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Abstract. By a curve in Rd we mean a continuous map γ : I → Rd , where I ⊂ R is a closed
interval. We call a curve γ in Rd (≤k)-crossing if it intersects every hyperplane at most k times
(counted with multiplicity). The (≤d)-crossing curves in Rd are often called convex curves and
they form an important class; a primary example is the moment curve {(t, t2, . . . , td ) : t ∈ [0, 1]}.
They are also closely related to Chebyshev systems, which is a notion of considerable importance,
e.g., in approximation theory. Our main result is that for every d there isM = M(d) such that every
(≤d+1)-crossing curve in Rd can be subdivided into at most M (≤d)-crossing curve segments.
As a consequence, based on the work of Eliáš, Roldán, Safernová, and the second author, we obtain
an essentially tight lower bound for a geometric Ramsey-type problem in Rd concerning order-type
homogeneous sequences of points, investigated in several previous papers.
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1. Introduction

The most intuitive statement of the problem investigated in this paper involves curves
in Rd . By a curve we mean an arbitrary continuous mapping γ : I → Rd , where I ⊂ R is
a closed interval (we could admit an open interval as well, but this would add unnecessary
technical complications). Let us say that a curve γ in Rd is (≤k)-crossing if it intersects
every hyperplane h at most k times.1 Here the intersections are counted with multiplicity;
that is, the condition of (≤k)-crossing reads |{t ∈ I : γ (t) ∈ h}| ≤ k.
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hyperplane is the degree, but we prefer using a different term, since we deal with much more general
curves, which are typically not algebraic.
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It will be useful to observe that a (≤k)-crossing curve is not constant on any nonempty
open interval, and its image contains no segment.
(≤d)-crossing (= convex) curves. The (≤d)-crossing curves in Rd are called convex
curves in a significant part of the literature (e.g., [Arn04, Živ04, SS00, SS05, Mus98]),
and they are of considerable interest in several areas. In the plane, a convex curve in
this sense is a connected piece of the boundary of a convex set. A primary example of a
higher-dimensional convex curve is the moment curve {(t, t2, . . . , td) : t ∈ [0, 1]}. The
convex hull of n ≥ d + 1 points on a convex curve in Rd is a cyclic polytope, one of the
most important examples in the theory of convex polytopes and in discrete geometry in
general.

If we regard a convex curve γ : I → Rd as a d-tuple (γ1, . . . , γd) of functions I → R,
and define γ0 ≡ 1, then the (d+1)-tuple (γ0, γ1, . . . , γd) (or possibly (−γ0, γ1, . . . , γd))
forms a Chebyshev system,2 which is an important notion in approximation theory, theory
of finite moments, and other areas—see, e.g., [KS66, CPZ98]. Conversely, every Cheby-
shev system (γ0, . . . , γd) on an interval I with γ0 ≡ 1 (or more generally, γ0 strictly
monotone) gives rise to a convex curve in Rd .
Subdividing (≤d+1)-crossing curves. The following question is quite natural and in-
teresting in its own right and it has been motivated by the work [EMRS14] in geometric
Ramsey theory, as will be explained below. Given an integer d ≥ 2, does there exist
M = M(d) such that every (≤d+1)-crossing curve γ in Rd can be subdivided into at
most M convex curves? In more detail, if γ is a map I → Rd , we want to subdivide I
into subintervals I1, . . . , Ik , k ≤ M , so that the restriction of γ to each Ii is convex (i.e.,
(≤d)-crossing). Our main result answers this question in the affirmative.

Theorem 1.1. For every integer d ≥ 2 there exists M = M(d) such that every (≤d+1)-
crossing curve γ in Rd can be subdivided into at most M convex curves.

We note that the value d+1 is important, since a (≤d+2)-crossing curve in Rd in general
cannot be subdivided into a bounded number of convex curves. An example for d = 2
can be obtained, e.g., by starting with a circular arc and making many very small and flat
inward dents in it.

The case d = 2 is already nontrivial, but to our surprise, we have not found it men-
tioned in the literature. The following picture shows a planar curve, namely, the graph of
x(1 − x2)2 on [−1, 1], which can be checked to be (≤3)-crossing, but obviously cannot
be subdivided into fewer than four convex arcs:

Hence M(2) ≥ 4. We can prove that M(2) actually equals 4, and that M(3) ≤ 22. The
proofs can be found in an earlier version of this paper [BM13] by the first two authors.

2 Let A be a linearly ordered set of at least k + 1 elements. A (real) Chebyshev system on A is a
system of continuous real functions f0, f1, . . . , fk : A→ R such that for every choice of elements
t0 < t1 < · · · < tk in A, the matrix (fi(tj ))ki,j=0 has a (strictly) positive determinant.
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Theorem 1.1 for polygonal paths. For technical reasons, and also from the point of
view of our motivation in geometric Ramsey theory, it is more convenient to work with
polygonal paths. A polygonal path is a curve made of finitely many straight segments; we
call these segments the edges of the polygonal path, and their endpoints are the vertices.
For a point sequence (p1, . . . , pn), we write p1 · · ·pn for the polygonal path consisting
of the segments p1p2, . . . , pn−1pn.

The definition of (≤k)-crossing needs to be modified: we call a polygonal path π
(≤k)-crossing if it intersects every hyperplane in at most k points, with the exception of
the hyperplanes that contain an edge of π . Moreover, we will also consider only polygo-
nal paths in general position, meaning that any k ≤ d + 1 vertices of the polygonal path
are affinely independent. The polygonal path version of Theorem 1.1 says the following.

Theorem 1.2. For every integer d ≥ 2 there exists M = M(d) such that every (≤d+1)-
crossing polygonal path π in Rd can be subdivided into at most M convex (i.e., (≤d)-
crossing) polygonal paths.

In Section 6 we prove by a limit argument that Theorem 1.2 implies Theorem 1.1.
Order-type homogeneous subsequences. Now we come to the geometric Ramsey-type
problem motivating our work.

Let T = (p1, . . . , pd+1) be an ordered (d + 1)-tuple of points in Rd . We recall
that the sign (or orientation) of T is defined as sgn detX, where the j th column of the
(d + 1) × (d + 1) matrix X is (1, pj,1, . . . , pj,d), with pj,i denoting the ith coordinate
of pj . Geometrically, the sign is +1 if the d-tuple of vectors p1 − pd+1, . . . , pd − pd+1
forms a positively oriented basis of Rd , it is −1 if it forms a negatively oriented basis,
and it is 0 if these vectors are linearly dependent.

We call a sequence (p1, . . . , pn) of points in Rd in general position order-type homo-
geneous if all (d+1)-tuples (pi1 , . . . , pid+1), i1 < · · · < id+1, have the same sign (which
is nonzero, by the general position assumption).

Let OTd(n) be the smallest N such that every sequence of N points in general posi-
tion in Rd contains an order-type homogeneous subsequence of length n. The existence
of OTd(n) for all d and n follows immediately from Ramsey’s theorem, but several recent
papers [EM13, CFP+14, Suk14, EMRS14] considered the order of magnitude of OTd(n),
for d fixed and n large.

For d = 2, the classical paper of Erdős and Szekeres [ES35] implies that OT2(n) =

22(n).3 Suk [Suk14], improving on a somewhat weaker bound by Conlon et al. [CFP+14],
proved the upper bound OTd(n) ≤ twrd(O(n)) for every fixed d, where the tower func-
tion twrk(x) is defined by twr1(x) = x and twri+1(x) = 2twri (x). He conjectured this to be
optimal, but so far matching lower bounds have been known only for d = 2 (by [ES35])
and d = 3 [EM13].

By combining the results of [EMRS14] with Theorem 1.2, we obtain a matching lower
bound for all d ≥ 2:

3 We employ the usual asymptotic notation for comparing functions: f (n) = O(g(n))means that
|f (n)| ≤ C|g(n)| for some C and all n, where C may depend on parameters declared as constants
(in our case on d); f (n) = �(g(n)) is equivalent to g(n) = O(f (n)); and f (n) = 2(g(n)) means
that both f (n) = O(g(n)) and f (n) = �(g(n)).
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Theorem 1.3. We have OTd(n) ≥ twrd(�(n)).

The argument is given in Section 7.

The question of estimating M(d). In our proof of Theorem 1.2, we will bound M(d)
from above by another, combinatorially defined quantity c(d), introduced in Theorem 4.2
below. We will show that c(1) = 3, and since M(1) = 3 trivially, we have c(1) =
M(1) = 3. In general, our proof yields M(d) ≤ c(d) ≤ exp(O(d)), where the constant
in the O(·) notation could easily be made explicit. In particular, for d = 2 the general
proof provides the bound M(2) ≤ c(2) ≤ 28, while, as was mentioned earlier, with a
careful argument it is possible to show that M(2) = 4. It would be interesting to find the
correct order of magnitude of M(d), or at least reasonable upper and lower bounds.

2. Order-type homogeneity and path convexity

We need the following fact.

Lemma 2.1. A sequence P = (p1, . . . , pn) in general position in Rd is order-type ho-
mogeneous iff the polygonal path π = p1 · · ·pn is convex.

Proof. First we assume that P is not order-type homogeneous. Then it has two (d + 1)-
tuples, of the form Q = (q1, . . . , qd+1) and R = (r1, . . . , rd+1), with opposite signs
(both Q and R are subsequences of P , i.e., the qi and the rj appear in P in this order).

It is easy to check that we can also find Q and R with opposite signs that differ in a
single point; more precisely, there is an index k such that qi = ri for all i 6= k. Indeed,
given arbitrary Q and R with opposite signs, we can convert Q into R by a sequence
of moves, each of them changing a single element: we always move the first element in
which the currentQ differs from R to the correct position. Then at least one of the moves
involves two (d + 1)-tuples with opposite signs.

Having Q and R as above with qi = ri for all i 6= k, we consider the hyperplane h
spanned by the points of Q′ := {qi : i 6= k}. Then qk and rk lie on opposite sides of h,
and hence π intersects h between qk and rk . Together with the d pointsQ′, we have d+1
intersections of π with h.

This h may still contain edges of π , so we may need to move it slightly. For simpler
description, we think of h as horizontal, and say that qk is below h, rk is above h, and qk
precedes rk in P .

If we choose, for every point qi ∈ Q′, a point q̃i sufficiently close to qi , then these q̃i
span a hyperplane h′, since Q′ is affinely independent. Moreover, as the q̃i get closer and
closer to the corresponding qi , the hyperplane h′ gets arbitrarily close to h within every
bounded region of Rd . It follows that if the points q̃i are chosen suitably (and in particular
on appropriate sides of h), then the points in the sequence (q1, . . . , qk, rk, qk+1, . . . , qd+1)

are alternately above and below h′. This implies that π intersects h′ at least d + 1 times,
and since the move of h was generic, we may assume that h′ contains no edges of π .

For the reverse implication, we need the following claim: If P = (p1, . . . , pn) is an
order-type homogeneous sequence and q is an interior point of the segment pipi+1, then



Curves in Rd intersecting every hyperplane at most d + 1 times 2473

the sequence P ′ = (p1, . . . , pi, q, pi+2, . . . , pn) (pi+1 replaced with q) is order-type
homogeneous as well.

To verify this claim, we suppose without loss of generality that all (d + 1)-tuples of
P are positive, and we consider an arbitrary (d + 1)-tuple in P ′ involving q, of the form

T = (pj1 , . . . , pjk−1 , q, pjk+1 , . . . , pjd+1),

1 ≤ j1 < · · · < jk−1 < i + 1 < jk+1 < · · · < jd+1 ≤ n.

We think of q moving from pi to pi+1 along the segment pipi+1. The determinant whose
sign defines the sign of T is an affine function of q (considering the remaining points of T
fixed). For q = pi it is either 0 (if jk−1 = i) or strictly positive, and for q = pi+1 it is
strictly positive. Therefore, for q in between, it is strictly positive too, which proves the
claim.

Now we assume for contradiction that the sequence P = (p1, . . . , pn) is order-type
homogeneous, but the corresponding polygonal path π is not convex, and so it has at
least d + 1 intersections with some hyperplane h not containing any edge of π . Let us fix
intersections q1, . . . , qd+1; at least one of them, call it q`, is an interior point of an edge
pjpj+1 of π (since the pi are in general position).

Using the claim above, we now want to replace π by another polygonal path π ′, whose
vertex sequence is still order-type homogeneous and includes all qi with i 6= `, as well
as pj and pj+1. To this end, we first observe that no two qi share a segment of π (since h
contains no such segment).

When producing π ′, first, if there is a qi with i > ` that is not a vertex of the current
polygonal path, we take the last such qi . We replace the vertex of the current polygonal
path immediately following qi with qi . By the claim, the new vertex sequence is still
order-type homogeneous. We repeat this step until all qi with i > ` become vertices.

Then we proceed analogously with the qi , i < `, that are not vertices. This time
we start with the smallest i, and qi always replaces the vertex immediately preceding it
(and we apply the claim to the reversal of the sequences under consideration). Here is an
illustration, with q`, pj , and pj+1 marked white:

p1

p2 = q1

p3

p4

p5
p6

p7

h

q2 q3 q4
π′

q5

p8

p1

p2 = q1

p3

p4

p5
p6

p7

h

q2 q3 q4π q5

p8

In this way, we obtain the polygonal path π ′ with order-type homogeneous vertex
sequence that is intersected by the hyperplane h in the d vertices qi , i 6= `, and in q`,
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which is an interior point of the segment pjpj+1 (neither pj nor pj+1 has been replaced).
But then the (d + 1)-tuples (q1, . . . , q`−1, pj , q`+1, . . . , qd+1) and (q1, . . . , q`−1, pj+1,

q`+1, . . . , qd+1) have opposite signs—a contradiction. ut

3. A combinatorial property of (≤d+1)-crossing paths

Here we prove a combinatorial property of point sequences in Rd for which the corre-
sponding polygonal path is (≤d+1)-crossing. In the two subsequent sections we will
derive Theorem 1.2 from this property in a purely combinatorial way.

Let P = (p1, . . . , pn) be a sequence in general position in Rd and let π = p1 · · ·pn
be the corresponding polygonal path. For notational convenience, for Q ⊂ P with
|Q| = d + 1, we define sgnQ as the sign of the sequence (pi1 , . . . , pid+1), where
Q = {pi1 , . . . , pid+1} with i1 < · · · < id+1. For a fixed subset R ⊂ P with |R| = d , we
consider the following sequence, which we call the sign sequence of R:(

sgn({pi} ∪ R) : i = 1, . . . , n, pi 6∈ R
)
∈ {−1,+1}n−d . (3.1)

Lemma 3.1. If π is (≤d+1)-crossing, then for every R as above, the sign sequence (3.1)
of R has at most one sign change.

A simple case. To prove the lemma, we first consider a simple special case. LettingH be
the hyperplane spanned by R, we assume that R contains no consecutive elements of P ,
and moreover that H separates pi−1 from pi+1 whenever pi ∈ R.

Because of the (≤d+1)-crossing condition, (π ∩ H) \ R is either the empty set or a
single point, which we call q. Then for x ∈ π , we have sgn({x} ∪ R) = 0 iff x ∈ R or
x = q.

Let us think of x moving along π . When it passes through a point p ∈ R, sgn({x}∪R)
does not change because x moves from one side ofH to the other, while x changes places
with p in the order on π . The same argument shows that sgn({x} ∪ R) changes only if x
passes through q.

Auxiliary claims. Next, we make preparations for proving the lemma in general.
The set P \R is non-empty, so we fix one of its elements and call it pα . We define Rδ

as the set of all sequences (qi ∈ π : pi ∈ R) such that |qi−pi | < δ, and for i > α, qi lies
on the open segment (pi−1, pi), while for i < α it lies on (pi, pi+1). Here is a schematic
illustration:

H

pα

pn
π

p1 p2

p3

q3 affQ

Since R spans the hyperplane H , every set Q ∈ Rδ for sufficiently small δ spans a
hyperplane as well. By general position, we have ε0 := dist(P \R,H) > 0. By continuity,
we also get the next claim:
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Claim 3.2. There is δ1 > 0 such that dist(P \ R, affQ) > 1
2ε0 for all Q ∈ Rδ1 .

This has the following consequence:

Corollary 3.3. If ph, ph+1 /∈ R and H ∩ phph+1 6= ∅, then affQ ∩ phph+1 6= ∅ for all
Q ∈ Rδ1 .

Claim 3.4. There is a δ2 ∈ (0, δ1) such that P ∩ affQ = ∅ for all Q ∈ Rδ2 .

Proof. If not, then there is a sequence δm → 0 and Qm ∈ Rδm with P ∩ affQm 6= ∅.
Then, for a suitable subsequence, P ∩ affQm contains a fixed element ph ∈ P . We have
ph ∈ R because the Qm have distance at least ε0/2 to P \ R.

Let (pi, pi+1, . . . , pj ) be the string of R containing ph, i.e., a maximal contiguous
subsequence of P whose points all lie in R (i.e., pi−1, pj+1 /∈ R; we also admit i = 1 and
j = n, as well as i = j ). Thus i ≤ h ≤ j and the polygonal path pi . . . pj is contained
in H .

Let us assume h > α; then i > α as well. Since ph ∈ affQm and qh ∈ Qm, the whole
line aff{ph, qh} is contained in affQm. Since ph−1 is on this line, it is in affQm as well.
This shows (by induction) that ph, ph−1, . . . , pi, pi−1 ∈ affQm. Thus pi−1 ∈ affQm,
which contradicts Claim 3.2. The argument for h < α is symmetric. ut

Proof of Lemma 3.1. We fix some δ ∈ (0, δ2) and Q ∈ Rδ , and set H ∗ = affQ. We ob-
serve thatH andH ∗ separate the points of P \R the same way. Moreover, if (pi, . . . , pj )
is a string of R and i > α, then the points pi−1, pi, . . . , pj lie alternately on the two
sides of H ∗. This follows from the fact that the path pi−1pi . . . pj intersects H ∗ in the
points qi, . . . , qj . Similarly, for i < α, the points pi, . . . , pj , pj+1 lie alternately on the
two sides of H ∗.

We again let x move along π . With R = (pi1 , . . . , pid+1), we have

sgn({x} ∪ R) = sgn det
(

1 . . . 1 1 1 . . . 1
pi1 . . . pij−1 x pij . . . pid+1

)
where the position of the column with x is determined by x lying between pij−1 and pij .
Then

sgn({x} ∪Q) = sgn det
(

1 . . . 1 1 1 . . . 1
qi1 . . . qij−1 x qij . . . qid+1

)
where Q = (qi1 , . . . , qid+1) and the same remark applies to the position of the x column.

Clearly sgn({x} ∪R) = sgn({x} ∪Q) when x ∈ P \R. Thus, it suffices to check how
sgn({x} ∪ Q) changes when x moves through qi, . . . , qj for the string pi, . . . , pj . Note
that sgn({x} ∪Q) changes only when x passes some point in Q ∩ π .

Just as in the basic case, sgn({x} ∪ Q) does not change when x passes qh because
then x moves from one side of H ∗ to the other and it also changes places with qh. Thus,
sgn({pi−1} ∪Q) = sgn({x} ∪Q) when x just passed qj .

Now we assume that α < i; the other option α > i is symmetric and follows the same
way. There are two cases.
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Case 1: pj and pj+1 are on the same side ofH ∗. Then sgn({pj }∪Q) = sgn({pj+1}∪Q),
and so sgn({pi−1}∪Q) = sgn({pj+1}∪Q), implying sgn({pi−1}∪R) = sgn({pj+1}∪R).
So there is no sign change between pi−1 and pj+1 in the sign sequence of R.

Case 2: pj and pj+1 are on opposite sides of H ∗. Then H ∗ ∩ pjpj+1 is a point q, and
sgn({x} ∪Q) changes sign when x moves through q. Consequently, sgn({pj+1} ∪ R) =

− sgn({pi−1} ∪ R), and there is a sign change in the sign sequence of R here.
But since H ∗ ∩ π contains already d + 1 points, Case 2 cannot occur anywhere else.

Also, the case in Corollary 3.3 cannot come up either, since that would mean H ∗ ∩ π
contains d+2 points. Thus, the only sign change in the sign sequence ofR occurs between
pi−1 and pj+1. ut

4. k-sequences and flip k-sequences

Now we will define a combinatorial abstraction of point sequences in Rk . A k-sequence is
a sequence S = (a1, . . . , an), where a1, . . . , an are distinct (abstract) elements, together
with a mapping sgn that assigns either +1 or −1 to every (k + 1)-element subset A ⊆
{a1, . . . , an} (sometimes we will regardA as a subsequence, with the elements in the same
order as in S). We will also say that A is positive or negative if sgnA = 1 or sgnA = −1,
respectively.

We subdivide the sequence S into contiguous blocks with one-point overlaps: The
first block is B1 = (a1, . . . , ai1) with i1 maximal such that all (k+1)-point subsequences
in B1 have the same sign σ1. The next one is B2 = (ai1 , . . . , ai2) with i2 maximal such
that all (k+ 1)-point subsequences in B2 have the same sign σ2, and so on, up until some
Bm = (aim−1 , . . . , an), where Bm either has at most k elements, or it has more than k
elements and every (k + 1)-tuple in it has the same sign σm.

We call this partition the greedy partition of S; here bothm = m(S) and the blocks Bj
are uniquely determined. Note that each Bj , j < m, contains a subset Dj of size k such
that sgn({aij+1} ∪Dj ) 6= σj .

The following lemma shows that S has a short subsequence S∗ whose greedy partition
is similar to that of S.

Lemma 4.1. There is a subsequence S∗ of S, which we call the reduced version of S,
such that m(S∗) = m(S), every block of the greedy partition of S∗ contains at most k+ 3
elements, and the last one exactly two. Moreover, every string of 2k + 5 consecutive
elements of S∗ contains both a positive (k + 1)-tuple and a negative one.

Proof. Let Bj = (aij−1 , . . . , aij ) be a block of the greedy partition of S with j < m. Let
us fix a d-element subset Dj of Bj as above, i.e., with sgn({aij+1} ∪Dj ) 6= σj .

The subsequence S∗ contains the following elements of Bj : aij−1 , aij−1+1, aij , the ele-
ments of Dj , and one more (arbitrarily chosen) element if the first three are all contained
in Dj . All the other elements are discarded. From the last block we keep the first two
elements.
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Let us consider the greedy partition of S∗. By induction on j , it is easy to see that for
j < m, the j th block B∗j starts with aij−1 , ends with aij , and the sign of Dj ∪ {aij+1} is
different from σj , which is the sign of (all) (k + 1)-tuples in B∗j .

It follows that every string of 2k + 5 consecutive elements of S∗ contains a full
block B∗j plus the next element aij+1. The sign of the first k+1 elements of B∗j is different
from sgn(Dj ∪ {aij+1}). ut

A k-sequence S = (a1, . . . , an) is called a flip k-sequence if it has the property as in
Lemma 3.1; that is, for every k-element A ⊂ {a1, . . . , an}, the sign sequence of A(

sgn({ai} ∪ A) : i = 1, . . . , n, ai 6∈ A
)

(4.1)

has at most one sign change. The following result of combinatorial nature is the key step
in the proof of Theorem 1.2.

Theorem 4.2. For every k ≥ 1 there is c(k) such that the greedy partition of every flip
k-sequence has at most c(k) blocks.

We prove this result in the next section. Now we show how it implies Theorem 1.2.

Proof of Theorem 1.2. We assume that P = (p1, . . . , pn) ⊂ Rd is in general posi-
tion. Let π = p1 · · ·pn be the corresponding polygonal path. Lemma 3.1 shows that
(p1, . . . , pn)with the sign of (d+1)-tuples given by their orientation is a flip d-sequence.
Theorem 4.2 says that its greedy partition has at most c(d) blocks. All (d + 1)-tuples
in Bj have the same sign, so Bj = (pij−1 , . . . , pij ) is order-type homogeneous, and thus
the polygonal path pij−1 · · ·pji is convex. It follows that M(d) ≤ c(d). ut

5. Proof of Theorem 4.2

We proceed by induction on k.

The case k = 1. We will show that c(1) = 3 (instead of reading this part, the reader may
perhaps prefer to find a simple proof of c(1) ≤ 5, say).

Let S = (a1, . . . , an) be a flip 1-sequence, and let B1, . . . , Bm be the blocks of its
greedy partition. Each Bi has the form (bi, xi, . . . , ci) where bi+1 = ci , and Bi contains
an element di such that sgn(di, xi+1) 6= σi . Note that x1 and dm are undefined.

Observation. If Bi and Bi+1 are two consecutive blocks, both positive, then di , ci =
bi+1, and xi+1 are three distinct elements of S. Moreover, for every a ∈ S preceding di
we have (a, xi+1) negative, and similarly, for every a following xi+1 we have (di, a)
negative.

Only the last two statements need an explanation. Since (ci, xi+1) is positive and
(di, xi+1) is negative, (a, xi+1) must be negative for a preceding di , for otherwise there
are two sign changes in the sign sequence of {xi+1}. The statement about (di, a) is proved
in the same way.

The proof of c(1) ≤ 3 comes in five steps. We assume without loss of generality that
(a1, a2) is positive.
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Step 1. If all (ai, ai+1) are positive, then m < 4. Indeed, supposing B4 exists, all blocks
are positive, (d1, x2) is negative, and (d1, d3) is negative by the Observation
above. Also, (d3, x4) is negative and there are two sign changes in the sign se-
quence of {d3}, since (b3, d3) or (d3, c3) (or both) are positive.

Step 2. If j is the smallest index with (aj , aj+1) negative, then aj = ci = bi+1, Bi is a
positive block, andBi+1 is a negative one. AssumeBi−1 exists. Then it is positive,
(di−1, xi) is negative, and thus (di−1, aj ) is negative by the Observation. But then
there are two sign changes in the sign sequence of {aj }: (di−1, aj ) and (aj , xi+1)

are negative and (bi, aj ) is positive. Thus Bi−1 cannot exist, i = 1, and there is a
single block before aj .

Step 3. ThusB1 is positive andB2 negative. AssumeB3 negative; then (d2, x3) is positive
and so is (b2, x3) by the Observation. Consequently, there are two sign changes
in the sign sequence of {b2}: (b1, b2) and (b2, x3) are positive but (b2, x2) is
negative. We conclude that B3 is a positive block.

Step 4. Assume B4 exists and is positive. Then (d3, x4) is negative and so is (b3, x4) by
the Observation. Then there are two sign changes in the sign sequence of {b3}:
(b2, b3) and (b3, x4) are negative and (b3, c3) is positive.

Step 5. We are left with the case when B1, B3 are positive and B2, B4 negative. If (b2, b4)

is positive, then there are two sign changes in the sign sequence of {b2}: (b1, b2)

and (b2, b4) are positive and (b2, c2) negative. Similarly, if (b2, b4) is negative,
then there are two sign changes in the sign sequence of {b4}.
Consequently, B4 does not exist: m < 4 and so c(1) ≤ 3.

The example S = (a1, a2, a3, a4) with a1, a2 and a3, a4 positive and all other pairs nega-
tive shows that c(1) = 3.

The inductive step from k − 1 to k. Assuming that the greedy partition of each flip
(k−1)-sequence has at most c(k−1) blocks, we will show that the greedy partition of an
arbitrary flip k-sequence S = (a1, . . . , an) has at most c(k) := 1+ (4k + 10)c(k − 1)/k
blocks.

So we suppose on the contrary that S as above has m > c(k) blocks. We can further
assume that S is reduced in the sense of Lemma 4.1, for otherwise we can replace S by S∗.
Since each Bi , i < m, has at least k+1 elements, and |Bm| = 2, the length of S is at least

n ≥ (m− 1)k + 2 > (4k + 10)c(k − 1)+ 2.

We consider the sequence T = (a1, . . . , an−1) and regard it as a (k − 1)-sequence by
defining, for a k-element A ⊂ {a1, . . . , an−1}, the sign sgnA := sgn(A∪{an}). It is clear
that T is a flip (k − 1)-sequence, and so its greedy partition has at most c(k − 1) blocks.
One of the blocks, which we call B, has at least (n−1)/c(k−1) ≥ 4k+10 elements. We
may assume without loss of generality that sgnA = +1 for every k-element subset of B.

Since S is reduced, there is a positive (k + 1)-tuple (b1, . . . , bk+1) among the first
2k+5 elements of B, and a negative (k+1)-tuple (bk+2, . . . , b2k+2) among the last 2k+5
elements of B. The sign of the (k + 1)-tuple (bi, . . . , bi+k) changes from +1 to −1 as i
moves through 1, . . . , k + 2, and so there is some j with sgn(bj , . . . , bj+k+1) = +1 and
sgn(bj+1, . . . , bj+k+2) = −1.
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We set A = {bj+1, . . . , bj+k+1}. Then sgn({bj } ∪ A) = +1 and sgn(A ∪ {bj+k+2})

= −1, while sgn(A ∪ {an}) = +1 by the choice of the block B. Hence the sign sequence
ofA has at least two sign changes, contradicting the assumption that S is a flip k-sequence.
This contradiction finishes the proof of Theorem 4.2. ut

6. From polygonal paths to curves: proof of Theorem 1.1

Here we show how Theorem 1.2 implies Theorem 1.1. We assume that γ : I → Rd is a
(≤d+1)-crossing curve.

Let us say that an n-tuple T = (t1, . . . , tn), t1, . . . , tn ∈ I , t1 < · · · < tn, is an
ε-sample if every subinterval of I of length ε contains some ti . Let π = π(γ, T ) =

γ (t0)γ (t1) · · · γ (tn) be the polygonal line determined by T .
First we observe that for every ε > 0, there is an ε-sample T with π(γ, T ) in gen-

eral position. Indeed, having already placed k points of T so that their γ -images are in
general position, we consider the finitely many hyperplanes spanned by d-tuples of these
γ -images. Since γ is (≤d+1)-crossing, each of these hyperplanes contains at most one
extra point of γ , and so at every step of the construction, we have only finitely many
excluded points of I . Thus, we can construct an ε-sample as desired.

Next, for every ε > 0, we fix an ε-sample T = T (ε) with π(γ, T (ε)) in general
position. Let M = M(d) be as in Theorem 1.2; by that theorem, we can also fix a subdi-
vision of I into M subintervals such that the restriction of π(T (ε), γ ) on each of them is
convex. By compactness, these subdivisions have a cluster point for ε→ 0; we denote its
intervals by I1, . . . , IM .

It remains to show that γ restricted to each Ij is convex. This follows from the next
lemma, applied with I = Ij and γ = γj .

Lemma 6.1. Let γ : I → Rd be a (≤d+1)-crossing curve, and suppose that for every
ε > 0 there is an ε-sample T (ε) such that the corresponding polygonal path π(γ, T (ε))
is in general position and convex. Then γ is convex as well.

Proof. For contradiction, we suppose that there is a hyperplane h intersecting γ in at least
d + 1 points.

First we observe that these points can be assumed to span h: if their affine hull F had
dimension smaller than d − 1, then since γ 6⊂ F , we could rotate h around F and thus
get more than d + 1 intersections.

Let us say that a point γ (t) ∈ h, t ∈ I , is a generic intersection with h if for an arbi-
trarily small neighborhood U of t , γ (U) intersects both of the open halfspaces bounded
by h (as usual, we count generic intersections with multiplicity, so the generic intersection
is actually determined by t). We claim that there is a hyperplane h′ with at least d + 1
generic intersections.

For easier description, let us imagine h horizontal. An intersection that is not generic
is either an endpoint of γ , or it is a point p where γ touches h, with a sufficiently small
open neighborhood of p on γ lying all strictly above h or all strictly below it; let us call
such intersections top-touching or bottom-touching.
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Let q1, . . . , qk be the nongeneric intersections of γ with h. At least k − 1 of these
are affinely independent, say q1, . . . , qk−1, and thus we can make an arbitrarily small
movement of h so that a prescribed subset of {q1, . . . , qk−1} ends up below h and its
complement above h. The previously generic intersections remain generic, provided that
the movement was sufficiently small.

Now if qi was bottom-touching and it lies above h after the move, then it yields (at
least) two generic intersections with h, and similarly for top-touching. If qi is an endpoint,
then it yields at least one generic intersection, provided that h was moved in the right
direction.

Hence by an appropriate move we can always get at least d + 1− k+ 2(k− 3)+ 2 =
d + k− 3 generic intersections, which is at least d + 1 for k ≥ 4. So it remains to discuss
the cases 1 ≤ k ≤ 3.

For k ≤ 2, the nongeneric intersections are distinct and thus affinely independent,
and so we can get k new generic intersections by a suitable move. For k = 3, there are
two affinely independent nongeneric intersections, at least one of them top-touching or
bottom-touching, and hence we can also get three new generic intersections by a suitable
move. Thus, we have obtained a hyperplane h′ with at least d + 1 generic intersections as
required.

Let t1, . . . , td+1 ∈ I , t1 < · · · < td+1, be the parameter values corresponding to these
generic intersections with h′. To finish the proof of the lemma, we fix a sufficiently small
ε > 0 and intervals J+1 , J

−

1 , . . . , J
+

d+1, J
−

d+1 ⊂ I , each of length at least ε, such that J+i
and J−i are in a small neighborhood of ti (and thus they lie to the left of J+i+1 ∪ J

−

i+1), and
γ (J+i ) lies above h′ and γ (J−i ) below it.

Suppose that J+1 precedes J−1 , for example. We choose points u0, u1, . . . , ud+2 ∈

T (ε) with u0 ∈ J
+

1 , u1 ∈ J
−

1 , u2 ∈ J
+

2 , u3 ∈ J
−

3 , u4 ∈ J
+

4 , etc. Then the polygonal
line π(γ, T (ε)) changes sides of h′ at least d + 1 times, and thus it has at least d + 1
intersections with h′. Since the position of h′ is generic, this shows that π(γ, T (ε)) is
not convex—a contradiction proving the lemma, and also concluding the proof of Theo-
rem 1.1. ut

7. The lower bound for order-type homogeneous subsequences

Super-order type homogeneity. The following strengthening of order-type homogene-
ity was considered in [EMRS14]: a point sequence P = (p1, . . . , pn) in Rd is super-
order type homogeneous if, for every k = 1, . . . , d , the projection of P to the first k
coordinates is order-type homogeneous (this includes the assumption that all of these
projections are in general position—let us abbreviate this by saying that P is in super-
general position).

It is easily seen, e.g. by Ramsey’s theorem, that for every d and n there is N such
that every N -point sequence in super-general position in Rd contains a super-order type
homogeneous subsequence of length n. Let us denote the corresponding Ramsey function
by OT∗d(n).
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It was shown in [EMRS14] that OT∗d(n) ≥ twrd(n− d). Thus, to prove Theorem 1.3,
the lower bound for OTd , and having Theorem 1.2 at our disposal, it suffices to verify the
following.

Lemma 7.1. For all d ≥ 2, OTd(n) ≥ OT∗d(�(n)).

Proof. Given n, let us set N = OTd(n), and consider an N -point sequence in super-
general position in Rd . By definition, it contains an n-point order-type homogeneous
subsequence P1.

By Lemma 2.1, the polygonal path given by P1 is convex, i.e., (≤d)-crossing, and
hence its projection onto the first d − 1 coordinates is (≤d)-crossing as well. So by the
assumption, it can be subdivided into at mostM(d−1) polygonal paths that are (≤d−1)-
crossing. One of them corresponds, by Lemma 2.1 again, to a subsequence P2 of P1 of
length at least n/M(d − 1) whose projection to the first d − 1 coordinates is order-type
homogeneous.

Analogously we construct P3, . . . , Pd , where |Pi | ≥ |Pi−1|/M(d − i + 1) and the
projections of Pi to the first k coordinates, for k = d − i + 1, d − i + 2, . . . , d , are
order-type homogeneous. In particular, Pd is the desired super-order type homogeneous
subsequence of length �(n). ut
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