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Abstract. We study the class of overconvergent subanalytic subsets of a k-affinoid space X when
k is a non-archimedean field. These are the images along the projection X × Bn → X of subsets
defined by inequalities between functions on X × Bn which are overconvergent in the variables of
Bn. In particular, we study the local nature, with respect to X, of overconvergent subanalytic sub-
sets. We show that they behave well with respect to the Berkovich topology, but not theG-topology.
This gives counterexamples to previous results on the subject, and a way to correct them. Moreover,
we study the case dim(X) = 2, for which a simpler characterisation of overconvergent subanalytic
subsets is proven.
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Introduction

Motivations

Let us consider a complete non-trivially valued non-archimedean field k (assumed to be
algebraically closed in this introduction for simplicity). Since non-archimedean fields are
totally disconnected, one cannot define the notion of analytic spaces over k as easily
as in the case of R or C. Tate [Tat71] developed such a theory, and called his spaces
rigid spaces, whose building blocks are affinoid spaces. However, these spaces are not
endowed with a classical topology, but with a Grothendieck topology (the G-topology).
Afterwards, V. Berkovich developed another viewpoint for k-analytic geometry [Ber90,
Ber93]. His spaces, called k-analytic spaces, or Berkovich spaces, have more points than
the corresponding rigid spaces and are equipped with a topology which is locally arcwise
connected. Moreover, in this theory, affinoid spaces are compact. R. Huber also developed
another viewpoint, in the setting of adic spaces [Hub96], and there also exists an approach,
initiated by M. Raynaud, using formal geometry (see [BL93] for instance).

If X, Y are k-analytic spaces and ϕ : Y → X is an analytic map, it is natural to
wonder what is the shape of ϕ(Y ). By analogy with Chevalley’s theorem and the Tarski–
Seidenberg theorem, one would like to be able to describe such images ϕ(Y ) using only
functions on X.

Without assumptions on ϕ, this is impossible: one needs some kind of compactness at
some point. One reasonable restriction is to consider analytic maps ϕ : Y → X where X
and Y are affinoid spaces.

In this context the first natural approach is to define a semianalytic subset of a
k-affinoid space as a finite boolean combination of sets defined by inequalities |f | ≤ |g|
between analytic functions. But the class of semianalytic sets is not big enough: there
exist morphisms ϕ : Y → X of affinoid spaces such that ϕ(Y ) is not semianalytic.

To overcome this problem, one has to consider more functions on an affinoid space X
than the analytic ones. In the framework of Znp, Jan Denef and Lou van den Dries
[DvdD88] have given a good description of images of analytic maps ϕ : Zmp → Znp.
Their main idea is to allow division of functions. In the framework of rigid geometry,
where Qp has to be replaced by some non-archimedean algebraically closed field k, this
idea of allowing divisions has been developed in two ways.

The first one is due to Leonard Lipshitz [Lip93, LR00b, Lip88, LR96] and rests on
the introduction of an algebra Sm,n of restricted analytic functions on products of closed
and open balls. This allowed L. Lipshitz to define for each affinoid space X the class of
subanalytic subsets on X(k) (in terms of analytic functions on X, division and composi-
tion with Sm,n), and to prove that subanalytic sets are stable under analytic maps between
affinoid spaces.

A second approach has been developed by Hans Schoutens [Sch94a]. This leads to the
definition of overconvergent subanalytic sets of X(k). Namely, the overconvergent sub-
analytic subsets of X(k) form a subclass of the subanalytic sets as defined by L. Lipshitz.
Overconvergent subanalytic sets are only stable under overconvergent analytic maps be-
tween affinoid spaces. For instance, if ϕ : Bn → X is an analytic map which can be
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analytically extended to a polydisc of radius r > 1, then ϕ(Bn) is an overconvergent
subanalytic set of X.

Overconvergent subanalytic sets

Hans Schoutens used the language of rigid geometry. We now summarize his results.
First, let D : k2

→ k be defined by

D(x, y) =

{
x/y if |x| ≤ |y| 6= 0,
0 otherwise.

Let A be an affinoid algebra and X its affinoid space. The algebra A〈〈D〉〉 is defined as
the smallest k-algebra of functions f : X(k)→ k such that

• A〈〈D〉〉 contains all functions induced by A.
• If f, g ∈ A〈〈D〉〉, then D(f, g) ∈ A〈〈D〉〉.
• If f ∈ A〈Y1, . . . , Yn〉 is overconvergent in the variables Yi , and g1, . . . , gn ∈ A〈〈D〉〉

satisfy |gi |sup ≤ 1, then f (g1, . . . , gn) ∈ A〈〈D〉〉.

Stability under overconvergent maps is contained in the following result (we denote by B
the closed unit disc).

Theorem ([Sch94a]). For a subset S ⊂ X(k) the following are equivalent:

• There exists n ∈ N and a semianalytic subset T of X × Bn(k) defined by inequalities
|f | ≤ |g| where f and g are overconvergent with respect to the variables of Bn such
that S = π(T ) where π : X × Bn(k)→ X(k) is the first projection. We call such sets
overconvergent subanalytic sets.
• S is defined by a boolean combination of inequalities |f | ≤ |g| where f, g ∈ A〈〈D〉〉.

For instance, if ϕ : Bn → X is an overconvergent map (in the sense that it can be
extended to a polydisc of radius greater than 1), then ϕ(Bn) is overconvergent subanalytic
(take for T the graph of ϕ).

Results of this article

In this article we explain how Berkovich spaces are well suited to study overconvergent
subanalytic sets. Indeed, the definitions that we have given above (semianalytic, overcon-
vergent subanalytic) can be given in the framework of Berkovich spaces. For instance if
we considerX = B2 with coordinate functions T1, T2, the inequality |T1| ≤ |T2| naturally
defines two sets

Srig = {(t1, t2) ∈ (k
◦)2 | |t1| ≤ |t2|},

SBerko = {x ∈M(k{T1, T2}) | |T1(x)| ≤ |T2(x)|}.

Of course Srig ⊂ SBerko. More precisely, Srig is the set of rigid points of SBerko.
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This new approach with Berkovich spaces allows us to simplify the proof of the theo-
rem of [Sch94a] mentioned above. Part 2 of [Sch94a], A combinatorial lemma, is replaced
by a simple compactness argument in Berkovich spaces.

If X is an affinoid space, recall that affinoid domains in X are some subsets S ⊂ X
satisfying some universal property with respect to morphisms f : Y → X of affinoid
spaces such that im(f ) ⊂ S. See [BGR84, 7.2.2.2] or [Ber90, 2.2.1] for a precise defi-
nition. Weierstrass (resp. rational) domains are examples of affinoid domains which are
defined by inequalities of the form |f | ≤ 1 (resp. |f | ≤ |g|) where f and g are analytic
functions onX. Then we consider the local behaviour of overconvergent subanalytic sets.
If X is an affinoid space there are two ways to consider local behaviour on X.

1. The G-topology, where a covering of X is a finite covering {Xi} by affinoid domains.
2. The Berkovich topology [Ber90, Ber93] on X seen as a Berkovich space, which is a

real topology.

If S is an overconvergent subanalytic set of X and U an affinoid domain in X, it is easy
to see that S ∩ U is an overconvergent subanalytic set of U . It is then natural to won-
der if overconvergent subanalytic sets fit well with one of these topologies. We give the
following answers.

Proposition (see Proposition 2.4). There exists an affinoid spaceX, a subset S ⊂ X, and
a finite covering {Xi} ofX by affinoid domains such that for all i, S∩Xi is overconvergent
subanalytic in Xi , but S is not overconvergent subanalytic in X.

In other words, being overconvergent subanalytic is not local with respect to the G-
topology. This contradicts some results of [Sch94a], for instance [Sch94a, QE theorem
p. 270, Proposition 4.2, Theorem 5.2].

We prove however that the Berkovich topology corrects this. If X is an affinoid space
seen as a Berkovich space, and x ∈ X, we say that V is an affinoid neighbourhood of x if
V is an affinoid domain in X and in addition V is a neighbourhood of X with respect to
the Berkovich topology.1

Theorem (see Theorem 1.42). A subset S ⊂ X is overconvergent subanalytic if and only
if for every x ∈ X (viewed as a Berkovich space), there exists an affinoid neighbour-
hood V of x such that S ∩ V is overconvergent subanalytic in V .

In other words, being overconvergent subanalytic is a local property, but with respect to
the Berkovich topology.

The mistake in [Sch94a] which we point out in Proposition 2.4 led to other mistakes
in further work of H. Schoutens [Sch94c, Sch94b]. In particular [Sch94b], which relies
on the false results of [Sch94a], claims that if k is algebraically closed of characteristic 0,

1 When x is a rigid point, any affinoid domain containing x is an affinoid neighbourhood. But this
is not true in general. For instance, in the unit disc with coordinate T , the rational domain defined
by |T | = 1 is an affinoid domain which contains the Gauss point, but it is not a neighbourhood of
the Gauss point.
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then a subset of the unit bidisc is overconvergent subanalytic if and only if it is rigid-
semianalytic (i.e. semianalytic locally for the G-topology). But the counterexample we
give in Proposition 2.4 proves that this equivalence does not hold. Anyway, the proofs of
[Sch94b] rely on some false equivalences of [Sch94a].

We show that the Berkovich topology allows one to correct the results of [Sch94b].
A k-analytic space is said to be good [Ber93, 1.2.16] if any point has an affinoid neigh-
bourhood. For instance affinoid spaces are good k-analytic spaces. A k-analytic space X
is said to be quasi-smooth2 if X is geometrically regular [Duc11, Section 5]. When k is
algebraically closed, this is equivalent to saying that for all x ∈ X, the local ring OX,x is
regular. When k is algebraically closed and X is a strictly k-analytic space, this is even
equivalent to saying that for all rigid points x ∈ X, the local ring OX,x is regular (this
follows for instance from [Ber90, 2.3.4]).

Theorem (see Theorem 3.12). Assume that k is algebraically closed. Let X be a good
quasi-smooth strictly k-analytic space of dimension 2. Then a subset S of X is overcon-
vergent subanalytic if and only if it is locally semianalytic.

Here, we say that S is locally semianalytic if for every x ∈ X, there is an affinoid neigh-
bourhood V of x such that S ∩ V is semianalytic in V .

Ideas behind the proofs

We want to point out that the two equivalent characterizations of overconvergent suban-
alytic sets which were given in [Sch94a] and which we have recalled on page 2407 are
not very manageable. In particular, it is hard to prove that some set is not overconvergent
subanalytic using these characterizations, whereas we have much more tools to decide
whether a subset is semianalytic or not. In order to overcome this difficulty, we have
introduced a third characterization of overconvergent subanalytic sets, which is more ge-
ometric. We remark that the quotient of two analytic functions f and g is not analytic any
more, but becomes analytic if one blows up (f, g). With this in mind, in order to describe
a subset of X defined by inequalities |f | ≤ |g| with f, g ∈ A〈〈D〉〉 we can consider
some finite sequences of blow-ups X̃→ X and project some semianalytic sets of X̃ out-
side the exceptional locus (with some extra condition for the overconvergence condition).
We call such subsets overconvergent constructible (see 1.8 for a precise definition). The
idea of looking at analytic functions above some blow-up of X had already appeared in
[LR00a, 2.3(iv)].

With this in mind we would like to restate the results of this paper more precisely.
First, we prove Theorem 1.35 which asserts that if X is an affinoid space, then S ⊂ X

is overconvergent subanalytic if and only if it is overconvergent constructible, using at
some point the compactness of the Berkovich space X.

Then, according to the definition of an overconvergent constructible set, it is easy to
prove that overconvergent subanalytic sets are local for the Berkovich topology (Proposi-
tion 1.42).

2 The termin “rig-smooth” is also used by some other authors.
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To justify our counterexample in Proposition 2.4, we use the more geometric approach
of overconvergent constructible sets which allows one to use results on semianalytic sets.
Ultimately, our argument relies on the study of some Gauss point in an embedded curve
in the polydisc, which strengthens our feeling that Berkovich spaces are well suited to
study overconvergent subanalytic sets.

Finally, we want to mention one more benefit of overconvergent constructible sets. In
the author’s thesis it is proved [Mar13, Proposition 2.4.1] that if k is algebraically closed,
S a locally closed overconvergent subanalytic set of the compact k-analytic space X, and
if we consider a prime number ` 6= char(k̃), then the étale cohomology groups with
compact support of the germ (S,X) (see [Ber93, 3.4,5.1]),

H i
c ((S,X),Q`),

are finite-dimensional Q`-vector spaces. Here again the idea is that (thanks to the presen-
tation of S as an overconvergent constructible set) we can reduce to the case where S is
semianalytic, and in that case, the finiteness result is proved in [Mar13, Proposition 2.2.3]
(which ultimately relies on a finiteness result for affinoid spaces proved by V. Berkovich).

Organisation of the paper

In Section 1, we define constructible data of X, in order to define overconvergent con-
structible subsets. Note that unlike [Sch94a] we do not assume that k is algebraically
closed. In Section 1.2 we introduce overconvergent subanalytic subsets. In Section 1.3
we carefully treat Weierstrass division, trying to be as general as possible (namely our
results hold for an arbitrary ultrametric Banach algebra, and an arbitrary radius of con-
vergence). In Section 1.4 we prove that overconvergent constructible and overconvergent
subanalytic subsets are the same. The proof of this result which appears in [Sch94a] is
here simplified by the use of Berkovich spaces; in particular, the quite technical Section 2
of [Sch94a] is replaced by a simple compactness argument (see Theorem 1.35). In 1.5
we try to handle the following problem: how to pass from a definition that works only
for k-affinoid spaces to a more local definition, with the hope that in the affinoid case the
local and the global definitions would coincide. As we said earlier, trying to do this with
the G-topology will not work. If however we do this with the Berkovich topology, the
definitions will be compatible. In Section 1.6, we explain how these results can be ex-
tended to k-affinoid spaces (as opposed to strictly k-affinoid spaces). In addition, in that
case, we can allow the field k to be trivially valued.

In Section 2, we give some counterexamples to erroneous statements of [Sch94a].
Precisely, in [Sch94a] five classes of subsets were defined: globally strongly subanalytic,
globally strongly D-semianalytic, strongly subanalytic, locally strongly subanalytic and
strongly D-semianalytic subsets. The last three classes were defined from the first two
ones by adding “G-local” at some point. In [Sch94a] it was claimed that these five classes
coincide. We explain that this is not the case: namely, of these five classes, the first two
indeed coincide, but not the last three, which are larger (see Figure 1, p. 2438). The main
idea is that if one replaces “G-locally” by “locally for the Berkovich topology”, the results
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of [Sch94a], for instance [Sch94a, Quantifier Elimination Theorem p. 270], become true.
Let us give one of the counterexamples that we study:

Example 0.1. Let X = B2 be the closed bidisc, 0 < r < 1 with r ∈
√
|k×|, and

f ∈ k{r−1x} an analytic function whose radius of convergence is exactly r and such that
‖f ‖ < 1. We define

S = {(x, y) ∈ B2
| |x| < r and y = f (x)}.

Then (see Proposition 2.4) S is rigid-semianalytic, but not overconvergent subanalytic.
The Berkovich approach is here helpful since to prove this, we use a point η of the
Berkovich bidisc which is not a rigid point, and some properties of its local ring OX,η.

Finally, in Section 3 we correct the proof of [Sch94b] (which rested on the erroneous
results of [Sch94a], and [Sch94c]) and restrict the hypothesis of it. Namely, we prove that
when k is algebraically closed, and X is a good quasi-smooth strictly k-analytic space of
dimension 2, then overconvergent subanalytic subsets are in fact locally semianalytic. Not
only do we give a correct proof of this theorem, but moreover this result is more general
than the result of [Sch94b], where X was the bidisc and where it was assumed that the
characteristic of k was 0.

Contribution of this article

We want to stress the fact that Section 1 is highly inspired by the work of H. Schoutens.
In particular, the definition we give of a constructible datum, and the resulting defini-
tion of an overconvergent constructible subset, is a geometric formulation of what is
done in [Sch94a] concerning D-strongly semianalytic subsets. In particular, the proof
of Theorem 1.35 is very close to that of [Sch94a, Th. 5.2]. We have however decided
to include a proof of Theorem 1.35 for three reasons. First, the compactness argument
that we use in Theorem 1.35 seems to us enlightening, and a way to see that Berkovich
spaces are relevant in this context.3 Secondly, we have the impression that replacing the
strongly D-semianalytic subsets of [Sch94a] by our overconvergent constructible subsets
is more geometric and gives a better understanding of the situation. Finally, the mistakes
in [Sch94a], which we explain in Section 2, result in some invalid statements. For in-
stance, [Sch94a, Theorem 5.2] is false, as we prove in Section 2. In this context it seemed
to us relevant to write Section 1.

The same remarks hold for Section 3. A statement analogous to Theorem 3.12 was
claimed in [Sch94b]. However, in that article it was assumed, and used in the proofs, that
the five classes of subsets introduced in [Sch94a] were the same; since we prove that this
is not the case, the proofs of [Sch94b] are erroneous.

Finally, let us mention that another proof of Theorem 1.35 has also been given in
[CL11, 4.4.10].

3 However, it has to be noted that we could have written this proof in the context of adic spaces,
and used a similar argument of quasi-compactness.
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1. Overconvergent constructible subsets

With a few exceptions that will be specified, k will be a non-trivially valued non-
archimedean field, A will be a strictly k-affinoid algebra, and X the strictly k-affinoid
space M(A).

1.1. Constructible data

Definition 1.1. Let X be a k-affinoid space whose k-affinoid algebra is A. A subset S of
X is called semianalytic if it is a finite boolean combination of sets of the form {x ∈ X |
|f (x)| ≤ |g(x)|} where f, g ∈ A (by finite boolean combination, we mean finitely many
uses of the set-theoretical operators ∩, ∪ and c). A subset of the form {x ∈ X | |fi(x)| ♦i
|gi(x)|, i = 1, . . . , n}with fi, gi ∈ A, and♦i ∈ {≤, <}will be called basic semianalytic.

Remark 1.2. With a repeated use of the rule (A∪B)∩C = (A∩C)∪ (B ∩C) one can
show that any semianalytic subset of X is a finite union of basic semianalytic subsets.

Definition 1.3. Let (X, S) be a k-germ in the sense of [Ber93, 3.4]; this just means that
S is a subset of X. Let f, g ∈ A and let r, s ∈ R be such that r > s > 0 and s ∈

√
|k×|.

Let
Y =M(A{r−1t}/(f − tg))

ϕ
−→M(A) = X

and let R ⊆ Y be a semianalytic subset of Y . Set

T := ϕ−1(S) ∩ {y ∈ R | g(y) 6= 0 and |f (y)| ≤ s|g(y)|}.

Then (Y, T )
ϕ
−→ (X, S) is an elementary constructible datum of (X, S). If ψ : (Y ′, T ′) '

(Y, T ) is an isomorphism of k-germs and (Y, T )
ϕ
−→ (X, S) is an elementary constructible

datum, and if we set ϕ′ = ϕ ◦ ψ , then we will also say that (Y ′, T ′)
ϕ′

−→ (X, S) is an
elementary constructible datum.

Remark 1.4. If (Y, T )
ϕ
−→ (X, S) is an elementary constructible datum, then ϕ(T ) ⊂ S,

and ϕ realizes a homeomorphism between T and its image ϕ(T ). Moreover

{y ∈ Y | |f (y)| ≤ s|g(y)| 6= 0}

is an analytic domain in Y , and can be identified through ϕ with the analytic domain inX,

{x ∈ X | |f (x)| ≤ s|g(x)| 6= 0}.

Definition 1.5. Let (X, S) be a k-germ. A constructible datum is a sequence

(Y, T ) = (Xn, Sn)
ϕn
−→ (Xn−1, Sn−1)→ · · · → (X1, S1)

ϕ1
−→ (X0, S0) = (X, S)

where for i = 1, . . . , n, (Xi, Si)
ϕi
−→ (Xi−1, Si−1) is an elementary constructible datum.

Let ϕ = ϕ1 ◦ · · · ◦ ϕn. Then we will denote this constructible datum by

(Y, T )
ϕ
99K (X, S).

We will say that the complexity of ϕ is n.
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In the particular case S = X, i.e. (X, S) = (X,X), we will denote the constructible datum
by

(Y, T )
ϕ
99K X,

and we will call it a constructible datum of X. This is actually the case that will mainly
interest us, but for technical reasons we have chosen to use k-germs.

Remark 1.6. If (Y, T )
ϕ
99K X is a constructible datum, it follows easily from the above

definitions that T is a semianalytic subset of Y .

Remark 1.4 implies that if (Y, T )
ϕ
99K (X, S) is a constructible datum, then ϕ|T : T → S

induces a homeomorphism between T and ϕ(T ). It is also clear that if (Z,U)
ψ
99K (Y, T )

is a constructible datum and (Y, T )
ϕ
99K (X, S) is another one, then (Z,U)

ϕ◦ψ
99K (X, S) is

also a constructible datum.
We want to point out that in the definition of a constructible datum, n cannot be

recovered from ϕ alone.

Definition 1.7. Let (Xi, Si)
ϕi
99K (X, S), i = 1, . . . , m, be m constructible data of the

k-germ (X, S). They form a constructible covering of (X, S) if
⋃m
i=1 ϕi(Si) = S.

Definition 1.8. Let X be a k-affinoid space. A subset C of X is said to be an overcon-
vergent constructible subset of X if there exist m constructible data (Xi, Si)

ϕi
99K X for

i = 1, . . . , m such that
⋃m
i=1 ϕi(Si) = C.

Remark 1.9. Using the notation of Definition 1.3, when (Y, T )
ϕ
−→ (X, S) is an elemen-

tary constructible datum with Y =M(A{r−1t}/(f − tg)), then T (and hence ϕ(T )) are
defined by the function t which mimics the function f/g when it makes sense, and its
norm is ≤ s. In addition the condition r > s is here to make sure that the new functions
of B are overconvergent in t = f/g, which we see as a function on the analytic domain
{x ∈ X | |f (x)| ≤ s|g(x)| 6= 0}.

The following three results are formal consequences of the previous definitions.

Lemma 1.10. If (Y, T )
ϕ
−→ (X, S) is an elementary constructible datum and (Z,U)

ψ
−→

(X, S) is a morphism of k-germs, consider the cartesian product of k-germs

(Y, T )
ϕ // (X, S)

(Y, T )×(X,S) (Z,U)

ψ ′

OO

ϕ′ // (Z,U)

ψ

OO

Then (Y, T )×(X,S) (Z,U)
ϕ′

−→ (Z,U) is an elementary constructible datum. Moreover if

(Y, T )×(X,S) (Z,U) =: (Y
′, T ′)

then (ϕ ◦ ψ ′)(T ′) = ϕ(T ) ∩ ψ(U).
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Corollary 1.11. Let (Y, T )
ϕ
99K (X, S) be a constructible datum

(Y, T ) = (Xn, Sn)
ϕn
−→ · · ·

ϕ1
−→ (X0, S0) = (X, S)

and let (X′, S′)
ψ
−→ (X, S) be a morphism of k-germs. Consider the cartesian product

(Y, T )
ϕ // (X, S)

(Y ′, T ′)

ψ ′

OO

ϕ′ // (X′, S′)

ψ

OO

Then (Y ′, T ′)
ϕ′

99K (X′, S′) is a constructible datum and (ψ ◦ ϕ′)(T ′) = ϕ(T ) ∩ ψ(S′).

Corollary 1.12. Let (X1, T1)
ϕ
99K (X, S) and (X2, T2)

ψ
99K (X, S) be two constructible

data (with the same target). Consider the fibred product

(X1, T1)
ϕ // (X, S)

(Z,U)

ψ ′

OO

ϕ′ // (X2, T2)

ψ

OO

Then (Z,U)
ψ ′

99K (X1, T1) and (Z,U)
ϕ′

99K (Y2, T2) are constructible data. Moreover
(ϕ ◦ ψ ′)(U) = (ψ ◦ ϕ′)(U) = ϕ(T1) ∩ ψ(T2).

Proof. Lemma 1.10 is a direct consequence of Definition 1.3. Corollary 1.11 is then
proved by induction on the complexity of ϕ using Lemma 1.10. Similarly, Corollary 1.12
is proved by induction on the complexity of ψ using Corollary 1.11. ut

Proposition 1.13. (1) If T is a semianalytic subset of X then T is an overconvergent
constructible subset of X.

(2) Let C ⊆ T be an overconvergent constructible subset of Y and let (Y, T )
ϕ
99K X be

a constructible datum. Then ϕ(C) is an overconvergent constructible subset of X.
(3) The class of overconvergent constructible subsets of X is stable under finite boolean

combinations.

Proof. (1) Consider the elementary constructible datum (X, T )
id
−→ X.

(2) By definition, there exist constructible data (Yi, Ti)
ϕi
99K Y , for i = 1, . . . , m, such

that C =
⋃m
i=1 ϕi(Ti). Now if we define ψi := ϕ ◦ ϕi , then (Yi, Ti)

ψi
99K X are m con-

structible data, and ϕ(C) = ϕ(
⋃m
i=1 ϕi(Yi)) =

⋃m
i=1 ψi(Ti), so it is an overconvergent

constructible subset of (X, S).
(3) Stability under finite unions is a direct consequence of Definition 1.8, while the

same for intersections is a consequence of Corollary 1.12. Let us show that if C ⊆ X is an
overconvergent constructible subset ofX, thenX\C is also overconvergent constructible.
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By definition, C =
⋃m
i=1 ϕi(Si) where (Xi, Si)

ϕi
99K X are constructible data. We use

induction on c, the maximum of the complexities of the ϕi’s.
If c = 0, then C is a semianalytic subset of X, so X \ C is semianalytic, hence

overconvergent constructible.
If c > 0 and we assume the result holds for c′ < c, then

X \ C = X \

m⋃
i=1

ϕi(Si) =

m⋂
i=1

(X \ ϕi(Si)),

so we can assume that m = 1, that is, that C = ϕ(T ) where (Y, T )
ϕ
99K X is a con-

structible datum of complexity c. Then

ϕ = ψ ◦ ϕ′ : (Y, T )
ϕ′

99K (Y ′, T ′)
ψ
−→ X

where the complexity of ϕ′ is c − 1 and ψ is an elementary constructible datum. Now

X \ ϕ(T ) = ψ(T ′ \ ϕ′(T )) ∪ (X \ ψ(T ′))

because ϕ′
|T and ψ|T ′ are injective maps. By induction hypothesis,

T ′ \ ϕ′(T ) = T ′ ∩ (Y ′ \ ϕ′(T ))

is an overconvergent constructible subset of Y ′, thus according to (1), so is ψ(T ′ \ϕ′(T )).
Finally, if the elementary constructible datum ψ is associated with f, g, r and s, then

by definition,
T ′ = {y ∈ R | |f (y)| ≤ s|g(y)| 6= 0}

for some semianalytic subset R of Y ′. And if we define

T̃ = {y ∈ Y ′ \ R | |f (y)| ≤ s|g(y)| 6= 0},

then

X \ ψ(T ′) = ψ(T̃ ) ∪ {y ∈ X | |f (y)| > s|g(y)|} ∪ {y ∈ X | g(y) = 0}.

Thus, it is also overconvergent constructible in X. ut

Let x ∈ X, and let U be an affinoid neighbourhood of x. Shrinking U if necessary, we
can assume [Ber90, 2.5.15] that U is a rational domain of the form X

(
r−1 f

g

)
= {p ∈ X |

|fi(x)| ≤ ri |g(x)|} such that X
(
(r/2)−1 f

g

)
still contains x. For each i, we pick a real

number si such that ri/2 < si < ri and si ∈
√
|k×|. For each i, we consider the ele-

mentary constructible datum (Xi, Si)
ϕi
−→ X defined by Xi = A{r−1

i ti}/(fi − tig), and
Si = {p ∈ Xi | |fi(p)| ≤ si |g(p)| and g(p) 6= 0}. One checks that ϕi(Si) is a neighbour-
hood of x. Now if we take the fibred product of all these elementary constructible data,
we obtain (using Corollary 1.12) the following constructible datum:(

X

(
r−1 f

g

)
, X

(
s−1 f

g

))
ϕ
99K X.
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Here ϕ just corresponds to the embedding of the affinoid domain X
(
r−1 f

g

)
. Moreover

ϕ
(
X
(
s−1 f

g

))
, which we might identify with X

(
s−1 f

g

)
, is a neighbourhood of x. We can

sum this up in the following lemma:

Lemma 1.14. Let X be a strictly k-affinoid space. Let x ∈ X and let U be an affinoid
neighbourhood of x. Then there exists a constructible datum (Y, T )

ϕ
99K X such that T is

an affinoid domain in Y , ϕ is the embedding of an affinoid domain Y → X such that Y is
in fact an affinoid subdomain of U , and ϕ(T ) is an affinoid neighbourhood of x.

Corollary 1.15. Let X be a strictly k-affinoid space. Being overconvergent constructible
in X is a local property.

Proof. First, if S ⊂ X is overconvergent constructible, and U is an affinoid domain of X,
then S ∩ U is overconvergent constructible.

On the other hand, assume that locally for the Berkovich topology, S is overconvergent
constructible, that is, for all x ∈ X there exists an affinoid neighbourhood U of x such
that S ∩ U is overconvergent constructible. Then according to Lemma 1.14, there exists
a constructible datum (Y, T )

ϕ
99K X such that Y

ϕ
−→ X is the embedding of an affinoid

domain, Y ⊂ U , and T is an affinoid neighbourhood of x. Since T ⊂ U , ϕ−1(S) ∩ T

is overconvergent constructible in T , and so ϕ(T ) ∩ S is overconvergent constructible
in X (see Proposition 1.13(2)). But since ϕ(T ) is an affinoid neighbourhood of x, by
compactness of X we conclude that S is overconvergent constructible. ut

1.2. Overconvergent subanalytic subsets

We will denote by B (resp. Br for r > 0) the closed disc of radius 1 (resp. r), and if n is
an integer, Bn and Bnr will denote the corresponding closed polydiscs.

More generally, if r = (r1, . . . , rn) ∈ (R∗+)n is a polyradius, we will denote by

Br =M(k{r−1T }) =M(k{r−1
1 T1, . . . , r

−1
n Tn})

the polydisc of radius r , and B̊(r) the corresponding open polydisc. When the number n is
clear from the context, we will write 1 for (1, . . . , 1) ∈ Rn, and 0 or 0 for (0, . . . , 0) ∈ Rn.
Finally, ρ > r will mean that ρi > ri for i = 1, . . . , n.

Definition 1.16. Let X be a strictly k-affinoid space. A subset S ⊂ X is said to be an
overconvergent subanalytic subset of X if there exist n ∈ N, r > 1, and a semianalytic
subset T ⊆ X × Bnr such that S = π(T ∩ (X × Bn)) where π : X × Bnr → X is the
natural projection.

Lemma 1.17. Let f : Y → X be a morphism of strictly k-affinoid spaces and S an
overconvergent subanalytic subset of X. Then f−1(S) is an overconvergent subanalytic
subset of Y . In particular, if V is a strictly affinoid domain inX, and S an overconvergent
subanalytic subset of X, then S ∩ V is an overconvergent subanalytic subset of V .
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Proof. Let r > 1 and let T ⊆ X × Bnr be a semianalytic subset such that S = π(T ∩

(X × Bn)). Consider the cartesian diagram

Y × Bnr
f ′ //

π ′

��

X × Bnr
π

��
Y

f // X

(1.1)

Then f−1(S) = f−1(π(T ∩ (X × Bn))) = π ′(f ′−1(T ∩ (X × Bn))). The last equality
holds because (1.1) is a cartesian diagram. Now π ′(f ′−1(T ∩(X×Bn))) = π ′(f ′−1(T )∩

(Y×Bn)) = π ′−1(T ′∩(Y×Bn))where T ′ = f ′−1(T ) is a semianalytic subset of Y×Bnr .
Hence f−1(S) = π ′(T ′ ∩ (Y × Bn)) is an overconvergent subanalytic subset of Y . ut

Lemma 1.18. Let X and Y be strictly k-affinoid spaces, and let ϕ : X → Y be a closed
immersion.

(1) If S is a semianalytic subset of X, then ϕ(S) is a semianalytic subset of Y .
(2) Let S be an overconvergent subanalytic subset of X. Then ϕ(S) is an overconvergent

subanalytic subset of Y .

Proof. (1) Write Y = M(A) and X = M(A/I) where I = (a1, . . . , am) is an ideal
of A. Then, if S = {x ∈ X | |fi(x)| ♦i |gi(x)|, i = 1, . . . , n} with fi, gi ∈ A/I, we can
find functions Fi,Gi ∈ A such that Fi = fi and Gi = gi . In that case one checks that

ϕ(S)={y ∈ Y | |Fi(y)| ♦i |Gi(y)|, i=1, . . . , n} ∩ {y ∈ Y | aj (y)=0, j=1, . . . , m},

which is indeed semianalytic.
(2) By definition there exists a semianalytic subset T ⊆ X × Bnr for some r > 1 such

that S = π(T ∩ (X × Bn)). We then consider the cartesian diagram

X × Bnr
ϕ′ //

π ′

��

Y × Bnr
π

��
X

ϕ // Y

But ϕ′ is also a closed immersion, so according to (1), T ′ = ϕ′(T ) is a semianalytic
subset of Y × Bnr . Then one checks that

π(T ′ ∩ (Y × Bn)) = π(ϕ′(T ) ∩ (Y × Bn)) = π(ϕ′(T ∩ (X × Bn)))
= ϕ(π ′(T ∩ (X × Bn))) = ϕ(S). ut

Lemma 1.19. Assume that s ∈
√
|k×|

n
. Then k{s−1T } is a strictly k-affinoid algebra (see

[Ber90, 2.1.1] and [BGR84, 6.1.5.4]). For the same reasons, if r > s, and S ⊆ X × Br
is a semianalytic subset, then π(S ∩ (X × Bs)) is an overconvergent subanalytic subset
of X.
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Proof. Let s ∈
√
|k×|

n
and r ∈ Rn with s < r , and let S ⊆ X × Br be a semianalytic

subset of X × Br . Let us show that π(S ∩ (X × Bs) is overconvergent subanalytic in the
sense of Definition 1.16. To avoid complications, we assume that n = 1 (but the proof
is similar for an arbitrary n). So let s ∈

√
|k×| and r > s. Up to multiplication by some

µ ∈ k× small enough, we can assume that s ≤ 1. Since s ∈
√
|k×|, there exist λ ∈ k×

and m ∈ N such that sm = |λ|. Then in

B(r,(r/s)m) =M
(
k{r−1y, ((r/s)m)−1t}

)
consider the Zariski closed subset defined by ym = λt , i.e. V (ym − λt). Then the map

Br → B(r,(r/s)m), x 7→ (x, xm/λ),

identifies Br with the Zariski closed subset V (ym − λt), and moreover, since s ≤ 1,

Bs → B2, x 7→ (x, xm/λ),

identifies Bs with the Zariski closed subset V (ym − λt) of B2. Taking the fibre product
with X we then obtain

X × Br
' // V (ym − λt) �

� α // X × B(r,( r
s
)m)

X × Bs
?�

OO

' //

π

&&

V (ym − λt)
?�

OO

� � β // X × B2
?�

OO

π

ww
X

Hence if S ⊆ X × Br is semianalytic, then S′ := α(S) is also semianalytic in X ×
B(r,(r/s)m) and α(S)∩(X×B2) = β(S∩(X×Bs)). So π(S∩(X×Bs)) = π(S′∩(X×B2)

is overconvergent subanalytic in the sense of Definition 1.16. ut

1.3. Weierstrass preparation

In this section, A will be an ultrametric complete normed ring, i.e. it satisfies the inequal-
ity ‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a + b‖ ≤ max(‖a‖, ‖b‖) [BGR84, 1.2.1.1].

If r > 0, on A{r−1T } we will consider the following norm: if g =
∑
n∈N anT

n
∈

A{r−1X} then ‖g‖ = maxn≥0 ‖an‖r
n.

If m ∈ N, we will denote by Am[T ] the subset of A[T ] made of the polynomials of
degree less than or equal to m.

Definition 1.20. An element u ∈ A is a multiplicative unit if u is invertible and for all
a ∈ A, ‖ua‖ = ‖u‖ ‖a‖.

Note that if u and v are multiplicative units, so is uv.
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Lemma 1.21. An element u ∈ A is a multiplicative unit if and only if u ∈ A∗ and
‖u−1
‖ = ‖u‖−1.

Proof. If u is a multiplicative unit, then 1 = ‖uu−1
‖ = ‖u‖‖u−1

‖, so ‖u−1
‖ = ‖u‖−1.

Conversely, assume that u is invertible and ‖u−1
‖ = ‖u‖−1. Let a ∈ A. Then

‖a‖ = ‖u−1(ua)‖ ≤ ‖u−1
‖ ‖ua‖ = ‖u‖−1

‖ua‖.

So ‖ua‖ ≥ ‖u‖ ‖a‖. Since the reverse inequality always holds, we conclude that ‖ua‖ =
‖u‖‖a‖. ut

Remark 1.22. As a consequence, if u ∈ A and ‖u‖ < 1, then 1 + u is a multiplicative
unit because

‖1+ u‖ = 1 =
∥∥∥∑
n≥0

(−u)n
∥∥∥ = ‖(1+ u)−1

‖

Also note that if u is a multiplicative unit, then |u(x)| = ‖u‖ for all x ∈M(A). Indeed,
the definition of M(A) implies that

|u(x)| ≤ ‖u‖, (1.2)

hence 1 = |u(x)| |u−1(x)| ≤ ‖u‖ ‖u−1
‖ = 1. So the inequality (1.2) could not be strict,

thus |u(x)| = ‖u‖.

Remark 1.23. If ϕ : A→B is a contractive morphism of normed rings (i.e. ‖ϕ(a)‖≤‖a‖
for all a in A), then ϕ sends multiplicative units to multiplicative units. Indeed,

1 = ‖ϕ(u)ϕ(u)−1
‖ ≤ ‖ϕ(u)‖ ‖ϕ(u−1)‖ ≤ ‖u‖ ‖u−1

‖ = 1,

so these are equalities and ϕ(u) is a multiplicative unit because ‖ϕ(u)‖ = ‖u‖, and
‖ϕ(u)−1

‖ = ‖u−1
‖ = ‖u‖−1

= ‖ϕ(u)‖−1.
This remark will apply in the following context: A is a strictly k-affinoid algebra and

we look at a morphism ϕ : A → B = A{r−1T }/I with I any ideal, and B is equipped
with the quotient norm inherited from A{r−1T }. In this situation, ϕ is contractive. This is
the case when ϕ is the morphism of a constructible datum (Y, S)

ϕ
99K X.

Note that if ϕ is not contractive, multiplicative units are not necessarily preserved. For
instance, consider A = k{t} and B = k{2−1x, y}/(y− x2) that we equip with the residue
norm. These k-affinoid algebras are isomorphic through ϕ : t 7→ x, and if we choose
π ∈ k such that 1/2 < |π | < 1, then u := 1+ πt is a multiplicative unit of A, but ϕ(u)
is not.

Note however that if the field k is stable (for instance in our situation, where k is
a non-archimedean complete field, k is stable if char(k̃) = 0, or if it is algebraically
closed, or a discrete valuation field [BGR84, 3.6.2]), then for a suitable choice of norm,
any morphism of reduced affinoid algebras is contractive. Indeed, if k is stable, and A
is a reduced affinoid algebra, then it is a distinguished affinoid algebra [BGR84, 6.4.3],
i.e. the supremum seminorm is a residue norm on A. If B is reduced, then for the same
reason, the supremum seminorm is an admissible norm on it. So if we equip A and B with
the supremum norm, then any morphism ϕ : A→ B of affinoid algebras is contractive.
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Definition 1.24. Let r > 0 be a real number and s ∈ N. An element g =
∑
n≥0 gnT

n of
A{r−1T } is called T -distinguished of order s if gs is a multiplicative unit and ‖gs‖rs =
‖g‖ ‖gn‖r

n < ‖gs‖r
s for all n > s . Note that in that case, g is necessarily a non-zero

element since gs 6= 0.

Remark 1.25. We can extend the previous remark by saying that if ϕ : A → B is a
contractive morphism and g =

∑
n∈N gnT

n
∈ A{r−1T } is T -distinguished of order s,

then ϕ(g) =
∑
n∈N ϕ(gn)T

n
∈ B{r−1T } and it is a T -distinguished element of B{r−1T }

of order s. This applies in particular when ϕ is the morphism of a constructible datum
(Y, S)

ϕ
99K X.

Lemma 1.26. Let g =
∑
m∈N gmT

m
∈ A{r−1T } be T -distinguished of order s.

(1) ‖gq‖ = ‖g‖ ‖q‖ for all q =
∑
k∈N qkT

k
∈ A{r−1T }.

(2) Set gq =
∑
l∈N clT

l , and assume that q 6= 0. Denote by k0 the greatest rank such
that ‖qk0‖r

k0 = ‖q‖. Then ‖gq‖ = ‖cs+k0‖r
s+k0 and ‖cs+k0‖ = ‖gs‖ ‖qk0‖.

Proof. First, without any hypothesis,

‖gq‖ ≤ ‖g‖ ‖q‖. (1.3)

Conversely, by definition,

cs+k0 =

∑
m+k=s+k0

gmqk. (1.4)

So let m and k be two integers such that m+ k = s + k0.
If k > k0, then ‖qk‖rk < ‖qk0‖r

k0 by definition of k0. So, since gs is a multiplicative
unit,

‖gmqk‖r
s+k0 = ‖gmqk‖r

m+k
≤ ‖gm‖r

m
‖qk‖r

k < ‖gs‖r
s
‖qk0‖r

k0 = ‖gsqk0‖r
s+k0 .

Thus,
‖gmqk‖ < ‖gsqk0‖. (1.5)

If k < k0, then m > s, and since ‖gm‖rm < ‖gs‖rs (because g is T -distinguished of
order s), the same reasoning yields

‖gmqk‖ < ‖gsqk0‖. (1.6)

Thus, (1.4)–(1.6) and the ultrametric inequality imply that ‖cs+k0‖ = ‖gsqk0‖. And
since gs is a multiplicative unit, ‖gsqk0‖ = ‖gs‖ ‖qk0‖.

Finally, ‖gq‖ ≥ ‖gs‖rs‖qk0‖r
k0 = ‖q‖ ‖g‖, which with (1.3) ends the proof. ut

Proposition 1.27 (Weierstrass division). Let g ∈ A{r−1T } be T -distinguished of or-
der s. If f =

∑
n∈N fnT

n
∈ A{r−1T }, then there exists a unique couple (q, R) ∈

A{r−1T } × As−1[T ] such that
f = gq + R. (1.7)

Moreover
‖f ‖ = max(‖g‖ ‖q‖, ‖R‖). (1.8)
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Proof. First, let us show that if a couple (q, R) satisfies (1.7), then it must satisfy (1.8).
By the ultrametric inequality, ‖f ‖ ≤ max(‖g‖ ‖q‖, ‖R‖). For the reverse inequality, we
distinguish two cases.

If ‖gq‖ 6= ‖R‖, then ‖f ‖ = max(‖gq‖, ‖R‖) = max(‖g‖ ‖q‖, ‖R‖) according to
Lemma 1.26.

Otherwise ‖gq‖ = ‖g‖ ‖q‖ = ‖R‖, and we again use Lemma 1.26 and its notation
(so gq =

∑
l∈N clT

l). We get ‖gq‖ = ‖cs+k0‖r
s+k0 . Since R is a polynomial of degree d

with d < s, and since f = gq + R and d < s + k0, the coefficient fs+k0 of f is cs+k0 ,
hence ‖f ‖ ≥ ‖cs+k0‖r

s+k0 = ‖g‖ ‖q‖.
This finally proves that ‖f ‖ = max(‖g‖ ‖q‖, ‖R‖).
From this we conclude that the couple (q, R) is unique because if f = gq ′ + R′

is another decomposition, we have 0 = g(q − q ′) + (R − R′) and since ‖g‖ 6= 0,
‖q − q ′‖ = ‖R − R′‖ = 0, i.e. R = R′ and q = q ′.

Let us now show the existence of such a decomposition. Set

g′ :=

s∑
m=0

gmT
m.

In particular, ‖g‖ = ‖g′‖ because g is T -distinguished of degree s. Set

κ :=
maxm>s ‖gm‖rm

‖gs‖rs
=

maxm>s ‖gm‖rm

‖g‖
.

Since g is T -distinguished of order s, we have κ < 1. Actually, if κ = 0 (which would
mean that g = g′), replace κ by 1/2. In any case ‖g − g′‖ ≤ κ‖g‖ and κ ∈ ]0, 1[.

Next, let N ∈ N and set

f ′ :=

N∑
k=0

fkT
k.

Assume that N is so large that ‖f − f ′‖ ≤ κ‖f ‖. In particular, ‖f ′‖ = ‖f ‖.
By definition and hypothesis, g′ ∈ A[T ] is of degree s and possesses an invertible

dominant coefficient, which is gs . Hence in A[T ], one can carry out euclidean division
by g′ [Lan02, 4.1.1], which gives f ′ = g′q + R with R ∈ As−1[T ] and q ∈ A[T ]. We
can then apply the norm equality (1.8) that we have shown in the first part of the proof
(because g′ is also T -distinguished of order s): ‖f ′‖ = max(‖g′‖ ‖q‖, ‖R‖). In particular
‖q‖ ≤ ‖f ′‖/‖g′‖ = ‖f ‖/‖g‖ so that

‖g‖ ‖q‖ ≤ ‖f ‖.

Moreover ‖R‖ ≤ ‖f ′‖ = ‖f ‖. Thus

f = f ′ + (f − f ′) = g′q + R + (f − f ′) = gq + R + (f − f ′)+ (g′ − g)q.

By definition of g′ and of κ , ‖g′ − g‖ ≤ κ‖g‖, so

‖(g′ − g)q‖ ≤ ‖g‖ ‖q‖κ ≤ κ‖f ‖. (1.9)
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In addition, by hypothesis,
‖f − f ′‖ ≤ κ‖f ‖. (1.10)

Hence if we set
h := f − f ′ + (g′ − g)q = f − (gq + R),

then according to (1.9) and (1.10), we obtain ‖h‖ ≤ κ‖f ‖.
To sum up, we have found some κ ∈ ]0, 1[ such that

∀f ∈ A{r−1T }, ∃q ′ ∈ A{r−1T }, ∃R′ ∈ As−1[T ], ‖f − (gq
′
+ R′)‖ ≤ κ‖f ‖. (1.11)

This allows us to define by induction two Cauchy sequences (qi) ∈ A{r−1T } and (Ri) ∈
As−1[T ] such that ‖f − (gqi + Ri)‖ ≤ κ i‖f ‖ in the following way.

We start with (q0, R0) = (0, 0).
To perform the induction step, let i > 0 and assume that (qi, Ri) is defined. We set

hi := f − (gqi + Ri), which by induction hypothesis fulfils ‖hi‖ ≤ κ i‖f ‖. According
to (1.11), we can define q ′ ∈ A{r−1T } and R′ ∈ As−1[T ] such that hi = gq ′ + R′ + h′

with ‖q ′‖ ≤ ‖hi‖/‖g‖ ≤ κ i‖f ‖/‖g‖, and ‖R′‖ ≤ ‖hi‖ ≤ κ i‖f ‖ and ‖h′‖ ≤ κ‖hi‖ ≤
κ i+1
‖f ‖. Then we set qi+1

:= qi + q ′ and Ri+1
:= Ri + R′.

Then ‖f − (gqi+1
+Ri+1)‖ = ‖h

i
− (gq+R)‖ = ‖h′‖ ≤ κ i+1

‖f ‖. By construction
‖qi+1

−qi‖ = ‖q ′‖ ≤ κ i‖f ‖/‖g‖ and ‖Ri+1
−Ri‖ = ‖R′‖ ≤ κ i‖f ‖, so these sequences

are Cauchy sequences. This ends our induction.
Now, by completeness of A{r−1T } and As−1[T ] the sequences (qi) and (Ri) have

limits, which we denote by q ∈ A{r−1T } and R ∈ As−1[T ], which satisfy f = gq + R
as desired. ut

Corollary 1.28 (Weierstrass preparation). Let g ∈ A{r−1T } be a T -distinguished ele-
ment of order s. There exists a unique couple (w, e) ∈ As[T ] × A{r−1T } such that w is
a monic polynomial of degree s, e is a multiplicative unit of A{r−1T }, and g = ew.

Proof. Using Weierstrass division, we can write T s = gq + R with ‖T s‖ =
max(‖g‖ ‖q‖, ‖R‖) and R ∈ A[T ]s−1. Set

w := T s − R = gq.

So w ∈ As[T ] is a monic polynomial. Since g is T -distinguished of order s, according
to Lemma 1.26, and if we denote by k0 the greatest index such that ‖qk0‖r

k0 = ‖q‖ and
w =

∑s
l=0wlT

l , we obtain

‖w‖ = ‖gq‖ = ‖(gq)s+k0‖r
s+k0 = ‖ws+k0‖r

s+k0 .

But since w ∈ As[T ], necessarily s + k0 = s and k0 = 0. Hence, by definition of k0, we
have ‖q0‖ > ‖qk‖r

kfor all k > 0.
The coefficient of degree s in gq being 1 (because gq = T s − R), we have

1 = g0qs + g1qs−1 + · · · + gsq0,

and since k0 = 0, and g is T -distinguished of order s, we obtain, with the same reasoning
used in the proof of Lemma 1.26, ‖gsq0‖ > ‖gs−iqi‖ for i = 1, . . . , s. So ‖gsq0‖ =
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‖1‖ = 1, and gsq0 = 1 − (gs−1q1 + · · · + g0qs), with ‖gsq1 + · · · + g0qs‖ < 1. Thus,
gsq0 is a multiplicative unit. Moreover, since gs is also a multiplicative unit, so is q0, and
‖q0‖ = ‖gs‖

−1. Hence

q = q0

(
1+

q1

q0
T + · · · +

qk

q0
T k + · · ·

)
, (1.12)

and since k0 = 0 (so ‖qi‖r i < ‖q0‖ for i > 0) and q0 is a multiplicative unit, we find that
‖qi/q0‖r

i < 1 for all i > 0. Hence

1+
q1

q0
T + · · · +

qk

q0
T k + · · ·

is a multiplicative unit ofA{r−1T }, and according to (1.12), q is also a multiplicative unit.
So g = q−1(T s − R), with q−1 a multiplicative unit and T s − R a monic polynomial of
degree s. So if we set e := q−1 and w = T s − R, we have the expected result: g = ew.

As for the uniqueness of this decomposition, if g = ew, e and w being as in the
statement of the corollary, then w = T s + R with R ∈ As−1[T ], and T s = w − R =

e−1g + (−R), which is the Weierstrass division of T s by g. Hence e and R are unique,
and w too because w = T s + R. ut

Assume that A is a k-affinoid algebra, let (r1, . . . , rn) be a polyradius, and set A :=
A{r−1

1 T1, . . . , r
−1
n−1Tn−1}. Then with r = rn, we have A{r−1

1 T1, . . . , r
−1
n Tn} = A{r

−1T },
and we can introduce the notion of a T -distinguished element. We apply Weierstrass
theory to them, which corresponds to the classical one, especially if A = k, where we
find the classical Tate algebra k{r−1

1 T1, . . . , r
−1
n Tn}.

Now we state a result that we will need in the next section.

Lemma 1.29. Let ε > 0 be given and r > 0 be a polyradius. Assume that A is Noethe-
rian, and consider

f =
∑
ν∈Nn

fνT
ν
∈ A{r−1T }.

Then there exists a finite subset J ⊆ Nn, and for all ν ∈ J , a series φν ∈ A{r−1T }

satisfying ‖φν‖ < ε, such that

f =
∑
ν∈J

fν(T
ν
+ φν)

and no terms T µ with µ ∈ J appear in the φν’s. Moreover, if we fix some µ ∈ Nn, we can
assume that µ ∈ J .
Proof. Let I be the ideal generated by the family {fν}ν∈Nn . Since A is Noetherian, there
exists a finite subset J of Nn such that I = A.(fν)ν∈J . So for all µ ∈ Nn \J one can find
a decomposition fµ =

∑
ν∈J fνa

ν
µ with aνµ ∈ A. In fact, using [BGR84, 3.7.3], we can

even assume4 that there exists a real constant C > 0 such that

∀µ ∈ Nn, ∀ν ∈ J, ‖aνµ‖ ≤ C‖fµ‖. (1.13)

4 Indeed, considerψ : AJ → I, (aν)ν∈J 7→
∑
ν∈J aνfν . According to [BGR84, 3.7.3.1], I is a

complete normed A-module, and ψ is a continuous map of normed A-modules. Hence there exists
a constant C such that ‖ψ(x)‖ ≤ C‖x‖ for all x ∈ AJ .
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Then we define, for ν ∈ J ,
φν =

∑
µ∈Nn\J

aνµT
µ.

Since ‖aνµ‖ ≤ C‖fµ‖, we have φν ∈ A{r−1T }. Hence, in A{r−1T }, the following equal-
ity is satisfied:

f =
∑
ν∈J

fν

(
T ν +

∑
µNn\J

aνµT
µ
)
=

∑
ν∈J

fν(T
ν
+ φν). (1.14)

Now, if ν0 /∈ J we set J ′ = J ∪ {ν0}, φ′ν0
:= 0, and for ν ∈ J , φ′ν :=

∑
µ∈Nn\J ′ a

ν
µT

µ.
One checks that the properties mentioned above still hold, namely ‖aµν ‖ ≤ C‖fµ‖, where
the constant C has not been changed, and

f =
∑
ν∈J ′

fν(T
ν
+ φ′ν).

Moreover,
C‖fµ‖r

µ
−−−−→
|µ|→∞

0,

so there exists a finite set K ⊂ Nn such that

∀ν ∈ J, ∀µ ∈ Nn \K, ‖aνµ‖ < ε.

Hence if we increase J by adding the elements of K \ J to J , we will obtain a decompo-
sition

f =
∑
ν∈J

fν(T
ν
+ φν)

such that ‖φν‖ < ε for all ν ∈ J . ut

1.4. Equivalence of the two notions

From now on, A will be a k-affinoid algebra, and r ∈ (R∗+)n a polyradius such that r > 1,
and we set A{r−1T } = A{r−1

1 T1, . . . , r
−1
n Tn}. If ν ∈ Nn we set

T ν := T
ν1
1 . . . T νnn , |ν|∞ = max

i=1,...,n
νi, rν =

n∏
i=1

r
νi
i .

When µ, ν ∈ Nn, we write µ <lex ν when µ is smaller than ν with respect to the
lexicographic order, that is, there exists an index m such that µm < νm and µm−1 =

νm−1, . . . , µ1 = ν1.
We will use the following notation. If A is a k-affinoid algebra, f =

∑
n∈N anT

n
∈

A{r−1T } and x ∈M(A), we will denote by fx the element of H(x){r−1T } defined by

fx =
∑
n∈N

an(x)T
n.

Since A is Noetherian, we can apply Lemma 1.29 to it.
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Proposition 1.30. Let f =
∑
ν∈Nn fνT

ν
∈ A{r−1T }. There exists a constructible cover-

ing of X, (Xi, Si)
ϕi
99K X, i = 0, . . . , N , such that if we consider the cartesian diagrams

(Xi, Si)
ϕi // X

Xi × Br

πi

OO

ϕ′i // X × Br

π

OO

and if we denote by Ai the k-affinoid algebra of Xi , then for all i = 1, . . . , N there exist
ai ∈ Ai and a function

gi =
∑
ν∈Nn

gi,νT
ν
∈ Ai{r

−1T }

such that

• For all i, the family {gi,ν}ν∈Nn generates the unit ideal in Ai .
• For all i, ϕ′∗i (f )|π−1

i (Si )
= (aigi)|π−1

i (Si )
.

Proof. By Lemma 1.29 (here we will not use the extra condition ‖ϕν‖ < ε of that lemma),
we can find a finite subset J ⊆ Nn, and for ν ∈ J some φν ∈ A{r−1T }, such that

f =
∑
ν∈J

fν(T
ν
+ φν).

Fix any r > 1, and for each ν ∈ J consider the constructible datum (Xν, Sν)
ϕν
99K X

where the affinoid algebra of Xν is A{r−1tµ}µ∈J\{ν}/(fµ − tµfν), and

Sν := {x ∈ Xν | |fκ(x)| ≤ |fν(x)| ∀κ ∈ J \ {ν} and fν(x) 6= 0}.

This gives rise to the cartesian diagrams

(Xν, Sν)
ϕν // X

Xν × Br

π ′

OO

ϕ′ν // X × Br

π

OO

Now,
ϕ′∗ν (f ) = fν

(
T ν + φν +

∑
µ∈J\{ν}

tµ(T
µ
+ φµ)

)
=: fνgν .

Moreover, if we write gν =
∑
µ∈Nn gν,µT

µ, then by Lemma 1.29 the coefficient gν,ν
is 1, so the coefficients of gν generate the unit ideal. Finally, denote by I the ideal of
A generated by (aν)ν∈J . By construction, I also equals the ideal generated by (aν)ν∈Nn .
Then, according to the definition of the Sν’s,⋃

ν∈J

φν(Sν) = {x ∈ X | ∃ν ∈ J, fν(x) 6= 0} = X \ V (I).
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Thus, if we set S0 = V (I), then (X, S0)
id
−→ X is an elementary constructible datum and

id∗(f )|S0 = f|S0 = 0.

Now if we combine the constructible data (Xν, Sν)
ϕν
99K X for ν ∈ J with

(X, S0)
ϕ
−→ X, we obtain the desired constructible covering. ut

Definition 1.31. Let r ∈ (R∗+)n be a polyradius and d1, . . . , dn−1 some integers such that

∀i = 1, . . . , n− 1, rdin ≤ ri . (1.15)

Then

σ :

{
Ti 7→ Ti + T

di
n for 1 ≤ i ≤ n− 1,

Tn 7→ Tn

is an automorphism of A{r−1T }. We will call such an automorphism (as well as the
automorphism it induces on the k-analytic space Br ) a Weierstrass automorphism.

Remark 1.32. If r > 1, we will use the fact that σ induces a “classical” Weierstrass
automorphism of A{T1, . . . , Tn}, hence of X × Bn.

Recall the following classical result. If f ∈ k{T1, . . . , Tn}, then there exists a Weierstrass
automorphism σ of k{T1, . . . , Tn} such that σ(f ) is Tn-distinguished. Roughly speaking,
the next lemma says that if A is a k-affinoid algebra and f ∈ A{T1, . . . , Tn} is overcon-
vergent, then locally on X =M(A), we can obtain an analogous result.

Proposition 1.33. Let A be a k-affinoid algebra. LetX =M(A) and x ∈ X. Let r ∈ Rn
be a polyradius such that r > 1.

(1) Let f ∈ A{r−1T } be such that fx 6= 0. Then there exist an affinoid neighbourhood
V =M(B) of x, a polyradius ρ such that 1 < ρ ≤ r , and a Weierstrass automor-
phism σ of B{ρ−1T } such that in B{ρ−1T },

σ(f ) = ag

where a ∈ B and g ∈ B{ρ−1T } is Tn-distinguished.
(2) More generally, consider m functions f1, . . . , fm ∈ A{r−1T } such that (fi)x 6= 0

for all i. Then there exist an affinoid neighbourhood V =M(B) of x, a polyradius ρ
such that 1 < ρ ≤ r , and a Weierstrass automorphism σ of B{ρ−1T } such that for
all i,

σ(fi) = aigi

where ai ∈ B and gi ∈ B{ρ−1T } is Tn-distinguished.

Proof. We first prove (1).

Step 1. Let us write
f =

∑
ν∈Nn

fνT
ν
∈ A{r−1T }.
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Let µ ∈ Nn be the greatest index with respect to the lexicographic order such that

max
ν∈Nn
|fν(x)| = |fµ(x)|.

Since by assumption fx 6= 0, we have fµ(x) 6= 0. According to Lemma 1.29, there exists
a finite set J ⊂ Nn such that µ ∈ J , and for each ν ∈ J a series φν ∈ A{r−1T } which
satisfies ‖φν‖A{r−1T } < 1 such that

f =
∑
ν∈J

fν(T
ν
+ φν). (1.16)

Step 2. Let ν ∈ J and assume that |fν(x)| < |fµ(x)|. Then we pick some a, b ∈ R such
that

|fν(x)| < a < b < |fµ(x)|.

Next, we introduce the following affinoid domain in X:

W := {z ∈ X | |fν(z)| ≤ a < b ≤ |fµ(z)|} =M(B).

By construction, W is an affinoid neighbourhood of x, fµ is invertible in B and∥∥∥∥ fνfµ
∥∥∥∥
B
≤
a

b
< 1.

So we can write

fν(T
ν
+ φν) = fµ

(
fν

fµ
(T ν + φν)

)
.

Next we consider some polyradius 1 < ρ ≤ r . Clearly

ρν −−−→
ρ→1

1.

So we can choose some ρ close enough to 1 such that∥∥∥∥ fνfµ T ν
∥∥∥∥
B{ρ−1T }

< 1.

Since we already know that ‖φν‖B{ρ−1T } < 1, it follows that∥∥∥∥ fνfµ (T ν + φν)
∥∥∥∥
B{ρ−1T }

< 1.

But since

fν(T
ν
+ φν) = fµ

(
fν

fµ
(T ν + φν)

)
,

if we set
φ′µ := φµ +

fν

fµ
(T ν + φν)
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we still have ‖φ′µ‖B{ρ−1T } < 1 and

fµ(T
µ
+ φµ)+ fν(T

ν
+ φν) = fµ(T

µ
+ φ′µ).

Hence we can remove ν from J and replace φµ by φ′µ. The equality (1.16) will still be
satisfied.

If we repeat this process for each ν ∈ J such that |fν(x)| < |fµ(x)|, we can assume
that

∀ν ∈ J, |fν(x)| = |fµ(x)|.

According to the definition of µ, this implies that µ is the greatest index in J with respect
to the lexicographic order.

Step 3. We set
d := 1+max

ν∈J
|ν|.

Since by assumption 1 < r , we fix s > 1 close enough to 1 so that

1 < (sd
n−1
, sd

n−2
, . . . , sd , s) ≤ r, (1.17)

and we set
ρ := (sd

n−1
, sd

n−2
, . . . , sd , s). (1.18)

It is easy to check that ρ satisfies condition (1.15) of Definition 1.31, so

σ :



T1 7→ T1 + T
dn−1

n ,
...

...

Ti 7→ Ti + T
dn−i

n ,
...

...

Tn−1 7→ Tn−1 + T
d
n ,

Tn 7→ Tn

defines a Weierstrass automorphism of B{ρ−1T }. Then, for ν ∈ J \ {µ},

σ(fν(T
ν
+ φν)) = fν(σ (T

ν)+ σ(φν)) = fµ

(
fν

fµ
(σ (T ν)+ σ(φν))

)
.

Since ‖σ(φν)‖B{ρ−1T } = ‖φν‖B{ρ−1T } < 1, we can choose s so close to 1 that

s‖φν‖ < 1. (1.19)

Then we make the following calculation. If ν ∈ J ,

‖σ(T ν)‖B{ρ−1T } = ‖T
ν
‖B{ρ−1T } =

n∏
k=1

(sd
n−k

)νk = s
∑n
k=1 νkd

n−k

. (1.20)
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Note that
∑n
k=1 νkd

n−k is nothing other than the integer encoded by ν in base d . Since
by assumption, for all ν ∈ J \ {µ} we have ν <lex µ, it follows that for ν ∈ J \ {µ},

n∑
k=1

νkd
n−k
+ 1 ≤

n∑
k=1

µkd
n−k.

As a corollary,
s‖σ(T ν)‖B{ρ−1T } ≤ ‖σ(T

µ)‖B{ρ−1T }. (1.21)

Now consider some s′ ∈ R such that 1 < s′ < s and set

V := {z ∈ X | ∀ν ∈ J \ {µ}, |fν(z)| ≤ s
′
|fµ(z)|}.

Then by construction, V is an affinoid neighbourhood of x. Let us replace B by the affi-
noid algebra of V . Then by construction, for all ν ∈ J \ {µ},

‖fν/fµ‖B ≤ s
′ < s.

So according to (1.21),∥∥∥∥ fνfµ σ(T ν)
∥∥∥∥
B{ρ−1T }

< s‖σ(T ν)‖B{ρ−1T } ≤ ‖σ(T
µ)‖B{ρ−1T }.

Hence by (1.19), we can assume that∥∥∥∥ fνfµ σ(φν)
∥∥∥∥
B{ρ−1T }

≤ s′‖σ(φν)‖B{ρ−1T } = s
′
‖φν‖B{ρ−1T } < 1 ≤ ‖σ(T ν)‖.

Thus

σ(fν(T
ν
+ φν)) = fµ

(
fν

fµ
(σ (T ν)+ σ(φν))

)
where ∥∥∥∥ fνfµ (σ (T ν)+ σ(φν))

∥∥∥∥
B{ρ−1T }

< ‖σ(T µ)‖B{ρ−1T }.

Step 4. We have

σ(f ) = fµ

(
σ(T µ)+ σ(φµ)+

∑
ν∈J\{µ}

fν

fµ
(σ (T ν)+ σ(φν))

)
.

Hence if we set
φ = σ(φµ)+

∑
ν∈J\{µ}

fν

fµ
(σ (T µ)+ σ(φν)),

the preceding inequalities imply that ‖φ‖B{ρ−1T } < ‖σ(T
µ)‖B{ρ−1T }, and by construction

σ(f ) = fµ(σ (T
µ)+ φ).

Hence σ(T µ)+φ is Tn-distinguished of order
∑n
k=1 µkd

n−k , which ends the proof of (1).
For the proof of (2), it suffices to remark that we could have carried out the proof

of (1) simultaneously for all the fi’s, the main point being that in Step 3, we have to take
some d large enough that works for all fi’s simultaneously. ut
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Lemma 1.34. If S is an overconvergent constructible subset of X, then S is an overcon-
vergent subanalytic subset of X.

Proof. It is sufficient to prove that if (Y, T )
ϕ
99K X is a constructible datum, then ϕ(T ) is

overconvergent subanalytic in X.
We claim that if ϕ is a constructible datum of complexity n, there exist some polyradii

s, r ∈ Rn such that s ∈
√
|k×|

n
and 0 < s < r , and some closed immersion ι,

Y

ϕ

##

� � ι // X × Br

π

��
X

such that ι(T ) ⊂ X×Bs . Indeed, this follows from the definition of a constructible datum,
and is proved easily by induction on the complexity of ϕ.

Hence ϕ(T ) = π(ι(T )), and since ι(T ) is a semianalytic subset of X × Br contained
in X × Bs , it follows that π(ι(T )) is an overconvergent subanalytic subset of X. ut

Theorem 1.35. Let S ⊂ X. If S is overconvergent subanalytic, then it is also overcon-
vergent constructible.

Proof. Let S be an overconvergent subanalytic subset of X. By definition, there exist
r > 1 and a semianalytic subset R of X × Br such that S = π(R ∩ (X × Bn)). We will
show by induction on n that S is overconvergent constructible.

If n = 0, there is nothing to prove since in that case, S is a semianalytic subset of X,
in particular it is an overconvergent constructible subset.

Let now n > 0 and assume that the assertion holds for integers < n. We can as-
sume that R is a basic semianalytic subset (see Remark 1.2), i.e. there are 2m functions
f1, . . . , fm, g1, . . . , gm ∈ A{r−1T } and ♦j ∈ {≤, <} for j = 1, . . . , m such that

R = {x ∈ X × Bnr | |fj (x)| ♦j |gj (x)|, j = 1, . . . , m}. (1.22)

Step 1. According to Proposition 1.30 we can find a constructible covering (Xi, Si)
ϕi
99K

X where Xi =M(Bi) which induces the cartesian diagram

Xi × Bnr
ϕ′i //

πi

��

X × Bnr
π

��
Xi

ϕi // X

such that for all j = 1, . . . , m,

ϕ′∗i (fj )|π−1
i (Si )

= (aijF
i
j )|π−1

i (Si )
, (1.23)

ϕ′∗i (gj )|π−1
i (Si )

= (bijG
i
j )|π−1

i (Si )
, (1.24)
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where aij , b
i
j ∈ Bi , F ij ,G

i
j ∈ Bi{r−1T }, and the coefficients of F ij (resp. of Gij ) generate

the unit ideal in Bi . Then for each i we set

Ri := {x ∈ Xi × Bnr | |a
i
jF

i
j (x)| ♦j |b

i
jG

i
j (x)|, j = 1, . . . , m}.

So (1.23) and (1.24) imply precisely that

Ri ∩ π
−1
i (Si) = ϕ

′−1
i (R) ∩ π−1

i (Si).

Thus if we set
Ui := πi(Ri ∩ (Xi × Bn))

then ϕi(Si ∩ Ui) = ϕi(Si) ∩ S, hence since the ϕi(Si) form a covering of X,

S =

n⋃
i=1

ϕ(Si ∩ Ui).

So if we prove that ϕi(Si ∩ Ui) is overconvergent constructible, we are done.
But actually, since each Si is overconvergent constructible in Xi (it is even semian-

alytic, see Remark 1.6), if we prove that Ui is an overconvergent constructible subset of
Xi , then it will follow that Si ∩ Ui is an overconvergent constructible subset of Xi , and
then according to Proposition 1.13(2), ϕi(Si ∩ Ui) will be overconvergent constructible
in X. Thus, it remains to prove that Ui is overconvergent constructible in Xi .

Step 2. We can now replace X by one of the Xi’s and assume that R is defined by

R = {x ∈ X × Bnr | |ajfj (x)| ♦j |bjgj (x)|, j = 1, . . . , m} (1.25)

with aj , bj ∈ A and fj , gj ∈ A{r−1T } such that for all j , the coefficients of fj (resp.
of gj ) generate the unit ideal of A. In this situation we must show that S is overconvergent
constructible in X where

S = π(R ∩ (X × Bn)).

Let x ∈ X. The above property of the fj ’s and gj ’s implies that (fj )x 6= 0 and
(gj )x 6= 0. So we can apply Proposition 1.33 to them. Thus there exist an affinoid neigh-
bourhood V =M(B) of x, some polyradius 1 < ρ ≤ r and some Weierstrass automor-
phism σ of B{ρ−1T } such that for each j ,

σ(fj ) = αjFj , (1.26)
σ(gj ) = βjGj , (1.27)

where αj , βj ∈ B and Fj ,Gj are Tn-distinguished elements of B{ρ−1T }. Consider the
commutative diagram

V × Bρ
σ
∼ //

π ′′

**

V × Bρ
π ′

%%

ι // X × Br

π

��
X
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where ι is the embedding of the affinoid domain V × Bρ in X × Bρ . Then set

R′ := ι−1(R), R′′ := σ−1(ι−1(R)).

First it is clear that

S ∩ V = π(R ∩ (X × Bn)) = π(R ∩ (V × Bn))
= π ′(R′ ∩ (V × Bn)) = π ′′(R′′ ∩ (V × Bn)). (1.28)

For the last equality in (1.28), we use the fact that the Weierstrass automorphism σ in-
duces an isomorphism of V × Bn as noticed in Remark 1.32.

But since we know that being overconvergent constructible is a local property (see
Corollary 1.15), if we prove that S ∩ V is overconvergent constructible, then since x has
been taken arbitrarily, and since V is an affinoid neighbourhood of x, this will conclude
the proof. So it suffices to prove that π ′′(R′′ ∩ (V × Bn)) is overconvergent constructible
in V . Now according to (1.25)–(1.27), R′′ is a semianalytic subset of V × Bρ defined by
inequalities between functions ajαjFj , bjβjGj , where aj , αj , bj , βj ∈ B and Fj ,Gj ∈
B{ρ−1T } are Tn-distinguished.

Step 3. Replacing X by V , R by R′′, ajαj by aj , bjβj by bj , Fj by fj and Gj by gj , we
can assume that

R = {x ∈ X × Bnr | |ajfj (x)| ♦j |bjgj (x)|, j = 1, . . . , m} (1.29)

where aj , bj ∈ A and Fj ,Gj ∈ A{r−1T } are Tn-distinguished in A{r−1T }. Then
we apply the Weierstrass Preparation Theorem 1.28 to fj and gj . Consequently,
there exist multiplicative units ej , e′j ∈ A{r−1T } and monic polynomials wj , w′j ∈

A{r−1
1 T1, . . . , (rn−1)

−1Tn−1}[Tn] such that

fj = ejwj , gj = e
′

jw
′

j .

Thus if we set

Pj := ajwj , Qj := bjw
′

j ,

we have Pj ,Qj ∈ A{r−1
1 T1, . . . , (rn−1)

−1Tn−1}[Tn]. In addition, since ej , e′j are multi-

plicative units, we have |ej (x)| = ‖ej‖ ∈
√
|k×| and |e′j (x)| = ‖e

′

j‖ ∈
√
|k×| for all

x ∈ X × Br . So we finally obtain

R = {x ∈ X × Bnr | |ajfj (x)| ♦j |bjgj (x)|, j = 1, . . . , m}
= {x ∈ X × Bnr | ‖ej‖ |Pj (x)| ♦j ‖e

′

j‖ |Qj (x)|, j = 1, . . . , m}. (1.30)

Consider the projection along the last coordinate of Br ,

X × Br
π1
−→ X × B(r1,...,rn−1)

π2
−→ X.

According to [Duc03, 2.5], π1(R ∩ (X×Bn) is a semianalytic subset of X×B(r1,...,rn−1).
So by induction hypothesis, π2(π1(R ∩ (X × Bn))) is overconvergent constructible
in X. Since π2 ◦ π1 = π , this proves that S is overconvergent constructible and ends
the proof. ut
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We have thus proved

Theorem 1.36. LetX be a strictly k-affinoid space and S ⊂ X. Then S is overconvergent
subanalytic if and only if it is overconvergent constructible.

Thanks to this theorem we can use some obvious properties of overconvergent suban-
alytic (resp. constructible) subsets to prove less obvious results about overconvergent
constructible (resp. subanalytic) subsets. For instance we can obtain a non-trivial result
concerning overconvergent subanalytic subsets:

Proposition 1.37. Let X be a strictly k-affinoid space. The class of overconvergent sub-
analytic subsets of X is stable under finite boolean combinations.5

Proof. This was proven for overconvergent constructible subsets in Proposition 1.13. ut
In the same way, we obtain a non-obvious stability property for overconvergent con-
structible subsets:

Corollary 1.38. Let r ∈ Rn be a polyradius such that r > 1, and S ⊆ X × Br be an
overconvergent subanalytic (or constructible) subset of X × Br . Then π(S ∩ (X × Bn))
is an overconvergent subanalytic (or constructible) subset of X.
Proof. If S is an overconvergent subanalytic subset of X × Br , then by definition, there
exists s > 1, an integer m and a semianalytic subset T of X × Br × Bms such that S =
π2(T ∩ ((X×Br)×Bm)) where π2 : (X×Br)×Bms → X×Br is the natural projection.
Hence π(S ∩ (X × Bn)) = π2(T ∩ ((X × Bn) × Bm)) = π2(T ∩ (X × Bn+m)) where
π2 : X × Br × Bms → X is the natural projection (so π2 = π ◦ π1). Hence S is an
overconvergent subanalytic subset of X. ut

1.5. From a global to a local definition

Definition 1.39. Let P be the data, for each k-affinoid spaceX, of a family PX of subsets
of X. If S is a subset of a k-affinoid space X, we will say that S satisfies P if S ∈ PX. We
will say that:
• P is aG-local property if for every k-affinoid spaceX and any subset S ofX, S satisfies

P if and only if for all finite affinoid coverings {Xi} of X, S ∩Xi satisfies P relative to
Xi (i.e. S ∩Xi ∈ PXi ).
• P is a local property if for every affinoid space X and any subset S of X, S ∈ PX

if and only if for all x ∈ X, there exists an affinoid neighbourhood U of x such that
S ∩ U ∈ PU .

If S is a subset of a topological space X, we will denote by S̊ the topological interior
of S. Note that by the compactness of affinoid spaces, saying that P is a local property
is equivalent to requiring that for all k-affinoid spaces X and any S ⊆ X, S satisfies P
if and only if S ∩ Xi ∈ PXi for any finite affinoid covering {Xi} of X such that {X̊i} is
also a covering of X. As a consequence, if P is a G-local property, then it is also a local
property.

5 In fact, the only non-trivial result is that overconvergent subanalytic subsets are stable under
taking complements.
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Example 1.40. A consequence of Kiehl’s theorem [BGR84, 9.4.3] is that the class of
Zariski closed subsets of affinoid spaces defines a class which is G-local.

Definition 1.41. Let X be a good k-analytic space. A wide covering of X is a cover-
ing {Xi} such that the Xi’s are affinoid domains in X and {X̊i} is also a covering of X.

Proposition 1.42. LetX be a strictly k-affinoid space, and S a subset ofX. The following
assertions are equivalent:

(1) S is an overconvergent subanalytic subset of X.
(2) For every wide covering {Xi} of X, Xi ∩ S is an overconvergent subanalytic subset

of Xi .
(3) There exists a wide covering {Xi} ofX such thatXi∩S is overconvergent subanalytic

in Xi for all i.
(4) For all x ∈ X there exists an affinoid neighbourhood V of x such that V ∩ S is

overconvergent subanalytic in V .

Property (4) implies that the class of overconvergent subanalytic subsets is local in the
sense of Definition 1.39.

Proof. (1)⇒(2) is obvious and is a consequence of Lemma 1.17; (2)⇒(3) and (3)⇔(4)
are clear; and (4)⇒(1) follows from the analogous statement for overconvergent con-
structible subsets (Corollary 1.15) and Theorem 1.36. ut

Definition 1.43. LetX be a good strictly k-analytic space. A subset S ⊂ X is called over-
convergent subanalytic if for all x ∈ X there exists a strictly affinoid neighbourhood V
of x such that S ∩ V is overconvergent subanalytic in V (according to Definition 1.16).

According to the last proposition, when X is a k-affinoid space, this definition is compat-
ible with Definition 1.16.

Definition 1.44. Let X be a good strictly k-analytic space. A subset S of X is called
locally semianalytic if for every x ∈ X there exists a strictly affinoid neighbourhood V
of x such that V ∩ S is semianalytic in V .

Corollary 1.45. Let X be a good strictly k-analytic space. The class of locally semiana-
lytic subsets of X is contained in the class of overconvergent constructible subsets of X.

Corollary 1.46. Let X be a strictly k-affinoid space and S ⊂ X. Then S is an overcon-
vergent subanalytic subset ofX if and only if there exist r > 1, an integer n, and a locally
semianalytic subset T ⊆ X × Bnr such that S = π(T ∩ (X × Bn)).

Proof. The direct implication is true because a semianalytic subset of X × Bnr is in par-
ticular a locally semianalytic subset of X × Bnr .

Conversely, if S = π(T ∩ (X × Bn)) where T is a locally semianalytic subset of
X×Bnr , then according to Corollary 1.45, T is overconvergent subanalytic in X×Bnr , so
by Corollary 1.38, π(T ∩ (X × Bn)) is also overconvergent subanalytic. ut
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Lemma 1.47. Let ϕ : Y → X be a morphism of good strictly k-analytic spaces, and
S ⊆ X be a locally semianalytic subset of X. Then ϕ−1(S) is a locally semianalytic
subset of Y .

Proof. Let y ∈ Y and x = ϕ(y). There exists an affinoid neighbourhood V of x such that
V ∩ S is semianalytic in V . Let W be an affinoid neighbourhood of y in ϕ−1(V ). Then
W ∩ ϕ−1(S) is semianalytic in W . ut

If ϕ : Y → X is a morphism of k-analytic spaces, one can define the relative interior
of ϕ, denoted by Int(Y/X), which is a subset of Y . We refer to [Ber90, 2.5.7] for the
definition. The complementary set of Int(Y/X) in Y is called the relative boundary of ϕ
and denoted by ∂(Y/X). For these sets, the non-rigid points are essential. For instance, if
ϕ : B→M(k) is the structural morphism, ∂(B/M(k)) is simply the Gauss point.

Theorem 1.48. Let ϕ : Y → X be a morphism of strictly k-affinoid spaces, and U an
affinoid domain in Y such that U ⊆ Int(Y/X). If S is an overconvergent subanalytic
subset of Y then ϕ(U ∩ S) is an overconvergent subanalytic subset of X.

Proof. According to [Ber90, Prop. 2.5.9] there exist r > s > 0 and an admissible epi-
morphism A{r−1T } → B which identifies Y with a Zariski closed subset ofX×Br , such
that under this identification, U ⊆ X×Bs . We can assume that s ∈

√
|k×|

n
. If we denote

by 0(ϕ) the graph of ϕ, this induces a Zariski closed embedding Y ' 0(ϕ)
i
−→ X × Br .

Now since S is an overconvergent subanalytic subset of Y , according to Lemma 1.18,
i(S) is an overconvergent subanalytic subset of X×Br . Finally, U is a semianalytic sub-
set of Y (by the Gerritzen–Grauert theorem), so i(U) is also semianalytic in X× Br , and
by assumption, i(U) ⊆ X×Bs , so i(U ∩S) ⊆ X×Br is an overconvergent constructible
subset of X × Br , and according to Corollary 1.38, π(i(U ∩ S)) is an overconvergent
subanalytic subset of X. But this set is precisely ϕ(U ∩ S). ut

As in algebraic geometry, the notion of a proper morphism of k-analytic spaces is a little
subtle. If ϕ : Y → X is a morphism of k-analytic spaces, let |Y | → |X| denote the
associated map of topological spaces. Then ϕ is said to be compact [Ber90, p. 50] if
the map |Y | → |X| is proper (in the topological sense). Finally, ϕ is said to be proper
[Ber90, p. 50] if ϕ is compact and ∂(Y/X) = ∅.

Proposition 1.49. Let ϕ : Y → X be a morphism of good strictly k-analytic spaces, and
S an overconvergent subanalytic subset of Y such that the map S → |X| of topological
spaces is proper and S ⊆ Int(Y/X). Then ϕ(S) is an overconvergent subanalytic subset
of X.

Proof. If X′ is an affinoid domain in X and if we consider the cartesian diagram

S ⊆ Y
ϕ // X

S′ ⊆ Y ′

ψ ′

OO

ϕ′ // X′

ψ

OO
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then ψ ′−1(S) is closed in Y ′ and contains ψ ′−1(S) = S′, so S′ ⊆ S′ ⊆ ψ ′−1(S); fur-
thermore, since properness is stable under base change, ψ ′−1(S) → |X′| is proper, and
since S′ is closed, S′→ |X′| is proper. Moreover, ψ ′−1(Int(Y/X)) ⊆ Int(Y ′/X′) [Ber90,
3.1.3(iii)], so S′ ⊆ ψ ′−1(S) ⊆ Int(Y ′/X′). Thus S′ and ϕ′ fulfil the hypotheses of the
proposition. Hence, since the property we want to check is local on X, we can assume
that X is a k-affinoid space, hence that S is compact.

Now for every y ∈ S we can find an affinoid neighbourhood U such that U ⊆
Int(Y/X), because Int(Y/X) is open [Ber90, 2.5.7]. Then ϕ(U ∩ S) is an overconver-
gent subanalytic subset of X according to Theorem 1.48. Since S is compact, we can
extract from this a finite covering of S, which finishes the proof that ϕ(S) is overconver-
gent subanalytic. ut

Corollary 1.50. Let ϕ : Y → X be a proper morphism of good strictly k-analytic spaces.
Let S be an overconvergent subanalytic subset of Y . Then ϕ(S) is an overconvergent
subanalytic subset of X.

Definition 1.51. A morphism ϕ : Y → X of good k-analytic spaces is locally ex-
tendible without boundary if, for all y ∈ Y , there exists an affinoid neighbourhood U
of y, a k-affinoid space Y ′ that contains U as an affinoid domain, and ψ : Y ′ → X that
extends ϕ|U such that U ⊆ Int(Y ′/X).

Note that again by [Ber90, 3.1.3(iii)], this property is stable under base change.

Proposition 1.52. Let ϕ : Y → X be a compact morphism of good strictly k-analytic
spaces which is locally extendible without boundary. Then ϕ(Y ) is an overconvergent
subanalytic subset of X.

Proof. We can assume that X is a k-affinoid space, so Y is compact. Then for all y ∈ Y
we can find an affinoid neighbourhood U of y, a k-affinoid space Y ′ that contains U , and
ψ : Y ′ → X that extends ϕ|U such that U ⊆ Int(Y ′/X). Then, by Theorem 1.48, ϕ(U)
is an overconvergent subanalytic subset of X (take S = Y ′). Hence by compactness of Y ,
ϕ(Y ) is overconvergent subanalytic. ut

1.6. The non-strict case

In this section, k will be an arbitrary non-archimedean field (possibly trivially valued).
One of the advantages of Berkovich’s approach is the possibility to use arbitrary

λ ∈ R+ to define inequalities. It is then natural to give the following definitions:

Definition 1.53. Let A be a k-affinoid algebra, and set X =M(A).

• A subset S ⊂ X is called non-strictly semianalytic if it is a boolean combination of
subsets

{x ∈ X | |f (x)| ≤ λ|g(x)|}

where f, g ∈ A and λ ∈ R+.
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• A subset S ⊂ X is called non-strictly overconvergent subanalytic if there exist n ∈ N,
a real number r > 1, and a non-strictly semianalytic set T ⊂ X × Bnr such that
S = π(T ∩ (X × Bn)) where π : X × Bnr → X is the first projection.

Remark 1.54. Let X be a strictly k-affinoid space and let S ⊂ X. The following impli-
cation holds:

S is semianalytic ⇒ S is non-strictly semianalytic.
However, if

√
|k×| ( R∗+, the converse implication is false. Indeed, let r ∈ ]0, 1[ be such

that r /∈
√
|k×|, letX = B1

=M(k{T }) and let S = {x ∈ B | |T (x)| = r}. By definition,
S is a non-strictly semianalytic set in B1, but we claim that it is not semianalytic. Indeed,
we will see in 2.14 that semianalytic sets are entirely determined by their rigid points,
that is, if S1 and S2 are semianalytic subsets of X, then S1 = S2 if and only if S1 ∩Xrig =

S2 ∩Xrig. Since in our example, S ∩Xrig = ∅, if S were semianalytic, it would be empty,
which it is not: actually, S = {ηr}.

Definition 1.55. Let X be a k-affinoid space. Let (X, S) be a k-germ, f, g ∈ A, 0 <

s < r where r, s ∈ R, and

Y =M(A{r−1t}/(f − tg))
ϕ
−→ X

and T = ϕ−1(S) ∩ R ∩ {y ∈ Y | |f (y)| ≤ s|g(y)| 6= 0} where R is a non-strictly
semianalytic subset of Y . Then we say that (Y, T )

ϕ
−→ (X,R) is a non-strictly elementary

constructible datum.

The only difference from Definition 1.3 is that we do not assume any more that s ∈
√
|k×|,

and that R is allowed to be non-strictly semianalytic, that is, defined with inequalities
involving some arbitrary λ ∈ R.

Then we mimic Definition 1.5, and say that a non-strictly constructible datum (Y, T )
ϕ
99K (X, S) is a composite ϕ = ϕ1◦· · ·◦ϕn where each ϕi is a non-strictly elementary con-
structible datum. Finally, if (Xi, Si)

ϕi
99K X, i = 1, . . . , n, are n non-strictly constructible

data, we say that S :=
⋃n
i=1 ϕi(Si) is a non-strictly overconvergent constructible set.

We claim that all results we have proven in this section for overconvergent subanalytic
(resp. constructible) sets remain valid for non-strictly overconvergent subanalytic (resp.
constructible) sets. For instance:

Theorem 1.56. Let X be a k-affinoid space. Then S ⊂ X is non-strictly overconvergent
subanalytic if and only if it is non-strictly overconvergent constructible.

In this context, we want to stress that for instance Propositions 1.42 and 1.49 also remain
true.

2. Study of various classes

2.1. Many families

In this section X = M(A) will be a strictly k-affinoid space. The aim of this section
is to first recall the definitions of the various classes of rigid/locally/strongly/D-semi-
analytic/subanalytic subsets of X that are defined in [Sch94a].
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We now give the following definitions. A subset S ⊆ X is called:

(a) semianalytic if it is a boolean combination of subsets of the form {x ∈ X | |f (x)| ≤
|g(x)|} with f, g ∈ A;

(b) locally semianalytic if for all x ∈ X there exists an affinoid neighbourhood V of x
such that S ∩ V is semianalytic in V ;

(c) rigid-semianalytic if there is a finite affinoid covering6
{Xi}

n
i=1 such that S ∩ Xi is

semianalytic in Xi for all i.
(d) overconvergent subanalytic if it is as defined in Definition 1.16 (as we proved in the

previous section, this also corresponds to overconvergent constructible subsets; more-
over, our definition of overconvergent subanalytic subset is the same as the definition
of globally strongly subanalytic subset in [Sch94a, 1.3.8.1]; this is equivalent to being
globally strongly D-semianalytic [Sch94a, 1.3.2]);

(e) G-overconvergent subanalytic if there exists a finite affinoid covering {Xi} of X such
that S ∩ Xi is overconvergent constructible in Xi for all i (this corresponds to the
notion of strongly D-semianalytic subset in [Sch94a, 1.3.7.1]);

(f) strongly subanalytic if there exist n ∈ N, a real number r > 1, and a subset T ⊆ X×
Bnr which is rigid-semianalytic, such that S = π(T ∩(X×Bn)) (this definition comes
from [Sch94a, 1.3.8.1], and we will give an equivalent definition in Proposition 2.8);

(g) locally strongly subanalytic if there exists a finite affinoid covering {Xi} of X such
that S∩Xi is strongly subanalytic inXi for all i (this definition comes from [Sch94a,
1.3.8.2]).

In [Sch94a] it is stated that (d)–(g) are equivalent (equivalence of (e)–(g) is stated in
[Sch94a, Prop. 4.2], and the equivalence of (d) and (f) is stated in [Sch94a, Th. 5.2]).
These results rest on [Sch94a, Lemma 4.1] which is false, and we will show indeed that
(d), (e) and (f) correspond in general to three different classes. More precisely the aim of
this section is to show that these classes satisfy the following relations:

rigid-
semianalytic

locally G- )
3 ) 6

strongly ⊇ strongly )1 overconvergent * 4

* 5 locally )8 semi-
subanalytic ? subanalytic subanalytic ) 2 )

7 semianalytic analytic

overconvergent
subanalytic

Fig. 1. The hierarchy. In this figure, A ) B means that the class A properly contains the class B,
and A + B means that the class A does not contain the class B.

In this diagram, all the inclusions are clear from the definitions, except inclusion 7
which states that the class of overconvergent subanalytic subsets contains the class of
locally semianalytic subsets. But this is precisely the content of Corollary 1.42. In com-

6 If X is an affinoid space we say that {Xi}ni=1 is a finite affinoid covering if Xi is an affinoid
domain in X for all i and X =

⋃n
i=1Xi .
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parison with what was stated in [Sch94a], the most striking relation is probably *5 which
asserts that rigid-semianalytic subsets are not necessarily overconvergent subanalytic sub-
sets, contrary to [Sch94a, Th. 5.2]. In other words, when you project overconvergent
semianalytic subsets, you obtain a class which is not G-local (but local for the Berkovich
topology).

In this section we will show that the inclusions in Figure 1 are all proper in general
(in the next section we will explain that if X is regular of dimension 2, overconvergent
subanalytic subsets correspond to locally semianalytic subsets). We do not know if the
inclusion on the left,

locally strongly subanalytic ⊇ strongly subanalytic,

is proper.

2.2. Rigid-semianalytic subsets are not necessarily overconvergent subanalytic

Here we prove *5.

Lemma 2.1. Let η ∈ X be such that OX,η is a field, and S ⊂ X a semianalytic subset. If
η ∈ S, then S̊ is non-empty.

Proof. Since
⋃n
i=1 Si =

⋃n
i=1 Si we can assume that S is a basic semianalytic subset,

i.e. is of the form

S =
( m⋂
i=1

{x ∈ X | |fi(x)| ≤ |gi(x)|}
)
∩

( n⋂
j=1

{x ∈ X | |Fj (x)| < |Gj (x)|}
)
.

We use the decomposition

{x ∈ X | |fi(x)| ≤ |gi(x)|} = {x ∈ X | fi(x) = gi(x) = 0}
∪ {x ∈ X | |fi(x)| ≤ |gi(x)| 6= 0}

and using again the fact that closure is stable under finite unions, we can assume that
η ∈ S and that S is of the form

S =

l⋂
i=1

{x ∈ X | hi(x) = 0} ∩
m⋂
j=1

{x ∈ X | |fj (x)| ≤ |gj (x)| 6= 0}

∩

n⋂
k=1

{x ∈ X | |Fk(x)| < |Gk(x)|}.

Since the subsets {x ∈ X | hi(x) = 0} are closed and contain S, and η ∈ S, it follows that
hi(η) = 0.

Since OX,η is a field, we can find an affinoid neighbourhood V of η such that hi |V = 0
for all i. Hence V ∩ S 6= ∅ (because η ∈ S) and we can remove the hi’s, and assume that

V ∩ S =

m⋂
j=1

{x ∈ V | |fj (x)| ≤ |gj (x)| 6= 0} ∩
n⋂
k=1

{x ∈ V | |Fk(x)| < |Gk(x)|}.
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This defines a strictly k-analytic domain of X, which is non-empty, so its interior is also
non-empty, for instance the interior contains some rigid points. ut

Lemma 2.2. Let η ∈ X and assume that OX,η is a field. Let (Y, T )
ϕ
−→ (X, S) be an

elementary constructible datum with Y =M(A{r−1t}/(f − tg)) where T = ϕ−1(S) ∩

{y ∈ R | |f (y)| ≤ s|g(y)| 6= 0} with 0 < s < r , s ∈
√
|k×| and R a semianalytic subset

of Y . Assume that η ∈ ϕ(T ). Then

(a) g(η) 6= 0.
(b) |f (η)| ≤ s|g(η)|.
(c) There exists a neighbourhood U of η such that ϕ−1(U)

ϕ
|ϕ−1(U)
−−−−−→ U is an isomor-

phism. If is η′ the only point of ϕ−1(U) such that ϕ(η′) = η, then η′ ∈ T and OY,η′

is a field.

Proof. (a) If we had g(η) = 0, since OX,η is a field, there would exist an affinoid neigh-
bourhood V of η such that g|V = 0. Since g(ϕ(p)) 6= 0 for p ∈ T , we should have
ϕ(T ) ∩ V = ∅, which is impossible since η ∈ ϕ(T ).

(b) The set {x ∈ X | |f (x)| ≤ s|g(x)|} is a closed subset of X which contains ϕ(T ),
hence by assumption also contains η.

(c) Set U = {y ∈ Y | g(y) 6= 0}. Then ϕ|U is an isomorphism of U onto ϕ(U) =
{x ∈ X | |f (x)| ≤ r|g(x)| 6= 0} which is an analytic domain in X, and a neighbourhood
of η according to the preceding two points. So η ∈ ϕ(U), say η = ϕ(η′) with η′ ∈ U .
Now, OY,η′ ' OX,η is a field and η′ ∈ T . ut

Corollary 2.3. Let η ∈ X be such that OX,η is a field, and let U be an overconvergent
subanalytic subset of X. If η ∈ U , then Ů 6= ∅.

Proof. First, according to Theorem 1.35, we can assume that U is an overconvergent
constructible subset. Then, using similar arguments to those beginning the proof of Lem-
ma 2.1, we can assume that U = ϕ(T ) where (Y, T )

ϕ
99K X is a constructible datum.

Hence T is a semianalytic subset of Y . A repeated use of Lemma 2.2 furnishes an open
neighbourhood U of η such that ϕ|ϕ−1(U) : ϕ

−1(U) → U is an isomorphism. Thanks to
Lemma 2.2 again, we can introduce η′, the only point of ϕ−1(U) such that ϕ(η′) = η, and
assert that OY,η′ is a field and that η′ ∈ T . Now if V is a strictly affinoid neighbourhood
of η′ contained in ϕ−1(U), then η′ ∈ T ∩ V (closure in V ). Now, T ∩V is a semianalytic
subset of V , so according to Lemma 2.1, T ∩V has non-empty interior in V . We can then
deduce that T has non-empty interior inX, whence ϕ(T ) also has non-empty interior. ut

Let f =
∑
n∈N anT

n be a series and r ∈ R∗+. We will say that the radius of convergence
of f is exactly r when |an|rn→ 0 as n→∞, and r is maximum with this property.

Proposition 2.4. Let X = B2
=M(k{T1, T2}) be the closed bidisc, let 0 < r < 1 with

r ∈ |k×|, say r = |ε| for some ε ∈ k, and let f ∈ k{r−1u} be some function whose radius
of convergence is exactly r , with ‖f ‖ < 1. Define

S = {x ∈ X | |T1(x)| < r and T2(x) = f (T1(x))}.

Then S is rigid-semianalytic but not overconvergent subanalytic. As a consequence, the
class of overconvergent subanalytic subsets is not G-local.
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Proof. In more concrete terms, S is the set of points of the curve whose equation is
T2 = f (T1), restricted to the subset {|T1| < r}. Let

ψ : B→ X, u 7→ (εu, f (εu)),

and set η = ψ(g) where g is the Gauss point of B. Then S ⊆ ψ(B) and η ∈ S. Ac-
cording to [Duc11, Prop. 4.4.6], OX,η is a field. Furthermore S̊ = ∅ because S ⊆ Z :=
{x ∈ B(r,1) | T2(x) = f (T1(x))}, which is a Zariski closed subset of dimension 1 of B(r,1),
which itself is of pure dimension 2, so Z is nowhere dense in B(r,1) [Ber90, 2.3.7]. Hence
according to Corollary 2.3, S is not overconvergent subanalytic. However, if we consider
the covering ofX given byX1 = {x ∈ X | |T1(x)| ≤ r} andX2 = {x ∈ X | |T1(x)| ≥ r},
then S ∩X1 is indeed semianalytic in X1 and S ∩X2 = ∅, so S is rigid-semianalytic.

Now since the class of overconvergent subanalytic subsets contains the class of semi-
analytic subsets, if the former class were G-local, it would contain the class of rigid-
semianalytic subsets, but we have shown that this is not the case. Hence the class of
overconvergent subanalytic subsets is not G-local. ut

Remark 2.5. Actually, this example gives a direct counterexample to [Sch94a, Lem-
ma 4.1], which in our feeling is the source of mistakes in [Sch94a].

As a corollary, we obtain:

Proposition 2.6. Let 0 < s < r < 1 with s ∈
√
|k×|, let f ∈ k{r−1u} with ‖f ‖ < 1

have radius of convergence exactly r , and set B2
=M(k{T1, T2}). Define

S = {x ∈ B2
| |T1(x)| ≤ s, T2(x) = f (T1(x))}.

Then S is a locally semianalytic subset of B2 which is not a semianalytic subset of B2.

Proof. If S were a semianalytic subset of B2, we could find T ⊆ S which contains
infinitely many points of S such that T is a basic semianalytic subset, and even a finite
intersection of sets of the form {x ∈ B2

| |g1(x)| < |g2(x)|}, {x ∈ B2
| |g1(x)| ≤

|g2(x)| 6= 0} and {x ∈ B2
| h(x) = 0}. Since an intersection of sets of the first two kinds is

a strictly analytic domain, and T ⊆ S, and S̊ = ∅, in this intersection, there must be a non-
trivial set of the form {x ∈ B2

| h(x) = 0}. Now, consider in B(r,1) =M(k{r−1T1, T2})

the Zariski closed subset Z = V (T2 − f (T1), h). By assumption, it is infinite. Moreover,
since ‖f ‖ < 1, T2 − f (T1) is irreducible (see the lemma above) in M(k{r−1T1, T2}),
so for dimensional reasons, in M(k{r−1T1, T2}), V (T2 − f (T1)) ⊆ V (h). But now we
introduce (as in the preceding proof)

ψ : Br → B2, u 7→ (u, f (u)),

and η = ψ(g) where g is the Gauss point of Br . Then η ∈ V (h) (where we now
view V (h) as a Zariski closed subset of B2), OB2,η is a field, but ˚V (h) = ∅, and since
V (h) is a semianalytic (so overconvergent subanalytic) subset of B(r,1), this contradicts
Lemma 2.1.

Let us now show that S is a locally semianalytic subset of B2. Indeed, take 0 < s <

t < r with t, r ∈
√
|k×|, and consider X1 = {x ∈ B2

| |T1(x)| ≤ r} and X2 = {x ∈ B2
|
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|T1(x)| ≥ t}. They define a wide covering of B2, andX1∩S (resp.X2∩S) is semianalytic
in X1 (resp. X2), so S is locally semianalytic in B2. ut

We have implicitly used:

Lemma 2.7. If f ∈ k{r−1x} and ‖f ‖ ≤ 1, then F(x, y) := y − f (x) is irreducible in
k{r−1x, y}.

Proof. As we have already seen, V (f ) is isomorphic to Br , so is irreducible. ut

2.3. The other inequalities

We will now explain the other proper inclusions appearing in Figure 1. The following
proposition will be implicitly used in the rest of this section. In addition, it illustrates
that the mixture of overconvergence and rigid-semianalytic subsets (which is a G-local
property) is somehow too strong, in the sense that in Proposition 2.8 below, the overcon-
vergence condition seems to have disappeared.

Proposition 2.8. Let S ⊆ X. The following properties are equivalent:

(1) S is strongly subanalytic.
(2) There exist n ∈ N and a rigid-semianalytic subset T ⊆ X × Bn such that

S = π(T ∩ (X × (B̊)n))

where π : X × Bn→ X is the natural projection.

Proof. Let us show that (1)⇒(2). Let S be a strongly subanalytic subset of X, so there
exists r > 1 and a rigid-semianalytic subset T ⊆ X×Bnr such that S = π(T ∩ (X×Bn)).
Decreasing r if necessary, we can assume that |r| ∈

√
|k×|. In fact, using similar argu-

ments to the one given in Remark 1.19, we can even assume that r ∈ |k|. Then if we
consider the homothety, which is an isomorphism h : X × Bnr → X × Bn, which can
be defined as multiplication of each coordinate of Bnr by 1/λ, this gives the following
commutative diagram:

X × Bnr
h //

π

%%

X × Bn

π ′

��
X

and S = π(T ∩ (X × Bn)) = π ′(h(T ) ∩ (X × Bn1/r)). Now T ′ := h(T ) ∩ (X × Bn1/r)
is a rigid-semianalytic subset of X × Bn such that T ′ ⊆ X × (B̊)n and S = π ′(T ′) =

π ′(T ′ ∩ (X × (B̊)n)).
Conversely, let T ⊆ X × (B̊)n be a rigid-semianalytic subset of X × Bn and S =

π(T ). For any r > 1, we can define X0 = X × Bn, and for i = 1, . . . , n, let Xi =
{(x, t1, . . . , tn) ∈ X × Bnr | |ti | ≥ 1}. So {Xi}ni=0 is an admissible covering of X × Bnr .
By assumption, T ∩ X0 is rigid-semianalytic, and T ∩ Xi = ∅ for i = 1, . . . , n. So T is
rigid-semianalytic in X × Bnr . We set π : X × Bnr → X. We then get S = π(T ), so S is
strongly subanalytic. ut
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Proposition 2.9. There exist strongly subanalytic subsets which are not G-overconver-
gent subanalytic.

Proof. Let r > 1, X = M(k{x, y, z}) = B3, and Y = M(k{x, y, z, t}), and let
π : Y = M(k{x, y, z, t}) → X = M(k{x, y, z}) be the natural projection. We now
choose f ∈ k{t} whose radius of convergence is exactly 1, and such that ‖f ‖ ≤ 1,
and T = {(x, y, z, t) ∈ Y | |t | < 1, x = yt, z = yf (t)}. It is a rigid-semianalytic
subset of Y , and S = π(T ) is a strongly subanalytic subset of X according to the previ-
ous proposition. Since the family of closed balls with centre the origin is a fundamental
system of neighbourhoods of the origin, if S were G-overconvergent subanalytic, for
some 1 ≥ |µ| = ε > 0 small enough, S′ := S ∩ B3

ε would be overconvergent sub-
analytic in B3

ε . We then fix a y0 ∈ k× such that 0 < |y0| < ε, i.e. |y0|/|µ| < 1
and define X′ := {(x, y, z) ∈ B3

ε | y = y0}. Now X′ is isomorphic to the bidisc
B2
ε = {(x, y) | |x|, |y| ≤ ε}, and S′′ := S ∩ X′ would be overconvergent constructible

in X′ thanks to Lemma 1.18(2). If we make a dilatation of X′ by 1/µ, it becomes the
bidisc of radius 1: the new coordinates are x′, z′ defined by x = µx′ and z = µz′. Now,
in these new coordinates,

S′′ = {(x′, z′) ∈ B2
| |x′| < |y0|/|µ| and z′ = (y0/µ)f (x

′µ/y0)}

would be overconvergent subanalytic in B2. If we set r := |y0|/|µ| < 1 and g(x′) =
(y0/µ)f (x

′µ/y0), then the radius of convergence of g is precisely r , and ‖g‖ < 1, so
S′′ = {(x′, z′) ∈ B2

| |x′| < r and z′ = g(x′)}, and S′′ would be overconvergent
subanalytic in B2, contrary to Proposition 2.4. ut

Proposition 2.10. There exist overconvergent subanalytic subsets which are not rigid-
semianalytic.

Proof. Let 1 < r = |λ|, and let f ∈ k{r−1X} have radius of convergence exactly r , and
‖f ‖ < 1. We set X = B3

=M(k{x, y, z}), Y =M(k{x, y, z, r−1t}),

T = {(x, y, z, t) ∈ Y | x = yt, z = yf (t), |t | ≤ 1}

and S = π(T ), where π : M(k{x, y, z, r−1t}) → M(k{x, y, z}) is the natural pro-
jection. Then S is overconvergent subanalytic. If S were rigid-semianalytic, there would
exist µ ∈ k with 0 < ε := |µ| < 1 such that S′ = S ∩ B3 is semianalytic in B3

ε (we
again use the fact that if V is an affinoid domain in B3 that contains the origin, then there
exists ε > 0 such that B3

ε ⊆ V ). Let y0 ∈ k
× be such that 0 < |y0| < ε/r . In particular

|y0|/ε = |y0/µ| < 1/r . Then X′ = {(x, y, z) ∈ B3
ε | y = y0} is a Zariski closed subset

of B3
ε , isomorphic to a bidisc B2. Now, S′′ := S ∩X′ is defined by

S′′ = {(x, z) ∈ B2
ε | |x/y0| ≤ 1 and z = y0f (x/y0)}.

As we said, X′ is isomorphic to B2 with coordinates (x′, z′) where x = µx′ and z = µz′.
In these new coordinates, S′′ = {(x′, z′) ∈ B2

| |x′µ/y0| ≤ 1 and z′µ = y0f (x
′µ/y0)}.

If we define g(x′) = (y0/µ)f (x
′µ/y0) and s = |y0|/ε = |y0/µ| < 1/r , then g has

radius of convergence exactly ρ where s < ρ = |y0/µ|r < 1, and ‖g‖ < ‖f ‖ < 1, so
S′′ = {(x′, z′) ∈ B2

| |x′| ≤ s and z′ = g(x′)} would be semianalytic, which is not the
case (see Proposition 2.6). ut
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Remark 2.11. The example given in the above proposition is very close to the so called
Osgood example [Osg16, Theorem 1]. This example asserts that that the subset of C3

parametrized by
x = u, y = uv, z = uvev

does not satisfy any relation of the form F(x, y, z) = 0 where F is a germ of analytic
function around the origin. See also [BM00, 2.3].

The non-archimedean analogue of this fact holds (see the introduction of [LR99] for
instance). The example studied in the above proposition amounts to considering the set
parametrized by

x = uv, y = v, z = vf (v),

where f is transcendental. Osgood’s original argument would have equally worked here,
but let us stress that our argument is different.

From this one can deduce:

Corollary 2.12. Let X be a strictly k-analytic space which contains a closed ball of
dimension ≥ 3. Then there are overconvergent subanalytic subsets of X which are not
rigid-semianalytic. In particular, the class of overconvergent subanalytic subsets of X
properly contains the class of locally semianalytic subsets of X.

In conclusion, in Figure 1, we have shown non-equalities 1, 4, 5 and 8. Now 2, 3, 6, 7 are
set-theoretical consequences of 4, 5 and of the inclusions from left to right.

2.4. Berkovich points versus rigid points

Let X = M(A) be a strictly k-affinoid space. We denote by Xrig the set of rigid points
of X. When one deals with semianalytic or overconvergent subanalytic subsets S of X,
one can wonder if things change if we restrict to Srig = S ∩ Xrig. Actually the following
two propositions show that it makes no difference whether one works with Berkovich
spaces or rigid spaces.

To be precise, let B be the free boolean algebra whose set of variables consists of the
set of formal inequalities {|f | ≤ |g|}, {|f | < |g|} and {f = 0}, for f, g ∈ A. We denote
by SArig the class of semianalytic subsets of Xrig and by SABer the class of semianalytic
subsets of the Berkovich space X. Then we define natural maps α : B → SABer and
β : B → SArig where for instance α({|f | ≤ |g|}) = {x ∈ X | |f (x)| ≤ |g(x)|} and
β({|f | ≤ |g|}) = {x ∈ Xrig | |f (x)| ≤ |g(x)|}. In addition we consider the forgetful
map ι : SABer → SArig: if S ∈ SABer is a semianalytic set, then ι(S) = S ∩Xrig. We then
obtain the commutative diagram

B α //

β !!

SABer

ι

��
SArig
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Proposition 2.13. The map ι is bijective.

Proof. First, ι is surjective by definition.
Now if ι(S1) = ι(S2), we must show that S1 = S2. Considering S1 \ S2 and S2 \ S1, it

suffices to show that if S ∈ SABer and ι(S) = ∅, then S = ∅. According to what has been
previously done, we can assume that S ∈ SABer is a finite intersection of subsets of the
form {x ∈ X | |f (x)| ≤ |g(x)| 6= 0}, {x ∈ X | |f (x)| < |g(x)|} or {x ∈ X | h(x) = 0},
and that ι(S) = S ∩ Xrig = ∅. Passing to Y =M(A/I) where I is the ideal generated
by the functions h appearing in the third case (h(x) = 0), we can assume that S is a finite
intersection of subsets of the form {x ∈ X | |f (x)| ≤ |g(x)| 6= 0} or {x ∈ X | |f (x)| <
|g(x)|}. But then it forms a non-empty strictly analytic domain in X, so S ∩Xrig 6= ∅. ut

If we denote by CD the family of finite subsets of constructible data of X, by OC the
family of overconvergent constructible subsets of X, and by OCrig the family of subsets
of Xrig which are intersections of elements of OC with Xrig, then we can define as above
the following commutative diagram:

CD α //

β ""

OC

ι

��
OCrig

To be precise, if D ∈ CD is the set of the constructible data (Xi, Ti)
ϕi
99K X, then

α(D) =
n⋃
i=1

ϕi(Ti).

Proposition 2.14. In the above diagram, ι is a bijection.

Proof. Since we showed that OC (and OCrig) is stable under complements, it suffices to
show that if S ∈ OC is such that ι(S) = S ∩ Xrig = ∅, then S = ∅. To show this we

can even assume that S = ϕ(T ), where (Y, T )
ϕ
99K X is a constructible datum. But, if T

is a non-empty semianalytic subset of Y , then by Proposition 2.13, Trig 6= ∅, so since ϕ
preserves the rigid points, ϕ(T )rig = Srig is non-empty. ut

3. Overconvergent subanalytic subsets when dim(X) = 2

In this section, k will be a non-archimedean algebraically closed field. In that case, a
k-analytic spaceX is said to be quasi-smooth [Duc11, Section 5] if for all x ∈ X the local
ring OX,x is regular.
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3.1. Algebraisation of functions

Proposition 3.1. LetX, Y be two k-affinoid spaces, so that we can consider the cartesian
diagram

X × Y

π1

||

π2

""
X Y

Let z ∈ X × Y , and set z1 = π1(z) and z2 = π2(z). Assume that z2 ∈ Y (k) = Yrig.

(a) Let V be an affinoid domain in X × Y such that z ∈ V . There exists an affinoid
domain U in X (which contains z1) such that if W is a small enough affinoid neigh-
bourhood of z2, then V ∩ (X ×W) = U ×W .

(b) Let V be a neighbourhood of z. There exists an affinoid neighbourhood U of z1 (resp.
W of z2) such that V ⊇ U ×W .

Proof. (a) [Sch94b, 2.2] Set X = M(A) and Y = M(B). First, using the Gerritzen–
Grauert theorem, we can assume that V is a rational domain in X × Y defined by

V = {x ∈ X × Y | |fi(x)| ≤ |g(x)|, i = 1, . . . , n, |g(x)| ≥ r}

where fi, g ∈ A ⊗̂k B and r > 0. Since we assume that z2 ∈ Y (k), it makes sense
to evaluate the functions fi, g at z2, and we will denote by fi z2

, gz2 the corresponding
functions, which we view as elements of A and of A ⊗̂k B. In addition, since z2 is a rigid
point of Y , there exists an affinoid neighbourhood T of z2 in Y such that

∀i sup
x∈X×T

|(fi − fi z2
)(x)| < r, (3.1)

sup
x∈X×T

|(g − gz2)(x)| < r. (3.2)

Since g = gz2 + (g − gz2), we conclude from (3.2) that if x ∈ X × T , then

|g(x)| ≥ r ⇔ |gz2(x)| ≥ r. (3.3)

Since also gi = gi z2
+ (gi − gi z2

), from (3.1)–(3.3), we deduce that if x ∈ X × T , then(
|g(x)| ≥ r, |fi(x) ≤ |g(x)|

)
⇔

(
|gz2(x)| ≥ r, |fi z2

(x)| ≤ |gz2(x)|
)
.

Hence, if we set

U = {x ∈ X | |(fi)z2(x)| ≤ |gz2(x)|, |gz2(x)| ≥ r},

then V ∩ (X×T ) = U ×T . It then follows that ifW is an affinoid domain in Y such that
W ⊂ T , then V ∩ (X ×W) = U ×W .

(b) We can assume that V = V is an affinoid neighbourhood of z. In (a), V ∩ (X×W)
is still a neighbourhood of z, since W is an affinoid neighbourhood of z2 (because z2 is a
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rigid point). If we denote by sz2 : X→ X×Y the section of π1 defined by sz2(t) = (t, z2),
then

s−1
z2
((V ∩ (X ×W)) = s−1

z2
(U ×W) = U

is an affinoid neighbourhood of x (since sz2(x) = z). Thus U is also an affinoid neigh-
bourhood of z1. ut

Remark 3.2. Without the assumption that z2 ∈ Y (k) the previous corollary would be
false. Take for instanceX =M(k{x}) and Y =M(k{y}), and let ϕ :M(k{t})→ X×Y

be defined by ϕ(t) = (t,−t). Let η be the Gauss point of M(k{t}) and z := ϕ(η). Let
V = {p ∈M(k{x, y}) | |(x+ y)(p)| ≤ 1/2}. It is a neighbourhood of z. However, π1(z)

(resp. π2(z)) is the Gauss point z1 = ηX of M(k{x}) (resp. z2 = ηY of M(k{y})). It
is then easy to see, according to the description of an affinoid domain in the unit disc as
a Swiss cheese, that there does not exist an affinoid neighbourhood U (resp. W ) of ηX
(resp. ηY ) such that V ⊇ U ×W , for instance because in U there would necessarily exist
a rigid point x0 ∈ {x ∈ k | |x| ≤ 1} such that x0 = 0 and in W a rigid point y0 such that
y0 = 1 but (x0, y0) /∈ V (where x corresponds to the reduction of x in k̃).

Lemma 3.3. Let x ∈ X = M(A), and let f =
∑
n∈N anT

n
∈ A{r−1T }. Assume

that fx 6= 0. Then there exists an affinoid domain V = M(B) in X which contains x,
P ∈ B[T ], and a multiplicative unit u ∈ B{r−1T } such that f|V×Br = uP .

Proof. Since fx =
∑
n∈N an(x)T

n
6= 0, this series is distinguished of some order s ≥ 0.

We recall that this means that |as(x)|rs = ‖fx‖ and that s is the greatest with this
property.

We now use Lemma 1.29 in our specific situation where the polyradius r is in fact the
real number r . Hence we can introduce a finite subset J ⊆ N such that s ∈ J and some
series φn ∈ A{r−1T } for n ∈ J satisfying ‖φn‖ < 1 such that f =

∑
n∈J an(X

n
+ φn).

We then define V as the rational domain:

V =
{
z ∈ X

∣∣ |as(z)| = |as(x)| and |ai(z)|r i ≤ |as(x)|rs for i ∈ J \ {s}
}

and denote by B the affinoid algebra of V . It is then true that x ∈ V . Moreover, on V =
M(B), one checks that as is a multiplicative unit, and that on B{r−1T }, f is distinguished
of order s. One can then apply Weierstrass preparation (Corollary 1.28) to conclude. ut

Remark 3.4. The previous result (Lemma 3.3) is false if we remove the assumption
fx 6= 0.

Indeed, let 0 < r < 1, let f ∈ k{r−1x} be a function whose radius of convergence is
exactly r , and assume that ‖f ‖ < 1. Let A = k{y, t}, X =M(A) the unit bidisc, p the
rigid point of X corresponding to the origin, and consider

F(y, t, x) = y − tf (x) ∈ k{y, t}{r−1x} = A{r−1X}.

Then we claim that there does not exist an affinoid domain V =M(B) inX containing p
such that F|V×Br = uP where u is a multiplicative unit of B{r−1T } and P ∈ B[t].
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Indeed, otherwise there would exist some closed bidisc V of radius s = |λ| ∈ |k×|
where λ ∈ k×, and some P ∈ k{s−1y, s−1t}[x] and a multiplicative unit u ∈
k{s−1y, s−1t}{r−1x} such that

F|V×Br = uP. (3.4)

Fix t = λ. Then we consider

G(y, x) = F(y, λ, x) = y − λf (x) ∈ k{y, r−1x}.

According to (3.4), GBs×Br = u(y, λ, t)P (y, λ, t). Replacing y by y/λ and f by λf , we
then obtain

G(y, x) = y − f (x) ∈ k{y, r−1x}, G = uP,

where u ∈ k{y, r−1x} is a multiplicative unit, P ∈ k{y}[x] and f with ‖f ‖ < 1 has
radius of convergence exactly r < 1. This implies that if we set

S := {(x, y) ∈ B2
| |x| ≤ r and y = f (x)}

then
S = {(x, y) ∈ B2

| |x| ≤ r and P(x, y) = 0},

so S would be semianalytic in B2, but in Section 2, we exploited many times the fact that
this is not the case. ut

Lemma 3.5 (Local algebraisation of a function in a family of rings). Let n be an integer,
let a0, . . . , an ∈ {x ∈ k | |x| ≤ 1} and let r0, . . . , rn be positive real numbers. Let
Y ⊆M(k{T }) = B be the Laurent domain defined by

Y = {y ∈M(k{T }) | |(T − a0)(y)| ≤ r0 and |(T − ai)(y)| ≥ ri, i = 1, . . . , n},

and let X = M(A) be a k-affinoid space. Let f ∈ O(X × Y ), let z ∈ X × Y be such
that π1(z) = x ∈ X(k), and set y := π2(z). Assume that fx ∈ H(x) ⊗ O(Y ) ' O(Y )
is non-zero.7 Then there exists an affinoid neighbourhood V =M(B) of x, and Y ′ ⊂ Y
defined by

Y ′ = {y ∈M(k{T }) | |(T − b0)(y)| ≤ s0 and |(T − bi)(y)| ≥ si, i = 1, . . . , m},

which is an affinoid neighbourhood of y such that

f|V×Y ′ = (uP )|V×Y ′

where the si’s are positive real numbers, bi ∈ k◦, u is a multiplicative unit of V × Y ′ and
P ∈ B[T , (T − b1)

−1, . . . , (T − bm)
−1
].

Remark 3.6. Let us mention that in the proof we distinguish two very different cases.

1. If y is a rigid point then Y ′ can in fact be chosen to be a closed ball, i.e. m = 0.
2. Otherwise, if y is not a rigid point, then in fact s0 = r0, that is, we do not have to

decrease the radius of the ambient closed ball, but we may have to remove some open
balls.

7 Here H(x) ' k because x ∈ X(k).
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Proof of Lemma 3.5. If y is a rigid point, we can indeed find a closed disc Y ′ which
contains y, and the result follows from Lemma 3.3.

If y is not a rigid point, then fx ∈ H(x)⊗O(Y ) ' O(Y ). Hence by classical results
on factorization of functions on rational domains in the closed disc (cf. [FvdP04, 2.2.9]),
there exist α1, . . . , αN ∈ k, d1, . . . , dN ∈ N, and an invertible function g ∈ O(Y ) such
that

fx =

N∏
i=1

(T − αi)
dig. (3.5)

We then set m = n + N , bi = ai and si = ri for i = 0, . . . , n, and bn+j = αj for
j = 1, . . . , N , and we take sn+j small enough so that {z ∈ Y | |T − αj |(z) ≥ sn+j } is a
neighbourhood of y (this is possible because y is not a rigid point). Then we define

Y ′ := {y ∈M(k{T }) | |(T − b0)(y)| ≤ s0 and |(T − bi)(y)| ≥ si, i = 1, . . . , m}.

Next, we set

G = f

N∏
i=1

(T − αi)
−di ∈ O(X × Y ′).

Then, according to (3.5),Gx = g, which does not vanish on Y ′x . So there exists an affinoid
neighbourhood V =M(B) of x such thatG is invertible on V ×Y ′, because the locus of
points x whereGx is invertible is open. Now using the explicit description of O(V ×Y ′),
we can write

G =
∑

ν=(ν0,...,νm)∈Nm+1

bν(T − b0)
ν0(T − b1)

−ν1 . . . (T − bm)
−νm .

Now for M ≥ 0 set

GM =
∑
|ν|≤M

bν(T − b0)
ν0(T − b1)

−ν1 . . . (T − bm)
−νm .

By definition, GM ∈ B[T , (T − b1)
−1, . . . , (T − bm)

−1
]. In addition, GM → G as

M →∞, so GM is invertible for M large enough. For such an M ,

G = GM + (G−GM) = GM(1+G−1
M (G−GM)). (3.6)

Moreover, if we take M still larger, we can assume that ‖G−1
M ‖ = ‖G

−1
‖, and so

‖G−1
M (G−GM)‖ −−−−→

M→∞
0.

Thus, for M large enough, if we set

uM = 1+G−1
M (G−GM),

then uM is a multiplicative unit, and according to (3.6),

f = GMuM

N∏
i=1

(T − αi)
di .

We then set u := uM and P := GM
∏N
i=1(T − αi)

di to conclude. ut
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3.2. Blowing up

From now on, X will be a quasi-smooth k-analytic space of dimension 2. We now make
two simple remarks that we will use in the proof of Theorem 3.12 below.

Lemma 3.7. Let A be a k-affinoid algebra, X =M(A), 0 < r < s and h ∈ A.

(1) Consider the Weierstrass domain

V = {x ∈ X | |h(x)| ≤ s}

in X and let S be a locally semianalytic subset of V such that

S ⊆ {x ∈ X | |h(x)| ≤ r}.

Then S is also a locally semianalytic subset of X.
(2) Consider the Laurent domain

V = {x ∈ X | |h(x)| ≥ r}

in X and let S be a locally semianalytic subset of V such that

S ⊆ {x ∈ X | |h(x)| ≥ s}.

Then S is also a locally semianalytic subset of X.

Proof. Choose a real number t such that r < t < s.
(1) Set W = {x ∈ X | t ≤ |h(x)|}. Then {V,W } is a wide covering of X, and S ∩ V

is by hypothesis locally semianalytic in V , and by assumption, S ∩W = ∅, so it is also
locally semianalytic in W , hence S is locally semianalytic in X.

(2) Likewise, set W = {x ∈ X | |h(x)| ≤ t}. Then {V,W } is a wide covering of X,
S ∩V is locally semianalytic in V , and S ∩W = ∅, so S is locally semianalytic in X. ut

This lemma will be used jointly with the following remark:

Remark 3.8. Let X =M(A) be a k-affinoid space, f, g ∈ A, 0 < s < r and

(Z, S)
ϕ
−→ X

the elementary constructible datum given by Z =M(B) where B = A{r−1t}/(f − tg)

and
S = {z ∈ Z | |f (z)| ≤ s|g(z)| 6= 0}.

Moreover, let (Y, U)
ψ
99K (Z, S) be a constructible datum.

Case A. Assume g | f , so there exists h ∈ A such that f = gh. Let C = A{r−1t}/(h− t)

and V =M(C). Note that V is the Weierstrass domain in X defined by

V = {x ∈ X | |h(x)| ≤ r}.
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Let β be the immersion of the affinoid domain V in X, and let

T = {x ∈ V | |h(x)| ≤ s, g(x) 6= 0}.

Since f − tg = g(h − t), we have (h − t) | (f − tg), and there is a closed immersion
V

α
−→ Z. Moreover, α(T ) = S.
Indeed, α(T )⊆S by their respective definitions. Conversely, if z∈S, then (f − tg)(z)

= 0 = g(z)(h − t)(z), but since g(z) 6= 0, we have (h − t)(z) = 0, which implies that
z ∈ V , and by the definition of S, it follows that z ∈ α(T ).

Consider the cartesian diagram of k-germs

(Y, U)
ψ // (Z, S)

ϕ // X

(Y ′, U ′)

α′

OO

ψ ′ // (V , T )

α

OO

β

<<

Here, (Y ′, U ′)
ψ ′

99K (V , T ) is still a constructible datum according to Corollary 1.12. Since
α(T ) = S, it follows that α(ψ ′(U ′))) = ψ(U), so

ϕ(ψ(U)) = ϕ(α(ψ ′(U ′))) = β(ψ ′(U ′)). (3.7)

Roughly speaking, we started with the constructible datum

(Y, U)
ψ
99K (Z, S)

ϕ
−→ X

such that the elementary constructible datum of ϕ was defined with functions f and g
such that g | f . And we have been able to replace ϕ by the constructible datum

(Y ′, U ′)
ψ ′

99K (V , T )
β
−→ X

where V is a Weierstrass domain. Note moreover that T and so also ψ ′(U ′) satisfy the
hypothesis of Lemma 3.7(1).

Case B. If f | g, there exists h ∈ A such that g = f h. Let C = A{r−1t}/(1 − th) and
V =M(C). Note that V is the Laurent domain in X defined by

V = {x ∈ X | |h(x)| ≥ 1/r}.

Let β be the immersion of the Laurent domain V in X, and let

T = {x ∈ V | |h(x)| ≥ 1/s, g(x) 6= 0}.

Since (1− th) | (f − tg), there is a closed immersion V
α
−→ Z. Moreover, α(T ) = S.
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We then consider the cartesian diagram of k-germs

(Y, U)
ψ // (Z, S)

ϕ // X

(Y ′, U ′)

α′

OO

ψ ′ // (V , T )

α

OO

β

<<

Here, (Y ′, U ′)
ψ ′

99K (V , T ) is still a constructible datum. Since α(T ) = S, it follows that
α(ψ ′(U ′))) = ψ(U), so

ϕ(ψ(U)) = ϕ(α(ψ ′(U ′))) = β(ψ ′(U ′)). (3.8)

In this case, we started with the constructible datum (Y, U)
ψ
99K (Z, S)

ϕ
−→ X such

that f | g, and we have been able to replace it by the constructible datum (Y ′, U ′)
ψ ′

99K

(V , T )
β
−→ X where V is a Laurent domain inX. Note moreover that T and so alsoψ ′(U ′)

satisfy the hypothesis of Lemma 3.7(2).

Remark 3.9. We are going to use some blowing-up of k-analytic spaces in the following
context:X will be a quasi-smooth k-analytic space of dimension 2, and we will blow up a
rigid point p ofX. In particular, the resulting blowing-up X̃ will still be quasi-smooth. To
give a precise description of the situation, since k is algebraically closed, we can assume
that X = B2 and p is the origin. The blowing-up can then be described with two charts
as follows. We consider

π1 : X1 =M(k{x, t1})→ B2
=M(k{x, y}), (x, t1) 7→ (x, t1x),

π2 : X2 =M(k{y, t2})→ B2
=M(k{x, y}), (y, t2) 7→ (t2y, y).

Then B̃2 is obtained by gluing X1 and X2 along the domains U1 = {z ∈ X1 | t1(z) 6= 0}
and U2 = {z ∈ X2 | t2(z) 6= 0} via the isomorphism

U1 → U2, (x, t1) 7→ (xt1, t
−1
1 ).

Proposition 3.10. Let X = M(A) be a quasi-smooth k-affinoid space of dimension 2
and let f, g ∈ A. Then there exists a succession of blowing-ups of rigid points π : X̃→ X

such that for all x ∈ X̃, fx | gx or gx | fx . Note that X̃ is still quasi-smooth.

Proof. We may assume thatX is irreducible. If f = 0 or g = 0, there is nothing to prove,
so we may assume that f 6= 0 and g 6= 0. Likewise, if f = g, there is nothing to do, so
we may also assume that f − g 6= 0.

Let h = fg(f − g). Hence, h 6= 0. We can find a succession of blowing-ups of rigid
points π : X̃ → X such that π∗(h) is a normal crossing divisor. Indeed, the classical
proof (see [Kol07, 1.8]) that works in the algebraic case, or the complex analytic case,
can be translated verbatim in our context, and since we are dealing with a compact space,
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the local procedure of [Kol07, 1.8] needs only to be applied to a finite number of points.
So let x ∈ X̃.

If x is not a rigid point, O
X̃,x

is a field or a discrete valuation ring and the result is
clear.

Otherwise, if x is a rigid point, its local ring is a regular local ring of dimension 2. By
assumption, h = fg(f − g) is a normal crossing divisor, thus it can be written in O

X̃,x

as
(fg(f − g))x = uξ

n
1 ξ

m
2 (3.9)

where ξ1, ξ2 is a system of local parameters around x and u is a unit in O
X̃,x

. Dividing
by the common divisor of fx and gx in O

X̃,x
, we can assume for instance that fx = vξ

p

1
and gx = wξ

q

2 and fx − gx = zξa1 ξ
b
2 where v, w and z are units of O

X̃,x
.

If p > 0 then modulo ξ1 we obtain f = 0, so fx−gx = wξ
q

2 modulo ξ1. This implies
that a = 0 and that b = q. So fx = (fx − gx) + gx is divisible by ξq2 , and this implies
that q = 0. So gx is invertible and gx | fx .

And if p = 0, then fx is invertible, so fx | gx . ut

Lemma 3.11. Let X be a good quasi-smooth strictly k-analytic space of dimension 2.

(1) Let q ∈ Xrig and π : X̃ → X the blowing-up of X at q, and let S ⊆ X̃ be a locally
semianalytic subset. Then π(S) is locally semianalytic.

(2) If π : X̃ → X is a succession of blowing-ups of rigid points, and S ⊆ X̃ is locally
semianalytic, then π(S) is also locally semianalytic.

Proof. (2) is a consequence of (1) so we only have to show (1).
The problem is local on X, and since outside q, π is a local isomorphism, we can

restrict to an affinoid neighbourhood of q; moreover, since X is regular at q, we can
assume that X = B2 and q is the origin.

Then π : X̃→ X can be described with two charts, one of them being

π1 : X1 =M(k{x, t})→ X =M(k{x, y}), (x, t) 7→ (x, tx).

The other chart being analogous, we only consider π1. Now, changing S to S ∩ X1, it
suffices to show that if S is locally semianalytic in X1, so is π1(S). Since π1 induces an
isomorphism between X1 \ V (x) and {p ∈ B2

| |y(p)| ≤ |x(p)| 6= 0}, we only have to
show that π1(S) is semianalytic around q, the origin of B2.

Now if for each p ∈ E := V (x) ⊆ X1 we can find an affinoid neighbourhood Vp of p
and εp > 0 such that π1(Vp ∩ S)∩B2

εp
is semianalytic in B2

εp
⊆ X, then by compactness

of E, we can extract a finite covering V1, . . . , Vn of E and ε > 0 such that

n⋃
i=1

(π1(Vi ∩ S)) ∩ B2
ε = π1(S) ∩ B2

ε

is semianalytic in B2
ε . So we fix p ∈ E = V (x) and try to find an affinoid neighbour-

hood V of p and ε > 0 such that π1(V ∩ S) ∩ B2
ε is semianalytic in B2

ε .
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Since S is locally semianalytic in X1, we can find an affinoid neighbourhood V of p
such that V ∩ S is semianalytic in V . According to Corollary 3.1, we can assume that8

V = Bε ×W where

W = {w ∈M(k{t}) | |(t − a0)(w)| ≤ r0 and |(t − ai)(w)| ≥ ri, i = 1, . . . , n}

for some a0, . . . , an ∈ k
◦ and r0, . . . , rn ∈ R+.

To simplify the notation, we can also assume that the semianalytic subset S of V we
are dealing with is of the following form:

S =

m⋂
j=1

{v ∈ V | |fj (v)| ♦j |gj (v)|}.

Now recall that V = Bε ×W with Bε =M(k{ε−1x}). So we can factor each fj and gj
by the greatest power of x which is a factor, hence introduce some integers bj , cj such
that

S =

m⋂
j=1

{v ∈ V | |xbj f̃j (v)| ♦j |x
cj g̃j (v)|}

where the series f̃j (0, t) and g̃j (0, t) are non-zero, and fj = xbj f̃j , gj = xcj g̃j . To
simplify the notation, we will use fj (resp. gj ) instead of f̃j (resp. g̃j ), so that

S =

m⋂
j=1

{v ∈ V | |xbj fj (v)| ♦j |x
cj gj (v)|}

where the series fj (0, t) and gj (0, t) are non-zero.
Then according to Lemma 3.5 we can decrease ε and W so that for each fj , gj ∈

{f1, . . . , fm, g1, . . . , gm}, fj = ujPj (resp. gj = vjQj ) where uj (resp. vj ) is a multi-
plicative unit, and Pj (resp. Qj ) ∈ k{ε−1x}[t, (t − a1)

−1, . . . , (t − an)
−1
].

In other words, and with different notation, there exists an integer N such that fj =
uj · Pj/((t − a1) . . . (t − an))

N where uj is a multiplicative unit and Pj ∈ k{ε−1x}[t]

(and resp. gj = vj ·Qj/((t − a1) . . . (t − an))
N ). Hence

|fj (v)| ♦j |gj (v)|

⇔

∣∣∣∣uj (v) Pj (v)

((t − a1) . . . (t − an))N (v)

∣∣∣∣ ♦j ∣∣∣∣vj (v) Qj (v)

((t − a1) . . . (t − an))N (v)

∣∣∣∣
⇔ |Pj (v)| ♦j λj |Qj (v)|

where
λj = ‖vj‖/‖uj‖ ∈ |k

×
|.

Moreover,

S ∩ V = (S ∩ {v ∈ V | x(v) = 0}) ∪ (S ∩ {v ∈ V | x(v) 6= 0})

and π1({v ∈ V | x(v) = 0}) = q, the origin of B2.

8 Here we use the explicit description of affinoid domains in B.
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So, by adding if necessary the origin to π1(S ∩ {v ∈ V | v(x) 6= 0}) (which will not
change the fact that it is semianalytic), it suffices to show that π1(S∩{v ∈ V | v(x) 6= 0})
is semianalytic around the origin. Moreover, since on {v ∈ V | v(x) 6= 0}, π1 is bijective,
the following holds:

π1

( m⋂
j=1

{v ∈ V | |xbj fj (v)| ♦j |x
cj gj (v)|} ∩ {v ∈ V | x(v) 6= 0}

)
=

m⋂
j=1

π1
(
{v ∈ V | |xbj fj (v)| ♦j |x

cj gj (v)|}
)
∩ {v ∈ V | x(v) 6= 0}.

Now since y = tx and Pj ∈ k{ε−1x}[t] there exists an integer M ≥ 0 such that
xMPj (x, t) ∈ k{ε−1x}[tx] = k{ε−1x}[y], i.e. xMPj (x, t) = π∗(P̃j (x, y)) for some
P̃j (x, y) ∈ k{ε−1x}[y], and such that xMQj (x, t) ∈ k{ε−1x}[y], i.e. xMQj (x, t) =
π∗(Q̃j (x, y)) for some Q̃j (x, y) ∈ k{ε−1x}[y].

Now on {v ∈ V | v(x) 6= 0},

|xbj fj (v)| ♦j |x
cj gj (v)| ⇔ |x

M+bj fj (v)| ♦j |x
M+cj gj (v)|

⇔ |xbj P̃j (π1(v))| ♦j λj |x
cj Q̃j (π1(v))|.

From this we conclude that

z ∈ π1

( m⋂
j=1

{v ∈ V | |xbj fj (v)| ♦j |x
cj gj (v)|} ∩ {v ∈ V | x(v) 6= 0}

)
⇔ z ∈

m⋂
j=1

{z ∈ π1(V ) | |x
bj P̃j (z)| ♦j |x

cj Q̃j (z)|} ∩ {z ∈ X | x(z) 6= 0}.

Since π1(B2
ε) is contained in B2

ε and is semianalytic in B2
ε , we conclude that the set

π1(S ∩ {v ∈ V | v(x) 6= 0}) is semianalytic in B2
ε , which ends the proof. ut

Theorem 3.12. Let X be a good quasi-smooth strictly k-analytic space of dimension 2
with k algebraically closed, and S ⊆ X. Then S is overconvergent subanalytic if and only
if it is locally semianalytic.

Proof. Since the problem is local, we can assume that X is affinoid and that S = ϕ(U)
where (Y, U)

ϕ
99K X is a constructible datum, and just check that S is locally semianalytic.

We do it by induction on the complexity of ϕ. So let (Y, U)
ϕ
99K X be a constructible

datum, which we decompose as

ϕ = (Y, U)
ψ
99K Z

χ
−→ X

where χ is an elementary constructible datum, and ψ a constructible datum whose com-
plexity is one less than that of ϕ. So we can introduce f, g ∈ A and 0 < s < r such that
Z = M(A{r−1t}/(f − tg)). According to Proposition 3.10, we can find a succession
of blowing-ups of rigid points π : X̃ → X such that for all x ∈ X̃, fx | gx or gx | fx .
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According to Remark 3.9, X̃ is still quasi-smooth. This gives us the cartesian diagram

(Y, U)
ϕ // X

(Y ′, U ′)
ϕ′ //

π ′

OO

X̃

π

OO

Then ϕ(U) = π(ϕ′(U ′)). Moreover, since X̃ is compact, we can find a finite wide cover-
ing {Xi}ni=1 of X̃ by affinoid domains such that for all i, f|Xi | g|Xi or g|Xi | f|Xi . We de-
note by πi : Xi → X the composition of the embedding of the affinoid domain Xi → X̃

with π : X̃→ X. This gives the cartesian diagrams

(Y, U)
ψ // Z

χ // X

(Yi, Ui)
ψi //

π ′′i

OO

Zi

π ′i

OO

χi // Xi

πi

OO

Then

ϕ(U) = π(ϕ′(U ′)) = π
( n⋃
i=1

χi(ψi(Ui))
)
.

But (Yi, Ui)
ψi
99K Zi is a constructible datum of lower complexity than that of ϕ, so that we

would like to use our induction hypothesis, and claim that ψi(Ui) is locally semianalytic.
However, Zi is not necessarily quasi-smooth so we cannot do that. But since f|Xi | g|Xi
or g|Xi | f|Xi , according to Remark 3.8, we can in fact replace Zi by a Weierstrass (or
a Laurent) domain in Xi , and hence assume that Zi is quasi-smooth. Thus by induction
hypothesis, ψi(Ui) is locally semianalytic in Zi .

Next we use Lemma 3.7 to assert that χi(ψi(Ui)) is locally semianalytic in Xi . So

ϕ′(U ′) =

n⋃
i=1

χi(ψi(Ui))

is locally semianalytic in X̃, since {Xi} was a wide covering of X̃. Finally, according to
Lemma 3.11, π(ϕ′(U ′)) = S is also locally semianalytic. ut
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