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Abstract. Balanced Viscosity solutions to rate-independent systems arise as limits of regularized
rate-independent flows by adding a superlinear vanishing-viscosity dissipation.

We address the main issue of proving the existence of such limits for infinite-dimensional sys-
tems and of characterizing them by a couple of variational properties that combine a local stability
condition and a balanced energy-dissipation identity.

A careful description of the jump behavior of the solutions, of their differentiability properties,
and of their equivalent representation by time rescaling is also presented.

Our techniques rely on a suitable chain-rule inequality for functions of bounded variation in
Banach spaces, on refined lower-semicontinuity compactness arguments, and on new BV-estimates
that are of independent interest.
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1. Introduction

This paper concerns the asymptotic behavior of the solutions uε : [0, T ] → V , ε ↓ 0, of
singularly perturbed doubly nonlinear evolution equations of the type

∂9ε(u̇ε(t))+ ∂Et (uε(t)) 3 0 in V ∗, t ∈ (0, T ). (1.1)

Here (V , ‖·‖) is a Banach space satisfying the Radon–Nikodým property (e.g. a reflex-
ive space, see [DiU77]), ∂E is the Fréchet subdifferential of a time-dependent energy
functional E : [0, T ] × V → (−∞,∞], and 9ε : V → [0,∞) is a family of convex
dissipation potentials of the form

9ε(v) := 9(v)+ ε
−18(εv), v ∈ V, ε > 0, 9(0) = 8(0) = 0, (1.2)

where the viscous potential 8 : V → [0,∞) depends on the norm of V and provides a
convex superlinear correction, which is differentiable at v = 0. Other important coercivity
and structural assumptions on 9,8,E will be discussed in Section 2.1.

The main feature we want to address here is the degeneration of the superlinear char-
acter and of the strict convexity along the rays λ 7→ λv, λ > 0, of 9ε as ε ↓ 0, approxi-
mating a degree-1 positively homogeneous convex potential 9 : V → [0,∞),

9(λv) = λ9(v) for every v ∈ V, λ ≥ 0; 9(v) > 0 if v 6= 0. (1.3)

An important example motivating our investigation is the vanishing quadratic approxima-
tion

9ε(v) = 9(v)+
1
2ε‖v‖

2, associated with the viscous potential 8(v) := 1
2‖v‖

2.

(1.4)

The superlinear case. Equations of the type (1.1) arise in several contexts, ranging from
thermomechanics to the modeling of rate-independent evolution. In the realm of these
applications, (1.1) may be interpreted as generalized balance relation, balancing viscous
and potential forces.

The analysis of (1.1) when the energy E has the typical form

Et (u) = E(u)−〈`(t), u〉 with ` : [0, T ] → V ∗ smooth and E : V → (−∞,∞] convex

goes back to the seminal papers [CoV90, Col92]. Therein, the existence of absolutely
continuous solutions to the Cauchy problem for (1.1) was proved by means of maximal
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monotone operator techniques. Existence and approximation results for a broad class of
nonconvex energies, also featuring a singular dependence on time, have been recently ob-
tained in [MRS13], relying on various contributions from the theory of curves of Maximal
Slope [DMT80, MST89] and from the variational approach to gradient flows [DeG93,
RoS06, AGS08, RMS08].

Positively 1-homogeneous dissipations: energetic solutions. Since 9 is positively ho-
mogeneous of degree 1, when ε = 0 the formal limit of (1.1)

∂9(u̇(t))+ ∂Et (u(t)) 3 0 in V ∗, t ∈ (0, T ), (1.5)

describes rate-independent evolution. In this case, even for convex energies Et (·), one
cannot expect the existence of absolutely continuous solutions to (1.5): in general, they
may be only BV with respect to time and in fact have jumps, so that even the precise
meaning of the differential inclusion (1.5) is a delicate question.

This has called for weak-variational characterization of the solutions of (1.5), leading
to the concept of energetic solution to the rate-independent system (V ,E, 9): it dates
back to [MiT99] and was further developed in [MiT04, DFT05] (see also [Mie05, Mie11]
and the references therein).

In this setting, u : [0, T ] → V is an energetic solution to equation (1.5) if it satisfies
the global stability (S) and the energy balance (E) conditions

∀v ∈ V : Et (u(t)) ≤ Et (v)+9(v − u(t)) for all t ∈ [0, T ], (S)

Var9 (u; [0, t])+ Et (u(t)) = E0(u(0))+
∫ t

0
∂tEs(u(s)) ds for all t ∈ [0, T ], (E)

where Var9(u; [a, b]) is the total variation induced by 9(·) on the interval [a, b] ⊂
[0, T ], viz.

Var9(u; [a, b]) := sup
{ M∑
m=1

9(u(tm)− u(tm−1)) : a = t0 < t1 < · · ·< tM−1 < tM = b
}
.

(1.6)

The energetic formulation (S)–(E) has several strong points. First it is derivative-free, as
it bypasses all the technical differentiability issues (i) on V (related to the validity of the
Radon–Nikodým property), (ii) on u (related to its behavior on the Cantor jump set), and
(iii) on the energy E (related to its Fréchet subdifferential). Furthermore, it provides nice
existence-stability results under natural coercivity and time-regularity assumptions.

Nonetheless, in the case of nonconvex energies it is now well known [MRS09, Mie11,
MRS12a, RoS13, MiZ14] that the global stability condition (S) involves a variational
characterization of the jump behavior of the system that depends on the global rather than
the local energy landscape Et .

Positively 1-homogeneous dissipations: the vanishing-viscosity approach. The by
now well-established vanishing-viscosity approach aims to find good local conditions
describing rate-independent evolution, and in particular the behavior of the solutions at
jumps. It also leads to a clarification of the connections with the metric-variational theory
of gradient flows.
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While referring to [MRS12a] for a more detailed survey, here we recall the works
where the vanishing-viscosity analysis is carried out via the reparameterization technique
introduced in [EfM06]. They range from applications in material modeling such as crack
propagation [KMZ08, KZM10], nonassociative plasticity [DDS11, DDS12, BFM12], and
damage [KRZ13], to the analysis of parabolic PDEs with rate-independent dissipation
terms [MiZ14].

The vanishing-viscosity approach has been applied to abstract rate-independent sys-
tems, in a finite-dimensional setting in [MRS09, MRS12a]. The former focuses on rate-
independent evolution in a metric setting and provides both parameterized and nonpa-
rameterized descriptions of the limiting solution when 9 and 8 are based on the same
norm. In particular, the metric approach also allows for a dependence of the norm on
the state u, in a Finsler-Riemannian setting. In [MRS12a] the limit as ε ↓ 0 of gradient
systems of the type (1.1) has been studied when V is a finite-dimensional space and the
energy E ∈ C1([0, T ] × V ) is regular. In this context, a new technique for taking the
vanishing-viscosity limit has been developed, in order to deal with a rate-independent
dissipation 9 and a viscous term 8 which are not necessarily related to the same norm.
This more general structure led to the (nonparameterized) notion of BV solution to a
rate-independent system.

In this work we aim to generalize the results of [MRS12a] to the present nonsmooth,
infinite-dimensional setting. We will propose a direct characterization of the limit evolu-
tion, in the same spirit as conditions (S)–(E), and we will show how it is related to pa-
rameterized formulations. A particular emphasis will be on the crucial property encoded
in the balanced energy-dissipation identities, both in the original and in the rescaled time
variables. The notion of Balanced Viscosity (BV) solution to a rate-independent system
tries to capture this essential feature.

Before explaining all these aspects, let us illustrate the role of the structural assump-
tions and the challenges in the infinite-dimensional setting by an important example,
which will guide us in the ensuing discussion related to our vanishing-viscosity analysis.

An example of the infinite-dimensional setting and its technical challenges. A proto-
type of the situation we have in mind (see [MiZ14] and Section 5 for a full discussion)
is

V := L2(�), 9(v) :=

∫
�

|v| dx, 8(v) :=
1
2

∫
�

|v|2 dx,

Et (u) :=

{∫
�

( 1
2 |∇u|

2
+W(u)−`(t)u

)
dx if u∈W 1,2

0 (�) with W(u)∈L1(�),

∞ otherwise,

(1.7)

where � is a bounded open subset of Rd , ` ∈ C1([0, T ];L2(�)) and W ∈ C1(R) is,
e.g., a nonnegative double-well type nonlinearity. In this case the abstract subdifferential
inclusion (1.1) corresponds to the nonlinear parabolic equation

ε∂tu+Sign(∂tu)−1u+W ′(u) = ` in �×(0, T ), u = 0 on ∂�×(0, T ), (1.8)

for which the vanishing-viscosity limit ε ↓ 0 was in fact analyzed in [MiZ14], based
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on the reparameterization technique and on the concept of parameterized solution, from
[EfM06].

Balanced Viscosity (BV) solutions thus provide a variational framework to give a
rigorous meaning to possibly time-discontinuous solutions of

Sign(∂tu)−1u+W ′(u) 3 ` in �× (0, T ), u = 0 on ∂�× (0, T ). (1.9)

This simple example already shows some crucial features of the infinite-dimensional set-
ting:

(i) The norm and the space associated with the dissipation potential 9 (L1(�) in this
case) is different from the viscous norm of V (inherited from the space L2(�)).

(ii) Even if the “viscous” space V (L2(�)) is a nice Hilbert space, the limit evolution is
driven by the weaker rate-independent dissipation 9, which could be associated to a
nonreflexive Banach space (here L1(�)). In particular, BV or absolutely continuous
curves with respect to 9 could be nondifferentiable.

(iii) The energy functional is nonsmooth and nonconvex, ∂Et (·) may be empty or multi-
valued.

(iv) Finally (but this also happens in a finite-dimensional setting) we have to face curves
u which have just a BV regularity with respect to time: the meaning of nonlinear
functions of ∂tu and the behavior of u along jumps have to be studied carefully.

Balanced Viscosity (BV) solutions. Let us briefly describe what we mean by a Balanced
Viscosity (BV) solution to the rate-independent system (RIS) (V ,E, 9,8), where now
also the viscosity correction induced by 8 characterizes the evolution. A crucial role is
played by the dual convex set

K∗ := {ξ ∈ V ∗ : 〈ξ, v〉 ≤ 9(v) for every v ∈ V } (1.10)

whose support function is 9. When 9 is a norm, K∗ is just the unit ball of its dual: e.g.,
in the setting of the example (1.7), we have K∗ = {u : ‖u‖L∞(�) ≤ 1}.

To simplify the exposition in this introduction, we assume that 9 is V -coercive, i.e.
9(v) ≥ c‖v‖ for all v ∈ V and for a constant c > 0. Thus, we momentarily neglect the
difficulties arising from point (ii) in the discussion above, but starting from Section 2 we
will treat the general case.

Following [MRS12a], we say that a curve u ∈ BV([0, T ];V ) is a BV solution to the
RIS (V ,E, 9,8) if it fulfills the following local stability condition:

K∗ + ∂Et (u(t)) 3 0 for all t ∈ [0, T ] \ Ju, (Sloc)

where Ju is the jump set of u, and the Energy-Dissipation Balance

Varf(u; [0, t])+ Et (u(t)) = E0(u(0))+
∫ t

0
∂tEs(u(s)) ds for all t ∈ [0, T ]. (Ef)

Like (E), (Ef) also balances, at every evolution time t ∈ [0, T ], the energy dissipated by
the system and the current energy, with the initial energy and the work of the external
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forces. However, in (Ef) dissipation is measured by the total variation functional Varf.
While referring to the forthcoming Definition 3.8 for a precise formula, we may mention
here that the main difference between Varf and Var9 concerns the contribution of the
jumps. In fact, in the definition of Varf the cost 9(u(t+) − u(t−)) of the transition from
the left limit u(t−) to the right limit u(t+) at a time t ∈ Ju is replaced by the Finsler
dissipation cost

1ft (u0, u1) := inf
{∫ 1

0
ft (ϑ; ϑ̇) dr : ϑ ∈ AC([0, 1];V ), ϑ(0)= u(t−), ϑ(1)= u(t+)

}
,

(1.11)

where

ft (ϑ; ϑ̇) := 9(ϑ̇)+ et (ϑ)‖ϑ̇‖, et (ϑ) := inf{‖ξ − z‖∗ : ξ ∈ −∂Et (ϑ), z ∈ K∗}.
(1.12)

Formula (1.12) clearly shows that the Finsler dissipation cost (1.11) (and thus the total
variation Varf) encompasses both rate-independent effects through 9(·), and viscous ef-
fects through ‖·‖. The latter are active whenever et (ϑ) > 0, precisely when the local
stability condition (Sloc) is violated, since K∗ + ∂Et (u) 3 0 if and only if et (u) = 0.
Ultimately, by virtue of (Ef), the viscous dissipation enters the description of the system,
but only at the jump points.

The link between the particular structure of (1.12) and the vanishing-viscosity approx-
imation (1.1) can be better understood by recalling the structure of the energy-dissipation
balance satisfied by the solutions to the viscous evolution:

Et (uε(t))+

∫ t

0
(9ε(u̇ε)+9

∗
ε (ξε)) dr = E0(uε(0))+

∫ t

0
∂tEr(uε(r)) dr,

ξε(r) ∈ −∂Er(uε(r)).

(1.13)

It turns out that ft admits the variational representation

ft (ϑ, ϑ̇) = inf{9ε(ϑ̇)+9∗ε (ξ) : ξ ∈ −∂Et (ϑ), ε > 0}. (1.14)

This feature is in some sense reflected by the so-called optimal jump transitions con-
necting u(t−) and u(t+): they are curves ϑ ∈ AC([0, 1];V ) which attain the infimum
in formula (1.11) and keep track of the asymptotic profile of the converging solutions uε
around a jump point. Using a careful rescaling technique, we show that optimal transitions
fulfill the doubly nonlinear equation

∂9(ϑ̇(r))+ ∂8(ε(r)ϑ̇(r))+ ∂Et (ϑ(r)) 3 0 for a.a. r ∈ (0, 1) (1.15)

for some map r 7→ ε(r) ∈ [0,∞).

Lack of differentiability and noncoercive rate-independent dissipations. Up to now,
for the sake of simplicity, we have overlooked one crucial issue in the analysis of the rate-
independent equation (1.5), namely the lack of differentiability of the limiting solution u
when 9 is not coercive with respect to the norm ‖ · ‖ on V (as in the example (1.7)).
Even the introduction of a weaker norm cannot avoid this technical issue, since in many
interesting examples norms of L1-type do not have the Radon–Nikodým property.
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This fact leads to significant technical difficulties, in that 9-absolutely continuous
curves need not be pointwise differentiable with respect to time. Hence, for example for-
mulae (1.11)–(1.12) need to be carefully modified by introducing the convenient notion
of the metric 9-derivative, and differential inclusions like (1.15) have to be suitably in-
terpreted.

On the other hand, we will show that under slightly stronger assumptions on the en-
ergy functional E, limiting solutions still belong to BV([0, T ];V ) even in the case of a
degenerate rate-independent dissipation 9. For this class of V -parameterizable solutions
we can recover a more precise differential characterization, and several expressions take
a simpler form.

Main results and plan of the paper. In this paper we provide existence and approxima-
tion results for Balanced Viscosity solutions to the RIS (V ,E, 9,8) under quite general
conditions on the dissipation potentials 9, 8 and on the energy functional E, listed in
Section 2.1. Let us mention in advance that our standing assumptions on E guarantee
the lower semicontinuity, coercivity, and uniform subdifferentiability of the functional
u 7→ Et (u), and (sufficient) smoothness of the time-dependent function t 7→ Et (u). In
§2.2 we provide some preliminary results on absolutely continuous and BV curves, while
the main existence and structural properties of viscous gradient systems are recalled in
§2.3–§2.4.

In Section 3 we present our main results concerning Balanced Viscosity solutions.
The Finsler cost (1.11) and its related total variation are discussed in §3.1. In Theo-
rem 3.11 we state the relative compactness of viscous solutions (uε)ε to (1.1) with re-
spect to pointwise convergence, and we show that any limit point as ε ↓ 0 is a BV
solution. A similar result (Theorem 3.12) addresses the passage to the limit in the time-
incremental minimization scheme [DeG93] for the viscous problem: given a time step
τ > 0, the uniform partition tn := nτ , n = 0, . . . , Nτ , of the time interval [0, T ] so
that τ(Nτ − 1) < T ≤ τNτ , and an initial datum U0

τ,ε, the scheme produces discrete
sequences (Unτ,ε), n ∈ N, by solving the minimization problem

Unτ,ε ∈ Argmin
U∈V

{
τ9ε

(
U− Un−1

τ,ε

τ

)
+ Etn(U)

}
for n = 1, . . . , Nτ . (IPε,τ )

As τ, ε ↓ 0 with τ/ε ↓ 0 we will prove that the piecewise affine interpolants (see (7.25))
(Uτ,ε)τ,ε of the discrete values Unτ,ε converge (up to subsequences) to a BV solution of the
RIS (V ,E, 9,8). Under slightly stronger assumptions on the energy functional E, The-
orems 3.23 and Corollary 3.25 show that the limits obtained by this variational scheme
belong to BV([0, T ];V ) and are V -parameterizable, a distinguished class of solutions
studied in §3.4, generalizing results in [MiZ14]. Other important properties of BV solu-
tions are discussed in §3.2 and §3.3: the latter is focused in particular on the notion of
optimal jump transitions, a useful tool to describe the asymptotic profile of the solution
uε around a jump limit point.

We discuss parameterized solutions in Section 4: Theorem 4.3 provides the main
existence and convergence result, the tight connections with BV solutions are clarified in
Theorem 4.7, and the case of V -parameterized solutions is investigated in Section 4.2.
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Section 5 is devoted to a series of examples, where we discuss the validity of the
abstract conditions on the energy isolated in §2.1, and in particular of the chain-rule in-
equality. Furthermore, Example 5.2 shows that there exist BV solutions which are not
V -parameterizable.

Most of the proofs and of the technical tools are collected in the last two sections.
Section 6 is devoted to the main theme of the chain-rule inequalities in the parameterized
setting (§6.1) and in the BVsetting (§6.2). Section 7 contains the main stability, compact-
ness, and lower semicontinuity results that constitute the core of our proofs. In §7.1 and
§7.2 we alternate the parameterized and the nonparameterized point of view to describe
the limit of various integral functionals. The crucial lower semicontinuity result in the BV
setting is Proposition 7.3, where we adapt ideas introduced in [MRS12b]. The proofs of
the main theorems are eventually collected in §7.3. The key BV estimate for the discrete
Minimizing Movements leading to V -parameterizable solutions are collected in §7.4.

2. Notation, assumptions and preliminary results

2.1. The energy-dissipation framework

Throughout the present paper we will suppose that

(V , ‖·‖) is a separable Banach space satisfying the Radon–Nikodým property. (2.1)

This means that absolutely continuous curves with values in V are L 1-a.e. differentiable
(see Section 2.2). This condition is certainly satisfied if V is reflexive or if it is the dual of
a (separable) Banach space (see [DiU77]). We will denote by ‖·‖∗ the dual norm in V ∗,
while 〈·, ·〉 stands for the duality pairing between V ∗ and V .

Rate-independent and viscous dissipation. On V there are defined two

continuous convex dissipation potentials 9,8 : V → [0,∞),
strictly positive in V \ {0}.

(D.0)

The “rate-independent” potential 9 is positively 1-homogeneous (a “gauge” functional,
[Roc70]),

9(λv) = λ9(v) for all λ ≥ 0 and v ∈ V. (D.1)

Notice that if 9(−v) = 9(v) for every v ∈ V , then 9 is a norm in V ; we will say that 9
is coercive if9(v) ≥ c‖v‖ for every v ∈ V and some constant c > 0. However, in general
we will not assume any coercivity on 9, so that the sublevel sets {v ∈ V : 9(v) ≤ r} are
not bounded.

Coercivity will be recovered by the addition of a “viscous” dissipation potential 8 of
the form

8(v) = F(‖v‖) for F ∈ C1([0,∞)) convex, with
F(r) > 0 for r > 0, F (0) = F ′(0) = 0, lim

r↑∞
F ′(r) = ∞.

(D.2)
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Clearly, the dissipation potentials 9,8 from (1.7) satisfy the above conditions in V =
L2(�) with F(r) = 1

2 r
2. We then consider a vanishing-viscosity family 9ε : V →

[0,∞), ε > 0, of dissipation potentials approximating 9:

9ε(v) := 9(v)+ ε
−18(εv) =: ε−191(εv),

90(v) := 9(v) = lim
ε↓0

9ε(v) = inf
ε>0

9ε(v).
(2.2)

Remark 2.1 (Mechanical models; unidirectionality). Our whole theory is restricted to
the case 9ε(v) < ∞, i.e. to continuous dissipation potentials. Allowing for 9ε(v) = ∞
as in unidirectional processes such as damage, hardening, or fracture (e.g., [DFT05,
MiR06, MaM09, BFM12, KRZ13]) would give rise to additional complications, which
we prefer not to address in this paper. However, our theory applies to models for vis-
coplasticity (e.g., [Alb98]) by using the choices

V = Lp(�;Rm), ‖v‖ =

(∫
�

|v(x)|p dx

)1/p

,

9(v) =

∫
�

σ(x)|v(x)| dx, F (r) =
1
p
rp,

with 1 < p < ∞, σ ∈ L∞(�) with σ > 0 a.e. in �. In particular, 9ε has the simple
form

9ε(v) =

∫
�

(
σ(x)|v(x)| +

εp−1

p
|v(x)|p

)
dx.

Remark 2.2 (More general viscous approximations). Firstly, most of the results of the
present paper could be extended to the case when the 1-homogeneous dissipation poten-
tial9 also depends on the state of the system (as in [MRS13]), or is replaced by a distance
onD (as in [RMS08, MRS09]). Secondly, the viscous correction8 need not be a function
of the norm ‖ · ‖ as in (D.2), but could well be a general convex superlinear functional
8 : V → [0,∞) as in [MRS12a], satisfying

lim
ε↓0

ε−18(εv) = 0, lim
λ↑∞

λ−18(λv) = ∞ for all v ∈ V. (2.3)

Thirdly (cf. [MRS12a]), the additive splitting (2.2) giving rise to the approximating po-
tentials 9ε could be generated by a general convex 91 : V → [0,∞) via

9ε(v) = ε
−191(εv), where now 91(0) = 0 and lim

‖v‖↑∞

91(v)

‖v‖
= ∞. (2.4)

In fact, even more general vanishing-viscosity limits, which are not encompassed by the
structures of (2.2) or (2.4), are mathematically relevant and physically significant. An in-
teresting example can be found in [BoP16], where the onset of rate-independent evolution
in the large-deviation limit of a stochastic model is addressed. [MRS12b] provides a very
general convergence result in the case when 9ε relies only on one norm (or distance)
and shows how robust the notion of BV solution is in this case. However, a complete
description and characterization of the limit behavior of general nonadditive viscous ap-
proximations still requires a better understanding and is left to future research.
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In the present paper we have chosen the particular but still quite general structure (D.1)–
(D.2), (2.2) to simplify some of the formulae involved in the structures we will introduce
(cf. Remark 3.2). In this way, we will highlight the main features and techniques of the
vanishing-viscosity method in the infinite-dimensional setting, still capturing the essential
features of the viscous approach.

Subdifferential of the rate-independent dissipation and the dual convex stability set.
9 is the support function of the w∗-closed and bounded convex subset of V ∗

K∗ := {ξ ∈ V ∗ : 〈ξ,w〉 ≤ 9(w) for every w ∈ V } ⊂ V ∗, 9(v) := sup
ξ∈K∗
〈ξ, v〉,

(2.5)

which will play a prominent role in the following. K∗ is related to 9 by two different
important relations: first of all, it is the proper domain of the conjugate function of 9∗:

9∗(ξ) := sup
v∈V

(〈ξ, v〉 −9(v)) = IK∗(ξ) =

{
0 if ξ ∈ K∗,
∞ otherwise.

(2.6)

Second, K∗ can be characterized in terms of the subdifferential ∂9 : V ⇒ V ∗ of 9,
defined as

ξ ∈ ∂9(v) ⇔ 〈ξ,w − v〉 ≤ 9(w)−9(v) ∀w ∈ V, (2.7)

so that
K∗ = ∂9(0); ξ ∈ ∂9(v) ⇔ ξ ∈ K∗ and 〈ξ, v〉 = 9(v). (2.8)

As we already observed in the introduction, in the prototypical case of 9(v) =
∫
�
|v| dx

from (1.7), the stability setK∗ is the unit ball in the space L∞(�), the dual of L1(�), i.e.

K∗ = {ξ ∈ L∞(�) : ‖ξ‖L∞(�) ≤ 1}. (2.9)

The energy functional and its subdifferential. We shall consider a time-dependent

lower semicontinuous energy functional E : [0, T ] ×D→ R, D ⊂ V . (E.0)

To simplify some formulae, we will set Et (u) = ∞ if u 6∈ D and we will assume the
following properties:

Coercivity: the map

u 7→ G(u) := 9(u)+ sup
t∈[0,T ]

Et (u) has compact sublevels in V , (E.1)

i.e. for every E > 0 the set DE := {u ∈ D : G(u) ≤ E} is compact.

Power-control: for all u ∈ D the function t 7→ Et (u) is differentiable on [0, T ] with
derivative Pt (u) := ∂tEt (u) satisfying, for a constant CP ≥ 0,

|Pt (u)| ≤ CP (9(u)+ Et (u)), lim sup
w→u,w∈DE

Pt (w) ≤ Pt (u) (E.2)

for every (t, u) ∈ (0, T )×D, E > 0.
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9-uniform subdifferentiability: for every E > 0 there exists an upper semicontinuous
map ωE : [0, T ]×DE ×DE → R, with ωE· (u, u) ≡ 0 for every u ∈ DE , such that

Et (v) ≥ Et (u)+ 〈ξ, v − u〉 − ω
E
t (u, v)9∧(v − u) (E.3)

for all t ∈ [0, T ], u, v ∈ DE, ξ ∈ ∂Et (u), where

9∧(w) := min(9(w),9(−w)). (2.10)

Recall that the Fréchet subdifferential of Et is the possibly multivalued map ∂Et : V⇒V ∗

defined at u ∈ D by

ξ ∈ ∂Et (u) ⇔ ξ ∈ V ∗, Et (v)−Et (u)−〈ξ, v−u〉 ≥ o(‖v − u‖) as v→ u in V . (2.11)

Thus (E.3) prescribes a uniform and specific form for the remainder infinitesimal term on
the right-hand side of (2.11). For later use, we observe that (E.2) and the Gronwall lemma
yield

0 ≤ 9(u)+ Es(u) ≤ G(u) ≤ exp(CP T )(9(u)+ Et (u)) for all s, t ∈ [0, T ], u ∈ D.
(2.12)

Since E is lower semicontinuous, (2.12) together with (E.1) shows that the maps

u 7→ 9(u)+ Et (u) have compact sublevels in V for every t ∈ [0, T ]. (2.13)

Observe that the energy Et (u) =
∫
�

( 1
2 |∇u|

2
+ W(u) − `(t)u

)
dx from (1.7) satisfies

(E.0)–(E.3) (cf. the calculations of Example 5.1 later on).

2.2. Absolutely continuous and BV functions

As in Section 2.1 let 9 : V → [0,∞) be a gauge function with 9(v) > 0 if v 6= 0 and
let Z be a subset of V . The function

Z 3 u, v 7→ 19(u, v) := 9(v − u) is an asymmetric continuous distance on Z.
(2.14)

We say that a curve u : [0, T ] → Z is 9-absolutely continuous if there exists a nonnega-
tive function m ∈ L1(0, T ) such that

19(u(t0), u(t1)) ≤

∫ t1

t0

m(s) ds for every 0 ≤ t0 < t1 ≤ T . (2.15)

We denote by AC([0, T ];Z,9) the set of all9-absolutely continuous curves with values
in Z. There is a minimal function m such that (2.15) holds [AGS08, RMS08], and with a
slight abuse of notation we denote it by 9[u′], since it admits the expression

9[u′](t) = lim
h→0

9

(
u(t + h)− u(t)

h

)
for L 1-a.a. t ∈ (0, T ), (2.16)
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so that 9[u′](t) = 9(u̇(t)) whenever u is differentiable at t . Since V has the Radon–
Nikodým property, this happens at L 1-a.a. t ∈ (0, T ) (L 1 denoting the Lebesgue mea-
sure on (0, T )), when 9 is coercive: if this is the case and Z = V , we will simply write
u ∈ AC(0, T ;V ).

Var9(u; [a, b]) is the pointwise total variation induced by 9 on the interval [a, b] ⊂
[0, T ], viz.

Var9(u; [a, b]) := sup
{ M∑
m=1

9(u(tm)− u(tm−1)) : a = t0 < t1 < · · · < tM−1 < tM = b
}
.

(2.17)

If Z ⊂ V , BV([0, T ];Z,9) will denote the set of all curves u : [0, T ] → Z with finite
9-total variation in [0, T ]. When 9 := ‖ · ‖ we will simply write BV([0, T ];V ) and we
will omit the index 9 in the symbol of the total variation. Notice that BV([0, T ];V ) ⊂
BV([0, T ];V,9) for every choice of 9, whereas the opposite inclusion only holds when
9 is coercive on V .

To every u ∈ BV([0, T ];Z,9) we can associate the nondecreasing scalar function
V : R→ [0,∞) given by

V(t) :=


0 if t ≤ 0,
Var9(u; [0, t]) if t ∈ (0, T ),
Var9(u; [0, T ]) if t ≥ T ,

with distributional derivative µ =
d

dt
V.

(2.18)
The finite Borel measure µ is supported in [0, T ] and it can be decomposed into the sum
µ = µd + µJ of a diffuse part µd (such that µd({t}) = 0 for every t ∈ R), and a jump
part µJ concentrated in a countable set Ju ⊂ [0, T ].

When Z is compact (or when 9 is coercive), for every δ > 0 there exists a constant
Mδ > 0 such that (recall (2.10) for the definition of 9∧)

‖u− v‖ ≤ δ +Mδ 9∧(v − u) for every u, v ∈ Z. (2.19)

By introducing the continuous and concave modulus of continuity

�Z : [0,∞)→ [0,∞), �Z(r) := inf
δ>0

δ +Mδ r so that lim
r↓0

�Z(r) = 0, (2.20)

(2.19) can be rewritten as

‖u− v‖ ≤ �Z(9∧(u− v)) for every u, v ∈ Z. (2.21)

If (2.19) holds, it is easy to show that a function u ∈ BV([0, T ];Z,9) is continuous in
[0, T ] \ Ju and its left and right limits exist at every t ∈ [0, T ]:

u(t−) := lim
s↑t
u(s), u(t+) := lim

s↓t
u(s) with the convention

u(0−) := u(0), u(T+) := u(T ),
(2.22)

so that Ju admits the representation

Ju := {t ∈ [0, T ] : u(t−) 6= u(t) or u(t) 6= u(t+)} (2.23)
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and

µJ({t}) = 9(u(t)− u(t−))+9(u(t+)− u(t)) for every t ∈ Ju. (2.24)

Furthermore, µd admits the Lebesgue decomposition µd = µL + µC with µL � L 1

and µC ⊥ L 1. The density of µL with respect to L 1 is provided by the same formula
(2.16) and one has

u ∈ AC([0, T ];Z,9) if and only if µJ = µC ≡ 0, with

Var9(u; [a, b]) =
∫ b

a

9[u′](t) dt.
(2.25)

In this case, when Z is compact or 9 coercive, u is a continuous curve. In general we
have

Var9(u; [a, b]) = µd([a, b])+ Jmp9(u; [a, b]), (2.26)

where the jump contribution Jmp9(u; [a, b]) is given by

Jmp9(u; [a, b]) := 19(u(a), u(a+))+19(u(b−), u(b))

+

∑
t∈Ju∩(a,b)

(
19(u(t−), u(t))+19(u(t), u(t+))

)
,

= 19(u(a), u(a+))+19(u(b−), u(b))+ µJ((a, b)). (2.27)

Remark 2.3 (Scalar vs. vector measures). If u ∈ BV(0, T ;V ), all the previous defini-
tions have an important vector counterpart in terms of the vector measure u′D associated
with the distributional derivative of u: u′D is a Radon vector measure on (0, T ) with val-
ues in V , with finite total variation ‖u′D‖. The measure u′D can be decomposed into the
sum of three mutually singular measures

u′D = u
′

L + u
′

C + u
′

J, u′d := u
′

L + u
′

C, (2.28)

where u′L is its absolutely continuous part with respect to L 1, u′J is a discrete measure
concentrated on Ju, and u′C is the so-called Cantor part, still satisfying u′C({t}) = 0 for
every t ∈ [0, T ]. Therefore u′d = u

′

L + u
′

C is the diffuse part of the measure, which does
not charge Ju.

Since V has the Radon–Nikodým property, u is differentiable L 1-a.e. in (0, T ) (we
denote by u̇ its derivative), and we can express u′d in terms of its density n with respect to
its total variation ‖u′d‖ as

u′d = n‖u′d‖ where ‖n‖ = 1 ‖u′d‖-a.e., u′L = u̇L 1,

n = u̇/‖u̇‖ ‖u′L ‖-a.e.
(2.29)

The relation to the previously introduced measures µd, µC, and µL is

µd = 9(n)‖u
′

d‖, µC = 9(n)‖u
′

C‖, µL = 9(n)‖u
′

L ‖ = 9(u̇)L
1. (2.30)
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2.3. Two useful properties from the theory of gradient systems

The assumptions on the dissipation potentials 9 and 8 and on the energy E stated in the
previous section yield two important consequences, stated in Theorem 2.5 below, which
play a crucial role in the variational approach to gradient systems and rate-independent
evolutions.

Before stating them, let us recall that for every map 3 : V → (−∞,∞] bounded
from below by a continuous and affine function, 3∗ : V ∗ → (−∞,∞] will denote the
conjugate

3∗(ξ) := sup
v∈V

(〈ξ, v〉 −3(v)). (2.31)

For the functional 8 in (D.2) we have

8∗(ξ) = F ∗(‖ξ‖∗), where F ∗(s) = sup
r≥0
(rs − F(r)), (2.32)

so that, by the inf-convolution duality formula (see e.g. [IoT79, Thm. 1, p. 178]) and the
monotonicity of F ∗ we find

9∗ε (ξ) =
1
ε

min
z∈K∗

8∗(ξ − z) =
1
ε

min
z∈K∗

F ∗
(
‖ξ − z‖∗) =

1
ε
F ∗
(

min
z∈K∗
‖ξ − z‖∗

)
. (2.33)

Remark 2.4. It is interesting to calculate the explicit form of 9∗ε in the case of the ex-
ample (1.7), where 9ε(v) =

∫
�

(
|v| + 1

2ε|v|
2) dx. We recall that K∗ is the unit ball

of L∞(�) (cf. (2.9)) and identify V ∗ with V = L2(�) as usual. By introducing the
truncating function

T(r) := (|r| − 1)+ = (r − 1)+ + (r + 1)− = min
|z|≤1
|r − z|, (2.34)

we find, for every ξ ∈ V ∗ = L2(�), the formula

9∗ε (ξ) =
1
2ε

distL2(�)(ξ,K
∗)2 =

1
2ε

min
z∈K∗

∫
�

|ξ − z|2 dx =
1
2ε

∫
�

T2(ξ) dx, (2.35)

where distL2(�)(ξ,K
∗) denotes the distance of ξ from K∗ in the L2(�)-norm.

Theorem 2.5 ([MRS13, Prop. 2.4]). Under the assumptions of Section 2.1 the following
properties hold.

Chain rule: For every u ∈ AC([0, T ];V ) and ξ ∈ L1(0, T ;V ∗) with

sup
t∈[0,T ]

|Et (u(t))| <∞, ξ(t) ∈ −∂Et (u(t)) for a.a. t ∈ (0, T ),∫ T

0
9ε(u̇(t)) dt <∞,

∫ T

0
9∗ε (ξ(t)) dt <∞,

(2.36)

the map t 7→ Et (u(t)) is absolutely continuous and

d

dt
Et (u(t)) = −〈ξ(t), u

′(t)〉 + Pt (u(t)) for a.a. t ∈ (0, T ). (2.37)
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Strong-weak closedness of the graph of (E, ∂E): For all sequences (tn) ⊂ [0, T ],
(un) ⊂ V and (ξn) ⊂ V ∗ we have the following condition:

if tn→ t in [0, T ], un→ u in V, ξn ⇀ ξ in V ∗, ξn ∈ ∂Etn(un),

and Etn(un)→ E in R, then ξ ∈ ∂Et (u) and E = Et (u).
(2.38)

Furthermore, (2.38) implies that ∂Et (u) is a weakly∗-closed, convex subset (possibly
empty) of V ∗.

2.4. Variational gradient systems

We recall an application of the general existence and approximation result of [MRS13]
for the Cauchy problem associated with (1.1).

Theorem 2.6 ([MRS13]). Assume that (D.0)–(D.2) and (E.0)–(E.3) hold. Then for ev-
ery u0,ε ∈ D there exists a curve uε ∈ AC([0, T ];V ) solving (1.1) and fulfilling the
Cauchy condition u(0) = u0,ε. More precisely, there exists a function ξε ∈ L1(0, T ;V ∗)
fulfilling

ξε(t) ∈ −∂Et (uε(t)), ξε(t) ∈ ∂9ε(u̇ε(t)) for a.a. t ∈ (0, T ), (2.39)

and the energy identity for all 0 ≤ s ≤ t ≤ T ,∫ t

s

(
9ε(u̇ε(r))+9

∗
ε (ξε(r))

)
dr + Et (uε(t)) = Es(uε(s))+

∫ t

s

Pr(uε(r)) dr. (2.40)

Minimizing Movement solutions. Theorem 2.6 was proved in [MRS13, Thm. 4.4] by
passing to the limit in the time-discretization scheme (IPε,τ ) (see the last paragraph of the
introduction). Here we quote the main convergence result:

Theorem 2.7 (Minimizing Movement solutions to (1.1)). Under our standard assump-
tions (D.0)–(D.2) and (E.0)–(E.3), Problem (IPε,τ ) has a solution (Unτ,ε)

Nτ
n=0. For every

ε > 0 there exist a sequence τk ↓ 0 as k →∞ and a limit solution uε ∈ AC([0, T ];V )
to (2.39) and (2.40) such that the piecewise affine interpolants Uτk,ε satisfy

Uτk,ε → uε in V , uniformly in [0, T ]. (2.41)

Since solutions obtained as such limits have special properties, we will call them Minimi-
zing Movement solutions according to [DeG93] (see also [AGS08]).

3. Balanced Viscosity (BV) solutions

Throughout this section we will keep to the notation and assumptions of Section 2.1, in
particular we will suppose that 9,8 fulfill (D.0)–(D.2) and E satisfies (E.0)–(E.3).

After a discussion of the main concepts of contact potential and Finsler dissipation
cost in §3.1, we will introduce the notion of Balanced Viscosity (BV) solutions in §3.2
and we will present the main results related to this crucial concept. The distinguished
subclass of V -parameterizable solutions will be considered in the final §3.4.
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3.1. Finsler dissipation functionals

As in [MRS12a], the vanishing-viscosity contact potential p : V ×V ∗→ [0,∞) induced
by the dissipation potentials 9ε is

p(v, ξ) := inf
ε>0
(9ε(v)+9

∗
ε (ξ)), v ∈ V, ξ ∈ V ∗. (3.1)

The representation formula (2.33) for 9∗ε and the fact that

inf
ε>0

ε−1(F (εr)+ F ∗(s)) = rs for every r, s ≥ 0

yield the useful splitting of p:

p(v, ξ) = 9(v)+ ‖v‖ min
z∈K∗
‖ξ − z‖∗. (3.2)

Remark 3.1. In the case of the example (1.7) with the potentials 9ε(v) =∫
�

(
|v|+ 1

2ε|v|
2) dx and9∗ε (ξ) (cf. Remark 2.4) the vanishing-viscosity contact potential

p in (3.2) reduces to

p(v, ξ) = ‖v‖L1(�) + ‖v‖L2(�) distL2(�)(ξ,K
∗)

= ‖v‖L1(�) + ‖v‖L2(�) ‖T(ξ)‖L2(�), (3.3)

where K∗ is the unit ball in L∞(�) and T(r) = (|r| − 1)+ is the truncation function
(2.34).

Remark 3.2 (More general viscous dissipations and contact potentials). The particular
form (D.2) of 8 allows for the simple representation (3.2) of p, which is useful to un-
derstand the role played by the two different viscosities. The general case concerning
arbitrary convex superlinear functions 8 (cf. (2.3)) has been analyzed in [MRS12a] and
almost all the crucial properties can also be adapted to the present infinite-dimensional
setting. Here we just mention that every contact potential is convex and degree-1 homo-
geneous with respect to its first variable and it fulfills the Fenchel inequality

p(v, ξ) ≥ 〈ξ, v〉, and

{
p(v, ξ) ≥ 9(v) for all (v, ξ) ∈ V × V ∗,
p(v, ξ) = 9(v) if and only if ξ ∈ K∗.

(3.4)

Next, we associate with p and with the Fréchet subdifferential ∂E the time-dependent
family of Finsler dissipation functionals

f : [0, T ] ×D × V → [0,∞], ft (u; v) := inf{p(v, ξ) : ξ ∈ −∂Et (u)}, (3.5)

where we adopt the standard convention inf ∅ = ∞. Notice that when ∂Et (u) 6= ∅ the inf
in formula (3.5) is attained; moreover, the functional v 7→ ft (u; v) is lower semicontinu-
ous, convex, and positively 1-homogeneous.

In accord with (3.2) it will also be useful to split ft (u; v) into the sum of the dissipa-
tion9(v) (independent of u) and of the correction term induced by the viscous norm ‖ · ‖
and ∂E, viz.

ft (u; v) = 9(v)+ et (u)‖v‖, et (u) := inf{‖ξ − z‖∗ : ξ ∈ −∂Et (u), z ∈ K∗}. (3.6)
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By (2.38), for every E > 0 the function e : [0, T ] × D → [0,∞] satisfies the crucial
properties

e is l.s.c. in [0, T ] ×DE and et (u) = 0 ⇔ K∗ + ∂Et (u) 3 0, (3.7)

where DE denotes the E-sublevel of the energy (cf. (E.1)).

Remark 3.3. Returning to the dissipation potentials and the energy from the example
(1.7) and recalling Remarks 2.4 and 3.1, we obtain the explicit formulae

et (u) =
∥∥T(−1u+W ′(u)− `(t))∥∥

L2(�)
, ft (u; v) = ‖v‖L1(�) + et (u)‖v‖L2(�),

et (u) = 0 ⇔ ‖−1u+W ′(u)− `(t)‖L∞(�) ≤ 1.
(3.8)

If9 were coercive on V , then the Finsler cost associated to ft could be simply defined as

1ft (u0, u1) := inf
{∫ r1

r0

ft (ϑ(r); ϑ̇(r)) dr : ϑ ∈ AC([r0, r1];V ), ϑ(ri) = ui, i = 0, 1
}
,

(3.9)

and it would be possible to show that the infimum in (3.9) is attained whenever the cost
is finite. Notice that since ft (u; ·) is positively 1-homogeneous, the choice of the interval
[r0, r1] in (3.9) is irrelevant and one can also assume that the competing curves ϑ belong
to Lip([r0, r1];V ).

On the other hand, since 9 is not coercive in general, the definition (3.9) has to be
conveniently adapted to cover the case of curves ϑ that may lack differentiability at every
time. The next definition focuses on this aspect (see §2.2 for BV and AC curves with
respect to 9).

Definition 3.4 (Admissible curves). A curve ϑ : [r0, r1] → V is called admissible if it
belongs to AC([r0, r1];DE, 9) for some E > 0, and if its restriction to the (relatively)
open set

Gt = Gt [ϑ] := {r ∈ [r0, r1] : et (ϑ(r)) > 0} (3.10)

belongs to ACloc(Gt [ϑ];V ). We denote by Tt (u0, u1) the class of all admissible transi-
tion curves ϑ : [0, 1] → V such that ϑ(i) = ui , i = 0, 1, and we set

ft [ϑ;ϑ
′
](r) :=

{
ft (ϑ(r); ϑ̇(r)) = 9(ϑ̇(r))+ et (ϑ(r))‖ϑ̇(r)‖ if r ∈ Gt [ϑ],
9[ϑ ′](r) if r ∈ [0, 1] \Gt [ϑ].

(3.11)

Remark 3.5. Let us add a few comments on the previous definition. First of all, as dis-
cussed in Section 2.2, we notice that the continuity of ϑ follows from the compactness
of DE in V and the fact that 9 is continuous and nondegenerate, so that 9(v) = 0 ⇒
v = 0.
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Once ϑ is continuous, the l.s.c. property of e stated in (3.7) implies that the set Gt [ϑ]
defined in (3.10) is open. Since V has the Radon–Nikodým property, ϑ is differentiable
L 1-a.e. in Gt [ϑ]. It is immediate to see that for every admissible curve ϑ ,∫ 1

0
ft [ϑ;ϑ

′
](r) dr =

∫ 1

0
9[ϑ ′](r) dr +

∫
Gt [ϑ]

et (ϑ(r))‖ϑ̇(r)‖ dr. (3.12)

We are now in a position to extend the definition (3.9) of 1f.

Definition 3.6 (Finsler dissipation cost). Fix t ∈ [0, T ] and let u0, u1 ∈ D. The (possi-
bly asymmetric) Finsler cost induced by f at the time t is given by

1ft (u0, u1) := inf
ϑ∈Tt (u0,u1)

∫ 1

0
ft [ϑ, ϑ

′
](r) dr (3.13)

= inf
ϑ∈Tt (u0,u1)

(∫ 1

0
9[ϑ ′](r) dr +

∫
Gt [ϑ]

et (ϑ(r))‖ϑ̇(r)‖ dr

)
, (3.14)

with the usual convention that 1ft (u0, u1) = ∞ if Tt (u0, u1) is empty.

Let us notice that in general 1ft (·, ·) is not symmetric, unless 9 is symmetric, and that

1ft (u0, u1) ≥ 19(u0, u1) for all u0, u1 ∈ D, t ∈ [0, T ]. (3.15)

This follows from the fact that in (3.14) we have∫ 1

0
9[ϑ ′](r) dr = Var9 (ϑ; [0, 1]) ≥ 9(u1 − u0) = 19(u0, u1).

In the next important result we collect a few crucial properties of the Finsler dissipa-
tion cost, namely the existence of optimal transition paths and the lower semicontinuity
properties needed in what follows. Theorem 3.7 will be proved in Section 7.2.

Theorem 3.7. Let (D.0)–(D.2) and (E.0)–(E.3) hold. Let t ∈ [0, T ], E > 0 and
u−, u+ ∈ DE .

(F1) If 1ft (u−, u+) < ∞ then there exists a transition path ϑ ∈ Tt (u−, u+) attaining
the infimum in (3.14). Moreover

1ft (u−, u+) ≥ |Et (u−)− Et (u+)|. (3.16)

(F2) If u0,n, u1,n ∈ DE , n ∈ N, then

lim
n→∞

u0,n = u− & lim
n→∞

u1,n = u+

⇒ lim inf
n→∞

1ft (u0,n, u1,n) ≥ 1ft (u−, u+). (3.17)

(F3) If un ∈ AC([αn, βn];V ), ũn : [αn, βn] → DE measurable, ξn ∈ L1(αn, βn;V
∗),

and εn > 0, n ∈ N, are sequences satisfying

lim
n→∞

sup
r∈[αn,βn]

‖ũn(r)− un(r)‖ = 0,

ξn(r) ∈ −∂Er(ũn(r)) for a.a. r ∈ (αn, βn),
(3.18)
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lim
n→∞

un(αn) = u−, lim
n→∞

un(βn) = u+, lim
n→∞

αn = lim
n→∞

βn = t, (3.19)

lim
n→∞

εn = 0, 1 := lim
n→∞

∫ βn

αn

(9εn(u̇n)+9
∗
εn
(ξn)) dr <∞, (3.20)

then there exist an increasing subsequence (nk)k ⊂ N, increasing and surjec-
tive time rescalings tnk ∈ AC([0, 1]; [αnk , βnk ]), and an admissible transition
ϑ ∈ Tt (u−, u+) such that

lim
k→∞

uεnk ◦ tnk = ϑ strongly in V , uniformly on [0, 1],∫ 1

0
ft [ϑ, ϑ

′
](r) dr ≤ 1.

(3.21)

In particular, whenever (3.18) and (3.19) hold, along any sequence εn ↓ 0 we have

lim inf
n→∞

∫ βn

αn

(9εn(u̇n)+9
∗
εn
(ξn)) dr ≥ 1ft (u−, u+). (3.22)

Solutions to (1.1) with ũn = un provide a particularly important example of sequences in
assertion (F3) of Theorem 3.7. Notice that by (3.16) the Finsler cost controls the amount
of energy dissipation between two arbitrary points at a fixed time t . On the other hand,
(3.22) shows that 1f captures the concentration of the asymptotic energy dissipation of a
family of solutions to the viscous gradient flow (2.39).

We now use the Finsler cost 1f to characterize the minimal dissipated energy along
any curve u ∈ BV9([0, T ];V ), by means of a suitable notion of total variation, which
involves1f to measure the contributions due to the jumps of u (recall (2.26) and (2.27)).

Definition 3.8 (Jump and total variation induced by f). Let E > 0 and suppose that u
in BV([0, T ];DE, 9) is a given curve with jump set Ju. For every subinterval [a, b] ⊂
[0, T ] the jump variation of u induced by f on [a, b] is

Jmpf(u; [a, b]) := 1fa (u(a), u(a+))+1fb (u(b−), u(b))

+

∑
t∈Ju∩(a,b)

(
1ft (u(t−), u(t))+1ft (u(t), u(t+))

)
. (3.23)

The f-total variation of u on [a, b] for a < b is

Varf(u; [a, b]) := Var9(u; [a, b])− Jmp9(u; [a, b])+ Jmpf(u; [a, b]) (3.24)

= µd(a, b)+ Jmpf(u; [a, b]). (3.25)

Remark 3.9. As already pointed out in [MRS12a, Rmk. 3.5], Varf is not a standard total
variation functional: for instance, it is not induced by any distance on V , and it is not
lower semicontinuous with respect to pointwise convergence in V , unless a further local
stability constraint is imposed. Nevertheless, Varf enjoys the nice additivity property

Varf(u; [a, b])+ Varf(u; [b, c]) = Varf(u; [a, c]) whenever 0 ≤ a < b < c ≤ T .

(3.26)
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3.2. Balanced Viscosity (BV) solutions

Based on Definition 3.8, we can now specify the concept of Balanced Viscosity (BV)
solution to the rate-independent system generated by (V ,E, 9,8): the global stability
condition in the definition of energetic solutions is replaced by the local stability condition
(Sloc), and the energy balance features the total variation functional Varf. As usual, we will
always assume that 9,8 fulfill (D.0)–(D.2) and that E satisfies (E.0)–(E.3).

Definition 3.10 (BV solutions). A curve u ∈ BV([0, T ];D,9) is a BV solution of the
rate-independent system (V ,E, 9,8) if the local stability (Sloc) and the (Ef)-energy ba-
lance hold:

K∗ + ∂Et (u(t)) 3 0 for all t ∈ [0, T ] \ Ju, (Sloc)

Varf(u; [0, t])+ Et (u(t)) = E0(u(0))+
∫ t

0
Ps(u(s)) ds for all t ∈ (0, T ]. (Ef)

Every BV solution u to the RIS (V ,E, 9,8) satisfies the energy balance in each subin-
terval, i.e.

Varf(u; [s, t])+ Et (u(t)) = Es(u(s))+

∫ t

s

Pr(u(r)) dr (3.27)

for every 0 ≤ s < t ≤ T , thanks to (Ef) and the additivity (3.26) of Varf.
Before studying other properties and characterizations of Balanced Viscosity solu-

tions, let us first present our main existence and convergence results.

Main existence and convergence results. Our first result states the convergence in the
vanishing-viscosity limit ε ↓ 0 of solutions to (1.1) to a BV solution of the rate-indepen-
dent system (V ,E, 9,8). As a byproduct, we can prove in this way the existence of BV
solutions. Let us emphasize that Definition 3.10 of BV solutions is only inspired by the
vanishing-viscosity approach but otherwise completely independent of it. We postpone
the proofs to Section 7.3.

Here and in what follows, we will call a sequence (εk)k converging to 0 simply a
vanishing sequence.

Theorem 3.11 (Existence of BV solutions and convergence of viscous approximations).
If (D.0)–(D.2) and (E.0)–(E.3) hold, then for every u0 ∈ D there exists a BV solu-
tion u of the RIS (V ,E, 9,8). Moreover for every family (uε, ξε)ε ⊂ AC([0, T ];V ) ×
L1(0, T ;V ∗) of solutions of the doubly nonlinear equation (2.39) with

uε(0)→ u0 in V and E0(uε(0))→ E0(u0) as ε ↓ 0 (3.28)

and for every vanishing sequence (εk)k there exist E > 0, a further subsequence (not
relabeled), and a limit function u ∈ BV([0, T ];DE, 9) such that as k→∞,

uεk (t)→ u(t) in V for all t ∈ [0, T ], (3.29)
lim
k→∞

Et (uεk (t)) = Et (u(t)) for all t ∈ [0, T ], (3.30)
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Varf(u; [s, t]) = lim
k→∞

Varf(uεk ; [s, t])

= lim
k→∞

∫ t

s

(
9εk (u̇εk (r))+9

∗
εk
(−ξεk (r))

)
dr (3.31)

for all 0 ≤ s < t ≤ T . Any pointwise limit function u obtained in this way is a BV
solution to the RIS (V ,E, 9,8).

Let us emphasize that, in view of the above result, every limit point u of solutions (uε)ε
of (2.39) such that (3.29)–(3.31) hold is a BV solution.

The next theorem concerns the convergence of the discrete solutions of the viscous
time-incremental problem (IPε,τ ), as both the viscosity parameter ε and the time-step τ
tend to zero. Similar results for the finite-dimensional case were obtained in [MRS12a,
Thm. 4.10].

Theorem 3.12 (Discrete-viscous approximations converge to BV solutions). Assume
(D.0)–(D.2) and (E.0)–(E.3) hold. Fix u0 ∈ D and take discrete initial conditions with

U0
τ,ε → u0 in V and E0(U0

τ,ε)→ E0(u0) as τ, ε ↓ 0. (3.32)

Let (Uτ,ε)τ,ε be the family of (left-continuous) piecewise constant interpolants of discrete
solutions (Unτ,ε)n,τ,ε to (IPε,τ ). Then for all sequences (τk, εk)k∈N satisfying

lim
k→∞

εk = 0 and lim
k→∞

τk

εk
= 0, (3.33)

there exists E > 0, a subsequence (not relabeled) and a curve u ∈ BV([0, T ];DE, 9)
such that

Uτk,εk (t)→ u(t) in V for all t ∈ [0, T ], (3.34)

Et (Uτk,εk (t))→ Et (u(t)) for all t ∈ [0, T ], (3.35)

as k→∞, and the limit u is a BV solution to the RIS (V ,E, 9,8).

We now aim to shed more light onto the definition and the properties of BV solutions:
first of all, we derive a characterization of BV solutions in terms of a one-sided version
of the energy identity (Ef), based on the chain-rule inequality stated in Theorem 3.13.
A second characterization is given through a “metric” subdifferential inclusion and a set
of jump conditions.

Chain-rule inequalities and characterizations of BV solutions. The next result is the
infinite-dimensional analog of [MRS09, Prop. 4] and is especially adapted to rate-inde-
pendent systems. In particular, the fact that Varf is not a true total variation functional is
here compensated by assuming that u fulfills the local stability condition (Sloc).
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Theorem 3.13 (A chain-rule inequality for BV curves). If u ∈ BV([0, T ];DE, 9),
E > 0, satisfies the local stability condition (Sloc) and Varf(u; [0, T ]) < ∞, then the
map t 7→ e(t) := Et (u(t)) belongs to BV([0, T ]) and satisfies the following chain-rule
inequality:∣∣∣∣e(t1)− e(t0)− ∫ t1

t0

Pt (u(t)) dt

∣∣∣∣ ≤ Varf(u; [t0, t1]) for all 0 ≤ t0 ≤ t1 ≤ T . (3.36)

If moreover u ∈ BV([0, T ];V ) and ξ : [0, T ] → K∗ is a Borel map such that ξ(t) ∈
−∂Et (u(t)) for every t ∈ [0, T ]\Ju then the diffuse part e′d of the distributional derivative
e′D of e can be represented as (recall (2.29))

e′d = −〈ξ,n〉‖u
′

d‖ + P·(u)L
1
= −〈ξ,n〉‖u′C‖ + (−〈ξ, u̇〉 + P·(u))L

1, (3.37)

where n is as in (2.29), and u′d, u′C are from (2.28).

Indeed, (3.36) is the counterpart to the parameterized chain-rule inequality which will be
stated in Theorem 4.4. Both theorems will be proved in Section 6.

As a direct consequence of Theorem 3.13 we have a characterization of BV solutions
in terms of a single, global in time, energy-dissipation inequality.

Corollary 3.14 (A global energy-dissipation inequality characterizing BV solutions). A
curve u ∈ BV([0, T ];DE, 9) for some E > 0 is a BV solution to the RIS (V ,E, 9,8)
if and only if it satisfies the local stability (Sloc) and the one-sided global in time version
of (Ef), viz.

Varf(u; [0, T ])+ ET (u(T )) ≤ E0(u(0))+
∫ T

0
Ps(u(s)) ds. (Ef,ineq)

Proof. In order to deduce the energy balance (Ef) from (Ef,ineq), we define a(t) :=
Et (u(t)) −

∫ t
0 Ps(u(s)) ds and v(t) := Varf(u; [0, t]), so that (Ef,ineq) takes the form

a(T )+v(T ) ≤ a(0)+v(0), because v(0) = 0. The additivity (3.26) gives Varf(u; [s, t]) =
v(t) − v(s), and so the chain-rule estimate (3.36) can be rephrased as |a(t) − a(s)| ≤
v(t)−v(s) for all 0 ≤ s ≤ t ≤ T . This implies the monotonicity a(t)+v(t) ≥ a(s)+v(s),
and we conclude that a(t)+ v(t) = a(0)+ v(0) for all t , which is (Ef). ut

The importance of using the viscous total variation induced by f (instead of the simpler
one associated with 9) is clarified by the next result, characterizing the jump conditions.

Theorem 3.15 (Local stability, (9)-energy dissipation and jump conditions). A curve
u ∈ BV([0, T ];DE, 9) is a BV solution of the RIS (V ,E, 9,8) if and only if it satisfies
the local stability condition (Sloc), the (9)-energy dissipation inequality

Var9(u; [s, t])+ Et (u(t))

≤ Es(u(s))+

∫ t

s

Pr(u(r)) dr for every 0 ≤ s < t ≤ T , (E9,ineq)
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and the following jump conditions at each point t ∈ Ju of the jump set (2.23):

Et (u(t))− Et (u(t−)) = −1ft (u(t−), u(t)),

Et (u(t+))− Et (u(t)) = −1ft (u(t), u(t+)),

Et (u(t+))− Et (u(t−)) = −1ft (u(t−), u(t+))

= −
(
1ft (u(t−), u(t))+1ft (u(t), u(t+))

)
.

(JBV)

Proof. If u is a BV solution to (V ,E, 9,8), then (E9,ineq) is a trivial consequence of the
energy balance (3.27) since Varf(u; [s, t]) ≥ Var9(u; [s, t]) for every interval [s, t]. The
jump conditions (JBV) follow by writing (3.27) in the intervals [t, t + η] or [t − η, t] for
small η > 0 and then passing to the limit as η ↓ 0.

In order to prove the converse implication, suppose that Ju = (tn)n ⊂ (0, T ) and let
0 = t0 < t1 < · · · < tN < tN+1 = T be a partition of [0, T ] such that {t1, . . . , tN } is a
permutation of {t1, . . . , tN } ⊂ Ju.

Writing (E9,ineq) in each interval [ti + η, ti+1 − η] for sufficiently small η > 0 and
taking the limit as η ↓ 0, also recalling Var9(u; [a, b]) ≥ µd(a, b) (cf. (2.26)), we get

µd(ti, ti+1) ≤ Eti (u(ti,+))− Eti+1(u(ti+1,−))+

∫ ti+1

ti

Ps(u(s)) ds. (3.38)

From (JBV) and (3.15) we obtain

1fti
(u(ti), u(ti+))+ µd(ti, ti+1)+1fti+1

(u(ti+1,−), u(ti+1))

≤ Eti (u(ti))− Eti+1(u(ti+1))+

∫ ti+1

ti

Ps(u(s)) ds,

so that summing up all the contributions (recalling that u(t0,+) = u(t0) = u(0) and
u(tN,−) = u(tN ) = u(T )) we get

µd(0, T )+
N∑
i=1

1fti
(u(ti,−), u(ti))+1fti

(u(ti), u(ti,+))

≤ E0(u(0))− ET (u(T ))+

∫ T

0
Ps(u(s)) ds.

If Ju is finite we get (Ef,ineq) choosing N = #(Ju) and recalling (2.26) and (2.27). If Ju
is infinite, we simply pass to the limit as N ↑ ∞. We leave to the reader the obvious
modifications in the case Ju ∩ {0, T } 6= ∅. ut

The jump conditions (JBV) should be compared with the general estimate (3.16), which at
every jump point t ∈ Jw of an arbitrary curve w ∈ BV([0, T ];DE, 9) can be rephrased
as

|Et (w(t+))− Et (w(t))| ≤ 1ft (w(t), w(t+)),

|Et (w(t))− Et (w(t−))| ≤ 1ft (w(t−), w(t)).
(3.39)

We now extend the differential characterization of BV solutions in [MRS12a, Thm. 4.3]
to the present setting.
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Theorem 3.16 (Differential characterization of BV solutions). Let u ∈ BV([0, T ];V )
with distributional derivative decomposed as in Remark 2.3. Then u is a BV solution of
the RIS (V ,E, 9,8) if and only if it satisfies the doubly nonlinear differential inclusion
in the BV sense

∂9

(
du′d
dλ

(t)

)
+ ∂Et (u(t)) 3 0 for λ-a.a. t ∈ (0, T ) with λ = ‖u′C‖ +L 1, (DNBV)

and the jump conditions (JBV). In particular (DNBV) yields the pointwise inclusion

∂9(u̇(t))+ ∂Et (u(t)) 3 0 for L 1-a.a. t ∈ (0, T ). (DNL )

Proof. We briefly recall the argument presented in [MRS12a, Prop. 2.7, Thm. 4.3]. First
notice that (DNBV) yields the local stability condition, since the support of λ is the full
interval [0, T ] and K∗ contains the range of ∂9. By the distributional chain rule (3.37)
we get

e′d = −9(n)‖u
′

d‖ + P·(u)L
1 (2.30)
= −µd + P·(u)L

1.

Combining this with the jump conditions (JBV) and recalling formula (3.25) for Varf we
get (Ef).

Conversely, if u is a solution then (E9,ineq) yields

e′d +9(n)‖u
′

d‖ − P·(u)L
1
≤ 0 in D ′(0, T ).

Recalling (3.37) we thus obtain, for −ξ ∈ ∂Et (u(t)) ∩K∗,

(〈−ξ,n〉 +9(n))‖u′d‖ ≤ 0 in D ′(0, T ),

which yields (DNBV) ‖u′d‖-a.e. in (0, T ), and in particular L 1-a.e. in the set ‖u̇‖ > 0.
For L 1-a.a. points of ‖u̇‖ = 0 the local stability condition still provides (DNBV). ut

3.3. Optimal jump transitions

Thanks to the jump conditions given by (JBV), we can give a finer description of the
behavior of BV solutions along jumps. The crucial notion is provided by the following
definition.

Definition 3.17 (Optimal transitions). Let t ∈ [0, T ] and u−, u+ ∈ D with

K∗ + ∂Et (u−) 3 0, K∗ + ∂Et (u+) 3 0. (3.40)

We say that an admissible curve ϑ ∈ Tt (u−, u+) is an ft -optimal transition between u−
and u+ if

Et (u−)− Et (u+) = 1ft (u−, u+) = ft [ϑ, ϑ
′
](r) > 0 for a.a. r ∈ (0, 1), (3.41)

and we denote by Ot (u−, u+) the (possibly empty) collection of such optimal transitions.
We say that ϑ is of

sliding type if et (ϑ(r)) = 0 for every r ∈ [r0, r1], (3.42)
viscous type if et (ϑ(r)) > 0 for every r ∈ (r0, r1). (3.43)
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The main interest of optimal transitions derives from the next result, which follows im-
mediately from Theorem 3.7 by a simple rescaling argument.

Proposition 3.18. If u ∈ BV([0, T ];V,9) is a BV solution to the rate-independent
system (V ,E, 9,8), then for every t ∈ Ju there exists an ft -optimal transition ϑ t ∈
Ot (u(t−), u(t+)) such that u(t) = ϑ t (r) for some r ∈ [0, 1].

We now provide a characterization of sliding and viscous optimal transitions in terms of
doubly nonlinear differential inclusions.

Proposition 3.19 (The structure of optimal transitions). Let t ∈ [0, T ] and u−, u+ ∈ D
fulfilling (3.40) be given and let ϑ ∈ Tt (u−, u+) be an admissible transition curve with
constant normalized velocity ft [ϑ, ϑ

′
](r) ≡ c > 0 for a.a. r ∈ (0, 1). Then

(1) ϑ is an optimal transition of sliding type if and only if

∃ξ(r) ∈ −∂Et (ϑ(r))) ∩K
∗ for every r ∈ [0, 1], (3.44)

d

dr
Et (ϑ(r))+9[ϑ

′
] = 0 for a.a. r ∈ (0, 1). (3.45)

In particular, if ϑ is differentiable L 1-a.e. in (0, 1), then (3.44) and (3.45) are equiv-
alent to

∂9(ϑ̇(r))+ ∂Et (ϑ(r)) 3 0 for a.a. r ∈ (0, 1). (3.46)

(2) ϑ is an optimal transition of viscous type if and only if it is differentiable L 1-a.e. in
(0, 1) and there exist maps ξ ∈ L1(0, 1;V ∗), and ε : (0, 1)→ (0,∞) such that

ξ(r) ∈
(
∂9(ϑ̇(r))+ ∂8(ε(r)ϑ̇(r))

)
∩
(
−∂Et (ϑ(r))

)
for a.a. r ∈ (0, 1); (3.47)

in particular,

ε(r) = 3t (ϑ(r); ϑ̇(r)) for a.a. r ∈ (0, 1), where

3t (ϑ; v) := (F
∗)′(et (ϑ))/F (‖v‖), ϑ ∈ D, v ∈ V \ {0}.

(3.48)

Equivalently, there exists an absolutely continuous, surjective time rescaling r :
(s0, s1)→ (0, 1), with −∞ ≤ s0 < s1 ≤ ∞ and ṙ(s) > 0 for L 1-a.a. s ∈ (s0, s1),
such that the rescaled transition θ(s) := ϑ(r(s)) satisfies the viscous differential
inclusion

∂9(θ̇(s))+ ∂8(θ̇(s))+ ∂Et (θ(s)) 3 0 for a.a. s ∈ (s0, s1). (3.49)

(3) If ϑ is an optimal transition, then it can be decomposed in a canonical way into an (at
most) countable collection of optimal sliding and viscous transitions. Namely, there
exist (uniquely determined) disjoint open intervals (Sj )j∈σ and (Vk)k∈υ of (0, 1),
with σ, υ ⊂ N, such that (0, 1) ⊂ (

⋃
j∈σ Sj ) ∪ (

⋃
k∈υ Vk) and

ϑ |Sj
is of sliding type, ϑ |Vk

is of viscous type.
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Proof. (1) It is easy to check that if an admissible transition ϑ satisfies (3.44)–(3.45)
then ϑ is an optimal transition of sliding type. Indeed, by the chain rule of Theorem 2.5,
r 7→ Et (ϑ(r)) is absolutely continuous, and integrating (3.45) we get (3.41). The con-
verse implication is even easier by combining the chain rule along ϑ , the fact that ft [ϑ, ϑ ′]
= 9[ϑ ′], and (3.41).

(2) Similarly, if ϑ, ε, ξ satisfy (3.47), the chain rule yields

d

dr
Et (ϑ(r)) = −〈ξ(r), ϑ̇(r)〉 = −9ε(r)(ε(r)ϑ̇(r))−9

∗

ε(r)(ϑ(r))

≤ −9(ϑ̇(r))−
1
ε(r)

F (ε(r)‖ϑ̇(r)‖)−
1
ε(r)

F ∗(et (ϑ(r)))

≤ −9(ϑ̇(r))− et (ϑ(r))‖ϑ̇(r)‖ = −ft (ϑ(r), ϑ̇(r)) = −c < 0.

Integrating in time we get one inequality of (3.41); the converse one is always true. Thus,
all the above inequalities are in fact equalities: in particular et (ϑ(r)) > 0 in (0, 1), since
F(r) > 0 if r > 0 by (D.0). Consequently, ϑ is an optimal transition of viscous type.

The converse implication follows from the fact that

et (ϑ)‖ϑ̇‖ =
1
ε
F (ε‖ϑ̇‖)+

1
ε
F ∗(et (ϑ)) if ε = 3t (ϑ, ϑ̇).

Observing that ϑ̇ is locally bounded in (0, 1) so that r 7→ 1/ε(r) is also locally bounded,
in order to get (3.49) we simply apply the absolutely continuous time rescaling

s(r) :=

∫ r

1/2
ε−1(r) dr, r := s−1, θ(s) := ϑ(r(s)), θ̇ (s) = ε(r(s))ϑ̇(r(s)).

(3) We can simply split the parameter interval (0, 1) into the open sets V := {r :
et (ϑ(r)) > 0}, S := [0, 1] \ V , and then consider their connected components. ut

As a last result, we show that optimal transitions capture the asymptotic profile of rescaled
solutions to (1.1) around a jump point.

Proposition 3.20 (Asymptotic profiles and optimal transitions). Let εk ↓ 0 and let
(uεk , ξεk ) be a sequence of solutions to the viscous doubly nonlinear equation (2.39) such
that uεk converge to a BV solution u of the RIS (V ,E, 9,8) as k → ∞ according to
Theorem 3.11. For every t ∈ Ju let αk < t < βk be two sequences such that

αk ↑ t, βk ↓ t, lim
k→∞

uεk (αk) = u(t−), lim
k→∞

uεk (βk) = u(t+). (3.50)

Then

lim
k→∞

∫ βk

αk

(9εk (u̇εk )+9
∗
εk
(−ξεk )) dr = 1ft (u(t−), u(t+)), (3.51)

and there exist a further subsequence (not relabeled), increasing and surjective time
rescalings tk ∈ AC([0, 1]; [αk, βk]), and an optimal transition ϑ ∈ Ot (u(t−), u(t+))

such that

lim
k→∞

uεk ◦ tk = ϑ strongly in V , uniformly on [0, 1]. (3.52)
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Proof. Estimate (3.22) from Theorem 3.7 provides the inequality

lim inf
k→∞

∫ βk

αk

(9εk (u̇εk )+9
∗
εk
(ξεk )) dr ≥ 1ft (u(t−), u(t+)).

On the other hand, applying (3.31) to each interval [αh, βh] we obviously get

lim sup
k→∞

∫ βk

αk

(9εk (u̇εk )+9
∗
εk
(ξεk )) dr ≤ Varf(u; [αh, βh]) for every h ∈ N.

Passing to the limit as h ↑ ∞ we obtain (3.51). We then apply assertion (F3) of Theorem
3.7 to find an admissible transition ϑ ∈ Tt (u(t−), u(t+)) and rescalings tk such that (3.21)
holds. Relation (3.51) shows that ϑ is optimal. ut

3.4. V -parameterizable solutions

In this section we will focus on a more restrictive notion of solution, exhibiting better
regularity properties: they belong to BV([0, T ];V ) and at all jump points the left and the
right limits can be connected by an optimal transition with finite V -length. Moreover, we
will require that the total V -length of the connecting paths is finite.

Definition 3.21 (V -parameterizable BV solutions). A Balanced Viscosity solution u of
the RIS (V ,E, 9,8) (in the sense of Definition 3.10) is called V -parameterizable if
u ∈ BV([0, T ];V ) and

(i) ∀t ∈ Ju ∃ϑ t ∈ Ot (u(t−), u(t+)) ∩ AC([0, 1];V ),

(ii)
∑
t∈Ju

∫ 1

0
‖ϑ̇ t (r)‖ dr <∞.

(3.53)

The notion of V -parameterizable BV solution slightly differs from the concept of con-
nectable BV solution introduced in [Mie11, Def. 4.21], which only requires condition (i).

As one can expect, a limit curve of solutions to (1.1) satisfying a uniform
BV([0, T ];V )-bound is a V -parameterizable solution.

Theorem 3.22. Let (uε)ε>0 be a family of solutions to (1.1) satisfying (3.28) at t = 0
and the uniform bound

∃C > 0 ∀ε > 0 : Var(uε; [0, T ]) ≤ C. (3.54)

Then any limit curve as in Theorem 3.11 is a V -parameterizable BV solution to the RIS
(V ,E, 9,8).

Similarly, let (Unτ,ε)τ,ε be a family of discrete solutions to (IPε,τ ) satisfying (3.32) and
(3.33). If

∃C > 0 ∀τ, ε > 0 : Var(Uτ,ε; [0, T ]) =
Nτ∑
n=1

‖Unτ,ε − Un−1
τ,ε ‖ ≤ C, (3.55)

then any accumulation point of the piecewise affine interpolants Uτ,ε as in Theorem 3.12
is a V -parameterizable solution.



2134 Alexander Mielke et al.

Proof. As the proofs of the two statements are very similar, we only prove the first one.
Since the total variation functional is lower semicontinuous with respect to point-

wise convergence, any limit curve u obtained as in Theorem 3.11 clearly belongs to
BV([0, T ];V ).

In order to check (i) of (3.53) we apply Proposition 3.20 and we find a sequence
of rescalings tk : [0, 1] → [αtk, β

t
k] (we explicitly indicate the dependence of the time

intervals [αk, βk] on t) and an optimal transition ϑ t ∈ Ot (u(t−), u(t+) with (3.50) and
(3.52). This shows that

Var(ϑ t ; [0, 1]) ≤ lim inf
k→∞

Var(uεk ; [α
t
k, β

t
k]) <∞, (3.56)

so that ϑ t ∈ BV([0, 1];V ). Since ϑ t is also continuous, up to a further time rescaling we
can obtain an optimal transition absolutely continuous in V .

A slight refinement of the above argument also provides (ii): we consider an arbitrary
finite collection of points t1, . . . , th ⊂ Ju and we choose a common subsequence uεk
satisfying (3.50) in each interval. For k so large that the intervals [α

tj
k , β

tj
k ] are disjoint,

(3.56) yields

h∑
j=1

Var(ϑ tj ; [0, 1]) ≤ lim inf
k→∞

h∑
j=1

Var(uεk ; [α
tj
k , β

tj
k ]) ≤ lim inf

k→∞
Var(uεk ; [0, T ])

(3.54)
≤ C.

Since the number h of jump points is arbitrary, we obtain (ii). ut

The next results show that one can actually prove (3.54) and (3.55) for the particular
choice

8(v) = 1
2‖v‖

2, F (r) := 1
2 r

2, (3.57)

under slightly more restrictive assumptions on the energy functional and on the initial
data: besides the usual (D.0)–(D.1) and (E.0)–(E.2), we will also assume that for every
E > 0 there exist constant αE,3E, LE > 0 such that the energy functional satisfies the
Gårding-like subdifferentiability inequality

Et (v)− Et (u) ≥ 〈ξ, v − u〉 + αE‖v − u‖
2
−3E9∧(v − u)‖v − u‖

if u, v ∈ DE, ξ ∈ ∂Et (u). (3.58)

In Lemma 3.26 below we will provide a type of λ-convexity condition guaranteeing
(3.58). We will also require that the power functional is uniformly Lipschitz in DE , viz.

|Pt (u)− Pt (v)| ≤ LE‖u− v‖ if t ∈ [0, T ], u, v ∈ DE . (3.59)

Then we have the following result.

Theorem 3.23 (A priori estimates for discrete Minimizing Movements). Assume that
(3.57)–(3.59) hold. Then any family of solutions (Unτ,ε) of (IPε,τ ) fulfilling, for some con-
stants E0,Q > 0,

9(U0
τ,ε)+ E0(U0

τ,ε) ≤ E0, τ ≤ Qε, K∗ + ∂E0(U0
τ,ε) 3 0, (3.60)
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satisfies estimates (3.55). In particular, if (3.32), (3.33) and (3.60) hold, any curve u
obtained as the limit of piecewise affine interpolants Uτ,ε (cf. Theorem 3.12) is a V -pa-
rameterizable solution.

The proof will be given in Section 7.4. In [MiZ14], a similar priori estimate in the form∫ T
0 ‖u̇ε(t)‖ dt ≤ C was derived for semilinear and quasilinear partial differential equa-

tions with smooth nonlinearities. There Galerkin approximation and differentiation in
time is used. As in the present case, where we have to confine ourselves to Minimiz-
ing Movement solutions (cf. Corollary 3.24 below), in [MiZ14] the a priori estimate in
BV([0, T ];V ) can only be shown for a suitable subclass of solutions to (1.1) (cf. [MiZ14,
Def. 4.3]). This establishes an interesting parallel between our Minimizing Movement ap-
proach and the one in [MiZ14].

Corollary 3.24 (A priori estimate for Minimizing Movement solutions). Assume that
(3.57)–(3.59) hold. Then every family (uε)ε ⊂ AC([0, T ];V ) of Minimizing Movement
solutions to (1.1), fulfilling

uε(0)→ u0 in V , E0(uε(0))→ E0(u0), K∗ + ∂E0(uε(0)) 3 0, (3.61)

satisfies estimate (3.54). Any limit u is a V -parameterizable solution to the RIS
(V ,E, 9,8).

Proof. Choose U0
τ,ε = uε(0) and apply Theorem 2.7, passing to the limit in (3.55). ut

The following result is an immediate consequence of Corollary 3.24 or Theorem 3.23.

Corollary 3.25 (Existence of V -parameterizable BV solutions). If (3.57)–(3.59) hold,
then for every u0 ∈ D with K∗ + ∂E0(u0) 3 0 there exists a V -parameterizable BV
solution to the RIS (V ,E, 9,8) starting from u0.

Notice that the subdifferentiability condition (3.58) implies (E.3) as well as

〈η− ξ, v − u〉 ≥ 2αE‖v − u‖2 − 23E9∧(v − u) ‖v − u‖ −LE |t − s| ‖v − u‖ (3.62)

whenever η ∈ ∂Et (v), ξ ∈ ∂Es(u), u, v ∈ DE, s, t ∈ [0, T ]. To check (3.62), it is
sufficient to write (3.58) for u and v at time s, t respectively. Adding the two inequalities
and using (3.59) we get the bound (assuming s < t)

Et (v)− Es(v)+ Es(u)− Et (u) ≤

∫ t

s

(Pr(v)− Pr(u)) dr ≤ LE (t − s)‖u− v‖.

Observe that in (3.58), as in (E.3), we allow for a negative modulus of convexity in the
9-term, provided that it is possible to gain an even small positive modulus of subdif-
ferentiability in the stronger V -norm. This is akin to the Gårding inequality for elliptic
operators.

The next result provides a useful criterion on the energy functional E to establish the
subdifferentiability condition (3.58). It is a sort of (generalized) λ-convexity condition,
involving two norms. Notice that both (3.63) and (3.58) are required to hold on sublevels
of E only.
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Lemma 3.26. Suppose that for every E > 0 there exist constants αE,3E > 0 such that
the energy functional Et : V → (−∞,∞] satisfies

Et ((1− θ)u+ θv) ≤ (1− θ)Et (u)+ θEt (v)

− θ(1− θ)(αE‖u− v‖2 −3E9∧(u− v)‖u− v‖) (3.63)

for all u, v ∈ DE and θ ∈ [0, 1]. Then its Fréchet subdifferential ∂Et : V ⇒ V ∗ satisfies
(3.58).

Proof. For ξ in the Fréchet subdifferential ∂Et (u), and for every v, u ∈ DE and θ ↓ 0,

〈ξ, θ(v − u)〉 + o(θ‖v − u‖) ≤ Et ((1− θ)u+ θv)− Et (u)

≤ θ(Et (v)− Et (u))− θ(1− θ)(αE‖v − u‖2 −3E9∧(v − u)‖v − u‖).

Dividing by θ and letting θ ↓ 0 yields the desired estimate (3.58). ut

The energy functional in (1.7) provides a simple but nontrivial infinite-dimensional ex-
ample satisfying (3.63) (see Example 5.1).

4. Parameterized solutions

4.1. Vanishing-viscosity analysis, parameterized curves and solutions

Under the working assumptions of §2.1 (in particular, (D.0)–(D.2) and (E.0)–(E.3)),
in this section we will present a different approach to the vanishing-viscosity analysis
of (1.1), which goes back to [EfM06] and was further developed in [MRS09, MRS12a].
The main idea is to rescale time in (1.1) and study the limiting behavior as ε ↓ 0 of
the rescaled viscous solutions. This naturally leads to the notion of parameterized so-
lution in Definition 4.2: it is a space-time parameterized curve, along which the energy
E fulfills a “parameterized” version of the energy-dissipation identity (2.40). At the end
of this section, we will also discuss the parameterized counterpart to V -parameterizable
BV solutions. Let us emphasize that although parameterized solutions were developed in
[EfM06, MiZ14] in their own right, we use them mainly to obtain the desired results for
BV solutions.

Vanishing-viscosity analysis. Let (uε)ε be a family of solutions to the “viscous” doubly
nonlinear equation (1.1). It follows from the energy identity (2.40) and from the varia-
tional characterization (3.1)–(3.5) of f that∫ t

s

fr(uε(r); u̇ε(r)) dr+Et (u(t)) ≤ Es(u(s))+

∫ t

s

Pr(u(r)) dr for all 0 ≤ s ≤ t ≤ T ,

(4.1)

whence, relying on the power control (E.2), we deduce that there exists a constant C > 0
such that

Sε := T +

∫ T

0
fr(uε(r); u̇ε(r)) dr ≤ C for every ε > 0. (4.2)
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We rescale the functions uε by the energy-dissipation arclength sε : [0, T ] → [0,Sε] of
the curve uε, defined by

sε(t) := t +

∫ t

0
fr(uε(r); u̇ε(r)) dr. (4.3)

Hence, we introduce the rescaled functions (tε, uε) : [0,Sε] → [0, T ] × V given by

tε(s) := s−1
ε (s), uε(s) := uε(tε(s)). (4.4)

We write the “rescaled energy identity” fulfilled by the pair (tε, uε) by means of the
space-time Finsler dissipation functionals Fε,Gε : [0, T ] ×D × [0,∞)× V → [0,∞)
defined by

Fε(t, u;α, v) := 9(v)+Gε(t, u;α, v)− αPt(u) with

Gε(t, u;α, v) :=

{
α
ε
8
(
ε
α
v
)
+

α
ε
F ∗(et (u)) for α > 0,

∞ for α = 0,

(4.5)

where we have combined (2.33) for 9∗ε , yielding (3.6) for ft , and the monotonicity of F ∗

to find

inf
ξ∈−∂Et (u)

9∗ε (ξ) = inf
ξ∈−∂Et (u)
z∈K∗

1
ε
F ∗(‖ξ − z‖∗) =

1
ε
F ∗(et (u)).

Then, the energy identity (2.40) yields, for every 0 ≤ s1 < s2 ≤ Sε,∫ s2

s1

Fε
(
tε(s), uε(s); ṫε(s), u̇ε(s)

)
ds + Etε(s2)(uε(s2)) = Etε(s1)(uε(s1)), (4.6)

and, on account of our choice (4.3) of the reparameterization, we have the normalization
condition

ṫε(s)+ ftε(s)(uε(s); u̇ε(s)) ≡ 1 for a.a. s ∈ (0,Sε). (4.7)

From (4.6) it is possible to deduce a priori estimates on the family (tε, uε)ε, thus
proving that, up to a subsequence, the functions (tε, uε) converge in a suitable sense to a
pair (t, u) : [0, S] → [0, T ]×V (see Theorem 4.3 for a precise statement). In view of the
forthcoming lower semicontinuity Proposition 7.1, we expect that taking the limit ε→ 0
in (4.6) leads to the energy estimate∫ s2

s1

F
(
t(s), u(s); ṫ(s), u̇(s)

)
ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) (4.8)

for all 0 ≤ s1 ≤ s2 ≤ S. The functional F : [0, T ]×D×[0,∞)×V → [0,∞] is defined
by

F(t, u;α, v) := 9(v)+G(t, u;α, v)− αPt(u) with

G(t, u;α, v) := kt(u)α + et(u)‖v‖ =

{
kt(u) if α > 0,
et(u)‖v‖ if α = 0.

(4.9)
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Here we have adopted the convention 0 · ∞ = 0, and k is the indicator function

kt(u) := inf
ξ∈−∂Et(u)

IK∗(ξ) = I{0}(et (u)) =

{
0 if K∗ + ∂Et(u) 3 0,
∞ otherwise.

(4.10)

Hence, it would be natural to take (4.8) as definition of parameterized solution. However,
as already mentioned, limit curves have to be expected to lie in AC([0,S];V,9), i.e. they
might lose the differentiability property with respect to time. Thus, we need to develop a
more refined definition.

Admissible parameterized curves and solutions. In order to properly formulate (4.8)
we need to resort to the metric 9-derivative introduced at the beginning of Section 2.2.
Based on that definition, we first introduce a suitable class of parameterized curves.

Definition 4.1 (Admissible parameterized curves). We call a pair (t, u) : [a, b] →
[0, T ] × V an admissible parameterized curve if

• t is nondecreasing and absolutely continuous, u ∈ AC([a, b];DE, 9) for some E > 0,
• u is locally V -absolutely continuous in the open set

G := {s ∈ [a, b] : et(s)(u(s)) > 0} = {s ∈ [a, b] : K∗ + ∂Et(s)(u(s)) 63 0}, (4.11)

and t is constant in each connected component of G (in particular, u is differentiable
L 1-a.e. in G),
• we have the estimate∫ b

a
9[u′](s) ds +

∫
G

et(s)(u(s))‖u̇(s)‖ ds <∞. (4.12)

For every admissible parameterized curve and all s ∈ [a, b] we set

G[t, u; ṫ, u̇](s) := kt(s)(u(s))ṫ(s)+ et(s)(u(s))‖u̇(s)‖,

F[t, u; t′, u′](s) := 9[u′](s)+G[t, u; ṫ, u̇](s)− Pt(s)(u(s))ṫ(s),
(4.13)

where, with a slight abuse of notation, we adopted the convention that

et(s)(u(s))‖u̇(s)‖ ≡ 0 if s 6∈ G. (4.14)

We denote by A (a, b; [0, T ] × V ) the collection of all the (admissible) parameterized
curves. Furthermore, we call (t, u)

• nondegenerate if ṫ(s)+9[u′](s) > 0 for a.a. s ∈ (a, b);
• surjective if t(a) = 0, t(b) = T ;
• m-normalized for a positive m ∈ L∞(0,S) (typically m ≡ 1) if

ṫ(s)+9[u′](s)+ et(s)(u(s))‖u̇(s)‖ = m(s) for a.a. s ∈ (a, b). (4.15)
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Two (admissible) parameterized curves [a, b] 3 s 7→ (t(s), u(s)) and [c, d] 3 σ 7→
(t̂(σ ), û(σ )) are equivalent if there exists an absolutely continuous and surjective change
of variable s : [c, d] 3 σ 7→ s(σ ) ∈ [a, b] such that

t̂(σ ) = t(s(σ )), û(σ ) = u(s(σ )) for all σ ∈ (c, d), ṡ(σ ) > 0 for a.a. σ ∈ (c, d).

The above concept is nothing but the parameterized counterpart to the notion of admis-
sible curve from Definition 3.4; a crucial feature of parameterized curves is their L 1-a.e.
differentiability on the set G.

In the next definition of parameterized solutions we will impose (a suitable version
of) (4.8) as an equality. Indeed, the upper energy estimate has been motivated throughout
(4.6)–(4.8) via lower semicontinuity arguments. The lower energy estimate is a conse-
quence of the chain rule of the forthcoming Theorem 4.4.

Definition 4.2 (Parameterized solutions). A parameterized solution of the rate-inde-
pendent system (V ,E, 9,8) is a surjective and nondegenerate curve (t, u) ∈ A (a, b;
[0, T ] × V ) (cf. Definition 4.1) satisfying∫ s2

s1

F[t, u; t′, u′] ds+Et(s2)(u(s2)) = Et(s1)(u(s1)) for all a ≤ s1 ≤ s2 ≤ b. (4.16)

Since F defined in (4.13) contains the term kt(u)ṫ, equation (4.16) encompasses the local
stability condition (Sloc). It follows from (4.12) and the power-control condition (E.2)
that, along a parameterized solution, the map s 7→ Et(s)(u(s)) is absolutely continuous
on [a, b].

The main existence and convergence result. The main result of this section states that
any limit curve of the rescaled family (tε, uε) of solutions to (1.1) is a parameterized
solution.

Theorem 4.3. Assume that (D.0)–(D.2) and (E.0)–(E.3) hold. Let (uε)ε⊂AC([0, T ];V )
be a family of solutions to the doubly nonlinear equation (1.1) such that

uε(0)→ u0 in V and E0(uε(0))→ E0(u0) as ε ↓ 0 (4.17)

as in (3.28). Choose nondecreasing surjective time-rescalings tε : [0,S] → [0, T ], define
uε : [0,S] → V by uε(s) := uε(tε(s)) for all s ∈ [0,S] and suppose that

∃m ∈ L∞(0,S) : mε := ṫε + ftε (uε, u̇ε) ⇀
∗ m in L∞(0,S), and

m > 0 a.e. in (0,S).
(4.18)

Then there exist a subsequence εk ↓ 0 and a parameterized solution (t, u) in
AC([0,S]; [0, T ] × V ) to the RIS (V ,E, 9,8) such that as k→∞,

(tεk , uεk )→ (t, u) in C0([0,S]; [0, T ] × V ), (4.19)
Etεk (s)(uεk (s))→ Et(s)(u(s)) uniformly in [0,S], (4.20)∫ s2

s1

(
9(u̇εk )+Gεk (tεk , uεk ; ṫεk , u̇εk )

)
ds →

∫ s2

s1

(9[u′] +G[t, u; ṫ, u̇]) ds (4.21)

for all 0 ≤ s1 ≤ s2 ≤ S. Moreover, (t, u) is m-normalized.
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We have already seen that the choice (4.3)–(4.4) provides the normalization condition
(4.7), and thus (up to a multiplication factor converging to 1) the curves (tε, uε) satisfy
(4.18) with m ≡ 1.

The proof of this result is postponed to the end of §7.3.

Chain rule and further properties of parameterized solutions. We now present a
parametrized version of the chain rule (2.37) (cf. also (3.36)), satisfied by admissible
parameterized curves. In fact, (4.22) below is a metric-like chain-rule inequality, since it
involves the 9-metric derivative of the curve. A key ingredient of its proof is the uniform
subdifferentiability condition (E.3).

Theorem 4.4 (Chain-rule inequality for parameterized curves). If (t, u) ∈ A (a, b;
[0, T ] × V ) then the map s 7→ Et(s)(u(s)) is absolutely continuous on [a, b] and the
following chain-rule inequality holds for a.a. s ∈ (a, b) (recalling (4.14)):∣∣∣∣ ddsEt(s)(u(s))− Pt(s)(u(s))ṫ(s)

∣∣∣∣ ≤ 9[u′](s)+ et(s)(u(s))‖u̇(s)‖. (4.22)

Moreover, if u is a.e. differentiable, then for a.a. s ∈ (a, b) we have

d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −〈ξ, u̇(s)〉

≥ −ft(s)(u(s); u̇(s)) for all ξ ∈ −∂Et(s)(u(s)). (4.23)

We postpone the proof to Section 6.1. As a straightforward consequence of (4.22), we
can characterize parameterized solutions by a simpler one-sided inequality on the interval
(a, b). The result below corresponds to Corollary 3.14 for BV solutions.

Corollary 4.5. For every surjective and nondegenerate admissible curve in (t, u) ∈
A (a, b; [0, T ] × V ) the following three conditions are equivalent:

(i) (t, u) is a parameterized solution of the RIS (V ,E, 9,8);

(ii)
∫ b

a
F[t, u; t′, u′] ds + Et(b)(u(b)) ≤ Et(a)(u(a)); (4.24)

(iii)
d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s)

= −9[u′](s)− et(s)(u(s))‖u̇(s)‖ for a.a. s ∈ (a, b). (4.25)

When u is L 1-a.e. differentiable, it is also possible to characterize parameterized solu-
tions in terms of a doubly nonlinear differential inclusion involving the dissipation poten-
tials 9 and 8 (to be compared with the differential characterization of BV solutions in
Theorem 3.16).
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Proposition 4.6. If (t, u) is a L 1-a.e. differentiable parameterized solution of the RIS
(V ,E, 9,8), then there exist measurable functions λ : (a, b) → [0,∞) and ξ : (a, b)
→ V ∗ such that for a.a. s ∈ (a, b),{

ξ(s) ∈
(
∂9(u̇(s))+ ∂8(λ(s)u̇(s))

)
∩
(
−∂Et(s)(u(s))

)
,

λ(s)ṫ(s) = 0.
(4.26)

Conversely, if an absolutely continuous, surjective, nondegenerate and L 1-a.e. differen-
tiable curve (t, u) : [a, b] → [0, T ] × DE satisfies (4.26) for some measurable maps
λ, ξ and s 7→ Et(s)(u(s)) is absolutely continuous in [a, b], then (t, u) is a parameterized
solution to the RIS (V ,E, 9,8).

The reformulation of the notion of parameterized solutions in terms of the subdifferential
inclusion (4.26) reflects the following mechanical interpretation:

• the regime (ṫ > 0, u̇ ≡ 0) corresponds to sticking;
• the regime (ṫ > 0, u̇ 6= 0) corresponds to rate-independent sliding (λ = 0 implies the

local stability K∗ + ∂Et(u) 3 0);
• when ṫ = 0 (i.e. at a jump in the (slow) external time scale, encoded in the function t),

the system may switch to a viscous regime (when λ > 0), and the solution follows a
viscous transition path.

Proof of Proposition 4.6. If (t, u) is a L 1-a.e. differentiable parameterized solution,
(4.25) and (4.23) show that for every selection ξ ∈ −∂Et(s)(u(s)) we have

〈ξ, u̇(s)〉 = 9(u̇(s))+ et(s)(u(s))‖u̇(s)‖ for a.a. s ∈ (a, b). (4.27)

If et(s)(u(s)) = 0 then choosing ξ ∈ K∗ we get (4.26) with λ(s) = 0. If et(s)(u(s)) > 0
then ṫ(s) = 0 so that u̇(s) 6= 0 by the nondegeneracy condition; we obtain (4.26) by
choosing λ(s) = 3t(s)(u(s), u̇(s)) (see (3.48)).

Conversely, assume that (4.26) holds and the energy map is absolutely continuous. If
λ(s) = 0 then et(s)(u(s)) = 0 so that 〈ξ, u̇(s)〉 = 9(u̇(s)). If λ(s) > 0 then ṫ(s) = 0 so
that u̇(s) 6= 0 and

〈ξ, u̇(s)〉 = 9(u̇(s))+
1
λ(s)

8(λ(s)u̇(s))+
1
λ(s)

8∗(ξ)

≥ 9(u̇(s))+ et(s)(u(s))‖u̇(s)‖ ≥ 〈ξ, u̇(s)〉.

Hence, all the above estimates are equalities, and therefore et(s)(u(s)) > 0. Furthermore,
(4.27) holds. Combining this with the fact that at almost all points the energy is differen-
tiable with derivative d

ds
Et(s)(u(s)) = Pt(s)(u(s))ṫ(s)−〈ξ, u̇(s)〉 inL1(a, b), we conclude

that (t, u) is admissible and (4.25) holds. ut

Parameterized and BV solutions

Proposition 4.7 (Equivalence between BV and parameterized solutions).

(BVP1) If (t, u) ∈ A (a, b; [0, T ] × V ) is surjective and nondegenerate, then any curve

u : [0, T ] → V with u(t) ∈ {u(s) : t(s) = t} (4.28)
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belongs to BV([0, T ];DE, 9) for some E > 0, satisfies the local stability con-
dition (Sloc), and for every 0 ≤ t0 < t1 ≤ T with G defined as in (4.11) we
have

Varf(u; [t0, t1]) ≤
∫ s(t1)

s(t0)
9[u′](s) ds +

∫
[s(t0),s(t1)]∩G

et(s)(u(s))‖u̇(s)‖ ds;

(4.29)
in particular Varf(u; [0, T ]) <∞.

(BVP2) If (t, u) : [0,S]→[0, T ]×V is a parameterized solution of the RIS (V ,E, 9,8),
then any curve u : [0, T ] → V satisfying (4.28) is a BV solution in the sense of
Definition 3.10.

(BVP3) Conversely, if u ∈ BV([0, T ];DE, 9) satisfies (Sloc) with Varf(u; [0, T ]) <∞,
then there exists a nondegenerate, surjective (t, u) ∈ A (0,S; [0, T ] × V ) such
that (4.28) holds and

Varf(u; [0, T ]) =
∫ S

0
9[u′](s) ds +

∫
[0,S]∩G

et(s)(u(s))‖u̇(s)‖ ds. (4.30)

Thus if u is a BV solution of the RIS (V ,E, 9,8) then (t, u) is a parameterized
solution.

Proof. (BVP1) Let s : [0, T ] → [a, b] be any inverse of t. Notice that t ∈ Ju if and only
if t ∈ Js and t(s) ≡ t for every s ∈ [s(t−), s(t+)]. We can also define s(t) in [s(t−), s(t+)]
so that u(t) = u(s(t)) for every t ∈ [0, T ]. By this choice it is immediate to see that
u ∈ BV([0, T ];DE, 9) with

Var9(u; [t0, t1])= Var9(u; [s(t0), s(t1)])=
∫ s(t1)

s(t0)
9[u′](r) dr for all 0≤ t0 < t1 ≤ T .

On the other hand, the curve u : [s(t−), s(t+)] → V is an admissible transition connecting
u(t−) to u(t+) with

1ft (u(t−), u(t))≤

∫ s(t)

s(t−)
fs(r)[u; u

′
](r) dr, 1ft (u(t), u(t+))≤

∫ s(t+)

s(t)
fs(r)[u; u

′
](r) dr,

which yields (4.29). Since ṫ = 0 in G, t(G) is L 1-negligible, so that its complement
(where the local stability condition (Sloc) holds) is dense in [0, T ]. Since e is lower semi-
continuous, every point in [0, T ] \ Ju satisfies (Sloc).

(BVP2) is now immediate: since (Sloc) holds, it is sufficient to check (Ef,ineq); this
follows by combining (4.29), (4.16), and the change of variable formula∫ T

0
Pt (u(t)) dt =

∫ S

0
Pt(s)(u(s))ṫ(s) ds. (4.31)

In order to prove (BVP3), we introduce the parameterization

s(t) := t + Varf(u; [0, t]), S := s(T ), Ju = Js = (tn)n∈N, (4.32)
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In := (s(tn−), s(tn+)), I :=
⋃
n∈N

In,

t := s−1
: [0,S] \ I → [0, T ], u := u ◦ t.

(4.33)

It is immediate to check that t and u are Lipschitz maps. We extend t and u to I by setting

t(s) ≡ tn, u(s) := ϑn(rn(s)) whenever s ∈ In, (4.34)

where rn : In → [0, 1] is the unique affine and strictly increasing function map-
ping In onto [0, 1] and ϑn ∈ Ttn(u(tn−), u(tn+)) is an admissible transition satisfying
ϑn(rn(s(tn))) = u(tn) and (recall (F1) of Theorem 3.7)∫ 1

0
ftn [ϑn;ϑ

′
n](r) dr = 1ftn (u(tn−), u(tn))+1ftn (u(tn), u(tn+)). (4.35)

It follows that (4.28) holds with u = u ◦ s and∫ S

0
9[u′](s) ds +

∫
G

et(s)(u(s))‖u̇(s)‖ ds = Var9(u; [0, S])+
∫
G

et(s)(u(s))‖u̇(s)‖ ds

= Var9(u; [0, T ])+
∑
n∈N

∫ 1

0
etn(ϑn(r))‖ϑ̇n(r)‖ dr

≤ Var9(u; [0, T ])− Jmp9(u; [0, T ])+ Jmpf(u; [0, T ]) = Varf(u; [0, T ]),

so that (4.30) holds and (t, u) ∈ A (0,S; [0, T ] × V ).
If moreover u is a BV solution, then the chain rule from Theorem 4.4 and (4.31) yield

(4.24). ut

4.2. V -parameterized solutions

We now consider the special class of parameterizable solutions, corresponding to the
notion introduced in §3.4, namely those for which u is absolutely continuous with values
in V .

Definition 4.8. A V -parameterized solution (t, u) : [a, b] → [0, T ] × V of the RIS
(V ,E, 9,8) is a parameterized solution such that u ∈ AC(a, b;V ).

Since V -parameterized solutions are differentiable L 1-a.e., one does not have to dis-
tinguish the behavior of u in the set G of (4.11) from its complement. By adopting the
“pointwise” definition (4.9) of F and G in place of (4.13), metric concepts are no longer
needed, and expressions like (4.12) become simpler.

Proposition 4.9. If (t, u) ∈ AC([0,S]; [0, T ] × V ) is a V -parameterized solution to the
RIS (V ,E, 9,8) then every u satisfying (4.28) is a V -parameterizable BV solution. If u
is a V -parameterizable BV solution then there exists a V -parameterized solution (t, u)
such that (4.28) holds.
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Proof. The reasoning is analogous to the proof of Proposition 4.7: One direction follows
from the identity Var(u; [0, T ]) =

∫ S
0 ‖u̇(s)‖ ds. For the opposite one, we can simply

replace (4.32) by
s(t) := t + Varf(u; [0, t])+ Var(u; [0, t]), (4.36)

choosing the optimal jump transitions according to (3.53). ut

Thanks to Proposition 4.9, Corollary 3.25 implies the following result:

Corollary 4.10 (Existence of V -parameterized solutions). If (3.57)–(3.59) hold, then
for every u0 ∈ D withK∗+∂E0(u0) 3 0 there exists a V -parameterized solution (t, u) ∈
AC([0,S]; [0, T ] × V ) of the RIS (V ,E, 9,8).

V -parameterized solutions can also be obtained as limits of rescaled solutions to (1.1)
if they satisfy the uniform bound (3.54): one can simply adapt the argument in §4.1, by
replacing the definition (4.3) of the arclength sε with, e.g.,

sε(t) := t +

∫ t

0
fr(uε(r); u̇ε(r)) dr +

∫ t

0
‖u̇ε(r)‖ dr, tε := s−1

ε , (4.37)

in order to gain uniform control of the Lipschitz constant of the rescaled functions uε.
The vanishing-viscosity limit in Theorem 4.3 then gives the following.

Theorem 4.11. Let (uε)ε>0 be a family of solutions to (1.1) satisfying (3.28) at t = 0 and
the uniform bound (3.54) (e.g. when the assumptions of Theorem 3.23 are satisfied) and
let tε : [0,S] → [0, T ] be nondecreasing and surjective time rescalings (e.g. (4.37)) such
that uε := uε ◦ tε satisfy (4.18) and there exists C > 0 such that supt∈(0,T ) ‖u̇ε(t)‖ ≤ C
for all ε > 0. Then any limit function (t, u) as in Theorem 4.3 is a V -parameterized
solution.

V -arclength parameterizations. Still keeping the assumptions (3.57)–(3.59) of Corol-
lary 3.24, in particular the choice 8(v) := 1

2‖v‖
2, we now discuss a different reparam-

eterization technique for studying the limit of solutions to (1.1). Since estimate (3.54) is
guaranteed, as in [EfM06, Mie11, MiZ14] we are entitled to use the V -arclength param-
eterization

ŝε(t) := t +

∫ t

0
‖u̇ε(r)‖ dr (4.38)

and consider the rescaled functions (t̂ε, ûε) : [0, Ŝε] → [0, T ] × V , with Ŝε = ŝε(T ),
defined by t̂ε(s) := ŝ−1

ε (s) and ûε(s) := uε(t̂ε(s)). By construction we have ˙̂tε(s) +
‖˙̂uε(s)‖ = 1 for a.a. s ∈ (0, Ŝε), and the pair (t̂ε, ûε) is a solution of the “rescaled”
doubly nonlinear equation

∂9( ˙̂uε(s))+
ε

1− ‖˙̂uε(s)‖
∂8( ˙̂uε(s))+∂Et̂ε(s)(ûε(s)) 3 0 for a.a. s ∈ (0, Ŝε), (4.39)

where we have used the degree-1 homogeneity of ∂8. As in [EfM06, MiZ14, Mie11], we
observe that the viscous term in (4.39) is the subdifferential of the potential 8̂ defined via
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8̂(v) = f (‖v‖) with f (x) =

{
− log(1− x)− x if 0 ≤ x < 1,
∞ if x ≥ 1.

Thus, (4.39) can be rewritten as

∂8̂( ˙̂uε(s))+ ε∂8̂( ˙̂uε(s))+ ∂Et̂ε(s)(ûε(s)) 3 0 for a.a. s ∈ (0, Ŝε). (4.40)

The sequence of dissipation potentials 9̂ε(v) := 9(v) + ε8̂(v) 0-converges monotoni-
cally, as ε ↓ 0, to the limiting potential

9̂(v) =

{
9(v) if ‖v‖ ≤ 1,
∞ else.

(4.41)

It was shown in [Mie11, Prop. 4.14] that, up to a subsequence, the parameterized solutions
(t̂ε, ûε) converge in C0([0, Ŝ]; [0, T ] × V ) to a pair (t̂, û) ∈ C0

lip([0, Ŝ]; [0, T ] × V ) such
that t̂(0) = 0, t̂ is nondecreasing, and
˙̂t(s)+‖˙̂u(s)‖ ∈ [0, 1] and ∂9̂( ˙̂u(s))+∂Et̂(s)(û(s)) 3 0 for a.a. s ∈ (0, Ŝ). (4.42)

An interesting feature of this approach is that it allows for a direct passage to the
limit in the subdifferential inclusion (4.40), without passing through an energy identity
like (4.6). Via a suitable time rescaling, it is possible to show a correspondence between
V -parameterized solutions in the sense of Definition 4.8 and in the sense of (4.42): the
interested reader is referred to [Mie11, Cor. 4.22, Prop. 4.24].

However, let us stress that the technique of [EfM06, MiZ14] does not allow one to
prove that the limit curve (t̂, û) satisfies the normalization condition ˙̂t + ‖˙̂u‖ = 1 a.e. in
(0, Ŝ). Instead, our variational approach of §4.1, based on a chain-rule and energy-identity
argument, guarantees the preservation of the normalization condition (cf. Theorem 4.3).
Moreover, we also obtain the absolute continuity of the energy map s 7→ Et(s)(u(s)).

5. Examples

Throughout this section, we focus on the rate-independent system (V ,E, 9,8) given by

V = L2(�), 9(v) =

∫
�

|v(x)| dx, 8(v) =
1
2
‖v‖2 =

1
2

∫
�

|v(x)|2 dx

with � ⊂ Rd , d ≥ 1, a bounded Lipschitz domain, and on the following class of energy
functionals E : [0, T ] × L2(�)→ (−∞,∞]:

Et (u) =

{∫
�
(β(∇u)+W(u)− `(t)u) dx if u ∈ D ⊂ L2(�),

∞ if u ∈ L2(�) \D,
(5.1)

where the proper domainD will be specified in each example. Hereafter, we suppose that

β : Rd → [0,∞) is convex; (5.2)
W : R→ (−∞,∞] is bounded from below; (5.3)

` ∈ C1([0, T ];L2(�)). (5.4)
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In all of the examples we present, E will satisfy (E.0) and for each of them we will discuss
the coercivity condition (E.1). Exploiting (5.4), it is immediate to check that for all u ∈ D
the function

t 7→ Et (u) is differentiable, with derivative Pt (u) = −

∫
�

`′(t) u dx,

which fulfills both (E.2) and the Lipschitz estimate (3.59). In what follows, the focus will
be on the uniform subdifferentiability (E.3) and on the (stronger) generalized convexity
(3.63) (which yields the subdifferentiability condition (3.58) and in particular (E.3)).

We start with Example 5.1, where we provide sufficient conditions on the nonlineari-
ties β and W guaranteeing the validity of (3.63) and cover the case (1.7) discussed in the
introduction.

Example 5.1. We take

β(∇u) = 1
2 |∇u|

2, W ∈ C1(R), λ-convex for some λ ∈ R,

D = {u ∈ W
1,2
0 (�) : W(u) ∈ L1(�)};

(5.5)

for instance, one may think of the double-well potential W(u) = (1 − u2)2/4. Clearly,
E from (5.1) fulfills (E.1). In order to check (3.63), we fix u, v ∈ D and estimate, for
θ ∈ [0, 1],

Et ((1− θ)u+ θv)

≤ (1− θ)Et (u)+ θEt (v)−
(1− θ)θ

2

(
‖∇(u− v)‖2

L2(�)
+ λ‖u− v‖2

L2(�)

)
, (5.6)

where we have used 1-convexity of β and λ-convexity of W . Hence, for λ > 0 we have
(3.63) with αE = λ and 3E = 0. If λ < 0, we use the Gagliardo–Nirenberg inequality

‖w‖L2(�) ≤ CGN
(
‖w‖

2/(d+2)
L1(�)

‖∇w‖
d/(d+2)
L2(�)

+ ‖w‖L1(�)

)
≤

(
1

1+ |λ|
‖∇w‖2

L2(�)
+Mλ‖w‖

2
L1(�)

)1/2

for some Mλ > 0, which is equivalent to

−‖∇w‖2
L2(�)

≤ −(1+ |λ|)‖w‖2
L2(�)

+ (1+ |λ|)Mλ‖w‖
2
L1(�)

.

Inserting this for w = u− v into (5.6) we obtain (3.63) with αE = (1+ |λ|)+ λ = 1 > 0
and 3E = (1+ |λ|)Mλ. In particular, we have no dependence on the energy sublevel E.

In fact, it can be checked that for suitably convex functions β with β(∇u) ≥

c1|∇u|
p
− c2 for some c1, c2 > 0 the related functional E in (5.1) still satisfies (3.63)

if p > pd for a suitable pd > 1 depending on the dimension d .

Our next example treats the case in which β has only linear growth. Even with a convex
functionW , the generalized convexity condition (3.63) is no longer guaranteed. Nonethe-
less, since the functional u 7→ Et (u) is convex, its Fréchet subdifferential reduces to the
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subdifferential in the sense of convex analysis, and (E.3) clearly holds. In this setting, we
show that there exist BV solutions to the rate-independent system (V ,E, 9,8) which are
not V -parameterizable.

Example 5.2. We consider the one-dimensional domain � = (0, l) for some l > 1 and
take

β

(
d

dx
u

)
= δ

∣∣∣∣ ddx u
∣∣∣∣ with δ > 0, W(u) = I[0,1](u) =

{
0 if u ∈ [0, 1],
∞ otherwise,

(5.7)

and the external loading ` : [0, T ] × (0, l) → R with `(t, x) = t + 2 − x, where
0 < T ≤ l − 1. The domain D is now BV(�) and the rigorous definition of the energy
can be expressed in terms of the essential variation of u in �, i.e. the total variation of the
finite measure d

dx
u representing the distributional derivative of u∫

�

β

(
d

dx
u

)
dx = δ

∫
�

∣∣∣∣ ddx u
∣∣∣∣. (5.8)

Thanks to the compactifying character of the total-variation contribution δ
∫
�

∣∣ d
dx
u
∣∣, the

energy E fulfills (E.1). We now show that the function

u(t, x) = χ[0,a(t)](x) =

{
1 for x ∈ [0, a(t)],
0 otherwise,

for some continuous and nondecreasing function a : [0, T ] → [0, l] to be specified later,
is a BV solution to the RIS (V ,E, 9,8).

Concerning the energy balance (Ef), we observe that since u ∈ C0([0, T ];L2(0, l)),

Varf(u; [0, t]) = Var‖·‖
L1(0,l)

(u; [0, t]) = a(t)− a(0) for all t ∈ [0, 1],

where we have also used the fact that a is nondecreasing. Easy calculations give Et (u(t))
= δ− (t + 2)a(t)+ a2(t)/2 and Pt (u(t)) = −a(t), therefore (Ef) yields the flow rule for
the moving interface a:

ȧ(t)(a(t)− 1− t) = 0, so a(t) = 1+ t for all t ∈ [0, T ].

Since Et (·) is convex, u fulfills the local stability (Sloc) if and only if it satisfies the
global stability condition (S), which in the present setting reads

δ − 1
2 (t + 1)(3t + 5) = Et (u(t))

≤ Et (v)+ ‖v − u(t)‖L1(0,l)

= δ

∫ l

0

∣∣∣∣ ddx v
∣∣∣∣+ ∫ l

0

(
|v − χ[0,t+1]| − (t + 2− x)v

)
dx

= δ

∫ l

0

∣∣∣∣ ddx v
∣∣∣∣+ t + 1−

∫ t+1

0
(t + 3− x)v dx +

∫ l

t+1
(x − 1− t)v dx, (5.9)
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for all v ∈ L1(0, l) and t ∈ [0, 1]. With some calculations one can show that for all
δ ∈ [0, 2] and l ≥ 4 the function u(t, x) = χ[0,t+1](x) fulfills (5.9), hence it is a
BV solution. Indeed, u is a BV solution also in the case δ = 0, in which E does not
satisfy (E.1) and our existence results Theorems 3.11 and 3.12 do not apply. Although
u ∈ Clip([0, 1];L1(0, l)), we have u /∈ BV([0, 1];L2(0, l)), therefore it is not a V -
parameterizable BV solution.

We now revisit [Mie11, Ex. 4.4, 4.27], which means in our notation that β ≡ 0 and
that W is of double-well type. Relying on the calculations from [Mie11], we show that
as ε → 0 the viscous solutions converge to a curve u which is not a BV solution to
the rate-independent system (V ,E, 9,8). Observe that in this case neither (E.1) nor the
(parameterized) chain-rule inequality (4.22) are fulfilled.

Example 5.3. We take � = (0, 1), β ≡ 0, `(t, x) = t + x, D = V = L2(�), and

W(u) =


1
2 (u+ 4)2 if u ≤ −2,
4− 1

2u
2 if |u| < 2,

1
2 (u− 4)2 if u ≥ 2,

(5.10)

In [Mie11, Ex. 4.4] the unique solution to the viscous problem

Sign(u̇ε(t, x))+ εu̇ε(t, x)+W ′(uε(t, x)) 3 `(t, x) and uε(0, x) = −4 (5.11)

was explicitly calculated: We have uε(t, x) = V ε(t+x), where V ε(τ ) = −4 for τ ≤ 1+ε,
and it coincides with the unique solution v of Sign(v′(τ )) + εv′(τ ) +W ′(v(τ )) 3 τ for
τ ≥ 1+ε. It was shown that on the time-interval [0, 6] the functions (uε)ε have a uniform
Lipschitz bound with values in L1(0, 1), whereas

∫ 6
0 ‖u̇ε‖L2(0,1) dt tends to∞ as ε→ 0

like 1/
√
ε. Moreover, setting

ū(t, x) =

{
max{−4, t + x − 5} for t + x ≤ 3,
t + x + 3 for t + x > 3,

we have ū∈C0([0, 6];L2(0, 1))∩Clip([0, 6];L1(0, 1)) and supt∈[0,6] ‖uε(t)−ū(t)‖L2(0,1)
→ 0 as ε→ 0, hence obviously Et (uε(t))→ Et (ū(t)) for all t ∈ [0, 6].

It can be shown that ū(t) satisfies the local stability condition (Sloc) for all t ∈ [0, 6].
However, u does not satisfy the energy balance (Ef): On the one hand, the continuity of ū
gives Varf(ū; [0, t]) = Var‖·‖

L1(0,l)
(ū; [0, t]) for all t ∈ [0, 6]. On the other hand, passing

to the limit as ε → 0 in the viscous energy balance (2.40) we arrive, for all t ∈ [0, 6], at
the limit

Var‖·‖
L1 (ū; [0, t])+ Et (ū(t))− Et (ū(0))−

t∫
0

Ps(ū(s)) ds

= 8 max{0,min{t − 2, 1}} =: ρ(t). (5.12)

Hence, there is an additional limit dissipation ρ in (5.12), and ū is not a BV solution.
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In fact, the chain-rule inequality (4.22) does not hold along the parameterized curve
(cf. Definition 4.1) (t, u) ∈ A (0, 6; [0, 6] × L2(0, 1)) given by s 7→ (t(s), u(s)) :=
(s, ū(s)) ∈ [0, 6] × L2(0, 1). On the one hand, since ū satisfies (Sloc) on [0, 6], we have
et(s)(u(s))‖u̇(s)‖L2(0,1) ≡ 0 on [0, 6]. On the other hand, (5.12) yields, for a.a. s ∈ (0, 6),

d

ds
Et(s)(u(s))− Pt(s)(u(s))ṫ(s) = −ρ̇(t(s))− |u

′
|L1(0,1)(s), (5.13)

where |u′|L1(0,1) denotes theL1(0, 1)-metric derivative of u (cf. (2.16)). Clearly, the right-
hand side of (5.13) is strictly smaller than |u′|L1(0,1)(s) for s ∈ (2, 3).

In the final example we recover the coercivity condition (E.1) by taking a nonzero β, with
linear growth. However, unlike Example 5.2 we only require W to be λ-convex: in this
case, the chain-rule inequality (4.22) is still invalid.

Example 5.4. We take � = (0, l) with l > 2, β
(
d
dx
u
)
=
∣∣ d
dx
u
∣∣ with D = BV(�) and

the distributional notation of (5.8), the double-well potential W (5.10), and `(t, x) ≡ 2
for all (t, x) ∈ [0, T ] × (0, l), where 0 < T ≤ l − 2. We show that the parameterized
curve s ∈ [0, T ] 7→ (t(s), u(s)) := (s, ū(s)) ∈ [0, T ] × L2(0, l) with

ū(t, x) :=

{
6 for 0 ≤ x ≤ t + 1,
−2 for t + 1 < x ≤ l,

for all (t, x) ∈ [0, T ] × [0, l], (5.14)

does not satisfy the chain-rule inequality (4.22). Note that ū ∈ C0([0, T ];L2(0, l)) ∩
Clip([0, T ];L1(0, l)) and ‖ū(t1)−ū(t2)‖L2(0,l) = 8|t1−t2|1/2 and ‖ū(t1)−ū(t2)‖L1(0,l) =

8|t1 − t2|. The latter implies |ū′|L1(0,l) ≡ 8.
To see that the chain-rule inequality (4.22) does not hold, we employ (5.14) to find

Et (ū(t)) = V(ū(t))+

∫ l

0

(
W(ū(t, x))− 2ū(t, x)

)
dx

= 8+
∫ t

0
(W(6)− 12) dx +

∫ l

t

(W(−2)+ 4) dx = 8+ 6l − 16t, (5.15)

where we have used the notation V(u) :=
∫ l

0

∣∣ d
dx
u
∣∣ dx for the total variation functional on

(0, l). Next we show that ū satisfies (Sloc), i.e. K∗ + ∂Et (ū(t)) 3 0 for all t ∈ [0, T ]. For
this, we claim that

ξt ∈ ∂Et (ū(t)) with ξt (x) =

{
1

1+t for 0 < x < t + 1,
−1

l−1−t for t + 1 < x < l.
(5.16)

To see this, we use V(ū(t)) = 8 and estimate, for general v ∈ BV(0, l), as follows:

V(v)− V(ū(t)) ≥ ess sup
x∈(0,l)

v − ess inf
x∈(0,l)

v − 8

≥
1

1+ t

∫ 1+t

0
v(x) dx −

1
l − 1− t

∫ l

1+t
v(x) dx − 8

=

∫ l

0
ξt (x)(v(x)− ū(t, x)) dx = 〈ξt , v − ū(t)〉L2(0,l).
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Using the (−1)-convexity of W , we obtain, for all v ∈ L2(0, l), the estimate

Et (v)− Et (ū(t)) ≥ 〈ξt , v − ū(t)〉 −
1
2‖v − ū(t)‖

2
L2(0,l),

implying (5.16) (cf. Definition (2.11) for Fréchet subdifferentials). Because of 0 ≤ t ≤
T ≤ l− 2 we have ‖ξt‖L∞ = max

{ 1
1+t ,

1
l−1−t

}
≤ 1 for all t ∈ [0, T ]. Hence, ξt ∈ K∗ =

{ξ : ‖ξ‖L∞ ≤ 1}, and (Sloc) is established.
Now returning to the notation of the parameterized solution (t(s), u(s)) = (s, ū(s))

for s ∈ [0, T ], we find et(s)(u(s))‖u̇(s)‖L2(0,l) ≡ 0 on [0, T ]. Moreover, Pt(s)(u(s)) ≡ 0
as well, whereas |u′|L1(0,l)(s) ≡ 8. Thus, on account of (5.15) we conclude that

d

ds
Et(s)(u(s))−Pt(s)(u(s))ṫ(s) = −16 < −8 = −|u′|L1(0,l)(s)−et(s)(u(s))‖u̇(s)‖L2(0,l),

contradicting the chain-rule inequality (4.22).

6. Chain-rule inequalities for BV and parameterized curves

In this section we prove the chain-rule inequalities of Theorems 3.13 and 4.4. We first
consider the case of parameterized curves; hence, using the reparameterization technique
of Proposition 4.7, we deduce Theorem 3.13.

6.1. Chain rule for admissible parameterized curves: proof of Theorem 4.4

We split the proof into two claims.

Claim (1). The map s 7→ Et(s)(u(s)) is absolutely continuous on [a, b].

First of all, we observe that since sups∈[a,b] Et(s)(u(s)) =: E <∞, by (E.3) we have

ω̄ := sup
r,s,σ

ωEr (u(s), u(σ )) <∞.

The open set G defined by (4.11) is the disjoint union of open intervals Gk . We fix a ≤
r ≤ s ≤ b and we consider the following cases:

• r, s ∈ [0, T ] \G. By (E.2) and estimate (2.12) there exists a constant C > 0 (indepen-
dent of r, s) such that

|Et(s)(u(r))−Et(r)(u(r))| ≤ C

∫ s

r

ṫ(σ ) dσ, |Et(r)(u(s))−Et(s)(u(s))| ≤ C

∫ s

r

ṫ(σ ) dσ.

In view of (E.3), for ξ(s) ∈ ∂Et(s)(u(s)) fulfilling ξ(s) ∈ K∗ we have

Et(s)(u(s))− Et(s)(u(r)) ≤ 〈ξ(s), u(s)− u(r)〉 + ω̄9∧(u(s)− u(r))

≤ 9(u(s)− u(r))+ ω̄9(u(s)− u(r))

≤ (1+ ω̄)
∫ s

r

9[u′](σ ) dσ,
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where the second inequality follows from (2.1) and the last one from (2.15) and the min-
imal representation m = 9[u′]. Analogously, arguing with ξ(r) ∈ ∂Et(r)(u(r))∩K∗, we
have Et(r)(u(r))− Et(r)(u(s)) ≤ (1+ ω̄)

∫ s
r
9[u′](σ )dσ . All in all, we conclude that

|Et(s)(u(s))−Et(r)(u(r))| ≤ C1

∫ s

r

(
ṫ(σ )+9[u′](σ )

)
dσ, C1 := 2(C+1+ω̄). (6.1)

• r, s belong to the closure Gk of the same connected component Gk = (ak, bk) for
some k. It is not restrictive to assume that r, s ∈ Gk . Then t ≡ t̄ is constant in Gk by
(2) in Definition 4.1 and u ∈ AC([r, s];V ). We denote by ∂◦E : [0, T ] × D ⇒ V ∗ the
multivalued map defined by

ξ ∈ ∂◦Et (u) if and only if ‖ξ‖∗ = min{‖ζ‖∗ : ζ ∈ ∂Et (u)},

with the usual convention that the latter quantity is ∞ if ∂Et (u) is empty. Since K∗ is
bounded in V ∗, the definition of et̄ (u) in (3.6) gives the estimate

et̄ (u(θ)) ≥ ‖∂
◦Et̄ (u(θ))‖∗ − K, where K := sup{‖z‖ : z ∈ K∗},

and we conclude that
∫ s
r
‖∂◦Et̄ (u(θ))‖ ‖u̇(θ)‖ dθ <∞. Hence the chain rule (analogous

to Theorem 2.5, see the arguments of [AGS08, Theorem 1.2.5] and [MRS13, Proposi-
tion 2.4]) provides the absolute continuity of the energy map inGk and for L 1-a.a. θ ∈Gk
we have

d

dθ
Et̄ (u(θ)) = 〈ξ, u̇(θ)〉 for every ξ ∈ ∂Et̄ (u(θ)), (6.2)∣∣∣∣ ddθ Et̄ (u(θ))

∣∣∣∣ ≤ 9(u̇(θ))+ et̄ (u(θ))‖u̇(θ)‖. (6.3)

• r ∈ G, s ∈ [0, T ] with r < s (or vice versa). We denote by σ the right boundary point
of the interval Gk 3 r; combining (6.1) with the integrated form of (6.3) we obtain

|Et(s)(u(s))− Et(r)(u(r))| ≤ |Et(s)(u(s))− Et(σ )(u(σ ))| + |Et(σ )(u(σ ))− Et(r)(u(r))|

≤ CP

∫ s

σ

(
ṫ(ρ)+9[u′](ρ)

)
dρ +

∫ σ

r

(
9(u̇(ρ))+ et(ρ)(u(ρ))‖u̇(ρ)‖

)
dρ

=

∫ s

r

h(ρ) dρ with h ∈ L1(0, T ).

Claim (2). The chain-rule inequality (4.22) holds.

It follows from Claim (1) that there exists a set T ⊂ (a, b) of full measure such that for
all s ∈ T the function t is differentiable at s, the first equality of (E.2) holds at s, the 9 -
metric derivative9[u′](s) exists, and, if s ∈ G, the map u is V -differentiable at s. Hence,
we evaluate the derivative of the map Et(·)(u(·)) at s ∈ T: If s ∈

⋃
k Gk we immediately

get the conclusion by (6.3) (notice that L 1((
⋃
k Gk) \ G) = 0). If s ∈ [0, T ] \

⋃
k Gk
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then r = s − h ∈ [0, T ] \G for infinitely main values of h > 0, accumulating at 0. Since
et(r)(u(r)) = 0 we can choose ξ(r) ∈ −∂Et(r)(u(r)) ∩K∗ and thanks to (E.3) we have

Et(s)(u(s))−Et(r)(u(r))

h
=

(
Et(s)(u(s))−Et(r)(u(s))

)
+
(
Et(r)(u(s))−Et(r)(u(r))

)
h

≥

〈
ξ(r),

1
h
(u(s)−u(r))

〉
−

1
h
ωr(u(s), u(r))9∧(u(s)−u(r))+

Et(s)(u(s))−Et(r)(u(s))

h

≥ −
1+ωr(u(s), u(r))

h
9(u(s)−u(r))+

1
h

∫ s

r

Pt(θ)(u(s))ṫ(θ) dθ. (6.4)

In the limit r ↑ s, with r ∈ [0, T ] \ G, we get the lower bound d
ds
Et(s)(u(s)) −

Pt(s)(u(s))ṫ(s) ≥ −9[u
′
](s). The corresponding upper bound can be obtained by choos-

ing r = s + h, h > 0, in (6.4), and letting r ↓ s.
Whenever u is differentiable L 1-a.e., the chain rule (4.23) follows from (6.2) and

(6.4) by a similar argument. Hence, Theorem 4.4 is proved. ut

By applying Theorem 4.4 to the parameterized curve [0, 1] 3 r 7→ (t, ϑ(r)) associated
with any admissible transition ϑ ∈ Tt (u0, u1) we immediately obtain the desired jump
estimates.

Corollary 6.1. The jump estimates (3.16) and (3.39) hold true.

6.2. Chain rule for BV curves: proof of Theorem 3.13

It is clearly not restrictive to assume t0 = 0, t1 = T . If u ∈ BV([0, T ];DE, 9) satisfies
the local stability condition and Varf(u; [0, T ]) < ∞ as in the statement of the theo-
rem, we apply assertion (BVP3) of Proposition 4.7; the chain-rule inequality (3.36) then
follows from the parameterized chain rule (4.22), combined with (4.30) and (4.31).

Let us now check (3.37) in the case u ∈ BV([0, T ];V ). We will use the simpler
change of variable formula

s(t) := t + Var(u; [0, t]), S := s(T ), (6.5)

keeping the notation of (4.33) for t, u, In, and I . We will use two basic facts: The first
concerns the diffuse part s′d of the distributional derivative of s and has been proved in
[MRS12a, Prop. 6.11] (the proof does not rely on the finite-dimensional setting therein),
namely

u′d = n‖u′d‖ = (u̇ ◦ s)s
′

d, L 1
(0,T ) = (ṫ ◦ s)s

′

d. (6.6)

The second fact is a general property of the distributional derivative of an increasing map,
viz.

t](L
1
[0,S]) = s′d. (6.7)

We set

e(s) :=

{
e(t(s)) = Et(s)(u(s)) if s ∈ (0,S) \ I,
affine interpolation of e(tn−), e(tn+) if s ∈ In for some n ∈ N,
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and in a similar way we extend s in each interval In. Now u defined by (4.33) is absolutely
continuous, and arguing as in §6.1 we can easily prove that e is absolutely continuous with
derivative

ė(s) = −〈ξ(t(s)), u̇(s)〉 + Pt(s)(u(s))ṫ(s) for L 1-a.a. s ∈ (0,S). (6.8)

On the other hand, e(s) = e(t(s)) whenever s ∈ [0,S] \
⋃
In. Since t(s) ≡ tn and

ṫ(s) ≡ 0 in In we obtain e(t(s))ṫ(s) = e(s)ṫ(s) for a.a. s ∈ (0,S). Hence, for every
ζ ∈ C1([0, T ]) with compact support in (0, T ) we obtain∫
[0,T ]

ζ(t) de′d(t) = −

∫ T

0
ζ̇ (t)e(t) dt −

∑
t∈J(u)

ζ(t)(e(t+)− e(t−))

= −

∫ S

0
ζ̇ (t(s))e(t(s))ṫ(s) ds −

∑
n

ζ(tn)(e(tn+)− e(tn−))

= −

∫ S

0
ζ̇ (t(s))e(s)ṫ(s) ds −

∑
n

ζ(tn)
(
e(s(tn+))− e(s(tn−))

)
=

∫ S

0
ζ(t(s))ė(s) ds −

∑
n

∫
In

ζ(t(s))ė(s) ds =

∫
[0,S]\I

ζ(t(s))ė(s) ds

(6.8)
= −

∫
[0,S]\I

ζ(t(s))〈ξ(t(s)), u̇(s)〉 ds +

∫
[0,S]\I

ζ(t(s))Pt(s)(u(s))ṫ(s) ds

(6.7)
=

∫
[0,T ]\Ju

ζ(t)
(
−〈ξ(t), u̇(s(t))〉 + Pt (u(t))ṫ(s(t))

)
ds′d(t)

(6.6)
= −

∫
[0,T ]\Ju

ζ(t)〈ξ(t),n〉 d‖u′d‖(t)+

∫ T

0
ζ(t)Pt (u(t)) dt.

As the measure ‖u′d‖ does not charge Ju, we get (3.37), and Theorem 3.13 is proved. ut

7. Convergence proofs for viscosity approximations

7.1. Compactness and lower semicontinuity for parameterized curves

We first provide a lower semicontinuity result that will be used to prove Theorems 3.7,
3.11, and 3.12 in the next subsections.

Proposition 7.1. Let E,L > 0 and for every n ∈ N let tn ∈ AC(a, b; [0, T ]) be nonde-
creasing. Assume that ũn : [a, b] → DE are measurable, Gn ⊂ [a, b] are open (possibly
empty) subsets such that etn(s)(ũn(s)) = 0 in [a, b] \ Gn, un ∈ AC([a, b];V,9) ∩
ACloc(Gn;V ), and

Xn := sup
s∈[a,b]

‖un(s)− ũn(s)‖ → 0 as n→∞, (7.1a)

ṫn(s)+9[u
′
n](s)+ etn(s)(ũn(s))‖u̇n(s)‖ ≤ L for L 1-a.a. s ∈ (a, b), (7.1b)
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where we adopt the convention etn(s)(ũn(s))‖u̇n(s)‖ ≡ 0 if s 6∈ Gn, as in (4.14). Then
there exist a subsequence (not relabeled) and a limit function (t, u) in A (a, b; [0, T ] ×
DE) such that (tn, un) → (t, u) uniformly in [a, b] with respect to the topology of
[0, T ] × V . Moreover (t, u) satisfies the same bound (7.1b) and the following asymp-
totic properties hold as n→∞:

lim inf
n→∞

∫ b

a
9[u′n](s) ds ≥

∫ b

a
9[u′](s) ds, (7.2)

lim inf
n→∞

∫ b

a
etn(s)(ũn(s))‖u̇n(s)‖ ds ≥

∫ b

a
et(s)(u(s))‖u̇(s)‖ ds, (7.3)

lim inf
n→∞

∫ b

a
(ktn(s)(ũn(s))ṫn(s)+ etn(s)(ũn(s))‖u̇n(s)‖) ds ≥

∫ b

a
G[t, u; ṫ, u̇](s) ds.

(7.4)

If moreover un ∈ AC([a, b];V ), then

lim inf
n→∞

∫
Gn

Gεn(tn(s), ũn(s); ṫn(s), u̇n(s)) ds ≥

∫ b

a
G[t, u; ṫ, u̇](s) ds (7.5)

for every vanishing sequence (εn)n ⊂ (0,∞).

Later we will use the fact that the assumptions of Proposition 7.1 cover the case (tn, un) ∈
A (a, b; [0, T ] × V ) with ũn = un.

Proof. By (7.1b) the sequence tn is uniformly Lipschitz, thus relatively compact with
respect to uniform convergence.

Let C9 be the continuity constant of 9 and � := �DE be the modulus of continuity
from (2.20); since � is concave and �(0) = 0 we have

�(λp) ≤ λ�(p), �(p + q) ≤ �(p)+�(q) ∀λ, p, q ≥ 0. (7.6)

Since every curve ũn takes values in the compact set DE , in view of (2.21) we have

‖ũn(s)− ũn(r)‖ ≤ �
(
9∧(ũn(s)− ũn(r))

)
≤ �

(
9(un(s)− un(r))

)
+ 2C9�(Xn)

≤ L�(|s − r|)+ 2C9�(Xn). (7.7)

It follows from (7.1a) that

lim sup
n→∞

‖ũn(s)− ũn(r)‖ ≤ L�(|s − r|).

Thus ũn is (asymptotically) uniformly equicontinuous and we can apply the Arzelà–
Ascoli Theorem (in a slightly refined form, see e.g. [AGS08, Prop. 3.3.1]) to prove its
uniform convergence to a limit u. Passing to the limit in (7.1b) we get an analogous esti-
mate for (t, u).

Statement (7.2) is an immediate consequence of the lower semicontinuity of the
9-total variation and of its representation formula (2.25).
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In order to prove (7.3), observe that the lower semicontinuity of e and the above
uniform convergence guarantee that the limit function s 7→ et(s)(u(s)) is lower semicon-
tinuous. Thanks to (7.1a) we can find a set M ⊂ [a, b] with L 1([a, b] \M) = 0 such that
ũn converges uniformly to u in M and

∀η > 0 ∃n̄ ∈ N : etn(s)(ũn(s)) ≥ et(s)(u(s))− η for every n ≥ n̄, s ∈ M. (7.8)

If G is defined as in (4.11) and [α, β] ⊂ G, then (7.8) implies that there exists a positive
constant c > 0 with etn(s)(ũn(s)) ≥ c for L 1-a.a. s ∈ (α, β) and n sufficiently large.
Estimate (7.1b) then implies that un are uniformly V -Lipschitz in [α, β] so that u is also
Lipschitz, and therefore L 1-a.e. differentiable. Since [α, β] is arbitrary, we conclude
that u is locally absolutely continuous in G, and Lemma 7.2 below yields the lim inf
inequality (7.3).

Recalling the definitions (4.9) and (4.10) for G and k, assertion (7.4) follows if we
check that

lim inf
n→∞

∫ b

a
ktn(s)(ũn(s))ṫn(s) ds ≥

∫ b

a
kt(s)(u(s))ṫ(s) ds,

which is again a consequence of Lemma 7.2.
In order to prove (7.5), observe that Gε(t, ũ;α, v)≥max

{
α
ε
F ∗(et(ũ)), et(ũ)‖v‖

}
. If

we split the integration domain into (a, b) \G and G, a further application of Lemma 7.2
yields

lim inf
n→∞

∫ b

a
Gεn(tn(s), ũn(s); ṫn(s), u̇n(s)) ds

≥ lim inf
n→∞

∫
(a,b)\G

1
εn
F ∗(etn(s)(ũn(s)))ṫn(s) ds + lim inf

n→∞

∫
G

etn(s)(ũn(s))‖u̇n(s)‖ ds

≥

∫
(a,b)\G

kt(s)(u(s)) ṫ(s) ds +

∫
G

et(s)(u(s)) ‖u̇(s)‖ ds =

∫ b

a
G[t, u; ṫ, u̇](s) ds.

This concludes the proof of Proposition 7.1. ut

A simple proof of the following lemma can be found, e.g., in [MRS12b, Lem. 4.3].

Lemma 7.2. Let I be a measurable subset of R and let hn, h,mn, m : I → [0,∞] be
measurable functions for n ∈ N that satisfy

lim inf
n→∞

hn(x) ≥ h(x) for L 1-a.a. x ∈ I , mn ⇀ m in L1(I ). (7.9)

Then

lim inf
n→∞

∫
I

hn(x)mn(x) dx ≥

∫
I

h(x)m(x) dx. (7.10)



2156 Alexander Mielke et al.

7.2. Compactness and lower semicontinuity for nonparameterized curves

Proof of Theorem 3.7. To address assertion (F2) let ϑn ∈ Tt (u0,n, u1,n) be a sequence of
admissible transitions such that∫ 1

0
ft [ϑn;ϑ

′
n](r) dr ≤ 1ft (u0,n, u1,n)+εn with εn ≥ 0 and lim

n→∞
εn = ε ≥ 0. (7.11)

By making the change of variable

sn(r) := cn

(
r +

∫ r

0
ft [ϑn;ϑ

′
n](w) dw

)
, rn := s−1

n : [0,S] → [0, 1],

un := ϑn ◦ rn : [0,S] → V,

where cn is a normalization such that S := sn(1) is independent of n, we see that the
functions rn are uniformly Lipschitz and the curve s 7→ (rn(s), un(s)) satisfies (7.1a)–
(7.1b) with ũn ≡ un.

We can thus extract subsequences (still denoted by rn, un) converging uniformly to
r, u respectively. Proposition 7.1 guarantees that u is an admissible transition connecting
u− to u+ and the lim inf inequalities (7.2) and (7.3) show that

ε +1ft (u−, u+) ≥ lim inf
n→∞

∫ 1

0
ft [ϑn;ϑ

′
n](r) dr ≥

∫ S

0
ft [u; u

′
](r) dr ≥ 1ft (u−, u+).

This proves the lower semicontinuity of the Finsler cost functional. Since we may choose
0 < εn → ε = 0, the previous inequalities show that u attains the infimum in (3.13),
so that also assertion (F1) is proved, since the jump estimate (3.16) has been proved in
Corollary 6.1.

Let us now consider the last assertion (F3). It is not restrictive to assume u− 6= u+,
so that 1 ≥ 9(u+ − u−) > 0. For r ∈ [0, βn − αn] we set

sn(r) := cn

(
r +

∫ αn+r

αn

(
9εn(un(ζ ))+9

∗
εn
(ξn(ζ ))

)
dζ

)
,

tn := s−1
n : [0, 1] → [αn, βn], un := un ◦ tn, ũn := ũn ◦ tn : [0, 1] → V,

where cn is a normalization constant such that sn(βn − αn) = 1. Again, it is not difficult
to see that the triple (tn, un, ũn) satisfies the assumptions of Proposition 7.1. Moreover

∫ βn

αn

(
9εn(un(r))+9

∗
εn
(ξn(r))

)
dr

=

∫ S

0

(
9(u̇n(s))+Gεn(tn(s), ũn(s); ṫn(s), u̇n(s))

)
ds. (7.12)
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We can thus apply Proposition 7.1 to pass to the limit obtaining an admissible limit curve
(t, u) ∈ A (0, 1; [0, T ]×DE) such that t(s) ≡ t , u(0) = u− and u(1) = u+. In particular
u ∈ Tt (u−, u+) and combining (7.12) with (7.5) we get

1 = lim
n→∞

∫ 1

0

(
9(u̇n(s))+Gεn(tn(s), un(s); ṫn(s), u̇n(s))

)
ds

≥

∫ 1

0

(
9[u′](s)+G[t, u; 0, u̇](s)

)
ds

=

∫ 1

0

(
9[u′](s)+ et (u(s))‖u̇(s)‖

)
ds ≥ 1ft (u−, u+).

This concludes the proof of Theorem 3.7. ut

The next result is a counterpart to Proposition 7.1 for lower semicontinuity, but now
for the nonparameterized setting.

Proposition 7.3. Let E,C > 0 and for n ∈ N let un ⊂ AC([0, T ];V ), ũn : [0, T ] →
DE , ξn : [0, T ] → V ∗ measurable, εn ∈ (0,∞) be sequences satisfying∫ T

0
(9εn(u̇n)+9

∗
εn
(ξn)) dt ≤ C, ξn(t) ∈ −∂Et (ũn(t)) for L 1-a.a. t ∈ (0, T ),

(7.13a)

Xn := sup
t∈[0,T ]

‖un(t)− ũn(t)‖ → 0, εn ↓ 0 as n ↑ ∞. (7.13b)

Then there exists a subsequence (not relabeled) and a limit function u ∈

BV([0, T ];DE, 9) such that the convergence (3.29) holds, u satisfies the local stabil-
ity condition (Sloc), and

lim inf
n→∞

∫ s

r

(
9εn(u̇εn(t))+9

∗
εn
(ξεn(t))

)
dt ≥ Varf(u; [r, s]) for all 0 ≤ r < s ≤ T .

(7.14)

Proof. To obtain a pointwise convergent subsequence, we proceed as in the proof Propo-
sition 7.1. Setting Vn(t) :=

∫ t
0 9εn(u̇n) dr and using ũn(t) ∈ DE we get a similar esti-

mate to (7.7):

‖ũn(t)− ũn(s)‖ ≤ �(Vn(t)− Vn(s))+ 2C9�(Xn) for all 0 ≤ s < t ≤ T , n ∈ N.
(7.15)

Since the functions Vn are increasing and uniformly bounded by C, by Helly’s Theo-
rem we can extract a subsequence (not relabeled) pointwise converging to an increasing
function V; passing to the limit in (7.15) along such a subsequence, we obtain

lim sup
n→∞

‖ũn(t)− ũn(s)‖ ≤ �(V(t)− V(s)). (7.16)

Applying the compactness result [AGS08, Prop. 3.3.1] we obtain the pointwise conver-
gence of (a subsequence of) ũn, and thus (3.29) follows by (7.13b).
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By the strong-weak closedness (2.38) of the graph of (E, ∂E) we have

lim inf
n→∞

9∗εn(ξεn(t)) ≥ kt (u(t)) for L 1-a.a. t ∈ (0, T ).

Therefore Fatou’s lemma yields
∫ T

0 kt (u(t)) dt <∞. As kt (u(t)) ∈ {0,∞}, we arrive at

kt (u(t)) = 0 for L 1-a.a. t ∈ (0, T ).

Since k is lower semicontinuous, we conclude that kt (u(t)) = 0 for every t ∈ [0, T ] \ Ju
and also kt (u(t±)) = 0 whenever t ∈ Ju. Thus u satisfies (Sloc).

To prove (7.14) let us introduce nonnegative bounded Borel measures νn in [0, T ] via

νn := (9εn(u̇n)+9
∗
εn
(ξn))L

1. (7.17)

Possibly extracting a further subsequence, it is not restrictive to assume that νn ⇀∗ ν
in duality with C0([0, T ]). Since νn ≥ 9(u̇n)L 1, for every interval (α, β) ⊂ [0, T ] we
have

ν([α, β]) ≥ lim sup
n→∞

∫ β

α

9(u̇n) dt ≥ lim inf
n→∞

Var9(un; [α, β])

≥ Var9(u; [α, β]) ≥ µd([α, β]),

which in particular yields ν ≥ µd (with µ from (2.18)).
Now take t ∈ Ju and two sequences αn ↑ t and βn ↓ t such that

lim
n→∞

un(αn) = u(t−), lim
n→∞

un(βn) = u(t+).

Applying assertion (F3) of Theorem 3.7 and the upper semicontinuity of weak∗ conver-
gence of measures on closed sets, we get

ν({t}) ≥ lim sup
n→∞

νn([αn, βn]) ≥ lim inf
n→∞

∫ βn

αn

(9εn(u̇n)+9
∗
εn
(ξn)) dt

≥ 1ft (u(t−), u(t+)) = µJ({t}), (7.18)

and similarly

lim sup
n→∞

νn([αn, t]) ≥ 1ft (u(t−), u(t)), lim sup
n→∞

νn([t, βn]) ≥ 1ft (u(t), u(t+)).

(7.19)
It follows from (7.18) that ν ≥ µ. If now 0 ≤ r < s ≤ T we can choose rn > r

and sn < s such that rn ↓ r with un(rn) → u(r+) and sn ↑ s with un(sn) → u(s−).
Eventually we have

lim inf
n→∞

∫ s

r

(9εn(u̇n)+9
∗
εn
(ξn)) dt

≥ lim inf
n→∞

νn([r, rn])+ lim inf
n→∞

νn((rn, sn))+ lim inf
n→∞

νn([sn, s])

≥ 1fr (u(r), u(r+))+ ν((r, s))+1fs (u(s−), u(s))

≥ 1fr (u(r), u(r+))+ µ((r, s))+1fs (u(s−), u(s))
(3.25)
= Varf(u; [r, s]). ut
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7.3. Convergence of vanishing-viscosity approximations

Here we prove Theorem 3.11, which states that the limit u of solutions uε to the doubly
nonlinear equations (1.1)ε are Balanced Viscosity (BV) solutions.

Proof of Theorem 3.11. Let (uε)ε ⊂ AC([0, T ];V ) be a family of solutions to (1.1)
fulfilling (3.28) at t = 0; in particular, E0 := supε(9(uε(0))+ E0(uε(0))) <∞.

We combine the energy identity (2.40), written for s = 0 and for any t ∈ (0, T ], with
the estimate for Pt in (E.2), obtaining

9(uε(t))+ Et (uε(t)) ≤ 9(uε(0))+
∫ t

0

(
9ε(u̇ε(r))+9

∗
ε (ξε(r))

)
dr + Et (uε(t))

= 9(uε(0))+ E0(uε(0))+
∫ t

0
Pr(uε(r)) dr

≤ E0 + CP

∫ t

0

(
9(uε(r))+ Er(uε(r))

)
dr.

Applying a standard version of the Gronwall lemma (cf. e.g. [Bré73, Lem. A.4]), we
deduce that there exist constants E,C > 0 such that for all ε > 0 and t ∈ [0, T ]

9(uε(t))+Et (uε(t)) ≤ E := E0 exp(CP T ) and
∫ T

0

(
9ε(u̇ε(r))+9

∗
ε (ξε(r))

)
dr ≤ C.

By Proposition 7.3, for every vanishing sequence (εk)k there exists a further subsequence
and u ∈ BV([0, T ];DE, 9) such that convergence (3.29) holds. By lower semicontinuity,

lim inf
k→∞

Et (uεk (t)) ≥ Et (u(t)) for all t ∈ [0, T ]. (7.20)

Furthermore, by (E.2) we have |Pt (uεk (t))| ≤ CPE for all k ∈ N and t ∈ [0, T ]. There-
fore, applying Fatou’s lemma we obtain

lim sup
k→∞

∫ t

s

Pr(uεk (r)) dr ≤

∫ t

s

Pr(u(r)) dr for all 0 ≤ s ≤ t ≤ T . (7.21)

We can now let k→∞ in the energy identity (2.40). Combining (7.14) r = 0 and s = T
with (7.20), we immediately get (Ef,ineq). We thus deduce that u is a BV solution.

The energy identity (Ef) satisfied by u on the interval [0, T ] and the elementary pro-
perty of real sequencesa, b ∈ R,

lim inf
n→∞

an ≥ a,

lim inf
n→∞

bn ≥ b,
lim sup
n→∞

(an + bn) ≤ a + b

 ⇒
 lim
n→∞

an = a,

lim
n→∞

bn = b,
(7.22)

yield
lim
k→∞

ET (uεk (T )) = ET (u(T )),

lim
k→∞

∫ T

0
(9εk (u̇εk )+9

∗
εk
(ξεk )) dr = Varf(u; [0, T ]).

(7.23)
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A further application of (7.14) on the intervals [0, t] and [t, T ], combined with (7.20), the
additivity of the total variation, and (7.22), provides the convergences (3.30) and (3.31).
Hence, Theorem 3.11 is proved. ut

Convergence of the discrete viscous approximations. Let us consider the time-incre-
mental minimization problem (IPε,τ ), giving rise to the discrete solutions (Unτ,ε)

N
n=1 which

fulfill the discrete Euler equation

∂9

(
Unτ,ε− U

n−1
τ,ε

τ

)
+∂8

(
ε
Unτ,ε− U

n−1
τ,ε

τ

)
+∂Etn(U

n
τ,ε) 3 0 for all 1, . . . , Nτ . (7.24)

We denote by Uτ,ε the left-continuous piecewise constant interpolant, thus taking the
value Unτ,ε for t ∈ (tn−1, tn], and by Uτ,ε the piecewise affine interpolant

Uτ,ε(t) :=
t − tn−1

τ
Unτ,ε +

tn − t

τ
Un−1
τ,ε for t ∈ [tn−1, tn], n = 1, . . . , Nτ . (7.25)

As in [MRS13], we also consider the variational interpolant Ũτ,ε of the elements
(Unτ,ε)

N
n=1, first introduced by E. De Giorgi in the frame of the Minimizing Movements

approach to gradient flows (see [DMT80, DeG93, Amb95, AGS08]). The functions
Ũτ,ε : [0, T ] → V are defined by Ũτ,ε(0) = uε(0) and

for t = tn−1+r ∈ (tn−1, tn], Ũτ,ε(t) ∈ Argmin
U∈D

{
r9ε

(
U−Un−1

τ,ε

r

)
+Et (U)

}
, (7.26)

choosing the minimizer in (7.26) so that the map t 7→ Ũτ (t) is Lebesgue measurable
in (0, T ). Notice that we may assume Uτ,ε(tn) = Uτ,ε(tn) = Ũτ,ε(tn) for every n =
1, . . . , Nτ .Moreover, with the variational interpolants Ũτ,ε we can associate a measurable
function ξ̃τ,ε : (0, T )→ V ∗ fulfilling the Euler equation for (7.26), i.e.

ξ̃τ,ε(t) ∈ −∂Et (Ũτ,ε(t)) ∩
(
∂9ε

(
Ũτ,ε(t)− Un−1

τ,ε

t − tn−1

))
for all t ∈ (tn−1, tn], (7.27)

n = 1, . . . , Nτ (cf. [MRS13] for further details). Finally, we also set tτ (t) := tk for
t ∈ (tk−1, tk]. Observe that for every t ∈ [0, T ] we have tτ (t) ↓ t as τ ↓ 0.

We now recall a list of important properties of the discrete solutions, stated in
[MRS13, Sec. 6].

Proposition 7.4. For every ε > 0 and τ > 0 the discrete energy inequality∫ tτ (t)

tτ (s)
(9ε(U̇τ,ε)+9

∗
ε (̃ξτ,ε)) dr + Etτ (t)(Uτ,ε(t))

≤ Etτ (s)(Uτ,ε(s))+
∫ tτ (t)

tτ (s)
Pr(Ũτ,ε(r)) dr (7.28)

holds for every 0 ≤ s ≤ t ≤ T . If moreover 9(U0
τ,ε)+ E0(U0

τ,ε) ≤ E0 for all τ > 0 and
ε > 0, then there exist constants E, S > 0 such that for every τ, ε > 0 we have
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sup
t∈[0,T ]

(
G(Uτ,ε(t))+ G(Ũτ,ε(t))

)
≤ E, (7.29)

Var9 (Uτ,ε; [0, T ]) ≤
∫ T

0
9ε(U̇τ,ε(s)) ds ≤ S,

∫ T

0
9∗ε (̃ξτ,ε(s)) ds ≤ S, (7.30)

sup
t∈[0,T ]

(
‖Uτ,ε(t)− Ũτ,ε(t)‖ + ‖Uτ,ε(t)− Uτ,ε(t)‖

)
≤ S ω

(
τ

Sε

)
, (7.31)

where ω(r) := sup{v ∈ [0,∞) : r F (r−1v) ≤ 1} satisfies limr↓0 ω(r) = 0, in view of the
superlinearity of F .

Proof of Theorem 3.12. We argue exactly as in the proof of Theorem 3.11, observing
that Proposition 7.4 enables us to apply Proposition 7.3 with the choices uk := Uτk,εk ,
ũk := Ũτk,εk along any sequences τk, εk satisfying (3.33).

Up to the extraction of a suitable subsequence, Proposition 7.3 shows that there exist
u ∈ BV([0, T ];DE, 9) satisfying the local stability condition (Sloc) such that

Uτk,εk (t), Uτk,εk (t), Ũτk,εk (t)→ u(t) in V for all t ∈ [0, T ], (7.32)

sup
t∈[0,T ]

(
‖Uτk,εk (t)− Ũτk,εk (t)‖ + ‖Uτk,εk (t)− Uτk,εk (t)‖

)
→ 0. (7.33)

We can also pass to the limit as k → ∞ in the discrete energy inequality (7.28) with
s = 0. Indeed, we use the convergences (7.32), the lower semicontinuity of the energy E,
and the lim inf inequality (7.14) to obtain (Ef,ineq). Thus, by Corollary 3.14 we conclude
that u is a BV solution to the RIS (V ,E, 9,8).

The proof of the further energy convergence (3.35) follows along the very same lines
as at the end of the proof of Theorem 3.11 (see (7.22)–(7.23)). Thus, Theorem 3.12 is
proved. ut

Proof of Theorem 4.3. Let (tε, uε)ε be a family of rescaled viscous solutions as in the
statement of Theorem 4.3. Exploiting condition (4.18) as well as the energy identity (4.6)
we can apply Proposition 7.1 in the interval [0,S] (with ũn ≡ un and Gn = [0,S])
and find a vanishing subsequence (εn)n and a parameterized curve (t, u) such that the
convergences (4.19) hold. The second part of (E.2), the closedness-continuity property
(2.38), and Lemma 7.2 yield

lim inf
k→∞

Etεk (s)(uεk (s)) ≥ Et(s)(u(s)) for all s ∈ [0,S],

lim sup
k→∞

∫ s1

s0

Pr(uεk (r))ṫεk (r)dr ≤

∫ s1

s0

Pr(u(r))ṫ(r) dr
(7.34)

for all 0 ≤ s0 < s1 ≤ S. Combining (7.34) with (7.2) and (7.5), we let εk → 0 in the
energy identity (4.6) to conclude that (t, u) fulfills the energy estimate (4.24) with a = 0
and b = S. Therefore thanks to Corollary 4.5 we deduce that (t, u) is a parameterized
solution to the RIS (V ,E, 9,8).

The enhanced convergences (4.20) and (4.21) can be proved with similar arguments
to those at the end of the proof of Theorem 3.11.
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In order to show that (t, u) satisfies the m-normalization condition (4.15), we observe
that ṫε ⇀∗ t and ftεk (uεk , u̇εk ) ⇀

∗ f = m − ṫ in L∞(0,S). The liminf estimates (7.2)
and (7.3) (localized on arbitrary intervals of [0,S]) yield f ≥ h := 9(u̇) + G[t, u; ṫ, u̇]
L 1-a.e. in (0,S). Moreover, ftε (uε, u̇ε) ≤ hε := 9(u̇ε) + Gε(tε, uε; ṫε, u̇ε) and the
convergence (4.21) implies

hεk ⇀ h in the sense of distributions in D ′(0,S),

so that f ≤ h. We conclude that f = h and ṫ+ h = m, and Theorem 4.3 is proved. ut

7.4. Uniform BV-estimates for discrete Minimizing Movements

The aim of this section is to prove Theorem 3.23, i.e. the uniform bound

∃C > 0 ∀τ > 0, ε > 0 :
Nτ∑
n=1

‖Unτ,ε − Un−1
τ,ε ‖ ≤ C (7.35)

for all discrete Minimizing Movements, whenever the stronger structural assumptions
(3.57)–(3.59) hold and the discrete initial data satisfy (3.60). We start with an elementary
discrete Gronwall-like lemma.

Lemma 7.5 (A discrete Gronwall lemma). Let γ > 0 and let (an), (bn) ⊂ [0,∞) be
positive sequences satisfying

(1+ γ )2 a2
n ≤ a

2
n−1 + bnan ∀n ≥ 1. (7.36)

Then, for all k ∈ N,
k∑
n=1

an ≤
1
γ

(
a0 +

k∑
n=1

bn

)
. (7.37)

Proof. We first show that assumption (7.36) yields

(1+ γ )an ≤ an−1 + bn. (7.38)

Indeed, (7.38) is trivially true if (1 + γ )an ≤ an−1. If (1 + γ )an > an−1 we divide

both sides in (7.36) by (1 + γ )an and estimate the right-hand side by
a2
n−1

(1+γ )an
+

bn
1+γ <

an−1 + bn. Summing (7.38) from n = 1 to k and setting Sk :=
∑k
n=1 an we find

(1+ γ )Sk ≤ a0 + Sk−1 +
∑k
n=1 bn, which yields (7.37) since Sk−1 ≤ Sk . ut

Proof of Theorem 3.23. From estimate (7.29) it follows that Unτ,ε ∈ DE for all n and all
ε, τ > 0. Therefore (3.58)–(3.59) (and a fortiori (3.62)) hold with constants αE, 3E, LE .

Notice moreover that on setting U−1
τ,ε := 0, the discrete Euler equation (7.24) is sat-

isfied also for n = 0. Set Vnτ,ε := τ
−1(Unτ,ε − Un−1

τ,ε ), 4
n
τ,ε ∈ −∂Etn(U

n
τ,ε) ∩ ∂9ε(V

n
τ,ε)

according to (7.24). We subtract (7.24) at n from (7.24) at n + 1, and take the duality
pairing with Vn+1

τ,ε , observing that the generalized convexity condition (3.62) yields

〈4n+1
τ,ε −4

n
τ,ε,Vn+1

τ,ε 〉 ≤ −2αEτ‖Vn+1
τ,ε ‖

2
+2τ3E9∧(Vn+1

τ,ε )‖V
n+1
τ,ε ‖+2τ‖Vn+1

τ,ε ‖. (7.39)
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On the other hand, the homogeneity of 9 and 8 yields

〈∂9(Vn+1
τ,ε ),Vn+1

τ,ε 〉 = 9(V
n+1
τ,ε ), 〈∂9(Vnτ,ε),Vn+1

τ,ε 〉 ≤ 9(V
n+1
τ,ε ),

〈∂8(εVn+1
τ,ε ),Vn+1

τ,ε 〉 = ε‖V
n+1
τ,ε ‖

2, 〈∂8(εVnτ,ε),Vn+1
τ,ε 〉 ≤

ε

2
‖Vn+1

τ,ε ‖
2
+
ε

2
‖Vnτ,ε‖

2.

and therefore
〈4n+1
τ,ε −4

n
τ,ε,Vn+1

τ,ε 〉 ≥
ε

2
‖Vn+1

τ,ε ‖
2
−
ε

2
‖Vnτ,ε‖

2. (7.40)

Combining (7.39) and (7.40) we get

‖Vn+1
τ,ε ‖

2
+

4ατ
ε
‖Vn+1

τ,ε ‖
2
≤ ‖Vnτ,ε‖

2
+

4τ
ε
(LE +3E9∧(Vnτ,ε))‖V

n
τ,ε‖,

Observe that the above inequality can be rewritten in the form of (7.36) with the choices
an = ‖Vnτ,ε‖, bn = (4τ/ε)(LE + 9(V

n
τ,ε)), and γ := (1 + 4ατ/ε)1/2 − 1. Elementary

computations using a0 = ‖V0
τ,ε‖ = 0 and Lemma 7.5 yield

Nτ−1∑
n=1

τ‖Vnτ,ε‖ ≤ (4Q+ 2/α)(T LE + E),

which is the desired estimate (3.55). ut
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