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Abstract. We describe explicit relations in the symplectomorphism groups of hypersurfaces in
toric stacks. To define the elements involved, we construct a proper stack of these hypersurfaces
whose boundary represents stable pair degenerations. Our relations arise through the study of the
one-dimensional strata of this stack. The results are then examined from the perspective of ho-
mological mirror symmetry where we view sequences of relations as maximal degenerations of
Landau–Ginzburg models. We then study the B-model mirror to these degenerations, which gives
a new mirror symmetry approach to the minimal model program.
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1. Introduction

The mapping class groups of punctured Riemann surfaces have been studied from a vari-
ety of perspectives for many years. Following the ideas of Hatcher, Thurston and others,
Wajnryb gave a finite presentation for these groups [49]. Generalizations of these results
to diffeomorphism groups in higher dimensions are much less tractable; moreover, if the
manifold is equipped with a symplectic structure, there exist subtle distinctions between
the group of diffeomorphisms and the group of symplectomorphisms [46]. However, by
considering symplectic manifolds in the context of toric or tropical geometry, structures
which produce meaningful relations in the symplectomorphism group arise. This paper
aims to introduce a systematic approach for studying such generators and relations in
appropriate symplectomorphism groups, valid in all dimensions.

Let Y denote a suitably generic hypersurface in a toric variety (or toric orbifold) X .
Note that Y has a boundary divisor ∂Y obtained by the intersection with the toric bound-
ary, and Y may be viewed as a symplectic orbifold (Y, ω) if X is itself equipped with
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a symplectic form. We then introduce generators and relations for a subgroup G of the
symplectic mapping class group π0(Symp(Y, ∂Y)). Our method is to consider a stack V
whose points correspond to (orbifold) smooth hypersurfaces Y moving in a fixed linear
system on X and which obey appropriate transversality conditions with respect to the
toric boundary of X . We find a symplectic connection on the universal hypersurface over
V and employ symplectic parallel transport:

P : �∗(V)→ Symp(Y, ∂Y), (1)

where �∗ is the based loop space.
Taking the group G = π0(im(P)), we find generators and relations by studying them

in π1(V). The moduli space V is constructed following the techniques of Alexeev [3], and
is studied via the combinatorial methods of Gelfand, Kapranov and Zelevinsky [24].

Let Q be an integral polytope and A ⊂ Q a subset of lattice points such that the
convex hull of A is Q. This data defines a linear system on the toric variety XQ. We
construct a toric stack X6(A) which has the affine toric DM substack VA containing V .
In fact, V arises as the complement of a particular discriminant locus in VA ⊂ X6(A).
Unfortunately, there are precious few cases where the fundamental groups of comple-
ments of discriminant loci are completely understood (see e.g. [18, 39]). We bypass this
difficulty by considering only the one-dimensional strata of the toric boundary of X6(A).
Combinatorially, these strata correspond to the circuits of A [24].

In the case of curves, the generators of the mapping class group can be taken to
be Dehn twists and braids. One expects a more complicated set of generators to occur
in higher dimensions. Indeed, the generators we obtain fall into two different classes:
hypersurface degeneration monodromy and stratified Morse function monodromy. The
former refers to monodromy around the points in ∂X6(A). Combinatorially, this means
monodromy obtained from degenerations of hypersurfaces which correspond to subdi-
visions of Q. This monodromy was studied in the case of a maximal triangulation by
Abouzaid [1] in terms of tropical geometry. The geometric description of these symplec-
tomorphisms is obtained by first breaking the hypersurface up into its degenerate compo-
nents and then convolving along the degenerating vanishing cycle to obtain a global map.
For curves, this amounts to a combination of a Dehn twist and a finite order map. The
other generators corresponding to stratified Morse function monodromy arise from mon-
odromy around the discriminant locus in X6(A). The local model for monodromy here
is a generalization of the usual monodromy around a Morse singularity to that around a
stratified Morse singularity as defined in Goresky and Macpherson’s work [27]. Its de-
scription is that of a generalized braid about a Lagrangian submanifold which is a join
of a sphere and simplex. This gives twists about Lagrangian discs and balls, as well as
other interesting joins, and thus these twists are generalizations of Seidel’s symplectic
Dehn twists about Lagrangian spheres [45]. We emphasize that these generalized spheri-
cal twists come from vanishing loci which are not topological spheres, but which actually
appear to be quite natural from the contributing toric geometry.

We summarize the above discussion with the following abridged version of Theo-
rem 2.14 in Section 2.1.



Symplectic relations and degenerations of LG models 2169

Theorem 1.1. Let A be a circuit affinely spanning Zd , XA the associated toric stack,
and Y ⊂ XA a general hypersurface in the , linear system given by A. Then there are
symplectomorphisms T0, T1, T∞ ∈ Symp(Y, ∂Y) with T0 and T∞ hypersurface degen-
eration monodromy maps and T1 the monodromy about a stratified Morse singularity. In
the mapping class group π0(Symp(Y, ∂Y)), these satisfy the relation

T0T1T∞ = τ(t) (2)

where τ(t) is a rotation about the boundary ∂Y .

For brevity, the above theorem was only stated for the case of a circuit itself; this is
a very small class of toric varieties. In order to put the generators and relations into a
symplectomorphism group of any smooth hypersurface in a toric variety, we address the
process of regeneration of circuits. This allows us to import relations obtained from the
one-dimensional boundary strata of X6(A) into the interior, and thus to study the topology
of general hypersurfaces in toric varieties. In this way, we obtain a host of geometrically
meaningful relations between generators in the subgroup G. More specifically, taking a
general map φ : P1

→ X6(A) and pulling back the universal hypersurface gives a framed
Lefschetz pencil over P1. We describe a presentation of the monodromy group associated
to such pencils by performing an isotopy near the boundary of X6(A) and relating the
bubbled components to circuits. This gives a combinatorial description not only of the
groups involved, but their action on the hypersurface.

A supplemental goal of this work is to study these ideas in the context of homological
mirror symmetry, and more specifically, to give applications to the study of Landau–
Ginzburg (short: LG) models and their A-model Fukaya–Seidel categories. The mirrors
of Fano toric varieties are open subsets of certain pencils of hypersurfaces in toric varieties
[26, 31]. Our perspective takes a fiberwise compactification of such a LG model as a curve
i : C → X6(A). More precisely, the mirrors of Fano toric varieties which arise from the
Hori–Vafa construction are obtained as compactifications of one-parameter torus orbits
in X6(A). Following results of [35], we observe that the coarse moduli space of these
LG models has a natural compactification as a toric variety whose moment polytope is
the monotone path polytope of 6(A) [6, 7]. The vertices of the monotone path polytope
of 6(A) correspond to particular sequences of circuits on A or equivalently to sequences
of edges on 6(A). One main application of our work is to use any such sequence to
describe an associated semiorthogonal decomposition of the Fukaya–Seidel category of
the LG model.

For the mirror description, i.e. the corresponding structure on a mirror toric variety,
this semiorthogonal decomposition complements recent developments in the study of de-
rived categories of toric varieties. Work of Bondal–Orlov [9] and Kawamata [36] demon-
strated relations between birational transformations coming from the minimal model pro-
gram and semiorthogonal decompositions. One goal of this paper is thus to supply a
mirrorA-model interpretation of Kawamata’s work. In the toric case, the equivariant bira-
tional geometry is well-understood combinatorially, going back to the work of Reid [44],
and is also dictated by the combinatorics of secondary polytopes. We show concretely
that degenerations of LG model mirrors to a toric variety X6 correspond bijectively to
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certain runs of the minimal model program for X6 . The particular runs are those given
by running the minimal model program with scaling. As a consequence we obtain a con-
cise description of the mirrors of toric flips and toric divisorial contractions in terms of
circuits. We conjecture that there is an equivalence of categories which restricts to this
identification of semiorthogonal components, giving a clear picture of the geometry un-
derlying homological mirror symmetry for toric DM stacks. We give evidence for this
conjecture by computing ranks in K-theory, extending results of Borisov–Horja [11].

We summarize the relationship between the minimal model sequences of X6 and
the mirror A-model LG degenerations on Xmir

6 in Theorem 3.18, which in simple cases
reduces to the following statement.

Theorem 1.2. The set of regular minimal model sequences for a Fano toric stack X6 are
in bijective correspondence with the set of maximal degenerations of the LG models on the
mirror stack Xmir

6 . Both are in bijective correspondence with the vertices of a monotone
path polytope 6ρ(6(A)).

2. The circuit relation

This section will give one main result of this paper which is a detailed description of
a class of relations that occur in the symplectic mapping class groups of hypersurfaces
in a toric stack. These relations involve a combination of stable pair degeneration mon-
odromy and twisting about a stratified Morse singularity, both of whose local models are
investigated in Appendix B. After stating the relation, we work through three examples
in dimension 1. Finally, we conclude with a brief investigation of regenerations which
incorporate various relations into a finite presentation.

2.1. Circuit stacks

This section will be concerned with establishing a relation between certain elements of the
mapping class group of a hypersurface Z in the toric stack XQ whereQ is the convex hull
of what is known as an affine circuit A. The elements in this relation arise as monodromy
transformations around singular values of a function π . This function appears naturally
as the universal hypersurface over a moduli stack of hypersurfaces. In particular, in Ap-
pendix A.3 we define a compactified moduli space X6(A) of hypersurfaces in XQ and a
total space X2(A) with a universal hypersurface YA. The stacks X6(A) and X2(A) are both
toric and are referred to as the secondary and Lafforgue stacks respectively. There is an
equivariant toric morphism π : X2(A) → X6(A) which restricts to the universal hyper-
surface π : YA → X6(A). The fibers of this map represent hypersurfaces associated to
sections of a natural line bundle OA(1) over XQ, and their degenerations. As we will see,
there are three critical points around which symplectic parallel transport yields interesting
symplectomorphisms of the fiber. We will refer to Appendices A and B for the important
details concerning the construction and properties of toric moduli stacks and symplectic
mapping class groups respectively.
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σA = (1, 3)

c = (3,−1,−1,−1)

σA = (2, 3) σA = (2, 2; 1)

c = (−1,−1, 1, 1, 0)c = (3, 3,−2,−2,−2)

Fig. 1. Examples of extended circuits.

We begin by recalling the definition and basic properties of a circuit from [24, Chap-
ter 7.1.B] and detailing the Lafforgue and secondary stack of a circuit. The map π :
X2(A) → X6(A) will also be reexpressed in concrete terms and its monodromy will be
studied. In what follows, we will assume that 3 ∼= Zd is a rank d affine lattice.

Definition 2.1. A circuit A ⊂ 3 is an affinely dependent set such that every proper
subset is affinely independent.

We will say that a subset A ⊂ 3 has rank r if rk(AffZ(A)) = r where AffZ(A) is the
integral affine span of A. A circuit is non-degenerate if its rank equals that of 3. In what
follows, we will consider both non-degenerate and degenerate circuits.

Definition 2.2. An extended circuit is a subset A ⊂ 3 such that |A| = d + 2 and
rk(AffZ(A)) = d .

Alternatively, an extended circuit is an affinely spanning subset A = {a0, . . . , ad+1}

whose lattice of affine relations has rank 1, generated by c = (c0, . . . , cd+1) ∈ Zd+2

where
d+1∑
i=0

ciai = 0,
d+1∑
i=0

ci = 0. (3)

Given the relation (3), we may write A as the disjoint union A = A− ∪ A0 ∪ A+ where
ai ∈ A± if and only if ±ci > 0, and ai ∈ A0 if and only if ci = 0. The signature of
an extended circuit is defined to be σ(A) = (|A+|, |A−|; |A0|). When A is a circuit, it is
clear that |A0| = 0 and we then write σ(A) = (|A+|, |A−|). The signature does depend
on the sign of c up to transposing |A+| and |A−|.

We will call a marked polytope (Q,A) a circuit, or an extended circuit, if A is one.
Our convention is not to take c as a primitive element, but to force the greatest common
divisor of the ci to be |KA|, where KA is defined in (54). This then implies that the
volume of Q is

vA := Vol(Q) = ±
∑
ai∈A±

ci,

where we normalize the volume of the standard simplex to 1.
We note that an extended circuit is not generally a circuit unless A0 = ∅. This moti-

vates the following definition.
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Definition 2.3. The core of an extended circuit A is the circuit

Core(A) := A+ ∪ A−.

For any extended circuit A, there are precisely two regular triangulations T± of (Q,A) as
in Definition A.10. These are given by

T± = {Conv(A− {ai})}ai∈A± . (4)

The union of the vertices of the simplices in T± equals A unless |A+| = 1 or |A−| = 1,
in which case the respective triangulation is marked by A− A±.

While we will deal with the geometry of extended circuits (Q,A) in isolation for
most of this and the next section, the primary reason for us to investigate them is how
they relate to a larger marked polytope (Q,A) containing (Q,A). The key fact in this
regard is that every edge of the secondary polytope 6(A) from (56) corresponds to a
circuit modification. We recall this theorem and the necessary definitions from [24].

Definition 2.4. Let T be a triangulation of (Q,A) and A ⊂ A a circuit with triangula-
tions T±. We say that T is positively (resp. negatively) supported on A if:

(i) T+ (resp. T− ) consists of faces of simplices in T.
(ii) For every J ⊂ A, if σ ∈ T+ (resp. T− ) with J ∩σ = ∅ and J ∪σ a maximal simplex

of T then J ∪ σ ′ ∈ T for every σ ′ ∈ T+ (resp. T− ).

For any J satisfying (ii), we say that J ∪ A is a separating extended circuit of T.

If T is positively supported on A, then one may define a new triangulation mA(T) := T′
which is negatively supported on A by changing the triangulations of every separating
extended circuit. Such a change is referred to as a circuit modification along A.

Theorem 2.5 ([24, Theorem 7.2.10]). Let T and T′ be two regular triangulations
of (Q,A). The vertices ϕT, ϕT′ ∈ 6(A) are joined by an edge if and only if there is
a circuit A ⊂ A such that T is supported on A and T′ = mA(T).

Example 2.6. Let

A = {(1, 0), (0, 1), (1, 1), (−1,−1), (0, 0)}

and Q be its convex hull. As an extended circuit in Z2 must have four elements, we
see that A contains five extended circuits, namely the 4-element subsets of A. How-
ever, A only contains four circuits, as A := {(1, 1), (−1,−1), (0, 0)} is the core of
both A1 := {(1, 0), (1, 1), (−1,−1), (0, 0)} and A2 := {(0, 1), (1, 1), (−1,−1), (0, 0)}.
Choosing c = (−1,−1, 2) for the affine relation of A, the two triangulations of the in-
terval A are given by T− which breaks A into two intervals and T+ which is all of A, but
with the marked set {(−1,−1), (1, 1)}. Consider the regular triangulations T and T′ illus-
trated in Figure 2. The triangulation T is negatively supported on A, while T′ is positively
supported on A. Clearly J1 := {(1, 0)} and J2 := {(0, 1)} satisfy Definition 2.4(ii) so that
both extended circuits A1 and A2 are separating. To see the secondary polytope of A, the
remaining circuits and their modifications, we refer the reader to Figure 10.
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T T′

Fig. 2. Circuit modification along A.

In equation (44), we define the principal A-determinant EA on the linear system of sec-
tions LA ⊂ 0(XQ,OA(1)). This polynomial vanishes on elements of LA whose zero
locus intersects an orbit orbF non-transversely for some face F of Q. In Definition A.28,
we extend EA to a section EsA of a line bundle over the secondary stack X6(A) with zero
loci EA. Now, the edges of the secondary polytope correspond to one-dimensional orbits
of X6(A). Thus Theorem 2.5 indicates that if we aim to understand the symplectic mon-
odromy of a hypersurface as we loop around EA = {E

s
A = 0}, it is a reasonable first

step to understand the monodromy around circuits, extended circuits and, more generally,
circuit modifications.

We now take a moment to study basic properties of the toric stack XQ associated to
an extended circuit by investigating the normal fan to Q.

Definition 2.7. Suppose 0 = 01⊕02 where the rank of 0i is di and (Qi, Ai) are marked
polytopes in 0i ⊗ R. If (Q1, A1) is a (d1 − 1)-dimensional simplex which does not con-
tain 0, we say that(

Conv((Q1 × {0}) ∪ ({0} ×Q2)), (A1 × {0}) ∪ ({0} × A2)
)

is a d1-simplicial extension of (Q2, A2).

Combinatorially, a d1-simplicial extension of (Q2, A2) is the same as the join ofQ2 with
a (d1−1)-simplex. Note that an extended circuitA of signature (p, q; r) is an r-simplicial
extension of its core.

Example 2.8. Take A1 = {−1, 0, 1} and A2 = {(1, 0), (0, 1)} with Q1 and Q2 their re-
spective convex hulls. Then the tetrahedron illustrated in Figure 3 is a simplicial extension
of the interval (Q1, A1).

(Q1, A1)

simplicial
extension

(Q2, A2)

Fig. 3. A 2-simplicial extension of Q2.
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If both (Q1, A1) and (Q2, A2) are d1- and d2-dimensional simplices in 0R which span
complementary affine subspaces, we say (Q1 + Q2, A1 + A2) is a (d1, d2)-prism. We
also recall some terminology from convex polytopes. Given a polytope P ⊂ 0R which
contains 0 in its interior, its polar dual is the polytope

P ◦ := {u ∈ 0∨R : 〈u, v〉 ≥ −1 for all v ∈ P }.

Proposition 2.9. If (Q,A) is an extended circuit with signature (p, q; r), then there ex-
ists uA ∈ 0R such that the polar dual polytope (Q − uA)◦ to the translation Q − uA of
Q is an r-simplicial extension of a (p − 1, q − 1)-prism.

Proof. We begin with the case of a non-degenerate circuit A. We claim that, in this case,
any facet of Q arises as the convex hull Fij = Conv(A − {ai, aj }) where ai ∈ A+ and
aj ∈ A−. To see this, first observe that every such Fij is a facet, which is clear from the
description of the triangulations T± in (4). Conversely, observe that the element

uA :=
1
vA

∑
ai∈A+

ciai = −
1
vA

∑
aj∈A−

cjaj

lies in the convex hull of both A+ and A− and the interior of Q. Thus no facet F can
containA+ orA−, which implies that there exist i and j with Fij ⊂ F . As every boundary
facet of Q is a simplex with vertices in A, this implies F = Fij for some ai ∈ A+ and
Aj ∈ A−.

Let Ã± = {a− uA : a ∈ A±} and3± = LinR(Ã±). It is obvious that the convex hull
(Q̃+, Ã+) is a (p − 1)-simplex and (Q̃−, Ã−) is a (q − 1)-simplex. We write B± = {v :
v(w) ≥ −1 for w ∈ Ã±} ⊂ 3∨±⊗R for their polar duals. Since A affinely spans 3R, we
see that Ã± affinely span 3± and that 3+ + 3− = 3R. If u ∈ 3+ ∩ 3−, we find that
there exist coefficients ri ∈ R for ai ∈ A such that

∑
ai∈A±

ri = 1 and∑
ai∈A+

ri(ai − uA) = u =
∑
aj∈A−

rj (aj − uA).

This implies ∑
ai∈A+

riai −
∑
aj∈A−

rjaj = 0

where the coefficients can be seen to add to zero. Since the affine relations of A are
generated by those in (3), this implies that there exists λ ∈ R such that ri = ±λci for
every ai ∈ A±. Furthermore, the fact that

∑
ai∈A±

ri = 1 implies λ = 1/vA. But then

u =
∑
ai∈A+

ci

vA
ai −

( ∑
ai∈A+

ri

)
uA = 0.

Thus 3R = 3+ ⊕3−.
For ai ∈ A+ and aj ∈ A−, let F̃+i and F̃−j be the convex hulls of Ã+−{ai − uA} and

Ã− − {aj − uA} respectively. These form the facets of Q̃± and, from the description of
the facets of Q as Fij , we see that

Fij − uA = {rv + sw : v ∈ F̃
+

i , w ∈ F̃
−

j , r + s = 1}.
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Now, if bi ∈ B+ and bj ∈ B− are vertices dual to F̃+i and F̃+j respectively, then one easily
sees that bi + bj is constantly equal to −1 on Fij − uA. Thus the vertices of B− ⊕ B+
are contained in the set of those of the polar polytope of Q − uA, but as these define all
facets of Q− uA, their convex hull must equal (Q− uA)◦.

Now, if A has signature (p, q; r) with r 6= 0, we take Ã0 = {a − uA : a ∈ A0} and
30 = LinR{a− uA : a ∈ A0}. Since Ã0 is not full dimensional, there is no dual polytope
in 3∨0 , but we still have 3⊗ R = 3+ ⊕3− ⊕30 and Ã0 is a basis for 30. If B0 ⊂ 3

∨

0
denotes the negatives of the linear duals to Ã0, then the polar dual for A is the simplicial
extension (B+ ⊕ B−)+ B0. ut

For later reference, we utilize the previous proposition to index the boundary facets ofQ.

Corollary 2.10. If (Q,A) is an extended circuit of signature (p, q; r), then it has pq+ r
facets Q̄ = {bij : αi ∈ A−, αj ∈ A+} ∪ {bk : αk ∈ A0}.

Proof. Suppose A′ ⊂ 01 ⊕ 02 and (Q′, A′) is a d1-simplicial extension of (Q2, A2) by
(Q1, A1). The vertices of Q′ consist of the d1 points in A1 along with the vertices of Q2.
Thus the number of vertices ofQ′ equals d1 plus the number of vertices ofQ2. Of course,
as a (p, q)-prism is the Minkowski sum of a (p − 1)-simplex and a (q − 1)-simplex
in complementary subspaces, it has precisely pq vertices. As the vertices of the polar
polytope Q◦ index the facets of Q, we have the result. ut

One important consequence of Proposition 2.9 is that XQ fails to be smooth as a stack
unless the signature of A has p = 1, q = 1 or is (2, 2; r). Indeed, for a circuit (Q,A), the
maximal normal cones to Q are cones over products of simplices, and are therefore not
simplicial. Nevertheless, as XQ is toric, the normal fan of Q has a simplicial refinement.
This follows from the elementary fact that any rational convex polyhedral cone supports a
simplicial fan. Indeed, intersecting the cone with a hyperplane to obtain a codimension 1
polytope, one can triangulate this polytope and take the fan which consists of cones over
the simplices in this triangulation. This implies that (XQ, ∂XQ) is a standard symplectic
stack as discussed in Definition B.9.

We now examine the secondary and Lafforgue stacks associated to A as defined in
Appendix A.4. The key ingredient leading to the definition of these stacks is the funda-
mental sequence (54). For the circuit A ⊂ 3 and A = {(a, 1) : a ∈ A}, this is the exact
sequence

0→ Z αA
−−→ ZA βA

−−→ 3⊕ Z→ KA→ 0. (5)
Here we have βA(e(a,1)) = (a, 1) for a ∈ A and

αA(1) =
1
|KA|

∑
ai∈A

cie(ai ,1). (6)

In concert with this sequence, we must examine the polyhedra 6(A), 2(A) and
2p(A), all of which lie in RA. By applying (55), the triangulations T± correspond to
the vertices ϕ± ∈ 6(A) given by

ϕ± = vA

d+1∑
i=0

ei ∓
∑
ai∈A±

ciei . (7)
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Hence, by (56), 6(A) = Conv({ϕ−, ϕ+}). Thus the coarse space of the corresponding
toric variety is isomorphic to P1. To obtain the secondary stack X6(A), we first study
X2(A) and X2p(A). From Definition A.24 the stacks X2(A) and X2p(A) arise as modi-
fications of the toric stacks defined from the polyhedra 2(A) and 2p(A). In particular,
X2p(A) is given by the stacky fan

6̃2p(A) =
(
Z2p(A), (ZA)∨, β̃2p(A), 62p(A)

)
(8)

where β̃2p(A) is defined in (63).
By (65) and Definition A.24, the Lafforgue stack X2(A) comes equipped with a map to

P|A|−1 and the universal hyperplane section YA ⊂ X2(A) is the pullback of s =
∑|A|
i=0 Zi .

In the next proposition, we will see that this morphism can be thought of as the coarsen-
ing map from a weighted projective space along with a blowdown along codimension 2
planes. To state the proposition, we first introduce some notation. Let

`± = lcm{ci : ai ∈ A±}, (9)
` = lcm{`±/ci : ai ∈ A±}, (10)

and define the constants

c̃i :=

{
|ci |`/`± if ai ∈ A±,
` if ai ∈ A0.

(11)

To simplify our exposition, we will assume KA = 0 for the remainder of the section. For
convenience, we also index the elements of A so that A = {a0, . . . , ad+1}.

Proposition 2.11. Given an extended circuit A ⊂ 3 of signature (p, q; r) for which
KA = 0, X2(A) is a stacky blowup of P(c̃0, . . . , c̃d+1) along pq codimension 2 projective
subspaces. The universal line bundle OA(1) and section are the pullbacks of O(`) and
sA =

∑
ai∈A±

Z
`±/|ci |

i +
∑
aj∈A0

Zj .

Proof. We recall that 2p(A) ⊂ RA is a polyhedron of dimension |A|. By Lemma A.20,
the supporting primitives defining the facets of 2p(A) can be partitioned as

2p(A) = {%A} ∪2p(A)
v
∪2p(A)

h
.

Here %A =
∑
e∨a , the elements of 2p(A)

v
correspond to vertical hyperplanes, and those

of2p(A)
h

correspond to horizontal hyperplanes. The former are indexed by pointed sub-
divisions (S,Ap) for which S is a coarse subdivision of (Q,A). Since A is an extended
circuit, these are given by {(T±, A − {a}) : a ∈ A±}. By Lemma A.21(ii) the primitive
η(T±,A−{a}) in2p(A)

v
corresponding to (T±, A−{a})must vanish on A±−{a}. It is then

simple to see that η(T±,A−{a}) = e
∨
a and {e∨a }a∈A+∪A− = 2p(A)

v
.

While this gives the vertical primitives, equation (63) for β̃2p(A) takes the basis ele-
ment corresponding to η(T±,A−{ai }) and sends it to η̄(T±,A−{ai }). The latter element can be
expressed as mie∨i and must be a primitive 3-defining function for the triangulation T±
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as defined in (62) (here we denote eai ∈ ZA by ei). To obtain the coefficientmi , first note
that since KA = 0, A spans 3. Thus if aj ∈ A+ ∪ A− is not equal to ai and 3i,j =
LinZ{(a, 1) : a ∈ A − {ai, aj }}, then (ai, 1) and (aj , 1) generate (3 ⊕ Z)/3i,j ∼= Z.
Using the isomorphism with Z, denote the equivalence classes [(ai, 1)] and [(aj , 1)] by
ti and tj respectively and note that the 3-defining function η̄(T±,A−{ai }) = mie

∨

i for T±
must satisfy ti |mi . Since they generate Z, we have gcd(ti, tj ) = 1. Also, since |ci | and
|cj | are the normalized volumes of Conv(A − {ai}) and Conv(A − {aj }) respectively, it
follows that the volume of Conv(A−{ai, aj }) in3i,j is di,j := gcd(ci, cj ). Consequently,
ti = ±ci/di,j = ± lcm(ci, cj )/ci and, as mie∨i is a primitive 3-defining function for T±,
we find that mi = `±/|ci |.

By Proposition 2.9, the primitive hyperplane supporting functions in Q̄ correspond
to the facets Fij := Conv(A − {ai, aj }) where ai ∈ A+ and aj ∈ A− along with the
facets Fk := Conv(A − {ak}) where ak ∈ A0. Writing bij and bk for the corresponding
hyperplane primitives and appealing to Proposition A.21(i) gives

2p(A)
h
= {c−1

bij
β∨A(bij , nbij ) : ai ∈ A−, aj ∈ A+} ∪ {c

−1
bk
β∨A(bk, nbk ) : ak ∈ A0}.

To compute β̃2p(A), it suffices to find cbij and cbk . We first evaluate cbk where ak ∈ A0.
Let3k = LinZ(A−{(ak, 1)}) and note that, sinceKA = 0, [(ak, 1)] generates3⊕Z/3k .
This implies that, while bk|Fk = −nk by definition, bk(ak) = 1−nk so that the evaluation
pairing 〈(bk, nbk ), (ak, 1)〉 equals 1 and cbk = 1. Moreover, 〈(bk, nbk ), (a, 1)〉 = 0 for all
a ∈ A not equal to ak so that β∨A(bk, nbk ) = e

∨

k ∈ (Z
A)∨.

Before proceeding to the constants cbij , we observe that the morphism G̃ : X2p(A)→
OP|A|−1(−1) in (65) factors through a morphism to the equivariant line bundle O(−1)
over P(c̃0, . . . , c̃d+1). Indeed, coarsening the Lafforgue fan by considering only

B = {%A} ∪ {(`±/|ci |)e
∨

i : ai ∈ A±} ∪ {e
∨

k : ak ∈ A0} ⊂ 2p(A) (12)

gives the stacky fan (
ZB , (ZA)∨, β̃2p(A)|ZB , 6O(−1)

)
,

where6O(−1) is the same fan in RB as that for OP|A|−1(−1). Note that the stack associated
to this fan is OP(c̃0,...,c̃d+1)(−1). Quotienting by %A leads to the factorizationG : X2(A)→
P|A|−1 via

X2(A)
f1
−→ P(c̃0, . . . , c̃d+1)

f2
−→ P|A|−1. (13)

If b = (`±/|ci |)e∨i , the map f2 takes Zb to Z|ci |/`±b , implying that

f ∗2 (OP|A|−1(1)) = OP(c̃0,...,c̃d+1)(`). (14)

We now interpret the map f1 as a weighted blowdown by considering the elements
c−1
bij
β∨A(bij , nbij ) ∈ 2p(A)

h
where bij ∈ Q̄ is the supporting primitive for Fij . By defi-

nition, for any a ∈ A − {ai, aj } with ai ∈ A+ and aj ∈ A− we have 〈bij , a〉 = −nbij ,
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or 〈(bij , nbij ), (a, 1)〉 = 0. Taking si = 〈(bij , nbij ), (ai, 1)〉 and sj = 〈(bij , nbij ), (aj , 1)〉
we then have β∨A(bij , nbij ) = sie

∨

i + sj e
∨

j . Letting rij be the volume of Fij , we deduce
that ci = Vol(A− {ai}) = rij sj and −cj = Vol(A− {aj }) = rij si , so that

bij := β
∨(bij , nbk ) =

1
rij
(cie
∨
aj
− cj e

∨
ai
).

Thus the stacky fan for X2(A) is obtained by refining the fan for P(c̃0, . . . , c̃d+1) by
subdividing it along 1-cones contained in the 2-cones LinR≥0(e

∨

i , e
∨

j ) for every ai ∈ A+
and aj ∈ A−. This implies that the divisor corresponding to bij contracts to

Vij := {Zi = 0 = Zj } (15)

under f1. From the factorization of G through f1 and f2 and equation (14), we see that
OA(1) is O(`) and sA =

∑
ai∈A±

Z
`±/|ci |

i +
∑
aj∈A0

Zj . ut

Recall that the hypersurface YA ⊂ X2(A) is defined as the zero locus of sA ∈
H 0(X2(A),OA(1)), which implies that YA is the proper transform of the zero locus

Z0 + · · · + Zd+1 = 0

on Pd+1 along G : X2(A) → Pd+1. Using the previous proposition, we easily obtain
the secondary stack associated to an extended circuit. For this, let r = gcd(`+, `−) and
˜̀
± = `±/r .

Proposition 2.12. Assume A ⊂ 3 is an extended circuit and KA = 0. Then

X6(A) ∼=
P( ˜̀+, ˜̀−)
Z/rZ

.

Proof. By Lemma A.30 and the assumption that KA = 0, we have 4A = 3A∨ = L
∨

A
∼= Z. From Lemma A.31, a stacky fan for X6(A) is given by

6̃6(A) = (Z6(A), 4A, β̃6(A), 6B). (16)

Since 4A = L∨A, diagram (72) is a colimit diagram and β̃6(A) can be identified with
β̃6v(A). In the case of a circuit, this reduces to

Z2p(A)

p1
��

β̃
2p(A)

// (ZA)∨

α∨A

��

Z2
β̃
6(A)

// Z

(17)

where α∨A(e
∨
ai
) = ci and, by (71),

p1(eb) =


e1 if b = η(T+,A−{ai }) for ai ∈ A+,
e2 if b = η(T−,A−{ai }) for ai ∈ A−,
0 otherwise.
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By the second paragraph of the proof of Proposition 2.11, we have

β̃2p(A)(η(T±,A−{ai })) = `±/|ci |.

Thus, using the commutativity of diagram (17), we conclude β̃6(A) = `+e
∨

1 − `−e
∨

2
and 6̃6(A) = (Z2,Z, `+e∨1 − `−e

∨

2 , 6B). This is the stacky fan for the toric stack
P( ˜̀+, ˜̀−)/(Z/rZ). ut

We now give an explicit description of the map π : X2(A) → X6(A) from Definition
A.28. Write Dh

⊂ X2(A) for the union of the horizontal divisors in X2(A), X ◦2(A) =
X2(A) − Dh and Y◦A = YA − (YA ∩ Dh). From Lemma A.20 the components of Dh

are indexed by the facets of Q, which are in bijection with the set (A− × A+) ∪ A0. By
Proposition 2.11, restricting f1 in (13) gives an isomorphism

X ◦2(A) = P(c̃0, . . . , c̃d+1)−
[( ⋃
ai∈A−, aj∈A+

Vij

)
∪

( ⋃
ak∈A0

{Zk = 0}
)]
. (18)

where Vij is defined in (15). Now, the map p1 in diagram (17) yields the expres-
sion for π : X2(A) → X6(A) from the homogeneous coordinates of X2(A) to those
of X6(A). Including only those coordinates associated to the vertical divisors then gives
π◦ : X ◦2(A)→ X6(A) as a weighted pencil on P(c̃0, . . . , c̃d+1) given by[ ∏

ai∈A+

Zi :
∏
ai∈A−

Zi

]
.

The base locus of the pencil is the union
⋃
Vij of cycles that are blown up in Proposition

2.11, which give some of the components of Dh (and all of them when A is a circuit).
Passing to coarse spaces, Pd+1 for X ◦2(A) and P1 for X6(A), leads to the diagram

X ◦2(A)
f2 //

π

��

Pd+1
−
⋃
Vij

π̄

��

X6(A) // P1

(19)

Here the map π̄ has the especially simple form as the pencil

[s0 : s∞] =
[ ∏
aj∈A+

Z
cj
j :

∏
ai∈A−

Z
−ci
i

]
. (20)

As neither X2(A) nor X6(A) have generic stabilizers, this pencil describes the map π up
to isomorphism on the maximal torus. Moreover, from the description of the components
of Dh indexed by A0 in Proposition 2.11, π̄ is isomorphic to π when we include these
divisors as well. This pencil also describes π restricted to the universal hypersurface Y◦A
away from its degenerations at 0 and ∞. We note that these fibers of the pencil give
toric degenerations of XQ corresponding to T+ and T−. These are both singular as stacks
unless p = 1 or q = 1.
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Our main interest is not in the morphism π , but rather its restriction to YA = {sA = 0}
⊂ X2(A). Abusing notation, we will also denote this restriction as π . We note that, off
∂YA = YA ∩ ∂X2(A), the map π is described by the pencil in (20). We let cA ∈ X6(A)
be the point whose coarse point is represented by [

∏
j∈A+

c
cj
j :

∏
i∈A−

c
−ci
i ] ∈ P1. Using

notation introduced in Definitions A.11 and B.23, we establish the following proposition.

Proposition 2.13. Let A be an extended circuit of signature (p, q; r) with KA = 0. The
morphism π : (YA, ∂YA)→ X6(A) is a ∂-framed pencil. The critical values of π consist
of a unique stratified Morse singularity over cA, and

(1) if p > 1 the fiber over 0 is a stable pair degeneration,
(2) if q > 1 the fiber over∞ is a stable pair degeneration.

Proof. We first address the statements concerning the critical values of π . If p > 1 (resp.
q > 1), then T+ (resp. T−) is a triangulation of (Q,A) with more than one simplex. Then
[0 : 1] ∈ ∂X6(A) (resp. [1 : 0]) does not represent a full section, implying it is contained
in the compactifying divisor of the moduli of full sections VA ⊂ X6(A). By Theorem
A.39, it then represents a stable pair degeneration.

Now, let Y ′A = Y◦A − (F0 ∪ F∞) be the universal hypersurface away from the fibers
over 0 and∞. The function π : Y ′A → C∗ is represented by the pencil in (20) restricted
to Y ′A := {

∑d+1
i=0 Zi = 0}. The critical points of this function can then be calculated to

be C∗-orbits in the zero locus of λ := d(
∑
Zi) ∧ d(s0/s∞). Writing f = s0/s∞ and

computing, we obtain

λ = d
(∑

Zi

)
∧ d(s0/s∞) =

(d+1∑
i=0

Zi

)
∧ f

(d+1∑
i=0

ciZ
−1
i dZi

)
= f

∑
i<j

(ciZ
−1
i − cjZ

−1
j )dZi ∧ dZj .

Note that the functions Z−1
i are well defined on Y ′A for ai ∈ A±, while when ai ∈ A0,

the coefficient ci = 0 renders a zero term for ciZ−1
i . This 2-form is zero if and only

if ciZ−1
i = cjZ

−1
j for all 0 ≤ i, j ≤ d + 1. If r 6= 0, then there are no zeros of λ.

Indeed, if A0 = {ad+1−r , . . . , ad+1}, then c0Z
−1
0 dZ0 ∧ dZd+1 will always be a non-

zero summand of λ. One checks that for any I ( {d + 1 − r, . . . , d + 1}, taking CI =⋂
i∈I {Zi = 0} and restricting λ|CI , we still obtain a non-zero 2-form. However, when

I = {d + 1− r, . . . , d + 1},

λ|CI = f
∑

0≤i<j≤d+1−r

(ciZ
−1
i − cjZ

−1
j ).

This is zero if and only if ciZj = cjZi for all 0 ≤ i < j ≤ d + 1 − r , which holds
precisely when [Z0 : · · · : Zd+1] = [c0 : · · · : cd+1]. Evaluating f at this point gives cA.

To see that this is a stratified Morse singularity, we restrict the Hessian of f at
[c0 : · · · : cd+1] to {

∑
Zi = 0} ∩ Cd+1−r,...,d+1. One computes

Hess(c0,...,cd+1)(f ) = f (c0, . . . , cd+1)(hi,j )i,j
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where hi,j = cicj if i 6= j and c2
i − ci otherwise. As we are restricting to CI , we may

assume that r = 0 so that ci 6= 0 for all i. From the expression for Hess(f ), we see that it
can be written as H1 −H2 where H1 is a rank 1 matrix with image LinR{(c0, . . . , cd+1)}

and H2 is the diagonal matrix Diag(c0, . . . , cd+1). As H2 is invertible, a tangent vector
v ∈ TYA will be in the kernel of this difference only if H1(v) ∈ im(H2). This implies
v is a multiple of

∑d+1
i=0 ∂Zi , and as this vector does not pair with

∑
dZi to equal zero,

it is not tangent to YA and we must have v = 0. Thus Hess(c0,...,cd+1)(f ) restricted to
{
∑
Zi = 0}∩Cd+1−r,...,d+1 is non-degenerate and, by Proposition B.19, π has a stratified

Morse singularity at [c0 : · · · : cd+1]. The statement that π is a ∂-framed pencil then
follows immediately from Definition B.23. ut

We write π0 : (C∗)d+1
→ C∗ for the restriction of π to the complement of the coordinate

divisors on Pd+1. We now fix a point t0 ∈ X6(A)(R) near infinity and let δ0, δ1 and δ∞ be
paths, based at t0, around 0, cA and∞. Here δ1 and δ∞ are straight line paths and δ0 is a
concatenation of a straight line path to an ε-neighborhood of cA, a clockwise semicircle
around cA and a straight line path to 0. These are pictured in Figure 4.

X6(A)

cA0 ∞

δ∞

δ0

δ1

t0

Fig. 4. Distinguished basis on X6(A).

Our main theorem now appears as a consequence of Proposition B.31.

Theorem 2.14. Let (Q,A) be an extended circuit with KA = 0, Ti = P(δi) and

x =
(
−

2π gcd(ci, cj )
lcm(ci, cj )

: ci > 0, cj < 0
)
.

Then
T0T1T∞ = τ(x) in π0(SympF(ZA(t0), ∂ZA(t0))).

Proof. By Proposition B.31, the only result needed is the computation of the Chern num-
bers for the rigid boundary divisors associated to bij . In the proof of Proposition 2.11,
we saw that bij = (1/rij )(cie∨aj − cj e

∨
ai
). By Proposition B.27, the divisor Dij ⊂ X2(A)

corresponding to bij is isomorphic to the product of X6(A) and the boundary divisor
D̃ij ⊂ XQ corresponding to the facet Fij = Conv(A − {ai, aj }). Let 6ij be the stacky
fan in (Z3,Z2, βij , 6ij ) where {ei, ej , eD} is the standard basis for Z3. Define βij to be
the map βij (ei) = (`+/ci)e1, βij (ej ) = −(`−/cj )e2 and βij (eD) = (1/rij )(cie2− cj e1).
Take the fan 6ij to consist of two maximal cones LinR≥0{ei, eD} and LinR≥0{ej , eD}

whose image under βij gives the fan pictured in Figure 5.
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(0,−`−/cj )
(−cj /rij , ci/rij )

(`+/ci , 0)

Fig. 5. The stacky fan 6ij .

By Proposition 2.11 and (12), the star of bij is the product of 6ij and the fan for D̃ij .
Thus the toric stack associated to the fan 6ij is isomorphic to the normal bundle of a
section of π lying on Dij . The Chern number of the normal bundle of the divisor D
corresponding to eD is then computed asD ·D = −r2

ij/(cicj ), which equals the indicated
factor under the assumption KA = 0. ut

2.2. Examples in dimension 1

In this section we explore three examples in dimension 1 of the circuit relation in full
detail. These circuits are illustrated in Figure 6. The first relation is known as the lantern
relation for mapping class groups of marked curves and, to a large degree, is the case that
inspired this paper. The next example yields the star relation. We observe that the circuit
stack in this example, as well as its higher dimensional generalizations, arise naturally
in the context of homological mirror symmetry. We refer to [22, Chapter 2] for general
background on the mapping class groups of marked curves and classical proofs of these
relations.

Fig. 6. Examples in dimension 1.

For every example, we take a fiber t0 ∈ R>1 near ∞ and choose the distinguished
basis of paths δ0, δ1 and δ∞ on X6(A) as in Theorem 2.14 and Figure 4.

2.2.1. Circuit of signature (2, 2). Here we take A = {(0, 0), (1, 0), (1, 1), (0, 1)} and fix
the orientation of A as c = (1,−1, 1,−1). We have YA = {Z0 + Z1 + Z2 + Z3 = 0}
⊂ P3 and π is defined as the pencil [Z0Z2 : Z1Z3]. Taking the coordinate t for the
point [t : 1] ∈ P1 we utilize (20) to find t = π([Z0 : Z1 : Z2 : Z3]) =

Z0Z2
Z1Z3

, so that
every fiber ZA(t) = YA ∩ π−1(t) for t ∈ C∗ − {1} is isomorphic to P1. The boundary
divisor ∂ZA(t) consists of four points given as the intersection with

⋃3
i=0Di whereDi =

{Zi = 0 = Zi+1} using an index in Z/4Z. Thus, using a Möbius transformation, we can
find a coordinate x for each fiber so that
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q1 = D1 ∩ ZA(t) = {x = 0},
q2 = D2 ∩ ZA(t) = {x = 1},
q3 = D3 ∩ ZA(t) = {x = ∞}.

(21)

Parameterizing ZA(t) so that Zi is at most quadratic in x and satisfies (21) gives

ZA(t) = {[1− tx : (tx − 1)x : tx(1− x) : x − 1] : x ∈ C}

with remaining boundary divisor component

q0 = D0 ∩ ZA(t) = {x = t−1
}.

Over the limiting degeneration values of t = 0 and∞, one sees that this converges to give
parameterizations of the intersections {Z2 = 0} ∩ YA and {Z3 = 0} ∩ YA, respectively.

As t0 > 0 was chosen close to∞, we see that q0 > 0 is close to zero and indeed tends
to q1 as t tends to∞. This reflects the bubbling of the intersection YA ∩ {Z0 = 0} off in
the limit and we see that the vanishing cycle of δ∞ is a loop γ∞ encircling q0 and 0 in
the x-plane. In a similar vein, we may follow the path δ1 from t0 to 1 and observe that the
point q0 follows the straight line path to q2. Thus the vanishing cycle associated to δ1 is
isotopic to γ1 illustrated in Figure 7. Finally, as t tends from t0 to 0 along the path δ0, q0
passes above q2 and towards q3. The vanishing cycle may be pulled back along this path
and is seen to be equivalent to γ0 which, up to isotopy, is illustrated in Figure 7.

q3q1 q2
q0

γ∞ γ1

γ0

Fig. 7. The (2, 2) circuit relation or the lantern relation.

Applying Theorem 2.14 in this example yields the well known lantern relation arising
in mapping class groups.

2.2.2. Circuit of signature (1, 3). In our example of a (1, 3) circuit, we take the set
A = {(0, 0), (1, 0), (0, 1), (−1,−1)} and fix c = (3,−1,−1,−1). We have the same
hypersurface YA ⊂ P3 as before, but with π([Z0 : Z1 : Z2 : Z3]) = [Z

3
0 : Z1Z2Z3].

The smooth fibers ZA(t) of π are elliptic curves with boundary points indexed by the
divisors Di = {Zi = 0 = Z0} = {qi} for i = 1, 2, 3. Near t = ∞, ZA(t) approaches
the intersection of YA with the three divisors in {Z1 = 0}, {Z2 = 0} and {Z3 = 0} which
subdivides it into three pairs of pants. On the other hand, at t = 0, ZA(t)− ∂ZA(t) is the
quotient of the elliptic curve {(x, y) : x + y + x−1y−1

= 0} ⊂ (C∗)2 by a Z/3Z action.
We note that there is one component of ZA(0) and three components of ZA(∞). This oc-
curs generally as the signature corresponds to (|A+|, |A−|) and the number of simplices
in the triangulation T± is |A±|. The fiber over 0 (resp. ∞) is a stable pair degeneration
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corresponding to the triangulation T+ (resp. T−), and the number of components of this
degeneration equals the number of simplices in the triangulation.

For the moment, we consider the case of a more general signature (1, d + 1) circuit
with A+ = {a0} and let

Y+A (R) := {[r0 : · · · : rd+1] ∈ YA : ri ∈ R∗, and for i < j, rirj < 0 iff i = 0}.

In particular, Y+A (R) is isomorphic to the positive simplex in Rd+1
>0 using the coordinates

{[−1 : r1 : · · · : rd+1] :
∑
ri = 1} ∈ Y+A (R) . One checks that the assumption on the

signature of A gives [c0 : · · · : cd+1] ∈ Y+A (R). Furthermore, following the computations
of the critical points and Hessian of π in the proof of Proposition 2.13, which do not rely
on whether we work over R or C, shows that π |Y+A (R) : Y

+

A (R) → P1
R has a unique

Morse singularity at [c0 : · · · : cd+1] with critical value cA ∈ P1
R. Furthermore, along

the boundary of the closure of Y+A (R) (where one of the coordinates equals zero), π
evaluates to∞ = [1 : 0]. Finally, since π does not take the value of [0 : 1] on Y+A (R),
we can conclude that the unique critical point is a maximum (resp. a minimum) point if
a0 is odd (resp. even) and that Y+A (R) is the stable (resp. unstable) manifold associated
to cA. As such a manifold is obtained by gradient flow using the Hermitian metric, this
flow equals that of the symplectic parallel transport map along the real line. Thus Y+A (R)
is contained in the vanishing thimble of δ1, and as it is a smooth manifold of the correct
dimension, it must equal the vanishing thimble. Alternatively, one could observe this
fact by considering Y+A (R) as the fixed locus of an anti-holomorphic involution which is
equivariant with respect to π .

The boundary of Y+A (R) is the union of three arcs contained in the three components
of ZA(∞). After symplectic transport from t0 to∞, these arcs lie in three pairs of pants
which converge to the degenerate components giving γ1 in Figure 8. The three circles
denoted γ∞ are the vanishing cycles associated to the degeneration. The circuit relation
in this example is known as the star relation.

γ∞

γ1

q0

q1
q∞

γ∞ γ∞

Fig. 8. The (1, 3) circuit relation or the star relation.

In higher dimensions, we may consider the signature (1, d + 1) case with c =
(c0, c1, . . . , cd+1) where c0 = vA > 0. Again the hypersurface YA is {

∑d+1
i=0 Zi = 0} in

Pd+1 and
π([Z0 : · · · : Zd+1]) = [Z

vA
0 : Z

−c1
1 · · ·Z

−cd+1
d+1 ].
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If KA = 0, the secondary stack X6(A) is P(vA/r, ˜̀−)/(Z/rZ) and we may take an
orbifold chart around zero to be the map za0 . Pulling π back along this chart we obtain a
map w : (C∗)d → C. Indeed, taking π = [za0 : 1] and restricting to Zc1

1 · · ·Z
cd+1
d+1 = 1

yields Z0 = t , so that we may express w as

w(Z1, . . . , Zd) = Z0 = −

d∑
i=1

Zi −
1

Z
c1/cd+1
1 · · ·Z

cd/cd+1
d

.

Referring to [31, (1.4)] we find that, up to a scale, the map π is the equivariant quotient of
the homological mirror LG model of the weighted projective space P(c1, . . . , cd+1). This
will appear again as one piece of a general conjectural program for homological mirror
symmetry in the final section.

2.2.3. Circuit of signature (1, 2; 1). In our only degenerate example, we observe a rela-
tion between braids and Dehn twists. We take A = {(0, 0), (1, 0), (−1, 0), (0, 1)} and
c = (2,−1,−1, 0). Here X2(A) is the blowup of P3 along the two coordinate lines
L1 = {Z0 = 0 = Z1} and L2 = {Z0 = 0 = Z2} which are the base locus of the
pencil π̃ given as

π̃([Z0 : Z1 : Z2 : Z3]) = [Z
2
0 : Z1Z2].

The secondary stack of A is X6(A) = P(2, 1).
Since A is a degenerate circuit, the divisor {Z3 = 0} is not contained in a fiber over 0

or infinity, but rather intersects ZA(t) in two points everywhere except over the degenerate
point [2 : −1 : −1 : 0] with value cA = 4. We give ZA(t) coordinates,

ZA(t) = {[tx : x2
: t : −tx − x2

− t] : x ∈ C}.

The boundary points on ZA(t) are then

q1 = ZA(t) ∩ {Z1 = 0} = {x = 0},
q2 = ZA(t) ∩ {Z2 = 0} = {tx = ∞},

q3,± = {x = −t ±
√
t2 − 4t/2}.

As t tends from cA to t0, we see that q3,± splits along the real axis. The vanishing cycle
γ1 for δ1 thus forms an interval stretching between q3,±. This can be seen from the lo-
cal description of vanishing cycles for stratified Morse singularities given in Proposition
B.21 and its proof. Tending from t0 to∞, one observes q3,+ converging to −1 and q3,−
bubbling off with∞. This parameterization converges to the component YA ∩ {Z1 = 0}.
Thus we may draw a vanishing cycle γ∞ around∞ and q3,− corresponding to δ∞.

At t = 0 we have a Z/2Z orbifold point where, in the coordinates given by x, we
have quotiented by the action. This implies that the monodromy map satisfies T 2

0 = 1. As
T∂ZA(t0) is supported near the boundary {q1, q2, q3,±}, it commutes with T0, T1 and T∞.
In fact, ignoring the framing on the endpoints q3,± of the braid, T∂ZA(t0) is a half-twist
about q1 and q2. Thus we may take the relation T0T1T∞ = T∂ZA(t0) from Theorem 2.14
and rewrite it as T1T∞ = T

−1
0 T∂ZA(t0). Squaring both sides gives the relation (T1T∞)

2
=

T 2
∂ZA(t0). This does not seem to have a direct analog in the literature, but can be thought

of as a hyperelliptic relation for a braid and a loop.
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q2

γ1

γ∞

q3,− q3,+ q1

Fig. 9. The (1, 2; 1) circuit relation.

2.3. Regeneration

In contrast to the topology of discriminant complements (see [18]), the geometry of the
principal A-determinant complement seems relatively unexplored. For extended circuits,
we have completed the project of understanding X6(A) − EA in Proposition 2.13 as the
once punctured quotient of a weighted projective line. On the other hand, as one considers
more complicated sets A, the complexity of the topology of their determinant comple-
ments grows rapidly. In order to retain the information obtained from more basic cases of
A′ ⊂ A such as circuits, we require a method of regeneration. To a large extent, the toric
and symplectic preliminaries in Appendices A and B are designed to make such a method
possible and accessible.

Let A ⊂ Zd and A′ ⊂ A be finite subsets and S = {(Qi, Ai) : i ∈ I } a regular
subdivision ofQ such that (Qi, Ai) is a marked simplex for all Ai not containing A′, and
Ai is a simplicial extension ofA′ otherwise. Call such a subdivision a triangular extension
of A′. Such a subdivision induces a map of affine polytopes 6(A′) → 6(A) which is
obtained by taking the vertex ϕT ′ corresponding to the regular triangulation T ′ of (Q′, A′)
to the vertex ϕT̄ ′ where T̄ ′ is the unique refinement of S which restricts to T ′ on (Q′, A′).
This map of secondary polytopes induces a natural inclusion iS : X6(A′) → X6(A) of
secondary stacks. By the definition of triangular extensions and [24, Theorem 10.1.12],
we have iS(EA′) = EA ∩ iS(X6(A′)). Let X ◦6(A) be the maximal torus orbit of X6(A)
and E◦A be the intersection EA ∩ X ◦6(A). Given ε > 0, let Iε

A′
⊂ X ◦

6(A′)
− E◦

A′
be the

complement of the ε-neighborhood of E◦
A′

. For sufficiently small ε, Iε
A′

is diffeomorphic
to X ◦

6(A′)
− E◦

A′
.

Definition 2.15. Let B ⊂ C be a disc around the origin and I a complex manifold.
A regeneration of A′ relative to A is a pair (I, ψ) where ψ : B × I → X6(A) is
holomorphic with ψ0 : I → iS(IεA′) a covering map onto its image and ψt : I → X ◦6(A)
injective for all t 6= 0.

The following proposition shows that there exist many distinct regenerations ofA′ relative
to A.

Proposition 2.16. Let S be a triangular extension of A′ ⊂ A and n ∈ Z. There exists a
regeneration (I, ψ) of A′ with ψ0 a (Z/nZ)-cover.

Proof. This result follows from general facts about stacky fans. In particular, suppose
6 = (Zr ,3, β,6) is a canonical stacky fan for a complete toric stack where the rank



Symplectic relations and degenerations of LG models 2187

of 3 is d . Let σ = LinR≥0(e1, . . . , es) be an s-dimensional cone in 6 where s < d and
e1, . . . , er is the standard basis of Zr . The stacky subfan 6σ = (Zr ,3, β, σ ) gives the
normal neighborhood of the orbit corresponding to σ .

Now suppose τ = LinR≥0(e1, . . . , es, es+1) ∈ 6 and let 0 = LinZ(e1, . . . , es+1).
Take (es) to be the ray in Rr generated by es and define the stacky fan 6s+1 =

(Zs+1, 0, β, (es+1)). The stack associated to 6s+1 is clearly isomorphic to C × (C∗)s .
Define (g1, g2) : 6s+1 → 6σ by

g1(ei) =


ei if i < s,

nes if i = s,
es + es+1 if i = s + 1,

(22)

and take g2 to be the unique map satisfying β ◦ g1 = g2 ◦ β. The associated map on
stacks g : C× (C∗)s → X6σ is an n-fold cover on 0× (C∗)s and is injective elsewhere.
Composing with the inclusion X6σ ↪→ X6 and taking 6 to be the stacky secondary fan
6̃6(A) from Lemma A.31 with σ the cone CS gives the result. ut

The next proposition gives a functorial viewpoint on symplectic parallel transport and
regeneration. As in Appendix B.4, we take 5(X ) to be the path category of the stack X ,
and Symp to be the category of symplectic manifolds. If X ⊂ X6(A) − (EA ∪ ∂X6(A)),
then we take PX : 5(X ) → Symp to be the parallel transport functor taking p to
ZA(p)−∂ZA(p) = π |−1

YA−∂YA(p) and a path to symplectic parallel transport. Denote the
essential image of PX by C(X ).

Proposition 2.17. Assume A′ affinely spans Rd and let (I, ψ) be a regeneration of A′

relative to A and X = i−1
S (ψ0(I)) ⊂ X6(A′). Then for any t 6= 0, there is a functor

FA′ : C(ψt (I))→ C(X ) which completes the diagram

5(I) P //

i−1
S ◦ψ0

��

C(ψt (I))

FA′

��

5(X ) P // C(X )

Furthermore, this diagram commutes up to isotopy.

Proof. Let S = {(Qi, Ai) : i ∈ I } and consider the singular symplectic fiber bundle
F = ψ∗(YA − ∂YA) over B × I. Note that F is smooth over (B − {0})× I, while over
{0} × I, the fibers of F are singular unions

⋃
i∈I Zi where Zi ⊂ XQi . By Proposition

B.17, these fibers are stable pair degenerations. After excising the intersections Zi ∩ Zj ,
this decomposition can be made global on F by taking symplectic parallel transport along
rays in B to the origin and removing the vanishing cycle W . From Proposition B.17, we
deduce that W is the singular coisotropic hypersurface consisting of all points that flow
into the critical locus of ψ∗0YA. Set F ′ = F − W . Then F ′ =

⊔
i∈I F ′i is a smooth

symplectic bundle over B×I whose connected components are indexed by the polytopes
(Qi, Ai) in S. By using symplectic parallel transport along rays in B, the fiber of F ′i
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over (t, p) for any p ∈ I is symplectomorphic to Zi − ∂Zi over (0, p). As A′ affinely
spans Rd , we have (Q′, A′) = (Qi0 , Ai0) for some i0 ∈ I . For p ∈ I, take FA′(p) to
be the fiber of F ′i0 over (0, p). While parallel transport along F ′/{t} × I may not strictly
commute with parallel transport along the rays [0, t] × p for p ∈ I, they do commute up
to isotopy, yielding the homotopy commutative diagram in the proposition. ut

Proposition 2.17 suggests a general method of approaching the symplectomorphism
group of a hypersurface in a toric stack through an analysis of the groups on degener-
ate pieces. Of course, the general case of A is exceptionally complex as it requires an
understanding of groups for all smaller sets A′ ⊂ A. In this section we will see to what
extent this approach is accessible in an example where A is minimally more complicated,
namely A contains d + 3 points.

The general case of d + 3 points has been studied and explicit formulas for EA are
known [16]. At this level of generality, the formulas do not immediately render the ge-
ometry of the principal A-determinant or its complement accessible. However, it is worth
mentioning that the A-discriminant component is always a rational curve in an X6(A),
usually with complicated singularities [32].

Example 2.18. We continue to explore Example 2.6 and take

A = {(1, 0), (0, 1), (1, 1), (−1,−1), (0, 0)}. (23)

Any non-degenerate hypersurface ZA(p) is an elliptic curve with four boundary points.
By writing out the set of regular triangulations of (Q,A) and applying (55), one ob-
tains the vertices of 6(A) in RA. Translating and pulling back to LA via αA gives the
secondary polytope 6v(A) on the right of Figure 10. To obtain the stacky fan of the sec-
ondary stack, first observe that, for each coarse subdivision S = {(Qi, Ai) : i ∈ I } of
(Q,A) and pointing set Ai , the unique primitive function defining S and zero on Ai is a
3-defining function so that η̄(S,Ai ) = η(S,Ai ). Thus, by (63), β̃2p(A)(eη(S,Ai )) = η(S,Ai ).
Also, since KA = 0, Lemma A.30 implies that 4A = L∨A. Finally, applying Lemma
A.31 shows that the stacky fan for X6(A) equals the normal fan of 6v(A) which has
1-cone generators

F6(A) = {v1, . . . , v4} = {(1, 1), (0, 1), (−2,−3), (1, 0)} ⊂ Z2.

The secondary fan and polytope are illustrated in Figure 10.
To simplify the cumbersome notation, we orderA as in (23) and write yi for the mono-

mial which evaluates the i-th coefficient. For example, y4 = x(−1,−1) is regarded as the
projection LA = CA to the (−1,−1)-coordinate. Then, utilizing [24, Theorem 10.1.2],
one can compute the A-discriminant and the principal A-determinant to be

1A = y1y2y4y
3
5 − y3y4y

4
5 + 27y2

1y
2
2y

2
4 − 36y1y2y3y

2
4y5 + 8y2

3y
2
4y

2
5 − 16y3

3y
3
4 ,

EA = y
2
1y

2
2y3y41A.

From Definition A.28, the principal A-determinant induces a section of OX6(A)(1) de-
noted EsA. By taking the unique interior point of 6v(A) to be zero, and taking the lattice
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D1

D2

D3

D4

v1 = (1, 1)

v2 = (1, 0)

v3 = (−2,−3)

v4 = (0, 1)

Fig. 10. The secondary fan and polytope of A.

points in the right side of Figure 10 as the exponents of the Laurent monomials, we ob-
tain coordinates (u1, u2) of the maximal (C∗)2-orbit of X6(A) over which OX6(A)(1) is
trivialized. Then the principal A-determinant restricts to the Laurent polynomial

u−1
2 − u

−1
1 + 27u−1

1 u2 − 36+ 8u1u
−1
2 − 16u2

1u
−1
2 .

As was pointed out in Example 2.6, there are five extended circuits contained inA and
four circuits {C1, C2, C3, C4}; in this case they correspond bijectively to the four bound-
ary divisors of X6(A). Denote the facet of6(A) corresponding to vi by Fi , the subdivision
defining the facet by Si , and the divisor in X6(A) byDi . The divisorD4 corresponds to the
degenerate circuit C4 = {(−1,−1), (0, 0), (1, 1)} supporting two extended circuits. Each
circuit Ci has a unique triangular extension given by the subdivision associated to the
facet defined by vi . Let us first examine regenerations of X6(C1)

∼= D1 and X6(C2)
∼= D2.

We will first find the intersection numbers EA ·D1 and EA ·D2. For this, we compute in
the homogeneous coordinate ring C[x1, x2, x3, x4] of X6(A) given in equation (34), which
is graded by Pic(X6(A)) ∼= L∨

6v(A)
∼= Z2. To obtain the degree of the monomial xi which

defines Di , apply α∨
6v(A)

to e∨i ∈ Z6v(A). After a choice of basis, we obtain deg(x1) =

(1, 2), deg(x2) = (1, 0), deg(x3) = (1, 1) and deg(x4) = (2, 1). With this choice of basis,
a straightforward computation in intersection theory of toric varieties (see [23, Section
5.1]) gives the intersection pairing [

−1/3 2/3

2/3 −5/6

]
.

We also calculate that OX6(A)(1) = O(D1+D2+D3+D4) which corresponds to (5, 4)
so that EA ·D1 = 1 = EA ·D2.

Starting with C1 we observe that NX6(A)X6(C1) is isomorphic to O(−1) over P1

and trivializes over orbF1 where orbF is the maximal torus orbit associated to a face
of Q. The circuit C1 = {(0, 0), (1, 0), (0, 1), (1, 1)} affinely generates Z2, which by [24,
Theorem 1.12] and the computation EA · D1 = 1 implies that the restriction of EsA
to orbF1 equals EsC1

with multiplicity 1. Since EC1 is a point, this implies that in a
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tubular neighborhood U of orbF1 , EA ∩ U is a disc transversely intersecting orbF1 . Re-
moving an ε-neighborhood of this disc gives a regeneration I of C1 in A. Utilizing
iS1 : X6(C1)→ X6(A), we choose a base point p1 ∈ I − orbF1 close to iS1(t0), where
t0 appears in Theorem 2.14. Then Proposition 2.17 shows that the regenerated circuit re-
lation is simply the (2, 2) circuit relation restricted to the region V1 ⊂ ZA(p1). Here V1 is
the open subset in ZA(p1)which converges via symplectic parallel transport to the degen-
erate component of XQ corresponding to C1 as p1 ∈ U tends towards the boundary D1.

The divisor D2 is P(1, 3) with normal bundle OP(1,3)(−1) where OP(1,3)(d) corre-
sponds to the equivariant line bundle over C2

−{(0, 0)}with character zd ∈ Hom(C∗,C∗).
Even after deleting the point at infinity, we cannot regenerate D1 using sections of this
bundle because of the stacky point at the origin, so we must consider a covering. There is
only one non-trivial covering in this case, namely the étale cover z3 of IεC2

⊂ P(1, 3) −
D1 ∩ D2 ≈ C/µ3. To find the regeneration which extends this cover, one simply takes
the stacky chart of a neighborhood U of the point D2 ∩ D3 which is C2/µ3 where
ζ(t, x) = (ζ−1t, ζx). The map ψ : C2

→ U is obviously étale and at t = 0 gives
the covering above, so restricting ψ to ψ−1(U−V ) where V is an ε-neighborhood of EA
gives a regeneration of C2. Applying Proposition 2.17 to this situation, we observe that
ψ−1(U − V ) ∩ {t} ×C is a disc with three discs removed near the third roots of unity as
in Figure 11. Using the proposition and Theorem 2.14, composing the parallel transport
Ti along the three paths δi gives the cube of parallel transport along γ as well as a full
boundary twist. Taking the composition of these two operations as T4 we write simply
T1T2T3 = T4 and view this as a relation in ZA(p2) where we choose p2 in the interior of
X6(A) and close to iS2(t0).

δ3

δ2
δ1

γ1

Fig. 11. Paths for the regenerated circuit of C2.

One can often regenerate several subsets of A simultaneously, thereby incorporating
the symplectomorphisms of the regenerated pieces into those of the hypersurface ZA(t).
We give a more systematic account of this method in the next section for extended circuits,
but for now we consider sections of the ample line bundle L = O(D1 + 3D2) on X6(A).
Consider the pencil

f (x1, x2, x3, x4) = [s0 : s∞] := [x1x
3
2 : x

2
4 ].

Taking Ct = {s0 − ts∞}, one observes that for small t , we obtain a smooth curve
which approximates D1 + 3D2. We wish to understand the Ct subgroup GCt ⊂
Symp(ZA(p), ∂ZA(p)) from Definition B.32 by viewing Ct as a simultaneous regen-
eration of C1 and C2. We trivialize the fibers ZA(p) along the ray r = R≥0 ⊂ C and
consider parallel transport {T1, . . . , T4, T̃1, T̃2} along the paths {δ1, δ2, δ3, δ4, γ1, γ2} as
in Figure 12.
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δ3

δ2

δ4

δ1

r

γ1

γ2

ZA(p) ZA(q)

qp

Fig. 12. Generating paths for GCt with trivialized fiber over r.

With the use of Proposition 2.17, the monodromy symplectomorphisms T = P(δ) on
the degenerate hypersurfaces can be regenerated to monodromy transformations on the
smooth hypersurfaces. These are the compositions of disjoint Dehn twists

T1 = Tk1 , T2 = Tk2 , T3 = Tk3 , T4 = Ta,

T̃1 = TbT
3
d T

3
e T

3
f , T̃2 = TcT

2
d T

2
e T

3
f .

Those associated to γ1 and γ2 correspond to monodromy around the hypersurface
degeneration associated to the pointsD1 ∩D2 andD1 ∩D4. The vanishing cycles for the
twists Ti are given in Figure 13.

One can calculate that EsA has precisely one cusp in the interior of X6(A). This cusp
yields the braid relations between T4 and Ti for i = 1, 2, 3. Adding these to the circuit

a
b c

d

e

f

∂1

∂2

∂3

∂4

k1

k2

k3

Fig. 13
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relations, we obtain a finite presentation of GCt ,

R→ 〈T1, . . . , T4, T̃1, T̃2〉 → GCt → 1.

One can use this method for higher dimensions as well, but understanding the singularities
of EsA for (d + 3)-sets is necessary to the completion of this project, as these generate
additional relations.

As a final remark, we observe that near C∞, we obtain a regeneration of the circuit C4.
Observing that D4 · E

s
A = 2, we see that the critical value in C∞ splits into two values

for each of the branches of the 2-fold étale cover, yielding a total of four critical values.
To see the effect on the vanishing cycles, observe that the family C1/t regenerates two
extended circuits, each of which has a relation as given in Section 2.2.3. This has the
effect of gluing the degenerate vanishing cycles together to obtain two vanishing cycles,
for each branch of the étale cover, while parallel transport from one branch to the other
yields a regenerated version of the involutions T1T∞ on each regenerated circuit as given
in Section 2.2.3. However, to obtain the correct gluing formulas for these cycles requires
a more nuanced control over the boundary framing in the degenerate case.

3. Homological mirror symmetry applications

In this subsection we outline a strategy to decompose the Fukaya–Seidel category associ-
ated to a pencil of hypersurfaces in a toric stack. After giving a combinatorial description
of the decompositions, we discuss applications to the homological mirror symmetry con-
jecture for Fano toric stacks. The original conjecture has been settled in the case of toric
del Pezzo surfaces in [48] and weighted projective planes in [5]. There are also several
variants of the conjecture that have been proven, where the Fukaya–Seidel category is
replaced with a different category (see [1], [21]). However, our strategy is to consider
the original Fukaya–Seidel category as constructed in [47] and produce more detailed
information on the structure of the equivalent categories. We conjecture a refined corre-
spondence leading to a variety of equivalences associated to different degenerations of
the LG mirrors. In particular, we will observe a finite collection of semiorthogonal de-
compositions arising from edge paths in the secondary polytope. To each decomposition
we formulate a conjectural homological mirror collection resulting from birational moves
in the B-model setting.

3.1. Landau–Ginzburg degenerations

We begin by considering the toric stack XQ associated to the marked polytope (Q,A), the
line bundle OA(1) and the linear system LA ⊂ H 0(XQ,OA(1)) from Definition A.5. By
the support of a section s ⊂ LA ∼= CA, we mean the subset A′ ⊆ A whose monomials
have non-zero coefficients as summands of s. Referring to Definition A.8, s is called
a very full section if its support equals A, and a full section if its support contains the
vertices of Q. Given any subset A′ ⊂ A and a section s =

∑
a∈A caea ∈ CA, we say the

restriction of s to A′ is s‖A′ =
∑
a∈A′ caea . By an A-pencil, we mean a pencil in LA. If
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it is clear from the context, we will simply write pencil for A-pencil. In what follows, we
will consider A-pencils satisfying a strong, but common, property.

Definition 3.1. (i) Given A ⊂ 3 and A′ ⊂ A, a pencil W ⊂ LA is A′-sharpened if it
contains a full section s with 0 6= s‖A′ ∈ W .

(ii) The Landau–Ginzburg or LG-model associated to an A′-sharpened pencil W is the
induced map w : XQ −DW → C where DW = Zero(s‖A′) is the fiber over infinity
of the pencil.

Our motivation to consider such pencils comes from homological mirror symmetry of
Fano toric varieties (see [26], [31, Section 3]). Given a d-dimensional Fano toric stack
specified by a fan 6, the Batyrev mirror is defined as XQ (or a partial crepant res-
olution thereof) with A equal to the union of 0 and the primitive generators of the
1-cones 6(1). A symplectic structure on the original variety then specifies a superpo-
tential w on (C∗)d ⊂ XQ. From [26], one observes that w is the LG model associated
to a {0}-sharpened pencil W ⊂ LA on XQ. In fact, the case where A′ = {a} is a single
element of A can simplify the discussion because, in such cases, a pencil is A′-sharpened
if and only if it contains ea . For now, though, we keep the exposition general.

With an A′-sharpened pencil we associate a rank 1 sublattice 0̃A′ ⊂ (ZA)∨ generated
by the cocharacter e∨

A′
:=

∑
a∈A′ e

∨
a . This induces a one-parameter subgroup which we

denote by G̃A′ ⊂ (C∗)A.

Lemma 3.2. A pencil W ⊂ CA is A′-sharpened if and only if it contains a full section
and is stable under the action of G̃A′ .

Proof. Suppose that W is an A′-sharpened pencil. It is elementary to check that there
exists a full section s ∈ W for which s∞ := s‖A′ 6= s. Then the support of s0 :=
s − s‖A′ is non-empty and disjoint from A′. As W is a pencil, W = LinR{s0, s∞}. The
cocharacter e∨

A′
gives the one-parameter subgroup G̃A′ ⊂ C∗ ⊗ (ZA)∨ which acts by

λ ·
(∑
a∈A

caea

)
=

∑
a∈A′

λ caea +
∑
a 6∈A′

caea .

Thus λ · s∞ = λs∞ and λ · s0 = s0, which implies that G̃A′(W) = W .
Conversely, if G̃A′(W) = W and s ∈ W then s − limλ→0 λ · s = s‖A′ ∈ W , which

implies that W is an A′-sharpened pencil. ut

We now wish to considerA′-sharpened pencils up to toric equivalence. This involves pass-
ing from closures of G̃A′ -orbits in the space of sections LA = CA to their counterparts in
the stack X6(A). We first note that the stacky fan for X6(A) is given in Lemma A.31 as

6̃6(A) =
(
Z6(A), 4A, β̃6(A), 6B

)
.

The group 4A is realized as the colimit of diagram (76) so that there is a map α̃A :
(ZA)∨ → 4A and we take ρA′ = α̃A(e∨A′) and GA′ = (α̃A ⊗ C∗)(G̃A′). Now, there is a
quotient map

F : (C∗)Av × CAnv → VA (24)
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from the space of full sections (C∗)Av × CAnv ⊂ CA to its moduli space VA defined
in (78). It follows from the definition of VA that F is equivariant with respect to the groups
G̃A′ and GA′ for any A′ ⊂ A. With the notation of the proof of Lemma 3.2, if W is an
A′-sharpened pencil and A′ does not contain the vertices Av , then its intersection with the
space of full sections isW−LinR(s0). This implies that F(W∩(C∗)Av×CAnv ) is C ⊂ VA
or a finite quotient thereof and is the closure of aGA′ -orbit in VA. By Theorem A.38, there
is an open embedding of toric stacks from VA to X6(A). Thus we may viewW , up to toric
equivalence, as the closure of a GA′ -orbit contained in the substack VA of X6(A).

Were we to consider only those orbits intersecting the maximal torus in X6(A), its
space would be easily described as the quotient of the maximal torus in X6(A) by GA′ ,
namely G6(A)/GA′ where G6(A) = (4A ⊗ C∗) ∼= (C∗)|A|−d−1 is the torus acting
on X6(A). To gain a better understanding of this space, we consider a natural compact-
ification. At this point, we simplify by moving to the coarse space of X6(A) which we
denote X6(A). Choose x to be a point in the maximal orbit of X6(A) and φ = GA′ · x

to be the closure of its orbit. Let CVA′ be the relative Chow variety of one-dimensional
cycles of degree [φ]. Then the maximal torus G6(A) acts on CVA′ and, following the
definition of Chow quotients, we define MA,A′ to be the closure of the orbit G6(A) · [φ]
in CVA′ . It is not hard to see that the G6(A) torus action on XA induces an action on
MA,A′ (which is the trivial action when restricted to GA′ ).

Definition 3.3. A fixed point ξ ∈MA,A′ under the G6(A) action will be called a maximal
degeneration of W .

The first result we need is a combinatorial description of the maximal degenerations. For
this, we review some terminology from [6], [7] and [35]. Let P ⊂ Rn be an n-dimensional
polytope with vertices {p1, . . . , pm} and γ : Rn→ R a linear map. We order the vertices
so that if qi := γ (pi), then qi ≤ qj if i < j , and write Q = γ (P ). Let θ ∈ (Rn)∨ be
linearly independent of γ , and Vθ the subspace spanned by γ and θ . We take Fθ to be the
fan in Vθ whose cones are intersections of cones in the normal fan of P with Vθ . Assume
that the half-plane Hθ = R · γ ⊕ R>0 · θ intersects the normal fan of P transversely, by
which we mean that every k-dimensional cone in Fθ lying in Hθ is the intersection of
Hθ with an (n − 2 + k)-dimensional cone in the normal fan of P . Ordering the 2-cones
Fθ (2) = {σ0, . . . , σr} clockwise, one obtains the increasing sequence pi0 < · · · < pir
of points on P where pij is the vertex dual to σj . From the construction, it is clear that
{pij , pij+1} lie on an edge of P for any 0 ≤ j < r , qi0 = q0 and qir = qm. Any path

〈pi0 , . . . , pir 〉 (25)

obtained in this way is known as a parametric simplex path relative to γ .
In [6], these paths were realized as the vertices of the fiber polytope 6γ (P ) :=

6(P,Q) called the monotone path polytope of P . Leaving a detailed review of fiber poly-
topes to the references above, we content ourselves with describing a theorem from [35].
Let G ≈ (C∗)n be a complex torus acting on a projective toric variety X6 with fan
6 ⊂ G∨R where G∨ = Hom(C∗,G) and G∧ = Hom(G,C∗) are the lattices of one-
parameter subgroups and characters respectively. We recall from [17, Section 9.4] that if
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G acts on a vector space V and wt(V ) ∈ G∧ is the set of characters which have non-trivial
eigenspaces in V , then the convex hull of wt(V ) inG∧R is called the weight polytope of V .
Assume that L is an equivariant ample line bundle on X6 and P ⊂ G∧R is the weight
polytope for the action on H 0(X6, L). Elementary toric geometry shows that 6 is the
normal fan of P .

SupposeH ⊂ G is a subgroup and take E = H · x for a non-boundary point x ∈ X6 .
The Chow quotient X6//H is defined as the closure of the orbitG·E in the relative Chow
variety of dim(H)-cycles of degree [E] in X6 . Write πH : G∧R → H∧R for the associated
projection and take Q = πH (P ).

Theorem 3.4 ([35, Lemma 2.6]). The Chow quotient X6//H is a projective toric va-
riety with G action and ample line bundle weight polytope equal to the fiber polytope
6(P,Q).

Indeed, it was shown that 6(P,Q) is the Newton polytope of the Chow form of E. We
now utilize this theorem.

Corollary 3.5. Suppose W is an A′-sharpened pencil. The maximal degenerations of
W are in bijective correspondence with the vertices of the monotone path polytope
6ρA′ (6(A)).

The iterated fiber polytope 6ρA′ (6(A)) in this proposition was initially examined in [7].

Proof. Since MA,A′ is defined as the Chow quotient of X6(A) by GA′ , we need only
apply Theorem 3.4 which implies that MA,A′ is equivariantly homeomorphic to the toric
varietyX6ρ

A′
(6(A)) associated to the monotone path polytope6ρA′ (6(A)). This confirms

that the fixed points correspond bijectively to the vertices and proves the claim. ut

We now study the fixed points of MA,A′ . Given a maximal degeneration ξ ∈ MA,A′

associated to the parametric simplex path

Tξ = 〈ti0 , . . . , tir 〉

defined in (25), we will write C1, . . . , Cr for the irreducible components of the cycle ξ
in X6(A). We will say that ξ has length r and with each 1 ≤ j ≤ r , we will associate
the pair of natural numbers (dj , mj ) where [ξ ] =

∑r
j=1 dj [Cj ], and mj is the intersection

number EA · (djCj ). The total intersection number of EA with ξ is then written as mξ =∑r
j=1mj . Note that this yields the intersection degree of EA with any cycle in MA,A′ .

Definition 3.6. Given a parametric simplex path Tξ associated to the fixed point
ξ ∈MA,A′ , we call the data Mξ = (Tξ , {(dj , mj )}) a decorated simplex path.

Example 3.7. As we give our next construction and other results, it will be useful to
have an example for reference. We choose a sufficiently rich, but simple one arising as
the homological, or Batyrev, mirror of P1

×P1 blown up at one point. More explicitly, we
let A = {(−1, 0), (0,−1), (0, 1), (1, 0), (−1,−1), (0, 0)} and we consider A′-sharpened
pencils where A′ = {(0, 0)}. Recall from Definition 3.1 that an A′-sharpened pencil must



2196 Colin Diemer et al.

A

6(A)

Fig. 14. A and its secondary polytope.

Fig. 15. The monotone path polytope defined by the A′-sharpened pencil.

contain e(0,0) ∈ CA as a section. The secondary polytope is illustrated in Figure 14.
The function ρA′ : 6(A) → R is given by the restriction of ρA′ : RA

→ R which
takes

∑
a∈A caea to c(0,0). This defines the monotone path polytope 6ρA′ (6(A)) which

is a hexagon represented in Figure 15. Each vertex of the monotone path polytope corre-
sponds to a distinct parametric simplex path Tξ . They are labeled with their corresponding
coherent tight subdivision of the interval ρA′(6(A)) inside the hexagon and the paramet-
ric simplex path on 6(A) outside the hexagon.

Having decomposed the cycle [ξ ] representing the base of a LG model w, we will now use
this decomposition to partition the critical values of w. We construct a decomposition of C
based on the decorated simplex path Mξ = (Tξ , {(di, mi)}) which will lead to the notion
of a radar screen. To align the asymptotics correctly later, we define this decomposition
in a fairly flexible fashion. Fix an increasing function g : {ti0 , . . . , tir } → R ∪ {∞} with
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g(ti0) = 0 and g(tir ) = ∞. For any 1 ≤ j ≤ r and any 0 ≤ k < dj we set

Cj,k = {z ∈ C : g(tij ) ≤ |z| < g(tij+1), 2πk/dj ≤ arg(z) < 2π(k + 1)/dj }.

We totally order the collection {Cj,k} of regions so that Cj,k < Cj ′,k′ if and only if
j < j ′ or j = j ′ and k < k′. We now define a distinguished basis of paths BMξ =

{γ1, . . . , γmξ } as in Appendix B.4 based at infinity and ordered so that if γl(1) ∈ Cj,k and
γl′(1) ∈ Cj ′,k′ with Cj,k < Cj ′,k′ then l < l′. In order to make this collection precise, we
fix a sufficiently small ε > 0 and for every j set sij := mij /dij . For each 0 ≤ k < dj ,

choose sij ordered points {pj,k1 , . . . , p
j,k
sij
} in Cj,k which are at least a distance 2ε from

the boundary of Cj,k . Let P =
⋃
j,k{p

j,k

1 , . . . , p
j,k
sij
} be the ordered set of all such points.

For any 1 ≤ j ≤ r , 0 ≤ k < dj and any l with

j−1∑
i=1

mi + kmj/dj < l ≤

j−1∑
i=1

mi + (k + 1)mj/dj

we define the path γ ′l to be a horizontal line with Im(γ ′l ) = lε/mξ , Re(γ ′l (0)) = ∞
and |γ ′l (1)| = g(tij ) − ε + lε/mξ . We let γ ′′l : [0, 1] → C be a path with γ ′′l (t) =
e2π(k+ε)t/dj γ ′l (1). Let γ̃l : [0, 1] → P1 be a rescaled concatenation of γ ′l with γ ′′l and
note that, for sufficiently small ε, γ̃l(1) ∈ Cj,k . We may then choose a set of sij arbitrary

non-intersecting paths γ̃ ′l in Cj,k from γ̃l(1) to pj,kn where n = l− (
∑j−1
i=1 mi + kmj/dj ).

Finally, define γl to be the concatenation of γ̃ with γ̃ ′ to give a distinguished basis of
paths from∞ to the set P .

To apply this construction, we examine a one-parameter degeneration in MA,A′ to ξ .
We need only choose a lattice point θ ∈ (ZA)∨ which is in the normal cone of the vertex
in 6ρA′ (6(A)) corresponding to ξ . In view of the discussion after Definition 3.3, this
gives a fan Fθ supported in the half-plane Hθ which lies in the two-dimensional vector
space Vθ ⊂ RA, as well as an embedding i : Fθ → F6(A). If θ ∈ ZA, then Fθ is a
rational polyhedral fan and i induces a map ι : XFθ → X6(A) of toric stacks. Let Xθ be
the stack associated to Fθ . Quotienting Vθ by LinR(ρA′) gives a map from Vθ to R and
a map of fans from Fθ to R≥0. This induces a map FρA′ : XFθ → C which is a toric
degeneration of P1. It is clear that the zero fiber of FρA′ is sent to ξ by ι and that F−1

ρA′
(t)

is isomorphic to P1 for t 6= 0.
Now, ξ corresponds to the parametric simplex path Tξ = 〈ti0 , . . . , tir 〉 on 6(A). Let

sj = ρA′(tij ). Then ρA′(Tξ ) is a tight coherent subdivision {[sj−1, sj ] : 1 ≤ j ≤ r} of
the marked interval [s0, sr ]. In other words, each subinterval [sj−1, sj ] corresponds to the
image under ρA′ of an edge on 6(A). We may fill in all additional lattice points lying on
6(A) along the path Tξ to obtain a modified sequence

T̃ξ = 〈t̃1, . . . , t̃n〉.

Write their images under ρA′ as the sequence

S̃ = 〈s̃1, . . . , s̃n〉 (26)
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where s̃j = ρA′(t̃j ). It follows directly from [24, Section 10.1.G] that mj = sj − sj−1
and dj = mj/ej where ej + 1 is the number of lattice points in the interior of the edge
{tij , tij+1}. For any 1 ≤ j ≤ n, we define bj = θ(t̃j ) and b = (b1, . . . , bn). Choosing
another θ if necessary, we may assume that b1 = · · · = bk = 0 where s̃k = s1. Then b
defines the degeneration as in Appendix A.2 for the marked polytope ([s0, sr ], S̃). By this
we mean that we consider b as the function b : S̃ → R taking s̃i to bi and observe that it
induces the convex function b̃ as in (50).

Working at the level of coarse toric varieties as opposed to stacks, we may param-
eterize the degeneration using b as follows. Identify Vθ ∩ (ZA)∨ with (Z2)∨ so that
Fθ ⊂ (Z2)∨ is dual to the upper convex hull

Buθ = Conv{(s̃j , bj + r) : 0 ≤ j ≤ n, r ∈ R≥0}

of Bθ = {(s̃j , bj )} ⊂ Z2. For toric varieties, we obtain a map β : C × C∗ → C × Pn−1

given by
β(t, z) = (t, [tb0zs̃0 : · · · : tbnzs̃n ]).

The coarse variety Xθ associated to Xθ is the closure of im(β) with the coarse zero fiber
F−1
θ (0) := Xθ (0) =

⋃r
j=1 Cj . Here Cj has moment polytope equal to the line segment

from (s̃kj−1 , bkj−1) to (s̃kj , bkj ) where s̃kj = sj . Let

µj = (bkj − bkj−1)/(s̃kj − s̃kj−1)

be the slope of this line segment and define the map αj : R≥0 × C∗→ C× C∗ via

αj (t, z) = (t, t
−µj z).

Then we have the following proposition:

Lemma 3.8. The parameterization (β ◦ αj )|{t}×C∗ : C∗ → Xθ of the C∗-orbit ξt uni-
formly converges on compact sets to a dj -fold covering of Cj as t tends to 0.

Proof. We simply compute

(β ◦ αj )(t, z) = (t, [t
b0(t−µj z)s̃0 : · · · : tbn(t−µj z)s̃n ])

= (t, [tb0−µj s̃0zs̃0 : · · · : tbn−µj s̃nzs̃n ])

= (t, [t
(b0−bkj−1 )−µj (s̃0−s̃kj−1 )z

s̃0−s̃kj−1 : · · ·

· · · : t
(bn−bkj−1 )−µj (s̃n−s̃kj−1 )z

s̃n−s̃kj−1 ]).

By convexity, the slope of the line segment connecting (s̃i, bi) to (s̃kj−1 , bkj−1) is strictly
less than µj for all i < kj−1 and strictly greater than µj for all i > kj . This implies that
κi := (bi−bkj−1)−µj (s̃i− s̃kj−1) ≥ 0 for all i, with equality if and only if kj−1 ≤ i ≤ kj .
With this notation we have

(β ◦ αj )(t, z) =
(
t, [tκ0z

s̃0−s̃kj−1 : · · · : 1 : · · · : zs̃kj−s̃kj−1 : · · · : tκnz
s̃n−s̃kj−1 ]

)
.
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It is then clear that as t tends to 0, (β ◦ αj )(t, z) converges pointwise to the map sending
z to (0, [0 : · · · : 0 : 1 : · · · : zs̃kj−s̃kj−1 : 0 : · · · : 0]), which is a degree dj cover of Cj .
Uniform convergence on compact sets then follows. ut

We utilize this in the proof of the following theorem:

Theorem 3.9. Let ξ be a maximal degeneration of a LG model associated to A. If ξt ∈
MA,A′ is sufficiently close to ξ , there exists a radar screen Mξ decomposition of the
domain of ξt such that the paths of the distinguished basis {γ1, . . . , γm} end on the critical
values of the LG model associated to ξt .

Proof. For any ε let P1(ε) consist of all points in P1 that are at least ε away from 0
and∞. From [24, Section 10.1], we know that EA ∩ Cj consists of a single point qj for
every j . It then follows from Lemma 3.8 that for any ε and 0 < κ < 1, there exists δ > 0
such that for t < δ and every 1 ≤ j ≤ n the function (β ◦ αj )|{t}×P1(κ) is ε-close to
the dj -fold covering (β ◦ αj )|{0}×P1(κ). In particular, from the comment above, we may
choose ε and κ small enough so that

EA ∩ β(t,C∗) = EA ∩
n⋃
j=1

(β ◦ αj )|{t}×P1(κ) (27)

for t < δ. Let Ct,j (κ) = (β ◦ αj )|{t}×P1(κ) and Ct (κ) =
⋃n
j=1(β ◦ αj )|{t}×P1(κ). Then it

is clear that we may choose ε sufficiently small so that the sets Ct,j (κ) in the union are
mutually disjoint. Fix such an ε and κ so that (27) holds and let

δ0 = max{κ, δ(µi−µi−1)/2 : 2 ≤ i ≤ r}.

Then if t < δ, since µi > µi−1 and δµi−µi−1 ≤ δ2
0 we have

δµi−µi−1 ≤ δ2
0 < δ2

0

(
δ

t

)µi−µi−1

.

This implies that

1
δ0
t−µi−1 < δ0t

−µi

for every 2 ≤ i ≤ r − 1. Choose a collection {g2(t), . . . , gr−1(t)} of continuous real
valued functions for which

1
δ0
t−µi−1 ≤ gi(t) ≤ δ0t

−µi .

We define gε,κ,t : Tξ → R via gε,κ,t (ti0) = 0, gε,κ,t (tir ) = ∞ and gε,κ,t (tij ) = gj (t).
We observe that for 0 < t < δ0 and any z ∈ Ct (κ) we have z = Ct,j (κ) if and only if
z = t−µjw for some δ0 < |w| < 1/δ0. This implies that z ∈ Ct,j (κ) only if δ0t

−µj <

|z| < t−µj /δ0. Thus for z ∈ Ct (κ) we have z ∈ Ct,j (κ) if and only if gε,κ,t (tij ) < |z| <
gε,κ,t (tij+1). By (27) and Lemma 3.8, this implies that the points EA ∩ Ct,j (κ) are, after
a rotation, contained in the interior of the components Cj,k for 0 ≤ k ≤ dj of the radar
screen for Mξ with radial function gε,κ . Indeed, because we may choose ε small enough
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γ2 γ1

γ3

γ4

γ5

Fig. 16. Radar screen for top vertices of the monotone path polytope for A.

that Ct,j (κ) is approximately a dj -fold covering of Cj , we find that the 2π/dj -angular
regions each approximately cover Cj once and the intersection of EsA = 0 with each such
map contains mj/dj points (which is the degree of EsA upon restriction to Cj as given in
[24, Theorem 1.12]), justifying that this radar screen is associated Mξ = (Tξ , {(di, mi)}).
By definition, the degenerate values of the LG model ξt are the intersection points of
β(t, ) with EA and, again, by (27), all such points are accounted for in the interiors of the
regions Ct,j (κ). ut

Note that the proof of Lemma 3.8 gives precise control on a simultaneous regeneration of
every circuit in the maximal degeneration ξ .

Example 3.10. Returning to Example 3.7 and identifying ZA and its dual with Z6 using
the ordering of A, we see that ρA′ = (0, 0, 0, 0, 0, 1). Consider the path 〈t0, t1, t2, t3〉 on
6(A) pictured on the left in Figure 17. Using (55), one computes the coordinates for ti to
be

t0 = (1, 1, 4, 4, 5, 0),
t1 = (1, 1, 3, 3, 4, 3),

t2 = (1, 2, 2, 3, 3, 4),
t3 = (2, 2, 2, 2, 2, 5).

(28)

Pairing with ρA′ gives the coherent subdivision 〈s0, s1, s2, s3〉 = 〈0, 3, 4, 5〉 of [0, 5].
Using the coordinates given in (28), one sees that there are no additional lattice points on
the edges [ti, ti+1] of 6(A), so that S̃ = 〈0, 3, 4, 5〉 and ej = 0 for j ∈ {1, 2, 3}. This
implies dj = mj = sj − sj−1 and (d1, d2, d3) = (3, 1, 1).

Choose θ = (0, 7, 0,−8, 5,−1) ∈ Z6. A short computation shows that θ pairs to
zero on t0 and t1, while 〈θ, t2〉 = 1 and 〈θ, t3〉 = 3. The upper envelope Buθ of the
set Bθ is shown on the right of Figure 14. The normal fan of this polyhedron defines
the toric variety Xθ which embeds into X6(A) and defines a degeneration of P1 into the
(closure of the) orbits corresponding to the edges [tj , tj+1] ⊂ 6(A). In this case, P1

degenerates into three projective lines, C1 ∪ C2 ∪ C3. For each j ∈ {1, 2, 3}, the map
(β ◦αj )|{t}×C∗ : C∗→ Xθ from Lemma 3.8 converges to a dj -covering of Cj . As d1 = 3,
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t3

t2

t1
t0

Bθ = {(s̃j , bj )} and Buθ

Fig. 17. One-parameter regeneration of a maximally degenerate LG model.

the degeneration onto the first component gives a 3-fold covering and the single critical
value EA ∩ C1 yields three critical values in the pullback along (β ◦ α1)|{t}×P(κ). The
other two degenerations do not yield multiple coverings, so the critical values (i.e. their
intersections with EA) consist of one point each. The radar screen and the distinguished
basis that arises in this case are pictured in Figure 16.

Utilizing Theorem 3.9, for every maximal degeneration of a LG model ξ , we may use the
radar screen distinguished basis to obtain a semiorthogonal decomposition of a category
which can be thought of as a type of Fukaya–Seidel category (see [47]). However, for a
general subset A′ ⊂ A and an A′-sharpened pencil W , the associated LG model w has
a hypersurface degeneration, as opposed to a Morse singularity, over 0 and the Fukaya–
Seidel category for such a function has not yet been defined in general. Thus we will
examine the special case for which anA′-sharpened pencil gives rise to the Fukaya–Seidel
category of a Lefschetz pencil as defined in [47, Chapter 18].

Proposition 3.11. Let A′ ⊂ Int(Q) and W be a generic A′-sharpened pencil. Then the
LG model w associated to W has isolated Morse critical points away from∞.

Proof. Recall from Theorem A.15 that the principal A-determinant has a product decom-
position EA(f ) =

∏
Q′≤Q1A∩Q′(f )

i(3,A)·u(LinN(A)/Q′). The intersection W ∩ 1A∩Q′
corresponds to stratified Morse critical values of w (by definition, these are points
for which the hypersurface intersects the orbit associated to Q′ non-transversely). To
see that no such intersection points occur, we first note that, by definition, 1A∩Q′(f )
equals 1A∩Q′(f ‖A∩Q′). Now, by the proof of Lemma 3.2, we have W = LinR{s0, s∞}
where s∞‖A′ = s∞ and s0‖A′ = 0. For a generic choice of W , we may assume that
1Q′∩A(s0) 6= 0 for all faces Q′ < Q (as the zero loci of such discriminants are hypersur-
faces in (C∗)Q′∩A). This implies that, for any t ∈ C,

1Q′∩A(s0 − ts∞) = 1Q′∩A((s0 − ts∞)‖Q′∩A) = 1Q′∩A(s0‖Q′∩A) 6= 0.

Thus all intersections {EA = 0}∩W arise as singularities1A(s0−ts∞) = 0. For such a t ,
the hypersurface Yt in XQ defined by s0− ts∞ is singular in the interior Yt − (Yt ∩ ∂XQ).
A generic choice of coefficients ensures that the intersections {EA = 0}∩W away from 0
are transverse and therefore yield Morse singularities of the pencil. ut
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As was mentioned above, given a LG model w with Morse singularities and reason-
able boundary conditions, i.e. a symplectic Lefschetz pencil, the Fukaya–Seidel category
Fuk⇀(w) is well defined and studied in [47]. Given an A′-sharpened pencil ξ ∈MA,A′ ,
write wξ : XQ − DA′ → C for the associated function off the divisor at infinity DA′ =
{s∞ = 0}. If we take the paths B associated to a radar screen to be the generating excep-
tional collection, Theorem 3.9 and the above proposition gives the following corollary.

Corollary 3.12. Assume A′ ⊂ Int(Q). For every maximal degeneration of a LG model
in MA,A′ , there exists a smooth LG model ξt and a semiorthogonal decomposition of the
Fukaya–Seidel category:

Fuk⇀(wξt ) ≈ 〈T1, . . . , Tr 〉
where Ti is the Fukaya–Seidel category of a regenerated circuit corresponding to ξ |Ci .

3.2. Homological mirror symmetry

In the final pages of this article, we will detail a conjectural homological mirror to the
maximally degenerate LG model and present some supporting evidence for this view-
point. Aside from the intrinsic interest which many have for the subject of homological
mirror symmetry, the perspective obtained from maximal degenerations predicts many re-
sults in the B-model setting which have been either unknown or approached from a more
opaque angle.

We restrict our consideration to the homological mirrors of nef Fano DM toric
stacks. More concretely, we take a simplicial fan 6 in Zd with a choice of 1-cone
generators, which we identify with 6(1), and consider its canonical stacky fan 6 =

(Z6(1),Zd , β6(1), 6̃) where 6̃ is the pullback of6 via β6(1). The nef condition amounts
to the assumption that 6(1) ⊂ ∂(Conv(6(1))). This condition is equivalent to −KX6
being nef. Letting a0 = 0 ∈ Zd , we define the A-model mirror of X6 to be a generic LG
model w associated to an A′ = {a0}-sharpened pencil W for the set A = 6(1) ∪ {a0}. It
is not hard to show that any homological mirror of a toric Fano orbifold as defined in [31,
Section 3] can be obtained in this way. We now introduce a structure associated to X6
corresponding to a maximal degeneration ξ of w.

For any triangulation T of A, we define a stacky fan 6T as follows. Let σ ∈ T be a
simplex which contains a0, τ the minimal face of σ containing a0, and τ(1) the vertices
of τ . We write 3τ for the finite rank abelian group Zd/LinZ(τ (1)), and λ : Zd → 3τ
for the quotient homomorphism. The star StT (τ ) of τ in T is defined to be the collection
of simplices in T containing τ as a face. For each such simplex υ ∈ StT (τ ) we define
the cone Sυ = LinR≥0({λ(v) : v ∈ υ(1)}) ⊂ 3τ ⊗ R with generators λ(v) ∈ 3τ . The
collection {Sυ} of cones along with their intersections defines a stacky fan which we write
as 6T .

Definition 3.13. Let ξ ∈MA,A′ be a maximal degeneration with decorated simplex path
Mξ = (Tξ , {(di, mi)}) where Tξ = 〈t0, . . . , tr+1〉. The sequence of stacks

Sξ = (X6tr+1
, . . . ,X6t0 )

will be called the mirror sequence to ξ .
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Example 3.14. Let us write out the mirror sequences for the maximal degenerations of
{a0}-pencils on the variety XQ of Example 3.7. Referring to Figure 15, we enumerate the
maximal degenerations ξ1, ξ2 and ξ3 associated to the vertices on the left of the monotone
path polytope, from top to bottom. The mirror sequences of these degenerations are

Sξ1 = (X
mir
Q , F1,P2, {pt}), Sξ2 = (X

mir
Q , F1,P1), Sξ3 = (X

mir
Q ,P1

× P1,P1).

The sequence of triangulations occurring in the decorated simplex path associated to
ξ1 and its mirror fans are illustrated in Figure 18. As a degeneration of LG models,
this sequence was examined in Example 3.10. Since F1 is the projective line bundle of
O(−1) ⊕ O over P1 for the second sequence and P1

× P1 is the trivial projective line
bundle over P1 for the third, this example suggests that the mirror sequences to maximal
degenerations correspond to runs of the minimal model program for the mirror.

t3 t2 t1 t0

6t3 6t2 6t1 6t0

Fig. 18. The mirror sequence to a maximal degeneration.

We briefly recall the minimal model program on toric varieties as presented in [14, Chap-
ter 15], [40, Chapter 14], or [44]. For the moment, we take6 to be an arbitrary projective,
simplicial stacky fan in Zd , and write X6 for the corresponding toric orbifold.

Given a codimension 1 cone w = LinR≥0{a3, . . . , ad+1}, there exist precisely two
maximal cones containing w with the additional vertices denoted a1 and a2 respectively.
The set C(w) = {a0, a1, . . . , ad+1} is an extended circuit and has a fundamental relation

d+1∑
j=0

cjaj = 0,
d+1∑
j=0

cj = 0

as in (3). We write C±(w) and C0(w) for the subsets (C(w))± and (C(w))0 respectively.
We assume gcd(c1, . . . , cd+1) = 1 and will orient the circuit so that c0 < 0.

Denote the full rank sublattice LinZ{a1, . . . , ad+1} of Zd by 3w. As was noted in
Section 2.1, the volume

Vol0(C(w)) := Vol(Conv({a1, . . . , ad+1})) (29)

is given by iw ·
∑d+1
i=1 ci where iw is the index [Zd : 3w].
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Recall from Definition 2.3 that the core of an extended circuit is the unique circuit
contained within it. For any aj ∈ C+(w), define the cone

τj = LinR≥0{ai ∈ Core(C(w)) : i 6= j}.

Note that {τj }aj∈C+(w) are cones over the simplices in the triangulation T+ of Core(C(w))
defined in (4). We state a proposition which essentially rephrases [40, Proposition 14.2.1].

Proposition 3.15 ([40, Proposition 14.2.1]). The fan consisting of ϒ = {τj :

aj ∈ C+(w)} is contained in 6. If the signature of C(w) is (p, q; r), then there exists
a collection Supp(w) := {σi : 1 ≤ i ≤ m} of r-cones in 6 such that the maximal cone in
the star of ϒ consists of the cones ϒ(d) := {τj + σi : aj ∈ C+(w), 1 ≤ i ≤ m}.

Associated to the codimension 1 cone w = 〈a3, . . . , ad+1〉 is an extremal contraction
in the sense of Mori theory, the structure of which can be phrased combinatorially in
terms of the circuit Core(C(w)) as follows. First, consider the collection Simp(6) =
{Conv(σ (1) ∪ {a0}) : σ ∈ 6(d)} of simplices and write

Vol(6) =
∑

σ∈Simp(6)

Vol(Conv(σ (1) ∪ {a0})). (30)

Note that if X6 is projective, then Simp(6) extends to a regular triangulation T of
Conv(A). This can be seen by choosing a very ample divisor

∑
a∈6(1) raDa on X6 and

observing that the function sending a to ra defines an extension T of Simp(6). We call
such a triangulation T a convex extension of Simp(6). In this way, we may consider the
two collections of cones which depend on the circuit,

ϒ− = {Cone(C(w)− aj ) : aj ∈ C−(w), aj 6= a0},

ϒ
−
= {τ + σ : τ ∈ ϒ−, σ ∈ Supp(w)}.

Assuming T is supported on the circuit Core(C(w)) as in Definition 2.4, we can replace
the maximal cones (and their faces) of 6 occurring in ϒ with those in ϒ−. This yields a
fan 6′ = 6mC(w)(T ) which implements the circuit modification mC(w)(T ) of T by C(w)
as defined in [24, Section 7.2.C]. We summarize the corresponding statement in birational
geometry as follows.

Proposition 3.16 ([14, Theorem 15.4.1]). With notation as above, let T be a convex
extension of Simp(6) and w a codimension 1 cone of 6 such that T is supported on
Core(C(w)). Then the extremal contraction corresponding to the rational curve deter-
mined by w is given by a birational map

fw : X6 99K X6′ .

While we refer to [14] for the proof of this proposition, we will detail the three essen-
tially different situations that can occur. These are the standard operations of Mori theory:
Mori fiber space, divisorial contraction, and flip. They are distinguished by the signature
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(p, q; r) of C(w). To see this, we need to define three stacks associated to w. Define the
lattices

3F =
LinR(Core(C(w))) ∩ Zd

LinR(C−(w)) ∩ Zd
, 3E =

Zd

LinR(C−(w)) ∩ Zd
,

3B =
Zd

LinR(Core(C(w))) ∩ Zd
,

with the natural projections

πF : LinR(Core(C(w))) ∩ Zd → 3F , πB : Zd → 3B , πE : Zd → 3E,

Define stacky fans

6F = {πF (τ ) : τ ∈ ϒ},

6E = {πE(σ ∪ τ) : σ ∈ Supp(w), τ ∈ ϒ},
6B = {πB(σ ) : σ ∈ Supp(w)}

(31)

and denote their associated toric stacks by F , E and B respectively, with coarse
spaces F,E and B. Note that there is an obvious toric fibration π : E → B with fiber
i : F ↪→ E .

We start with the case of q = 1. In this case the map πB : Zd → 3B induces a map
of stacky fans from 6 = 6E onto 6B which gives a smooth map f : X6 → B. Here
6B = 6

′ and f = π is a Mori fiber space map with general fiber equal to F .
In the case q = 2, C−(w) = {a0, ad+1}, so 3E has rank d − 1 and E is a divisor

in X6 . The circuit modified fan 6′ is obtained by replacing the cones in the star of ϒ
with {σ ∪ C+(w) : σ ∈ Supp(w)}. In other words, we delete the 1-cone corresponding
to ad+1 which, at the coarse level, gives a divisorial contraction f : X6 → X6′ whose
exceptional locus is E blown up along B.

The case of q > 2 corresponds to a flip. Indeed, as in the case of q = 2, the cir-
cuit modified stacky fan 6̃ is obtained by replacing the star of ϒ by {σ ∪ C+(w) : σ ∈
Supp(w)}. The induced map π̃ : X6 → X6̃ contracts E , which in this case has codimen-
sion > 1 and contains the rational curve corresponding to w. As X6̃ is not Q-factorial, to
obtain the flip φ : X6′ → X6̃ one observes that KX6′ is ample relative to φ, as required.

We are interested in sequences of these birational operations which come from certain
runs of the Mori program.

Definition 3.17. Given a toric stack X = Xr , a sequence of equivariant birational maps

Xr
fr
99K Xr−1 99K · · ·

f1
99K X0

will be called an MMP sequence of X if for every 1 ≤ i ≤ r − 1, fi is a divisorial
contraction or flip, and f1 is a Mori fiber space.
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Recall that the effective cone of a projective simplicial toric variety X admits a chamber
decomposition whose chambers correspond to those toric varieties obtained from X by
the operations of the toric Mori program [33]; for brevity we call the induced fan structure
the Mori fan. An MMP sequence as above gives rise to a piecewise linear path in the Mori
fan of X starting at the ample cone and ending at the boundary of the nef cone. If this
path can be made to be linear, we call the sequence regular. These are instances of MMP
sequences obtained from the MMP with scaling, in the terminology of [8]. We may now
state a suggestive theorem relating maximal degenerations of LG models to the minimal
model program.

Theorem 3.18. Given a set A of lattice points, the regular MMP sequences which begin
with a toric stack in

{X6 : 6(1) ∪ {0} = A, X6 is nef Fano}

are in bijective correspondence with the mirror sequences to maximal degenerations of
{a0}-sharpened pencils on XQ. Both are in bijective correspondence with the vertices of
the monotone path polytope 6ρa0

(6(A)).

Proof. Consider the linear projection ρa0 : RA
→ R and its restriction to 6(A). Re-

call that this projection takes
∑
a∈A raea to ra0 and thus, by (55), for any triangulation

T = {(Qi, Ai) : i ∈ I }, ρa0(ϕT ) =
∑
a0∈Ai

Vol(Qi). In particular, ρa0(ϕT ) = 0 for
triangulations of (Q,A − {a0}), and ρa0(ϕT ) = Vol(Q) for triangulations in which ev-
ery simplex contains a0. Thus ρa0 maps 6(A) onto [0,Vol(Q)]. By Corollary 3.5, the
vertices of the monotone path polytope are in bijective correspondence with the maximal
degenerations. For any such vertex ξ , let Mξ = (〈t0, . . . , tr+1〉, {(di, mi)}) be its deco-
rated simplex path as given in Definition 3.6. We first observe that the mirror sequence to
ξ is an MMP sequence for X6 . If we take ρa0(tr+1) = Vol(Q) to have the maximal value,
then 6tr+1 is nef Fano. For every circuit Ci whose modifications give ti and ti+1, we see
that a0 6∈ (Ci)+, which implies that there is an extremal contraction fi : X6ti+1

99K X6ti
corresponding to the circuit. If 1 ≤ i ≤ r then since ρa0(ti) 6= 0, we deduce that a0 is
a vertex of a simplex in ti . This implies that σ(Ci) = (p, q; r) with q ≥ 1, so that fi
is a divisorial contraction or a flip. On the other hand, if i = 0, then ρa0(t0) = 0, which
implies that a0 is not a vertex of any simplex of t0. This implies that σ(C0) = (p, 1; r)
and f0 is a Mori fiber space. Therefore the mirror sequence to ξ corresponds to an MMP
sequence for X6 . The converse is obtained by running the above correspondences in re-
verse.

ut

From this result, one is naturally led to conjecture that every decomposition of the A-
model category Fuk⇀(w) given by a radar screen corresponds to an equivalent decom-
position of the B-model derived category of X6 which is associated to the mirror MMP
sequence. On the B-model side, such a decomposition has been given very explicitly
in [36]. We write a condensed version of these results here. While we refer the reader
to loc. cit. for complete proofs, we include a partial proof to verify the count given in
Theorem 3.19(i).
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Theorem 3.19 ([36]). (i) Let C(w) = {a0, . . . , ad+1} correspond to a signature
(p, q; r) circuit in a rank d lattice with a0 = 0 ∈ C−(w) and triangulations T±.
Let X = X6T+ . Then the derived category Db(X ) has a strong exceptional collec-
tion of Vol0(C(w)) line bundles,

Ew =
{
O
(d+1∑
i=1

kiDi

)
: 0 ≥

∑
ciki > −

∑
ci

}
.

If q = r = 1, then the collection is complete.

(ii) Let X = Xr be a toric stack with an MMP sequence

Xr
fr
99K Xr−1 99K · · ·

f1
99K X0

and associated toric stacks Fi , Ei and Bi at each stage. Then there is a semiorthogonal
decomposition

Db(X ) ' 〈S1, . . . ,Sr 〉
where each Si admits a semiorthogonal decomposition

Si ' 〈j∗(π∗(Db(Bi))⊗ L) : L ∈ Ew〉.
Proof. These statements are part of Theorems 3.1, 4.3, 5.2 and 6.1 in [36]. The only
additional point not proven there is the count of exceptional objects being Vol0(C(w))
as defined in (29). To prove this, we observe that φ : ZA → Zd given by φ(ei) = ai
has cokernel Zd/3w and rank 1 kernel. So the line bundles O(

∑
biDi) form a subgroup

of Pic(X ) isomorphic to (Zd/3w)∨ ⊕ Z. Thus the number of line bundles O(
∑
kiDi)

satisfying 0 ≥
∑
kici > −

∑
ci , counted up to equivalence, is |Zd/3w| · (

∑
ci) =

Vol0(C(w)). ut

One notational distinction worth noting is that what is called F in [36], is denoted B here.
Now we recall from [23, Section 2.6] that the multiplicity of a d-dimensional cone σ
in Zd is

Mult(σ ) = [Zd : LinZ(σ (1))].

We use Theorem 3.19 to prove a more elementary result.

Proposition 3.20. Let X6 be a complete toric stack with simplicial stacky fan 6 in Zd .
Then

rk(K0(D
b(X6))) = Vol(6) =

∑
σ∈6(d)

Mult(σ ). (32)

Proof. We prove this by induction on dimension. Every stacky fan in Z is given by two
primitive points a1, a2 ∈ Z which give a (2, 1) circuit A = {a0 = 0, a1, a2}. Clearly
Vol0(A) = |a1| + |a2|, which equals the two quantities on the right in (32). By Theorem
3.19(i), this is also the number of exceptional objects in a complete exceptional collection,
so the proposition holds for this case.

Now assume that it holds for dimensions < d and all d-dimensional complete, sim-
plicial stacky fans 6̃ with Vol(6̃) < V for some V ∈ N. Let 6 be a d-dimensional com-
plete, simplicial stacky fan with Vol(6) = V . Let f : X6 99K X6′ be a birational map
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associated to a circuit modification C(w) of signature (p, q; r). Write the corresponding
fibration, defined in (31), as F → E → B, where dim(B) = r < d. By Theorem 3.19(ii),
the additivity of the rank of K0 relative to semiorthogonal decompositions, and the above
assumptions, we have

rk(K0(D
b(X6))) = rk(K0(D

b(X6′)))+ Vol0(C(w)) · rk(K0(D
b(B)))

= Vol(6′)+ Vol0(C(w)) · Vol(6B).

Now, from the definition of 6B and Proposition 3.15, we deduce that for every d-
dimensional cone σ̃ ∈ ϒ ⊂ 6 which contains τj as a face for some τj ∈ ϒ , there is a
unique σ ∈ 6B which is the πB -image of σ ′ ∈ 6 where σ ′ + τj = σ̃ . The volume of
the simplex associated to σ̃ is thus Vol(σ ) · Vol(τj ). The contribution to Vol(6) from ϒ

is therefore
∑
τj∈ϒ, σ∈6B

Vol(τj ) · Vol(σ ).

The same holds for ϒ−, which yields

Vol(6)− Vol(6′) =
∑

τj∈ϒ, σ∈6B

Vol(τj ) · Vol(σ )−
∑

τi∈ϒ
−, σ∈6B

Vol(τi) · Vol(σ )

=

∑
σ∈6B

Vol(σ )
(∑
τj∈ϒ

Vol(τj )−
∑
τi∈ϒ

−

Vol(τi)
)

= Vol(6B) · Vol0(Core(C(w))) = Vol(6B) · Vol0(C(w)).

But this implies rk(K0(D
b(X6))) = Vol(6) = V , proving the induction step. ut

From this, we obtain an equality of the ranks of the K-theory for the semiorthogonal
pieces arising from both the A-model and B-model categories.

Corollary 3.21. Suppose Tξ = 〈ti0 , . . . , tir 〉 is the parametric simplex path correspond-
ing to the maximal degeneration ξ ∈MA,a0 , ξt is a regeneration of ξ , and {[sj , sj+1] :

sj = ρa0(tij )} is the induced tight coherent subdivision of [0,Vol(Q)]. The associated
semiorthogonal decompositions Fuk⇀(wξt ) = 〈T1, . . . , Tr 〉 andDb(X6) = 〈S1, . . . ,Sr 〉
have the property

rk(K0(Tj )) = sj − sj−1 = rk(K0(Sj )).

Proof. The equality rk(K0(Tj )) = sj−sj−1 follows from the discussion after (26), where
it was observed that the multiplicity mj of EA equals sj − sj−1. This multiplicity denotes
the number of critical points in the j -th outer annulus of the radar screen decomposition
and thus the number of exceptional objects in the generating collection for Tj , proving
the first equality.

The equality for rk(K0(Sj )) follows by observing that sj −sj−1 equals ρa0(tij − tij−1),
which is the difference of the sum of the volumes of simplices containing a0 in tij and tij−1 .
By the construction of 6j = 6tij

preceding Definition 3.13, it follows that this equals
Vol(6j )− Vol(6j−1), which is rk(K0(Sj )) by Proposition 3.20. ut

Theorem 3.18 and Corollary 3.21 lead to the following natural conjecture.
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Conjecture 3.22. Given any maximal degeneration ξ of an {a0}-sharpened pencil and a
regeneration ξt of ξ , let

Fuk⇀(wξt ) = 〈T1, . . . , Tr 〉, Db(X6) = 〈S1, . . . ,Sr 〉

be the semiorthogonal decompositions associated to ξ and its mirror sequence. Then there
exists an equivalence of triangulated categories

8ξ : Fuk⇀(wξt )→ Db(X6)

which restricts to equivalences 8ξ : Ti → Si for all 1 ≤ i ≤ r .

In fact, a more detailed conjecture can easily be formulated about the equivalence of the
categories Ti and Si associated to degenerate circuits, but we will leave this to a later
work. Additional evidence for this conjecture comes from the case of A actually equaling
a circuit, which is simply the statement of homological mirror symmetry for a weighted
projective stack. Certain classes of (2, 2) circuits were also examined in [37] where the
equivalence of the circuit regeneration and the semiorthogonal component associated to
a stacky blowup was proved.

As a final remark, we point out that the edges of the monotone path polytope
6ρa0

(6(A)) correspond to minimal transitions between MMP sequences. They also cor-
respond to certain two-dimensional faces of 6(A). Restricting attention to those faces
which have an edge on the minimum facet ρa0 = 0, we obtain a transition between two
Mori fiber spaces. Such moves, or links, have been well studied in a much more general
context and their classification is referred to as the Sarkisov program. As an outgrowth of
our perspective, one may pursue a complete structure theorem for all toric Sarkisov links.

Appendix A. Toric preliminaries

In this section, we will give key definitions and constructions for a toric moduli space of
hypersurfaces and its compactification. An important point to keep in mind throughout
is that our moduli stacks are only of hypersurfaces in toric stacks, and only up to toric
isomorphism, not general isomorphisms. The advantage of this approach is that we obtain
stacks with extremely explicit representations.

In the first two subsections we recall and collect notions of the algebraic and symplec-
tic geometry of toric stacks. Many familiar aspects of this subject will be assumed, but
all novel constructions will be discussed. In the last two subsections, we recall the con-
structions of Gelfand, Kapranov and Zelevinsky [24] and Lafforgue [38]. We adapt these
ideas to the definition of several toric stacks which give the moduli compactification, a
universal toric variety lying over it and its universal hypersurface.

A.1. Basic definitions

We start this section by recalling the construction of toric stacks through the data of a
stacky fan. We utilize the material in [25] rather than the more classical approach given
in [10, 13]. This allows one to work with more general Artin stacks.
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Definition A.1. A stacky fan 6 consists of the data (31,32, β,6) where:

(i) 32 is a finitely generated abelian group,
(ii) 6 is a fan in 31 ⊗ R and 31 is a lattice,

(iii) β : 31 → 32 is a homomorphism with finite cokernel.

The set of d-dimensional cones in 6 will be denoted by 6(d) and we refer to σ ∈ 6(d)
as a d-cone. We will frequently abuse notation and identify a 1-cone R≥0 ·λ in 6(1) with
its primitive generator λ. Note that our definition of a stacky fan is called a generically
stacky fan in [25, Definition 2.4]. Now extend β to an exact sequence

0→ L6
α
−→ 31

β
−→ 32 → K6 → 0. (33)

Let cone(β) = [31
β
−→ 32] be the cone of β in the category of chain complexes of abelian

groups and take

H6 := Tor1(cone(β),C∗) ∼= (L6 ⊗ C∗)⊕ Tor1(K6,C∗)

to be the first hypertor group of cone(β). The isomorphism above follows from consider-
ing the hypertor spectral sequence which collapses on the second page as L6 is a lattice
and K6 is finite. Furthermore, the connecting homomorphism in the long exact sequence
of hypertor maps H6 onto ker(β ⊗Z 1) ⊂ 31 ⊗Z C∗. This in turn gives rise to an action
of H6 on the toric variety X6 . One notes that if 32 is not torsion free, then another look
at the long exact sequence of hypertor shows that the finite group Tor1(32,C∗) naturally
embeds into H6 as the subgroup which stabilizes X6 generically.

Definition A.2. Given a stacky fan 6, the toric stack X6 is defined to be the quotient
stack [X6/H6].

The torus acting on X6 is

G6 = 32 ⊗Z C∗.

Indeed, note that for any λ ∈ G6 , we may choose λ′ ∈ 31 ⊗Z C∗ with β(λ′) = λ and
define λ · : X6 → X6 by λ′ · z for z ∈ X6 . This defines the torus action of G6 on X6

up to natural isomorphisms. The action can be made strict when K6 is trivial.
Given two stacky fans, 6̃ and 6, we define a map g : 6̃ → 6 to be a pair (g1, g2)

such that g1 : 3̃1 → 31 induces a map of fans g1 : 6̃→ 6, and g2 : 3̃2 → 32 satisfies
β ◦ g1 = g2 ◦ β̃. It is clear that any such map of stacky fans induces a map g̃ : X6̃ → X6

along with a homomorphism g2 ⊗ 1 : G6̃ → G6 . While g̃ is not strictly equivariant, it
is weakly equivariant in the sense that for every λ̃ ∈ G6̃ and z ∈ X6̃ , there is a natural
isomorphism hλ̃ ∈ H6 for which hλ̃(g̃(λ̃ · z)) = (g2 ⊗ 1)(λ̃) · g̃(z). These isomorphisms
must satisfy a cocycle condition which is evident from their construction. In particular, if
λ̃ ∈ G6̃ lifts to act via λ̃′ ∈ 3̃1 ⊗Z C∗, and (g2 ⊗ 1)(λ̃) ∈ G6 lifts to λ′ ∈ 31 ⊗Z C∗,
then one defines hλ̃ = λ

′
· [(g1 ⊗ 1)(λ̃′)]−1.

Following [25, Section 5], we call a stacky fan 6 good if the primitive generators
6(1) in31 are linearly independent and span a saturated sublattice of32. All of the toric
stacks defined and worked with in this paper will be good and most will be Deligne–
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Mumford (DM for short). It was shown in loc. cit. that for any toric stack X , there is a
canonical stack X6̃ and a map X6̃ → X where 6̃ is a good stacky fan. This map satisfies
a universal property and can be thought of as a stacky resolution of X . When X = X6

and 6 is good, the map is an isomorphism.
For a good DM toric stack X6 , one can identify the space Diveq(X6) of equivariant

Cartier divisors with 3∨1 and the Picard group with Pic(X6) = L∨6 ⊕ Ext1(K6,Z).
Indeed, let 6∨ ⊂ 3∨1 be the dual cone to the cone over 6(1). Then the ring

R6 = C[xσ : σ ∈ 6(1)] (34)

is the homogeneous coordinate ring for X6 graded by the character lattice L∨6 ⊕

Ext1(K6,Z) of H6 . Given γ0 ∈ 3
∨

1 , we write Dγ0 for the associated Cartier divisor
and O(Dγ0) for the line bundle in Pic(X6). Utilizing the map α from the exact sequence
(33), for any character γ0 ∈ 6

∨ define the set

[γ0] = {γ ∈ 6
∨
: α∨(γ ) = α∨(γ0)} ⊂ 3

∨

1 .

This identifies the vector space H 0(X6,O(Dγ0)) with (C[γ0])∨ = Homset([γ0],C) with
eigenbasis consisting of the monomials {xγ : γ ∈ [γ0]} ⊂ R6 . When the divisor Dγ is
chosen, the group G6 × C∗ acts on H 0(X6,O(Dγ )) via

(λ, t)
( ∑
γ∈[γ0]

cγ xγ

)
= t

∑
γ∈[γ0]

(β∨)−1(γ − γ0)(λ)cγ xγ .

Here we have identified 3∨2 with the group of characters Hom(G6,C∗).
Suppose g : 6̃ → 6 is a map of stacky fans and γ ∈ 6∨ an effective divisor on X6 .

Then the map
g̃∗ : H 0(X6,O(Dγ ))→ H 0(X6̃,O(Dg∨1 (γ ))) (35)

is simply
g̃∗
( ∑
γ∈[γ0]

cγ xγ

)
=

∑
γ∈[γ0]

cγ xg∨1 (γ )
.

Now assume that g : 6̃ → 6 describes a flat morphism of good toric stacks. Recall
from [34, Proposition 2.4] that such a map has the property that g1 maps 6̃(1) onto6(1),
implying that g1 : 3̃1 → 31 has cofinite image 01 := im(g1). Let 02 be the pushout

3̃1
β̃
//

g1

��

3̃2

h

��

01
γ
// 02

used in the following definition.

Definition A.3. Given an equivariant flat morphism g : X6̃ → X6 between two good
toric stacks, let 6→g = (01, 02, γ,6) and X→g = X6→g

be called the colimit stack relative
to g, and g→ = (g1, h) : X6̃ → X→g the induced morphism.
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Note that the colimit stack is a good toric stack. The following proposition establishes a
universal property for the colimit stack.

Proposition A.4. Suppose X1, X2 and X3 are good toric stacks. Let g : X1 → X3 be a
flat equivariant morphism, factored as g = h ◦ f :

X1 X→g

X3 X2

g f

g→

h

h̃
(36)

If h is a bijection on orbits then there exists a unique map h̃ : X→g → X2 such that
f = h̃ ◦ g→.

Proof. This follows from the universal properties of pushout along with the assump-
tion that h is an isomorphism on fans defining X2 and X3. In particular, suppose 6i =

(3i1,3
i
2, βi, 6i) for i ∈ {1, 2, 3} are stacky fans for Xi , and f , g and h are represented by

maps of stacky fans, (f1, f2), (g1, g2) and (h1, h2) respectively. By [20, Theorem IV.6.7],
the condition that g is flat implies that g1 is surjective. Since h is an isomorphism of coarse
toric varieties, it follows that h1 is an isomorphism of lattices and induces an isomorphism
of fans from 62 to 63. This implies that f1 factors through g1 so that the pushout 0 of g1
and β1 admits a map h̃ to 32

2 making diagram (37) commute.

31
1 31

2

33
1 0

32
1 32

2

33
1 33

2

β1

f1

g1

g1

f2

g2

g̃→2

h−1
1 h̃

β→

β2

h1 h2

β3

(37)

The stacky fan of the colimit stack 6→g = (33
1, 0, β

→, 63) then admits the stacky fan
map (h−1

1 , h̃) to 62 whose induced map on toric stacks makes diagram (36) commute.
ut

The toric stacks relevant for this paper arise from finite sets in a lattice or a finitely gener-
ated abelian group. We now recall this construction and fix our notation. Let B be a finite
subset of a finitely generated abelian group 3 which spans 3 ⊗ Q. To construct a toric
stack associated to B, let βB : ZB → 3 be the homomorphism given by assigning eb to b
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where {eb : b ∈ B} is the standard basis for ZB . We call the exact sequence

0→ LB
αB
−→ ZB

βB
−→ 3→ KB → 0 (38)

the fundamental sequence associated to B. Let cone(βB) be the cone of βB in the category
of chain complexes of abelian groups. Using the hyperext spectral sequence, one can
compute the hyperderived dual R∗Hom(cone(βB),Z) to see that it is concentrated in
degree 1 and isomorphic to L∨B ⊕ Ext1(KB ,Z). We will use the notation 3B∨ for this
abelian group. Note that the long exact sequence associated to R∗Hom(−,Z) is then

0→ 3∨
β∨B
−→ (ZB)∨

α?B
−→ 3B∨ → 0, (39)

where α?B = α
∨
⊕ δ is the connecting homomorphism.

Assume B comes naturally equipped with an abstract simplicial complex B, i.e. a
collection of subsets of B which is closed under intersection. Then we define the fan 6B
in RB to consist of the cones Cone(τ ) = LinR≥0{eb : b ∈ τ } for every τ ∈ B. We write
6B,B = (ZB ,3, βB , 6B) and XB,B for the associated stack. If B is understood, we may
write 6B and XB . Note that all stacky fans in the sense of [10] and fantastacks from [25]
are obtained from this construction.

Suppose3 is a rank d lattice. LetA ⊂ 3 be a finite subset which affinely spans3⊗R
and Q ⊂ 3R equals the convex hull of A denoted Conv(A). By a marked polyhedron
we mean a pair (Q,A) where Q is a polyhedron, i.e. the intersection of finitely many
half-spaces in 3 ⊗ R. We take Q̄ ⊂ 3∨ to be the finite set of primitive generators for
supporting hyperplanes of Q. More precisely, for every b ∈ 3∨ let

nb = −min{b(v) : v ∈ Q}. (40)

Then b ∈ Q̄ if and only if b is primitive and {v ∈ Q : b(v) = −nb} is a facet of Q.
The dual of the face poset of Q then defines an abstract simplicial complex BQ on Q̄. In
particular,

BQ = {Q̄Q′ : Q
′ is a face of Q}, (41)

where the set Q̄Q′ is defined as {b ∈ Q̄ : b(v) = −nb for every v ∈ Q′}.
The marked polyhedron (Q,A) provides the stack X6Q̄,BQ

with a positive line bundle
O(DγA) where

γA =
∑
b∈Q̄

nbe
∨

b ∈ (Z
Q̄)∨, (42)

and a linear system (CA)∨ ⊂ (C[γA])∨ = H 0(XQ̄,BQ ,O(Dγ )).

Definition A.5. Given a marked polyhedron (Q,A), let

(1) 6Q := 6Q̄,BQ be the stacky fan associated to Q,
(2) XQ := XQ̄,BQ be the toric stack associated to Q,
(3) ∂XQ = D∑

b∈Q̄ e
∨
b

be the boundary divisor of XQ,
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(4) OA(1) := O(DγA),
(5) LA := (CA)∨ ⊂ H 0(XQ,OA(1)) be the linear system of sections of OA(1) with

equivariant sections indexed by A,
(6) GQ be the group 3∨ ⊗ C∗ acting on XQ.

We illustrate these definitions with two basic examples.

Example A.6. Suppose A ⊂ Z2
= 3 is the subset {(1, 0), (−1, 0), (0, 1)}, so that Q is

a triangle. One computes Q̄ = {(1,−1), (−1,−1), (0, 1)}, which implies that the funda-
mental exact sequence (38) for B = Q̄ is isomorphic to

0→ Z
αQ̄
−→ Z3

βQ̄
−→ Z2

→ 0,

where αQ̄(1) = (1, 1, 2). Thus the stacky fan for (Q,A) is 6 = (Z3,Z2, βQ̄, 6) where
6 consists of all proper faces of R3

≥0. This implies X6 = C3
− {0} and H6 = C∗ via the

action λ · (x1, x2, x3) = (λx1, λx2, λ
2x3), so that

X6 = P(1, 1, 2). (43)

One can check that n(1,−1) = 1, n(−1,−1) = 1, n(0,1) = 0, so that OA(1) = OP(1,1,2)(2)
where OP(1,1,2)(n) corresponds to the graded module C[x1, x2, x3] with 1 in degree −n.
Furthermore, the linear system LA is the span of {x2

1 , x
2
2 , x3}. As (0, 0) ∈ Q was not

included in A, its corresponding section x1x2 does not appear in the linear system.

Example A.7. Suppose A = {(0, 0), (1, 0), (0, 1), (−1,−1)} ⊂ Z2
= 3. Again Q is a

triangle and Q̄ = {(2,−1), (−1, 2), (−1,−1)}. However, in this case KQ̄ is non-trivial
in the fundamental sequence

0→ Z
αQ̄
−→ Z3

βQ̄
−→ Z2

→ Z/3Z→ 0.

Here αQ̄(1) = (1, 1, 1) and the stacky fan is 6 = (Z3,Z2, βQ̄, 6) where 6 is as in Ex-
ample A.6. Thus, letting µ3 be the third roots of unity, we see that X6 = C3

− {0} and
H6
∼=C∗⊕µ3 where the action of H6 onX6 is (λ, ζ )·(x1, x2, x3)=(λx1, λζ

−1x2, λζx3)

(up to a change of coordinates), so that

X6 = [P2/µ3].

One checks that nb = 1 for b ∈ Q̄, which implies that OA(1) is the pullback of OP2(3).
The generators of LA corresponding to A are the invariant sections {x3

1 , x
3
2 , x

3
3 , x1x2x3}.

The study of toric varieties and stacks from the perspective of marked polytopes places the
linear system as a central object. Those sections that have singularities on various orbits
of XQ will be of particular interest. LetAv be the set of vertices ofQ, andAnv = A−Av .
For any faceQ′, we will write orbQ′ ⊂ XQ for the corresponding orbit. For a section s of
a line bundle over a stack, we denote its zero locus by Ys .
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Definition A.8. A section s ∈ LA ⊂ H 0(XQ,OA(1)) is degenerate if the scheme-
theoretic intersection Ys ∩orbQ′ is singular for some faceQ′ ofQ. If s =

∑
a∈A caea , we

say s is full if ca 6= 0 for all a ∈ Av , and very full if ca 6= 0 for all a ∈ A.

When XQ is a smooth stack, a degenerate section is a section which does not transversely
intersect the toric boundary. The principal A-determinant

EA : LA→ C (44)

is a polynomial which vanishes on degenerate sections (see [24, Chapter 10]). We also
recall that the discriminant 1A : LA → C is a polynomial that vanishes on the closure
of the set of sections with a singularity in the maximal torus orbit of XQ. Note that there
exist sets A for which the discriminant 1A is constant. These cases yield toric varieties
that are called dual defect and are studied in [15].

Our next aim is to review the procedure of equipping XQ with an invariant sym-
plectic structure. We will follow the usual route of symplectic reduction [4]. We take
T = {z ∈ C∗ : |z| = 1} and, given any lattice 0, we write T0 and t0 ≈ 0R for the real
torus T⊗ 0 and its Lie algebra. We will utilize the fundamental sequence

0→ LQ̄

αQ̄
−→ ZQ̄

βQ̄
−→ 3∨→ KQ̄→ 0. (45)

We note that the toric variety X6Q̄,BQ ⊂ CQ̄ is an open equivariant subset, so that re-
stricting the standard Kähler structure on CQ̄ to X6A yields the moment map µQ̄ :

X6A → RQ̄
≥0 given by

µQ̄(z1, . . . , z|Q̄|) = (|z1|
2, . . . , |z

|Q̄||
2), (46)

where we have chosen the action of TZQ̄ on CQ̄ to be

(θ1, . . . , θ|Q̄|) · (z1, . . . , zn) = (e
−2iθ1z1, . . . , e

−2iθ
|Q̄|z
|Q̄|).

On the other hand, restricting to the TLQ̄ action gives the moment map µLQ̄ = µQ̄ ◦ α
∨

Q̄

where α∨
Q̄
: t∨

ZQ̄
→ t∨LQ̄

is just tensoring with R and taking the dual. Choosing a value
ω in the interior of the image of µLQ̄ gives a symplectic form on XQ via the symplectic
reduction

(XQ, ω) = [µ−1
LQ̄
(ω)/TLQ̄ ].

We write ρω : µ
−1
LQ̄
(ω) → XQ for the symplectic quotient map. If no choice of ω is

mentioned, we set

ω = α∨
Q̄
(Dγ ) (47)

and call this the standard symplectic form on XQ. Such a choice fixes XQ as a monotone
symplectic stack, which can be thought of as a very stringent condition [41]. After having
chosen a symplectic form on XQ, we recover the moment map of T3∨ on XQ by first
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considering 3̃∨ = βQ̄(ZQ̄) and the moment map with respect to T3̃∨ . For this group,
there is a splitting i : T3̃∨ → TZQ̄ of β. From the exactness of the sequence

0→ LQ̄

αQ̄
−→ ZQ̄

βQ̄
−→ 3̃∨→ 0, (48)

we infer that µ̃A : XQ → t3̃∨ ≈ 3̃R is given by i∗ ◦ µQ̄. To recover the actual moment
map, we need only compose with the natural map 3̃R → 3R inverse to the dual of the
inclusion. These moment maps fit into the commutative diagram

µ−1
LQ̄
(ω)

µQ̄

��

ρω // XQ

µA

��

RQ̄ 3R
β∨
Q̄
+γ

oo

(49)

where γ ∈ RQ̄ satisfies α∨
Q̄
(γ ) = ω (note that a different choice will simply translate the

moment map).
We observe that the image of the moment map on XQ can be seen as the intersection

of an affine subspace i(3R)+ ω with the positive cone RQ̄
≥0. For the case of the standard

form, the image of µA is Q itself. This can be seen by taking γ = γA from (42).

A.2. Stable pair degenerations

We now review the procedure for simultaneous degeneration of a toric stack and its hy-
persurface (see [28, 29, 43]).

Definition A.9. Given a section s ∈ LA ⊂ H 0(XQ,OA(1)), write Ys for its zero locus
and call the pair (XQ,Ys) a stable pair. Two such pairs, (XQ,Ys) and (XQ′ ,Ys′), will be
considered equivalent if there exists an equivariant isomorphism from XQ to XQ′ which
pulls back s′ to s.

We recall the definition of a regular marked subdivision S = {(Qi, Ai)}i∈I of (Q,A)
from [24, Chapter 7.2]. First, we require that for each i ∈ I , Ai ⊂ A, Qi = Conv(Ai),
the union of the Qi is Q, and the intersection of any two Qi is a face of each. Note
that the union

⋃
i∈I Ai is not necessarily the set A. The added condition of regularity is

formulated in the following way. Let η : A→ R be any function and take

Qη = Conv{(a, t) ∈ 3R ⊕ R : a ∈ A, t ≥ η(a)}

to be the convex hull of the half-lines defined by η. Let η̃ : Q→ R be the function

η̃(q) = min{t : (q, t) ∈ Qη}. (50)

It follows that η̃ is a convex, piecewise affine function on Q.
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Definition A.10. We say that η is a defining function for the subdivision S = {(Qi, Ai) :

i ∈ I } if

(i) η̃|Qi extends to an affine function ςi on 3⊗ R ,
(ii) η(a) = ςi(a) if and only if a ∈ Ai .

S is a regular subdivision if it has a defining function. If the set Ai is affinely independent
for every i ∈ I , the subdivision S is called a regular triangulation and denoted by T .

An example of the graph {(a, η(a)) : a ∈ A} of the function η and its associated polyhe-
dron Qη is shown in Figure 19.

Q2Q1

Fig. 19. S = {(Q1, A1), (Q2, A2)} and a defining function η.

For any regular subdivision S, we let C◦R(S) be the cone of all defining functions for
S and C◦Z(S) = (Z

A)∨ ∩C◦R(S) the set of integral defining functions. Write CR(S) for its
closure and CZ(S) = (ZA)∨ ∩ CR(S). For any η ∈ C◦Z(S), we define

Aη = {(r, t) ∈ 3⊕ Z : r ∈ A, t ≥ η(r)}

and write (Qη,i, Aη,i) for the marked facet of (Qη, Aη) over Qi .
We will now use integral defining functions to construct and study a degeneration

of XQ. This technique follows that of Mumford [43]. Let η ∈ C◦Z(S) and write Xη for the
toric stack XQη as constructed in Definition A.5. Recall that Q̄η is in bijection with the
facets of the polyhedron Qη. Then Q̄η can be written as the disjoint union Q̄v

η ∪ Q̄
h
η of

two types of facets where v and h refer to vertical and horizontal divisors. The first type,
b ∈ Q̄v

η, is a facet on the lower boundary of Qη. These are in one-to-one correspondence
with the polytopes {(Qi, Ai) : i ∈ I } of S. The second type, b ∈ Q̄h

η , is a facet of Qη

which is invariant under positive translations by (0, t) for t ≥ 0. These are in one-to-one
correspondence with the facets of Q itself.

We notice that the combinatorics of the polyhedron Qη and thus those of BQη and
6Q̄η,BQη are dictated by S and not η. The role that η plays in the definition of Xη is in the

function βQ̄η : Z
Q̄η → (3⊕Z)∨. The subfan6Aη consisting of 1-cones in Q̄v

η projects to

a fan βQ̄η (6Aη ) ⊂ (3R⊕R)∨ with 1-cones given by βQ̄η (Q̄
v
η) = {f −dςi : i ∈ I }where

f = (0, 1) ∈ (3⊕ Z)∨ and dςi is the derivative (or linear part) of the affine function ςi
appearing in Definition A.10(i). A subtle point about this formula is that when Ai affinely
spans a proper sublattice of3, the element f −dςi is not necessarily in (3⊕Z)∨. In this
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case, it is necessary to take a multiple to obtain a primitive generator. We write cη,i ∈ Z>0
for the denominator of dςi . In other words, for any i ∈ I , we define the constant cη,i as

cη,i := min{n ∈ Z>0 : n · dςi ∈ 3
∨
}. (51)

It is not hard to see that cη,i divides the index [3 : AffZ(Ai)] where AffZ(Ai) is the affine
hull of Ai . So, in general, there are only a finite number of possible constants cη,i that can
occur amongst all η ∈ C◦Z(S).

As is always the case with toric stacks defined by polyhedra, the stack Xη comes
equipped with a line bundle Oη(1) such that the vector space CAη is canonically identified
with a linear system. The map η induces a natural inclusion ιη : CA→ CAη given by

ιη

(∑
a∈A

caea

)
=

∑
a∈A

cae(a,η(a)).

Definition A.11. A degenerating family of (XQ,Ys) is a stable pair (X ,Y) equivalent
to a pair (Xη,Yιη(s′)) for some defining function η of a regular subdivision S of (Q,A)
and a very full section s′.

We note that the stack Xη admits a morphism Fη : Xη → C. Taking C to be the stacky fan
given by (Z,Z, 1Z,R≥0) where R≥0 is thought of as the fan consisting of itself and {0},
we may describe Fη as a map (f1, f2) of stacky fans

ZQ̄η
βQ̄η
//

f1

��

(3⊕ Z)∨

f2

��

Z Id // Z

Here, f1(eb) = 0 for every b ∈ Q̄h
η , while f1(ebi ) = cη,i for bi ∈ Q̄v

η corresponding to
(Qi, Ai). The homomorphism f2 is simply projection to the Z factor. It is not hard to see
that the fiber of (Xη,Yιη(s)) over 1 ∈ C∗ is equivalent to (XQ,Ys). On the other hand, the
fiber over zero is the union (

⋃
i∈I XQi ,

⋃
i∈I Ys|Ai ) whose irreducible components are

equivalent to the toric pairs (XQi ,Ys|Ai ).
It is useful to view the morphism Fη from the moment map perspective as well. Here

µ−1
LQ̄η

(ω) ⊂ CQ̄η defines the stack Xη after taking the quotient by TLQ̄η . Observe that the

map Fη can then be defined on CQ̄η as

F̃η(z1, . . . , z|Q̄η|) =
∏
i∈Q̄vη

z
cη,i
i . (52)

In other words, F̃η is invariant with respect to the TLQ̄η action and descends to Fη on the

quotient Xη = [µ−1
LQ̄η

(ω)/TLQ̄η ].
In general, the marking A should be thought of as a set specifying the non-zero coef-

ficients of a given section. Let Av ⊂ A be the set of vertices of Q and call any stable pair
(XQ,Ys) full if s ∈ (C∗)Av × CA−Av , and very full if s ∈ (C∗)A.
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Definition A.12. Let s ∈ H 0(XQ,OA(1)) be a full section and Fη : X → C the projec-
tion associated to η ∈ ZA.

(i) A toric degeneration of XQ is the fiber F−1
η (0).

(ii) A hypersurface degeneration of Ys is the fiber F−1
η (0) ∩ Y .

(iii) A stable pair degeneration of (XQ,Ys) is the pair (F−1
η (0), F−1

η (0) ∩ Y).

If t ∈ C, we write Zη(t) for the fiber F−1
η (t) ∩ Ys .

A.3. Secondary and Lafforgue stacks

In this section we give an explicit formulation of several moduli stacks related to A. One
stack we obtain is closely related to those defined in [3] and [38].

We start by setting up more notation and recalling several general results from [24].
Given a monoid M acting on an abelian group 3 and a subset A ⊂ 3, we write LinM(A)
for the set of linear combinations of A with coefficients in M . Again we assume A ⊂ 3
is a finite set which affinely spans 3⊗ R and promote it to the subset

A := {(a, 1) : a ∈ A} ⊂ 3⊕ Z. (53)

This spans a semigroup LinN(A)with convex hull LinR≥0(A). We note that the supporting
hyperplane functions LinR≥0(A) = {(b, nb) : b ∈ Q̄} and XLinR≥0 (A)

is the affine cone of

XQ where the constants nb were defined in (40). Recall from (38) that the fundamental
sequence associated to A is

0→ LA
αA
−−→ ZA βA

−−→ 3⊕ Z→ KA→ 0. (54)

We will return to the extension A of A and the sequence (54) several times throughout
this section.

A marked polytope (Q,A) will be referred to as a simplex if Q is a simplex and A
is its set of vertices. Recalling Definition A.10, a regular triangulation of A is a regular
subdivision S = {(Qi, Ai) : i ∈ I } such that every (Qi, Ai) is a simplex. Such triangula-
tions correspond to vertices of the secondary polytope6(A) as defined in [24, Chapter 7].
More concretely, for a regular triangulation T = {(Qi, Ai) : i ∈ I }, define

ϕT =
∑

a∈
⋃
Ai

(∑
a∈Ai

Vol(Qi)
)
ea ∈ ZA. (55)

In this formula, Vol(Qi) is normalized so that the standard simplex has volume 1.
The secondary polytope of A is then the convex hull

6(A) = Conv{ϕT : T a regular triangulation of A} ⊂ RA. (56)

While the vertices of6(A) have a particularly nice formula in RA, we will see in Theorem
A.16 that the dimension of 6(A) is always |A| − d − 1 where d is the rank of 3.
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Example A.13. Suppose A ⊂ Z2
= 3 is the subset {(1, 0), (−1, 0), (0, 1)} from Ex-

ample A.6 consisting of the vertices of a simplex. Then there is only one regular tri-
angulation T = {(Q,A)} and the secondary polytope 6(A) consists of a single point
ϕT = 2e(1,0) + 2e(−1,0) + 2e(0,1).

Example A.14. Suppose A = {(0, 0), (1, 0), (0, 1), (−1,−1)} ⊂ Z2
= 3 as in Ex-

ample A.7 and observe that there are precisely two regular triangulations T− and T+ of
(Q,A) illustrated in Figure 20. Thus the secondary polytope in this case is an interval
between the points

ϕT− = 3e(0,0) + 2e(1,0) + 2e(0,1) + 2e(−1,−1),

ϕT+ = 3e(1,0) + 3e(0,1) + 3e(−1,−1).
(57)

T− T+
6(A)

ϕT− ϕT+

Fig. 20. Regular triangulations and the secondary polytope for A = {(0, 0), (1, 0), (0, 1),
(−1,−1)} ⊂ Z2.

The next cited theorem connects the secondary polytope to the linear system LA. In order
to state it, we review more of the notation from [24, Section 5.3]. We write Q′ ≤ Q if Q′

is a face ofQ. For any faceQ′ ≤ Q, take A′ = {(a, 1) : a ∈ Q′∩A} and let LinR(A′) and
LinZ(A′) be the R-linear and Z-linear span of A′ respectively. Then the index i(Q′, A) is
set to equal [3 ⊕ Z ∩ LinR(A′) : LinZ(A′)]. Given an additive monoid M contained in
a lattice, the notation u(M) denotes its subdiagram volume. This is defined by letting 3
be the group completion of M , K(M) [K+(M)] the convex hull of M [M − {0}] in 3R,
and K−(M) equal to the closure of K(M)−K+(M). With this notation, the subdiagram
volume is given by u(M) = Vol3(K−(M)). The notation u(LinN(A)/Q′) denotes the
subdiagram volume of the semigroup LinN(A)/Q′ defined as the image of LinN(A) in
3⊕ Z/(3⊕ Z ∩ LinR(A′)).

Theorem A.15 ([24, Theorem 10.1.2]). (i) The Newton polytope of EA is 6(A).
(ii) EA(f ) =

∏
Q′≤Q1A∩Q′(f )

i(3,A)·u(LinN(A)/Q′).

The exponent i(Q′, A) · u(LinN(A)/Q′) equals the multiplicity of any point on the orbit
associated to Q′ on the possibly non-normal toric variety associated to A. We prefer the
formulation above over simply writing the multiplicity since our definition of a toric stack
associated to a polytope does not coincide with the one given in [24]. However, there is
always a dominant map from our definition of XQ to theirs, namely, the map associated
to the linear system given by A.

The secondary fan is a construction more in the spirit of Appendix A.2 than the sec-
ondary polytope. This fan consists of the cones CR(S) of defining functions given in
Definition A.10 for all regular subdivisions S. We write F6(A) as the secondary fan with
support (RA)∨ and cite the following theorem.



Symplectic relations and degenerations of LG models 2221

Theorem A.16 ([24, Chapter 7.1]). (i) The secondary polytope6(A) has a single point
as its image under βA.

(ii) The fan F6(A) is the normal fan of 6(A).

In more detail, it follows from [24, Proposition 7.1.11] that

βA(6(A)) = (δQ, (d + 1)Vol(Q)) (58)

where δQ = (d + 1)
∫
Q
x dx is the dilated centroid of Q, and that 6(A) affinely spans

the fiber β−1
A (δQ, (d + 1)Vol(Q)). Consequently, 6(A) is an (|A| − d − 1)-dimensional

polytope inside an |A|-dimensional vector space. We will define several stacks associated
to 6(A) utilizing techniques from Appendix A.1. Since 6(A) does not affinely span RA,
but rather an affine plane parallel to LA ⊗ R, we cannot define X6(A) as before. Instead,
choose any v ∈ ZA for which βA(v) = δQ and let

6v(A) = {w ∈ LA ⊗ R : αA(w)+ v ∈ 6(A)}.

Thus 6v(A) is the translation of 6(A) to a full-dimensional integral polytope in a lin-
ear, instead of affine, subspace. As a different choice of v will simply translate 6(A) in
LA⊗R, the stack X6v(A) is independent of this choice. We will denote it by X r

6(A) where
the exponent r is a notational convenience to distinguish it from a finer stack X6(A) which
will be defined later in this section.

Let us detail the stacky fan associated to 6v(A). First observe that Theorem A.16
gives a bijective correspondence between faces of 6(A) (or equivalently, the translated
polytope 6v(A)) and regular subdivisions of A. This bijection is order reversing in the
sense that a face inclusion corresponds to a refinement of a subdivision. Recall that
6v(A) ⊂ L∨A denotes the supporting hyperplane primitives for 6v(A). By [24, Sec-
tion 7.2], the set of supporting hyperplanes is {bS : S a coarse subdivision}. By definition,
a coarse subdivision is a regular subdivision that is not a refinement of any non-trivial reg-
ular subdivision. Given b ∈ 6v(A), we let Sb be the corresponding coarse subdivision and
Fb the facet of6(A) supported by b. A collection J ⊂ 6v(A) is in the abstract simplicial
complex B associated to 6v(A) if and only if there is a regular subdivision S refining the
coarse subdivisions {Sb : b ∈ J }. Indeed, we recall from (41) that this simplicial complex,
viewed as a poset inside the power set of its vertices, is dual to the face poset of 6(A).
So if J = {b1, . . . , bk}, J will be a member if and only if the intersection of the facets
Fb1 , . . . , Fbk is a non-empty face of 6(A). This is equivalent to there existing a regular
refinement S, corresponding to the face Fb1∩· · ·∩Fbk , of Sb1 , . . . , Sbk . Assembling these
structures gives the stacky fan

66v(A) =
(
Z6v(A), L∨A, β6v(A), 6B

)
(59)

for X r
6(A).

Example A.17. We continue to explore Examples A.6 and A.7. For Example A.6, one
observes that since the secondary polytope is a point, the stacky fan 66v(A)=(0, 0, 0, {0})
is completely trivial and defines only a point. For Example A.7, notice that there are no
lattice points on the relative interior of 6(A), so that 6v(A) is a unit interval in L∨A ⊗ R
∼= R. Thus X r

6(A) is isomorphic to P1, and the line bundle determined by 6(A) is O(1).
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To obtain more control over the hypersurfaces in XQ and their degenerations, we will
need a more nuanced secondary stack than X r

6(A). Instead of working around the fact that
6(A) does not span RA, we extend the polytope 6(A) to a polyhedron 2p(A) and apply
constructions from Appendix A.1. This yields a stack X2(A) which we call the Lafforgue
stack of A due to the fact that its coarse toric variety equals the Lafforgue variety as
defined in [38].

Definition A.18. Let 1At = {
∑
a∈A caea : ca ≥ 0,

∑
ca = t} be a simplex in RA, and

1A≥t =
⋃
s≥t 1

A
s .

(i) The Lafforgue polytope 2(A) of A is the Minkowski sum 6(A)+1A1 .
(ii) The Lafforgue polyhedron 2p(A) of A is the Minkowski sum 6(A)+1A

≥1.

To justify the name of these polyhedra, we recall the construction by Lafforgue ([30],
[38, Chapter 2.1]) of a fan F2p(A) which refines the secondary fan F6(A). Given a regular
subdivision S = {(Qi, Ai) : i ∈ I } and a non-empty marked face (Qp, Ap) of one of the
subdividing polytopes (Qi, Ai) satisfying Ap = Qp ∩ Ai , we define the closed cone

CR(S,Ap) = {η ∈ CR(S) : η(a) ≤ η(a
′) for all a ∈ Ap, a′ ∈ A}. (60)

We call the pair (S,Ap) a pointed subdivision and when Ap = {a}, we simply write
CR(S, a). It is clear that CR(S,Ap)⊂CR(S′, A′p) if and only if S′ refines S and Ap⊃A′p.
In this case we write (S′, A′p) � (S,Ap). By definition, the fan F2(A) consists of
the cones {CR(S,Ap) : (S,Ap) a pointed subdivision of (Q,A)}. For certain classes of
sets A, Lafforgue has shown that the toric variety associated to this fan yields a parameter
space for toric degenerations of the variety XA. However, this paper is concerned primar-
ily with degenerations of hypersurfaces in a toric stack, so in order to relate this work to
ours, we require a line bundle on the associated variety. Furthermore, to preserve infor-
mation on toric isomorphisms, we wish to consider the toric stack construction along the
lines of Appendix A.1. For this, we prove the following lemma.

Lemma A.19. The fan F2(A) is the normal fan of to the polytope 2(A).

Proof. Let R ⊆ 2(A) be any subset containing the vertices of 2(A). Given any element
φ ∈ 2(A), write

Nφ(2(A)) = {ψ ∈ (RA)∨ : (ψ, φ) ≤ (ψ, φ′) for all φ′ ∈ 2(A)}

= {ψ ∈ (RA)∨ : (ψ, φ) ≤ (ψ, φ′) for all φ′ ∈ R}

for the normal cone of φ. Here, in accordance with the description of defining functions
in CR(S), we view elements ψ ∈ (RA)∨ as functions from A to R and the contraction is
given by (ψ, ea) := ψ(a).

It follows from the definition that F2(A) is a refinement of F6(A). In particular, the
cones CR(S,Ap) can be described as intersections of CR(Tj , a) where Tj is a regular
triangulation refining S, and a is both a member of Ap and a vertex in a simplex of T .
Thus the cones

{CR(T , a) : T a regular triangulation, a a vertex in a simplex of T }
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form the set F2(A)(|A|) of maximal cones. We now show that each one of these maximal
cones is a normal cone to an element in 2(A).

For any regular triangulation T and a ∈ A let

ϕ(T ,a) := ϕT + ea . (61)

Note that since 2(A) is the Minkowski sum of 6(A) and 1A1 , the set

R := {ϕ(T ,a) : T a regular triangulation, a ∈ A}

contains the set of vertices of 2(A). Fixing one triangulation T , suppose a is a vertex of
a simplex of T so that CR(T , a) is in F2(A)(|A|). Let ψ ∈ CR(T , a) and ϕ(T ′,b) ∈ R.
By the definition of CR(T , a), we have ψ(a) ≤ ψ(a′) for any a′ ∈ A. Using the result
that the secondary fan is dual to the secondary polytope, and in particular that CR(T ) =
NϕT (6(A)), we have

(ψ, ϕ(T ,a)) = (ψ, ϕT )+ ψ(a) ≤ (ψ, ϕT )+ ψ(b) ≤ (ψ, ϕT ′)+ ψ(b) = (ψ, ϕ(T ′,b)).

Thus CR(T , a) ⊆ Nϕ(T ,a)(2(A)). For the converse, one simply observes that both the
normal fan to 2(A) and the fan F2(A) are complete fans supported in RA with C(T , a),
and thus also Nϕ(T ,a)(2(A)), both |A|-dimensional cones. The inclusions CR(T , a) ⊆
Nϕ(T ,a)(2(A)) thus imply that F2(A) is a refinement of the normal fan to2(A). However,
as the number of vertices of2(A) is greater than or equal to the number of maximal cones
in F2(A), we must have CR(T , a) = Nϕ(T ,a)(2(A)). Returning to the initial observation
that every cone in 2(A) can be described as a non-trivial intersection of the maximal
cones CR(T , a), and observing that the same is true for normal fans of polytopes, we
obtain the result. ut

This proposition gives us a polarization for the variety associated to the Lafforgue fan.
However, if we wanted to obtain a polytope spanning RA, we have missed the mark by
one dimension. As in the case of the secondary polytope, we could restrict to the subspace
spanned by 2(A). However, it is more natural to consider the polyhedron 2p(A) ⊂ RA

and a variant of its associated stacky fan as defined in Appendix A.1. Before introducing
this stacky fan, we examine the combinatorics and geometry of the polyhedron 2p(A).

Lemma A.20. The primitives of the supporting hyperplanes,2p(A), can be partitioned
into a disjoint union

{%A} ∪2p(A)
h
∪2p(A)

v
⊂ (ZA)∨

where:

(i) %A =
∑
a∈A e

∨
a defines the supporting hyperplane of 2(A).

(ii) The set 2p(A)
h

bijectively corresponds to pointed subdivisions (S,Ap) where S =
{(Q,A)} and Ap are the elements of A on a facet of Q.

(iii) The set 2p(A)
v

bijectively corresponds to pointed subdivisions (S,Ap) where S =
{(Qi, Ai) : i ∈ I } is a coarse subdivision and Ap = Ai for some i ∈ I .
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Proof. First we observe that the polyhedron 2p(A) is combinatorially equivalent to the
cone R≥1 × 2(A) over 2(A). This can be seen by recalling equation (58), which gives
%A(6(A)) = (d+1)Vol(Q) and, by definition, %A(1At ) = t . As2p(A) = 1A≥1+6(A) =⋃
t≥1(1

A
t +6(A)), we see that

%A : 2p(A)→ [1+ (d + 1)Vol(Q),∞)

combinatorially trivializes 2p(A) as the product of a ray and 2(A). Since 2(A) has the
(|A| − 1)-dimensional simplex as a Minkowski summand, it is (|A| − 1)-dimensional. In
particular, 2(A) is the facet %−1

A (1+ (d + 1)Vol(Q)) of 2p(A) defined by the primitive
%A ∈ 2p(A).

Since 2p(A) is combinatorially a product of 2(A) and a ray, the remaining facets
of 2p(A) arise as products R≥1 × F where F is a facet of 2(A). By Lemma A.19,
these are in bijection with the minimal non-trivial cones in F2(A). Here the trivial cone
is the one-dimensional space spanned by %A (as it is the normal cone to points in the
relative interior of 2(A)). Such cones correspond to pointed subdivisions (S,Ap) which
are minimal among non-trivial pointed subdivisions with respect to the partial order �
discussed after the definition of C(S,Ap) in (60). In particular, they are pointed sub-
divisions (S,Ap) such that ({(Q,A)}, A) ≺ (S,Ap), but no other pointed subdivision
(S′, A′p) satisfies ({(Q,A)}, A) ≺ (S′, A′p) ≺ (S,Ap). It follows from the definition of ≺
that either S = {(Q,A)} or S is a coarse subdivision. In the former case, Ap must be
the set of points in A lying on a facet of Q (again, by the definition of ≺). We let the
collection of the dual primitives of such facets make up the subset 2p(A)

h
. In the latter

case, S = {(Qi, Ai) : i ∈ I } is a coarse subdivision, and if Ap lies on a proper face ofQi

for some i ∈ I , then ({(Q,A)}, A) ≺ (S,Ai) ≺ (S,Ap), contradicting the minimality
of (S,Ap). Thus Ap = Ai for some i ∈ I , and we denote by 2p(A)

v
the collection of

the dual primitives to these facets. ut

Having classified elements of2p(A) combinatorially, we now consider their linear forms.

For elements of2(A)
h
, we return to the exact sequence (54). If Ap = F ∩A for a facet F

of Q, then there is a unique primitive bAp ∈ (3⊕ Z)∨ which is a supporting hyperplane
for the cone LinR≥0(A) and vanishes on Ap ⊕ {1} ⊂ 3⊕ Z.

Lemma A.21. The elements of 2p(A) ⊂ (ZA)∨ not equal to %A are uniquely charac-
terized by:

(i) If b ∈ 2p(A)
h

then b is contained in CR({(Q,A)}, Ap) where Ap consists of all
elements of A in a facet of Q. There exists cb ∈ N such that

b = c−1
b β∨A(bAp ).

(ii) If b ∈ 2p(A)
v

corresponds to (S,Ap), then b = η(S,Ai ) ∈ C
◦

Z(S) is the primitive
defining function for S satisfying η(S,Ai )|Ai = 0.
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Proof. First observe that the proof of Lemma A.20 classifies the dual facets to a given
b ∈ 2p(A). In particular, if b 6= %A, then there is a pointed subdivision (S,Ap) for
which b ∈ CR(S,Ap). Let FS ⊆ 6(A) be the face of 6(A) whose normal cone is CR(S)

in F6(A). Note that when b ∈ 2p(A)
h

we have FS = 6(A), while if b ∈ 2p(A)
v

then
FS is a facet of 6(A). In either case, the facet of 2p(A) defined by b is the polyhedron

F(S,Ap) :=
⋃
t≥1

(FS + t · Conv{ea : a ∈ Ap}).

Since b is constant along the facet F(S,Ap) and ea is parallel to F(S,Ap) for every a ∈ Ap,
we have b|Ap = 0. This, along with the fact that b is a primitive element of CZ(S,Ap),
uniquely characterizes b and proves A.21(ii).

To prove A.21(i), assume b ∈ CR({(Q,A)}, Ap) so that b ∈ CR({(Q,A)}), implying
b is the restriction of an affine function on 3R to A (for otherwise, it defines a non-trivial
subdivision). The set of such functions is precisely the image of β∨A. In particular, if
b(a) = ψ(a) for every a ∈ A, where ψ(u) = ψ̃(u)+ c for a linear function ψ̃ ∈ 3∨R and
c ∈ R then b = β∨A(ψ̃, c). Since b achieves its minimum strictly on Ap, for every a ∈ Ap
and a′ ∈ A we have ψ̃(a) ≤ ψ̃(a′), with equality if and only if a′ ∈ Ap. Thus ψ̃ is a
supporting hyperplane of the convex hull ofAp. Furthermore, since ψ̃ |Ap+c = b|Ap = 0,
we see that (ψ̃, c)|Ap⊕{1} = 0. Thus (ψ̃, c) also equals zero on the cone LinR≥0(Ap⊕{1}),
which is a facet of LinR≥0(A⊕{1}). Thus (ψ̃, c) can be expressed uniquely as r ·bAp with
r > 0. As both b and bAp are primitive and β∨A : LinZ(bAp ) → LinZ(b), we conclude
that r = c−1

b for a unique cb ∈ N. ut

Example A.22. The Lafforgue polytope 2(A) for Example A.7 illustrates the geometry
seen in general. Since6(A) is an interval and1A1 is a tetrahedron in R4 parallel to6(A),
we can place their Minkowski sum in a three-dimensional hyperplane. This is illustrated
in Figure 21. Note that the facets parallel to 6(A) correspond to the horizontal boundary
components2(A)

h
of2(A) and are in natural bijection with the facets ofQ. Meanwhile,

the vertical facets in 2(A)
v

lie over the boundary of 6(A). Each of them corresponds
to one of the two triangulations T± along with a choice of subdividing polytope in T±
(which, in the case of T+, must be all of Q). These subdividing polytopes Qi determine
the pointing sets Ap = A ∩Qi .

Using (61), we get explicit coordinates for the vertices of 2(A). Recall that equa-
tions (57) gave formulas for the vertices ϕT± of 6(A) corresponding to the triangu-
lations T±. Hence, the four vertices of 2(A) on the left in Figure 21 are {ϕ(T−,a) :
a ∈ A}, while the three vertices on the right are {ϕ(T+,a) : a ∈ A − {(0, 0)}}. In
general, it is a consequence of Lemma A.20 that the vertices of 2(A) are {ϕ(T ,a) :
(T , a) a pointed triangulation of (Q,A)}.

In case the cokernel KA of βA is non-zero, we will need to consider a more refined
version of a primitive supporting hyperplane. Recall from properties A.10(i) and A.10(ii)
that if ηS ∈ RA defines the subdivision S = {(Qi, Ai) : i ∈ I }, then its restriction to each
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6(A)

2(A)

Fig. 21. The Lafforgue polytope relative to the secondary polytope for A = {(0, 0), (1, 0), (0, 1),
(−1,−1)}.

Qi equals that of an affine function ςi ∈ (3R ⊕ R)∨. We will say that ηS is a 3-defining
function for S if

ςi ∈ (3⊕ Z)∨ for every i ∈ I. (62)

It is clear that the set of 3-defining functions forms a semigroup in ZA, and if ηS is
a primitive element of this semigroup, we call ηS a primitive 3-defining function for S.
Generally, a primitive3-defining function for a given subdivision is not unique. However,
for a coarse pointed subdivision, {(S,Ap)}, Lemma A.21(ii) implies that there is a one-
dimensional ray R≥0 · η(S,Ap) in (RA)∨ of defining functions for S which vanish on Ap.
As η(S,Ap) ∈ (ZA)∨, there is a positive integer multiple of it that is the unique primitive
3-defining function in this ray. We write η̄(S,Ap) for this defining function.

Example A.23. Let A = {−2, 0, 2} ⊂ Z = 3 so that KA ≈ Z/(2). Then e∨
−2 ∈ (Z

A)∨

defines the subdivision S = {([−2, 0], {−2, 0}), ([0, 2], {0, 2})}. While it is primitive, it
is not a primitive 3-defining function for S. Rather, the multiple 2e∨

−2 is and gives the
unique function η̄(S,{0,2}).

We use the definition of primitive 3-defining functions and the constants cb occurring in
Lemma A.21(i) to define the homomorphism β̃2p(A) : Z

2p(A)→ (ZA)∨ via

β̃2p(A)(eb) =


%A if b = %A,
η̄(S,Ap) if b = η(S,Ap) ∈ 2p(A)

v
,

cbb if b ∈ 2p(A)
h
.

(63)

Define the stacky fan

6̃2p(A) =
(
Z2p(A), (ZA)∨, β̃2p(A), 62p(A)

)
(64)

where the lattices and fan are equal to those for the stacky fan of 2p(A) as in Definition
A.5, but β̃2p(A) differs from the prescribed homomorphism β2p(A). In particular, even
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in the case where KA = 0 (implying every defining function is 3-defining), there will
generally be elements b ∈ 2p(A) for which the scaling constants cb ∈ N are not 1. We
will glean a bit more detailed information about β̃2p(A) later in this section, but first we

consider an assortment of structures on the stack associated to 6̃2p(A).
By defining the polyhedron2p(A) as a Minkowski sum 6(A)+1A

≥1, we ensure that
its normal fan refines not only F2(A), but also the normal fan F1 of1A

≥1. The toric variety
associated to this fan is the total space of the tautological bundle O(−1) over P|A|−1.
Indeed, F1 is a refinement of the cone LinR≥0{e

∨
a : a ∈ A} obtained by adding the

ray LinR≥0(%A) and subdividing. This is the toric construction for blowing up the origin
in C|A|. One can check that e∨a is the primitive corresponding to a pointed subdivision
(S,Ap) where S is a coarse subdivision. Thus e∨a ∈ 2p(A)

v
, and there is a morphism of

stacks

G̃ : X6̃2p(A)
→ OP|A|−1(−1) (65)

which, after projection, gives a morphism G : X6̃2p(A)
→ P|A|−1. In fact, X6̃2p(A)

is
itself a line bundle over the divisor D%A defined by %A and G̃ is a map of line bundles
over proper stacks. We will not use this fact, but we will consider the restriction G :
D%A → P|A|−1.

Definition A.24.

(i) The total Lafforgue stack of A is X2p(A) := X6̃2p(A)
.

(ii) The universal line bundle OA(1) on X2p(A) is G∗(OP|A|−1(1)).
(iii) The universal section sA ∈ H 0(X2p(A),OA(1)) is the pullback G∗(

∑
a∈A Za).

(iv) The total universal hypersurface is the zero locus ỸA of sA.
(v) The Lafforgue stack of A is X2(A) := D%A .

(vi) The universal hypersurface YA ⊂ X2(A) is ỸA ∩ X2(A).

The toric stack X2(A) can also be described by taking the star of %A in 62p(A), which
yields a fan 62(A) in RB combinatorially equivalent to the Lafforgue fan where B =
2p(A)− {%A}. The map β̃2(A) : ZB → (ZA)∨/LinZ(%A) obtained by restricting β̃2p(A)
to ZB and then quotienting by LinZ(%A) defines the stacky fan

62(A) :=
(
ZB , (ZA)∨/LinZ(%A), β̃2(A), 62(A)

)
. (66)

This gives an alternative description of X2(A). The advantage of detailing the total Laf-
forgue stack is to give a natural context in which to define the universal line bundle and
the universal section. Let us describe this stack for our two examples.

Example A.25. For A = {(1, 0), (−1, 0), (0, 1)} ⊂ 3 as in Example A.6, we have seen
that 6(A) is a point and thus 2p(A) is a translation of 1A

≥1. One can check that

2p(A) = {e
∨

(1,0), e
∨

(−1,0), e
∨

(0,1), e
∨

(1,0) + e
∨

(−1,0) + e
∨

(0,1) = %A} ⊂ (Z
A)∨.
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Here, in indexing the basis, we identify elements of A with their counterparts in A. Had
we took the usual toric stack defined by the normal fan of this polyhedron, we would
obtain the total space OP|A|−1(−1). However, having altered β2p(A) to β̃2p(A), we have to
check if this has modified the stacky fan in this case. Since there are no coarse subdivi-
sions of (Q,A), we consider only b ∈ 2p(A)

h
.

From Example A.6 we know that Q̄ = {(1,−1), (−1,−1), (0, 1)} ⊂ 3∨ and the
associated primitive normal rays to LinR≥0(A) are {(1,−1, 1), (−1,−1, 1), (0, 1, 0)} ⊂
(3⊕ Z)∨. The tautological map βA : ZA

→ 3⊕ Z sends e(a,b) to (a, b, 1) and one can
compute

β∨A(1,−1, 1) = 2e∨(1,0), β∨A(−1,−1, 1) = 2e∨(−1,0), β∨A(0,−1, 0) = e∨(0,1).

By (63), β̃2p(A) takes eb to b for b ∈ {%A, e∨(0,−1)}, and eb to 2b for b ∈ {e∨(1,0), e
∨

(1,0)}.
The cokernel of this map is Z/2Z and one observes that the stacky fan 62(A) yields the
stack

X2(A) ∼= [P(1, 1, 2)/(Z/2Z)] .

To explain the appearance of the group Z/2Z, we note that there is a Z/2Z subgroup
of GQ which fixes LA and therefore gives an automorphism of any hypersurface defined
by a section in LA.

Example A.26. Let us consider the Lafforgue stack for Example A.7, where A =
{(0, 0), (1, 0), (0, 1), (−1,−1)} ⊂ Z2

= 3. We computed both Q̄ and nb in Ex-
ample A.7, and putting these together gives {(2,−1, 1), (−1, 2, 1), (−1,−1, 1)} as the
set of supporting hyperplane primitives to LinR≥0(A). Now, applying β∨A gives

β∨A(2,−1, 1) = e∨(0,0) + 3e∨(1,0),

β∨A(−1, 2, 1) = e∨(0,0) + 3e∨(0,1),

β∨A(−1,−1, 1) = e∨(0,0) + 3e∨(−1,−1).

As each of these is primitive, the constants cb are 1 for each b ∈ 2p(A)
h
. Turning to the

vertical facets, we note that 2p(A)
∨
= {e∨(0,0), e

∨

(1,0), e
∨

(0,1), e
∨

(−1,−1)}. This follows from
the fact that 1A

≥1 is a Minkowski summand of 2p(A) and, from Example A.22, there are
only four remaining facets. One checks that

e∨(0,0) = η(T+,A−{(0,0)}),

e∨(1,0) = η(T−,A−{(1,0)}),

e∨(0,1) = η(T−,A−{(0,1)}),

e∨(−1,−1) = η(T−,A−{(−1,−1)}).

(67)

Furthermore, they are each 3-defining functions for the respective triangulations. These
facts imply that β̃2p(A) = β2p(A) in this case. One can apply Proposition 2.11 to obtain a
description of this Lafforgue fan and stack. In particular, X2(A) is shown to be a weighted
blowup of P3 over three lines.



Symplectic relations and degenerations of LG models 2229

To obtain the last construction of this section, we first make a modification of the stacky
fan defining the toric stack X r

6v(A)
associated to the secondary polytope. We note that

there are alternatives to this approach if KA 6= 0. Given a coarse subdivision S =
{(Qi, Ai) : i ∈ I } of (Q,A), write bS ∈ 6v(A) for the primitive hyperplane supporting
the facet corresponding to S. Let 0S ⊆ (ZA)∨ be the Z-linear span of all3-defining func-
tions for S. As S is a coarse subdivision, the image α∨A(0S) is contained in LinZ(bS) ≈ Z
and we choose a primitive cS ∈ 0S such that

α∨A(cS) = rSbS (68)

for rS ∈ N and α∨A(0S) = LinZ(rSbS). This uniquely defines rS and we modify the homo-

morphism β6v(A) in (59) for the stacky fan for X r
6v(A)

by defining β̃6v(A) : Z
6v(A)→ L∨A

via

β̃6v(A)(ebS ) = rSbS . (69)

Keeping the rest of the data in (59) the same, we let

6̃6v(A) =
(
Z6v(A), L∨A, β̃6v(A), 6B

)
(70)

be the modified stacky fan.
Define p1 : Z2p(A)→ Z6v(A) to be the homomorphism

p1(eb) =

{
ebS if b = η(S,Ap) ∈ 2p(A)

v
,

0 otherwise.
(71)

Lemma A.27. The diagram

Z2p(A)
β̃
2p(A)
//

p1
��

(ZA)∨

α∨A

��

Z6v(A)
β̃
6v(A) // L∨A

(72)

commutes and defines a map of stacky fans

p̃ = (p1, α
∨

A) : 6̃2p(A)→ 6̃6v(A). (73)

Proof. To prove that diagram (72) commutes, one must show that for any coarse subdivi-
sion S = {(Qi, Ai) : i ∈ I } and any i ∈ I , we have α∨A(η̄(S,Ai )) = rSbS . Equivalently, one
has to check that the α∨A-image of η̄(S,Ai ) generates α∨A(0S). To see this, suppose cS ∈ 0S
maps to such a generator. Then since cS is a3-defining function for S, restricting cS toAi
one obtains the3-affine function ςi ∈ (3⊕Z)∨. Thus c′S := cS−β

∨

A(ςi) ∈ 0S , and since
im(β∨A) ⊂ ker(α∨A), α

∨

A(c
′

S) also generates the image of 0S . But since c′S vanishes on Ai
and is a 3-defining function for S, it is in LinN(η̄(S,Ai )), implying it must equal η̄(S,Ai ).
This verifies the commutativity of diagram (72).
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The assertion that p̃ induces a map of stacky fans then follows from the fact that
F2(A) is a refinement of F6(A). ut

Quotienting by %A factors p̃, giving a morphism p : 62(A) → 6̃6v(A). Moreover, an
application of [20, Theorem IV.6.7] shows that this is a toric fibration, meaning that it is
a flat, surjective morphism of normal toric stacks. Thus we can apply Definition A.3 of a
colimit stack and expect the universal property in Proposition A.4 to hold.

Definition A.28. The secondary stack is X6(A) := X→p and the map p→ will be written
as π : X2(A) → X6(A). Given q ∈ X6(A), write ZA(q) for the fiber π−1(q) ∩ YA.
Using the coefficients of the A-determinant EA, write EsA ∈ O6(A)(1) for the section and
EA ⊂ X6(A) for its zero locus.

Observe that the map p in this definition can be replaced with p̃ to give an isomorphic
stack as the two associated diagrams yield the same pushout.

We conclude this section by describing the stacky fan for X6(A). To do this, we recall
the notation for the hyperext group 3A∨ = RHom∗(cone(βA),Z). Here, B = A and the
long exact sequence (39) is

0→ (3⊕ Z)∨
β∨A
−−→ (ZA)∨

α?A
−−→ 3A∨ → 0. (74)

To describe a stacky fan for X6(A) in complete generality, we will require a finite exten-
sion of 3A∨ . We will say that η ∈ (3 ⊕ Z)∨ defines a wall in A if it is constant on a
subset A′ ⊂ A which spans a codimension 1 subspace of3R⊕R. Note that this definition
implies that a constant affine function (0, n) on 3 defines a wall.

Definition A.29. The wall lattice (3 ⊕ Z)∨wall of A ⊂ 3 is the sublattice of (3 ⊕ Z)∨
generated by elements that define a wall in A. If (3⊕ Z)∨wall = (3⊕ Z)∨, we say that A
is wall complete. We write 4A for the cokernel of β∨A restricted to (3⊕ Z)∨wall.

In most examples that we consider,Awill be wall complete, implying that3A∨ = 4A. In
particular, if A contains a standard simplex then this equality will occur. A more general
criterion is given in the following lemma.

Lemma A.30. If KA = 0 then A is wall complete.

Proof. Given any simplex B = {b0, . . . , bd} ⊂ A, the set {(bi, 1) : 0 ≤ i ≤ d} forms a
basis for3Q⊕Q. Take b∨i,B to be the dual basis in (3Z⊕Z)∨ and observe that LinZ{b∨i,B :
0 ≤ i ≤ d, B a simplex in A} = (3⊕ Z)∨wall.

Choosing a basis {e0, . . . , ed} for 3⊕ Z, consider the isomorphism φ :
∧d

(3⊕ Z)
→ (3 ⊕ Z)∨ given by φ(v0 ∧ · · · ∧ vd−1)(u) = 〈e

∨

0 ∧ · · · ∧ e
∨

d , v0 ∧ · · · ∧ vd−1 ∧ u〉.
Observe that for any simplex B = {b0, . . . , bd} there are constants ri ∈ Z for which

rib
∨

i,B = φ(b0 ∧ · · · ∧ bi−1 ∧ bi+1 ∧ · · · ∧ bd).

Since KA = 0, it follows that A spans 3⊕Z. Thus {ā0 ∧ · · · ∧ ād−1 : āi = (ai, 1) ∈ A}
spans

∧d
(3⊕Z), which implies that its image {ribi,B} under φ spans (3⊕Z)∨, yielding

(3⊕ Z)∨ = (3⊕ Z)∨wall. ut
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Using 4A, we now describe a stacky fan for X6(A).

Lemma A.31. There is a map β̃6(A) for which

6̃6(A) =
(
Z6(A), 4A, β̃6(A), 6B

)
(75)

is a stacky fan for X6(A). If KA = 0, then β̃6(A) = β̃6v(A).

Proof. By Definition A.3 of the colimit stack, it suffices to prove that 4A is isomorphic
to the pushout of the diagram

Z2p(A)
β̃
2p(A)
//

p1
��

(ZA)∨

Z6v(A)

(76)

Since p1 is onto, the pushout is isomorphic to the cokernel of β̃2p(A) restricted to ker(p1).
Thus, using the definition of 4A, it suffices to show that

β̃2p(A)(ker(p1)) = β
∨

A((3⊕ Z)∨wall). (77)

We first prove that β̃2p(A)(ker(p1)) ⊆ β∨A((3 ⊕ Z)∨wall). For any coarse subdivision
S = {(Qi, Ai) : i ∈ I } of (Q,A) we will say that Ai and Aj are adjacent if Qi ∩Qj is a
facet of both Qi and Qj . Define the set of differences

BS := {eη(S,Ai )
− eη(S,Aj )

: i, j ∈ I, Ai adjacent to Aj } ⊂ Z2p(A).

Then the lattice ker(p1) is easily seen to be generated by

{e%A} ∪ {eb : b ∈ 2p(A)
h
} ∪

⋃
S

BS,

where the last union is over all coarse subdivisions of (Q,A). One computes that
β̃2p(A)(e%A) = %A = β∨A(0, 1). Also, by the definition of β̃2p(A) in (63) and Lemma

A.21(i), if b ∈ 2p(A)
h

corresponds to the facet F of Q with Ap = A ∩ F , then
β̃2p(A)(eb) = β∨A(bAp ). By definition, bAp is constant on Ap, which implies it is in
(3⊕ Z)∨wall. Finally, by Lemma A.27, if eη(S,Ai ) − eη(S,Aj ) ∈ BS then

α∨A
(
β̃2p(A) (eη(S,Ai )

− eη(S,Aj )
)
)
= β̃6v(A) (ebS − ebS ) = 0.

This implies that β̃2p(A) (eη(S,Ai )−eη(S,Aj )) = η̄(S,Ai )−η̄(S,Aj ) restricts to an affine function
(as the kernel of α∨A is (im(βA))∨). Since η̄(S,Ai ), η̄(S,Aj ) ∈ 0S are 3-defining functions
for S, their restriction to Ai is in (3 ⊕ Z)∨. This implies their difference is an affine
function on 3 and thus equals β∨A(λ) for some λ ∈ (3 ⊕ Z)∨. Furthermore, since both
η̄(S,Ai ) and η̄(S,Aj ) are zero on Ai ∩Aj , λ is as well, and as Ai is adjacent to Aj , λ defines
a wall in A. Thus, we have shown β̃2p(A) (eη(S,Ai ) − eη(S,Aj )) ∈ β

∨

A((3⊕ Z)∨wall).
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We now turn to the inclusion β∨A((3 ⊕ Z)∨wall) ⊆ β̃2p(A)(ker(p1)). To verify this,
suppose ν ∈ (3⊕Z)∨ defines a wall in A and observe that restricting ν to A will give us
one of three possible scenarios.

First, ν|A could be constant, in which case ν is as well and β∨A(ν) = β̃2p(A)(n%A) for
some n ∈ Z.

Second, it could be the case that ν is constant on a facet F of Q and non-constant
on Q. In this case, it is a multiple of the primitive bAp where Ap = F ∩ A. By Lemma
A.21(i) and the definition of β̃2p(A), it follows that β∨A(ν) ∈ β̃2p(A)(ker(p1)).

Third, ν could be constant on subset A′ ⊂ A whose affine span in 3R divides Q
into two subpolytopes. More precisely, letting c = ν(a, 1) for some (a, 1) ∈ A′, take
A− = {(a, 1) ∈ A : ν(a, 1) ≤ c} and A+ = {(a, 1) ∈ A : ν(a, 1) ≥ c}. Then A− and
A+ affinely span 3R and one can define elements ν± ∈ (ZA)∨ as

ν+ =
∑
a∈A+

ν(a, 1)e∨a +
∑

a∈A−A+

ce∨a − c%A

and ν− = ν+ − β∨A(ν).
We claim that ν± lie in CZ(S) for a coarse subdivision S = {(Qi, Ai) : i ∈ I } of

(Q,A). As they differ by an element of im(β∨A), they define the same subdivision. By def-
inition, S is a coarse subdivision if and only if the cone C◦R(S) ⊂ (R

A)∨ of defining func-
tions for S is (d + 2)-dimensional (recall that dim(3R) = d). Let LA′ ⊂ [(3R ⊕ R)∨]2
be the subspace of all pairs (b1, b2) of affine functions for which b1|A′ = b2|A′ and ob-
serve that since A′ spans a codimension 1 subspace, dim(LA′) = d + 2. Now, letting
Q± = Conv(A±), it follows from the construction of ν+ that (Q±, A±) ∈ S. Thus there
is a homomorphism F : C◦R(S) → LA′ defined by F(η) = (ς+, ς−) where ς± are the
affine functions which restrict to A±. One can check that the image of F is (d + 2)-
dimensional, and since A = A+ ∪A−, F is also injective. This verifies the claim that ν±
define a coarse subdivision.

Finally, by construction we have ν±|A± = 0 so ν± lie in the cones CZ(S,A±) of the
Lafforgue fan and are multiples of η(S,A±), respectively. Again, by construction, they are
both 3-defining functions for S, so they are also multiples of η̄(S,A±). Indeed, it follows
from Lemma A.27 that there exists a single constant C such that ν± = Cη̄(S,A±), which
implies that β∨A(ν) = ν+−ν− = C(η̄(S,A+)−η̄(S,A−)) ∈ β̃2p(A)(ker(p1)). This completes
the proof of the first statement.

For the second statement, applying Lemma A.30 gives (3⊕Z)∨wall = (3⊕Z)∨. This
in turn implies that 4A = L

∨

A and that diagram (72) is a colimit diagram. ut

We conclude this subsection with a description of this stacky fan for our two main
examples.

Example A.32. In Example A.6, A = {(1, 0), (−1, 0), (0, 1)} was a simplex and X r
6(A)

was equal to a point. The primitive hyperplane support functions for Q are

Q̄ = {(0, 1), (1, 1), (−1, 1)}.



Symplectic relations and degenerations of LG models 2233

By including 3∨ into (3⊕ Z)∨ and adding any constant affine of the form (0, 0, n), one
observes that (3⊕Z)∨wall = (3⊕Z)

∨ in this case. One then computes that4A = 3A∨ ∼=
Z/2Z. Applying Lemma A.31 and results from Example A.17, we find that the stacky fan
for X6(A) is

6̃6(A) = (0,Z/2Z, 0, {0}).

This implies that

X6(A) ∼= B(Z/2Z).

More generally, for any set A which consists solely of lattice vertices of a d-dimensional
simplex in 3R, one can show that X6(A) is isomorphic to the classifying stack B 4A =
[pt/4A] (note that even in this set of examples, it is not always the case that4A = 3A∨ ).
In the next subsection, we will interpret this as the moduli stack for hypersurfaces in XQ
defined by sections in LA.

Example A.33. We conclude this subsection by describing the stack X6(A) for A =
{(0, 0), (1, 0), (0, 1), (−1,−1)}. Since A contains a simplex which affinely spans 3, we
have (3⊕Z)∨wall = (3⊕Z)∨. This implies4A = 3A∨ and as the fundamental sequence
for A is equivalent to

0→ Z αA
−−→ Z4 βA

−−→ Z3
→ 0,

we have KA = 0. Here we compute αA(1) = (3,−1,−1,−1) as this yields the gen-
erating relation 3(0, 0, 1) − (1, 0, 1) − (0, 1, 1) − (−1,−1, 1) = 0 of elements in A.
Thus 3A∨ is isomorphic to L∨A

∼= Z. In particular, the commutative diagram (72) in
Lemma A.27 is a pushout and the homomorphism β̃6v(A) is equivalent to β̃6(A).

Now,6(A) = {bT− , bT+} ∈ L
∨

A
∼= Z. In Example A.26 we saw that β̃2p(A) = β2p(A).

Using the commutativity of diagram (72) and equations (67) now implies

β̃6(A)(bT−) = α
∨

A(η(T−,A−{(1,0)})) = α
∨

A(0, 1, 0, 0) = −1,

β̃6(A)(bT+) = α
∨

A(η(T+,A−{(0,0)})) = α
∨

A(1, 0, 0, 0) = 3.

Thus the stacky fan is isomorphic to

6̂6(A) = (Z2,Z, 3e∨1 − e
∨

2 , 6),

where 6 is the fan consisting of all proper faces of R2
≥0. Thus X6 = C2

− {0} and the
secondary stack is the weighted projective line

X6(A) ∼= P(3, 1).

A.4. Stable pair moduli

In this section we relate the moduli space of hypersurfaces defined by full sections in LA
introduced in Definition A.8 to a dense open subset in X6(A). While this will be done
with the standing assumption that A is wall complete, we note that if this is not the case,
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one can replace XQ by an étale cover X ′Q to obtain a similar interpretation of X6(A). We
emphasize here that by moduli space, we mean hypersurfaces in a toric stack up to toric
equivalence, not up to isomorphism. This toric moduli space, which we will denote by VA,
will be proven to be an affine DM stack and is therefore much easier to control. We then
show that the pullback YA ⊂ X2(A) along the inclusion yields a universal hypersurface
over VA. Finally, we prove that any toric degeneration Fη : Xη → C obtained by a 3-
defining function η can be realized by pulling back X2(A) along a map ρη : C→ X6(A)
where 0 is sent to the compactifying divisor X6(A) − VA. Restricting this to the universal
hypersurface gives meaning to the notion of X6(A) as a moduli space for hypersurface
degenerations.

Our first goal is to describe the space LA of sections modulo toric isomorphisms. For
every a ∈ A there is an equivariant divisor

Da =
∑
b∈Q̄

(〈b, a〉 + nb)e
∨

b ∈ (Z
Q̄)∨ = Diveq(XQ).

The section vanishing on Da will be denoted xDa ∈ LA. Recall from Definition A.5 that
the torus GQ acting on XQ is 3∨ ⊗ C∗. By fixing the set A ⊂ 3, we may identify the
maximal torus orbit U ⊂ XQ as GQ and trivialize OQ(1) over U so that the section xDa
is identified with the monomial a ∈ 3 ∼= Hom(3∨⊗C∗,C∗). With these identifications,
the action of the torus GQ on XQ extends to one on LA ∼= CA by tensoring the homo-
morphism α∨A : 3

∨
→ (ZA)∨ by C∗. In other words, taking the dual of the evaluation

map αA and tensoring with C∗ realizes GQ inside of (C∗)A, which acts diagonally on
LA = CA. We also wish to quotient by the C∗ scaling action on sections giving the group
GA × C∗ ∼= (3 ⊕ Z)∨ ⊗ C∗. The action of this group on the space LA = CA can be
realized by the tensoring α∨A : (3 ⊕ Z)∨ → (ZA)∨ with C∗. By (74), this leads to the
following definition.

Definition A.34. The A-linear system quotient stack is the toric stack XLA given by the
stacky fan

6LA = ((Z
A)∨,3A∨ , α

?
A, 6)

where 6 is the fan with unique maximal cone (RA
≥0)
∨.

From the arguments preceding the definition, this gives the Artin stack [LA/(3⊕Z)∨⊗C∗]
corresponding to sections in LA up to toric equivalence. There are many substacks of XLA
that are Deligne–Mumford (or DM), but our focus will be on the substack of hypersur-
faces defined by full sections. Recall that Av denotes the set of vertices of Conv(A), and
Anv = A−Av denotes the remaining elements of A. The substack of full sections is ob-
tained by taking the subfan 6′ of 6 which has (RAnv

≥0 )
∨ as its maximal cone. The stacky

fan

6′ := ((ZA)∨,3A∨ , α
?
A, 6

′) (78)

is otherwise the same as for 6LA , and we denote its toric stack by VA. We now verify the
claim that this is a DM stack.

Proposition A.35. The dense open substack VA ⊂ XLA is an affine DM stack.
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Proof. To prove this, we will define an affine DM stack X with stacky fan

6′′ = (0,3A∨ , γ,6
′′) (79)

and an isomorphism g : X → VA induced by a map (g1, g2) : 6
′′
→ 6′ of stacky fans.

First we define 6′′. Recall that A affinely spans 3Q, implying that Av does as well.
In turn, this implies Av linearly spans 3Q ⊕ Q and we choose C ⊆ Av to be any
(d + 1)-element subset which is a basis (recalling that rk(3) = d). Let 0 = LinZ{e∨a :
a ∈ A − C} ⊂ (ZA)∨ and let γ : 0 → 3A∨ be the restriction of α?A to 0. To complete
the definition of 6′′, take 6′′ to again be the fan with unique maximal cone (RAnv

≥0 )
∨.

To verify that 6′′ is a stacky fan, we must show that γ has finite cokernel. Recall that
the exact sequence (74) is

0→ (3⊕ Z)∨
β∨A
−−→ (ZA)∨

α?A
−−→ 3A∨ → 0.

Here βA : ZA
→ 3⊕ Z was the tautological map βA(ea) = a. Now if a ∈ 0 ∩ im(β∨A)

then there exists f ∈ (3⊕ Z)∨ such that∑
a∈A−C

cae
∨
a = a = β∨A(f ) =

∑
a∈A

f (a)e∨a .

But then f (a) = 0 for all a ∈ C, and as C was chosen to be a basis for 3Q ⊕Q, f = 0.
Since the sequence is exact, this implies ker(γ ) is zero, and as the rank of 0 equals that
of 3A∨ , γ must have finite cokernel and 6′′ is a stacky fan. Furthermore, since γ is
injective, H6′′ is a finite group and we conclude that

X6′′ = [((C∗)|Av |−d−1
× C|Anv |)/H6′′ ]

is an affine DM stack.
Letting g1 : 0 → (ZA)∨ be the inclusion and g2 : 3A∨ → 3A∨ the identity, we

have the commutative diagram

0
γ
//

g1
��

3A∨

= g2

��

(ZA)∨
α?A // 3A∨

and since g1 takes 6′′ to 6′, (g1, g2) is a map of stacky fans.
Finally, g1 : |6

′′
| → |6′| is an isomorphism on the support of the fans, and it restricts

to an isomorphism of monoids g1 : |6
′′
| ∩ 0 → |6′| ∩ (ZA)∨. As g2 is the identity, we

have verified the hypothesis of [25, Theorem B.3] showing that g induces an isomorphism
of toric stacks. ut

By definition, the stack VA is a quotient of the affine toric variety of full sections X6′ ∼=
(C∗)Av × CAnv by H6′ = (3 ⊕ Z)∨ ⊗ C∗. Observe that the group H6′ is naturally
isomorphic to GQ × C∗ where GQ is the torus acting on XQ and the additional factor of
C∗ rescales the sections. This group also acts naturally on the total space OA(−1). Taking
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the dual action of H6′ on X6′ (i.e. λ · x = λ−1x), we obtain a diagonal action of H6′ on
the product X6′ ×OA(−1) and define the toric stack UA over VA to be the quotient

UA :=
[
(X6′ ×OA(−1))/H6′

]
.

Write E(1) for the line bundle on OA(−1) which is the pullback of OA(1) along the
projection OA(−1) → XQ and examine the tautological section s̃ of O � E(1) over
X6′ × OA(−1). This is given by taking (t, (q, v)) with t ∈ X6′ ⊂ H 0(XQ,OA(1)),
q ∈ XQ and v ∈ OA(−1) lying over q ∈ XQ to t (q) ∈ O � E(1). As we have H6′ acting
with an inverse onX6′ , s̃ is invariant under the diagonal action and defines a section of the
line bundle E(1) on the quotient UA. Its zero locus is the incidence variety [s̃−1(0)/H6′ ],
which we denote by WA. We consider the pair WA ⊂ UA to be the universal hypersurface
{s̃ = 0} over VA.

Proposition A.36. There is an open inclusion ι : UA→ X2p(A).

Proof. We first provide a stacky fan description for UA. Note that the total space OA(−1)
has a stacky fan dual to the polyhedron which is the cone LinR≥1(Q⊕{1}) ⊂ 3

∨

R⊕R. As
this is a cone over the polytope Q, a facet is either Q, defined by %B = (0, 1), or a facet
of the cone LinR≥0(A). So the set of primitive hyperplanes can be identified with B =
Q̄ ∪ {%B} with the simplicial set B corresponding to the normal fan of LinR≥1(Q⊕ {1}).
The fundamental exact sequence (38) for OA(−1) is then

0→ LQ̄
αB
−→ ZQ̄ ⊕ Z

βB
−→ (3⊕ Z)∨→ KQ̄→ 0. (80)

Thus

6OA(−1) :=
(
ZQ̄ ⊕ Z, (3⊕ Z)∨, βB , 6B,B

)
gives a stacky fan for OA(−1). Now, as H6′ = G6OA(−1) = (C∗)B/H6OA(−1) , we let
H6OA(−1) act trivially on X6′ and obtain

UA = [(X6′ ×OA(−1))/H6′ ]

= [(X6′ × (X6B,B/H6OA(−1)))/ ((C
∗)B/H6OA(−1))]

= [((X6′ ×X6B,B )/H6OA(−1))/ ((C
∗)B/H6OA(−1))]

= [(X6′ ×X6B,B )/ (C
∗)B ].

The action of (C∗)B on X6′ is obtained by tensoring the negative of the homomorphism

χ̃A := β
∨

A ◦ βB : Z
Q̄
⊕ Z→ (ZA)∨ (81)

with C∗, where βB and βA occur in (80) and (54) respectively. On the other hand, the
action of (C∗)B on X6B,B ⊂ CB is just the restriction of the torus action. Thus the
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diagonal action is given by (−χ̃A, Id) : ZQ̄⊕Z→ (ZA)∨⊕ZQ̄⊕Z, which has cokernel
map given by χA = (Id, χ̃A),

χA : (ZA)∨ ⊕ ZQ̄ ⊕ Z→ (ZA)∨.

Taking the product fan 6U,A := 6′ × 6B,B, one observes that UA can be obtained from
the stacky fan

6U,A =
(
(ZA)∨ ⊕ ZQ̄ ⊕ Z, (ZA)∨, χA, 6U,A

)
. (82)

From Lemma A.20 we see that2p(A) is the disjoint union {%A}∪2p(A)
h
∪2p(A)

v
.

Recall that elements of 2p(A)
h

are indexed by pointed subdivisions (S,Ap) where S is
the trivial subdivision and Ap are points in a facet of Q, whereas 2p(A)

v
correspond

to (S,Ap) where S = {(Qi, Ai) : i ∈ I } is a coarse subdivision and Ap = Ai for
some i ∈ I . By Lemma A.21, the primitive corresponding to the latter type is η(S,Ap)
and is the unique primitive defining function for S satisfying η(S,Ap)|Ap = 0. Amongst
all of the elements in 2p(A)

v
are those whose coarse subdivisions are of the type S =

{(Q,A− {a})} with a ∈ Anv . One can check that in this case η(S,A−{a}) = e∨a . We define

the subsetB2p(A) = {e
∨
a : a ∈ Anv}∪{%A}∪2p(A)

h
⊂ 2p(A) of supporting hyperplanes

of2p(A) and let6′2(A) be the subfans of62(A), appearing in (66), consisting of all cones
whose boundary 1-cones are generated by elements in B2(A). Expanding to the union of
B2(A) with Av , we define the open substack X ◦2p(A) ⊂ X2p(A) by taking the stacky fan

6′2p(A) =
(
ZAv∪B2p(A) , (ZA)∨, β ′, 6′2p(A)

)
.

Here β ′ is the restriction of β̃2p(A), defined in (64), to ZAv∪B2p(A) . We mention that while
the inclusion i of ZAv∪B2p(A) into Z2p(A) is not an isomorphism, the induced map on
the stacks (i, Id) : 6′2p(A) → 6̃2p(A) defines the open inclusion whose image is the

complement of the divisors associated to 2p(A)− B2p(A). This is an application of [25,
Theorem B.3].

We now relate 6′2p(A) to 6U,A. By Lemma A.20, there is a bijection between Q̄∪{%B}
and 2p(A)

h
∪ {%A}. Extending this bijection to basis vectors, and taking the identity on

basis vectors indexed by A, we obtain an isomorphism

g1 : (ZA)∨ ⊕ ZQ̄ ⊕ Z→ ZAv∪B2p(A) . (83)

Taking g2 to be the identity, and consulting the definition of β̃2p(A) obtained from Lemma
A.21(i), we observe that this gives a commutative diagram

(ZA)∨ ⊕ ZQ̄ ⊕ Z
χA //

g1
��

(ZA)∨

g2

��

ZAv∪B2p(A)
β ′

// (ZA)∨

(84)
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To prove that (g1, g2) induces an isomorphism of stacks, we check that g1 real-
izes an isomorphism of fans from 6U,A to 6′2p(A). Take 61 to be the fan supported

in RAnv ⊂ RB2p(A) with unique maximal cone RAnv

≥0 and let 62 be the subfan of 6′2p(A)
supported in R2p(A)

h
∪{%A}. Lemma A.21(ii) along with the definition of the Lafforgue fan

implies that the bijection between Q̄∪ {%B} and2p(A)
h
∪ {%A} induces an isomorphism

between 6B,B and 62. Recalling the poset structure for the Lafforgue fan given by (60),
we check that6′2p(A) is the product fan61×62. Indeed, any cone in6′2p(A) corresponds
to a pointed subdivision (S,Ap) of (Q,A) where S only refines subdivisions of the type
S′ = {(Q,A′)} (otherwise CR(S,Ap) contains a 1-cone which is not generated by an
element of B2p(A)). By the same reasoning, S itself must also be such a subdivision, i.e.
S = {(Q,A′)}. Now, suppose σ × τ is a cone in 61 × 62. Then σ is the span of basis
vectors corresponding to a subset C of Anv . As 62 is isomorphic to 6B,B, there is a face
Q′ of Q such that τ is the span of the basis vectors whose corresponding pointed subdi-
visions have pointing sets that containQ′ ∩A. Then the cone in 6′2p(A) corresponding to
({(Q,A− C)},Q′ ∩ A) is the isomorphic image of σ × τ . As these exhaust all possible
cones of each fan, we have shown that 6′2p(A) and 61 ×62 are isomorphic on their sup-
port, and thus UA and X ◦2p(A) are isomorphic stacks. ut

We continue by relating the universal line bundle and hypersurface in the total Lafforgue
stack, introduced in Definition A.24, to the incidence variety WA ⊂ UA.

Proposition A.37. The morphism ι satisfies ι∗(OA(1)) = E(1) and ι∗(ỸA) =WA.

Proof. To prove the proposition, we write explicit formulas for the sections s̃ and sA.
First recall from (40) that for b ∈ Q̄, −nb is the minimum value of b on Q. For a toric
stack X and an equivariant divisorD ∈ Diveq(X ), we write xD for the section of O([D])
defining D.

Now, the universal section sA ∈ H 0(X2p(A),OA(1)) is defined as the pullback of
the section

∑
a∈A xDa in OP|A|−1(1). To understand this pullback in terms of the stacky

fan 6′2p(A), first consider the map X ◦2(A) → P|A|−1 which is the restriction of G :

X2p(A) → P|A|−1 appearing before Definition A.24. A stacky fan for P|A|−1 is 6P =

((ZA)∨, (ZA)∨/(%A), βP, 6P|A|−1)where βP is the quotient homomorphism and6P|A|−1 is
the fan of all proper subcones of (RA

≥0)
∨. We define a function ρ : ZAv∪B2p(A) → (ZA)∨

so that the function G is induced from the map of stacky fans given by (ρ, βP). For
(ρ, βP) to be a map of stacky fans, the diagram

ZAv∪B2p(A)
β ′
//

ρ

��

(ZA)∨

βP
��

(ZA)∨
βP // (ZA)∨/(%A)

must commute. For this to occur, we must have ρ = β ′+ρ′·%A where ρ′ ∈ (ZAv∪B2p(A))∨.
The map ρ′ is then uniquely defined so that the support of the fan 6′2p(A) maps to that
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of 6P|A|−1 (as translating by %A displaces the |6P|A|−1 | from itself). Now, β ′(ea) = e∨a ∈

|6P|A|−1 |, so ρ′(ea) = 0 while β ′(e%A) = %A, implying ρ′(%A) = −1. For b ∈ 2p(A)
h

corresponding to a facet F ofQ, we apply the definition of β ′ arising from Lemma A.21(i)
to recall β ′(b) = β∨A(bAp ) where Ap = A ∩ F . But bAp is the support function for the
cone over F in LinR≥0(A) and is thus zero on Ap and positive on A − Ap, implying
β ′(b) ∈ |6P|A|−1 | and ρ′(b) = 0. Therefore, ρ′ = −e∨%A and

ρ = β ′ − e∨%A · %A.

The pullback of
∑
a∈A xDa , where Da is identified with the basis element ea in

Diveq(P|A|−1) = ((ZA)∨)∨ = ZA, is the universal section sA =
∑
a∈A xρ∨(ea). Since

ρ(e%A) = 0, the explicit form of ρ gives

ρ∨(ea) = e
∨
a +

∑
b∈2p(A)

h

〈β ′(eb), ea〉e
∨

b ∈ (Z
Av∪B2p(A))∨ = Diveq(X ◦2p(A)),

and sA =
∑
a∈A xρ∨(ea). If b corresponds to the facet F with Ap = F ∩ Ap, let bF ∈ Q̄

be the supporting hyperplane function of F in (ZA)∨. Then using the definition of nbF
we have bAp = (bF , nbF ). As β ′(b) = β∨A(bAp ) we compute

〈β ′(eb), ea〉 = 〈β
∨

A(bAp ), ea〉 = 〈bAp , βAea〉 = 〈(bF , nbF ), (a, 1)〉 = 〈bF , a〉 + nbF .

Turning to UA, recall that the tautological section s̃ was defined on X6′ × OA(−1)
before Proposition A.36. Let Da ∈ Diveq(XQ) be the divisor associated to a ∈ A. Let
ra ∈ H

0(OA(−1), E(1)) be the pullback of xDa ∈ H
0(XQ,OA(1)) and ta : X6′ → C

the projection to the a-th coordinate. Then, by definition, s̃ =
∑
a∈A ta ⊗ ra . We lift this

to an equivariant function s on the affine toric variety X6U,A = X6′ × X6OA(−1) defined

in (82). For every equivariant divisor D ∈ Diveq(X6U,A) = ZA
⊕ (ZQ̄ ⊕ Z)∨ we write

xD for its defining function. The lift of the divisor associated to the monomial ta ⊗ ra is

Da = ea +
∑
b∈Q̄

(nb + 〈b, a〉)e
∨

b , (85)

so that s =
∑
a∈A xDa . As the isomorphism (g1, g2) in (84) pulls back ρ∨(ea) to Da , the

result has been shown. ut

As we have related the universal hypersurface in the total Lafforgue stack to the incidence
variety in UA, the following theorem shows that the secondary stack from the previous
section is a compactification of the moduli stack VA of full sections. In particular, the
discussion immediately following Theorem A.16 described the facets of 6(A) in terms
of coarse subdivisions S = {(Qi, Ai) : i ∈ I } of the marked polytope (Q,A). Among
such subdivisions are those which contain only one marked polytope {(Q,A − {a})}
where a ∈ Anv . The pointed subdivisions ({(Q,A − {a})}, A − {a}) of this type formed
the vertical boundary of X ◦2p(A). Including the components of the toric boundary in X6(A)
which correspond to such subdivisions, and taking the complement of the remaining ones,
yields a stack isomorphic to VA. The compactifying strata then correspond to reasonable
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degenerations of XQ. This is in analogy to the moduli space of curves and their stable
compactifications which served as motivation for the definition.

Theorem A.38. There is an open embedding i : VA→ X6(A). If p 6∈ i(VA), then p is in
a boundary divisorDS where S = {(Qi, Ai) : i ∈ I } is a coarse subdivision and |I | > 1.

Proof. To start we define an open substack of X r
6(A) given by the stacky fan

66v(A) =
(
Z6v(A), L∨A, β6v(A), 6B

)
(86)

defined in (59). If a ∈ Anv , then there is a unique pointed subdivision ({(Q,A − {a})},
A−{a}) corresponding to a facet of2(A). The set Anv also labels a subset of supporting
primitives in 6v(A). Define the subset

B6(A) =
{
ηS ∈ 6v(A) a primitive dual to S = {(Q,A− {a})} : a ∈ Anv

}
.

Let6′B be the subfan of6B consisting of all cones whose boundary 1-cones are generated
by elements in B6(A). Define the open substack (X r

6(A))
◦
⊂ X r

6(A) to be that associated
to the stacky subfan

6′6v(A) =
(
ZAv∪B6(A) , L∨A, β6v(A), 6

′

B
)
.

Recall from Proposition A.36 that X ◦2p(A) was defined from the stacky subfan

6′2p(A) =
(
ZAv∪B2p(A) , (ZA)∨, β ′, 6′2p(A)

)
.

Restricting the map p̃ : 6̃2p(A) → 66v(A) from Definition A.28 to these subfans gives
the map p̃′ : 6̃′2p(A)→ 6′6v(A) described by the commutative diagram

ZAv∪B2p(A)
β ′
//

p′1
��

(ZA)∨

α∨A
��

ZAv∪B6(A)
β
6v(A) // L∨A

We claim that the colimit stack X→
p̃′

of p̃′ has stacky fan

6→p̃′ = 6′6v(A) = (Z
Av∪B6(A) ,3A∨ , α

?
A, 6

′

B).

This follows at once from the diagram

ZAv∪B2p(A)
β ′
//

p′1
��

(ZA)∨

κ

��

ZB6(A)
α?A // 3A∨
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being a pushout. To see that this is the case, partition the basis vectors ofAv∪B2p(A) into

A ≈ Av ∪ {e
∨
a : a ∈ Anv} and2p(A)

h
∪ {%A}. Likewise, as the elements of B6(A) are in-

dexed byA, we identify ZB6(A) with ZA. Then the map p′1 : Z
A
⊕Z2p(A)

h

⊕Z{%A}→ ZA
is simply projection and β ′|ZA is clearly injective, implying the pushout κ is the cokernel
of β ′|

Z2p(A)
h
⊕Z{%A}

But by Lemma A.21, the image of β ′ restricted to Z2p(A)∪{%A} is the

image of β∨A which has the indicated cokernel from the dual fundamental sequence for A.
The described stacky fan data obtained on the bottom of the diagram defines the col-

imit stack and is identical to the stacky fan defining VA. This proves the claim. ut

Finally, we describe the points on the compactifying divisor.

Theorem A.39. Suppose (X ,Y) is a degenerating family of a hypersurface (XQ,Ys)
defined by a 3-defining function. Then (X ,Y) is represented by a map υ : C→ X6(A).
Proof. Let η ∈ (ZA)∨ be a 3-defining function for the family (X ,Y) corresponding to
the subdivision S = {(Qi, Ai) : i ∈ I } with |I | > 1. Define a map υη : N → 3A∨ by
taking υη(1) := α?(η). The stacky fan 6 = (31,32, β,6) occurring in the fiber product
C υ̃η ×π X2(A) has 32 ≈ 3

∨
⊕ Z from the Cartesian diagram

3∨ ⊕ Z · η
ψ
//

p2

��

(ZA)∨/(
∑
α∈A e

∨
α )

α?

��

Z
υη

// 3A∨

(87)

Here the map ψ is the composition of the quotient proj : (ZA)∨ → (ZA)∨/(
∑
α∈A e

∨
α )

and the direct sum β∨A|3∨ ⊕ inc where inc : Z · η→ (ZA)∨ is the inclusion.
To find31 and6, we let6η be the fan obtained by intersecting β∨A⊕inc((Rd)∨⊕R≥0)

with the Lafforgue fan and Tη the generators of its 1-cones. The map βη : ZTη → 32 by
evaluation of primitives gives the stack 6η = (ZTη ,32, βη, 6η). For every f ∈ Tη,

f =
∑

b∈σ(1)⊂2p(A)

cbb

for some maximal cone σ in the Lafforgue fan. Since η is a 3-defining function and
α?(ψ(f )) = α?(η), it follows that cbb is in the image of β̃2p(A) for all b ∈ σ(1). Let
g1(eτ ) =

∑
b∈σ(1) cbeb. It is not hard to see that the map g = (g1, 1) then induces an

equivalence between 6η and the pullback 6.
To see that 6η is the normal stacky fan to (Qη, Aη), we need only show that Tη =

Q̄η ⊂ 3 ⊕ Z. By Lemma A.21, τ ∈ Tη if and only if it defines the subdivision S and is
constant on Qi for some i. So the 1-cones of Tη equal those of Q̄η. But both sets consist
of primitives of their 1-cones on vertical divisors, implying the equality.

To show that the pullback is isomorphic to (Xη,Yιη(s)), we prove any section of the
form ιη(s) can be represented by a pullback of the universal section sA. For this, we simply
observe that the pullback of sA to H 0(Xη,Oη(1)) is υ̃∗η (sA) =

∑
α x(α,η(α)) from (35).

The group G6(A) acts transitively on the pullback of the space of very full sections of
H 0(Xη,Oη(1)) up to equivalence. Indeed, from the fundamental exact sequence for A,
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it is easy to see that there exists a λ ∈ G6(A) such that υ̃∗η (λ · sA) =
∑
α cαx(α,η(α)) for

any {cα} satisfying
∏
c
mα
α = 1 with

∑
α mαα = 0. Any full section has a representative

in this class, yielding the claim. ut

Appendix B. ∂-framed symplectomorphisms

We begin this section by defining certain subgroups of symplectomorphism groups which
we refer to as ∂-framed groups. The symplectic orbifolds we consider have boundary
divisors that are preserved by the symplectomorphisms under consideration. Moreover,
we would like to distinguish between subgroups that fix the boundary tangentially and
those that do not. This aim would be easily achieved, were our boundary divisor smooth
and the symplectomorphisms fixed the boundary divisor pointwise. However, neither of
these requirements is satisfied in our setting, so we must introduce a more elastic notion
of framing.

After defining the notion of a ∂-framed group, we proceed to examine the geometry
of various symplectomorphisms contained in them. Up to Hamiltonian isotopy, the gener-
ators of our groups arise as monodromy maps around a singular symplectic orbifold. The
permissible singularities that we will study fall into two classes. The first will be a stable
pair degeneration of the symplectic orbifold into irreducible orbifolds glued along normal
crossing divisors, akin to the situation in complex geometry. The maximal degenerations
of this type in the toric case were thoroughly analyzed in [1].

The second type of singularity we see is a stratified Morse singularity. This is studied
in [27], but only the non-stratified case has been understood in the symplectic setting [45].
We will examine the general case and give a geometric description of monodromy.

B.1. Definitions

Let (Y, ω) be a symplectic orbifold of real dimension 2nwith atlas U=(Uβ ,Gβ , πβ)β∈B.
Most of the familiar constructions in symplectic geometry can be defined through the
invariant manifold analogs in an atlas when working with symplectic orbifolds. For ex-
ample, a Hamiltonian will mean a smooth function on Y , or equivalently a collection
of smooth, compatible, invariant functions on (Uβ ,Gβ). Likewise, its flow can be com-
puted in Y or, for short time on a relatively compact subset, in each chart of the atlas.
Types of submanifolds (Lagrangian, isotropic, symplectic), almost complex structures,
Poisson brackets, symplectomorphisms are all defined locally and can be given a precise
meaning in the symplectic stack setting. We omit the adjective “orbifold” for all of these
terms throughout the paper. We refer for the definitions of these structures to the existing
literature [2], [41], but will give details for structures that are less familiar.

Let J be the space of compatible almost complex structures on Y and D = D1 +

· · · + Dk a symplectic divisor, i.e. each Di is a smooth symplectic suborbifold of real
codimension 2. If there is an integrable J ∈ J and Y is a manifold, it makes sense to
say that D is a divisor with normal crossing singularities. We extend this to symplectic
orbifolds in the following fashion. For every Di and β ∈ B, set Di(β) = π−1

β (Di).
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Definition B.1. Let J ∈ J .

(i) A symplectic divisor D will be called J -integrable if, for every Di and every β ∈ B
there are symplectic neighborhoods Vi of Di(β) such that J is integrable on Vi and
Di(β) is a complex divisor in Vi relative to J .

(ii) A symplectic divisor D is a J -normal crossing divisor if, given p ∈ D and I =
{i : 1 ≤ i ≤ k, p ∈ Di}, there exists U ⊂ Cn and a J -holomorphic chart ψ :
U →

⋃
i∈I Vi near p ∈ V such that ψ(0) = p and D ∩ V = ψ({(z1, . . . , zn) :

zi1 · · · zik = 0}).
(iii) A normal crossing divisor is J -standard if for every point p ∈ D, there exists a J -

holomorphic chartψ such thatψ∗ω = ωst whereωst denotes the standard symplectic
form on U ⊂ Cn.

(iv) We say that a divisor is integrable, normal crossing or standard if there exists some
J ∈ J for which it is J -integrable, J -normal crossing or J -standard.

A consequence of having a J -standard normal crossing divisor is that the distance squared
functions hi : Y → R from Di (via the metric induced by ω and J ) Poisson commute
in neighborhoods of D. In other words, there exists an εJ > 0 for which {hi, hj } = 0 on
Ui ∩Uj where Ui = h−1

i ([0, εJ )). We call any ε < εJ commuting. For any commuting ε,
we define ρεi = λ

ε
◦hi where λε : R≥0 → R≥0 is a smooth monotonic function satisfying

λε(r) =

{
r, r < ε/2,
ε, r ≥ ε.

It is easy to see that {ρεi , ρ
ε
j } = 0 on Y . Given any x = (x1, . . . , xk) ∈ Rk , we define

τ(x) to be the flow of
∑k
i=1 xiρ

ε
i . The fact that the ρi Poisson commute implies that

τ(x1 + x2) = τ(x1) ◦ τ(x2). It is best to think of these maps as rotations, or twists, about
the components of the divisor.

We let Symp(Y) denote the topological group of symplectomorphisms with the C∞-
topology, and Symp0(Y) the identity component. For a Hermitian line bundle L over Y ,
let Symp(L/Y) be the group of unitary line bundle automorphisms of L over symplecto-
morphisms of Y , and Symp0(L/Y) its identity component (not to be confused with those
maps of L lying over Symp0(Y)).

Given a standard normal crossing divisor D ⊂ Y , we fix a commuting ε > 0 and de-
fine Symp(Y,D) to consist of symplectomorphisms of Y which preserve the distance to
eachDi in the tubular ε-neighborhood ofD. Here we mean that for any φ ∈ Symp(Y,D),
we have φ∗(hi |Uε ) = hi |Uε for all i where Uε is the ε-neighborhood of Di . Equivalently,
we can consider Symp(Y,D) to be the group of symplectomorphisms which commute
with τ(x) for every x ∈ Rk . From this definition, it is clear the subgroup

Tε := {τ(x) : x ∈ Rk} (88)

is contained in the center Z(Symp(Y,D)).
For a normal crossing divisor such as D ⊂ Y , we write Symp(D) for the subgroup

of×
k

i=1 Symp(Di,Di ∩
⋃
j 6=i Dj ) consisting of {φi} with φi |Di∩Dj = φj |Di∩Dj . Let

L = {Li : 1 ≤ i ≤ k} be a collection of line bundles where Li is a line bundle over Di .
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Definition B.2. The collection L of line bundles is compatible if there exist isomor-
phisms

γi,j : Li |Di∩Dj
∼=
−→ NDi∩DjDj (89)

for every 1 ≤ i, j ≤ k. A set g = {γi,j } of isomorphisms will be called gluing data.

Given such data, we define Sympg(L/D) to consist of symplectic line bundle automor-
phisms {ψi} of Li/Di which lie over some {φi} ∈ Symp(D) and are compatible in the
sense that

dφj |Dj∩Di = γi,j (ψi) (90)

for every 1 ≤ i, j ≤ k. We will simply write Symp(L/D)when the gluing data is evident.
For example, in our context of a normal crossing divisor D ⊂ Y , we let NDY be the
collection {NDiY} of normal bundles with the induced gluing data.

Definition B.3. Given Y with a standard normal crossing divisor D, we say that a com-
pactly generated, closed subgroup F ⊆ Symp(NDY/D) is a ∂-frame group of (Y,D).

Let j : D → Y be the inclusion map and j#
: Symp(Y,D) → Symp(NDY/D) the

restriction of the derivative. Given a ∂-frame group F, we will say φ ∈ Symp(Y,D) is an
F-framed, or framed, symplectomorphism if j#(φ) ∈ F. Denote the group of F-framed
symplectomorphisms by SympF(Y,D). If we let i : F→ Symp(NDY/D) be the inclu-
sion, this group is defined by the Cartesian diagram

SympF(Y,D) //

��

F

i

��

Symp(Y,D)
j#
// Symp(NDY/D)

(91)

Symplectomorphisms of NDY may not extend to those on Y . Including such maps
into the ∂-frame group has no effect on the framed symplectomorphism group. To take
care of this redundancy, we define a reduced framing as follows.

Definition B.4. A ∂-frame group F will be called reduced if for every φ ∈ F there exists
a ψ ∈ Symp(Y,D) such that j#(ψ) = φ. The maximal reduced subgroup

Fred = F ∩ im(j#)

of a ∂-frame group F will be called the (Y,D) reduction of F.

Of course, the closure of the image j#(G) of any subgroup G ⊂ Symp(Y,D) is a reduced
∂-frame group. An important class of such groups occurs in the following definition:

Definition B.5. A ∂-gauge group is a ∂-frame group contained in j#(Tε).

The motivation for defining ∂-gauge groups stems from the desire to exert control over
a group similar to the group (S1)k of complex multiplications on

⊕k
i=1NDiY . Such a

group would keep track of rotations around the boundary divisor D of Y . Unfortunately,
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for dimY > 2, this group is not contained in Symp(NDY/D) as the compatibility con-
dition in (90) is violated. The ∂-gauge group and its subgroups can be thought of as an
approximation to such a rotation group.

One of the central points of ∂-frame groups is to allow more flexibility than fixing
the boundary and a normal bundle on it. In fact, this more restrictive case occurs as the
framed group Symp1(Y,D) with the trivial framing 1 = {1}. This fits nicely into the
more general framework as follows.

Proposition B.6. For any reduced ∂-frame group F, the map

SympF(Y,D) j#

−→ F

defines a topological fiber bundle with fiber Symp1(Y,D).
Proof. It follows from the definition of reduced framings that j# is the quotient of
SympF(Y,D) by the closed normal subgroup Symp1(Y,D). Thus, to prove the claim,
one need only show the existence of a local section of j# in a neighborhood U ⊂ F
around the identity. To see this, note that the tangent space of Symp(NDY/D) is a
closed subspace of that of ×i Symp(NDi/Di). In turn, the tangent space of each
Symp(NDi/Di) consists of closed 1-forms �1(NDi ) which are multiples of dhi when
restricted to the tangent space of any fiber. Denoting this space by Vi and the tangent
space of Symp(NDY/D) by V , we have V ∼=

⊕
i Vi . Any element φ in a neighborhood

can be realized as the integral of a path δφ : [0, 1] → V of such forms. Furthermore,
as F is reduced, we may choose the path δφ to be contained in the image of the deriva-
tive Dj#

: TId(SympF(Y,D)) → V . Note that Dj# is simply the pullback of the closed
1-form associated to a tangent vector in TId(SympF(Y,D)) along the inclusion D ↪→ Y .
As Dj# is a linear map, we may choose a section of s̃ : V → TId(SympF(Y,D)). Using
this, we define the desired local section s : U → j#(U) by taking s(φ) to be the integral
of the path s̃ ◦ δφ . ut

This gives an important corollary.

Corollary B.7. Suppose F1 ⊆ F2 are reduced ∂-frame groups. Then there is a homotopy
fiber sequence

SympF1(Y,D)→ SympF2(Y,D)→ F2/F1.

Proof. Let i : SympF1(Y,D) → SympF1(Y,D) be the inclusion and C(i) its homo-
topy cofiber. By Proposition B.6, the rows and final column of diagram (92) below are
homotopy fiber sequences:

Symp1(Y,D) // SympF1(Y,D)

i

��

j#
1 // F1

��

Symp1(Y,D) // SympF2(Y,D)

��

j#
1 // F2

��

C(i)
ψ

// F2/F1

(92)
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The fact that the induced map ψ from C(i) to F2/F1 is a weak equivalence essentially
follows from the octahedral axiom. If one wishes to avoid this argument, take the long
exact sequence associated to the homotopy fibrations on each row. Using the fact that the
two columns are also homotopy fiber sequences and applying an induction argument, one
observes that ψ induces an isomorphism on homotopy groups. Applying Whitehead’s
theorem then shows that ψ is a homotopy equivalence. ut

For a reduced ∂-frame group F, we define Frel to be the group generated by F and T. As
all elements in Symp(Y,D) are required to commute with τ(x), and F is reduced, Frel is
a central extension of F. The following proposition is then an elementary application of
Corollary B.7.

Proposition B.8. Assume D =
⋃k
i=1Di is a standard divisor in Y . For any reduced

∂-frame group F, there exists r ≤ k and a homotopy exact sequence

SympF(Y,D)→ SympFrel
(Y,D)→ (S1)r .

Proof. We first observe that Frel is a finite-dimensional central extension of F. Since T∩F
is closed in T ∼= Rk , it must be isomorphic to Zr ⊕ Rs for r + s ≤ k. As it is also closed
in Frel, we have Frel/F ∼= T/(T ∩ F) ∼= (S1)r × Rk−s . So, by Corollary B.7, we obtain
the result. ut

Our primary examples of symplectic orbifolds arise as hypersurfaces in XQ. Generally,Q
is not assumed to be a simple polytope and so the hypersurfaces will generally be singular
along a complex codimension 2 subspace Ysing ⊂ D of Y . To deal with these cases, we
extend our notion of ∂-framing.

Definition B.9. SupposeD ⊂ Y is a J -integrable divisor and (Y−D,ω) is a symplectic
orbifold. A set

R = {φε : (Ỹ, D̃)→ (Y,D)} (93)

of normal crossing resolutions of (Y,D) will be called a resolving collection if:

(1) each (Ỹ, D̃) is a smooth symplectic orbifold with J̃ -standard normal crossing divi-
sors,

(2) φ∗ε (ω) = ω̃ off an ε-neighborhood of Ysing,
(3) φε is (J̃ , J )-holomorphic in a neighborhood of D̃.

We say that (Y,D) is a standard symplectic stack if there exists a non-empty collection R.

Generally, when (Y,D) has a resolution of singularities (Ỹ, D̃), it is not clear that one
may force the resolution to satisfy the conditions in Definition B.9. However, when
(Y,D) is a standard symplectic stack with resolving collection R, we may consider a
proper subgroup of symplectomorphisms that extend to all resolutions in R.

Definition B.10. Suppose R is a resolving collection for (Y,D). Let SympR(Y,D) be
the group of symplectomorphisms ψ ∈ Symp(Y − Ysing,D − Ysing) that are restrictions
of symplectomorphisms ψ̃ ∈ Symp(Ỹ, D̃) for all (Ỹ, D̃).
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We note that this is the coarsest group that could be defined relative to R, ignoring any of
the subtleties of the combinatorics of the distinct resolutions in R. Indeed, the benefit of
considering resolving collections R instead of a single resolution is that we may define
the group SympR(Y,D), which is independent of the choice of resolution in R.

A ∂-frame group F for a standard symplectic stack (Y,D) is a subgroup of the group
Symp(ND−Ysing(Y−Ysing)/D−Ysing) that has a lift to Symp(N

D̃
Ỹ, D̃) for every (Ỹ, D̃).

The definition of the framed group SympF(Y,D) and the results above all hold in this
case for obvious reasons.

Our primary examples of standard symplectic stacks arise in the toric setting. Call a
complete intersection non-degenerate if its scheme-theoretic intersection with every toric
orbit is smooth.

Proposition B.11. Suppose (X , ∂X ) is a Kähler DM toric stack, where ∂X is the toric
boundary. If Y ⊂ X is a non-degenerate complete intersection and D = ∂X ∩ Y , then
(Y,D) is a standard symplectic stack.

Proof. This follows immediately from the fact that X has standard resolutions and from
the non-degeneracy assumption for Y . ut

B.2. Stable pair degeneration monodromy

In this subsection, we obtain the local model for monodromy around a stable pair degen-
eration. Assume (X , ω) is a symplectic orbifold of dimension n with an r-dimensional
Hamiltonian torus action. We write Tr for the torus, tr (or t) for its Lie algebra and, for
v ∈ t, denote by Xv ∈ Vect(X ) the infinitesimal action in the direction of v. Let J be a
compatible almost complex structure on X which is invariant with respect to the action,
and µ : X → t∨ the moment map.

Let p ∈ X with µ(p) = u ∈ t∨ and v ∈ t. We define the map

κ : µ(X )→ HomR(t, t
∨) (94)

by taking κu(v) = dµp(JXv) ∈ Tut∨ = t∨. Note that this is well defined only under the
assumption that J is Tr -invariant. Alternatively, we may think of the map κ as giving the
metric restricted to the infinitesimal action vector fields g|t ∈ t∨ ⊗ t∨. Given two vectors
v,w ∈ t, we will write

〈v,w〉κu := [κu(v)](w) = gp(Xv, Xw).

Suppose we have the commutative diagram

X
µ
//

F

��

t∨

f

��

C
µC // R

(95)

where F is a non-constant holomorphic function and µC = | |2. We assume that F has
no critical values outside 0 and let X ◦ = X − F−1(0). The most common example of
diagram (95) is that of a normal crossing degeneration.
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Example B.12. Consider the torus Tn = {(z1, . . . , zn) ∈ Cn : |zi | = 1 for all 1 ≤ i ≤ n}
acting on (Cn, ωst) where ωst is the standard symplectic form. Identify t with Rn so that
if r = (r1, . . . , rn) ∈ t, we may exponentiate to obtain exp(r) = (e−2ir1 , . . . , e−2irn).
Using the dual of the standard basis, we identify t∨ with Rn as well. Then the moment
map for this action is

µ(z1, . . . , zn) = (|z1|
2, . . . , |zn|

2). (96)

If (a1, . . . , an) ∈ Nn, consider the map F : Cn→ C given by F(z1, . . . , zn) = z
a1
1 · · · z

an
n

defining a normal crossing singularity over 0. Then taking f (r1, . . . , rn) = r
a1
1 · · · r

an
n

yields the commutative diagram (95).

Recall that ω defines a Hamiltonian connection on the smooth map F : X ◦ → C∗ by
taking the horizontal distribution to be the symplectic orthogonal to the tangent space of
the fiber. As usual, this allows us to lift any vector field on C∗ to X ◦ via

ξ : Vect(C∗)→ Vect(X ◦).

Recall that the map µC : C → R is the moment map for the circle action of T =
{z ∈ C : |z| = 1} on C given by multiplication. Here, as in Example B.12, we identify R
as the Lie algebra dual to t = R where T is parameterized by exp(r) = e−2ri for r ∈ t.
We let ρ = −2iz∂z denote the infinitesimal vector field of ∂r ∈ t on C∗. Note also that
the derivative of f at a point p gives a natural function df : t∨→ t.

Lemma B.13. Let p ∈ X ◦ and q = µ(p). The horizontal lift ξ(ρ) of ρ at p is dependent
only on q in the sense that it equals the infinitesimal vector fieldXδq where δq ∈ t is given
by

δq =
4f (q)
‖dfq‖2κq

dfq .

Proof. We recall that the defining property of the moment map µ : X → t∨ is that, for
every v ∈ t,

ιXvω = d 〈µ, v〉 = 〈dµ, v〉. (97)

Here, ιXη is the interior product of a differential form η with a vector field X, and 〈w, v〉
is the canonical pairing taking w ∈ t∨, v ∈ t to w(v). Thus, letting Y ∈ TpX ◦, by the
definition of the moment map and the commutative diagram (95), we have

ω(Xdfq , Y ) = 〈dµ(Y ), dfµ(p)〉 = d(f ◦ µ)p(Y ) = d(µC ◦ F)p(Y ).

In particular, if F(p) = p′ we see that Xdfq (p) ∈ (TpF
−1(p′))⊥ω and

dµC[dF(Xdfµ(p))] = 0.

The latter equality shows that ρ∧dF(Xdfq ) = 0, so thatXdfq is a real multiple of ξ(ρp′).
To evaluate this constant, let Xdfq = γp and define rp via

dF(γp) = rpρp′ . (98)

Now note that

〈ρp′ , ρp′〉 = 〈−2p′∂z,−2p′∂z〉 = 4µC(F (p)) = 4f (µ(p)). (99)
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Also, using the defining property of moment maps in (97) for µC, one observes that the
Hamiltonian vector field of µC is X∂r , which we have denoted ρ. If we identify C with
the real tangent space Tp′C, the inner product satisfies 〈a, b〉 = ωst(a, ib), so that

〈dF(γp), ρp′〉 = ωst(dF (γp), iρp′) = ωst(ρp′ , idF (γp)) = ωst(ρp′ , dF (Jγp))

= dµC(dF (Jγp)). (100)

In the second to last equality, we have used the fact that F is holomorphic.
To evaluate rp, we take the inner product with ρ on both sides of (98) and employ

(99) and (100) to obtain

rp =
〈dF(γp), ρp′〉

〈ρp′ , ρp′〉
=
dµC(dF (Jγp))

4f (µ(p))
=
d(µC ◦ F)(Jγp)

4f (µ(p))

=
dfµ(p)(dµq(JXdfq ))

4f (q)
=
〈dfq , dfq〉κq

4f (q)
.

Letting δq = r−1
p dfq then gives dF(Xδq ) = ρp′ , yielding the claim. ut

Given any smooth function f̃ : µ(X ) → t, the vector field X
f̃ (µ(p))

(p) is easily in-
tegrated to φf̃t : X → X where φf̃t (p) = exp(t f̃ (µ(p))) · p. Thus the previous
lemma gives an explicit description of the symplectic monodromy map of F . Namely,
take f̃ = 4f (q)

‖dfq‖2κq
dfq ; then for any ε > 0 the monodromy map is

φ
f̃

1 : F
−1(ε)→ F−1(ε).

We utilize this to study the monodromy around a stable pair degeneration by first exam-
ining the monodromy with respect to the ambient toric variety and then perturbing this
map slightly near the critical points of the degeneration to obtain a characterization of the
monodromy on the hypersurface. Recall from Appendix A.2 that A ⊂ 3 gives a subset
of equivariant linear sections of a line bundle OA(1) on a toric stack XQ specified by
(Q,A). Suppose S = {(Qi, Ai)}i∈I is a regular subdivision of (Q,A) and η : A→ Z is
an integral defining function of S. In Definition A.11 we introduced the degenerating fam-
ily (Xη,Ys) which came equipped with a holomorphic function Fη : Xη → C. We will
explore two aspects of this definition, the symplectic structure as defined by the moment
map and the holomorphic function Fη.

To perform symplectic parallel transport around the critical value of a degenerating
family, one must first choose a symplectic form on Xη := XQη . We take the standard
symplectic form ω on Xη defined in (47) for an arbitrary polyhedron. In the case of Qη,
we utilize the divisor associated to γη =

∑
b∈Q̄η

nbeb ∈ ZQ̄η where nb was defined
in (40). By definition, we have ω = α∨

Q̄η
(γη). To shorten notation, we define the affine

function
νη := β

∨

Q̄η
+ γη. (102)

The moment map µη : Xη → 3R ⊕ R can then be found using diagram (49) for the
polyhedron Qη which is
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CQ̄η

µQ̄η
��

µ−1
H (ω)

incoo
ρAη

//

µQ̄η
��

Xη Xη

µη

��

RQ̄η RQ̄η 3R ⊕ R
νη

oo Qη
incoo

(103)

Turning to the holomorphic function Fη, we review equation (52) which defines the
function F̃η(z1, . . . , zn) : CQ̄η → C as

F̃η(z1, . . . , z|Q̄η|) =
∏
i∈Q̄vη

z
cη,i
i .

Here we have made two implicit identifications. First, we identified the indexing set I in
the subdivision S with Q̄v

η. Second, we identified Q̄η = Q̄v
η ∪ Q̄

h
η with {1, . . . , |Q̄η|}.

We recall from (51) that cη,i is the denominator of dςi where ςi = βQ̄η (ei) is the affine
function which restricts to η along Ai as in Definition A.10(i).

Using F̃η, the function Fη : Xη → C associated to η was defined by the diagram

Xη

Fη

��

µ−1
H (ω)

ρHoo

Fη
��
inc
��

C CQ̄η
F̃η

oo

(104)

Note that F̃η was explored in Example B.12 and one can fill in diagram (95) as

CQ̄η
µQ̄η
//

F̃η
��

RQ̄η

f̃η
��

C
µC // R

(105)

where f̃η(r1, . . . , r|Q̄η|) =
∏
i∈Q̄vη

r
cη,i
i . Letting Y = µ−1

LQ̄η
(ω), we assemble the commu-

tative diagrams (103)–(105) into the diagram (106) which defines fη:

Xη 3R ⊕ R

Y RQ̄η

CQ̄η RQ̄η

C R

µη

Fη

ρη

inc

µ
Q̄η

F̃η

µC

νη

fη=

f̃η

(106)
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Example B.14. The most basic example of this setup is the degeneration of P1 into two
projective lines intersecting in a node. To describe diagram (106) for this case, we take
A = {−1, 0, 1} ⊂ Z = 3 so that Q = [−1, 1], XQ = P1 and OA(1) = OP1(2). Define
the degeneration by letting η : A→ Z be the defining function given by e∨(1,1) ∈ (Z

A)∨

(i.e. the function taking −1 and 0 to 0 and 1 to 1). ThenQη is illustrated in Figure 22 and
one obtains Q̄η = Q̄

v
η ∪ Q̄

h
η = {(0, 1), (−1, 1)} ∪ {(1, 0), (−1, 0)}. It is not hard to check

that Xη is isomorphic to the blowup of P1
× C at ([1 : 0], 0).

3R ⊕ R

Qη

s

t

Fig. 22. The polyhedron Qη for a degeneration of P1.

While one can work out the inner square of diagram (106), the details of the compu-
tation do not give much insight into the geometry. However, one finds that Fη is simply
the blowdown map composed with the projection ([a, b], z) 7→ z. Moreover, using the
coordinates (s, t) in Figure 22, one computes fη(s, t) = t (s − t). Observe that this is
identically zero on the lower boundary of Qη which is the image of the degenerate fiber,
namely the total transform of P1

× {0}. The level sets f−1
η (ε) ∩Qη are the moment map

images of the fibers of Fη lying over a radius
√
ε circle. Moreover, Lemma B.13 shows

that the symplectic monodromy about such a circle can be described in terms of the torus
action on XQη using the infinitesimal vector fields associated to the derivative of fη.

The following proposition gives the general description of fη as well as the monodromy
of Fη around 0.

Proposition B.15. Let (r, t) be coordinates for 3R ⊕ R. Then fη can be written as

fη(r, t) =
∏
i∈I

[cη,i(t − ςi(r))]cη,i .

The normalized derivative
4f (r, t)
‖df(r,t)‖

2
κ(r,t)

df(r,t) (107)

converges uniformly to dt − dςi on compactly supported subsets of the interior of Qη,i .
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Proof. For the first part of the claim, we reexamine the map νη defined in (102). Recall
that βQ̄η : Z

Q̄η → 3∨ ⊕ Z∨ was the tautological map βQ̄η (eb) = b for every minimal
supporting hyperplane of a facet of Qη. Now, for every i ∈ I , let bi be the supporting
hyperplane for the lower boundary facet Qη,i , which is the marked facet of (Qη, Aη)

over Qi , and write ebi ∈ ZQ̄η as ei . By definition, η̃ restricts to an affine function ςi
which is the sum dςi − mi where dςi ∈ 3∨Q is the derivative, or linear part, of ςi and
mi ∈ Q. By the construction ofQη and property A.10(ii) of ςi , we have η(a) ≥ ςi(a) for
all a ∈ A, with equality if and only if a ∈ Ai . Taking h∨ = (0, 1)∨ ∈ 3∨ ⊕ Z∨, for any
a ∈ A and r ∈ R≥0 we have

(h∨ − dςi)(a, η(a)+ r) = η(a)+ r − (dςi(a)−mi)−mi = η(a)− ςi(a)+ r −mi

≥ r −mi ≥ −mi .

Equality is achieved if and only if r = 0 and a ∈ Ai . This implies that h∨ − dςi is a
supporting hyperplane for Qη,i . However, only after multiplying by cη,i can we ensure
that it is contained in 3∨ ⊕ Z∨, so that βQ̄η (ei) = cη,i(h

∨
− dςi). We also see from this

argument that nbi = cη,imi for every i ∈ I . In turn, this gives

γη =
∑
i∈I

cη,imiei +
∑
j∈Q̄hη

nj ej ∈ ZQ̄η .

Therefore, for any i ∈ I , we have

e∨i ◦ νη = e
∨

i ◦ β
∨

Q̄η
+ e∨i (γ ) = β

∨

Q̄
(ei)+ cη,imi = cη,i(h

∨
− dςi)+ cη,imi

= cη,i(h
∨
− ςi).

But the function ri : RQ̄η → R is induced from e∨i so that ri◦νη = e∨i ◦νη = cη,i(h
∨
−ςi),

which, as a function on 3R ⊕ R, we simply write as cη,i(t − ςi(r)). The formula for
fη := f̃η ◦ νη then follows from that for f̃η following diagram (105).

We use this and the convexity of η̃, defined in (50), to get the second claim. Be-
fore proving this though, we define κ̃ and κ to be the pairings from (94) for the ac-
tions of the tori TZQ̄η and T3⊕Z on CQ̄η and XQη respectively. Observe that if we let

R = (r1, . . . , r|Q̄η|) ∈ RQ̄η , the map κ̃ for CQ̄η is

κ̃R =


4r1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 4r
|Q̄η|

 .
More succinctly, κ̃R(dri ⊗ drj ) = δij4ri . To see how this induces κ , we first note that the
map νη : 3R ⊕ R→ RQ̄η gives the identification ri = cη,i(t − ςi). If p ∈ µη(Xη) and
s1, s2 ∈ (3R⊕R)∨ then κp(s1⊗s2) = κ̃p(s̃1⊗ s̃2) where s̃i ∈ (RQ̄η )∨ satisfy s̃i ◦νη = si
and κ̃p(s̃i ⊗ s̃) = 0 for all s̃ ∈ ker(βQ̄η ). In other words, over every p ∈ µη, one can find
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a linear splitting τp : (3⊕ R)∨→ (RQ̄η )∨ of β∨
Q̄η

for which

κp(s1 ⊗ s2) = κ̃p(τp(s1)⊗ τp(s2)). (108)

For any polytope Qη,i , the image νη(Qη,i) lies on the boundary ri = 0 of µQ̄η (C
Q̄η ).

Now, let Ũ ⊂ Qη,i be any neighborhood away from the boundary and U ⊂ Qη a nor-
mal tubular ε-neighborhood of Ũ . We choose a continuous splitting function τ : U →
Hom((3⊕ R)∨, (RQ̄η )∨) so that

τp(cη,jd(t − ςj )) =

|Q̄η|∑
k=1

gj,kdrk. (109)

Since κ̃|ri=0 contains dri in its null space, we may choose gj,k to be continuous functions
on U so that gj,i |Qη,i = 0 for every j 6= i and gi,i |Qη,i = 1.

Using (108) and (109), we compute

κp(cη,jd(t − ςj )⊗ cη,kd(t − ςk)) =
∑
l∈I

4(cη,l(t − ςl))gj,lgk,l . (110)

We now calculate
df̃η(R) = f̃η(R) ·

∑
j∈I

cη,j

rj
drj .

Using the fact that fη = f̃η ◦ νη, we have

dfη(r, t) = fη(r, t) ·
∑
j∈I

1
t − ςj

d(cη,j (t − ςj )).

Using (110), we compute the following norm on U as a meromorphic function in t − ςi :∥∥∥∥∑
j∈I

1
t − ςj

d(cη,j (t − ςj ))

∥∥∥∥2

κ(r,t)
= 4

∑
j,k,l∈I

cη,l (t − ςl)

(t − ςj )(t − ςk)
gj,lgk,l

= 4
cη,i

t − ςi
+O((t − ςi)

0).

Note that while there are poles of this function on the other boundary facets Qη,j , we
have chosen U to be disjoint from these so that the only pole is the first order pole at
t = ςi . We utilize this to compute

4fη(r, t)
‖dfη(r, t)‖2κ(r,t)

dfη(r, t) =
4∥∥∑

j∈I
1

t−ςj
d(cη,j (t − ςj ))

∥∥2
κ(r,t)

∑
j∈I

cη,j

t − ςj
d(t − ςj )

=
1

cη,i
t−ςi
+O((t − ςi)0)

∑
j∈I

cη,j

t − ςj
d(t − ςj )

=

∑
j∈I

cη,j (t − ςi)

cη,i(t − ςj )(1+O((t − ςi)))
d(t − ςj ).
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From our previous observation that (t − ςj )|U 6= 0 for j 6= i, we find that the limit of the
normalizing derivative on the interior of Qη,i is

lim
ςi→t

4fη(r, t)
‖dfη(r, t)‖2κ(r,t)

dfη(r, t) = d(t − ςi). ut

We now explain the meaning of this proposition in the form of a corollary. Combined with
Lemma B.13, the first part of the proposition gives an explicit formula for monodromy
of XQ about a toric degeneration. To understand the statement, we decompose the fiber
F−1
η (ε) ∼= XQ by taking symplectic parallel transport along Fη to 0. The degenerate fiber
F−1
η (0) is the union

⋃
i∈I XQi of its irreducible components. We write Ui ⊂ F−1

η (ε) for
the set which converges to XQi under parallel transport along the positive real axis.

Corollary B.16. For a regular subdivision η and any sufficiently small δ > 0, there is an
induced decomposition XQ =

⋃
i∈I Ui such that degeneration monodromy relative to η is

an interpolation of toric multiplications exp(−dηQi ) on each Ui along δ-neighborhoods
of their intersections.

Proof. For ε > 0, the fiber F−1
η (ε) is isomorphic to XQ and the inverse image F−1

η (εS1)

of the circle is preserved under flow with respect to ξ(ρ). The time−π flow for ξ(ρ) sends
F−1
η (ε) to itself and yields the symplectic monodromy map (as it lifts the time 1 flow of
ρ = −2iz∂z). Proposition B.15 gives an explicit expression for ξ(ρ) as the normalized
derivative in (107). This is a map F−1

η (εS1)→ t3⊕Z (then composed with the map taking
v ∈ t3⊕Z to its infinitesimal vector field Xv). Exponentiating and evaluating at time −π
gives a map expε : F

−1
η (ε) ∼= XQ→ T3 (since it preserves F−1

η (ε), the additional circle
action is constant). Symplectic monodromy around 0 is then given by x 7→ expε(x) · x.

Fixing a small δ > 0, let Ṽi be the open set inQi consisting of points which have dis-
tance greater than δ from ∂Qi . Consider the set Vi of points in F−1

η (ε) which flow to Ṽi .
It is clear that Vi ⊂ Ui and that Vi can be identified with the complement of a neighbor-
hood of the boundary in XQi . By Proposition B.15, the monodromy expε(x) uniformly
converges to exp(η, i−1(dt − dςi)) on Qη,i as ε tends to 0. As exp(dt) acts as the iden-
tity, this multiplication converges to exp(−dςi) = exp(−dηQi ), which is multiplication
by a constant in the maximal torus acting on Vi ⊂ XQi . Thus, conjugating by symplectic
flow from F−1

η (ε) to F−1
η (0) on the domains Vi , we obtain a representation of symplectic

monodromy as in the corollary. The fact that these interpolate over their boundaries fol-
lows from the representation of monodromy as expε(x) · x and the continuity of expε(x)
in (107). ut

Thus we find that the symplectic operation of parallel transport, which is very far from
being holomorphic, limits to a holomorphic map on the components of the degeneration.

To obtain the structure of parallel transport on the hypersurface, we simply define an
appropriate perturbation of these maps which preserve the hypersurface. This is a less
elegant approach than the straightening method of [1, Appendix A], but one which works
for arbitrary stable pair degenerations and yields a description that is Hamiltonian isotopic
in the case of a degeneration resulting from a triangulation of (Q,A). We only need to
assume that the defining section s is in the complement of the principalA-determinant. As
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U1

U2

U3 U4

Fig. 23. Regions of finite order monodromy.

the hypersurfaces are fixed by the limit of the monodromy maps exp0(x) in the degenerate
fiber F−1

η (0), the ambient toric monodromy approximates the hypersurface map up to a
negligible factor along their intersections.

To describe the hypersurface monodromy map, let Zη(0) =
⋃
i∈I Zi(0) be the com-

ponents of the degenerate hypersurface from Definition A.12 and gi : Zi(t)→ Zi(t) the
Kähler automorphism corresponding to exp(−dηQi ).

Proposition B.17. There exists a decomposition Zη(t) =
⋃
i∈I Vi such that Zi ≈

Zi(0) − ∂Zi(0) and the monodromy map φη : Zη(t) → Zη(t) equals gi on Zi off an
ε-neighborhood Zi(ε) of ∂Zi , and is interpolated smoothly over Zi(ε) by a Hamiltonian
flow.

Proof. Given Corollary B.16, we need only show that the action exp(−dηQi ) preserves
the hypersurface Zi(0) for every i ∈ I . This follows from the observation that ηQi is
an affine function on LinZ(Ai), and Zi(0) is defined by sections in Ai . Multiplication of
the section za by exp(−dηQi ) is given by exp(−dηQi (2πa))z

a
= za so that the section

defining Zi(0) is fixed, implying that the hypersurface is preserved as well. ut

B.3. Stratified Morse singularities

In [45], it was seen that symplectic monodromy around a Morse singularity has infinite
order in the symplectic mapping class group for any dimension. In this paper, these types
of singularities are encountered as a non-degenerate case. For the degenerate case, we
need a different model whose critical fiber is in fact smooth, but fails to transversely
intersect the boundary divisor. Restricting to the boundary divisor, we see a Morse singu-
larity and expect that the monodromy on the ambient space extends the monodromy of
the restriction.

We have one essential obstruction to pursuing this naively. Namely, if our parallel
transport map preserves a boundary divisor D in Y , then D must be horizontal relative to
the symplectic orthogonal connection. On the other hand, if a smooth fiber does not inter-
sectD transversely at p, then the symplectic orthogonal will be normal, or vertical, toD.
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This holds for all symplectic connections in �2(Y). We resolve this difficulty by consid-
ering a singular connection on D and show that the parallel transport vector field extends
over the singularities and preserves the symplectic form of the fiber up to a negligible
factor.

Let U ⊂ Cn be a neighborhood of zero, D(m) = {z1 · · · zm = 0} ∩ U and D[m] =⋂m
i=1Di ∩ U . Given a linear function L : Cm → C with non-zero restrictions to each

coordinate line, we let fL : U → C be the function

fL(z1, . . . , zn) = L(z1, . . . , zm)+
1
2 (z

2
m+1 + · · · + z

2
n).

While this map is smooth, the fiber over zero does not transversely intersect the divisor
D(m) along D[m] at 0.

For the following definition, let G be a subgroup of the unit circle T ⊂ C and [C/G]
the quotient orbifold. Let ψG : C→ [C/G] be the orbifold chart of [C/G].
Definition B.18. Let Y be a symplectic orbifold with normal crossing divisor D =⋃m
i=1Di , p ∈

⋂m
i=1Di and f : Y → [C/G] a map of orbifolds with f (p) = 0.

We say that f is a stratified Morse function at p relative to D if there exists a holomor-
phic orbifold chart φ : ((U,D(m)),GU ) → (Y,D) centered at p, a homomorphism
g : GU → G, and a (GU ,G)-equivariant linear function L : Cm → C such that f lifts
to a (GU ,G)-equivariant function fL : U → C. In this case we say that f is stratified
with codimension m, p is a degenerate point of f and f (p) is a degenerate value of f .

We will concentrate on the case where G and GU are trivial, as the general orbifold case
will be an equivariant quotient thereof. In the non-stratified setting we have a useful crite-
rion for deciding when a function is Morse. A similar tool, whose proof is straightforward,
is available in the stratified case.

Proposition B.19. LetU ⊂ Cn,D =
⋃m
i=1Di ,D[m] =

⋂m
i=1Di∩U and let f : U → C

be a holomorphic function. Then f is a stratified Morse function at 0 relative to D with
codimension m if and only if the following conditions are satisfied:

(1) df0|C 6= 0 on any coordinate subspace C =
⋂
i∈J Di for which J ( {1, . . . , m},

(2) df0(T0D[m]) = 0,
(3) Hess0(f ) is non-degenerate on T0D[m].

Proof. Applying the complex Morse Lemma to f |D[m] and inductively applying the Im-
plicit Function Theorem for coordinate planes containing D[m] yields the result. ut

Let Bε be the radius ε disc about the origin in C and Ũ = f−1
L (Bε) ⊂ C. As was

pointed out above, the symplectic orthogonal connection on fL : Ũ → Bε has to be
corrected in order to preserve the boundaryD(m). We implement a form of Moser’s trick
by integrating a path of equivalent symplectic forms, perform parallel transport relative
to the corrected form and then flow back to the standard form.

We define a smoothly varying collection {ρε}1≥ε>0 of functions where ρε :

R≥0 → R≥0 is a smooth convex function which satisfies

ρε(r) =

{
1
4ε

2r for r < ε,

1
4 r

2 for r > 2ε.
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ρε(r)

r
ε 2ε

Fig. 24. The function ρε .

The function ρε is illustrated in Figure 24. Then define ωε on Cn to be the symplectic
form obtained for the Kähler potential

pε(z1, . . . , zn) =

m∑
i=1

ρε(|zi |)+
1
4

m+1∑
i=1

|zi |
2. (111)

It is clear that ωε is a smooth symplectic form away fromD(m) and singular onD(m). An
application of Stokes’ Theorem shows that for any disc 6 with boundary outside of the
radius 2 neighborhood ofD(m) and any ε ≤ 1, the integral

∫
6
ωε is finite and independent

of ε. Indeed, if 6 is such a disc, then we may perturb its interior so that it transversely
intersects D(m) implying that each intersection point is in Di for some 1 ≤ i ≤ m.
Again, after perturbing, we may assume that 6 is orthogonal to Di , which reduces the
computation to the one-dimensional case. Note that, as ωε is an exact symplectic form off
D(m) and we have kept the outer boundary fixed, these perturbations do not affect

∫
6
ωε.

To check the assertion in the one-dimensional case, assume 6 ⊂ C contains the origin,
and for δ < ε let 6δ = 6 − Bδ . The boundary of 6δ then consists of an outer closed
curve Co which we assume to be outside a disc of radius 2, and the inner closed curve Ci
where Ci is a circle of radius δ about the origin. Let λε = −dcρε(|z|) be the Liouville
form. Note that in the ε-neighborhood of the origin,

ωε = dλε =
ε2

4
d

(
xdy − ydx√
x2 + y2

)
. (112)

Thus if Ci is parameterized by (δ cos(θ), δ sin(θ)) then λε|Ci = (ε
2δ/4)dθ . On the other

hand, since Co lies outside of the 2-neighborhood of 0, λε|Co is independent of ε. Thus,∫
6

ωε = lim
δ→0

∫
6δ

ωε = lim
δ→0

∫
∂6δ

λε = lim
δ→0

(∫
∂Co

λε −

∫
Ci
λε

)
=

∫
∂Co

λε − lim
δ→0

(
ε2δ

4

∫ 2π

0
dθ

)
=

∫
∂Co

λε.

This verifies that the relative cohomology class of ωε is constant in the 2-neighborhood of
D(m) as ε varies. It is this fact that hints towards a Moser argument relating the standard
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symplectic structure to ωε. In particular, let Xε be the vector field which is the fL fiber-
wise ωε dual of the 1-form d

dt
(dcpt )

∣∣
t=ε

. The vector field Xε is smooth off D(m) and
extends continuously to Cn by letting it equal zero on D(m). Furthermore, the deriva-
tive of Xε is bounded on Cn. This implies that the time varying vector field Xt may be
integrated on Cn for time t ∈ R≥0. Recalling that Ũ = f−1

L (Bε), and noting that, by
definition, Xt is tangent to the fibers of fL, we may restrict the Xε flow to Ũ . We denote
by 8s : Ũ → Ũ the singular symplectomorphism obtained through integrating {Xt } to
time t = s.

Definition B.20. For any stratified Morse function f : Y → C with a local model
U ⊂ Cn and fL : U → C, we will call conjugation of parallel transport around 0
relative to ω1 by 81 modified symplectic parallel transport relative to U .

We now investigate the local behavior of modified symplectic parallel transport for fL :
Cn → C. As the computation is local, we may extend the symplectic form ω1 near 0 to
one over all of Cn, differing from ω1 only outside of a neighborhood of 0. From the defini-
tion of ωε using the potential pε in (111), we note that nearD(m) = {z1 · · · zm = 0} ∩U ,
the symplectic form for ε = 1 is

ω =
i

4

m∑
i=1

dzi ∧ dz̄i

|zi |
+
i

2

n∑
i=m+1

dzi ∧ dz̄i .

Sufficiently far away from D(m), ω1 is the standard symplectic form and it interpolates
between ω and ωst. We may thus use ω for the local model.

Let L(z1, . . . , zm) = c1z1 + · · · + cmzm and note that we may change coordinates
by multiplying zi with e−arg(ci )i without affecting the map 8, so that we may assume
ci ∈ R+. In the following computation, we will examine only the case where ci = 1 for
every m + 1 ≤ i ≤ n and write f for fL. The case of a more general linear function
L only affects the isotopy class of the modified parallel transport map if a small ∂-frame
group F is considered for which rotations about the boundary in SympF(Y) do not exist.
In less restrictive frame groups, for example if F is the image of all symplectomorphisms
preserving the boundary divisor under j#, we may isotope to this case.

Our goal will be to understand parallel transport around 0. As a first step, let γvc :
R>0 → C be the path γvc(t) = t and examine the flow of the parallel transport vector
field which lifts −∂z. Let Fq be the fiber of f over q ∈ C and φt : Fq → Fq−t be the
parallel transport map for q > t . Define

T ◦ =
{
z ∈ f−1(R>0) : lim

t→f (z)
φt (z) = 0

}
, (113)

L◦ =
{
z ∈ F1 : lim

t→1
φt (z) = 0

}
, (114)

called the open vanishing thimble and cycle, respectively, of f . A priori, parallel transport
can only be defined where ω is non-singular, so T ◦ ⊂ Cn −D(m) and L◦ ⊂ F1 − (F1 ∩

D(m)). The vanishing thimble T and cycle L will then be defined as the closure of these
in Cn and F1 respectively.



Symplectic relations and degenerations of LG models 2259

Let ϕ : Cn→ Cn be given by

ϕ(w1, . . . , wn) =
( 1

2w
2
1, . . . ,

1
2w

2
m, wm+1, . . . , wn

)
.

Observe that f̃ := f ◦ ϕ(w1, . . . , wn) =
1
2
∑
w2
i and ϕ∗ω1 = ωst so that the diagram

(Cn, ωst)
ϕ
//

f̃

��

(Cn, ω1)

f

��

C C

commutes. This immediately implies that, off D(m), the parallel transport vector fields
are mapped to each other via ϕ.

In fact, we show that this description extends over D(m). To see this note that, given
any Kähler form ω̃ on Cn, a holomorphic function F : Cn → C, a regular point p ∈ Cn
of F with q = F(p) and a tangent vector z ∈ TqC, one has the formula

ξF,ω̃(z) = z ·
gradω̃(F )
‖gradω̃(F )‖

2
ω̃

(115)

for the symplectic connection lift ξF,ω̃(z) of z to TpCn. Here the gradient and norm are
with respect to the Hermitian form defined by ω̃. Letting p = (w1, . . . , wn) ∈ Cn with
the standard metric, one computes that the lift of z for f̃ is

ξ
f̃ ,ωst

(z)|p = z ·
(w̄1, . . . , w̄n)

‖(w̄1, . . . , w̄n)‖2ωst

.

On the other hand, taking ϕ∗(ξf̃ ,ωst
(z)|p) and using (115) for F = f and ω̃ = ω at

ϕ(p) =
( 1

2w
2
1, . . . ,

1
2w

2
m, wm+1, . . . , wn

)
gives

ϕ∗(ξf̃ ,ωst
(z)|p) = z ·

(|w1|
2, . . . , |wm|

2, w̄m+1, . . . , w̄n)

‖(w̄1, . . . , w̄n)‖2ωst

= z ·
(|w1|

2, . . . , |wm|
2, w̄m+1, . . . , w̄n)

‖(|w1|2, . . . , |wm|2, w̄m+1, . . . , w̄n)‖2ω

= z ·
gradω(f )
‖gradω(f )‖2ω

= ξf,ω(z)|ϕ(p). (116)

Off D(m), this equality follows from the fact that ϕ∗(ω1) = ωst. The upshot of the
computation is the realization that any parallel transport vector field with respect to f
extends to D(m). Moreover, a closer look at the equations in (116) shows the divisors
{Di}1≤i≤m are horizontal with respect to parallel transport. In fact, the vector field ξf,ω
restricts to the parallel transport field associated to f |D(m).
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Proposition B.21. The vanishing thimble and cycle of f are

T = Rm
≥0 × Rn−m, L = F1 ∩ (Rm≥0 × Rn−m) ≈ 1m−1 ? S

n−m−1,

where 1m−1 is the (m− 1)-dimensional simplex, Sn−m−1 is the sphere and ? is the join.

Proof. By the definition of vanishing thimble in (113), T is the union of all integral curves
of ξf,ω(−1) which limit to 0 ∈ Cn (here −1 represents the vector field −∂z on C). It is
known that Rn is the vanishing thimble of f̃ along γvc (see [47, Example 16.5]). By (116),
ϕ∗(ξf̃ ,ωst

(−1)|p) = ξf,ω(−1)|ϕ(p), which implies that if δ : [a, b] → Cn is an integral
curve for ξ

f̃ ,ωst
(−1) then ϕ ◦δ is an integral curve for ξf,ω(−1). As ϕ is surjective, we see

by the uniqueness of integral curves (up to reparameterization) that every integral curve
of ξf,ω(−1) is the image of one for ξ

f̃ ,ωst
(−1). As ϕ−1(0) = 0, this implies that T is the

image ϕ(Rn) = Rm
≥0 × Rn−m.

The description of L follows from intersecting T with the fiber F1. In particular,
(r1, . . . , rm, z1, . . . , zn−m) ∈ F1 ∩ (Rm≥0 × Rn−m) if and only if ri ≥ 0 for all i and

n−m∑
i=1

z2
i = 2

(
1−

m∑
i=1

ri

)
. (117)

Taking the standard simplex 1m−1 = {s = (s1, . . . , sm) ∈ Rm
≥0 :

∑m
i=1 si = 1} and

Sn−m−1
= {u ∈ Rn−m : ‖u‖2 = 1} we map G : 1m−1 × S

n−m−1
× [0, 1] → F1 ∩

(Rm
≥0 × Rn−m) via

G(s, u, t) =
(
ts,
√

2(1− t) u
)
.

Recall that the join 1m−1 ? S
n−m−1 is equal to 1m−1 × S

n−m−1
× [0, 1]/∼ where

(s, u, 0) ∼ (s′, u, 0) and (s, u, 1) ∼ (s, u′, 1). It then follows from (117) that G in-
duces a homeomorphism of 1m−1 ? S

n−m−1 onto L. ut

We give a few examples of these vanishing cycles in Figure 25. In general, one would hope
that these cycles could appear as natural objects in a Fukaya–Seidel category, perhaps
with a partial wrapping around the stratifying divisors.

n = 2, m = 1 n = 3, m = 1 n = 3, m = 2

Fig. 25. The vanishing cycle as a join L ≈ 1m−1 ? S
n−m−1.

We conclude this section with a description of the monodromy map around the strati-
fied Morse critical value.
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Proposition B.22. For any ε > 0 there exists a symplectomorphism φ supported on the
ε-neighborhood U of L and isotopic to symplectic monodromy of f around 0. Further-
more, L is a deformation retract of U with retraction ρ : U → L, and for x ∈ L − ∂L,
the fiber Fx = {u ∈ U : ρ(u) = x} satisfies:

(1) Fx is a topological disc,
(2) φ(Fx) ∩ L = {x},
(3) ρ ◦ φ is generically a 2m-cover of L.

Proof. Symplectic monodromy around 0 relative to the function f̃ is a spherical twist as
introduced in [45] and surveyed in [42, Section 6.3]. We let G = (Z/2Z)m act on Cn
by multiplying the i-th coordinate by ±1. As f̃ (w1, . . . , wn) =

1
2
∑
w2
i , we see that f̃

and ϕ are invariant with respect to this action. Since the action preserves the standard
symplectic form, the lift of the parallel transport vector field and symplectic monodromy
are equivariant with respect to the action. Noting that Fq is simply the quotient of f̃−1(q)

by G, we aim to understand symplectic monodromy around zero on F1 as a quotient of
that on f̃−1(q) by G.

To accomplish this, we recall the definition of the spherical twist with respect to f̃ . It
is known that f̃−1(1) ≈ T ∗Sn−1 and the vanishing cycle is Z = {(w1, . . . , wn) ∈ Rn :∑
w2
i = 2}. Taking g to be the constant curvature 1 metric on Z ≈ Sn−1 we have the

dual metric g∗ on T ∗Sn−1 and consider the Hamiltonian H : T ∗Sn−1
→ R, H(w, v) =

1
2‖v‖

2
g∗ , generating the geodesic flow [42, Example 1.22] andXH its vector field. For any

ε > 0, one may rescale XH off the ε/2-neighborhood of the zero section Z ⊂ T ∗Sn−1 to
obtain an exact vector field X̃H supported on the ε-neighborhood Ũ of Z whose time 1
flow is the antipode map on Z. The resulting monodromy map φ̃ has support on Ũ and is
Hamiltonian isotopic to the spherical twist. This is a generalization of the Dehn twist in
two dimensions.

We would like to utilize this description to understand the stratified case. Let U =
Ũ/G and φ : F1 → F1 be the monodromy map induced by the symplectic parallel
transport φ̃ along a loop about the origin. Note that as the bundle projection from Ũ to Z
is G-equivariant, it defines a retraction ρ : U → L in F1. Decompose Z into 2m regions,
Z =

⋃
g∈G Zg , defined as

Z0 = {(w1, . . . , wn) ∈ S
n−1
: wi ≥ 0 for all 1 ≤ i ≤ m}, Zg = g · Z0.

We let T ∗Z0 consist of pairs (w, v) such that if w ∈ ∂Z0 then v(ν) ≥ 0 for all inward
pointing tangent vectors ν ∈ TwZ0. Observe that T ∗Z0 forms a fundamental domain
for the G action in f̃−1(1) ramified over the boundary ∂Z0. Thus the points in F1 ≈

T ∗Sn−1/G can be identified with those in T ∗Z0.
Now, by restricting φ̃ to any cotangent fiber T ∗p S

n−1 and projecting to Z, we obtain a
decomposition of each such fiber, T ∗p S

n−1
=
⋃
g∈G Zp,g . Here

Zp,g = {(p, v) ∈ T
∗
p S

n−1
: π(φ−1(p, v)) ∈ Zg}

where π : T ∗Sn−1
→ Z is the cotangent bundle projection. On identifying T ∗Z0 with F1,

the monodromy map φ takes (p, v) ∈ Zp,g to g−1ϕ(p, v). Qualitatively, we observe that
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a given fiber of T ∗p Z0 ≈ T ∗p L, identified with ρ−1(p), wraps around the zero section
2m times with one crossing. The map on the vanishing cycle is seen to be the join of the
identity on the simplex with the antipode map on the sphere. ut

B.4. ∂-framed Lefschetz pencils

In this section we address certain transitions in framings for symplectomorphisms arising
in monodromy calculations. We assume (Y,D) is a Kähler orbifold with standard normal
crossing divisorD = D1+· · ·+Dk , i.e. it is a symplectic orbifold with a specified J ∈ J
that is integrable everywhere.

Let C be a one-dimensional DM stack with coarse space P1. Let π : Y → C be a map
with determinant values Det(π). These are defined to be the values of π for which either
π singular, or π |⋂

i∈I Di
is singular.

Definition B.23. We will say that π defines a ∂-framed Lefschetz pencil if ω ∈ �2(Y)
is isotopic to some ω̃ for which D is horizontal and such that there is a covering {Ui}
of C such that π : π−1(Ui) → Ui is either a smooth proper fibration, a normal crossing
degeneration or a stratified Morse function for every i. If (Y,D) is a standard Kähler
stack with resolving collection R, we say that π is a ∂-framed Lefschetz pencil if π ◦ψε :
Ỹ → C is a ∂-framed Lefschetz pencil for every (Ỹ, D̃) ∈ R.

We note that the definition of Lefschetz pencil given in [19] is generalized by the defini-
tion above. The notion of a partial Lefschetz fibration given in [37] can also be introduced
in this framework. However, our principal example of a framed pencil is obtained from
considering stacky curves in X6(A) where A satisfies some basic conditions.

Before we state the next theorem we review some notation from Appendix A. Recall
that A is a finite set in a lattice with convex hull Q. The toric stack defined by Q was
denoted XQ and, for any face F ⊆ Q, the orbit of the maximal torus acting on XQ cor-
responding to F was denoted orbF . Coupled with XQ was a line bundle OA(1) defined
by Q and a subspace LA of sections defined by A. In (44) we defined the principal A-
determinant EA : LA → C which vanished on degenerate sections in LA. These were
elements of LA whose zero locus intersected the orbit orbF non-transversely for some
face F of Q. In Definition A.28, we then extended EA to a section EsA of a line bundle
over the secondary stack X6(A) with zero loci EA. The discriminant 1A : LA → C is a
polynomial vanishing only on those sections which defined hypersurfaces with singulari-
ties in the maximal orbit orbQ. When 1A is constant, we call (Q,A) dual defect.

Theorem B.24. SupposeA ⊂ Zd defines the marked polytope (Q,A) such that for every
face F of Q either orbF has a smooth neighborhood, or (F,A ∩ F) is dual defect. Let
(YA, ∂YA) ⊂ X2(A) be the universal toric hypersurface with boundary. Suppose C is
one-dimensional and i : C → X6(A) is an embedding which transversely intersects EA
and ∂X6(A). Then π : i∗(YA, ∂YA)→ C is a ∂-framed pencil.

Proof. From Theorem A.15, there is a product decomposition

EA(f ) =
∏
Q′≤Q

1A∩Q′(f )
i(3,A)·u(LinN(A)/Q′)
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where, in this case, 3 = Zd . Recall that this is indexed by faces Q′ = Conv(A′) ⊆ Q.
Under the conditions above, if the orbit orbQ′ does not admit a smooth neighborhood then
1A′ is constant. So we may assume that for every set A′ of lattice points in a faceQ′ ofQ
which has a non-constant discriminant, XQ′ admits a smooth neighborhood.

Since every intersection point p ∈ i(C) ∩ {1A′ = 0} is transverse, we find that
the point p is a smooth point of 1A′ = 0 and is not in {1A′′ = 0} for any other sub-
set A′′ on a face of Q. By [24, Theorem 1.5.1], this implies that the Hessian of π :
i∗(YA)∩ orbQ′ → C at p is non-degenerate and π : i∗(YA)∩ orbQ′′ → C is non-singular
at p for all faces Q′′ containing Q′. Thus, by Proposition B.19, π : i∗(YA, ∂YA)→ U is
a stratified Morse singularity in a neighborhood U of p.

For every p ∈ i(C) ∩ ∂X6(A), Theorems A.38 and A.39 imply that there is a neigh-
borhood U of p such that π : i∗(YA, ∂YA) → U is a hypersurface degeneration of
ZA(q) = π−1(q) for q ∈ U − {p}. ut

All of the results on symplectomorphisms will be obtained by parallel transport in a ∂-
framed Lefschetz pencil. However, the parallel transport map occurs naturally as a functor
in higher dimensional settings. We take a moment to fix notation for the general setup,
and quickly return to the one-dimensional case afterwards.

Given a stack X with atlas (Uβ ,Gβ , πβ)β∈B, let 5(X ) be the path category of X
defined by taking elements p ∈

⋃
Uβ to be objects, and morphisms Hom(p, q) = {γ :

[0, 1] → X : γ (0) = p, γ (1) = q}. We can think of this category as an (∞, 1)-category,
as morphisms do not compose associatively.

Given a bundle π : (Y, ∂Y) → X of standard symplectic stacks over X and a
symplectic connection which preserves their boundaries, we write parallel transport as
a functor

P : 5(X )→ Symp
where Symp is the category of standard symplectic stacks. This map takes p ∈ X to
π−1(p) and a morphism to the map obtained by parallel transport. We will abuse notation
and also write P : �p(X )→ Symp(π−1(p), ∂π−1(p)) for the restriction to based loops.
As indicated by Theorem B.24, the primary example we consider is X = X6(A) − EA.
Using this theorem and the general parallel transport map, we define:

Definition B.25. For any point p ∈ X6(A) − EA let

Gp ⊂ π0(Symp(ZA(p), ∂ZA(p)))

be the group of components of the image P(�p(X6(A) − EA)).
For any ∂-framed Lefschetz pencil π : Y → C and q ∈ C − Det(π) let Zq = π−1(q)

be the fiber with ∂Zq = Zq ∩ D. If the q is a chosen base point, we simply write Z
and ∂Z . Note that the definition above ensures that every fiber outside Det(π) transversely
intersects D, so (Z, ∂Z) is a symplectic orbifold with standard normal crossing divisor.

The connection given by the modified symplectic form ω̃ yields a parallel transport
map that preserves the boundary, which we write as

P : �q(C − Det(π))→ Symp(Z, ∂Z),

where �q denotes the piecewise smooth based loops at q.
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A key point which will be made precise in Proposition B.30 is that when we examine
local monodromy, we may utilize the local model descriptions to analyze the symplecto-
morphisms as framed maps with respect to a reasonable ∂-frame group. However, when
we extend to the global pencil, these maps loose their framing in the holonomy. Another
way of saying this is that if we omit a point q∞ ∈ C − Det(π), we may define a ∂-frame
group F which is tightly controlled on parts of ∂Z and obtain, up to homotopy, a lift

P∞ : �q(C − Det(π)− {q∞})→ SympF(Z, ∂Z).

However, to extend the map to �q(C − Det(π)), we need to consider the ∂-frame
group Frel.

To make this idea precise, we must define a ∂-frame group of a ∂-framed Lefschetz
fibration. For this, recall the normal crossing divisor D =

∑k
i=1Di contained in Y

and let ∂Z =
∑k
i=1 D̃i where D̃i = Di ∩ Z . In general, the symplectomorphisms in

Symp(Z, ∂Z) arising from parallel transport are non-trivial when viewed via restriction
to the symplectomorphism groups of the boundary divisors Symp(D̃i). The following
definition gives conditions that allow us to control this additional complexity.

Definition B.26. A boundary component Di is called rigid if there exists a trivialization
Di − ∂Di ≈ (D̃i − ∂D̃i)× C over C where π is projection to the second factor.

We say that a face F ⊂ Q is a simplicial face if F is a face of Q and F ∩ A is an
affinely independent set. The following proposition may be deduced from the fact that
the orbits corresponding to simplicial faces of Q occur in trivial families as substacks of
π : YA→ X6(A).

Proposition B.27. If i : C → X6(A) pulls back π : YA→ X6(A) to a ∂-framed Lefschetz
fibration and D is a divisor associated to a simplicial facet of (Q,A), then D is rigid.

Proof. If (Q′, A′) is a simplicial facet of (Q,A) then by Theorem A.16, 6(A′) is zero-
dimensional. Thus the moduli space of hypersurfaces in the toric stack XQ′ is also zero-
dimensional. Let D ⊂ X2(A) be the horizontal divisor corresponding to the pointed sub-
division (S,A′) where S is the trivial subdivision {(Q,A)}. By Proposition A.19 and
Lemma A.21, the facet FD of the Lafforgue polytope 2(A) corresponding to the bound-
ary divisor D is a Minkowski sum P + 6(A) of two polytopes, P := Conv{ea : a ∈ A′}
and6(A). By (58), P and6(A) lie on independent affine spaces in RA, implying that the
boundary is P ×6(A) and D ∼= XP ×X6(A). From the definition of π , one sees that π |D
is the projection on the second factor. Also, as the hypersurface in YA ∩D forms a trivial
family over X6(A) (since 6(A′) is a point), we find that YA ∩ D also splits as a product.
Pulling back along ι : C → X6(A) gives the desired splitting over C. ut

Now, let Det(π) = {q1, . . . , qN } and write Bε(p) for the disc of radius ε around p.
We take B = {γ1, . . . , γN } to be a set of embedded paths from [0, 1] to C such that
γi(0) = q, γi(1) = qi and, for i 6= j , γi(t) = γj (s) if and only if t = s = 0. We also
assume that γ ′i (0) is ordered clockwise. Such a collection is known as a distinguished
basis of paths [12]. For any such basis and any γi , we define a loop γ εi by following γi
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until reaching a distance of ε, circling around the boundary of Bε(qi) clockwise and
following γi back to q. By Definition B.23, there is an ε sufficiently small such that
φi = P∞(γ εi ) is a degeneration monodromy map or stratified Morse monodromy map as
presented in the previous sections. We divide {1, . . . , N} = Id ∪ Im into those points of
hypersurface degeneration monodromy and stratified Morse values respectively.

For i ∈ Im, we let Li ⊂ (Z, ∂Z) be the vanishing cycle pulled back along γi and
write Si = {j : Li ∩ D̃j 6= ∅} for the set of divisors that intersect the vanishing cycle
of γi . Let Ki be a relatively compact neighborhood of ∂Li and K =

⋃
i Ki . By the

discussion following Proposition B.21, φi can be viewed as a symplectomorphism with
support in Ki .

For i ∈ Id , first recall that the facets {∂Qj } ofQ are indexed by {1, . . . , k} and to each
facet ∂Qj there corresponds a divisor D̃j of Z . Let ηi : Q→ R be the defining function
for the stable pair degeneration at qi and set Si = {j : ηi is not affine on ∂Qj }. In other
words, the degeneration of Z at qi also degenerates D̃j . We write

R = {1, . . . , k} −
⋃
i

Si (118)

and observe that every boundary divisor D̃j is rigid if j ∈ R, as in Proposition B.27. Let

Rkηi = {(r1, . . . , rk) : rj ∈ R, rj ∈ Z for j 6∈ Si}, (119)

and Tηi = {τ(r) : r ∈ Rkηi }. We define Tπ to be the group generated by the subgroups Tηi
over all i ∈ Id .

Example B.28. Consider the set A = {(0, 0), (1, 0), (−1, 0), (0, 1)}, the universal hy-
persurface YA ⊂ X2(A) and the restriction π |YA : YA → X6(A). Theorem A.16 im-
plies that X6(A) is one-dimensional so that its coarse moduli space is P1. The horizontal
boundary of YA is the intersection of YA with the horizontal boundary of X2(A), which
by Lemma A.20 corresponds to the boundary of Q. Index the three horizontal boundary
divisors of YA as follows:D1 for the line segment between (−1, 0) and (1, 0), D2 for the
line segment between (−1, 0) and (0, 1), and D3 for the line segment between (1, 0) and
(0, 1). Note that D2 and D3 are rigid by Proposition B.27. For a regular value t ∈ X6(A),
the fiber (ZA(t), ∂ZA(t)) is isomorphic to P1 with four marked points, where D̃2 and D̃3
are each a single point and D̃1 consists of two points.

As is shown in Section 2.2.3, Det(π |ZA(t)) = {q0, q1, q2} where q0, q2 are hypersur-
face degenerations arising from the triangulations

T0 = {(ConvA− (0, 0), A− (0, 0))},
T2 = {(ConvA− (1, 0), A− (1, 0)), (ConvA− (−1, 0), A− (−1, 0))}.

The point q1 is a stratified Morse singularity relative to D̃1 of codimension 1.
Thus Id = {0, 2} and Im = {1}. The set S1 is simply {1} as the vanishing thimble only

intersects D1. The set S0 is empty since T0 does not subdivide any boundary component.
However, S2 = {1} since T2 defines a degeneration of the divisor D̃1 into multiple com-
ponents. Thus R = {2, 3} in this case and R3

ηi
= R ⊕ Z2 for i ∈ {0, 2}. The group Tπ
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then consists of all (simultaneous) angular rotations around the points in D̃1 ⊂ ZA(t) but
only full 2π rotations around D̃2 and D̃3.

Definition B.29. Let π : Y → C be a ∂-framed Lefschetz pencil. The ∂-frame group F ∈
Symp(N∂ZZ/∂Z) associated to π is given by the collection of maps whose restrictions
to
⋃
j∈R D̃j are contained in the restriction of Tπ .

We note that if every facet on the boundary of Q corresponds to a degenerate divi-
sor or one with a stratified Morse singularity over some qi ∈ Det(π), then F equals
Symp(N∂ZZ/∂Z). On the other hand, if Q is simplicial, then F is a discrete subgroup
of T. Ideally, one would like to obtain more control over the ∂-framing for the non-rigid
boundary components and incorporate this into a formula such as the one in Proposition
B.31, but this is currently not within our sight. However, we may use the results of the
previous sections to prove the following proposition.

Proposition B.30. If π : Y → D is a ∂-framed Lefschetz pencil and q∞ is chosen as
above, then there exists a symplectic connection for which the parallel transport map P
lifts to

P∞ : �q(C − Det(π)− {q∞})→ SympF(Z, ∂Z),
where F is the ∂-frame group associated to π .
Proof. For every i ∈ Im, by definition, the divisors supporting the degenerate point are
horizontal with respect to ω̃. By Proposition B.22, monodromy around qi is Hamiltonian
isotopic to a map supported on the relatively compact neighborhoodKi . By the definition
of R, the vanishing cycle Li associated to i ∈ Im is disjoint from D̃j for all j ∈ R, so we
may choose a neighborhood Ki which is also disjoint. Thus the restriction of the map to
the framing group F is well defined. Indeed, the monodromy map is the identity on any
rigid D̃i . ut

We observe that for ∂-frame groups associated to ∂-framed Lefschetz pencils, the exact
sequence in Proposition B.8 yields the fiber sequence

SympF(Z, ∂Z)→ SympFrel
(Z, ∂Z)→ Rk/Rkπ ,

where Rkπ was defined in (119). Note that the last group is homotopic to (S1)t where
t ≤ |Id |.

Now, write γ for the concatenation γN ◦ · · · ◦ γ1 which is independent of the distin-
guished basis. Let N(γ ) be the normalizer of γ in the group π1(C−Det(π)− {q∞}). We
write FN for the free group on N letters and obtain the commutative diagram

N(γ ) //

%

��

FN //

[P∞]
��

FN−1 //

[P]
��

1

π1((S
1)t )

δ // π0(SympF(Z, ∂Z)) // π0(SympFrel
(Z, ∂Z)) // 1

The bottom row of this diagram arises as the long exact sequence of homotopy groups
associated to a fiber exact sequence. The top row is the short exact sequence associated to
the quotient group. The homomorphism % is uniquely constructed from the commutativity
of the remaining portion of the diagram.
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The image of γ under % will be of particular importance. One may interpret this image
as the amount of rotation around the boundary needed to isotope γN ◦· · ·◦γ1 to the identity
in SympF(Z, ∂Z). Under the restrictions laid out above, there is an explicit formula for
this map.

Proposition B.31. If π : Y → C is a ∂-framed Lefschetz pencil, then, for every i ∈ T ,
there exists a section si : Ci → Di such that

%(γ ) =
∑
i∈T

aiei

where ai =
∫
Ci s
∗

i (c1(NYD̃i)) and ei is the loop in Symp(N∂ZZ/∂Z) corresponding to

rotation around D̃i .

Proof. Fix q ∈ C to be the base point and Z its fiber. By definition of rigid boundary
divisor, for every i ∈ T , the restriction of π to Di is trivial over C, so that there ex-
ists an isomorphism ψ : Di ∼= D̃i × C where D̃i = Di ∩ Z . Over the contractible
subset U0 = C − {q∞}, we may extend this to an isomorphism of normal bundles
ψ̃i : ND̃i

Z×U0 → N
D̃i∩π

−1(U0)
π−1(U0). Likewise, in an open neighborhood U1 of q∞,

we may trivialize φ̃i : ND̃iZ × U1 → N
D̃i∩π

−1(U1)
π−1(U1). Taking a circle δ in the

intersection U0 ∩U1 leads to a fiberwise transition function between these trivializations.
The multiplicative factor of the transition function on the normal bundle restricted to
δ is given by the transition function on NDiY restricted to C × {p} ⊂ Di . The wind-
ing number is given by the Chern number of s∗i (NDiY) where j : C → Di is a sec-
tion. On a normal neighborhood of D̃i in Z , this is the restriction of τ(x) to D̃i where
x = (0, . . . , 0, ai, 0, . . . , 0). Adding these together for each rigid component yields the
claim. ut

We end this section by defining a subgroup of the framed symplectomorphism group of a
hypersurface in a toric stack.

Definition B.32. LetA ⊂ Zd satisfy the hypothesis of Theorem B.24 and i : C → X6(A)
be an embedded curve. The group GC = P∞(i∗(�q(C − C ∩ EA))) ⊂ ZA(i(q)) will be
called the C subgroup of Symp(ZA(i(q)), ∂ZA(i(q))).

One of our stated goals is to understand generators and relations for the group GA :=
P(�q(X6(A) − EA)). We may reduce the complexity of this problem by examining
∂-framed Lefschetz pencils and their monodromy.

Proposition B.33. Assume that X6(A) does not have generic isotropy. For any embedded
i : C → X6(A) for which the cycle i∗[C] is Poincaré dual to a very ample divisor, the
group π0(GC) surjects onto π0(GA).

Proof. For a very ample line bundle L with equivariant linear system V we have an
embedding on the coarse space j : X6(A) → P(V ). The Lefschetz Hyperplane Theorem
gives a surjection from the fundamental group of the curve arising from a linear section
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of j (X6(A) − EA) and that of XQ − EA. But if B denotes the points with non-trivial
isotropy on X6(A) and B its coarse space, then π1(X6(A) − EA − B) is a surjection onto
π1(X6(A) − EA), yielding the result. ut

Acknowledgements. Support was provided by NSF Grant DMS-0901330, NSF FRG Grant DMS-
0854977, FWF Grant 24572-N25, and an ERC GEMIS Grant. We would like to thank Denis
Auroux, Matthew Ballard, Alessio Corti, David Favero, Paul Horja, Maxim Kontsevich, Tony
Pantev and Paul Seidel for helpful comments and conversation during the preparation of this work.

Index of notation

A−, A0, A+ 2171
σ(A) 2171
vA 2171
Core(A) 2171
T± 2172
`± 2176
c̃i 2176
%A 2176
˜̀
± 2178
Dh 2179
cA 2179
w 2193
G̃A′ ,GA′ 2193
ρA′ 2193
MA,A′ 2194
Vθ ,Fθ , Hθ 2194
6γ (P ) 2194
G∨,G∧ 2194
Tξ 2195
(dj , mj ) 2195
Mξ 2195
Fuk⇀ 2201
6T ,3T 2202
Sξ 2202
C(w), C±(w), C0(w)

2203
ϒ,ϒ 2204
Simp(6) 2204
ϒ−, ϒ

− 2204
3E,3F ,3B , E,F ,B

2204
Mult(σ ) 2207
(31,32, β,6) 2209
H6 2210
X6 2210
X6 2210
G6 2210
6→g ,X→g 2211
αB , βB 2212

LB 2212
KB 2212
3B∨ 2213
Conv(A) 2213
(Q,A) 2213
Q̄ 2213
nb 2213
6Q 2213
XQ 2213
∂XQ 2213
OA(1) 2213
LA 2213
GQ 2213
Av 2214
Anv 2214
EA 2214
1A 2215
T,T0 2215
µ 2215
ρω 2215
S 2216
Qη 2216
η, η̃ 2216
T 2216
CR(S) 2217
cη,i 2217
(Xη,Yιη(s′)) 2218
Fη 2218
LinM (A) 2219
A 2219
ϕT 2219
6(A) 2219
F6(A) 2220
6v(A) 2221
2(A) 2222
2p(A) 2222
F2p(A) 2222
CR(S,Ap) 2222
(S,Ap) 2222

2(A)
h
,2(A)

v 2223

6̃2p(A) 2226
X2p(A) 2227
OA(1) 2227
sA 2227
ỸA 2227
X2(A) 2227
YA 2227
6̃6v(A) 2229
X6(A) 2230
ZA(t) 2230
Es
A

2230
EA 2230
(3⊕ Z)wall 2230
4A 2230
6̃6(A) 2230
VA 2234
WA 2235
UA 2236
(Uβ ,Gβ , πβ )β∈B 2242
Symp(Y),Symp(L/Y)

2243
Symp(Y,D) 2243
Tε 2243
F 2244
j# 2244
SympF(Y,D) 2244
Fred 2244
Frel 2246
κ 2247
νη 2249
fη 2250
Gp 2263
P 2263
P∞ 2263
Id , Im 2264
Rkη 2265
Tπ 2265
γ 2266
GC 2267
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