;. The divisor D4 corresponds to the
degenerate circuit C4 = {(—1, —1), (0, 0), (1, 1)} supporting two extended circuits. Each
circuit C; has a unique triangular extension given by the subdivision associated to the
facet defined by v;. Let us first examine regenerations of Xsc,) = D1 and Xs(c,) = D;.

We will first find the intersection numbers €4 - D1 and £4 - D;. For this, we compute in
the homogeneous coordinate ring C[x1, x2, x3, x4] of X'z (4) given in equation (34), which

is graded by Pic(&X5a)) = L\E/ @ = 72. To obtain the degree of the monomial x; which
\4

defines D;, apply g to e} € Z¥'™_ After a choice of basis, we obtain deg(x;) =
(1,2),deg(x2) = (1, 0), deg(x3) = (1, 1) and deg(x4) = (2, 1). With this choice of basis,
a straightforward computation in intersection theory of toric varieties (see [23, Section
5.1]) gives the intersection pairing

-1/3  2/3

2/3  =5/6|

We also calculate that OXZ( ») = O(D1 + Dy + D3 + D4) which corresponds to (5, 4)
sothat E4 - Dy =1=E4 - D;.

Starting with C; we observe that Nxy ,, Xs(c,) is isomorphic to O(—1) over P!
and trivializes over orby, where orbr is the maximal torus orbit associated to a face
of Q. The circuit C1 = {(0, 0), (1, 0), (0, 1), (1, 1)} affinely generates 72, which by [24,
Theorem 1.12] and the computation £4 - D; = 1 implies that the restriction of Ej\
to orbp, equals ESC1 with multiplicity 1. Since &£c, is a point, this implies that in a
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tubular neighborhood U of orbp,, £4 N U is a disc transversely intersecting orbr,. Re-
moving an e-neighborhood of this disc gives a regeneration Z of C; in A. Utilizing
is, © Xs(c;) = X'xa), we choose a base point p; € Z — orbp, close to i, (o), where
to appears in Theorem 2.14. Then Proposition 2.17 shows that the regenerated circuit re-
lation is simply the (2, 2) circuit relation restricted to the region Vi C Z4(p1). Here Vj is
the open subset in Z4 (p1) which converges via symplectic parallel transport to the degen-
erate component of Xy corresponding to C; as p; € U tends towards the boundary D;.

The divisor D, is IP(1, 3) with normal bundle Op(;,3)(—1) where Op(j 3)(d) corre-
sponds to the equivariant line bundle over C2—{(0, 0)} with character z% € Hom(C*, C*).
Even after deleting the point at infinity, we cannot regenerate D using sections of this
bundle because of the stacky point at the origin, so we must consider a covering. There is
only one non-trivial covering in this case, namely the étale cover z> of Igz c P(1,3) —
Di N Dy =~ C/uj3. To find the regeneration which extends this cover, one simply takes
the stacky chart of a neighborhood U of the point D, N D3 which is C?/u3 where
c(t,x) = (7', ¢x). The map ¢ : C> — U is obviously étale and at r = 0 gives
the covering above, so restricting ¥ to ¥~ (U — V) where V is an e-neighborhood of E 4
gives a regeneration of C,. Applying Proposition 2.17 to this situation, we observe that
v~ (U — V) N {1} x C is a disc with three discs removed near the third roots of unity as
in Figure 11. Using the proposition and Theorem 2.14, composing the parallel transport
T; along the three paths §; gives the cube of parallel transport along y as well as a full
boundary twist. Taking the composition of these two operations as T4 we write simply
T1T,T5 = T4 and view this as a relation in Z4 (p2) where we choose p; in the interior of
X5 (4) and close to i, (fp).

Fig. 11. Paths for the regenerated circuit of C,.

One can often regenerate several subsets of A simultaneously, thereby incorporating
the symplectomorphisms of the regenerated pieces into those of the hypersurface Z4(¢).
We give a more systematic account of this method in the next section for extended circuits,
but for now we consider sections of the ample line bundle £ = O(D; 4 3D,) on X5 (4).
Consider the pencil

. . 3..2
f(xlvx27x31 x4) = [SO . Soo] = [X1x2 . .X4].

Taking C; = {s9 — tsco}, One observes that for small 7, we obtain a smooth curve
which approximates D; + 3D,. We wish to understand the C; subgroup G¢, C
Symp(Z4(p), dZ4(p)) from Definition B.32 by viewing C; as a simultaneous regen-
eration of C; and C,. We trivialize the fibers Z4(p) along the ray r = R>9 C C and
consider parallel transport {771, ..., T4, Tl, Tg} along the paths {81, 82, 83, 84, y1, 2} as
in Figure 12.
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Za(q)

V2

Fig. 12. Generating paths for G¢, with trivialized fiber over r.

With the use of Proposition 2.17, the monodromy symplectomorphisms 7 = P(§) on
the degenerate hypersurfaces can be regenerated to monodromy transformations on the
smooth hypersurfaces. These are the compositions of disjoint Dehn twists

=Ty, Dh=T, DTz=T, Ty=1,,
T\ =T, T)T), T=TI;T}T}.
Those associated to y; and y» correspond to monodromy around the hypersurface
degeneration associated to the points D1 N D, and D N D4. The vanishing cycles for the
twists 7; are given in Figure 13.

One can calculate that £ has precisely one cusp in the interior of X's(4). This cusp
yields the braid relations between T4 and T; for i = 1, 2, 3. Adding these to the circuit

ko

Fig. 13
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relations, we obtain a finite presentation of G¢,,
R— (T,..., Ty, Tl,'fz) — G¢, — 1.

One can use this method for higher dimensions as well, but understanding the singularities
of EY for (d + 3)-sets is necessary to the completion of this project, as these generate
additional relations.

As a final remark, we observe that near C,, We obtain a regeneration of the circuit Cy.
Observing that Dy - E f4 = 2, we see that the critical value in Cy splits into two values
for each of the branches of the 2-fold étale cover, yielding a total of four critical values.
To see the effect on the vanishing cycles, observe that the family Cy/, regenerates two
extended circuits, each of which has a relation as given in Section 2.2.3. This has the
effect of gluing the degenerate vanishing cycles together to obtain two vanishing cycles,
for each branch of the étale cover, while parallel transport from one branch to the other
yields a regenerated version of the involutions 77 T, on each regenerated circuit as given
in Section 2.2.3. However, to obtain the correct gluing formulas for these cycles requires
a more nuanced control over the boundary framing in the degenerate case.

3. Homological mirror symmetry applications

In this subsection we outline a strategy to decompose the Fukaya—Seidel category associ-
ated to a pencil of hypersurfaces in a toric stack. After giving a combinatorial description
of the decompositions, we discuss applications to the homological mirror symmetry con-
jecture for Fano toric stacks. The original conjecture has been settled in the case of toric
del Pezzo surfaces in [48] and weighted projective planes in [5]. There are also several
variants of the conjecture that have been proven, where the Fukaya—Seidel category is
replaced with a different category (see [1], [21]). However, our strategy is to consider
the original Fukaya—Seidel category as constructed in [47] and produce more detailed
information on the structure of the equivalent categories. We conjecture a refined corre-
spondence leading to a variety of equivalences associated to different degenerations of
the LG mirrors. In particular, we will observe a finite collection of semiorthogonal de-
compositions arising from edge paths in the secondary polytope. To each decomposition
we formulate a conjectural homological mirror collection resulting from birational moves
in the B-model setting.

3.1. Landau—Ginzburg degenerations

We begin by considering the toric stack Xy associated to the marked polytope (Q, A), the
line bundle O4 (1) and the linear system £4 C HO(XQ, 0O4(1)) from Definition A.5. By
the support of a section s C L4 = CA, we mean the subset A’ € A whose monomials
have non-zero coefficients as summands of s. Referring to Definition A.8, s is called
a very full section if its support equals A, and a full section if its support contains the
vertices of Q. Given any subset A’ C A and a section s = Y, ca€a € C4, we say the
restriction of s to A" is s||o» = )_,c 4’ Ca€a- By an A-pencil, we mean a pencil in L4. If
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it is clear from the context, we will simply write pencil for A-pencil. In what follows, we
will consider A-pencils satisfying a strong, but common, property.

Definition 3.1. (i) Given A C A and A’ C A, apencil W C L, is A’-sharpened if it
contains a full section s with 0 # s[4 € W.

(ii) The Landau—Ginzburg or LG-model associated to an A’-sharpened pencil W is the
induced map w : X9 — Dw — C where Dy = Zero(s| /) is the fiber over infinity
of the pencil.

Our motivation to consider such pencils comes from homological mirror symmetry of
Fano toric varieties (see [26], [31, Section 3]). Given a d-dimensional Fano toric stack
specified by a fan X, the Batyrev mirror is defined as Xp (or a partial crepant res-
olution thereof) with A equal to the union of O and the primitive generators of the
I-cones X (1). A symplectic structure on the original variety then specifies a superpo-
tential w on (C*)?¢ Xg. From [26], one observes that w is the LG model associated
to a {0}-sharpened pencil W C L4 on Xp. In fact, the case where A’ = {a} is a single
element of A can simplify the discussion because, in such cases, a pencil is A’-sharpened
if and only if it contains e, . For now, though, we keep the exposition general.

With an A’-sharpened pencil we associate a rank 1 sublattice ['y» C (Z4)" generated
by the cocharacter e}, := Y ., e;. This induces a one-parameter subgroup which we

denote by G o» C (C*)A.

Lemma 3.2. A pencil W ¢ CA is A’-sharpened if and only if it contains a full section
and is stable under the action of G 4.

Proof. Suppose that W is an A’-sharpened pencil. It is elementary to check that there
exists a full section s € W for which sy := s||las # s. Then the support of sg :=
s — s|| 4 is non-empty and disjoint from A’. As W is a pencil, W = Ling{sg, s }. The
cocharacter eX, gives the one-parameter subgroup G4 C C* ® (Z*)" which acts by

A (Z caea) = Z Acgeqg + Z Calyq.
acA acA’ agA’
Thus A - 5oo = ASoo and A - 5o = so, which implies that G o (W) = W.
Conversely, if G4/(W) = Wands € W thens — limy_,gA - s = s|[4» € W, which
implies that W is an A’-sharpened pencil. |

We now wish to consider A’-sharpened pencils up to toric equivalence. This involves pass-
ing from closures of G 4/-orbits in the space of sections £4 = C* to their counterparts in
the stack X’s;(4). We first note that the stacky fan for A4 is given in Lemma A.31 as

S S o, 4
s = (27, EA, Bsay 28)-

The group E 4 is realized as the colimit of diagram (76) so that there is a map a4 :
(ZA)v — E 4 and we take par = &A(eX,) and G 4 = (@4 ® C*)(G 47). Now, there is a
quotient map

F: (CHA x CA — V), 24)
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from the space of full sections ((C*)A“ x CAn ¢ CA to its moduli space V4 defined
in (78). It follows from the definition of V4 that F is equivariant with respect to the groups
G4 and G4 for any A’ C A. With the notation of the proof of Lemma 3.2, if W is an
A’-sharpened pencil and A” does not contain the vertices A,, then its intersection with the
space of full sections is W —Ling (s¢). This implies that F(Wﬁ((C*)Av X CA"U) isC C Va
or a finite quotient thereof and is the closure of a G 4/-orbitin V4. By Theorem A.38, there
is an open embedding of toric stacks from V4 to X's(4). Thus we may view W, up to toric
equivalence, as the closure of a G 4/-orbit contained in the substack V4 of X' (4).

Were we to consider only those orbits intersecting the maximal torus in Xx(4), its
space would be easily described as the quotient of the maximal torus in X4y by G 4,
namely Gy (4)/Ga where Gyay = (E4 ® C*) = (C*MAI=9-1 is the torus acting
on X5 4). To gain a better understanding of this space, we consider a natural compact-
ification. At this point, we simplify by moving to the coarse space of Xx4) which we
denote X54). Choose x to be a point in the maximal orbit of X5 4) and ¢ = G4/ - x
to be the closure of its orbit. Let C' Vs be the relative Chow variety of one-dimensional
cycles of degree [¢]. Then the maximal torus Gyxa) acts on CVys and, following the
definition of Chow quotients, we define M4 4/ to be the closure of the orbit Gy (4) - [¢]
in CVy . It is not hard to see that the Gy 4) torus action on X4 induces an action on
M 4.4 (which is the trivial action when restricted to G 4/).

Definition 3.3. A fixed point& € M4 4 under the Gy (4) action will be called a maximal
degeneration of W.

The first result we need is a combinatorial description of the maximal degenerations. For
this, we review some terminology from [6], [7] and [35]. Let P C R” be an n-dimensional
polytope with vertices {py, ..., pm}and y : R" — R a linear map. We order the vertices
so that if ¢; := y(pi), then ¢; < ¢; if i < j, and write Q = y(P). Let 0 € (R")" be
linearly independent of y, and Vp the subspace spanned by y and 6. We take Fy to be the
fan in Vy whose cones are intersections of cones in the normal fan of P with Vy. Assume
that the half-plane Hy = R - y @ R. ¢ - 6 intersects the normal fan of P transversely, by
which we mean that every k-dimensional cone in Fy lying in Hp is the intersection of
Hp with an (n — 2 + k)-dimensional cone in the normal fan of P. Ordering the 2-cones
Fo(2) = {00, ..., 0.} clockwise, one obtains the increasing sequence p;, < --- < p;,
of points on P where p;; is the vertex dual to oj. From the construction, it is clear that
{pi;, pi;,, } lie on an edge of P forany 0 < j <r, gi, = qo and g;, = gn,. Any path

(Pigs -+ Di,) (25)

obtained in this way is known as a parametric simplex path relative to y .

In [6], these paths were realized as the vertices of the fiber polytope X, (P) :=
% (P, Q) called the monotone path polytope of P.Leaving a detailed review of fiber poly-
topes to the references above, we content ourselves with describing a theorem from [35].
Let G = (C*)" be a complex torus acting on a projective toric variety Xy with fan
¥ C Gy where G¥Y = Hom(C*, G) and G* = Hom(G, C*) are the lattices of one-
parameter subgroups and characters respectively. We recall from [17, Section 9.4] that if
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G acts on a vector space V and wt(V) € G” is the set of characters which have non-trivial
eigenspaces in V, then the convex hull of wt(V) in Gy, is called the weight polytope of V.
Assume that L is an equivariant ample line bundle on X5 and P C Gy, is the weight
polytope for the action on H%(Xyx, L). Elementary toric geometry shows that ¥ is the
normal fan of P.

Suppose H C G is a subgroup and take E = H - x for a non-boundary point x € Xy.
The Chow quotient Xy, // H is defined as the closure of the orbit G - E in the relative Chow
variety of dim(H)-cycles of degree [E] in Xx. Write 7wy : G]ﬁ — HHQ for the associated
projection and take Q = g (P).

Theorem 3.4 ([35, Lemma 2.6]). The Chow quotient X //H is a projective toric va-
riety with G action and ample line bundle weight polytope equal to the fiber polytope
Z(P, Q).

Indeed, it was shown that X (P, Q) is the Newton polytope of the Chow form of E. We
now utilize this theorem.

Corollary 3.5. Suppose W is an A’-sharpened pencil. The maximal degenerations of
W are in bijective correspondence with the vertices of the monotone path polytope
2, (Z(A)).

The iterated fiber polytope X,,, (X(A)) in this proposition was initially examined in [7].

Proof. Since My 4 is defined as the Chow quotient of Xx4) by G4/, we need only
apply Theorem 3.4 which implies that M 4 4 is equivariantly homeomorphic to the toric
variety Xy, oy (B(A) associated to the monotone path polytope %, , (3(A)). This confirms
that the fixed points correspond bijectively to the vertices and proves the claim. O

We now study the fixed points of M4 4. Given a maximal degeneration § € My 4/
associated to the parametric simplex path

Ts = (tl'o, e, tir)

defined in (25), we will write Cy, ..., C, for the irreducible components of the cycle &
in Xs4). We will say that £ has length r and with each 1 < j < r, we will associate
the pair of natural numbers (d;, m;) where [£] = 3_;_, d;[C;], and m; is the intersection
number &4 - (d;C;). The total intersection number of £4 with £ is then written as mg =

Z;:l m;. Note that this yields the intersection degree of £4 with any cycle in M4 4.

Definition 3.6. Given a parametric simplex path 7¢ associated to the fixed point
& € My ar, we call the data Mg = (T, {(d;, m})}) a decorated simplex path.

Example 3.7. As we give our next construction and other results, it will be useful to
have an example for reference. We choose a sufficiently rich, but simple one arising as
the homological, or Batyrev, mirror of P! x P! blown up at one point. More explicitly, we
let A= {(—1,0), (0, —1), (0, 1), (1,0), (=1, —1), (0, 0)} and we consider A’-sharpened
pencils where A’ = {(0, 0)}. Recall from Definition 3.1 that an A’-sharpened pencil must
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Fig. 14. A and its secondary polytope.

W W
- -

b Ve Y %

Fig. 15. The monotone path polytope defined by the A’-sharpened pencil.

contain e(ggy € C# as a section. The secondary polytope is illustrated in Figure 14.
The function py : X(A) — R is given by the restriction of py : R4 — R which
takes ), 4 Ca€a 10 C(0,0). This defines the monotone path polytope X, v (2(A)) which
is a hexagon represented in Figure 15. Each vertex of the monotone path polytope corre-
sponds to a distinct parametric simplex path T¢. They are labeled with their corresponding
coherent tight subdivision of the interval p4/ (X (A)) inside the hexagon and the paramet-
ric simplex path on ¥ (A) outside the hexagon.

Having decomposed the cycle [£] representing the base of a LG model w, we will now use
this decomposition to partition the critical values of w. We construct a decomposition of C
based on the decorated simplex path Mg = (1%, {(d;, m;)}) which will lead to the notion
of a radar screen. To align the asymptotics correctly later, we define this decomposition
in a fairly flexible fashion. Fix an increasing function g : {f;,, ..., #,} — R U {oco} with
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g(ti,) =0and g(t;,) =oco.Forany 1 < j <randany 0 < k < d; we set
Cik=1{z€C:g) < l|z| < g, 2nk/d; < arg(z) <2 (k +1)/d;}.

We totally order the collection {Cj ;} of regions so that Cjx < Cj p if and only if
j < jlorj = j and k < k’. We now define a distinguished basis of paths Bm, =
{vi, ..., ¥m;} as in Appendix B.4 based at infinity and ordered so that if y;(1) € C; x and
yr(1) € Cjr p with Cjx < Cjr p thenl < I'. In order to make this collection precise, we
fix a sufficiently small ¢ > 0 and for every j set s;; := m;;/d;;. For each 0 < k < dj,

choose s;; ordered points { p{’k, o, pﬁi’_k} in C; x which are at least a distance 2¢ from
; .

the boundary of C; . Let P = Uj’k{p{’k, cee p!{.’jk} be the ordered set of all such points.
Forany 1 < j <r,0 <k < d; and any / with

Jj—1 j—1
> mi+kmjfdy <1< mi+ (k+ Dm;/d;

i=1 i=1

we define the path y; to be a horizontal line with Im(y/) = le/mg, Re(y/(0)) = oo
and |y/(1)| = g(ti;) — & + le/mg. We let v/’ 1 [0,1] — C be a path with y/"(r) =
2T kFe/djy (1), Let 3 : [0,1] — P! be a rescaled concatenation of y; with ;" and
note that, for sufficiently small €, ;(1) € C;x. We may then choose a set of Si; arbitrary
non-intersecting paths y/ in C; x from 3;(1) to p,]l’k wheren =1 — (Zij;l] mi +km;j/d;).
Finally, define y; to be the concatenation of 7 with 7’ to give a distinguished basis of
paths from oo to the set P.

To apply this construction, we examine a one-parameter degeneration in M4 4r to .
We need only choose a lattice point 6 € (Z4)Y which is in the normal cone of the vertex
in ¥,,,(X(A)) corresponding to §. In view of the discussion after Definition 3.3, this
gives a fan Fy supported in the half-plane Hy which lies in the two-dimensional vector
space Vy C RA, as well as an embedding i : Fyp — Fxa). If 0 € ZA, then Fy is a
rational polyhedral fan and i induces a map ¢ : Xr, — X'x(a) of toric stacks. Let Xy be
the stack associated to JFy. Quotienting Vy by Ling(p4/) gives a map from Vy to R and
a map of fans from Fy to R>¢. This induces a map F,,, : Xz, — C which is a toric
degeneration of P!, It is clear that the zero fiber of F p, 18 sent to & by ¢ and that F _A} ()
is isomorphic to P! for t # 0.

Now, & corresponds to the parametric simplex path Tz = (f;,,...,#,) on X(A). Let
sj = pa(ti;). Then par(Ty) is a tight coherent subdivision {[sj—1,s;] : 1 < j < r} of
the marked interval [so, s,]. In other words, each subinterval [s;_1, s;] corresponds to the
image under p 4 of an edge on X (A). We may fill in all additional lattice points lying on
> (A) along the path T to obtain a modified sequence

Write their images under p4 as the sequence

S=(51,...,5) (26)
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where §; = pa(tj). It follows directly from [24, Section 10.1.G] that m; = s; — sj_
and dj = mj/e; where e; + 1 is the number of lattice points in the interior of the edge
{tij, ti;,,}. Forany 1 < j < n, we define b; = G(fj) and b = (by, ..., b,). Choosing
another 6 if necessary, we may assume that by = --- = by = 0 where 5z = s1. Then b
defines the degeneration as in Appendix A.2 for the marked polytope ([sg, s,], 3). By this
we mean that we consider b as the function b : § — R taking §; to b; and observe that it
induces the convex function b as in (50).

Working at the level of coarse toric varieties as opposed to stacks, we may param-
eterize the degeneration using b as follows. Identify Vy N (Z4)Y with (Z?)V so that
Fo C (Z?)Y is dual to the upper convex hull

By = Conv{(5;,bj +r):0<j <n, r e R}

of By = {(3j, bj)} C Z>. For toric varieties, we obtain a map g : C x C* — C x P"~!
given by ) ~
ﬂ(t’ 7) = (¢, [th()zso R l‘b”z‘Y"]).

The coarse variety Xy associated to Xy is the closure of im(8) with the coarse zero fiber

Fgl 0) := Xp(0) = U;=1 C;. Here C; has moment polytope equal to the line segment
from (Ekjfl, by;_,) to (Sk;» bk;) where sp; = s;. Let

wj = (br; — bi; )/ (Sx; — Sk;_,)
be the slope of this line segment and define the map «j : R>g x C* — C x C* via
aj(t,z2) = (,t Hz).
Then we have the following proposition:

Lemma 3.8. The parameterization (B o a;)|yxc+ 1 C* — Xy of the C*-orbit & uni-
formly converges on compact sets to a dj-fold covering of C; as t tends to 0.

Proof. We simply compute

(Boaj)(t,2) = (t, [t (™ 2)% : o aPr (g™ Hig)n])
— (l, [tb07ﬂ_/’§0Z§0 e lbn*,ujgnzgn])
= (1 [t(bo—bk/-,l)—Mj(fo—fkj,l)zfo—fkj,l L

cea t(bn_bkjfl)_,uj (§”_§kj*1)Z§n_§kj*1 ])
By convexity, the slope of the line segment connecting (5;, b;) to (Sk;_,, bx;_,) is strictly
less than p; for all i < k;j_; and strictly greater than wu; for all i > k;. This implies that
Ki = (bi —br;_|) — 14 (5 — Ekj,l) > Oforall i, with equality if and only if k; | <i < k;.
With this notation we have

(Boaj(t,z) = (¢, [0 -1 o Lrn i 2% 7% g ),
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It is then clear that as ¢ tends to 0, (B o «;)(t, z) converges pointwise to the map sending

zto (0,[0:---:0:1:---: PRV A ) 0]), which is a degree d; cover of Cj.
Uniform convergence on compact sets then follows. O

We utilize this in the proof of the following theorem:

Theorem 3.9. Let & be a maximal degeneration of a LG model associated to A. If & €
My ar is sufficiently close to &, there exists a radar screen Mg decomposition of the
domain of & such that the paths of the distinguished basis {y1, ..., ym} end on the critical
values of the LG model associated to &;.

Proof. For any ¢ let P!(g) consist of all points in P! that are at least & away from 0
and co. From [24, Section 10.1], we know that £4 N C; consists of a single point g; for
every j. It then follows from Lemma 3.8 that for any ¢ and 0 < ¥ < 1, there exists § > 0
such that for 7 < § and every 1 < j < n the function (B o ;)| pi) is €-close to
the dj-fold covering (B o «j)|pyxp! (). In particular, from the comment above, we may
choose ¢ and « small enough so that

n
EaNBE.CY =Ean | JBoaliurio 27
Jj=1
fort < §. Let C[’j (K) = (ﬁ o 0[/)|{t}xp1 (x) and C[(K) = U;l:l(ﬁ o a/)|{t}xﬂ)1(/€) Then it
is clear that we may choose ¢ sufficiently small so that the sets C; j(x) in the union are

mutually disjoint. Fix such an ¢ and « so that (27) holds and let
8o = max{k, SWi—H-D/2 .0 < < p).

Then if t < §, since w; > p;—1 and §#i ~Hi-1 < 8(2) we have

K} Wi — -1
e 5(%(;) :

This implies that

1

e P 50t7l1vi

3o
for every 2 < i < r — 1. Choose a collection {g2(¢), ..., g-—1(t)} of continuous real
valued functions for which

1
—t il < g (1) < Bot T
3o

We define 8ek,t - TS;“ — R via gs,K,t(tio) =0, gs,/c,t(tir) = oo and ge,/(,t(tij) = gj(t)~
We observe that for 0 < ¢ < o and any z € C; (k) we have z = C; ;(«) if and only if
z = t7*w for some 8o < |w| < 1/8¢. This implies that z € C; j(«) only if ot ™" <
|lz| < 171 /8¢. Thus for z € C;(k) we have z € C; j(k) if and only if ge ./ (4;;) < |z] <
et (tij,,). By (27) and Lemma 3.3, this implies that the points Ea N Cy (k) are, after
a rotation, contained in the interior of the components Cj; for 0 < k < d; of the radar
screen for Mg with radial function g, . Indeed, because we may choose & small enough
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Fig. 16. Radar screen for top vertices of the monotone path polytope for A.

that C; j (k) is approximately a d;-fold covering of C;, we find that the 27 /d;-angular
regions each approximately cover C; once and the intersection of £% = 0 with each such
map contains m; /d; points (which is the degree of E? upon restriction to C; as given in
[24, Theorem 1.12]), justifying that this radar screen is associated Mg = (T, {(d;, m;)}).
By definition, the degenerate values of the LG model &; are the intersection points of
B(t, ) with £4 and, again, by (27), all such points are accounted for in the interiors of the
regions C; (k). O

Note that the proof of Lemma 3.8 gives precise control on a simultaneous regeneration of
every circuit in the maximal degeneration &.

Example 3.10. Returning to Example 3.7 and identifying Z# and its dual with Z° using
the ordering of A, we see that p4 = (0,0, 0, 0, 0, 1). Consider the path (tg, t1, 12, £3) on
¥ (A) pictured on the left in Figure 17. Using (55), one computes the coordinates for #; to
be

n=(1,1,4,4,5,0), t©n=(1,2,2,3,3,4),

(28)
n=(,133,43), 1n=(22222)5).

Pairing with p4/ gives the coherent subdivision (sg, s1, 52, s3) = (0, 3,4, 5) of [0, 5].
Using the coordinates given in (28), one sees that there are no additional lattice points on
the edges [#;, t;+1] of £(A), so that S = (0,3,4,5) and ¢; = 0 for j € {1,2,3}. This
implies dj =m; = s; —sj_1 and (d1, da,d3) = (3,1, 1).

Choose 6 = (0,7,0,—-8,5,—1) € 7%, A short computation shows that 8 pairs to
zero on ty and 1, while (9,#) = 1 and (0, t3) = 3. The upper envelope Bj of the
set By is shown on the right of Figure 14. The normal fan of this polyhedron defines
the toric variety X which embeds into X's,(4) and defines a degeneration of P! into the
(closure of the) orbits corresponding to the edges [#,tj+1] C X(A). In this case, P!
degenerates into three projective lines, C; U C> U C3. For each j € {1, 2, 3}, the map
(Boaj)|pxcr : C* — Xy from Lemma 3.8 converges to a dj-covering of C;. As dy = 3,
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By = {5, b;)} and BY

Fig. 17. One-parameter regeneration of a maximally degenerate LG model.

the degeneration onto the first component gives a 3-fold covering and the single critical
value £4 N C yields three critical values in the pullback along (8 o a1)|{;)xPx). The
other two degenerations do not yield multiple coverings, so the critical values (i.e. their
intersections with £4) consist of one point each. The radar screen and the distinguished
basis that arises in this case are pictured in Figure 16.

Utilizing Theorem 3.9, for every maximal degeneration of a LG model £, we may use the
radar screen distinguished basis to obtain a semiorthogonal decomposition of a category
which can be thought of as a type of Fukaya—Seidel category (see [47]). However, for a
general subset A” C A and an A’-sharpened pencil W, the associated LG model w has
a hypersurface degeneration, as opposed to a Morse singularity, over 0 and the Fukaya—
Seidel category for such a function has not yet been defined in general. Thus we will
examine the special case for which an A’-sharpened pencil gives rise to the Fukaya—Seidel
category of a Lefschetz pencil as defined in [47, Chapter 18].

Proposition 3.11. Ler A" C Int(Q) and W be a generic A’-sharpened pencil. Then the
LG model w associated to W has isolated Morse critical points away from oo.

Proof. Recall from Theorem A.15 that the principal A-determinant has a product decom-
position E4(f) = HQ’sQ AAQQ/(f)i(A’A)'”(LinN(A)/Q/). The intersection W N A 4ng
corresponds to stratified Morse critical values of w (by definition, these are points
for which the hypersurface intersects the orbit associated to Q' non-transversely). To
see that no such intersection points occur, we first note that, by definition, Asng(f)
equals Agno/(fllang’).- Now, by the proof of Lemma 3.2, we have W = Ling{so, 500}
where soo|lo” = S0 and sol|4 = 0. For a generic choice of W, we may assume that
Agna(so) # 0 for all faces Q" < Q (as the zero loci of such discriminants are hypersur-

faces in (C*)2'"4). This implies that, for any ¢ € C,

Agina(so = t500) = Agna((s0 — tse0)llo'na) = Aginalsolloina) # 0.

Thus all intersections { E4 = 0}NW arise as singularities A 4 (so—#s-) = 0. For such a?,
the hypersurface Y; in X defined by so — tsoc is singular in the interior ¥; — (Y; N dXp).
A generic choice of coefficients ensures that the intersections {E4 = 0} W away from 0
are transverse and therefore yield Morse singularities of the pencil. O
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As was mentioned above, given a LG model w with Morse singularities and reason-
able boundary conditions, i.e. a symplectic Lefschetz pencil, the Fukaya—Seidel category
Fuk™ (w) is well defined and studied in [47]. Given an A’-sharpened pencil § € My 4/,
write wg : Xo — Dy — C for the associated function off the divisor at infinity Dy =
{seo = 0}. If we take the paths 5 associated to a radar screen to be the generating excep-
tional collection, Theorem 3.9 and the above proposition gives the following corollary.

Corollary 3.12. Assume A’ C Int(Q). For every maximal degeneration of a LG model
in Ma_a, there exists a smooth LG model & and a semiorthogonal decomposition of the
Fukaya—Seidel category:

Fuk™ (wg) ~ (T, .... Ty)

where T; is the Fukaya—Seidel category of a regenerated circuit corresponding to &|c;.

3.2. Homological mirror symmetry

In the final pages of this article, we will detail a conjectural homological mirror to the
maximally degenerate LG model and present some supporting evidence for this view-
point. Aside from the intrinsic interest which many have for the subject of homological
mirror symmetry, the perspective obtained from maximal degenerations predicts many re-
sults in the B-model setting which have been either unknown or approached from a more
opaque angle.

We restrict our consideration to the homological mirrors of nef Fano DM toric
stacks. More concretely, we take a simplicial fan ¥ in Z? with a choice of l-cone
generators, which we identify with (1), and consider its canonical stacky fan X =
(Z=D, 74, Bs(1y, £) where X is the pullback of ¥ via Bx1). The nef condition amounts
to the assumption that (1) C 9(Conv(X(1))). This condition is equivalent to —K y.
being nef. Letting ag = 0 € Z¢, we define the A-model mirror of X, to be a generic LG
model w associated to an A’ = {ag}-sharpened pencil W for the set A = (1) U {ap}. It
is not hard to show that any homological mirror of a toric Fano orbifold as defined in [31,
Section 3] can be obtained in this way. We now introduce a structure associated to X’y
corresponding to a maximal degeneration & of w.

For any triangulation T of A, we define a stacky fan X7 as follows. Leto € T be a
simplex which contains ag, T the minimal face of o containing ag, and t(1) the vertices
of 7. We write A, for the finite rank abelian group 74 /Linz(t (1)), and A : Z¢ — A,
for the quotient homomorphism. The star Sty (t) of t in T is defined to be the collection
of simplices in 7 containing 7 as a face. For each such simplex v € Str(r) we define
the cone S, = Ling_,({A(v) : v € v(1)}) C A; ® R with generators A(v) € A;. The
collection {S,} of cones along with their intersections defines a stacky fan which we write
as Xr.

Definition 3.13. Let & € M4 4 be a maximal degeneration with decorated simplex path
Mg = (Tg, {(d;, m;)}) where Tz = (fo, ..., t,+1). The sequence of stacks

Se = (g, ... Ay)

will be called the mirror sequence to §.
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Example 3.14. Let us write out the mirror sequences for the maximal degenerations of
{ao}-pencils on the variety Xy of Example 3.7. Referring to Figure 15, we enumerate the
maximal degenerations &1, & and &3 associated to the vertices on the left of the monotone
path polytope, from top to bottom. The mirror sequences of these degenerations are

Se, = (XD, F P2 {pt)),  Se, = (XD, F,PY, S = (A%, P! x PLPY).

The sequence of triangulations occurring in the decorated simplex path associated to
&1 and its mirror fans are illustrated in Figure 18. As a degeneration of LG models,
this sequence was examined in Example 3.10. Since F] is the projective line bundle of
O(=1) ® O over P! for the second sequence and P! x P! is the trivial projective line
bundle over P! for the third, this example suggests that the mirror sequences to maximal
degenerations correspond to runs of the minimal model program for the mirror.

3 19} n 0
T %, PN I

Fig. 18. The mirror sequence to a maximal degeneration.

We briefly recall the minimal model program on toric varieties as presented in [14, Chap-
ter 15], [40, Chapter 14], or [44]. For the moment, we take X to be an arbitrary projective,
simplicial stacky fan in Z¢, and write X5, for the corresponding toric orbifold.

Given a codimension 1 cone w = Ling_,{a3, ..., aq+1}, there exist precisely two
maximal cones containing w with the additional vertices denoted a1 and a5 respectively.
The set C(w) = {ap, ai, - - ., ag+1} is an extended circuit and has a fundamental relation

d+1 d+1

ZQ/GJ':O, ZC/‘ZO
j=0 j=0

as in (3). We write C4(w) and Co(w) for the subsets (C(w))+ and (C(w)) respectively.
We assume ged(cy, ..., c4+1) = 1 and will orient the circuit so that ¢y < 0.

Denote the full rank sublattice Linz{ar, ..., a1} of Z¢ by A,. As was noted in
Section 2.1, the volume

Volp(C(w)) := Vol(Conv({ay, ..., as+1})) 29)

is given by iy, Z?ill ¢; where i,, is the index [(Z4 : Ayl
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Recall from Definition 2.3 that the core of an extended circuit is the unique circuit
contained within it. For any a; € C4(w), define the cone

7j = Ling_,{a; € Core(C(w)) : i # j}.

Note that {7} }4;ec, () are cones over the simplices in the triangulation 7. of Core(C(w))
defined in (4). We state a proposition which essentially rephrases [40, Proposition 14.2.1].

Proposition 3.15 ([40, Proposition 14.2.1]). The fan consisting of YT = {z;

aj € Cy(w)} is contained in X. If the signature of C(w) is (p, q; 1), then there exists
a collection Supp(w) := {0; : 1 <i <m} of r-cones in ¥ such that the maximal cone in
the star of Y consists of the cones Y(d) := {tj+oi:a; € Ci(w), 1 <i <m}.

Associated to the codimension 1 cone w = (a3, ...,a4+1) is an extremal contraction
in the sense of Mori theory, the structure of which can be phrased combinatorially in
terms of the circuit Core(C(w)) as follows. First, consider the collection Simp(X) =
{Conv(co (1) U{ap}) : 0 € X(d)} of simplices and write

Vol(Z) = > Vol(Conv(e (1) U {ao})). (30)
oeSimp(X)

Note that if X5 is projective, then Simp(X) extends to a regular triangulation 7' of
Conv(A). This can be seen by choosing a very ample divisor Zae)j(l) rqeD, on Xy and
observing that the function sending a to r, defines an extension 7" of Simp(X). We call
such a triangulation T a convex extension of Simp(X). In this way, we may consider the
two collections of cones which depend on the circuit,

YT~ = {Cone(C(w) —aj) : aj € C_(w), a; # ap},
Y ={t4+o0:7€Y ,0 € Supp(w))}.

Assuming T is supported on the circuit Core(C (w)) as in Definition 2.4, we can replace
the maximal cones (and their faces) of ¥ occurring in Y with those in Y . This yields a
fan ¥/ = e (r) Which implements the circuit modification mc ) (T) of T by C(w)
as defined in [24, Section 7.2.C]. We summarize the corresponding statement in birational
geometry as follows.

Proposition 3.16 ([14, Theorem 15.4.1]). With notation as above, let T be a convex
extension of Simp(X) and w a codimension 1 cone of X such that T is supported on
Core(C(w)). Then the extremal contraction corresponding to the rational curve deter-
mined by w is given by a birational map

Sfu Xz - Xsr.

While we refer to [14] for the proof of this proposition, we will detail the three essen-
tially different situations that can occur. These are the standard operations of Mori theory:
Mori fiber space, divisorial contraction, and flip. They are distinguished by the signature
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(p, q; r) of C(w). To see this, we need to define three stacks associated to w. Define the
lattices

_ Ling(Core(C(w))) N Z4 B Vi
T T LingC_wpynzd  TET Ling(C_w)nzd’
Zd
B = Ling(Core(C(w)) N 24"

with the natural projections
r @ Ling (Core(C(w))) N 74 — AF, TR : 74 — Ap, TE : 74 — AE,
Define stacky fans

Yr={np(r): Tt €Y}
Yg={ng(cUTt):0 € Supp(w), T € T}, 31
Yp ={np(0o): 0 € Supp(w)}

and denote their associated toric stacks by JF, £ and B respectively, with coarse
spaces F, E and B. Note that there is an obvious toric fibration 7 : £ — B with fiber
i: F—E&.

We start with the case of ¢ = 1. In this case the map 75 : Z¢ — Ap induces a map
of stacky fans from ¥ = X g onto Xp which gives a smooth map f : Xs — . Here
¥p = ¥ and f = 7 is a Mori fiber space map with general fiber equal to F.

In the case ¢ = 2, C_(w) = {ap, ag+1}, so Ag has rank d — 1 and £ is a divisor
in Xx. The circuit modified fan ¥’ is obtained by replacing the cones in the star of T
with {o U C4(w) : o € Supp(w)}. In other words, we delete the 1-cone corresponding
to ag4+1 which, at the coarse level, gives a divisorial contraction f : Xy — Xy whose
exceptional locus is E blown up along B.

The case of ¢ > 2 corresponds to a flip. Indeed, as in the case of ¢ = 2, the cir-
cuit modified stacky fan ¥ is obtained by replacing the star of Y by {o U C4(w) : o €
Supp(w)}. The induced map 7 : Ay — A’ contracts £, which in this case has codimen-
sion > 1 and contains the rational curve corresponding to w. As X is not Q-factorial, to
obtain the flip ¢ : Xy — X5 one observes that Ky, is ample relative to ¢, as required.

We are interested in sequences of these birational operations which come from certain
runs of the Mori program.

Definition 3.17. Given a toric stack X = A}, a sequence of equivariant birational maps
Xr _.]:r_) Xr—l ——3 e _j_]_) XO

will be called an MMP sequence of X if for every 1 < i < r — 1, f; is a divisorial
contraction or flip, and fi is a Mori fiber space.
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Recall that the effective cone of a projective simplicial toric variety X admits a chamber
decomposition whose chambers correspond to those toric varieties obtained from X by
the operations of the toric Mori program [33]; for brevity we call the induced fan structure
the Mori fan. An MMP sequence as above gives rise to a piecewise linear path in the Mori
fan of X starting at the ample cone and ending at the boundary of the nef cone. If this
path can be made to be linear, we call the sequence regular. These are instances of MMP
sequences obtained from the MMP with scaling, in the terminology of [8]. We may now
state a suggestive theorem relating maximal degenerations of LG models to the minimal
model program.

Theorem 3.18. Given a set A of lattice points, the regular MMP sequences which begin
with a toric stack in

{Xs : (1) U{0} = A, X is nef Fano}

are in bijective correspondence with the mirror sequences to maximal degenerations of
{ao}-sharpened pencils on Xg. Both are in bijective correspondence with the vertices of
the monotone path polytope ¥ Pag (Z(A)).

Proof. Consider the linear projection pg, : RA — R and its restriction to % (A). Re-
call that this projection takes ), 4 ra€q t0 rq, and thus, by (55), for any triangulation
T = {(Q;,Aj) 1 i €I}, pgylor) = ZaoeAi Vol(Q;). In particular, p4,(¢7) = 0 for
triangulations of (Q, A — {ap}), and py,(¢r) = Vol(Q) for triangulations in which ev-
ery simplex contains ag. Thus p,, maps X (A) onto [0, Vol(Q)]. By Corollary 3.5, the
vertices of the monotone path polytope are in bijective correspondence with the maximal
degenerations. For any such vertex &, let Mg = ({10, ..., t,11), {(d;, m;)}) be its deco-
rated simplex path as given in Definition 3.6. We first observe that the mirror sequence to
& is an MMP sequence for Xs. If we take pq, (t,+1) = Vol(Q) to have the maximal value,
then ¥, is nef Fano. For every circuit C; whose modifications give #; and f; 1, we see
that ag € (C;)4+, which implies that there is an extremal contraction f; : Xy, —--+» Xy,
corresponding to the circuit. If 1 < i < r then since pq,(#;) # 0, we deduce that ap is
a vertex of a simplex in #. This implies that o (C;) = (p, gq;r) with g > 1, so that f;
is a divisorial contraction or a flip. On the other hand, if i = 0, then pg, (o) = 0, which
implies that ag is not a vertex of any simplex of #y. This implies that o (Co) = (p, 1;r)
and fj is a Mori fiber space. Therefore the mirror sequence to & corresponds to an MMP
sequence for Xx. The converse is obtained by running the above correspondences in re-
verse.

O

From this result, one is naturally led to conjecture that every decomposition of the A-
model category Fuk™ (w) given by a radar screen corresponds to an equivalent decom-
position of the B-model derived category of X’z which is associated to the mirror MMP
sequence. On the B-model side, such a decomposition has been given very explicitly
in [36]. We write a condensed version of these results here. While we refer the reader
to loc. cit. for complete proofs, we include a partial proof to verify the count given in
Theorem 3.19(i).
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Theorem 3.19 ([36]). (i) Let C(w) = {ag,...,aq+1} correspond to a signature
(p, q; r) circuit in a rank d lattice with ay = 0 € C_(w) and triangulations T.
Let X = X5, . Then the derived category DP(X) has a strong exceptional collec-
tion of Volo(C (w)) line bundles,

d+1

E, = [O(;kiDi) :0 > Zc,-k,- > —Zc,-].

If g = r = 1, then the collection is complete.
(1) Let X = X} be a toric stack with an MMP sequence

/i f
X =22 X == - == X
and associated toric stacks F;, & and B; at each stage. Then there is a semiorthogonal
decomposition

DP(X) ~(S1,...,S))

where each S; admits a semiorthogonal decomposition

Si = (ja(m* (D" (B)) ® L) : L € Ey).
Proof. These statements are part of Theorems 3.1, 4.3, 5.2 and 6.1 in [36]. The only
additional point not proven there is the count of exceptional objects being Volg(C(w))
as defined in (29). To prove this, we observe that ¢ : Z4 — Z< given by ¢(¢;) = a;
has cokernel Zd/ Ay and rank 1 kernel. So the line bundles O(}_ b; D;) form a subgroup
of Pic(&") isomorphic to (Z%/Ay)Y @ 7Z. Thus the number of line bundles OO _kiDj)
satisfying 0 > Y kjc; > — Y c¢;, counted up to equivalence, is |Z¢/Ay| - Y ¢;) =
Voly(C (w)). O
One notational distinction worth noting is that what is called F in [36], is denoted 3 here.
Now we recall from [23, Section 2.6] that the multiplicity of a d-dimensional cone o
in Z4 is
Mult(o) = [Z¢ : Ling (o (1))].
We use Theorem 3.19 to prove a more elementary result.

Proposition 3.20. Let X5 be a complete toric stack with simplicial stacky fan ¥ in 7%
Then
tk(Ko(D?(Xx))) = Vol() = Z Mult(c). (32)
oex(d)
Proof. We prove this by induction on dimension. Every stacky fan in Z is given by two
primitive points aj,a; € Z which give a (2, 1) circuit A = {ap = 0, aj, a»}. Clearly
Volp(A) = |a1| + |az|, which equals the two quantities on the right in (32). By Theorem
3.19(i), this is also the number of exceptional objects in a complete exceptional collection,
so the proposition holds for this case.
Now assume that it holds for dimensions < d and all d-dimensional complete, sim-
plicial stacky fans 3 with Vol(£) < V for some V € N. Let X be a d-dimensional com-
plete, simplicial stacky fan with Vol(X) = V. Let f : X5 --» Xy be a birational map
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associated to a circuit modification C (w) of signature (p, g; r). Write the corresponding
fibration, defined in (31), as F — & — B, where dim(B) = r < d. By Theorem 3.19(ii),
the additivity of the rank of K relative to semiorthogonal decompositions, and the above
assumptions, we have

rk(Ko(D?(X5))) = tk(Ko(D?(Xs51))) + Volo(C(w)) - tk(Ko(D?(B)))
= Vol(Z') + Volg(C(w)) - Vol(Zp).

Now, from the definition of Xp and Proposition 3.15, we deduce that for every d-
dimensional cone 6 € T C X which contains 7; as a face for some 7; € Y, there is a
unique o € ¥ p which is the 7z-image of 0’ € ¥ where 0’ 4+ 7; = 6. The volume of
the simplex associated to ¢ is thus Vol(o) - Vol(t;). The contribution to Vol(¥) from T
is therefore ereT,gezg Vol(t;) - Vol(o).

The same holds for Y , which yields

Vol(Z) — Vol(Z') Z Vol(z;) - Vol(o) — Z Vol(z;) - Vol(o)

7;€Y,0€Xp ;€Y ,0€Xp
> Vol(o)(Z Vol(gj) - 3 Vol(r,-))
o€EXp 7eY e

= Vol(Z3) - Volo(Core(C(w))) = Vol(Zp) - Volo(C(w)).

But this implies rk(Ko(Db (Xx))) = Vol(X) = V, proving the induction step. ]

From this, we obtain an equality of the ranks of the K-theory for the semiorthogonal
pieces arising from both the A-model and B-model categories.

Corollary 3.21. Suppose Tz = (t;,, ..., ;) is the parametric simplex path correspond-
ing to the maximal degeneration & € My q, & is a regeneration of &, and {[s;, sj+1] :
Sj = Pay(ti;)} is the induced tight coherent subdivision of [0, Vol(Q)]. The associated
semiorthogonal decompositions Fuk™ (wg,) = (T1, ..., T;) and DP(Xs) = (S1,....S))
have the property

tk(Ko(T))) = j — sj-1 = tk(Ko(S))).

Proof. The equality tk(Ko(7;)) = s; —sj—1 follows from the discussion after (26), where
it was observed that the multiplicity m; of E4 equals s; — s;_1. This multiplicity denotes
the number of critical points in the j-th outer annulus of the radar screen decomposition
and thus the number of exceptional objects in the generating collection for 7;, proving
the first equality.

The equality for rk(Ko(S;)) follows by observing that s; —s;_ equals pg, (ti/. —li;_, ),
which is the difference of the sum of the volumes of simplices containing ag in ti; and li; .
By the construction of ¥; = E,,./_ preceding Definition 3.13, it follows that this equals

Vol(%;) — Vol(X;_1), which is rk(K(S;)) by Proposition 3.20. m]

Theorem 3.18 and Corollary 3.21 lead to the following natural conjecture.
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Conjecture 3.22. Given any maximal degeneration & of an {ag}-sharpened pencil and a
regeneration & of &, let

Fuk~(wg) = (T1,...,T,), D’(Xz)=(S1,...,S)

be the semiorthogonal decompositions associated to & and its mirror sequence. Then there
exists an equivalence of triangulated categories

®¢ : Fuk™ (wg,) — DP(Xx)
which restricts to equivalences g : T; — S; foralll <i <r.

In fact, a more detailed conjecture can easily be formulated about the equivalence of the
categories 7; and S; associated to degenerate circuits, but we will leave this to a later
work. Additional evidence for this conjecture comes from the case of A actually equaling
a circuit, which is simply the statement of homological mirror symmetry for a weighted
projective stack. Certain classes of (2, 2) circuits were also examined in [37] where the
equivalence of the circuit regeneration and the semiorthogonal component associated to
a stacky blowup was proved.

As a final remark, we point out that the edges of the monotone path polytope
% Pag (2(A)) correspond to minimal transitions between MMP sequences. They also cor-
respond to certain two-dimensional faces of X (A). Restricting attention to those faces
which have an edge on the minimum facet p,, = 0, we obtain a transition between two
Mori fiber spaces. Such moves, or links, have been well studied in a much more general
context and their classification is referred to as the Sarkisov program. As an outgrowth of
our perspective, one may pursue a complete structure theorem for all toric Sarkisov links.

Appendix A. Toric preliminaries

In this section, we will give key definitions and constructions for a toric moduli space of
hypersurfaces and its compactification. An important point to keep in mind throughout
is that our moduli stacks are only of hypersurfaces in toric stacks, and only up to toric
isomorphism, not general isomorphisms. The advantage of this approach is that we obtain
stacks with extremely explicit representations.

In the first two subsections we recall and collect notions of the algebraic and symplec-
tic geometry of toric stacks. Many familiar aspects of this subject will be assumed, but
all novel constructions will be discussed. In the last two subsections, we recall the con-
structions of Gelfand, Kapranov and Zelevinsky [24] and Lafforgue [38]. We adapt these
ideas to the definition of several toric stacks which give the moduli compactification, a
universal toric variety lying over it and its universal hypersurface.

A.l. Basic definitions

We start this section by recalling the construction of toric stacks through the data of a
stacky fan. We utilize the material in [25] rather than the more classical approach given
in [10, 13]. This allows one to work with more general Artin stacks.
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Definition A.1. A stacky fan X consists of the data (A1, Az, 8, ¥) where:

(i) Aj is afinitely generated abelian group,
(ii)) X isafanin A} ® R and A is a lattice,
(iii) B : A1 — A is a homomorphism with finite cokernel.

The set of d-dimensional cones in ¥ will be denoted by ¥ (d) and we refer to o € X (d)
as a d-cone. We will frequently abuse notation and identify a 1-cone R>¢ - A in X (1) with
its primitive generator A. Note that our definition of a stacky fan is called a generically
stacky fan in [25, Definition 2.4]. Now extend 8 to an exact sequence

0>Ls S A5 Ay K5 0. (33)

Letcone(B) = [A} ﬁ) A»] be the cone of § in the category of chain complexes of abelian
groups and take

Hy := Tor;(cone(B), C*) = (Lx ® C*) @ Tor;(Kyx, C*)

to be the first hypertor group of cone(8). The isomorphism above follows from consider-
ing the hypertor spectral sequence which collapses on the second page as Ly is a lattice
and Ky is finite. Furthermore, the connecting homomorphism in the long exact sequence
of hypertor maps Hy onto ker(8 ®z 1) C A| ®z C*. This in turn gives rise to an action
of Hy, on the toric variety Xx. One notes that if A» is not torsion free, then another look
at the long exact sequence of hypertor shows that the finite group Tor; (A2, C*) naturally
embeds into Hy as the subgroup which stabilizes X5, generically.

Definition A.2. Given a stacky fan X, the toric stack Xy is defined to be the quotient
stack [Xx /Hx].

The torus acting on X, is
Gy = Ay ®7 C*.

Indeed, note that for any A € Gy, we may choose A’ € A} ®z C* with B(1') = A and
define A - _: Xy — Xy by A - z for z € Xx. This defines the torus action of Gy on Xy
up to natural isomorphisms. The action can be made strict when Ky is trivial.

Given two stacky fans, ¥ and ¥, we define a map g : > > Xtobea pair (g1, g2)
such that g : 1~\1 — A1 induces a map of fans g : > — %, and g2 [\2 — A, satisfies
Bogi = g oB.Itis clear that any such map of stacky fans induces a map 3 : Xg — s
along with a homomorphism g2 ® 1 : Gg — Gx. While g is not strictly equivariant, it
is weakly equivariant in the sense that for every A € Gg and z € X5, there is a natural
isomorphism 45 € Hy for which h;(g(i 22) =(22® D) - g(z). These isomorphisms
must satisfy a cocycle condition which is evident from their construction. In particular, if
A € Gy liftstoact via i’ € Ay ®z C*, and (g2 ® 1)(A) € Gy lifts to A’ € Ay ®z C¥,
then one defines ; = 1 - [(g1 ® DO

Following [25, Section 5], we call a stacky fan X good if the primitive generators
¥ (1) in A are linearly independent and span a saturated sublattice of A,. All of the toric
stacks defined and worked with in this paper will be good and most will be Deligne—
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Mumford (DM for short). It was shown in loc. cit. that for any toric stack X, there is a
canonical stack Xy and a map A5 — X where Yisa good stacky fan. This map satisfies
a universal property and can be thought of as a stacky resolution of X. When X = A’y
and X is good, the map is an isomorphism.

For a good DM toric stack X’s, one can identify the space Diveq(Xs) of equivariant
Cartier divisors with A} and the Picard group with Pic(Xy) = Ly & Ext!(Kyx, Z).
Indeed, let =V C Alv be the dual cone to the cone over X (1). Then the ring

Ry = Clxy : 0 € Z(1)] (34)

is the homogeneous coordinate ring for Xy graded by the character lattice Ly @

Ext'(Ks, Z) of Hy. Given yy € AY, we write D, for the associated Cartier divisor
and O(D,,) for the line bundle in Pic(Xy). Utilizing the map « from the exact sequence
(33), for any character yy € £V define the set

l={y eV :a"(y) =a” (W)} C A].

This identifies the vector space H(X, O(D,,)) with (ChY = Homge([y0], C) with
eigenbasis consisting of the monomials {x, : ¥ € [y]} C Rx. When the divisor D), is
chosen, the group Gy x C* acts on H(Xy, O(D,)) via

WD o) =1 Y B0 = e,
v€lvol vE€lnl

Here we have identified A) with the group of characters Hom(Gy, C*).

Suppose g : £ — X is a map of stacky fans and y € =V an effective divisor on X.
Then the map

g HO(Xg, O(Dy)) — H(X5, O(Dyv,) (35)
is simply
g’*( Z CWW) = Z Cy ey ()
v€lwl v€lwol

Now assume that g : £ — X describes a flat morphism of good toric stacks. Recall
from [34, Proposition 2.4] that such a map has the property that g; maps X (1) onto (1),
implying that g1 : A — Aj has cofinite image I'; := im(gj). Let I'; be the pushout

Al L) ]\2
gll hl
14
' ——rIy
used in the following definition.

Definition A.3. Given an equivariant flat morphism g : X5 — A% between two good
toric stacks, let E; = (', Iy, y, X)and X; = Xz; be called the colimit stack relative
tog,and g~ = (g1, h) : Xz — X~ the induced morphism.
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Note that the colimit stack is a good toric stack. The following proposition establishes a
universal property for the colimit stack.

Proposition A.4. Suppose X|, Xp and X3 are good toric stacks. Let g : X| — A3 be a
flat equivariant morphism, factored as g = h o f:

X %X;

{ \ ; (36)
h v

Xg %Xz

If h is a bijection on orbits then there exists a unique map h: Xg_) — X, such that
f=hog™.

Proof. This follows from the universal properties of pushout along with the assump-
tion that 4 is an isomorphism on fans defining X, and A3. In particular, suppose X; =
(AF, Aé, Bi, ;) fori € {1, 2, 3} are stacky fans for X;, and f, g and h are represented by
maps of stacky fans, (f1, f2), (g1, g2) and (h1, hy) respectively. By [20, Theorem IV.6.7],
the condition that g is flat implies that g is surjective. Since 4 is an isomorphism of coarse
toric varieties, it follows that /2 is an isomorphism of lattices and induces an isomorphism
of fans from X, to ¥3. This implies that f; factors through g so that the pushout I' of g;
and 1 admits a map h to A% making diagram (37) commute.

B1

1 1
A v_Az
\K -
[
h A? pat >T° 2
g1 ! K & (37
B2
2 2
Al A2
hy ha
B3
3 3
Al A2

The stacky fan of the colimit stack ):g_’ = (A3, I, B, X3) then admits the stacky fan

map (h_l, h) to X, whose induced map on toric stacks makes diagram (36) commute.
O

The toric stacks relevant for this paper arise from finite sets in a lattice or a finitely gener-
ated abelian group. We now recall this construction and fix our notation. Let B be a finite
subset of a finitely generated abelian group A which spans A ® Q. To construct a toric
stack associated to B, let 8 : ZB — A be the homomorphism given by assigning e, to b
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where {e}, : b € B} is the standard basis for ZZ. We call the exact sequence

0> Lp B 7B P8 A ko0 (38)

the fundamental sequence associated to B. Let cone(Sp) be the cone of Bp in the category
of chain complexes of abelian groups. Using the hyperext spectral sequence, one can
compute the hyperderived dual R*Hom(cone(Bp), Z) to see that it is concentrated in
degree 1 and isomorphic to Ly & Ext' (K, Z). We will use the notation A pgv for this
abelian group. Note that the long exact sequence associated to R*Hom(—, Z) is then

0 Av 28 2B 2B Ay 0, (39)

where a}, = o @ § is the connecting homomorphism.

Assume B comes naturally equipped with an abstract simplicial complex B, i.e. a
collection of subsets of B which is closed under intersection. Then we define the fan X3
in R® to consist of the cones Cone(t) = Ling.,{ep : b € v} for every T € B. We write
YpB= (ZB, A, Bp, £p) and Xp ;5 for the associated stack. If B is understood, we may
write X p and A’p. Note that all stacky fans in the sense of [10] and fantastacks from [25]
are obtained from this construction.

Suppose A is arank d lattice. Let A C A be a finite subset which affinely spans A @R
and Q C Ap equals the convex hull of A denoted Conv(A). By a marked polyhedron
we mean a pair (Q, A) where Q is a polyhedron, i.e. the intersection of finitely many
half-spaces in A ® R. We take O C A" to be the finite set of primitive generators for
supporting hyperplanes of Q. More precisely, for every b € A" let

np = —min{b(v) : v € Q). (40)

Then b € Q if and only if b is primitive and {v € Q : b(v) = —np} is a facet of Q.
The dual of the face poset of Q then defines an abstract simplicial complex By on Q. In
particular,

Bo = {QQ/ : Q' is a face of 0}, 41

where the set QQ/ is defined as {b € Q : b(v) = —ny, forevery v € Q'}.
The marked polyhedron (Q, A) provides the stack X'y, 0.5 with a positive line bundle

O(D,,) where
ya= Y npey € (Z9), (42)
beQ
and a linear system (C4) c (Clval)V = HO(XQ’BQ, O(Dy)).
Definition A.5. Given a marked polyhedron (Q, A), let

(1) p:=X 0.5 be the stacky fan associated to Q,
2) Xg = XQ’ Bo be the toric stack associated to Q,
(3) 9Xp = DZ;;EQ ¢y be the boundary divisor of Xp,
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@) Oa(l) := O(Dy,).

(5) La = (CHY C HO(XQ, 04 (1)) be the linear system of sections of Q4 (1) with
equivariant sections indexed by A,

(6) G be the group AY ® C* acting on Xp.

We illustrate these definitions with two basic examples.

Example A.6. Suppose A C 7% = A is the subset {(1,0), (—1,0), (0, 1)}, so that Q is

a triangle. One computes Q = {(1, —_1), (=1, —1), (0, 1)}, which implies that the funda-
mental exact sequence (38) for B = Q is isomorphic to

- ﬂ,
078 7350 72 ¢

where a5(1) = (1, 1, 2). Thus the stacky fan for (Q, A) is T = (Z°, Z?, B, ) where
% consists of all proper faces of RSZO. This implies Xy = C3 - {0} and Hy = C* via the
action A - (x1, x2, x3) = (Axq, Axp, A2x3), so that

Xy =P(1,1,2). (43)

One can check that n, 1y = 1, n(—1,-1) = 1, n,1) = 0, so that O4(1) = 0]1»(1,1,2)(2)
where Op(1,1,2)(n) corresponds to the graded module C[x1, x, x3] with 1 in degree —n.
Furthermore, the linear system L, is the span of {xlz, x%, x3}. As (0,0) € Q was not
included in A, its corresponding section x1x; does not appear in the linear system.

Example A.7: Suppose A = {(0, 0), (1,0), (0, 1), (—1, -1)} C 7% = A. Again Q is a
triangle and Q = {(2, —1), (—1,2), (—1, —1)}. However, in this case KQ is non-trivial
in the fundamental sequence

- ﬂ,
0>2-% 735 72, 72/37 0.

Here ocQ(l) = (1, 1, 1) and the stacky fan is X = (Z3, 72, ,BQ, Y.) where X is as in Ex-
ample A.6. Thus, letting 13 be the third roots of unity, we see that Xy = C> — {0} and
Hy = C*@ u3 where the action of Hy on X is (A, £)-(x1, x2, x3) = (Ax1, AL "' x2, AL X3)
(up to a change of coordinates), so that

Xs = [P?/u3].

One checks that n;, = 1 for b € Q, which implies that O, (1) is the pullback of Op2(3).
The generators of L4 corresponding to A are the invariant sections {xf, xg , x33, X1x2x3}.

The study of toric varieties and stacks from the perspective of marked polytopes places the
linear system as a central object. Those sections that have singularities on various orbits
of Xy will be of particular interest. Let A, be the set of vertices of O, and A, = A —A,.
For any face Q’, we will write orby' C X for the corresponding orbit. For a section s of
a line bundle over a stack, we denote its zero locus by ).
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Definition A.8. A sections € L4, C H 0(XQ, O4(1)) is degenerate if the scheme-
theoretic intersection Yy Norb - is singular for some face Q' of Q.Ifs =) Caly, WE
say s is full if ¢, # O foralla € A, and very full if ¢, # 0 foralla € A.

acA

When X is a smooth stack, a degenerate section is a section which does not transversely
intersect the toric boundary. The principal A-determinant

Epr: Ly —C (44)

is a polynomial which vanishes on degenerate sections (see [24, Chapter 10]). We also
recall that the discriminant A4 : £L4 — C is a polynomial that vanishes on the closure
of the set of sections with a singularity in the maximal torus orbit of Xp. Note that there
exist sets A for which the discriminant A 4 is constant. These cases yield toric varieties
that are called dual defect and are studied in [15].

Our next aim is to review the procedure of equipping Xp with an invariant sym-
plectic structure. We will follow the usual route of symplectic reduction [4]. We take
T = {z € C* : |z] = 1} and, given any lattice I, we write T and tp ~ I'r for the real
torus T ® I" and its Lie algebra. We will utilize the fundamental sequence

o5 = B5
0Ly —>722 5 A — Ky — 0. (45)

We note that the toric variety Xy o5, C C2 is an open equivariant subset, so that re-

stricting the standard Kéhler structure on C2 to X z, yields the moment map w4 :

Q

Xz, — RZ, given by

ng@ ) =zl lzg) P, (46)
where we have chosen the action of T,,5 on €2 to be
—2i —2i6,5
O1,....05) @1,....20) = (e R 017,5))-
On the other hand, restricting to the T, 5 action gives the moment map piy, o6 =Moo aé

0
w in the interior of the image of uy, 5 gives a symplectic form on X via the symplectic

reduction

where o} : t; o= tZQ is just tensoring with R and taking the dual. Choosing a value

(Xg. @) = [u ) (@)/Tryl.

We write p, : ,uZé (w) — X for the symplectic quotient map. If no choice of w is

mentioned, we set
w= a\é(D),) 47

and call this the standard symplectic form on Xg. Such a choice fixes Xy as a monotone
symplectic stack, which can be thought of as a very stringent condition [41]. After having
chosen a symplectic form on Xy, we recover the moment map of Tpv on X by first
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considering AY = ﬂQ(ZQ) and the moment map with respect to T .. For this group,
there is a splitting i : T3 — T, of B. From the exactness of the sequence

_ - Bs .
0 Ly 570 5% A -0, 48)

we infer that fig 1 Xg — tzv ~ AR is given by i* o 11 ¢- To recover the actual moment

map, we need only compose with the natural map Ar — Ap inverse to the dual of the
inclusion. These moment maps fit into the commutative diagram

_ Pw
/LLé (w) —— Xp

lﬂg PA (49)
ﬂ5+y

RO« 2 Ag

where y € R satisfies aé(y) = w (note that a different choice will simply translate the
moment map).
We observe that the image of the moment map on Xy can be seen as the intersection

of an affine subspace i (ARr) + @ with the positive cone Rgo. For the case of the standard
form, the image of w4 is Q itself. This can be seen by taking y = y4 from (42).

A.2. Stable pair degenerations

We now review the procedure for simultaneous degeneration of a toric stack and its hy-
persurface (see [28, 29, 43]).

Definition A.9. Given a sections € £4 C H O(XQ, Oa(1)), write Y for its zero locus
and call the pair (Xg, V) a stable pair. Two such pairs, (Xp, Vs) and (Xo/, Vi), will be
considered equivalent if there exists an equivariant isomorphism from X to Xpr which
pulls back s’ to s.

We recall the definition of a regular marked subdivision S = {(Q;, A;)}iesr of (Q, A)
from [24, Chapter 7.2]. First, we require that for eachi € I, A; C A, Q; = Conv(4;),
the union of the Q; is O, and the intersection of any two Q; is a face of each. Note
that the union (J;c; A; is not necessarily the set A. The added condition of regularity is
formulated in the following way. Let n : A — R be any function and take

O, =Conv{(a,t) e AR®R:a e A, t=n)}
to be the convex hull of the half-lines defined by 5. Let 7 : Q — R be the function
n(g) = min{z : (q,1) € Qp}. (50)

It follows that 7 is a convex, piecewise affine function on Q.



Symplectic relations and degenerations of LG models 2217

Definition A.10. We say that 7 is a defining function for the subdivision S = {(Q;, A;) :
i el}if

(i) 7]g, extends to an affine function ; on A @ R,

(1) n(a) = gi(a) ifand only if a € A;.

S is a regular subdivision if it has a defining function. If the set A; is affinely independent
for every i € I, the subdivision S is called a regular triangulation and denoted by T.

An example of the graph {(a, n(a)) : a € A} of the function 7 and its associated polyhe-
dron Q, is shown in Figure 19.

Fig. 19. S ={(Q1, A1), (Q3, A)} and a defining function .

For any regular subdivision S, we let C (S) be the cone of all defining functions for
Sand C;(S) = Z*HV N CR (S) the set of integral defining functions. Write Cr(S) for its
closure and Cz(S) = (Z4)V N Cr(S). For any n € C5(S), we define

Ay ={rnt)e A®Z:reA, t>n)

and write (Q,,;, Ap,;) for the marked facet of (Q, A;) over Q;.

We will now use integral defining functions to construct and study a degeneration
of Xp. This technique follows that of Mumford [43]. Let n € C7(S) and write X, for the
toric stack Xp, as constructed in Definition A.5. Recall that Q,] is in bijection with the
facets of the polyhedron Q,. Then Q,, can be written as the disjoint union Q; U Qf; of
two types of facets where v and 4 refer to vertical and horizontal divisors. The first type,
b € QY is a facet on the lower boundary of Q. These are in one-to-one correspondence
with the polytopes {(Q;, A;) : i € I} of S. The second type, b € Q" is a facet of 0Oy
which is invariant under positive translations by (0, 7) for + > 0. These are in one-to-one
correspondence with the facets of Q itself.

We notice that the combinatorics of the polyhedron Q) and thus those of By, and
EQn’ By, are dictated by S and not ». The role that 5 plays in the definition of X}, is in the

function ‘BQn .79 — (A®Z)". The subfan X4, consisting of 1-cones in QZ projects to
a fan ﬂQn(zAn) C (AR®R)Y with 1-cones given by ,BQU(Q;) ={f—dg; :i € I} where
f=1(0,1) € (A ®Z) and dg; is the derivative (or linear part) of the affine function ¢;

appearing in Definition A.10(i). A subtle point about this formula is that when A; affinely
spans a proper sublattice of A, the element f — d¢; is not necessarily in (A @ Z)" . In this
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case, it is necessary to take a multiple to obtain a primitive generator. We write ¢;,; € Z=(
for the denominator of d¢g;. In other words, for any i € I, we define the constant ¢, ; as

cpi=min{n € Zog :n-dg;i € AV} (51)

It is not hard to see that ¢, ; divides the index [A : Affz(A;)] where Affz(A;) is the affine
hull of A;. So, in general, there are only a finite number of possible constants ¢, ; that can
occur amongst all n € C5(S).

As is always the case with toric stacks defined by polyhedra, the stack A} comes
equipped with a line bundle O, (1) such that the vector space C4n is canonically identified
with a linear system. The map 7 induces a natural inclusion ¢ : CA — C4» given by

y (Z Caea> = Z Ca€(a,n(a))-

acA acA
Definition A.11. A degenerating family of (Xg, )s) is a stable pair (X, ))) equivalent

to a pair (X, yln(s,)) for some defining function n of a regular subdivision S of (Q, A)
and a very full section s’.

We note that the stack X}, admits a morphism F;, : Aj, — C. Taking C to be the stacky fan
given by (Z, Z, 17, R>¢) where Rx¢ is thought of as the fan consisting of itself and {0},
we may describe F; as a map (f1, f2) of stacky fans

- B
AL (A7)

1

z—4 7

Here, fi(ep) = O for every b € Qh, while fi(ep;) = ¢y, for b; € QZ corresponding to
(Qi, A;). The homomorphism f> is simply projection to the Z factor. It is not hard to see
that the fiber of (X}, )}LU(S)) over 1 € C* is equivalent to (Xgp, )). On the other hand, the
fiber over zero is the union (Ui c1 X0is Ul- c1 Vs| Ai) whose irreducible components are
equivalent to the toric pairs (Xg,, V,.)-

It is useful to view the morphism 1’:",7 from the moment map perspective as well. Here

My é ) (w) C €2 defines the stack &, after taking the quotient by T, oy Observe that the

map F), can then be defined on €9 as
F'?(Zl”"’leql) = 1_[ Zl-cn'i. (52)
ieQy
In other words, IE,7 is invariant with respect to the T, 5 action and descends to F; on the
n
quotient X, = [M;é (@)/Tr, 1
n
In general, the marking A should be thought of as a set specifying the non-zero coef-

ficients of a given section. Let A,, C A be the set of vertices of Q and call any stable pair
(X, V) full if s € (C*)Av x CA~Av, and very full if s € (C*)A.
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Definition A.12. Lets € HO(XQ, O4(1)) be a full section and F;, : X — C the projec-
tion associated to € ZA.

(i) A toric degeneration of X is the fiber Fn_ L).
(i1) A hypersurface degeneration of )y is the fiber F,~ Loyny.
(iii) A stable pair degeneration of (Xg, ) is the pair (F, ' (0), F,"1(0) N V).

If t € C, we write Z,(¢) for the fiber Fn_l(t) N Y.

A.3. Secondary and Lafforgue stacks

In this section we give an explicit formulation of several moduli stacks related to A. One
stack we obtain is closely related to those defined in [3] and [38].

We start by setting up more notation and recalling several general results from [24].
Given a monoid M acting on an abelian group A and a subset A C A, we write Linys (A)
for the set of linear combinations of A with coefficients in M. Again we assume A C A
is a finite set which affinely spans A ® R and promote it to the subset

A={a,1):aec A} C ADZ. (53)

This spans a semigroup Liny(A) with convex hull Ling_, (A). We note that the supporting
hyperplane functions Ling_,(A) = {(b,np) : b € 0} and Xm is the affine cone of
> -

X where the constants n;, were defined in (40). Recall from (38) that the fundamental
sequence associated to A is

0o Li A 7APA Nz - K4 —0. (54)

We will return to the extension .A of A and the sequence (54) several times throughout
this section.

A marked polytope (Q, A) will be referred to as a simplex if Q is a simplex and A
is its set of vertices. Recalling Definition A.10, a regular triangulation of A is a regular
subdivision S = {(Q;, A;) : i € I} such that every (Q;, A;) is a simplex. Such triangula-
tions correspond to vertices of the secondary polytope X (A) as defined in [24, Chapter 7].
More concretely, for a regular triangulation 7 = {(Q;, A;) : i € I}, define

or =3 (X Vol@n)e, € 2. (55)

aelJA; acA;

In this formula, Vol(Q;) is normalized so that the standard simplex has volume 1.
The secondary polytope of A is then the convex hull

2 (A) = Conv{gr : T aregular triangulation of A} C RA. (56)

While the vertices of X (A) have a particularly nice formula in R4, we will see in Theorem
A.16 that the dimension of X (A) is always |A| —d — 1 where d is the rank of A.
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Example A.13. Suppose A C 7% = A is the subset {(1,0), (-1, 0), (0, 1)} from Ex-
ample A.6 consisting of the vertices of a simplex. Then there is only one regular tri-
angulation 7 = {(Q, A)} and the secondary polytope ¥ (A) consists of a single point
o1 = 2e(1,0) + 2e(-1,0) + 2e(0,1)-

Example A.14. Suppose A = {(0,0), (1,0), (0, 1), (—1,—1)} C Z* = A as in Ex-
ample A.7 and observe that there are precisely two regular triangulations 7_ and T of
(Q, A) illustrated in Figure 20. Thus the secondary polytope in this case is an interval
between the points

Qo1 = 36‘(0)0) + 26(1’0) + 26(0,1) + 26(,1’,1), 57)
or, = 3eq1,0) + 3e©,1) +3e—1,-1)-

- T(A) T+

——— @

or_ or,

Fig. 20. Regular triangulations and the secondary polytope for A = {(0,0), (1,0), (0, 1),
(-1,-1)} c 72

The next cited theorem connects the secondary polytope to the linear system £ 4. In order
to state it, we review more of the notation from [24, Section 5.3]. We write Q' < Q if O’
is a face of Q. For any face Q' < Q,take A’ = {(a, 1) : a € Q’NA} and let Ling (A’) and
Lingz(A’) be the R-linear and Z-linear span of A’ respectively. Then the index i (Q’, A) is
set to equal [A @ Z N Ling (A’) : Ling(A’)]. Given an additive monoid M contained in
a lattice, the notation u(M) denotes its subdiagram volume. This is defined by letting A
be the group completion of M, K (M) [K4+(M)] the convex hull of M [M — {0}] in AR,
and K_ (M) equal to the closure of K (M) — K (M). With this notation, the subdiagram
volume is given by u(M) = Vola (K_(M)). The notation u(Liny(A)/Q’) denotes the
subdiagram volume of the semigroup Liny(A)/Q’ defined as the image of Liny(A) in
A®Z/(A®ZNLing(A)).

Theorem A.15 ([24, Theorem 10.1.2]). (i) The Newton polytope of E 4 is Z(A).
(i) Ea(f) =gz Aang: (f) XA ulinn(A/Q),

The exponent i (Q’, A) - u(Liny(A)/ Q") equals the multiplicity of any point on the orbit
associated to Q' on the possibly non-normal toric variety associated to A. We prefer the
formulation above over simply writing the multiplicity since our definition of a toric stack
associated to a polytope does not coincide with the one given in [24]. However, there is
always a dominant map from our definition of X to theirs, namely, the map associated
to the linear system given by A.

The secondary fan is a construction more in the spirit of Appendix A.2 than the sec-
ondary polytope. This fan consists of the cones Cr(S) of defining functions given in
Definition A.10 for all regular subdivisions S. We write Fx4) as the secondary fan with
support (R4)Y and cite the following theorem.
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Theorem A.16 ([24, Chapter 7.1]). (i) The secondary polytope X (A) has a single point
as its image under 3 4.
(ii) The fan Fsa) is the normal fan of % (A).

In more detail, it follows from [24, Proposition 7.1.11] that

BA(E(A)) = (§g, (d + 1)Vol(Q)) (58)
where §g = (d + 1) f 0* dx is the dilated centroid of Q, and that X (A) affinely spans

the fiber ,B;tl(SQ, (d + 1)Vol(Q)). Consequently, ¥(A) is an (|A| — d — 1)-dimensional
polytope inside an | A|-dimensional vector space. We will define several stacks associated
to X (A) utilizing techniques from Appendix A.1. Since ¥ (A) does not affinely span R4,
but rather an affine plane parallel to L 4 ® R, we cannot define Xz (4) as before. Instead,
choose any v € Z4 for which B4(v) = 8¢ and let

To(A) ={w e Li®R:ag(w) + v e T(A)}.

Thus X, (A) is the translation of £ (A) to a full-dimensional integral polytope in a lin-
ear, instead of affine, subspace. As a different choice of v will simply translate ¥(A) in
L A®R, the stack A’z (4) is independent of this choice. We will denote it by A, ,) where
the exponent r is a notational convenience to distinguish it from a finer stack X'z (4) which
will be defined later in this section.

Let us detail the stacky fan associated to ¥, (A). First observe that Theorem A.16
gives a bijective correspondence between faces of ¥ (A) (or equivalently, the translated
polytope X,(A)) and regular subdivisions of A. This bijection is order reversing in the
sense that a face inclusion corresponds to a refinement of a subdivision. Recall that
Y,(A) C L} denotes the supporting hyperplane primitives for X,(A). By [24, Sec-
tion 7.2], the set of supporting hyperplanes is {bg : S a coarse subdivision}. By definition,
a coarse subdivision is a regular subdivision that is not a refinement of any non-trivial reg-
ular subdivision. Given b € X, (A), we let S, be the corresponding coarse subdivision and
Fy, the facet of £ (A) supported by b. A collection J C ¥, (A) is in the abstract simplicial
complex B associated to X, (A) if and only if there is a regular subdivision S refining the
coarse subdivisions {5, : b € J}. Indeed, we recall from (41) that this simplicial complex,
viewed as a poset inside the power set of its vertices, is dual to the face poset of X (A).
Soif J = {by, ..., by}, J will be a member if and only if the intersection of the facets
Fp,, ..., Fp, is a non-empty face of X (A). This is equivalent to there existing a regular
refinement S, corresponding to the face Fj,, N---N Fy,, of Sp,, ..., Sp,. Assembling these
structures gives the stacky fan

Ty, = (22, LY, Bs. x> =B) (39)

for X)’:(A).

Example A.17. We continue to explore Examples A.6 and A.7. For Example A.6, one
observes that since the secondary polytope is a point, the stacky fan X5 (4)=(0, 0, 0, {0})
is completely trivial and defines only a point. For Example A.7, notice that there are no
lattice points on the relative interior of X(A), so that X, (A) is a unit interval in L)} ® R
= R. Thus &5, A) is isomorphic to P!, and the line bundle determined by X (A) is O(1).
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To obtain more control over the hypersurfaces in Xy and their degenerations, we will
need a more nuanced secondary stack than Xg( A) Instead of working around the fact that
% (A) does not span R4, we extend the polytope X (A) to a polyhedron © »(A) and apply
constructions from Appendix A.1. This yields a stack Xg4) which we call the Lafforgue
stack of A due to the fact that its coarse toric variety equals the Lafforgue variety as
defined in [38].

Definition A.18. Let A2 = {}",_, cqeq : ca > 0, c, = t} be asimplex in R*, and
Aét = Uszz A? :

(i) The Lafforgue polytope ®(A) of A is the Minkowski sum X (A) + A‘l“.

(ii) The Lafforgue polyhedron ®,(A) of A is the Minkowski sum X (A) + A‘;‘l.

To justify the name of these polyhedra, we recall the construction by Lafforgue ([30],
[38, Chapter 2.1]) of a fan Fg »(A) which refines the secondary fan Fx4). Given a regular
subdivision § = {(Q;, A;) : i € I} and a non-empty marked face (Qp, Ap) of one of the
subdividing polytopes (Q;, A;) satisfying A, = Q, N A;, we define the closed cone

Cr(S, Ap) = {n € Cr(S) : n(a) < n(a’) foralla € Ay, a’ € A}. (60)

We call the pair (S, Ap) a pointed subdivision and when A, = {a}, we simply write
Cr(S, a).Itis clear that Cr(S, A,) C Cr(S’, A;,) if and only if S’ refines S and A, D A;,.
In this case we write (S, A;,) =< (S, Ap). By definition, the fan Fg4) consists of
the cones {Cr(S, Ap) : (S, Ap) a pointed subdivision of (Q, A)}. For certain classes of
sets A, Lafforgue has shown that the toric variety associated to this fan yields a parameter
space for toric degenerations of the variety X 4. However, this paper is concerned primar-
ily with degenerations of hypersurfaces in a toric stack, so in order to relate this work to
ours, we require a line bundle on the associated variety. Furthermore, to preserve infor-
mation on toric isomorphisms, we wish to consider the toric stack construction along the
lines of Appendix A.1. For this, we prove the following lemma.

Lemma A.19. The fan Fga) is the normal fan of to the polytope © (A).
Proof. Let R C ®(A) be any subset containing the vertices of ®(A). Given any element
¢ € O(A), write
Np(®(A) = (¥ € RN : (. ¢) < (¢, ¢') forall ¢’ € O(A)}
= e RN : (¥, ) = (¥, ¢) forall ¢’ € R}

for the normal cone of ¢. Here, in accordance with the description of defining functions
in Cr(S), we view elements ¢ € (R?)Y as functions from A to R and the contraction is
given by (¥, e,) := ¥ (a).

It follows from the definition that Fg4) is a refinement of Fx(4). In particular, the
cones Cr(S, Ap) can be described as intersections of Cr(7}, a) where T; is a regular
triangulation refining S, and a is both a member of A, and a vertex in a simplex of 7.
Thus the cones

{Cr(T, a) : T aregular triangulation, a a vertex in a simplex of 7'}
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form the set o (4)(|A]) of maximal cones. We now show that each one of these maximal
cones is a normal cone to an element in ®(A).
For any regular triangulation 7 and a € A let

O(T.a) *= ¢T + €q. (61)
Note that since ®(A) is the Minkowski sum of £ (A) and A4, the set
R :={¢(r,4) : T aregular triangulation, a € A}

contains the set of vertices of ®(A). Fixing one triangulation 7', suppose a is a vertex of
a simplex of T so that Cr(T, a) is in Fe(a)(|A]). Let ¥ € Cr(T, a) and @77y € R.
By the definition of Cr(T, a), we have ¥ (a) < ¥ (a’) for any a’ € A. Using the result
that the secondary fan is dual to the secondary polytope, and in particular that Cr(T) =
Ny (2(A)), we have

W, o) = W, 0r) +¥(a) = W, o1) + ¥ (b) = (V, 1) + ¥ () = (¥, 9(17,5))-

Thus Cr(T,a) S Ny, (©(A)). For the converse, one simply observes that both the
normal fan to ®(A) and the fan Fg4) are complete fans supported in RA with C(T, a),
and thus also Ny, (©(A)), both |A|-dimensional cones. The inclusions Cr(T,a) <
Ny ., (©(A)) thus imply that Fg4) is a refinement of the normal fan to ® (A). However,
as the number of vertices of ® (A) is greater than or equal to the number of maximal cones
in Fg(a), we must have Cr(T, a) = Noi o (®(A)). Returning to the initial observation
that every cone in ®(A) can be described as a non-trivial intersection of the maximal
cones Cr(T, a), and observing that the same is true for normal fans of polytopes, we
obtain the result. o

This proposition gives us a polarization for the variety associated to the Lafforgue fan.
However, if we wanted to obtain a polytope spanning RA, we have missed the mark by
one dimension. As in the case of the secondary polytope, we could restrict to the subspace
spanned by ©(A). However, it is more natural to consider the polyhedron ®,(A) C RA
and a variant of its associated stacky fan as defined in Appendix A.1. Before introducing
this stacky fan, we examine the combinatorics and geometry of the polyhedron ®(A).

Lemma A.20. The primitives of the supporting hyperplanes, ©,(A), can be partitioned
into a disjoint union

{oa}U®,(A) U, @A) C (Z4)
where:

(i) 04 =Y ,ca €, defines the supporting hyperplane of ©(A).
(ii) The set ©, (A)h bijectively corresponds to pointed subdivisions (S, Ap) where § =
{(Q, A)} and A, are the elements of A on a facet of Q.
(iii) The set O, (A)U bijectively corresponds to pointed subdivisions (S, Ap) where § =
{(Qi, Aj) 1 i € 1} is a coarse subdivision and A, = A; for somei € I.
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Proof. First we observe that the polyhedron ®,(A) is combinatorially equivalent to the
cone R>1 x ®(A) over ®(A). This can be seen by recalling equation (58), which gives
04(X(A)) = (d+1)Vol(Q) and, by definition, QA(A;“) =1.As®p(A) = A§1+E(A) =
Utz] (A;“ + X (A)), we see that

04 : 0,(A) = [1+(d + 1)Vol(Q), o0)

combinatorially trivializes ®,(A) as the product of a ray and ®(A). Since ®(A) has the
(JA| — 1)-dimensional simplex as a Minkowski summand, it is (|A| — 1)-dimensional. In
particular, ®(A) is the facet QXI (1 + (d + 1)Vol(Q)) of ®,(A) defined by the primitive
04 € Op(A).

Since ©,(A) is combinatorially a product of ®(A) and a ray, the remaining facets
of ®,(A) arise as products R>; x F where F is a facet of ©®(A). By Lemma A.19,
these are in bijection with the minimal non-trivial cones in Fg4). Here the trivial cone
is the one-dimensional space spanned by o4 (as it is the normal cone to points in the
relative interior of ®(A)). Such cones correspond to pointed subdivisions (S, A,) which
are minimal among non-trivial pointed subdivisions with respect to the partial order <
discussed after the definition of C(S, Ap) in (60). In particular, they are pointed sub-
divisions (S, Ap) such that ({(Q, A)}, A) < (S, Ap), but no other pointed subdivision
(s, A;) satisfies ({(Q, A)}, A) < (5, A;,) < (S, Ap). It follows from the definition of <
that either § = {(Q, A)} or § is a coarse subdivision. In the former case, A, must be
the set of points in A lying on a facet of Q (again, by the definition of <). We let the

collection of the dual primitives of such facets make up the subset ® p(A)h. In the latter
case, S = {(Q;, A;) : i € I}isacoarse subdivision, and if A, lies on a proper face of Q;
for some i € I, then ({(Q, A)}, A) < (S8, A;) < (S, Ap), contradicting the minimality
of (S, Ap). Thus A, = A; for some i € I, and we denote by ®p(A)U the collection of
the dual primitives to these facets. O

Having classified elements of ®,(A) combinatorially, we now consider their linear forms.

For elements of ® (A)h, we return to the exact sequence (54). If A, = FN A for a facet F
of O, then there is a unique primitive b4, € (A @ 7)Y which is a supporting hyperplane
for the cone Ling_,(A) and vanisheson A, & {1} C A @ Z.

Lemma A.21. The elements of ©,(A) C (Z1)Y not equal to o are uniquely charac-
terized by:

G If b € G),,(A)h then b is contained in Cr({(Q, A)}, Ap) where A, consists of all
elements of A in a facet of Q. There exists cp € N such that

b=c, ' BLuba,).

@) If b € ®p(A)U corresponds to (S, Ap), then b = n(s,4;) € C5(S) is the primitive
defining function for S satisfying ns,ala; = 0.
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Proof. First observe that the proof of Lemma A.20 classifies the dual facets to a given
b € ©,(A). In particular, if b # 4, then there is a pointed subdivision (S, Ap) for
which b € Cgr(S, Ap). Let Fg C X(A) be the face of X (A) whose normal cone is Cr(S)
in Fx(4). Note that when b € ®p(A)h we have Fg = X (A), while if b € ®,,(A)U then
F is a facet of X (A). In either case, the facet of ®,(A) defined by b is the polyhedron

Fis.a,) = U(FS +1-Convie, 1 a € Ap)).

t>1

Since b is constant along the facet F(s 4,) and e, is parallel to F(s 4,) forevery a € A,
we have b| A, = 0. This, along with the fact that b is a primitive element of Cz(S, Aj),
uniquely characterizes b and proves A.21(ii).

To prove A.21(i), assume b € Cr({(Q, A)}, Ap) so that b € Cr({(Q, A)}), implying
b is the restriction of an affine function on Ag to A (for otherwise, it defines a non-trivial
subdivision). The set of such functions is precisely the image of ﬂjl. In particular, if

b(a) = Y(a) forevery a € A, where ¥ (u) = &(u) + ¢ for a linear function 1/7 € AIE and
ceRthenb = ﬂ:a(l//, c). Since b achieves its minimum strictly on A, forevery a € A,
and a’ € A we have ¥ (a) < Y (a’), with equality if and only if a’ € A,. Thus ¢ is a
supporting hyperplane of the convex hull of A,,. Furthermore, since ¢|4,+c = bl4, =0,
we see that (v, ¢) |Ap@{1} = 0. Thus (¢, ¢) also equals zero on the cone Ling_, (A, ®{1}),

which is a facet of Ling_, (A @ {1}). Thus (&, ¢) can be expressed uniquely as r-b4, with
r > 0. As both b and by, are primitive and ﬂjt : Linz(ba,) — Linz(b), we conclude

that r = C;l for a unique ¢, € N. O

Example A.22. The Lafforgue polytope ®(A) for Example A.7 illustrates the geometry
seen in general. Since X (A) is an interval and A’l“ is a tetrahedron in R* parallel to X (A),
we can place their Minkowski sum in a three-dimensional hyperplane. This is illustrated
in Figure 21. Note that the facets parallel to X (A) correspond to the horizontal boundary

components mh of ®(A) and are in natural bijection with the facets of Q. Meanwhile,
the vertical facets in mv lie over the boundary of X (A). Each of them corresponds
to one of the two triangulations 7+ along with a choice of subdividing polytope in 7T+
(which, in the case of T, must be all of Q). These subdividing polytopes Q; determine
the pointing sets A, = AN Q;.

Using (61), we get explicit coordinates for the vertices of ®(A). Recall that equa-
tions (57) gave formulas for the vertices ¢, of X(A) corresponding to the triangu-
lations 7. Hence, the four vertices of ®(A) on the left in Figure 21 are {¢1_ 4 :
a € A}, while the three vertices on the right are {¢ir, o) : a € A — {(0,0)}}. In
general, it is a consequence of Lemma A.20 that the vertices of ®(A) are {¢(r,q) :
(T, a) a pointed triangulation of (Q, A)}.

In case the cokernel K 4 of 4 is non-zero, we will need to consider a more refined
version of a primitive supporting hyperplane. Recall from properties A.10(i) and A.10(ii)
thatif ng € RA defines the subdivision § = {(Qi, Aj) : i € I}, then its restriction to each
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!

Z(A)

Fig. 21. The Lafforgue polytope relative to the secondary polytope for A = {(0, 0), (1, 0), (0, 1),
(=1,-D}

Q; equals that of an affine function ¢; € (Ar @ R)Y. We will say that ng is a A-defining
function for § if

ci e (A®Z) foreveryicel. (62)

It is clear that the set of A-defining functions forms a semigroup in ZA, and if ng is
a primitive element of this semigroup, we call ng a primitive A-defining function for S.
Generally, a primitive A-defining function for a given subdivision is not unique. However,
for a coarse pointed subdivision, {(S, A,)}, Lemma A.21(ii) implies that there is a one-
dimensional ray R>0 - (s,4,) in (]RA)v of defining functions for § which vanish on A,.
As 1(s,4,) € (Z4)V, there is a positive integer multiple of it that is the unique primitive
A-defining function in this ray. We write 7(s, 4, for this defining function.

Example A.23. Let A = {—2,0,2} C Z = A sothat Ko ~ Z/(2). Then e, € (Z4YY
defines the subdivision S = {([—2, 0], {—2, 0}), ([0, 2], {0, 2})}. While it is primitive, it
is not a primitive A-defining function for S. Rather, the multiple 2¢", is and gives the
unique function 7s (0,2))-

We use the definition of primitive A-defining functions and the constants ¢}, occurring in
Lemma A.21(i) to define the homomorphism '5@),, @ 7O A 5 (ZAYY via

oA ifb=o0a,

~ — . -V

Bo,men) = V.4, b =154, € Op(A), (63)
b ifbe®,(A).

Define the stacky fan
i@,,(A) = (Z®”(A), (Z4)Y, Bm, To,4)) (64)

where the lattices and fan are equal to those for the stacky fan of ®,(A) as in Definition
A.S5, but ﬁm differs from the prescribed homomorphism g ,(4). In particular, even
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in the case where K4 = 0 (implying every defining function is A-defining), there will
generally be elements b € ®,(A) for which the scaling constants c¢; € N are not 1. We
will glean a bit more detailed information about ﬁm later in this section, but first we

consider an assortment of structures on the stack associated to E(H)p( A)-

By defining the polyhedron ®,(A) as a Minkowski sum X(A) + Ai‘], we ensure that
its normal fan refines not only Fg4), but also the normal fan F of AQ 17. The toric variety
associated to this fan is the total space of the tautological bundle (5(—1) over PIAI=T,
Indeed, Fa is a refinement of the cone Ling_y{e; : a € A} obtained by adding the
ray Ling_,(04) and subdividing. This is the toric construction for blowing up the origin
in C1Al. One can check that e, is the primitive corresponding to a pointed subdivision
(S, Ap) where S is a coarse subdivision. Thus e, € © p(A)U, and there is a morphism of
stacks

G: Xg@p(m — Opia-1(—1) (65)
. o . . . [Al-1 ~ ;
which, after projection, gives a morphism G : X}:@p< o P . In fact, X):(.)p( 18

itself a line bundle over the divisor D,, defined by 04 and G is a map of line bundles
over proper stacks. We will not use this fact, but we will consider the restriction G :
D,, — PHAI=L

Definition A.24.

(i) The total Lafforgue stack of A is X@p(A) = X‘Eep(m‘
(i1) The universal line bundle O 4(1) on X@p(A) is G*(Opia-1(1)).

(iii) The universal section s5 € HO(X@,,(A), 04 (1)) is the pullback G*(ZaeA Z,).
(iv) The total universal hypersurface is the zero locus Y4 of s4.

(v) The Lafforgue stack of A is Xg(a) 1= Dy,

(vi) The universal hypersurface Ys C Xg(a) is )7,4 N Xo(a)-
The toric stack Xg4) can also be described by taking the star of o4 in E(.)p( 4y, which
yields a fan Xg,) in R2 combinatorially equivalent to the Lafforgue fan where B =
©,(A) — {04a}. The map 5@(,4) 178 > (ZA)V/LinZ(QA) obtained by restricting Bm
to Z% and then quotienting by Linz(04) defines the stacky fan

Tow) = (Z8, (Z*)Y /Linz(04), Bo(a) Sow))- (66)

This gives an alternative description of Xg(4). The advantage of detailing the total Laf-
forgue stack is to give a natural context in which to define the universal line bundle and
the universal section. Let us describe this stack for our two examples.

Example A.25. For A = {(1, 0), (-1, 0), (0, 1)} C A as in Example A.6, we have seen
that X(A) is a point and thus ®,(A) is a translation of Aél. One can check that

0, (A) = {¢{1.0)- ¢ 1.0y €l0.1)+ €(1.0) F €l-1.0) + €o.1) = 04} C (ZH)Y.



2228 Colin Diemer et al.

Here, in indexing the basis, we identify elements of A with their counterparts in .A. Had
we took the usual toric stack defined by the normal fan of this polyhedron, we would
obtain the total space Opjaj-1 (—1). However, having altered ,Bm to ﬁm, we have to

check if this has modified the stacky fan in this case. Since there are no coarse subdivi-

sions of (Q, A), we consider only b € ©,, (A)h.

From Example A.6 we know that O = {(1, —1), (=1, —1), (0, 1)} € A" and the
associated primitive normal rays to Ling_,(A) are {(1, —1, 1), (=1, —1,1), (0, 1,0)} C
(A ® Z)". The tautological map B4 : ZA — A @ Z sends €, to (a, b, 1) and one can
compute

BA(l, =1, 1) =2l g, Bu(=1,—=1,1)=2¢ 4, B40,—1,0)=r¢g.

By (63), Bm takes ep to b for b € {g4, e(vo _phand ey to 2b for b € {e(vl 0)° eE/l ol
The cokernel of this map is Z /27 and one observes that the stacky fan X g4) yields the
stack

Xow) =[P, 1,2)/(Z/27)].

To explain the appearance of the group Z/2Z, we note that there is a Z/2Z subgroup
of Go which fixes £4 and therefore gives an automorphism of any hypersurface defined
by a sectionin L4.

Example A.26. Let us consider the Lafforgue stack for Example A.7, where A =
{(0,0), (1,0), (0, 1), (-1, —-1)} C 72 = A. We computed both Q and np in Ex-
ample A.7, and putting these together gives {(2, —1, 1), (—1, 2, 1), (=1, —1, 1)} as the
set of supporting hyperplane primitives to Ling_,(.A). Now, applying ,311 gives

,B:Z\(za -1,1) = 626’0) + 362/1’0),
BA(—1,2,1) = (g0, + 3¢(0.1)»
ﬂjl(—l, _1, 1) = 626’0) + 38{7]’7]).

. o ——h .
As each of these is primitive, the constants ¢, are 1 for each b € ®,(A) . Turning to the
vertical facets, we note that (H)I,(A)v = {e(vo,())v e(V],O), e(vo’]), e(vfl,fl)}. This follows from

the fact that A;‘l is a Minkowski summand of ®,(A) and, from Example A.22, there are
only four remaining facets. One checks that

€(0.0) = (T4, A—~{(0.0)})>

Vv
e = (T, A—{(1,0)})»
(1,00
v (67)
€0,1) = NT-,A-{(0,D)})»

e_1—1y) = NT-.A—{(-1.-1))-
Furthermore, they are each A-defining functions for the respective triangulations. These
facts imply that ﬂm = ,Bm in this case. One can apply Proposition 2.11 to obtain a

description of this Lafforgue fan and stack. In particular, Xg4) is shown to be a weighted
blowup of P over three lines.
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To obtain the last construction of this section, we first make a modification of the stacky
fan defining the toric stack X)’:U A) associated to the secondary polytope. We note that
there are alternatives to this approach if K4 # 0. Given a coarse subdivision S =
{(Qi, Aj) 1 i € I} of (Q, A), write bg € 2, (A) for the primitive hyperplane supporting
the facet corresponding to S. Let I's € (ZA)Y be the Z-linear span of all A-defining func-
tions for S. As S is a coarse subdivision, the image ail(r‘s) is contained in Lingz (bs) ~ Z
and we choose a primitive cg € I'g such that

ay(cs) = rsbs (63)

forrg € Nand aJVL‘(FS) = Lingz(rsbs). This uniquely defines rs and we modify the homo-

morphism By, cay in (59) for the stacky fan for ng(A) by defining B):,,(A) (2P A Ly
via

Bsciy(evs) = rsbs. (69)
Keeping the rest of the data in (59) the same, we let
T, = (2D, LY, Bs -y =B) (70)

be the modified stacky fan.
Define p; : Z€A) — 724 to be the homomorphism

ep ifb = S,A,) € ® (A)v’
piley) =1 1S,40) = Ep (71)
0 otherwise.
Lemma A.27. The diagram
7.0, (4) (')1’“‘); (ZAYY
P1 oy (72)
IR
commutes and defines a map of stacky fans
p=(pr,ay): E@,,(A) — EEU(A)- (73)

Proof. To prove that diagram (72) commutes, one must show that for any coarse subdivi-
sionS = {(Q;, A;) :i € I}andanyi € I, we have “X(fl(S,A,-)) = rsbs. Equivalently, one
has to check that the aX-image of 7(s, ;) generates ocX (I's). To see this, suppose cs € I's
maps to such a generator. Then since cg is a A-defining function for S, restricting cs to A;
one obtains the A-affine function ¢; € (A®Z)". Thus ¢ := c5— ﬁjl(g,-) € I'g, and since
im(ﬂjl) C ker(aj‘), ole(c’s) also generates the image of I'g. But since ¢’ vanishes on A;
and is a A-defining function for §, it is in Liny(7s, 4,)), implying it must equal 7s, ;).
This verifies the commutativity of diagram (72).
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The assertion that p induces a map of stacky fans then follows from the fact that
Fo(a) is arefinement of Fx (4. O

Quotienting by g4 factors p, giving a morphism p : Xga) — izv( A)- Moreover, an
application of [20, Theorem IV.6.7] shows that this is a toric fibration, meaning that it is
a flat, surjective morphism of normal toric stacks. Thus we can apply Definition A.3 of a
colimit stack and expect the universal property in Proposition A.4 to hold.

Definition A.28. The secondary stack is Xs () := X),” and the map p~ will be written
as m : Xgy — Xx(a). Given g € Xx(a), write Z4(q) for the fiber n_l(q) N Va.
Using the coefficients of the A-determinant E 4, write E5, € Ox4)(1) for the section and
Ea C Xxa) for its zero locus.

Observe that the map p in this definition can be replaced with p to give an isomorphic
stack as the two associated diagrams yield the same pushout.

We conclude this section by describing the stacky fan for Xs;(4). To do this, we recall
the notation for the hyperext group A 4v = RHom™*(cone(B4), Z). Here, B = A and the
long exact sequence (39) is

0—> (A2 Pa @MY EA A 0. (74)

To describe a stacky fan for Xs;(4) in complete generality, we will require a finite exten-
sion of A 4v. We will say that n € (A @ Z)V defines a wall in A if it is constant on a
subset A" C A which spans a codimension 1 subspace of Agr @R. Note that this definition
implies that a constant affine function (0, n) on A defines a wall.

Definition A.29. The wall lattice (A & Z)X/all of A C A is the sublattice of (A & Z)Y
generated by elements that define a wall in A. If (A @ Z) , = (A ® Z)", we say that A
is wall complete. We write E 4 for the cokernel of B, restricted to (A @ Z) ;-

In most examples that we consider, A will be wall complete, implying that A gv = E4. In
particular, if A contains a standard simplex then this equality will occur. A more general
criterion is given in the following lemma.

Lemma A.30. If K4 = 0 then A is wall complete.

Proof. Given any simplex B = {bg, ..., bs} C A, the set {(b;, 1) : 0 <i < d} forms a
basis for Ag @ Q. Take bx p to be the dual basis in (Az®Z)" and observe that LinZ{bZ 5!
0<i<d,Basimplexin A} = (A® L),
Choosing a basis {ep, ..., eq} for A @ Z, consider the isomorphism ¢ : /\d(A ® 7Z)
— (A®Z)Y givenby ¢p(vo A -+ Avg—1)(u) = (e A=+ Ae VoA Avg—1 Au).
Observe that for any simplex B = {by, ..., b} there are constants r; € Z for which

rinB Z(b(boA-”Abi_] /\b,'_H /\~-~/\bd).

Since K 4 = 0, it follows that A spans A @ Z. Thus {ag A - -+ Aag—1 : a; = (a;, 1) € A}
spans /\d (A ®7Z), which implies that its image {r;b; g} under ¢ spans (A ®Z)", yielding
(ALY =(AS7L), O

wall*
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Using E 4, we now describe a stacky fan for X' (4).

Lemma A.31. There is a map Bm for which

Txw = (2%P, B4, sz TB) (75)

is a stacky fan for Xsa). If K 4 = 0, then Bm = 5m.
Proof. By Definition A.3 of the colimit stack, it suffices to prove that E 4 is isomorphic
to the pushout of the diagram

Bopim

Z®p (A) (Z.A)v

P (76)

ZEU (A)

Since pj is onto, the pushout is isomorphic to the cokernel of BW restricted to ker(p1).
Thus, using the definition of E 4, it suffices to show that

Barmker(p) = BA((A ® L) g a7

We first prove that ﬁm(ker(pl)) B A((A ® Z)Wd“) For any coarse subdivision
S={(Q;,A):i €l}of (Q,A) we will say that A; and A; are adjacent if Q; N Q; isa
facet of both Q; and Q;. Define the set of differences

Bg = {ems,A,-) —Cnsa i,jel, A;adjacentto A;} C AL
Then the lattice ker(p) is easily seen to be generated by

{egr) Uter : b € 8,(A)" U Bs,
S

vyhere the last union is over all coarse subdivisions of (Q, A). One computes that
ﬂm(em) = 04 = ﬁ;"(O, 1). Also, by the definition of ﬂm in (63) and Lemma
1}.21(1), if b € mh corresponds to the facet F of Q with A, = A N F, then
ﬁm(eb) = 'BZ\(bAp)' By definition, by, is constant on Aj,, which implies it is in
(A ® Z) - Finally, by Lemma A.27, if ey , ) — €ns.ap € Bs then

O‘.Zl (Bm (eﬂ(S,A,-) - eTI(s,A_i))) = ﬁm (eps — eps) = 0.

This implies that Bm (ens.a;) —ems’Aj)) = 1)(s,A;) —71(s, 4;) restricts to an affine function
(as the kernel of onV4 is (im(B.4))Y). Since 1(S,A;) ﬁ(S,AJ.) € I's are A-defining functions
for S, their restriction to A; is in (A @ Z)V. This implies their difference is an affine
function on A and thus equals ,3;1()\,) for some A € (A @ Z)". Furthermore, since both
1(s,A;) and 7)¢s 4;) are zero on A; N A], Ais as well, and as A; is adjacent to Aj, A defines

awall in A. Thus, we have shown ,30 @ (Enes.an — ens, A ) € BLUAB L) )-
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We now turn to the inclusion ﬁjl((A ® L)) S Em(ker( p1)). To verify this,
suppose v € (A @ Z)" defines a wall in A and observe that restricting v to .4 will give us
one of three possible scenarios.

First, v| 4 could be constant, in which case v is as well and ,3:1(1)) = Bm(ng a) for
some n € Z.

Second, it could be the case that v is constant on a facet F of Q and non-constant
on Q. In this case, it is a multiple of the primitive b4, where A, = F N A. By Lemma
A.21(i) and the definition of Bm, it follows that ﬂjt(v) € Bm(ker( P1))-

Third, v could be constant on subset A" C A whose affine span in Ar divides Q
into two subpolytopes. More precisely, letting ¢ = v(a, 1) for some (a, 1) € A, take
A_={(a,1) e A:v(a,1) <cland AL = {(a,1) € A:v(a,1) > c}. Then A_ and
A, affinely span AR and one can define elements vy € (Z4)V as

vy = Z v(a, e, + Z ce, —coa

a€A+ IZEA—A+

and v— = vy — B (v).

We claim that v4 lie in C7(S) for a coarse subdivision S = {(Q;, A;) : i € I} of
(Q, A). As they differ by an element of im(ﬁj‘), they define the same subdivision. By def-
inition, § is a coarse subdivision if and only if the cone C (S) C (}R'A)v of defining func-
tions for S is (d 4 2)-dimensional (recall that dim(Agr) = d). Let L 4» C [(Ar & R)V]?
be the subspace of all pairs (b1, by) of affine functions for which by| 4 = b2| 4/ and ob-
serve that since A’ spans a codimension 1 subspace, dim(L 4/) = d + 2. Now, letting
Q0+ = Conv(AL), it follows from the construction of vy that (Q+, A1) € S. Thus there
is a homomorphism F : CR(S) — L 4 defined by F () = (g4, c—) where ¢4 are the
affine functions which restrict to Ax. One can check that the image of F is (d + 2)-
dimensional, and since A = A4 U A_, F is also injective. This verifies the claim that v4
define a coarse subdivision.

Finally, by construction we have vi|4, = 0 so vy lie in the cones Cz(S, A+) of the
Lafforgue fan and are multiples of 15, 4,), respectively. Again, by construction, they are
both A-defining functions for S, so they are also multiples of 7(s, 4,). Indeed, it follows
from Lemma A.27 that there exists a single constant C such that v4+ = Cn(s, 4,), which
implies that ,31‘(1)) =vy—v_ = C(n(s,4,)—N(s,4-)) € ﬁm(ker(p])). This completes
the proof of the first statement.

For the second statement, applying Lemma A.30 gives (A @ Z)Y .., = (A ®7Z)V. This

wall —
in turn implies that E 4 = LJV4 and that diagram (72) is a colimit diagram. O

We conclude this subsection with a description of this stacky fan for our two main
examples.

Example A.32. In Example A.6, A = {(1,0), (=1, 0), (0, 1)} was a simplex and X'y,
was equal to a point. The primitive hyperplane support functions for Q are

(4)

Q ={0, D, (L, 1), (=1, D}.
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By including A" into (A @ Z)" and adding any constant affine of the form (0, 0, n), one
observes that (ADZ)Y (A®7Z)Y in this case. One then computes that E 4 = A gv =

wall —

7/27. Applying Lemma A.31 and results from Example A.17, we find that the stacky fan
for X{; (A) is

Ty = (0,2/22,0, {0,
This implies that
Xs(a) = B(Z/27).

More generally, for any set A which consists solely of lattice vertices of a d-dimensional
simplex in Ag, one can show that X’s;(4) is isomorphic to the classifying stack B E 4 =
[pt/ E 4] (note that even in this set of examples, it is not always the case that E 4 = A 4v).
In the next subsection, we will interpret this as the moduli stack for hypersurfaces in Xgp
defined by sections in £ 4.

Example A.33. We conclude this subsection by describing the stack X'y (4) for A =
{(0,0), (1,0), (0, 1), (—1, —1)}. Since A contains a simplex which affinely spans A, we
have (A®Z)Y (A®Z)Y. This implies E 4 = A 4v and as the fundamental sequence

: Jwall =
for A is equivalent to

052 78 A 713 o,
we have K4 = 0. Here we compute o 4(1) = (3, —1, —1, —1) as this yields the gen-
erating relation 3(0,0,1) — (1,0,1) — (0, 1,1) — (-1, —1, 1) = 0 of elements in .A.
Thus A 4v is isomorphic to LJV4 = 7. In particular, the commutative diagram (72) in
Lemma A.27 is a pushout and the homomorphism BZU( A) 1s equivalent to ,32( A)-
T(A) = Vo~ 3 _pB
.Now, Y(A) = {b'T_., br,} .e LA =Z.In Examp¥e A.26 we sawi that.,B(_)p(A) = ﬂ(_)p(A).
Using the commutativity of diagram (72) and equations (67) now implies
Bs (br.) = a4 (1, a—1,0p) = 40, 1,0,0) = —1,
Bsay(br,) = a4z, a—(0.00) = 4(1,0,0,0) = 3.
Thus the stacky fan is isomorphic to

T = (22,7, 3e) — ey, %),

where X is the fan consisting of all proper faces of Rio. Thus Xy = C? — {0} and the
secondary stack is the weighted projective line B

Xsa) = P3G, 1).

A.4. Stable pair moduli

In this section we relate the moduli space of hypersurfaces defined by full sections in £ 4
introduced in Definition A.8 to a dense open subset in X’y (4). While this will be done
with the standing assumption that A is wall complete, we note that if this is not the case,
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one can replace Xg by an étale cover X}, to obtain a similar interpretation of Xy (4). We
emphasize here that by moduli space, we mean hypersurfaces in a toric stack up to toric
equivalence, not up to isomorphism. This toric moduli space, which we will denote by V4,
will be proven to be an affine DM stack and is therefore much easier to control. We then
show that the pullback Y4 C AXg(a) along the inclusion yields a universal hypersurface
over V4. Finally, we prove that any toric degeneration F; : &; — C obtained by a A-
defining function n can be realized by pulling back Xg4) along a map p, : C — Xx (4
where 0 is sent to the compactifying divisor X5 (4) — V4. Restricting this to the universal
hypersurface gives meaning to the notion of X’s;(4) as a moduli space for hypersurface
degenerations.

Our first goal is to describe the space £ 4 of sections modulo toric isomorphisms. For
every a € A there is an equivariant divisor

Do =Y ((b.a) +np)e) € (Z2)" = Diveq(Xp).
beQ

The section vanishing on D, will be denoted xp, € L4. Recall from Definition A.5 that
the torus G acting on Xp is AY ® C*. By fixing the set A C A, we may identify the
maximal torus orbit U C X as Gg and trivialize O (1) over U so that the section xp,
is identified with the monomial a € A = Hom(A"Y ® C*, C*). With these identifications,
the action of the torus Gy on X, extends to one on £4 = C* by tensoring the homo-
morphism & : AY — (Z")" by C*. In other words, taking the dual of the evaluation
map a4 and tensoring with C* realizes G inside of (C*)#, which acts diagonally on
L4 = CA. We also wish to quotient by the C* scaling action on sections giving the group
Ga x C* = (A @ Z)Y ® C*. The action of this group on the space £4 = CA can be
realized by the tensoring oedv4 S(ABZ)Y — (ZA)Y with C*. By (74), this leads to the
following definition.

Definition A.34. The A-linear system quotient stack is the toric stack X, given by the
stacky fan
Te, =2, Aav, oy, D)

where X is the fan with unique maximal cone (Rfo)v.

From the arguments preceding the definition, this gives the Artin stack [£ 4 /(ADZ)VQC*]
corresponding to sections in £ 4 up to toric equivalence. There are many substacks of X,
that are Deligne-Mumford (or DM), but our focus will be on the substack of hypersur-
faces defined by full sections. Recall that .4, denotes the set of vertices of Conv(A), and
Ay = A — A, denotes the remaining elements of .A. The substack of full sections is ob-
tained by taking the subfan ¥’ of ¥ which has (ng“)v as its maximal cone. The stacky
fan

3 = ((ZYY, Aav, oy, T) (78)

is otherwise the same as for X~ ,, and we denote its toric stack by V4. We now verify the
claim that this is a DM stack.

Proposition A.35. The dense open substack Vo C X, is an affine DM stack.
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Proof. To prove this, we will define an affine DM stack X with stacky fan
=T, Aqv,v,2") (79)

and an isomorphism g : X — V), induced by a map (g1, g2) : X" — X’ of stacky fans.
First we define X”. Recall that A affinely spans Ag, implying that A, does as well.
In turn, this implies A, linearly spans Ag @ Q and we choose C C A, to be any
(d + 1)-element subset which is a basis (recalling that rk(A) = d). Let ' = Linz{e, :
aeA—C)c (Z* and let y : I' = A 4v be the restriction of o’ to I'. To complete

the definition of X", take £ to again be the fan with unique maximal cone (Rf(’)’“)v.

To verify that X" is a stacky fan, we must show that y has finite cokernel. Recall that
the exact sequence (74) is

0—>(A€BZ)Vﬁ—A>(ZA)va—A>AAv—>O.

Here B 4 : ZA — A @ Z was the tautological map S 4(e,) = a. NowifaeI'N im(,le)
then there exists f € (A @ Z)" such that

D ) =a=B1(f) =) flae).

acA-C acA

But then f(a) =0foralla € C, and as C was chosen to be a basis for Ag ® Q, f = 0.
Since the sequence is exact, this implies ker(y) is zero, and as the rank of I" equals that
of A 4v, y must have finite cokernel and X" is a stacky fan. Furthermore, since y is
injective, Hy is a finite group and we conclude that

Xy = [(CHAET s CMnly T Hp /)

is an affine DM stack.
Letting g1 : ' — (Z*)V be the inclusion and g2+ Agv — A yv the identity, we
have the commutative diagram

r—" 5 A

S

@AY ZA L A

and since g; takes X" to X/, (g1, g2) is a map of stacky fans.

Finally, g1 : |X”| — |Z’| is an isomorphism on the support of the fans, and it restricts
to an isomorphism of monoids g1 : |7 NT — || N (ZA)Y. As g» is the identity, we
have verified the hypothesis of [25, Theorem B.3] showing that g induces an isomorphism
of toric stacks. O

By definition, the stack V4 is a quotient of the affine toric variety of full sections Xy =
(C*HA x CA» by Hyr = (A @ Z)¥ ® C*. Observe that the group Hy, is naturally
isomorphic to G x C* where G is the torus acting on Xp and the additional factor of
C* rescales the sections. This group also acts naturally on the total space O 4(—1). Taking
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the dual action of Hy/ on Xy (i.e. A - x = 2~ 1x), we obtain a diagonal action of Hy’ on
the product Xy x O4(—1) and define the toric stack (/4 over V4 to be the quotient

Ug =Xz x O4(=1)/Hy/].

Write E(1) for the line bundle on O4(—1) which is the pullback of @4 (1) along the
projection O4(—1) — Xp and examine the tautological section s of O X E(1) over
Xy x O4(—1). This is given by taking (¢, (g, v)) with t € X5 C H°(Xp, Oa(1)),
g € Xpandv € Og(—1)lyingoverg € Xptot(g) € O X E(1). As we have Hy/ acting
with an inverse on Xy, § is invariant under the diagonal action and defines a section of the
line bundle £(1) on the quotient /4. Its zero locus is the incidence variety [§~!(0)/Hy],
which we denote by Wj4. We consider the pair W4 C Uy to be the universal hypersurface
{s§ = 0} over Vy4.

Proposition A.36. There is an open inclusion t : Uy — X(.)p( A)-

Proof. We first provide a stacky fan description for I/4. Note that the total space O4(—1)
has a stacky fan dual to the polyhedron which is the cone Ling_, (Q & {1}) C Aﬂé D R. As
this is a cone over the polytope Q, a facet is either Q, defined by op = (0, 1), or a facet
of the cone Ling_,(A). So the set of primitive hyperplanes can be identified with B =
0 U {0} with the simplicial set B corresponding to the normal fan of Ling_, (Q @ {1}).
The fundamental exact sequence (38) for O4(—1) is then -

0> Ls %2002 % hne2)’ - k5 — 0. (80)
Thus
o, =(Z° @ Z, (A7), B, Tp.5)
gives a stacky fan for O4(—1). Now, as Hy' = GEoA<—1> = (C*)B/HZOA(_U, we let

Hy 041 act trivially on Xy and obtain

Ur = [(Xx x Oa(-1))/ Hy/]
= [(Xz X (X3, 3/ Hzo, )/ (CH Hzo )]
= [(Xgr x X5, )/ Hzo, )/ (CH /Hzo )]
=Xy x X5,5)/ (CHP].
The action of (C*)5 on X is obtained by tensoring the negative of the homomorphism
iai=BYoBs: 20 ®Z - (Z) (81)

with C*, where Bp and B4 occur in (80) and (54) respectively. On the other hand, the
action of (C*)8 on Xy s C CB is just the restriction of the torus action. Thus the
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diagonal action is given by (— x4, Id) : 72207 — (ZA)v e YAYE Z, which has cokernel
map given by x4 = (Id, xa).

xa: (ZM 022 @7 — (ZA)Y.

Taking the product fan £y 4 := X’ x X 3, one observes that U{4 can be obtained from
the stacky fan

Sua=(ZY @22 @ Z,(ZMY, xa, Zu.a)- (82)

From Lemma A.20 we see that ®,(A) is the disjoint union {o4}U®, (A)h Uo, (A)U.
Recall that elements of ©, (A)h are indexed by pointed subdivisions (S, A,) where S is
the trivial subdivision and A, are points in a facet of Q, whereas @,,(A)v correspond
to (S, Ap) where § = {(Q;, A;) : i € I} is a coarse subdivision and A, = A; for
some i € /. By Lemma A.21, the primitive corresponding to the latter type is 7(s,4,)
and is the unique primitive defining function for S satisfying 7¢s 4,)|a, = 0. Amongst
all of the elements in ®, (A)v are those whose coarse subdivisions are of the type S =
{(Q, A —{a})} witha € A,,. One can check that in this case 1(s, o—{a}) = ¢, . We define
the subset B@[,(A) = {eZ ra € AnU}U{QA}U(ap(A)” C ©,(A) of supporting hyperplanes
of ®,(A) and let X, A) be the subfans of Xg(4), appearing in (66), consisting of all cones
whose boundary 1-cones are generated by elements in Bg4). Expanding to the union of
Beg(a) with A,, we define the open substack X ©,(A) C Xo (4) by taking the stacky fan

A,UBg A)
T,y = (L7770 (2N, B T (a))-

Here B’ is the restriction of ,BO tA)> defined in (64), to 74v9Bop() We mention that while

the inclusion i of ZA DBy into 729 is not an isomorphism, the induced map on
the stacks (i,Id) : X/, — Eo (A) defines the open inclusion whose image is the
(),,(A) p

complement of the divisors associated to ©,(A) — Bg,(4). This is an application of [25
Theorem B.3].
We now relate ): ©p(A) to X7, 4. By Lemma A 20, there is a bijection between QU{og)}

and ©, (A)h U{oal Extendmg this bijection to basis vectors, and taking the identity on
basis vectors indexed by .4, we obtain an isomorphism

g1: 2N @20 @7 — 24 P, (83)

Taking g> to be the identity, and consulting the definition of Bm obtained from Lemma
A.21(i), we observe that this gives a commutative diagram

ZAY & 720 & 7 24 (ZAY

gul gzl (84)

740UBe,(4) p (ZAY
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To prove that (g1, g2) induces an isomorphism of stacks, we check that g; real-
izes an isomorphism of fans from Xy 4 to E/@p A Take X to be the fan supported

in RAn c RBor@ with unique maximal cone ng” and let X, be the subfan of Eéap( A)

supported in RGP(A)hU{QA}. Lemma A.21(ii) along with the definition of the Lafforgue fan
implies that the bijection between O U{op} and 0,(A) U {04} induces an isomorphism
between X p 5 and X,. Recalling the poset structure for the Lafforgue fan given by (60),
we check that Eép A) is the product fan ¥ x X5. Indeed, any cone in E’@)p A corresponds
to a pointed subdivision (S, A,) of (Q, A) where S only refines subdivisions of the type
S" = {(Q, A"} (otherwise Cr(S, A,) contains a 1-cone which is not generated by an
element of Bg,(4)). By the same reasoning, § itself must also be such a subdivision, i.e.
S = {(Q, A)}. Now, suppose o x 7 is a cone in | x Xj. Then o is the span of basis
vectors corresponding to a subset C of A,,. As ¥ is isomorphic to X p 3, there is a face
Q' of Q such that T is the span of the basis vectors whose corresponding pointed subdi-

visions have pointing sets that contain Q' N A. Then the cone in E/@ﬂ A) corresponding to

({(Q, A — )}, Q' N A) is the isomorphic image of o x 7. As these exhaust all possible
cones of each fan, we have shown that 229,, A) and X x X are isomorphic on their sup-
port, and thus /4 and ch)p( 4) are isomorphic stacks. O

We continue by relating the universal line bundle and hypersurface in the total Lafforgue
stack, introduced in Definition A.24, to the incidence variety Wy C Uq.

Proposition A.37. The morphism ¢ satisfies 1*(04(1)) = E(1) and [*(j}A) = Wa.

Proof. To prove the proposition, we write explicit formulas for the sections § and s4.
First recall from (40) that for b € Q, —nyp is the minimum value of b on Q. For a toric
stack X’ and an equivariant divisor D € Diveq(X'), we write xp for the section of O([D])
defining D.

Now, the universal section s4 € HO(X@p( 4), 04(1)) is defined as the pullback of
the section Za cA XD, in Opjaj-1(1). To understand this pullback in terms of the stacky
fan Z/@p( A) first consider the map X(S)( e PIAI=1 which is the restriction of G :
Xo, ) — PIAI=1 appearing before Definition A.24. A stacky fan for PI4I=1 is Xp =
(ZMY, (Z*)Y /(0A), B, Zpiai-1) where Bp is the quotient homomorphism and Xpjaj-1 is
the fan of all proper subcones of (R‘;‘O)V. We define a function p : 7AvYBep@) V/aM
so that the function G is induced from the map of stacky fans given by (o, Bp). For
(p, Bp) to be a map of stacky fans, the diagram

ZAUUB®p(A) B (ZA)\/

|

@MY —L s 7Y J (o)

must commute. For this to occur, we must have p = 8'+p"-04 where p’ € (zAvYBeparyv,
The map p’ is then uniquely defined so that the support of the fan Eé_)p (4) Maps to that
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of Epjaj-1 (as translating by 04 displaces the |Epja-1 | from itself). Now, B'(e,) = e, €
. . . ——h
|Zpiai-11, so p'(es) = 0 while B'(e,,) = 04, implying p’(04) = —1.For b € ©,(A)
corresponding to a facet F of Q, we apply the definition of 8’ arising from Lemma A.21(i)
to recall g'(b) = B (ba,) where A, = AN F.But by, is the support function for the
cone over F in Ling_,(A) and is thus zero on A, and positive on A — A, implying
B'(b) € |Zpiai-1]| and p’(b) = 0. Therefore, p’ = QA and
p=p —e,, 0a
The pullback of ) ,_4 xp,, where D, is identified with the basis element e, in
Diveg(PIAIT1) = ((Z4)Y)Y = ZA4, is the universal section s4 = Y ,c4 Xpv(e,)- Since
p(eg,) = 0, the explicit form of p gives

plea) =el+ Y (B'en), ea)e] € (2P = Diveg(Xg (4,
he@,,(A)

and s4 = ZaeA XpV(e,)- If b corresponds to the facet F' with A, = F N A, let bp € 0
be the supporting hyperplane function of F in (Z4)V. Then using the definition of n,
we have ba, = (bF, np;). As B'(b) = B4 (ba,) we compute

<13/(eb)’ ea) = <ﬂJv4(bAp)7ell> = (bAp? IB.Aea> = ((bF’an)’ (Cl, 1)) = (vaa) +an.

Turning to U4, recall that the tautological section § was defined on Xy x O4(—1)
before Proposition A.36. Let D, € Diveq(Xp) be the divisor associated to a € A. Let
ra € H%(Oa(—1), E(1)) be the pullback of xp, € H*(Xgp, Oa(1)) and t, : Xz» — C
the projection to the a-th coordinate. Then, by definition, § = )", 4 ta ® rq. We lift this
to an equivariant function s on the affine toric variety Xy, , = X5 x X 20,1 defined

in (82). For every equivariant divisor D € Diveq(X5y, 4) = 7ZA ® (Z2 & Z)V we write
xp for its defining function. The lift of the divisor associated to the monomial 7, ® r, is

Dy =eq+ Y _(np+ (b, a)ey, (85)
beQ

so that s = ZaeA Xp,- As the isomorphism (g1, g2) in (84) pulls back oY (ey) to Dy, the
result has been shown. ]

As we have related the universal hypersurface in the total Lafforgue stack to the incidence
variety in Uy, the following theorem shows that the secondary stack from the previous
section is a compactification of the moduli stack V4 of full sections. In particular, the
discussion immediately following Theorem A.16 described the facets of X(A) in terms
of coarse subdivisions S = {(Q;, A;) : i € I} of the marked polytope (Q, A). Among
such subdivisions are those which contain only one marked polytope {(Q, A — {a})}
where a € A,,. The pointed subdivisions ({(Q, A — {a})}, A — {a}) of this type formed
the vertical boundary of X L (A) Including the components of the toric boundary in Xs(4)
which correspond to such subd1v1sions, and taking the complement of the remaining ones,
yields a stack isomorphic to V4. The compactifying strata then correspond to reasonable
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degenerations of X¢. This is in analogy to the moduli space of curves and their stable
compactifications which served as motivation for the definition.

Theorem A.38. There is an open embedding i : Vo — Xs(a). If p € i(V4), then p isin
a boundary divisor Ds where S = {(Q;, A;) : i € I}is a coarse subdivision and |I1| > 1.

Proof. To start we define an open substack of X)’:( A) given by the stacky fan

Ty, 4) = (szm)’ Ly, Bs. @y 25) (86)

defined in (59). If a € A,,,, then there is a unique pointed subdivision ({(Q, A — {a})},
A — {a}) corresponding to a facet of ® (A). The set A,,, also labels a subset of supporting
primitives in X, (A). Define the subset

Bsa) = {ns € T,(A) a primitive dual to S = {(Q, A — {a})} : a € A, }.
Let 223 be the subfan of ¥z consisting of all cones whose boundary 1-cones are generated

by elements in Bs(4). Define the open substack (Xy,4))° C X5, ,) to be that associated
to the stacky subfan

' A,UB v /
Xy = (Z DLy, By oy 25)-

Recall from Proposition A.36 that X(‘j)p (a) Was defined from the stacky subfan
AyUBg, A
sz(A) — (Z OpN (Z )v’ ﬂ/, E/G)p(A))'

Restricting the map j : 2o ,(4) = X3, (4) from Definition A.28 to these subfans gives
the map p’ : i/(ap( 4) = L', (4) described by the commutative diagram

zhBo P gy

Pﬁl aXJ

s @
7AuUBs (4 v(4) IV
! “ A

We claim that the colimit stack Xff, of p’ has stacky fan
25 =25 ) = @O0 Ay o, Tp).

This follows at once from the diagram

AV L, gy

o

aﬂ'
ZBsw A
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being a pushout. To see that this is the case, partition the basis vectors of A, U Bg ,(4) into
A~ A,U{e) :a e Ay} and ®p(A)h U{oa}. Likewise, as the elements of By (4) are in-
—h
dexed by A, we identify ZB=® with ZA. Then the map p| : ZA @ Z% W @zlea) — 74
is simply projection and B’|4 is clearly injective, implying the pushout « is the cokernel
’ . ’ . ®,(A)U{oa} ;
of B |th oziea] But by Lemma A.21, the image of 8’ restricted to Z~» A1 is the
image of B which has the indicated cokernel from the dual fundamental sequence for A.

The described stacky fan data obtained on the bottom of the diagram defines the col-
imit stack and is identical to the stacky fan defining V4. This proves the claim. O

Finally, we describe the points on the compactifying divisor.

Theorem A.39. Suppose (X,)) is a degenerating family of a hypersurface (Xg, V)
defined by a A-defining function. Then (X, ) is represented by a map v : C — Xx (4.
Proof. Letn € (ZA)v be a A-defining function for the family (X, )V) corresponding to
the subdivision S = {(Q;, A;) : i € I} with [I| > 1. Define amap v, : N — A,v by
taking vy (1) := o*(n). The stacky fan ¥ = (A1, A2, 8, ) occurring in the fiber product
C by X Xo(a) has Ay = AY @ Z from the Cartesian diagram

v
AN ®L - —— (T (X yen el

pzl l 87

Z Aav

Here the map 1 is the composition of the quotient proj : (ZA)v — (ZA)V /X gents)
and the direct sum ,BJV4| Av @inc whereinc : Z - n — (ZA)v is the inclusion.

To find A1 and X, we let £, be the fan obtained by intersecting 8 ®inc((R? )Y ®R>0)
with the Lafforgue fan and 7, the generators of its 1-cones. The map S, : ZT — A, by
evaluation of primitives gives the stack X, = (ZTn, A, By, p). Forevery f € Ty,

f= Z cpb

beo (1)CO,(A)

for some maximal cone o in the Lafforgue fan. Since n is a A-defining function and
a*(Yy(f)) = a*(n), it follows that cpb is in the image of ﬁm forall b € o(1). Let
gi(er) = Zbea(l) cpep. It is not hard to see that the map g = (g1, 1) then induces an
equivalence between X, and the pullback X.

To see that X, is the normal stacky fan to (Q,, A;), we need only show that T;, =
Qn C A ® Z.By Lemma A.21, t € T, if and only if it defines the subdivision S and is
constant on Q; for some i. So the 1-cones of T, equal those of Q,. But both sets consist
of primitives of their 1-cones on vertical divisors, implying the equality.

To show that the pullback is isomorphic to (X3, V,, (s)), we prove any section of the
form ¢, (s) can be represented by a pullback of the universal section s 4. For this, we simply
observe that the pullback of s4 to HO(XU, O,(1)) is ﬁ;]k(sA) = D o X(an() from (35).
The group Gy (a) acts transitively on the pullback of the space of very full sections of
H O(X,,, O, (1)) up to equivalence. Indeed, from the fundamental exact sequence for A,
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it is easy to see that there exists a . € Gy (a) such that U5 (A - s4) = Y, CaX(a.n(@)) for
any {c,} satisfying [] co'® = 1 with > o Mo = 0. Any full section has a representative
in this class, yielding the claim. O

Appendix B. o-framed symplectomorphisms

We begin this section by defining certain subgroups of symplectomorphism groups which
we refer to as d-framed groups. The symplectic orbifolds we consider have boundary
divisors that are preserved by the symplectomorphisms under consideration. Moreover,
we would like to distinguish between subgroups that fix the boundary tangentially and
those that do not. This aim would be easily achieved, were our boundary divisor smooth
and the symplectomorphisms fixed the boundary divisor pointwise. However, neither of
these requirements is satisfied in our setting, so we must introduce a more elastic notion
of framing.

After defining the notion of a d-framed group, we proceed to examine the geometry
of various symplectomorphisms contained in them. Up to Hamiltonian isotopy, the gener-
ators of our groups arise as monodromy maps around a singular symplectic orbifold. The
permissible singularities that we will study fall into two classes. The first will be a stable
pair degeneration of the symplectic orbifold into irreducible orbifolds glued along normal
crossing divisors, akin to the situation in complex geometry. The maximal degenerations
of this type in the toric case were thoroughly analyzed in [1].

The second type of singularity we see is a stratified Morse singularity. This is studied
in [27], but only the non-stratified case has been understood in the symplectic setting [45].
We will examine the general case and give a geometric description of monodromy.

B.1. Definitions

Let (Y, ) be a symplectic orbifold of real dimension 2n with atlastf = (Ug, Gg, g) ge3-
Most of the familiar constructions in symplectic geometry can be defined through the
invariant manifold analogs in an atlas when working with symplectic orbifolds. For ex-
ample, a Hamiltonian will mean a smooth function on )/, or equivalently a collection
of smooth, compatible, invariant functions on (Ug, Gg). Likewise, its flow can be com-
puted in Y or, for short time on a relatively compact subset, in each chart of the atlas.
Types of submanifolds (Lagrangian, isotropic, symplectic), almost complex structures,
Poisson brackets, symplectomorphisms are all defined locally and can be given a precise
meaning in the symplectic stack setting. We omit the adjective “orbifold” for all of these
terms throughout the paper. We refer for the definitions of these structures to the existing
literature [2], [41], but will give details for structures that are less familiar.

Let J be the space of compatible almost complex structures on Y and D = D; +
-+ 4+ Dy a symplectic divisor, i.e. each D; is a smooth symplectic suborbifold of real
codimension 2. If there is an integrable J € J and ) is a manifold, it makes sense to
say that D is a divisor with normal crossing singularities. We extend this to symplectic
orbifolds in the following fashion. For every D; and 8 € B, set D;(8) = nﬁ_ 1(Di).
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Definition B.1. Let J € J.

(1) A symplectic divisor D will be called J-integrable if, for every D; and every 8 € B
there are symplectic neighborhoods V; of D; () such that J is integrable on V; and
D;(B) is a complex divisor in V; relative to J.

(i1) A symplectic divisor D is a J-normal crossing divisor if, given p € D and I =
{i : 1 <i <k,p € Dy}, there exists U C C" and a J-holomorphic chart i :
U — Uje; Vinear p € Vsuch that y(0) = pand DNV = ¢y ({(z1,...,2,) :
Zip 2, = 0}).

(iii) A normal crossing divisor is J-standard if for every point p € D, there exists a J-
holomorphic chart ¢ such that ¥ *w = ws where wg denotes the standard symplectic
formon U C C".

(iv) We say that a divisor is integrable, normal crossing or standard if there exists some
J € J for which it is J-integrable, J-normal crossing or J-standard.

A consequence of having a J-standard normal crossing divisor is that the distance squared
functions s; : Y — R from D; (via the metric induced by w and J) Poisson commute
in neighborhoods of D. In other words, there exists an ¢; > 0 for which {h;, h;} = 0 on
U;iNU; where U; = h;l ([0, e7)). We call any ¢ < &5 commuting. For any commuting &,
we define pf = A®oh; where A° : R>o — R is a smooth monotonic function satisfying

A (r) = {r, r<e/2,

g, r =E.

It is easy to see that {p;, ,0]’.5} = O on ). Given any X = (Xx1,...,Xx;) € R¥, we define

7(x) to be the flow of Zle x;p;. The fact that the p; Poisson commute implies that
T(X] + X2) = 7(X1) o T(X2). It is best to think of these maps as rotations, or twists, about
the components of the divisor.

We let Symp()) denote the topological group of symplectomorphisms with the C>°-
topology, and Symp()) the identity component. For a Hermitian line bundle L over ),
let Symp(L/)) be the group of unitary line bundle automorphisms of L over symplecto-
morphisms of Y, and Symp(L/)) its identity component (not to be confused with those
maps of L lying over Symp,())).

Given a standard normal crossing divisor D C ), we fix a commuting ¢ > 0 and de-
fine Symp(), D) to consist of symplectomorphisms of ) which preserve the distance to
each D; in the tubular e-neighborhood of D. Here we mean that for any ¢ € Symp()/, D),
we have ¢*(h;|y,) = hi|y, for all i where U, is the e-neighborhood of D;. Equivalently,
we can consider Symp()/, D) to be the group of symplectomorphisms which commute
with 7(x) for every x € R¥. From this definition, it is clear the subgroup

T, ={t(x):x € Rk} (88)

is contained in the center Z(Symp()), D)).
For a normal crossing divisor such as D C Y, we write Symp(D) for the subgroup
k .. .
of X ,;_; Symp(D;, D; N Uj# Dj) consisting of {¢;} with ¢i|p,np; = &j|p;np;. Let
L ={L; : 1 <i < k}beacollection of line bundles where L; is a line bundle over D;.
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Definition B.2. The collection L of line bundles is compatible if there exist isomor-
phisms

Yi.j * Lilpinb; = Np,np; Dj (89)
forevery 1 <1i, j <k.Asetg= {y; ;} of isomorphisms will be called gluing data.

Given such data, we define Symp,(L/D) to consist of symplectic line bundle automor-
phisms {v;} of L;/D; which lie over some {¢;} € Symp(D) and are compatible in the
sense that

dojlp;np; = vi,j (i) 90)

forevery 1 <i, j < k. We will simply write Symp(L /D) when the gluing data is evident.
For example, in our context of a normal crossing divisor D C ), we let Np) be the
collection {Np, Y} of normal bundles with the induced gluing data.

Definition B.3. Given ) with a standard normal crossing divisor D, we say that a com-
pactly generated, closed subgroup F € Symp(Np)Y/D) is a d-frame group of (), D).

Let j : D — Y be the inclusion map and j# : Symp()), D) — Symp(NpY/D) the
restriction of the derivative. Given a d-frame group F, we will say ¢ € Symp(), D) is an
F-framed, or framed, symplectomorphism if j#(¢) € F. Denote the group of F-framed
symplectomorphisms by Symp¥ (), D). If we let i : F — Symp(Np)/D) be the inclu-
sion, this group is defined by the Cartesian diagram

Symp* (¥, D) ————F

l { ©1)

Symp(Y, D) —— Symp(NpY/D)

Symplectomorphisms of Np) may not extend to those on ). Including such maps
into the d-frame group has no effect on the framed symplectomorphism group. To take
care of this redundancy, we define a reduced framing as follows.

Definition B.4. A 0-frame group F will be called reduced if for every ¢ € F there exists
a1y € Symp(Y, D) such that j*(1) = ¢. The maximal reduced subgroup

F* = F nim(*)
of a 9-frame group F will be called the (), D) reduction of F.

Of course, the closure of the image j#(G) of any subgroup G C Symp(), D) is a reduced
d-frame group. An important class of such groups occurs in the following definition:

Definition B.5. A 9-gauge group is a 3-frame group contained in j*(T,).

The motivation for defining d-gauge groups stems from the desire to exert control over
a group similar to the group (S1)* of complex multiplications on EB{-(:l Np;Y. Such a
group would keep track of rotations around the boundary divisor D of ). Unfortunately,
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for dim ) > 2, this group is not contained in Symp(Np) /D) as the compatibility con-
dition in (90) is violated. The d-gauge group and its subgroups can be thought of as an
approximation to such a rotation group.

One of the central points of d-frame groups is to allow more flexibility than fixing
the boundary and a normal bundle on it. In fact, this more restrictive case occurs as the
framed group Sympl()}, D) with the trivial framing 1 = {1}. This fits nicely into the
more general framework as follows.

Proposition B.6. For any reduced d-frame group F, the map

#
Symp* (V. D) &> F
defines a topological fiber bundle with fiber Syrnp1 Y, D).

Proof. Tt follows from the definition of reduced framings that j* is the quotient of
Symp® (), D) by the closed normal subgroup Symp! (Y, D). Thus, to prove the claim,
one need only show the existence of a local section of j¥ in a neighborhood U C F
around the identity. To see this, note that the tangent space of Symp(Np)/D) is a
closed subspace of that of X, Symp(Np,/D;). In turn, the tangent space of each
Symp(Np,/D;) consists of closed 1-forms Qi p;) which are multiples of dh; when
restricted to the tangent space of any fiber. Denoting this space by V; and the tangent
space of Symp(Np)/D) by V, we have V = €, V;. Any element ¢ in a neighborhood
can be realized as the integral of a path §4 : [0, 1] — V of such forms. Furthermore,
as F is reduced, we may choose the path 64 to be contained in the image of the deriva-
tive Dj* : Tiq(Symp® (¥, D)) — V. Note that Dj* is simply the pullback of the closed
1-form associated to a tangent vector in Tiq(Symp" (), D)) along the inclusion D < ).
As Dj* is a linear map, we may choose a section of § : V — Tiq(Symp" (I, D)). Using
this, we define the desired local section s : U — j*(U) by taking s(¢) to be the integral
of the path § o 8. O

This gives an important corollary.

Corollary B.7. Suppose F| C ¥ are reduced 0-frame groups. Then there is a homotopy
fiber sequence

Symp'! (V, D) — Symp"> (Y, D) — F/F).
Proof. Leti : SympFl Y, D) — SympFl (Y, D) be the inclusion and C(i) its homo-
topy cofiber. By Proposition B.6, the rows and final column of diagram (92) below are
homotopy fiber sequences:

#
Symp! (Y, D) —— Symp¥1 (¥, D) — " F,

\ ]

Symp! (Y, D) —— Symp*2(Y, D) — > F,

|,

Cli) — L Fy Fy

92)
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The fact that the induced map ¢ from C(i) to F»/F; is a weak equivalence essentially
follows from the octahedral axiom. If one wishes to avoid this argument, take the long
exact sequence associated to the homotopy fibrations on each row. Using the fact that the
two columns are also homotopy fiber sequences and applying an induction argument, one
observes that i induces an isomorphism on homotopy groups. Applying Whitehead’s
theorem then shows that v is a homotopy equivalence. O

For a reduced 9-frame group F, we define F™® to be the group generated by F and T. As
all elements in Symp()/, D) are required to commute with t(x), and F is reduced, Frel s
a central extension of F. The following proposition is then an elementary application of
Corollary B.7.

Proposition B.8. Assume D = Ule D; is a standard divisor in ). For any reduced
o-frame group F, there exists r < k and a homotopy exact sequence

sympF (Y, D) — Symp™ (V, D) — (S'Y'.

Proof. We first observe that F™! is a finite-dimensional central extension of F. Since TNF
is closed in T = R*, it must be isomorphic to Z" @ R® for r + s < k. As it s also closed
in F*®!, we have F**'/F = T/(T N F) = (S')" x RF*. So, by Corollary B.7, we obtain
the result. m]

Our primary examples of symplectic orbifolds arise as hypersurfaces in Xp. Generally, Q
is not assumed to be a simple polytope and so the hypersurfaces will generally be singular
along a complex codimension 2 subspace Vsing C D of V. To deal with these cases, we
extend our notion of d-framing.

Definition B.9. Suppose D C Y is a J-integrable divisor and () — D, w) is a symplectic
orbifold. A set

R = {¢: : (¥, D) - (¥, D)} 93)
of normal crossing resolutions of (), D) will be called a resolving collection if:

(1) each (37, 5) is a smooth symplectic orbifold with J-standard normal crossing divi-
SOrs,

(2) ¢} (w) = @ off an e-neighborhood of YVsing.

3) ¢ is J,J )-holomorphic in a neighborhood of D.

We say that (), D) is a standard symplectic stack if there exists a non-empty collection R.

Generally, when (), D) has a resolution of singularities (37, D), it is not clear that one
may force the resolution to satisfy the conditions in Definition B.9. However, when
(Y, D) is a standard symplectic stack with resolving collection R, we may consider a
proper subgroup of symplectomorphisms that extend to all resolutions in R.

Definition B.10. Suppose R is a resolving collection for (), D). Let Sympy (), D) be
the group of symplectomorphisms ¥ € Symp(} — Vsing, D — Vsing) that are restrictions
of symplectomorphisms i € Symp()}, D) for all (Y, D).



Symplectic relations and degenerations of LG models 2247

We note that this is the coarsest group that could be defined relative to R, ignoring any of
the subtleties of the combinatorics of the distinct resolutions in R. Indeed, the benefit of
considering resolving collections R instead of a single resolution is that we may define
the group Sympyz, (), D), which is independent of the choice of resolution in R.

A 9-frame group F for a standard symplectic stack (), D) is a subgroup of the group
Symp(ND_ySing (V= Vsing)/ D — Vsing) that has a lift to Symp(N 5, D) for every (), D).
The definition of the framed group SympF (), D) and the results above all hold in this
case for obvious reasons.

Our primary examples of standard symplectic stacks arise in the toric setting. Call a
complete intersection non-degenerate if its scheme-theoretic intersection with every toric
orbit is smooth.

Proposition B.11. Suppose (X, 0X) is a Kdhler DM toric stack, where 0 X is the toric
boundary. If Y C X is a non-degenerate complete intersection and D = 0X N Y, then
(Y, D) is a standard symplectic stack.

Proof. This follows immediately from the fact that X" has standard resolutions and from
the non-degeneracy assumption for ). O

B.2. Stable pair degeneration monodromy

In this subsection, we obtain the local model for monodromy around a stable pair degen-
eration. Assume (X, w) is a symplectic orbifold of dimension n with an r-dimensional
Hamiltonian torus action. We write T” for the torus, t, (or t) for its Lie algebra and, for
v € t, denote by X, € Vect(X)) the infinitesimal action in the direction of v. Let J be a
compatible almost complex structure on & which is invariant with respect to the action,
and p : X — tY the moment map.

Let p € X with u(p) = u € t¥ and v € t. We define the map

Kk : w(X) — Homp(t, tV) (94)

by taking «, (v) = du,(JX,) € T, = t". Note that this is well defined only under the
assumption that J is T”-invariant. Alternatively, we may think of the map « as giving the
metric restricted to the infinitesimal action vector fields g|¢ € t¥ ® t¥. Given two vectors
v, w € t, we will write

(v, W), = [ku(W)](W) = gp(Xy, Xy).

Suppose we have the commutative diagram

x L
Ll
(G

where F is a non-constant holomorphic function and uc = | |*. We assume that F has

no critical values outside 0 and let X° = X — F~1(0). The most common example of
diagram (95) is that of a normal crossing degeneration.
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Example B.12. Consider the torus T" = {(z1,...,z,) € C" : |z;] = 1 forall 1 <i < n}
acting on (C", wy) where wy is the standard symplectic form. Identify t with R" so that
ifr = (ry,...,r,) € t, we may exponentiate to obtain exp(r) = (e72in, ..., e 2im),

Using the dual of the standard basis, we identify t¥ with R” as well. Then the moment
map for this action is

p@@isz) = (Pl (96)
If (a1, ...,a,) € N", consider the map F : C" — Cgivenby F(z1,...,2,) = Z‘fl N
defining a normal crossing singularity over 0. Then taking f(r{,...,r,) = ri” Y

yields the commutative diagram (95).

Recall that @ defines a Hamiltonian connection on the smooth map F : X° — C* by
taking the horizontal distribution to be the symplectic orthogonal to the tangent space of
the fiber. As usual, this allows us to lift any vector field on C* to X° via

£ : Vect(C*) — Vect(X°).

Recall that the map puc : C — R is the moment map for the circle action of T =
{z € C: |z| = 1} on C given by multiplication. Here, as in Example B.12, we identify R
as the Lie algebra dual to t = R where T is parameterized by exp(r) = e~ for r € t.
We let p = —2iz0, denote the infinitesimal vector field of 9, € t on C*. Note also that
the derivative of f at a point p gives a natural function df : t¥ — t.

Lemma B.13. Let p € X° and q = (p). The horizontal lift £(p) of p at p is dependent
only on q in the sense that it equals the infinitesimal vector field X5, where 5 € tis given
by
0
T lafyl12,

Proof. We recall that the defining property of the moment map  : X — t¥ is that, for
every v € t,

df,.

tx,0=d (u,v) = ({du, v). CH)
Here, txn is the interior product of a differential form n with a vector field X, and (w, v)
is the canonical pairing taking w € t¥, v € t to w(v). Thus, letting ¥ € T,X°, by the
definition of the moment map and the commutative diagram (95), we have

o(Xaf,, Y) =dpY), dfup) =d(f ou)p(Y) =d(uc o F)p(Y).
In particular, if F(p) = p’ we see that X4y, (p) € (T, F~'(p"))*e and
ducldF(Xaf, )] = 0.

The latter equality shows that p Ad F(Xay,) = 0, so that X4y, is a real multiple of £(p,).
To evaluate this constant, let Xq¢, = y, and define rj, via

dF(yp) = rppy. (98)

Now note that

(bp' o) = (=2p"0;, =2p'3;) = 4puc(F(p)) = 41 (u(p)). 99)
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Also, using the defining property of moment maps in (97) for pc, one observes that the
Hamiltonian vector field of uc is X5,, which we have denoted p. If we identify C with
the real tangent space 7,,/C, the inner product satisfies (a, b) = wy(a, ib), so that

(dF(yp), pp) = ws(dF (yp), ipp) = wsi(pp, id F(yp)) = ws(pp, dF(Jyp))
=duc(dF(Jyp)). (100)

In the second to last equality, we have used the fact that F is holomorphic.
To evaluate r),, we take the inner product with o on both sides of (98) and employ
(99) and (100) to obtain

_ dFWp). pp) _ ducdFJyp)  duco F)Uyp)

T ooy AT 4f(u(p)
_ dfu(p)(dl/vq(-]xdfq)) _ <dfqufq);(q
B 4f(q)  Af@
Letting §; = rp_ldfq then gives d F(Xs,) = p,, yielding the claim. O

Given any smooth function f: n(X) — t, the vector field Xf(u(p))(p) is easily in-
tegrated to qﬁf : X - X where d),f (p) = exp(tf(,u(p))) - p. Thus the previous
lemma gives an explicit description of the symplectic monodromy map of F. Namely,

take f = ”j,; (|(|]2) dfy; then for any &€ > 0 the monodromy map is
9 kg

ol F o) > F (o).

We utilize this to study the monodromy around a stable pair degeneration by first exam-
ining the monodromy with respect to the ambient toric variety and then perturbing this
map slightly near the critical points of the degeneration to obtain a characterization of the
monodromy on the hypersurface. Recall from Appendix A.2 that A C A gives a subset
of equivariant linear sections of a line bundle O4(1) on a toric stack Xy specified by
(Q, A). Suppose S = {(Q;, Ai)}ies is a regular subdivision of (Q, A)andn : A — Zis
an integral defining function of S. In Definition A.11 we introduced the degenerating fam-
ily (&}, Vs) which came equipped with a holomorphic function F; : &;, — C. We will
explore two aspects of this definition, the symplectic structure as defined by the moment
map and the holomorphic function F,.

To perform symplectic parallel transport around the critical value of a degenerating
family, one must first choose a symplectic form on X, := X,. We take the standard
symplectic form @ on A&}, defined in (47) for an arbitrary polyhedron. In the case of O,

we utilize the divisor associated to y, = Zbe g, eb € 791 where nj, was defined
in (40). By definition, we have v = oeén (¥)- To shorten notation, we define the affine
function

vy = ,35,7 + V- (102)

The moment map u, : &; — Agr @ R can then be found using diagram (49) for the
polyhedron Q; which is
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- ; PA
Cn /L;II (w) -7 X, ———=4,

Ménl “in J{Mn (103)

RO RO« Ap @R+ 0,

Turning to the holomorphic function F;, we review equation (52) which defines the

function ﬁn(Zl, cer Zn) C2 — Cas
~ .
Fr)(Zl, ceey Z|Qr]|) = H Zin
i er,
Here we have made two implicit identifications. First, we identified the indexing set / in
the subdivision S with QZ. Second, we identified Q, = Qg U QZ with {1,...,|Qyl}.

We recall from (51) that ¢, ; is the denominator of dg; where ¢; = B 0, (e;) is the affine
function wl}ich restricts to n along A; as in Definition A.10(i).
Using F),, the function F;, : &; — C associated to 1 was defined by the diagram

Xy 2 1 ()
F,,l Fnlmc (104)
(C (i (CQW

Note that I:",, was explored in Example B.12 and one can fill in diagram (95) as
_ "a _
co —2, ROy

where fn (r, .. 79, ‘) ]_LEQU : Lettlng Y =u; L (a)) we assemble the commu-
tative diagrams (103)—(105) into the diagram (106) Wthh defines f:

X, AR ®R

N4

Y —— R

Fy \[inc =l I (106)
a 1220 .

o
(CQn Hn RQW

1 R

C
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Example B.14. The most basic example of this setup is the degeneration of P! into two
projective lines intersecting in a node. To describe diagram (106) for this case, we take
A={-1,0,1} CZ=Asothat Q =[-1,1], Xp = P! and O4(1) = Opi1(2). Define
the degeneration by letting 17 : A — Z be the defining function given by e/| | € ZA)Y
(i.e. the function taking —1 and 0 to 0 and 1 to 1). Then Q, is illustrated in Figure 22 and
one obtains 0, = Q) U O = {(0, 1), (=1, D}U{(1, 0), (=1, 0)}. It is not hard to check
that &, is isomorphic to the blowup of P! x Cat ([1:0],0).

At

Fig. 22. The polyhedron Q; for a degeneration of Pl

While one can work out the inner square of diagram (106), the details of the compu-
tation do not give much insight into the geometry. However, one finds that F; is simply
the blowdown map composed with the projection ([a, b], z) + z. Moreover, using the
coordinates (s, t) in Figure 22, one computes f(s,?) = t(s — ). Observe that this is
identically zero on the lower boundary of O, which is the image of the degenerate fiber,
namely the total transform of P! x {0}. The level sets fn_l (¢) N Oy are the moment map
images of the fibers of F), lying over a radius /¢ circle. Moreover, Lemma B.13 shows
that the symplectic monodromy about such a circle can be described in terms of the torus
action on X, using the infinitesimal vector fields associated to the derivative of f;.

The following proposition gives the general description of f;, as well as the monodromy
of F, around 0.

Proposition B.15. Let (r, t) be coordinates for Agr ® R. Then f, can be written as
Sy, 0y =] Jleg.i = o)1
iel

The normalized derivative

4f(x, 1)
”df(r,t) ”,2((1‘,,‘)

converges uniformly to dt — d¢; on compactly supported subsets of the interior of Qy.;.

dfe, (107)
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Proof. For the first part of the claim, we reexamine the map v, defined in (102). Recall
that B 791 — AV @ 7 was the tautological map B, (eb) = b for every minimal
supporting hyperplane of a facet of Q,. Now, for every i € I, let b; be the supporting
hyperplane for the lower boundary facet Q, ;, which is the marked facet of (Q,, Aj)

over Q;, and write e, € Z9n as ¢;. By definition, 7 restricts to an affine function ¢;
which is the sum d¢; — m; where dg; € Ay, is the derivative, or linear part, of ¢; and
m; € Q. By the construction of Q,, and property A.10(ii) of ¢;, we have n(a) > ¢;(a) for
all @ € A, with equality if and only if a € A;. Taking 2 = (0, 1)V € AY @ Z", for any
a € Aand r € R>o we have

(h” —dgi)(a,n(@) +r) = n(a) +r — (dsi(a) —m;) —m; = n(a) — gj(@) +r —m;
>r—m; = —m;.
Equality is achieved if and only if » = 0 and a € A;. This implies that ¥ — dg; is a
supporting hyperplane for Q, ;. However, only after multiplying by ¢, ; can we ensure

that it is contained in AV @ ZV, so that ’BQn (e;) = cy,i(hY — dg;). We also see from this
argument that nj, = ¢, ;m; forevery i € I. In turn, this gives

Vn = ch,imiei + Z njej € A28
il jedh
Therefore, for any i € I, we have
e/ ovy=¢ o ﬁén +e'(y) = ,35(61') + cpimi = cpi(h —dgi) + cyim;
=cpi(h’ = g).
But the function 7; : R — Ris induced from e) sothatrjov, = ¢ ov, = ¢, i (h' —g;),

which, as a function on Ag ® R, we simply write as ¢;,; (t — g;(r)). The formula for

fn = f,, o vy, then follows from that for fn following diagram (105).

We use this and the convexity of 7, defined in (50), to get the second claim. Be-
fore proving this though, we define ¥ and « to be the pairings from (94) for the ac-
tions of the tori T, 5, and Tygz on C2 and Xg, respectively. Observe that if we let

R=(r, ...,rlin) € R, the map « for C9 is

4 0 --. 0
3 0 :
KR =
: . 0
o --- 0 4r|Q77|

More succinctly, kg (dr; ® drj) = §;j4r;. To see how this induces «, we first note that the

map v, : AR @R — RO gives the identification r; = ¢;; (t — ¢;). If p € uy(A&;) and
51,52 € (AR®R)Y then k(51 ®52) = &p(51 ®5,) where §; € (R2n)Y satisfy 5; ov, = s
and k,(5; ® §) =0forall § € ker(,BQn). In other words, over every p € ji;, one can find
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a linear splitting 7, : (A ® R)Y — (R2n)V of ,35 for which
n

Kp(sl ® $2) Z’Zp(fp(sl)®fp(52))~ (108)

For any polytope Q, ;, the image v, (0, ;) lies on the boundary r; = 0 of 1o, ((CQ").
Now, let U C Qy,i be any neighborhood away from the boundary and U C Q, a nor-
mal tubular e-neighborhood of U. We choose a continuous splitting function t : U —
Hom((A @ R)Y, (R97)V) so that

10y
Tp(cy d(t — ) =Y gjkdri. (109)
k=1
Since i |;—o contains dr; in its null space, we may choose g;  to be continuous functions

on U sothat gj i|g,, = 0 forevery j # i and g;ilg,, = 1.
Using (108) and (109), we compute

kp(cy jd(t — 6j) ® cyrd(t — g1)) = Y 4eyi(t — 61))gjugk1- (110)
lel

We now calculate ~ 3 o
dfyR) = f(R)- Y LLdr;.

jel Tj
Using the fact that f;, = f~n o vy, we have

1
dfy(r,0) = fy(r,0 Y — p

jel J

d(cy,j(t = gj)).

Using (110), we compute the following norm on U as a meromorphic function in  — ¢;:

2
Cn, (T —61)

=4 — 2 e 18k

k(r,t) j,k,lEI (t - §])(t - §k)

1
> et =)

jel J
Cn.i 0
=4 4 0(( - )"
t—gi
Note that while there are poles of this function on the other boundary facets Q,, ;, we

have chosen U to be disjoint from these so that the only pole is the first order pole at
t = ¢;. We utilize this to compute

4f (r, t) 4 Cn,j
. —dfy(r, 1) = " 3 m‘d(t—s‘j)
I fn (e, Ol ey 12 e Podey it - gj))”K(l‘,t) R
1 Cn,j
= o ~—d(t — gj)
2L+ Ot - TS

cn,j(t — i)
= d - i)
,X,: enit s+ 0 —em
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From our previous observation that (f — ¢;)|y # 0 for j # i, we find that the limit of the
normalizing derivative on the interior of 9, ; is

4 t
im Lr’z)dfn(l‘, fH=dt—g). )
=t lldfy (6 D1

We now explain the meaning of this proposition in the form of a corollary. Combined with
Lemma B.13, the first part of the proposition gives an explicit formula for monodromy
of Xy about a toric degeneration. To understand the statement, we decompose the fiber
Fy L)y = x, o by taking symplectic parallel transport along F;, to 0. The degenerate fiber

Fn_ 1(0) is the union U; <1 Xo, of its irreducible components. We write U; C Fn_ I(e) for
the set which converges to Xp, under parallel transport along the positive real axis.

Corollary B.16. For a regular subdivision n and any sufficiently small § > 0, there is an
induced decomposition Xg = \J;c; Ui such that degeneration monodromy relative to 1) is
an interpolation of toric multiplications exp(—dng,) on each U; along §-neighborhoods
of their intersections.

Proof. For ¢ > 0, the fiber Fn’l (&) is isomorphic to Xy and the inverse image Fn’l (eSH
of the circle is preserved under flow with respect to £ (p). The time —m flow for £(p) sends
Fy I(e) to itself and yields the symplectic monodromy map (as it lifts the time 1 flow of
p = —2iz0d;). Proposition B.15 gives an explicit expression for £(p) as the normalized
derivative in (107). This is amap F, ' (¢S') — tsez (then composed with the map taking
v € tpgz to its infinitesimal vector field X ). Exponentiating and evaluating at time —x
gives a map exp, : F,’_ Le) = Xo — T4 (since it preserves Fn_ L(g), the additional circle
action is constant). Symplectic monodromy around O is then given by x — exp,(x) - x.
Fixing a small § > 0, let V; be the open set in Q; consisting of points which have dis-
tance greater than § from 9 Q;. Consider the set V; of points in Fr I(¢) which flow to V;.
It is clear that V; C U; and that V; can be identified with the complement of a neighbor-
hood of the boundary in Xp,. By Proposition B.15, the monodromy exp, (x) uniformly
converges to exp(1n, i’l(dt —dg;)) on Oy ; as ¢ tends to 0. As exp(dt) acts as the iden-
tity, this multiplication converges to exp(—dg;) = exp(—dng,), which is multiplication
by a constant in the maximal torus acting on V; C Xp,. Thus, conjugating by symplectic
flow from F,~ L&) to Fr 1(0) on the domains V;, we obtain a representation of symplectic
monodromy as in the corollary. The fact that these interpolate over their boundaries fol-
lows from the representation of monodromy as exp, (x) - x and the continuity of exp, (x)
in (107). O

Thus we find that the symplectic operation of parallel transport, which is very far from
being holomorphic, limits to a holomorphic map on the components of the degeneration.

To obtain the structure of parallel transport on the hypersurface, we simply define an
appropriate perturbation of these maps which preserve the hypersurface. This is a less
elegant approach than the straightening method of [1, Appendix A], but one which works
for arbitrary stable pair degenerations and yields a description that is Hamiltonian isotopic
in the case of a degeneration resulting from a triangulation of (Q, A). We only need to
assume that the defining section s is in the complement of the principal A-determinant. As
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Fig. 23. Regions of finite order monodromy.

the hypersurfaces are fixed by the limit of the monodromy maps exp,(x) in the degenerate
fiber F,° 1(0), the ambient toric monodromy approximates the hypersurface map up to a
negligible factor along their intersections.

To describe the hypersurface monodromy map, let Z,(0) = UiE ; Zi(0) be the com-
ponents of the degenerate hypersurface from Definition A.12 and g; : Z;(t) — Z;(¢) the
Kihler automorphism corresponding to exp(—dng; ).

Proposition B.17. There exists a decomposition Z,(t) = |U;c; Vi such that Z; ~
Z;(0) — 9Z;(0) and the monodromy map ¢, : Z,(t) — Z,(t) equals g; on Z; off an
e-neighborhood Z;(¢) of 0Z;, and is interpolated smoothly over Z; (&) by a Hamiltonian

flow.

Proof. Given Corollary B.16, we need only show that the action exp(—dng,) preserves
the hypersurface Z;(0) for every i € I. This follows from the observation that ng, is
an affine function on Linz(A;), and Z;(0) is defined by sections in A;. Multiplication of
the section z% by exp(—dny,) is given by exp(—dng, (2ma))z® = z% so that the section
defining Z; (0) is fixed, implying that the hypersurface is preserved as well. O

B.3. Stratified Morse singularities

In [45], it was seen that symplectic monodromy around a Morse singularity has infinite
order in the symplectic mapping class group for any dimension. In this paper, these types
of singularities are encountered as a non-degenerate case. For the degenerate case, we
need a different model whose critical fiber is in fact smooth, but fails to transversely
intersect the boundary divisor. Restricting to the boundary divisor, we see a Morse singu-
larity and expect that the monodromy on the ambient space extends the monodromy of
the restriction.

We have one essential obstruction to pursuing this naively. Namely, if our parallel
transport map preserves a boundary divisor D in ), then D must be horizontal relative to
the symplectic orthogonal connection. On the other hand, if a smooth fiber does not inter-
sect D transversely at p, then the symplectic orthogonal will be normal, or vertical, to D.
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This holds for all symplectic connections in £22()’). We resolve this difficulty by consid-
ering a singular connection on D and show that the parallel transport vector field extends
over the singularities and preserves the symplectic form of the fiber up to a negligible
factor.

Let U C C" be a neighborhood of zero, D(m) = {z1---z,m = 0} N U and Dy =
(i~ Di N U. Given a linear function L : C" — C with non-zero restrictions to each
coordinate line, we let f; : U — C be the function

L@ z) = L@ Zm) + 2@y + o+ 20,

While this map is smooth, the fiber over zero does not transversely intersect the divisor
D(m) along Dy, at 0.

For the following definition, let G be a subgroup of the unit circle T C C and [C/G]
the quotient orbifold. Let ¥ : C — [C/G] be the orbifold chart of [C/G].

Definition B.18. Let ) be a symplectic orbifold with normal crossing divisor D =
UL, Di, p € Ly Dj and f : ¥ — [C/G] a map of orbifolds with f(p) = 0.
We say that f is a stratified Morse function at p relative to D if there exists a holomor-
phic orbifold chart ¢ : ((U, D(m)), Gy) — (), D) centered at p, a homomorphism
g : Gy — G, and a (Gy, G)-equivariant linear function L : C™ — C such that f lifts
to a (Gy, G)-equivariant function f; : U — C. In this case we say that f is stratified
with codimension m, p is a degenerate point of f and f(p) is a degenerate value of f.

We will concentrate on the case where G and Gy are trivial, as the general orbifold case
will be an equivariant quotient thereof. In the non-stratified setting we have a useful crite-
rion for deciding when a function is Morse. A similar tool, whose proof is straightforward,
is available in the stratified case.

Proposition B.19. LetrU C C", D = | Ji_, Di, Dy = (i) DiNU andlet f : U — C
be a holomorphic function. Then f is a stratified Morse function at O relative to D with
codimension m if and only if the following conditions are satisfied:

(1) dfolc # 0 on any coordinate subspace C = (;c; D; for which J C {1, ..., m},
(2) dfo(ToDymy) =0,
(3) Hesso(f) is non-degenerate on To D).

Proof. Applying the complex Morse Lemma to f|p,,, and inductively applying the Im-
plicit Function Theorem for coordinate planes containing Dy, yields the result. O

Let B¢ be the radius € disc about the origin in C and U = fr 1(BE) C C. As was

pointed out above, the symplectic orthogonal connection on f; : U — B¢ has to be
corrected in order to preserve the boundary D (m). We implement a form of Moser’s trick
by integrating a path of equivalent symplectic forms, perform parallel transport relative
to the corrected form and then flow back to the standard form.

We define a smoothly varying collection {p;}1>¢~0 of functions where p,
R>0 — Ry is a smooth convex function which satisfies

&2r forr <e,

r2 forr > 2e.

pe(r) =

Bl— B
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pe(r)

& 2¢e
Fig. 24. The function pg.

The function p; is illustrated in Figure 24. Then define w, on C" to be the symplectic
form obtained for the Kéhler potential

m+1

m
1
Pz zn) = Y pe(lzil) + Z >zl (111)
i=1 i=1

It is clear that w, is a smooth symplectic form away from D (m) and singular on D (m). An
application of Stokes’ Theorem shows that for any disc £ with boundary outside of the
radius 2 neighborhood of D(m) and any ¢ < 1, the integral |, 5, @ is finite and independent
of ¢. Indeed, if ¥ is such a disc, then we may perturb its interior so that it transversely
intersects D(m) implying that each intersection point is in D; for some 1 < i < m.
Again, after perturbing, we may assume that X is orthogonal to D;, which reduces the
computation to the one-dimensional case. Note that, as w; is an exact symplectic form off
D(m) and we have kept the outer boundary fixed, these perturbations do not affect | 5 We.
To check the assertion in the one-dimensional case, assume ¥ C C contains the origin,
and for § < ¢ let ¥5 = ¥ — Bs. The boundary of X5 then consists of an outer closed
curve C, which we assume to be outside a disc of radius 2, and the inner closed curve C;

where C; is a circle of radius § about the origin. Let A, = —d“p.(|z]) be the Liouville
form. Note that in the e-neighborhood of the origin,
2
e xdy — ydx
=dl = —d| —— ). 112
We £ 4 < ,—x2 n y2 ( )

Thus if C; is parameterized by (6 cos(9), 8 sin(6)) then A;|c, = (528/4)019. On the other
hand, since C, lies outside of the 2-neighborhood of 0, A¢|c, is independent of ¢. Thus,

/a)gzlim/ a)gzlim/ Aszlim</ )LE_/)\&‘)
)3 §—0 s §—0 %5 §—0 aC, G
2 2
e°d
:/ ,\g—nm<—f de):/ .
aC, s—o\ 4 Jo aC,

This verifies that the relative cohomology class of w, is constant in the 2-neighborhood of
D(m) as ¢ varies. It is this fact that hints towards a Moser argument relating the standard
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symplectic structure to w,. In particular, let X, be the vector field which is the f; fiber-
wise w, dual of the 1-form %(d” pt)| e The vector field X, is smooth off D(m) and
extends continuously to C" by letting it equal zero on D (m). Furthermore, the deriva-
tive of X, is bounded on C". This implies that the time varying vector field X; may be
integrated on C" for time ¢ € Rx¢. Recalling that U= L I(Be), and noting that, by
definition, X, is tangent to the fibers of f7, we may restrict the X, flow to U. We denote
by &, : U — U the singular symplectomorphism obtained through integrating {X,} to
timet =s.

Definition B.20. For any stratified Morse function f : ) — C with a local model
U c C"and f; : U — C, we will call conjugation of parallel transport around 0
relative to w1 by &1 modified symplectic parallel transport relative to U.

We now investigate the local behavior of modified symplectic parallel transport for fr, :
C" — C. As the computation is local, we may extend the symplectic form w; near 0 to
one over all of C", differing from w; only outside of a neighborhood of 0. From the defini-
tion of w; using the potential p, in (111), we note that near D(m) = {z1---z,, =0} NU,
the symplectic form for ¢ = 1 is

i dzi ndzy 0 L _
[0)] Z + 2 i:%;] Zi Zi

Sufficiently far away from D(m), w; is the standard symplectic form and it interpolates
between w and wg. We may thus use o for the local model.

Let L(z1,...,2m) = c121 + - - - + cmzm and note that we may change coordinates
by multiplying z; with e~2)i without affecting the map @, so that we may assume
¢i € Ry. In the following computation, we will examine only the case where ¢; = 1 for
every m + 1 < i < n and write f for f;. The case of a more general linear function
L only affects the isotopy class of the modified parallel transport map if a small 9-frame
group F is considered for which rotations about the boundary in SympF (YY) do not exist.
In less restrictive frame groups, for example if F is the image of all symplectomorphisms
preserving the boundary divisor under j*, we may isotope to this case.

Our goal will be to understand parallel transport around 0. As a first step, let yy :
R.o — C be the path y,.(t) = t and examine the flow of the parallel transport vector
field which lifts —0,. Let F;;, be the fiber of f over g € C and ¢, : F;, — F;_, be the
parallel transport map for ¢ > ¢. Define

o __ -1 . : —
ro=|ze s Ro0): lim 6,2 =0, (113)
L° = {z € Fy : lim ¢, (2) = o}, (114)
t—1

called the open vanishing thimble and cycle, respectively, of f. A priori, parallel transport
can only be defined where w is non-singular, so 7° C C* — D(m) and L° C F; — (F1 N
D(m)). The vanishing thimble 7' and cycle L will then be defined as the closure of these
in C" and F; respectively.



Symplectic relations and degenerations of LG models 2259

Let ¢ : C" — C" be given by
oWy, ..., wy) = (%w%,..., %wi, me,...,wn).

Observe that f = fop(wy,...,wy) = % > wl.2 and p*w| = wy so that the diagram

(C", wy) —— (C", wy)

[

C=C

commutes. This immediately implies that, off D(m), the parallel transport vector fields
are mapped to each other via ¢.

In fact, we show that this description extends over D(m). To see this note that, given
any Kéhler form & on C", a holomorphic function F : C* — C, a regular point p € C"
of F with ¢ = F(p) and a tangent vector z € T,C, one has the formula

grad; (F)

N VA, (115)
llgrad;; (F)|12

éra() =z

for the symplectic connection lift &7 ;(z) of z to T,C". Here the gradient and norm are
with respect to the Hermitian form defined by @. Letting p = (wy, ..., w,) € C" with
the standard metric, one computes that the lift of z for f is

(i, ..., wn)

G, - w12,

£7 w0 @lp =12

On the other hand, taking (/)*(Eﬂwst (2)|p) and using (115) for F = f and ® = w at

o(p) = (3W2, ..., JW2,, g1, ..., wy) gives
oulE @) = 2 QA [ Do )
“ IGD1, - B2,
Qi s - )
IGwi, - w2, Bt - D)1
grad,,(f)

=g SN . 116
¢ Yerad, (N~ Fo@lew (116)

Off D(m), this equality follows from the fact that ¢*(w;) = wg. The upshot of the
computation is the realization that any parallel transport vector field with respect to f
extends to D(m). Moreover, a closer look at the equations in (116) shows the divisors
{D;}1<i<m are horizontal with respect to parallel transport. In fact, the vector field &y,
restricts to the parallel transport field associated to f|p(n)-
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Proposition B.21. The vanishing thimble and cycle of f are
T = R’;O x R*"™, L=FnN (erno X Rn_m) ~Ap_qx Sn_m_l’

where Ay,—1 is the (im — 1)-dimensional simplex, sn=m=1 s the sphere and x is the join.

Proof. By the definition of vanishing thimble in (113), 7' is the union of all integral curves
of &7 ,(—1) which limit to 0 € C" (here —1 represents the vector field —9, on C). It is
known that R” is the vanishing thimble of f along y,. (see [47, Example 16.5]). By (116),
q)*(‘ff,wsl(_l)'l?) = &7 (—1)|y(p), which implies that if 6 : [a, b] — C" is an integral
curve for E. Fou (—1) then ¢ 04 is an integral curve for &7,,,(—1). As ¢ is surjective, we see
by the uniqueness of integral curves (up to reparameterization) that every integral curve
of &7, (—1) is the image of one for Sﬁwst(—l). As ¢~ (0) = 0, this implies that T is the
image p(R") = RZ, x R"™".

The description of L follows from intersecting 7 with the fiber Fj. In particular,
Pty oo s T 205 oo o5 Zn—m) € F1 N (RZ ) x R*™™) if and only if ; > 0 for all i and

n
zf:2(l—

i=1 i

ri)- (117)

1

m m

Taking the standard simplex A, —1 = {s = (s1,...,5n) € R’go : Z;"zl si = 1} and
sr=m=l — iy € R ¢ Jull> = 1} wemap G : Ap_y x "1 x[0,1] - F N

(R’Z”O x R"™™) via
G(s,u,t) = (ts, V2(1 —1) u)

Recall that the join A, _; * sn—m=1 ig equal to A,—; X sr—m=1 50, 1]/~ where
(s,u,0) ~ (s',u,0) and (s,u, 1) ~ (s,u’, 1). It then follows from (117) that G in-
duces a homeomorphism of A,,_1 sn—m=1 gnto L. m]

We give a few examples of these vanishing cycles in Figure 25. In general, one would hope
that these cycles could appear as natural objects in a Fukaya—Seidel category, perhaps
with a partial wrapping around the stratifying divisors.

D

n=2m=1 n=3m=1 n=3m=2

Fig. 25. The vanishing cycle as a join L &~ A,,,_j * S"~"~1,

We conclude this section with a description of the monodromy map around the strati-
fied Morse critical value.
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Proposition B.22. For any ¢ > 0 there exists a symplectomorphism ¢ supported on the
e-neighborhood U of L and isotopic to symplectic monodromy of f around 0. Further-
more, L is a deformation retract of U with retraction p : U — L, and for x € L — dL,
the fiber Fx = {u € U : p(u) = x} satisfies:

(1) Fy is atopological disc,
(2) ¢(F)NL ={x},
(3) p o ¢ is generically a 2™ -cover of L.

Proof. Symplectic monodromy around O relative to the function fisa spherical twist as
introduced in [45] and surveyed in [42, Section 6.3]. We let G = (Z/27Z)™ act on C"
by multiplying the i-th coordinate by 1. As f(wy, ..., w,) = % » u)l.z, we see that f
and ¢ are invariant with respect to this action. Since the action preserves the standard
symplectic form, the lift of the parallel transport vector field and symplectic monodromy
are equivariant with respect to the action. Noting that F;, is simply the quotient of f )
by G, we aim to understand symplectic monodromy around zero on Fj as a quotient of
thaton f~!(q) by G.

To accomplish this, we recall the definition of the spherical twist with respect to f. It
is known that f‘l(l) ~ T*S$"~! and the vanishing cycle is Z = {(wy, ..., w,) € R" :
> wi2 = 2}. Taking g to be the constant curvature 1 metric on Z ~ §"~! we have the
dual metric g* on T*S"~! and consider the Hamiltonian H : T*S"~! - R, H(w, v) =
%H v |I§*, generating the geodesic flow [42, Example 1.22] and X g its vector field. For any

& > 0, one may rescale X off the &/2-neighborhood of the zero section Z C T*S"~! to
obtain an exact vector field Xz supported on the e-neighborhood U of Z whose time 1
flow is the antipode map on Z. The resulting monodromy map ¢ has support on U and is
Hamiltonian isotopic to the spherical twist. This is a generalization of the Dehn twist in
two dimensions.

We would like to utilize this description to understand the stratified case. Let U =
U/G and ¢ : F| — F| be the monodromy map induced by the symplectic parallel
transport ¢ along a loop about the origin. Note that as the bundle projection from U to Z
is G-equivariant, it defines a retraction p : U — L in F|. Decompose Z into 2™ regions,
Z = Uqeg Zg. defined as

ZO:{(U}l,...,wn)esn_l ;wi20f0ralll flfl’l’l}, Zg:g.zo.

We let T*Z consist of pairs (w, v) such that if w € 9Zg then v(v) > 0 for all inward
pointing tangent vectors v € T,,Zo. Observe that 7*Z, forms a fundamental domain
for the G action in f~'(1) ramified over the boundary 8Zo. Thus the points in Fj ~
T*5"~1/G can be identified with those in 7* Z.

Now, by restricting ¢ to any cotangent fiber T; $"~1 and projecting to Z, we obtain a

decomposition of each such fiber, 7 SV =, Z p.g- Here

geG
Zpg =1pv) e TyS" " (@™ (p, ) € Zy)

where 77 : T*S"~! — Z is the cotangent bundle projection. On identifying 7* Zo with Fy,
the monodromy map ¢ takes (p,v) € Z, , to ¢ '¢(p, v). Qualitatively, we observe that
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a given fiber of T; Zy ~ T;L, identified with p~!(p), wraps around the zero section
2™ times with one crossing. The map on the vanishing cycle is seen to be the join of the
identity on the simplex with the antipode map on the sphere. O

B.4. 0-framed Lefschetz pencils

In this section we address certain transitions in framings for symplectomorphisms arising
in monodromy calculations. We assume (), D) is a Kihler orbifold with standard normal
crossing divisor D = D +- - -+ Dy, i.e. it is a symplectic orbifold with a specified J € J
that is integrable everywhere.

Let C be a one-dimensional DM stack with coarse space P!. Let 7 : J) — C be a map
with determinant values Det(;r). These are defined to be the values of 7 for which either
m singular, or | p, is singular.

Definition B.23. We will say that 77 defines a d-framed Lefschetz pencil if w € Q*())
is isotopic to some @ for which D is horizontal and such that there is a covering {U;}
of C such that w : 7~ (U;) — U is either a smooth proper fibration, a normal crossing
degeneration or a stratified Morse function for every i. If (), D) is a standard Kahler
stack with resolving collection R, we say that  is a d-framed Lefschetz pencil if & o v, :
37 — C is a d-framed Lefschetz pencil for every ()7, 5) e R.

We note that the definition of Lefschetz pencil given in [19] is generalized by the defini-
tion above. The notion of a partial Lefschetz fibration given in [37] can also be introduced
in this framework. However, our principal example of a framed pencil is obtained from
considering stacky curves in Xs;(4) where A satisfies some basic conditions.

Before we state the next theorem we review some notation from Appendix A. Recall
that A is a finite set in a lattice with convex hull Q. The toric stack defined by Q was
denoted X and, for any face F € Q, the orbit of the maximal torus acting on Xp cor-
responding to F was denoted orbr. Coupled with Xy was a line bundle O4(1) defined
by Q and a subspace L4 of sections defined by A. In (44) we defined the principal A-
determinant E4 : £4 — C which vanished on degenerate sections in £4. These were
elements of £4 whose zero locus intersected the orbit orbr non-transversely for some
face F' of Q. In Definition A.28, we then extended E 4 to a section Eg of a line bundle
over the secondary stack X4y with zero loci £4. The discriminant Ay : £4 — Cisa
polynomial vanishing only on those sections which defined hypersurfaces with singulari-
ties in the maximal orbit orbg. When A 4 is constant, we call (Q, A) dual defect.

Theorem B.24. Suppose A C 74 defines the marked polytope (Q, A) such that for every
face F of Q either ortbp has a smooth neighborhood, or (F, A N F) is dual defect. Let
(Va,0Y4) C Xoca) be the universal toric hypersurface with boundary. Suppose C is
one-dimensional and i : C — Xx(a) is an embedding which transversely intersects £
and 0 Xs,(py. Then w1 i* (Y4, 0Ya) — C is a 9-framed pencil.

Proof. From Theorem A.15, there is a product decomposition

Ea(f) = [] Aang ()t imtA/en
Q'=Q
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where, in this case, A = Z<. Recall that this is indexed by faces Q' = Conv(A") C Q.
Under the conditions above, if the orbit orb s does not admit a smooth neighborhood then
A 4 18 constant. So we may assume that for every set A’ of lattice points in a face Q' of Q
which has a non-constant discriminant, X o- admits a smooth neighborhood.

Since every intersection point p € i(C) N {Ax = 0} is transverse, we find that
the point p is a smooth point of A4 = 0 and is not in {A4» = 0} for any other sub-
set A” on a face of Q. By [24, Theorem 1.5.1], this implies that the Hessian of 7 :
i*(Va) Norbyr — C at p is non-degenerate and 7 : i*(Y4) Norbgr — C is non-singular
at p for all faces Q" containing Q’. Thus, by Proposition B.19, 7 : i*(Va, 0)4) — U is
a stratified Morse singularity in a neighborhood U of p.

For every p € i(C) N 0&Xx4), Theorems A.38 and A.39 imply that there is a neigh-
borhood U of p such that = : i*(Q4,3Y4) — U is a hypersurface degeneration of
Zaq) =n""(q) forq € U — {p}. D
All of the results on symplectomorphisms will be obtained by parallel transport in a o-
framed Lefschetz pencil. However, the parallel transport map occurs naturally as a functor
in higher dimensional settings. We take a moment to fix notation for the general setup,
and quickly return to the one-dimensional case afterwards.

Given a stack X’ with atlas (Ug, Gg, mg)gep, let I1(X) be the path category of X’
defined by taking elements p € (_J Ug to be objects, and morphisms Hom(p, ¢) = {y :
[0,1] = X : y(0) = p, y(1) = g}. We can think of this category as an (co, 1)-category,
as morphisms do not compose associatively.

Given a bundle 7 : (),0)Y) — X of standard symplectic stacks over X and a
symplectic connection which preserves their boundaries, we write parallel transport as
a functor

P: I1(X) — Symp
where Symp is the category of standard symplectic stacks. This map takes p € X to
771 (p) and a morphism to the map obtained by parallel transport. We will abuse notation
and also write P : Q,(X) — Symp(rr‘l (p), ar ! (p)) for the restriction to based loops.
As indicated by Theorem B.24, the primary example we consider is X = Xx4) — €a.
Using this theorem and the general parallel transport map, we define:

Definition B.25. For any point p € Xx4) — €4 let

G, C mo(Symp(Z4(p), 3Z4(p)))
be the group of components of the image P(2, (Xx4) — £4)).

For any d-framed Lefschetz pencil 7 : JJ — C and g € C — Det(x) let 2, = 77 (q)
be the fiber with 02, = Z; N D. If the ¢ is a chosen base point, we simply write Z
and 0 Z. Note that the definition above ensures that every fiber outside Det(;r) transversely
intersects D, so (Z, 02) is a symplectic orbifold with standard normal crossing divisor.

The connection given by the modified symplectic form @ yields a parallel transport
map that preserves the boundary, which we write as

P: Q,(C — Det(r)) — Symp(Z, 02),

where 2, denotes the piecewise smooth based loops at g.
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A key point which will be made precise in Proposition B.30 is that when we examine
local monodromy, we may utilize the local model descriptions to analyze the symplecto-
morphisms as framed maps with respect to a reasonable d-frame group. However, when
we extend to the global pencil, these maps loose their framing in the holonomy. Another
way of saying this is that if we omit a point g, € C — Det(;r), we may define a 9-frame
group F which is tightly controlled on parts of d.Z and obtain, up to homotopy, a lift

Poo : ©,(C — Det(rr) — {goo}) — Symp* (2, 82).

However, to extend the map to ,(C — Det(r)), we need to consider the d-frame
group F™!,

To make this idea precise, we must define a d-frame group of a d-framed Lefschetz
fibration. For this, recall the normal crossing divisor D = Zle D; contained in )
and let 02 = Zle D; where D; = D; N Z. In general, the symplectomorphisms in
Symp(Z, 0.Z) arising from parallel transport are non-trivial when viewed via restriction
to the symplectomorphism groups of the boundary divisors Symp(D,-). The following
definition gives conditions that allow us to control this additional complexity.

Definition B.26. A boundary component D; is called rigid if there exists a trivialization
D; — dD; ~ (D; — dD;) x C over C where 7 is projection to the second factor.

We say that a face F C Q is a simplicial face if F is a face of Q and F N A is an
affinely independent set. The following proposition may be deduced from the fact that
the orbits corresponding to simplicial faces of Q occur in trivial families as substacks of
T yA — XE(A)-

Proposition B.27. Ifi : C — Xxa) pulls backw : Y4 — Xx(a) to a d-framed Lefschetz
fibration and D is a divisor associated to a simplicial facet of (Q, A), then D is rigid.

Proof. If (Q’, A’) is a simplicial facet of (Q, A) then by Theorem A.16, (A’) is zero-
dimensional. Thus the moduli space of hypersurfaces in the toric stack X is also zero-
dimensional. Let D C Xg(4) be the horizontal divisor corresponding to the pointed sub-
division (S, A”) where S is the trivial subdivision {(Q, A)}. By Proposition A.19 and
Lemma A.21, the facet Fp of the Lafforgue polytope ®(A) corresponding to the bound-
ary divisor D is a Minkowski sum P + X (A) of two polytopes, P := Conv{e, : a € A’}
and X (A). By (58), P and = (A) lie on independent affine spaces in R, implying that the
boundary is P x X (A) and D = Xp x X5 (4). From the definition of 7, one sees that 77 |p
is the projection on the second factor. Also, as the hypersurface in Y4 N D forms a trivial
family over X’s;(4) (since £ (A’) is a point), we find that 4 N D also splits as a product.
Pulling back along ¢ : C — X’x(a) gives the desired splitting over C. O

Now, let Det(w) = {q1,...,gn} and write B.(p) for the disc of radius & around p.
We take B = {y1,..., yn} to be a set of embedded paths from [0, 1] to C such that
vi(0) = g, vi(1) = g; and, fori # j, y;(t) = y;(s) if and only if t = s = 0. We also
assume that /(0) is ordered clockwise. Such a collection is known as a distinguished
basis of paths [12]. For any such basis and any y;, we define a loop y;° by following y;
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until reaching a distance of ¢, circling around the boundary of B.(g;) clockwise and
following y; back to g. By Definition B.23, there is an ¢ sufficiently small such that
¢i = Poo(y)°) is a degeneration monodromy map or stratified Morse monodromy map as
presented in the previous sections. We divide {1, ..., N} = I; U I, into those points of
hypersurface degeneration monodromy and stratified Morse values respectively.

Fori € I, we let L; C (Z,0Z2) be the vanishing cycle pulled back along y; and
write S; = {j : L; N Dj # P} for the set of divisors that intersect the vanishing cycle
of y;. Let K; be a relatively compact neighborhood of dL; and K = | J; K;. By the
discussion following Proposition B.21, ¢; can be viewed as a symplectomorphism with
support in K;.

Fori € 1y, firstrecall that the facets {0 Q;} of Q are indexed by {1, ..., k} and to each
facet d Q; there corresponds a divisor Bj of Z.Letn; : O — R be the defining function
for the stable pair degeneration at g; and set S; = {j : n; is not affine on 0 Q;}. In other

words, the degeneration of Z at g; also degenerates Dj. We write

R={l.....k} = s (118)

and observe that every boundary divisor Dj isrigid if j € R, as in Proposition B.27. Let
Ry ={(r1.....re) :7j €R, rj € Lfor j & S;}, (119)

andT,, = {t(r) :re Rﬁi }. We define T, to be the group generated by the subgroups T,
overalli € I;.

Example B.28. Consider the set A = {(0, 0), (1, 0), (—1,0), (0, 1)}, the universal hy-
persurface V4 C Xg(a) and the restriction 7|y, : Va4 — &x(a). Theorem A.16 im-
plies that X's(4) is one-dimensional so that its coarse moduli space is P!. The horizontal
boundary of )4 is the intersection of V4 with the horizontal boundary of Xg(4), which
by Lemma A.20 corresponds to the boundary of Q. Index the three horizontal boundary
divisors of )4 as follows: D for the line segment between (—1, 0) and (1, 0), D, for the
line segment between (—1, 0) and (0, 1), and D3 for the line segment between (1, 0) and
(0, 1). Note that D, and D3 are rigid by Proposition B.27. For a regular value t € X5 4),
the fiber (Z4(1), dZ24(¢)) is isomorphic to P! with four marked points, where D, and D;
are each a single point and D consists of two points.

As is shown in Section 2.2.3, Det(r| z, +)) = {q0, q1, g2} Where qo, g2 are hypersur-
face degenerations arising from the triangulations

To = {(ConvA — (0,0), A — (0,0))},
T, ={(ConvA —(1,0), A —(1,0)), (ConvA — (—1,0), A — (—1,0)}.

The point g is a stratified Morse singularity relative to D of codimension 1.

Thus I; = {0, 2} and I, = {1}. The set S} is simply {1} as the vanishing thimble only
intersects Dp. The set Sp is empty since T does not subdivide any boundary component.
However, S» = {1} since T defines a degeneration of the divisor 51 into multiple com-
ponents. Thus R = {2, 3} in this case and Rf’“ =R @ Z?fori € {0,2}. The group T,
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then consists of all (simultaneo~us) angglar rotations around the points in 51 C Z4(t) but
only full 27 rotations around D, and D3.

Definition B.29. Letw : ) — C be a 0-framed Lefschetz pencil. The d-frame group F €
Symp(NyzZ/0Z) associated to 7 is given by the collection of maps whose restrictions
to {J;cg D are contained in the restriction of Ty

We note that if every facet on the boundary of Q corresponds to a degenerate divi-
sor or one with a stratified Morse singularity over some g; € Det(xr), then F equals
Symp(NyzZ/dZ). On the other hand, if Q is simplicial, then F is a discrete subgroup
of T. Ideally, one would like to obtain more control over the d-framing for the non-rigid
boundary components and incorporate this into a formula such as the one in Proposition
B.31, but this is currently not within our sight. However, we may use the results of the
previous sections to prove the following proposition.

Proposition B.30. If 7 : YV — D is a d-framed Lefschetz pencil and qoo is chosen as
above, then there exists a symplectic connection for which the parallel transport map P
lifts to

Py : 2,4(C — Det(r) — {goo}) — Symp*(Z.,92),
where F is the o-frame group associated to .

Proof. For every i € I, by definition, the divisors supporting the degenerate point are
horizontal with respect to @. By Proposition B.22, monodromy around ¢; is Hamiltonian
isotopic to a map supported on the relatively compact neighborhood K;. By the definition
of R, the vanishing cycle L; associated to i € I, is disjoint from Dj forall j € R, so we
may choose a neighborhood K; which is also disjoint. Thus the restriction of the map to
the framing group F is well defined. Indeed, the monodromy map is the identity on any
rigid D;. O
We observe that for d-frame groups associated to d-framed Lefschetz pencils, the exact
sequence in Proposition B.8 yields the fiber sequence

Symp¥(2,92) — Symp*™ (2, 92) — RF/RE,

where Rﬁ was defined in (119). Note that the last group is homotopic to (S 1) where
1 < |lql.

Now, write y for the concatenation yy o - - - o y; which is independent of the distin-
guished basis. Let N () be the normalizer of y in the group 71(C — Det(7) — {go}). We
write Fy for the free group on N letters and obtain the commutative diagram

N(y) Fy Fy_1 1

i N N

m1((SH)") —2— 7o (SympF (2, 0 2)) —— mo(Symp™™ (2, 92)) — 1

The bottom row of this diagram arises as the long exact sequence of homotopy groups
associated to a fiber exact sequence. The top row is the short exact sequence associated to
the quotient group. The homomorphism g is uniquely constructed from the commutativity
of the remaining portion of the diagram.
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The image of y under o will be of particular importance. One may interpret this image
as the amount of rotation around the boundary needed to isotope yy o- - -0y to the identity
in Symp® (Z, 2). Under the restrictions laid out above, there is an explicit formula for
this map.

Proposition B.31. If 7 : Y — C is a d0-framed Lefschetz pencil, then, for everyi € T,
there exists a section s; . C; — D; such that

o(y) =) _aie;

ieT

where a; = fC,- sl?k (c1 (Nyb,')) and e; is the loop in Symp(Nyz Z/0Z) corresponding to

rotation around D;.

Proof. Fix g € C to be the base point and Z its fiber. By definition of rigid boundary
divisor, for every i € T, the restriction of 7w to D; is trivial over C, so that there ex-
ists an isomorphism ¢ : D; = D; x C where D; = D; N Z. Over the contractible
subset Uy = C — {goo}, We may extend this to an isomorphism of normal bundles
1}5 : Nﬁi Zx Uy —>~ N[),—rmfl (Uo)n_l (Up). Likewise, in an open neighborhood U of g,
we may trivialize ¢; : ND,-Z x Uy — Nf);mn—l(ul)”_l(Ul)' Taking a circle § in the
intersection Uy N U7 leads to a fiberwise transition function between these trivializations.
The multiplicative factor of the transition function on the normal bundle restricted to
8 is given by the transition function on Np,) restricted to C x {p} C D;. The wind-
ing number is given by the Chern number of s,.*(N p;Y) where j : C — D; is a sec-
tion. On a normal neighborhood of Di in Z, this is the restriction of 7(X) to Di where
x=1(0,...,0,4;,0,...,0). Adding these together for each rigid component yields the
claim. o

We end this section by defining a subgroup of the framed symplectomorphism group of a
hypersurface in a toric stack.

Definition B.32. Let A C Z< satisfy the hypothesis of Theorem B.24 and i : C — Xsa)
be an embedded curve. The group G¢ = Poo(i4(2,(C — C N EQ))) C Za(i(q)) will be
called the C subgroup of Symp(Z4(i(g)), 024 (g)))-

One of our stated goals is to understand generators and relations for the group G4 :=
P(Q,(Xsa) — £4)). We may reduce the complexity of this problem by examining
d-framed Lefschetz pencils and their monodromy.

Proposition B.33. Assume that Xs ) does not have generic isotropy. For any embedded
i : C — Xx(a for which the cycle i.[C] is Poincaré dual to a very ample divisor, the
group 7o(Ge) surjects onto mwo(G4).

Proof. For a very ample line bundle £ with equivariant linear system V we have an
embedding on the coarse space j : Xx4) — P(V). The Lefschetz Hyperplane Theorem
gives a surjection from the fundamental group of the curve arising from a linear section
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of j(Xx) — €a) and that of Xy — £4. But if B denotes the points with non-trivial
isotropy on X4y and B its coarse space, then 71 (Xs4) — £4 — B) is a surjection onto
m1(Xx(a) — £€4), yielding the result. ]
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