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Abstract. An affine variety X of dimension ≥ 2 is called flexible if its special automorphism
group SAut(X) acts transitively on the smooth locus Xreg. Recall that SAut(X) is the subgroup of
the automorphism group Aut(X) generated by all one-parameter unipotent subgroups [2]. Given a
normal, flexible, affine varietyX and a closed subvariety Y inX of codimension at least 2, we show
that the pointwise stabilizer subgroup of Y in the group SAut(X) acts infinitely transitively on the
complement X \ Y , that is, m-transitively for any m ≥ 1. More generally we prove such a result for
any quasi-affine variety X and codimension ≥ 2 subset Y of X.

In the particular case of X = An, n ≥ 2, this yields a theorem of Gromov and Winkelmann
[8], [18].
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1. Introduction

Throughout the paper X will be an algebraic variety of dimension ≥ 2 over an alge-
braically closed field k of characteristic 0. The special automorphism group SAut(X) ofX
is the subgroup of the full automorphism group Aut(X) generated by all one-parameter
unipotent subgroups of Aut(X).1 Let U(X) denote the set of all those subgroups. A quasi-
affine variety X is called flexible if the tangent space TxX at any smooth point x ∈ Xreg
is spanned by the tangent vectors at x to the orbits U.x, where U runs over U(X). Thus a
normal quasi-affine variety X is flexible if and only if Xreg is.

If X is affine then this amounts to the notion of flexibility as introduced in [2, 1].
For such varieties flexibility is equivalent to transitivity, and even to infinite transitivity
of the group SAut(X) acting on Xreg (see [1, Theorem 0.1]). (We say that a group action
is infinitely transitive if it is m-transitive for any m ≥ 1.) These characterizations of
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flexibility can be extended to any quasi-affine variety (see Remarks 2.7 and Theorem
2.12, and [3, Theorem 2]).

It is worth mentioning that the class of flexible varieties is rather wide and contains
objects with sophisticated topology. It includes in particular

• the orbits of dimension at least 2 of the group SAut(X) on a quasi-affine variety X;
• homogeneous spaces of semisimple groups (and even homogeneous spaces of exten-

sions of semisimple groups by unipotent radicals);
• nondegenerate toric varieties (i.e. toric varieties without nonconstant invertible regular

functions);
• cones over flag varieties and anticanonical cones over del Pezzo surfaces of degree at

least 4;
• normal hypersurfaces of the form uv = p(x̄) in Cn+2

u,v,x̄ ,
• homogeneous affine Gizatullin surfaces, etc. (see [2], [1], [12], [14]).

There are general constructions (suspensions, tensor bundles etc., see [2, 1]) that allow
one to associate with a given flexible variety a rich collection of other such varieties.
Furthermore, if a normal variety of dimension ≥ 2 can be covered by several copies
of An then its universal torsor is a flexible quasi-affine variety [3].

In its simplest form the main result of this paper is the following theorem (see Sect. 2
for generalizations and refinements).

Theorem 1.1. Let X be a smooth quasi-affine variety of dimension ≥ 2 and Y ⊆ X a
closed subscheme of codimension ≥ 2. If X is flexible then so is X \ Y .

That is, if SAut(X) acts transitively onX then SAut(X\Y ) acts transitively onX\Y . More
generally, our main result (Theorem 2.6) shows that the pointwise stabilizer SAutY (X)
acts transitively onX \Y . This answers in the affirmative a question posed in [1, 4.22(2)].
Partial results in this direction were obtained in [1, Theorem 2.5 and Proposition 4.19]
(see also Proposition 2.12 below). We note that Theorem 1.1 does not hold for subsets Y
of X of codimension 1, in general [1, Proposition 4.13]. In this sense the result above is
optimal.

For an affine space X = An, n ≥ 2, the flexibility of X \ Y was first observed by
M. Gromov [8, §2.1.5, p. 72, Exercise (b′)] (cf. also [9, 4.6(b) and 5.3(c)]). The transitivity
of SAutY (X) in X \ Y was proven in this particular case by J. Winkelmann [18, §2,
Proposition 1].

To get an idea of the proof of Theorem 1.1, let us recall the argument used by both
Gromov and Winkelmann. Say, for flexibility, given a point x ∈ An \ Y it suffices to find
a Ga-action moving x in a prescribed generic direction v ∈ Tx(An) ∼= An and fixing Y
pointwise. Indeed, then the orbit G.x of G := SAut(An \ Y ) of every point x ∈ An \ Y is
open. Since any two nonempty open subsets meet, the result follows.

Let us consider the linear projection π : An→ An−1 parallel to v. By the genericity of
v the closure Y ′ := π(Y ) is a proper subvariety of An−1 not containing x′ := π(x). Hence
there is a regular function f on An−1 such that f (x′) = 1 and f |Y ′ ≡ 0. Assuming with-
out loss of generality that the coordinate form of π is (x1, x2, . . . , xn) 7→ (x2, . . . , xn)
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consider the locally nilpotent vector field f · ∂/∂x1. Its phase flow preserves Y and
moves x in direction v, as required.

A similar argument is crucial in the analytic version of this theorem for the comple-
ment to a closed tame analytic subset of Cn of codimension at least 2 [6, Propositions
4.11.6 and 4.11.7]. It is also implicitly present in the theorem of the second author and
Kutzschebauch [11, Theorem 4] where some deeper properties of the group SAutY (An)
are described.

In the case of arbitrary algebraic manifolds as treated here, the problem is consider-
ably more complicated. Though for a general flexible variety X it is natural to replace
a generic linear projection π as before by the quotient morphism % : X → X//U with
respect to the action of a generic U ∈ U(X), it is not obvious anymore that for a given
x ∈ X \ Y the group U can be chosen so that the closure of %(Y ) does not contain %(x),
i.e. one cannot guarantee the existence of a regular function on X//U that separates %(x)
and %(Y ). This turns out to be the essential obstacle to carrying out the original Gromov–
Winkelmann argument, which we overcome as follows.

By a result in [1] the pointwise stabilizer SAutY (X) of Y in SAut(X) has an open
orbit, say O, in X. As an important ingredient of the proof we show that for any flexible
variety X one can find a subgroup H of SAut(X) acting with an open orbit on X, which
is generated by two locally nilpotent derivations δ0, δ1 along with all their replicas f0δ0,
f1δ1, where f0 ∈ ker δ0 and f1 ∈ ker δ1 (see Proposition 2.15). We now consider a
completion X̄ of X compatible with partial quotients by the two Ga-subgroups U0

=

exp(kδ0) and U1
= exp(kδ1). These quotients define on X̄ two P1-fibrations %̄0, %̄1 with

privileged components D0 and D1 of the boundary of X, for which the restrictions %̄0|D0

and %̄1|D1 are birational. Acting with a suitable replica of U0 one can move the part
∂Y ∩ D1 of the boundary to a fixed proper subset of D1, and symmetrically for U1 and
∂Y ∩ D0 (see Proposition 4.11). Up to a controllable (and so negligible) proper subset
of D0 ∪ D1, this property is preserved when we iterate subsequently actions by suitable
replicas of U0 and U1 (see Proposition 5.11). Using the transitivity property of SAut(X)
and the subgroup H we can move a given codimension ≥ 2 subset Y as in Theorem 1.1
and, simultaneously, a given point x ∈ X \ Y to a generic fiber, say F , of the P1-fibration
%̄0 so that F does not meet ∂Y ∩D0. Using the Transversality Theorem from [1] we can
achieve that F does not meet Y , hence in total F and Ȳ are disjoint. This enables us to find
a U0-invariant function f ∈ OX(X) which vanishes on Y but not at x. The corresponding
replica U0

f of U0 fixes Y and moves x along F . Since the fiber F is generic, it meets the
open orbitO of SAutY (X), hence so does U0

f .x. Thus x belongs toO, and soO = X \Y ,
as stated.

In order to prove Propositions 4.11 and 5.11 mentioned above, we develop in Sec-
tions 3 and 4 a machinery which allows us to reduce the proof to the model case of a
standard birational transformation of a ruled surface induced by a Ga-action. This reduc-
tion is the longest part of the proof.

The paper is organized as follows. In Section 2 we recall some useful facts from [1]
and formulate, after introducing necessary definitions, a stronger version of Theorem 1.1
(see Theorem 2.6). In the second part of Sect. 2 we give a proof of Proposition 2.15
mentioned above. In Sections 3 and 4 we prepare the setup for the proof of our Main
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Theorem 2.6. The proof is then contained in Section 5. To get a first impression of the line
of argument, it is advisable after reading Section 2 to go directly to Section 5, addressing
results in Sections 3 and 4 when necessary.

2. Main theorem

2.1. Basic notions and the main result

We let An = Ank and Ga = Ga(k). In what follows, X denotes a quasi-affine variety
over k. Thus X can be embedded into an affine variety X′ = SpecB as an open subset.
We let A = OX(X) so that B is a finitely generated k-subalgebra of A. The embedding
X ↪→ X′ factors as X → SpecA → SpecB. Furthermore X ↪→ SpecA is an open
embedding. We note that A is not in general a finitely generated algebra over k.

Lemma 2.1. With the notation as above the following hold.

(a) Every action of an algebraic group on X extends in a canonical way to SpecA.
(b) Every subgroup U ∈ U(X) with infinitesimal generator δ yields a locally nilpotent

k-derivation on A.

Proof. (a) is standard, and (b) is a consequence of (a). ut

Let us recall some notions and useful facts from [1]. Given a subgroup U ∈ U(X) we let
δ denote an infinitesimal generator of U ; the latter is uniquely determined up to a nonzero
constant factor. Thus δ is a locally nilpotent derivation of the algebra A = OX(X) such
that U = exp(kδ). Geometrically δ can be viewed as a complete vector field on X with
phase flow ut = exp(tδ), t ∈ k. The tangent vector at x ∈ X given by this vector field is
denoted δx .

Lemma 2.2. Let Y be a closed (not necessarily reduced) subscheme of the quasi-affine
varietyX with ideal sheaf I ⊆ OX, and consider the ideal of global sections I = I(X) ⊆
A = OX(X). Given U ∈ U(X) with an infinitesimal generator δ the following hold.

(a) δ(A) ⊆ I if and only if u|Y = idY for any u ∈ U .
(b) δ(I ) ⊆ I if and only if u.Y ⊆ Y for any u ∈ U .2

Notation 2.3. (a) Let as before X be a quasi-affine variety and A = OX(X) be its ring
of regular functions. If a ⊆ A is the ideal of the complement Spec(A) \ X, then the set
of nonzero locally nilpotent derivations δ of A with δ(a) ⊆ a is denoted by LND(X). In
view of Lemmas 2.1 and 2.2(b) any element δ ∈ LND(X) gives rise to a one-parameter
subgroup U = exp(kδ) in U(X) and vice versa.

(b) In order to deal with quasi-affine varieties we choose a k-subalgebra 3 of A such
that the induced map X → Spec3 is an open embedding. Letting b be the ideal of the

2 In the terminology of [7, p. 10] this means that I is an integral ideal.
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complement Spec(3) \X we let LND3(X) denote the set of all locally nilpotent deriva-
tions δ on3 with δ(b) ⊆ b. Every such derivation induces as before a one-parameter sub-
group U ∈ U(X) and consequently extends to an element in LND(X). Thus LND3(X)
can be considered as a subset of LND(X).

(c) Given a collection N ⊆ LND3(X) of nonzero locally nilpotent derivations we let
G = GN = 〈N 〉 be the subgroup of SAut(X) generated by the one-parameter unipotent
subgroups U = exp(kδ), δ ∈ N .

Remarks 2.4. 1. We emphasize that the subring 3 of A is not supposed to be finitely
generated over k so that the choice 3 = A is also possible. In other words, we consider
X as an open subset of an affine k-scheme Spec3, which is not necessarily an algebraic
variety, in contrast with [1] (see also Remarks 2.7 below).

2. We observe as well that theG-action on X as in 2.3(c) extends to aG-action on the
affine scheme Spec3.

Let us recall some notation and standard facts.

2.5. (1) Given a group G = GN as before, the set of all one-parameter unipotent sub-
groups of G will be denoted by U(G), and the set of all nonzero locally nilpotent deriva-
tions on 3 generating one-parameter subgroups of G by LND3(G) or simply LND(G).

(2) A 3-replica of a subgroup U = exp(kδ) ∈ U(G) is a subgroup Uf = exp(kf δ)
∈ U(G), where f ∈ 3 is in the kernel of δ ([1]). Note that f δ is again a locally nilpotent
derivation on 3.

(3) We say that N is 3-saturated if N is closed under conjugation by elements in G
and taking 3-replicas, i.e.,

f δ ∈ N ∀δ ∈ N and ∀f ∈ ker3 δ.

Hereafter 3 will be fixed, hence in most cases we omit the symbol 3 and say simply
‘replica’ or ‘saturated’.

(4) A point x ∈ X is called G-flexible if TxX = Span(N (x)), where N (x) denotes
the set of tangent vectors δx with δ ∈ N . We say that X is G-flexible if Xreg consists of
G-flexible points.

(5) Given a (not necessarily reduced) closed subscheme Y in X we let GN ,Y denote
the subgroup ofG generated by all replicas f δ in N vanishing on Y in the ideal-theoretic
sense (see Lemma 2.2(a)). Therefore GN ,Y ⊆ GY , where GY = {g ∈ G | g|Y = idY }
stands for the ‘pointwise’ stabilizer of Y in G in the scheme-theoretic sense.

The following is our main result.

Main Theorem 2.6. Let X be a quasi-affine variety of dimension ≥ 2 and X ↪→ Spec3
be an open embedding into an affine k-scheme (see 2.3(b)). Let G = 〈N 〉 be a subgroup
of the group SAut(X) generated by a 3-saturated set N of locally nilpotent derivations
as in 2.5. Suppose thatX isG-flexible. If Y is a closed (possibly nonreduced3) subscheme
of X of codimension ≥ 2, then the complement X \ Y is GN ,Y -flexible.

3 The authors are grateful to M. Gizatullin for the suggestion to take also into account nonreduced
subschemes Y of X.
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In the case of a smooth variety X, applying Theorem 2.6 to the group G = SAut(X) we
get Theorem 1.1 from the Introduction.

Remarks 2.7. 1. SinceG ⊆ Aut(Spec3) the varietyX satisfies the requirements of The-
orem 2.6 whenever so does its (G-stable) regular locusXreg. Therefore it suffices to prove
Theorem 2.6 under the assumption that X is smooth. This explains the necessity to fix a
subring 3 ⊆ A as in 2.3(b). Indeed, A can be properly contained in A′ = OXreg(Xreg). If
instead of fixing 3 we always consider LND’s and their replicas with respect to the ring
A = OX(X), then an A′-replica need not be an A-replica, and so the notion of saturated
set of derivations could change when passing from X to Xreg.

2. The viewpoint of [1] is slightly different, as it deals with open subsets X of affine
algebraic varieties Z = SpecB, and with subgroupsG of SAut(Z) stabilizingX. It might
happen in principle that although Aut(X) acts transitively onXreg, there is no subgroupG
of Aut(Z) acting transitively on Xreg, whatever the choice of an embedding of X into an
affine variety Z (cf. Question 2.11 below). Thus a priori our viewpoint here is more
general.

3. Working with quasi-affine varieties has yet another advantage: given a subgroup
G ⊆ SAut(X), in the subsequent proofs we may at any step replace X by an open orbit
of G. This considerably simplifies our notation.

It is worth noting that if X as in Theorem 2.6 is normal and affine then SAut(X \ Y )
is in a natural way a subgroup of SAut(X). More generally, this holds for algebraically
generated groups (see [1]), by which we mean groups which are generated by algebraic
subgroups acting algebraically on X \ Y . This is a consequence of the following lemma.

Lemma 2.8. Let X be a normal affine variety over k and Y ⊆ X a closed subset of
codimension ≥ 2. Let G be an algebraically generated group acting on X \ Y . Then this
action extends to an action on X stabilizing Y .

Proof. By our assumptions, A := OX(X \ Y ) = OX(X). Hence the action of an alge-
braic group on X \ Y induces an action of G on A, and thus extends to X. Since G is
algebraically generated, the result follows. ut

Remark 2.9. (1) If in the lemma above the variety X is only quasi-affine then X embeds
into the affine scheme Z := SpecA, where A := OX(X). Note that the algebra A is not
in general finitely generated over k, so Z := SpecA is only an affine scheme and not
necessarily an algebraic variety. Given a closed subset Y ⊆ X of codimension ≥ 2 and
an action of an algebraically generated group G on X \ Y , this action extends now with
the same argument as before to an action on Z.

(2) It would be interesting to know whether there is an algebraic variety Z′ = SpecA′

containingX as an open subset such that the action ofG extends toZ′. IfG is an algebraic
group, this is a consequence of Lemma 2.10 below.

Lemma 2.10. With the notation as in Remark 2.9, given a finite-dimensional k-subspace
E ⊆ A there is a finitely generated G-stable k-subalgebra A′ ⊆ A containing E such
that X embeds as an open subset in the affine variety SpecA′.
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Proof. Since X is quasi-affine, there is a finitely generated k-subalgebra C of A =
OX(X) such thatX embeds as an open subset in SpecC. We may suppose thatE contains
a finite set of generators of C. By the lemma of Cartier [15, Chapt. I, §1], E is contained
in a G-stable subspace E′ of A of finite dimension. Obviously the k-subalgebra A′ of A
generated by E′ has the desired properties. ut

Lemma 2.10 shows, in particular, that any locally nilpotent derivation δ of A stabilizes
some finitely generated subalgebra A′ of A such that X embeds as an open subset in
the affine variety SpecA′. We do not know whether the latter remains true for any finite
collection of locally nilpotent derivations (cf. Remark 2.9(2)). More precisely:

Question 2.11. Suppose that N ⊆ LND(X) is finite. Does there exist a finitely generated
N -stable k-subalgebra A′ of A = OX(X) such that X embeds into SpecA′ as an open
subset?

2.2. Transitivity versus flexibility on quasi-affine varieties

Let X = SpecA be an affine variety. By the main result in [1] the flexibility of X is
equivalent to the transitivity of SAut(X) on Xreg, which in turn is equivalent to infinite
transitivity. We will need this and related facts in the more general setting of quasi-affine
varieties.

We will state the necessary results in the generality that we need below. The proofs
in [1] can be carried over to our more general quasi-affine setup without any difficulty.
Let us start with the main result of [1] (see 1.11 and 2.2 there).

Theorem 2.12. LetX be a smooth quasi-affine variety of dimension≥2, and letG=〈N 〉
be a subgroup of SAut(X) generated by a 3-saturated set N ⊆ LND3(X) as in Nota-
tion 2.3 and 2.5. Then the following are equivalent:

(i) X is GN -flexible.
(ii) GN acts transitively on X.

(iii) GN acts infinitely transitively on X.

In the proof of Theorem 2.6 we use the following auxiliary results. They are established
in [1, 2.5, 4.19, and 4.2] in the case of affine schemes X and reduced subvarieties Y of X.
The proofs given there immediately carry over to our more general situation.

Proposition 2.13. LetX andGN be as in Theorem 2.12, and let Y be a closed subscheme
of X. If X is GN -flexible4 then:

(1) The group GN ,Y acts on X \ Y with a dense open orbit, say OY , which consists of
allGN ,Y -flexible points of X \ Y . Consequently, theGN ,Y -action onOY is infinitely
transitive.

(2) If Y is finite then OY = X \ Y .

4 Equivalently, if GN acts transitively on X.
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(3) If x ∈ X then the image of the tangent representation GN ,x → GL(TxX) given by
the differential coincides with the special linear group SL(TxX).

Finally, we need the following interpolation result (see [1, Theorem 4.14 and Remark
4.16]).

Proposition 2.14. LetX andGN be as in Theorem 2.12. If G acts transitively onX then
for any finite subset Z ⊆ X there exists an automorphism g ∈ G with g(x) = x for all
x ∈ Z and with prescribed tangent map dxg ∈ SL(TxX) at all x ∈ Z.5

2.3. Generation of subgroups by LND’s

Let as before X be a quasi-affine algebraic variety of dimension n ≥ 2 equipped with
an open embedding into an affine k-scheme Spec3, where 3 ⊆ OX(X). Given a set
N ⊆ LND3(X) of locally nilpotent derivations we enrich it by adding all the 3-replicas
of derivations in N . Letting Ñ be this enlarged set, we consider the subgroup 〈〈N 〉〉
:= 〈Ñ 〉 of the group Aut(X) generated by Ñ .

In this section we prove the following result.

Proposition 2.15. LetG = 〈N 〉 ⊆ SAut(X) be the subgroup generated by a3-saturated
set N of locally nilpotent derivations. Suppose thatG acts transitively onX. Then for any
locally nilpotent derivation δ0 ∈ N one can find another one δ1 ∈ N such that the sub-
group

H = 〈〈δ0, δ1〉〉 (2.1)

generated by δ0, δ1 and all their replicas acts with an open orbit on X.

To deduce this result let us recall a few facts. Let U be a one-parameter unipotent sub-
group with an infinitesimal generator δ ∈ LND3(X) (see Notation 2.3). By assumption,
X is contained as an open subset in Spec3, and by Lemma 2.10 even in Spec3′ for
some δ-stable finitely generated subalgebra 3′ of 3. By the Rosenlicht Theorem (see
[16, Theorem 2.3]) one can find a finite set of U -invariant functions f1, . . . , fm ∈ 3

′U

which separate general U -orbits. Let B be the integral closure of the finitely generated
k-algebra k[f1, . . . , fm]. It is a standard result that B is again finitely generated (see e.g.
[5, Theorem 4.14]).

Definition 2.16. The normal affine varietyQU = SpecB will be called a partial quotient
ofX byU . In general it depends on the choice of the functions f1, . . . , fm.6 The inclusion
B ↪→ OX(X) defines a dominant morphism %U : X → QU such that the general fibers
of %U are general orbits of U .

5 In fact, this proposition holds more generally for any finite collection of m-jets provided these
jets fix the corresponding points and preserve local volume forms on X at these points (see [1,
Remark 4.16]).

6 Alternatively, one could use the Winkelmann quotient [19]. This quasi-affine quotient is canon-
ically defined, but has the disadvantage of being nonaffine in general.
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Proof of Proposition 2.15. Let as before %0 : X→ Q0 be a partial quotient of X by U0,
where dimQ0 = n − 1. Since n ≥ 2 there exists σ ∈ N such that ker σ 6= ker δ0,
and so U0 and U = exp(Cσ) have different general orbits. We can choose x ∈ X such
that the tangent vector δ0,x of δ0 at x is nonzero, hence dimU0.x = 1. If we choose
x in an appropriate way, there are points x1, . . . , xn−1 on the orbit U0.x such that the
vectors v′i = σxi ∈ TxiX are all nonzero. Letting q = %0(x) ∈ Q0 we fix for each i =
1, . . . , n − 1 a tangent vector vi ∈ TxiX in such a way that the vectors d%0(vi) ∈ TqQ0,
i = 1, . . . , n−1, generate the tangent space TqQ0 toQ0 at q. For every i = 1, . . . , n−1
we can choose a 1-jet of a local automorphism at xi that fixes xi and sends v′i to vi . This
amounts to choosing αi ∈ SL(TxiX) such that αi(v′i) = vi . According to Proposition
2.14 one can interpolate these jets by an automorphism, say α ∈ G, such that α(xi) = xi
and dα(v′i) = vi for i = 1, . . . , n− 1. Replacing U by

U1
= α ◦ U ◦ α−1

= exp(Cδ1) ∈ U(G),

we obtain a one-parameter unipotent subgroup with tangent vector vi at xi , i=1, . . . , n−1.
We claim that the locally nilpotent derivation δ1 satisfies our requirement. Indeed, δ1 ∈ N
since N is saturated, and so in particular closed under conjugation in G. Consider the
conjugate one-parameter subgroups

U1
i = α

−1
i ◦ U

1
◦ αi = exp(Cσi) ∈ U(H), i = 1, . . . , n− 1,

where αi ∈ U0 is an element which maps x to xi . Here H is as in (2.1) and σi is a
conjugate of δ1 under the action of H for i = 1, . . . , n − 1. For any i in this range the
vector ui = dαi(vi) is tangent to the orbit U1

i .x at x ∈ X. Furthermore, the vectors
d%0(ui) = d%0(vi) ∈ TqQ0, i = 1, . . . , n− 1, still generate TqQ0. Hence the vectors

u0 = δ0,x, u1 = σ1,x, . . . , un−1 = σn−1,x ∈ TxX

span TxX as well. Consequently, x is anH -flexible point, and so theH -orbitH.x is open
and dense in X (see [1, Corollary 1.11(a)]). ut

3. m-blowups, tangency, and m-contractions

This section is technical; we use its results and notions (see especially Definitions 3.5 and
3.8 and Proposition 3.15) in the proof of Proposition 4.11 in the next section.

3.1. In the following we deal with rational maps g : X .........- Y which fit into a diagram

X̂

	�
�
�h @

@
@

g′

R

X
g - Y
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where h is a sequence of blowups and g′ is a proper morphism. This somewhat restricted
class of rational maps is suitable for our purposes. Given subsets A ⊆ X and B ⊆ Y we
let

g(A) = g′(h−1(A)) and g−1(B) = h(g′−1(B))

denote the total image and preimage, respectively.7 Since any two resolutions of the in-
determinacy set are dominated by a third one, the total image and the total preimage are
well defined.

3.1. m-blowups and tangency

In the next definition we introduce a setup which is used repeatedly in this and the next
section.

Definition 3.2. LetX be an algebraic variety andC,D be divisors inX, which are Cartier
near C∩D. Them-blowup σm : Xm→ X ofD along C is defined recursively as follows.
With X0 = X we let X1 be the blowup of X along the subscheme C ∩ D. If Xm−1
is already defined for some m ≥ 2, then we let Xm → Xm−1 be the blowup along
D(m−1)

∩ Em−1, where D(m−1) is the proper transform of D in Xm−1 and Em−1 the
exceptional set of the previous blowup Xm−1 → Xm−2.

In the following we call the proper transforms

E′1, . . . , E
′
m ⊆ X

′
= Xm

of the exceptional sets Ei of Xi → Xi−1 the exceptional sets of the m-blowup of D
along C. The proper transforms of C and D will always be denoted C′,D′, respectively.

Example 3.3. Suppose that S is a complete smooth surface and C ∩D = {p}, where the
intersection is transversal. Then the dual graph of C′ ∪ E′1 ∪ · · · ∪ E

′
m ∪ D

′ is a linear
chain:

cC2
− 1

C′

c−2

E′1

. . . c−1

E′m

cD2
−m

D′

(3.1)

Let us next consider the effect of an m-blowup as in Definition 3.2 on the boundary
of a closed subset of X.

Proposition 3.4. We keep the notation and assumptions as in Definition 3.2. Given a
closed subset Y ⊆ X we let Y ′ denote its proper transform in X′, and ∂Y ′ its boundary
∂Y ′ = Y ′ ∩ σ−1

m (C ∪D). Then with P = Y ∩D \ C, for m� 0,

∂Y ′ \ C′ ⊆ E′1 ∪ · · · ∪ E
′

m−1 ∪ σ
−1
m (P ).

7 These notions should be treated with caution, because they are not compatible with composition
of rational maps.
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Proof. The assertion is local around points inC∩D\P . Thus we may assume that P = ∅,
X = SpecA is affine, and that D = V (x), C = V (y) with some functions x, y ∈ A. The
subset

U ′ = X′ \

m−1⋃
i=0

E′i

of X′ is affine with coordinate ring A′ = A[u], where u = x/ym (cf. Lemma 3.10 below
for the special case of surfaces). Furthermore

U ′ ∩ E′m = {y = 0} and U ′ ∩D′ = {u = 0}. (3.2)

If I ⊆ A is the ideal of Y then B = A/I is the affine coordinate ring of Y . Since
Y ∩D \ C = ∅, the set Y ∩ D is contained in C ∩ D and so the localization (B/xB)y
is zero. Hence there exists a natural number m such that ym−1

∈ xB. In other words, we
can find a ∈ A such that

ym−1
− a · x ∈ I. (3.3)

In the blowup ring A′ the ideal I ′ of Y ′ is given by

I ′ = {g ∈ A′ | ∃k ∈ N : ykg ∈ IA′}.

Since u = x/ym, condition (3.3) can be rewritten in the form

ym−1
· (1− yau) ∈ IA′.

Hence 1− yau ∈ I ′. This shows that in the affine coordinate ring B ′ = A′/I ′ of U ′ ∩ Y ′

the residue classes of y and u are units. In view of (3.2) this implies that

U ′ ∩ Y ′ ∩ E′m = ∅ and U ′ ∩ Y ′ ∩D′ = ∅,

which immediately yields the required result. ut

Definition 3.5. We say that a closed subset Y of X is at most m-tangent to D along C
if the conclusion of Proposition 3.4 holds with this particular value of m. The subset
N = C ∩ Y ∩D \ C of C ∩D will be called the defect set.

We note that if Y is at most m-tangent to C along D then it is also at most m′-tangent
to C along D for all m′ ≥ m. The following observation is important.

Lemma 3.6. If codimX Y ≥ 1 and Y \D is dense in Y then the defect set N is nowhere
dense in C ∩D.

Proof. If codimX Y ≥ 1 then the set Y ∩D has codimension ≥ 1 in D. Hence its closure
cannot contain any component of C ∩D. ut

Remark 3.7. In the setup of Proposition 3.4, suppose that (Ys)s∈S is a family of proper
closed subsets of X. Then there is a natural m such that Ys is at most m-tangent to D
along C for any s ∈ S.
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This follows easily from the fact that the construction of Proposition 3.4 can be done
al least generically in the given family and that it is then compatible with restriction to
the general fiber. More precisely, one can find an open dense subset U ⊆ S such that all
fibers Ys are at most m-tangent to D along C with m independent of s ∈ U , and with
a defect set Ns = C ∩ Ys ∩D \ C. Restricting the family to S′ = S \ U and applying
induction on dim S, we may assume that Ys is at most m-tangent to D along C for any
s ∈ S′. Hence the assertion follows.

3.2. m-contractions

Definition 3.8. Let C,D be divisors on an the algebraic varietyX which are Cartier near
C ∩ D. Consider a birational map g : X .........- X and a resolution of the indeterminacy
set of g which factors through the m-blowup σm : X′ = Xm → X of D along C (see
Definition 3.2):

X̂

	�
�
�hm

@
@
@

g′

R

X′ = Xm
σm- X

h

?
g - X

g is called an m-contraction for C along D if:

• g is biregular at the points of X \ C;
• with gm = g ◦ σm, the total image8 gm(C

′
+E′1+ · · ·+E

′

m−1) is a subset ofD, where
E′1, . . . , E

′
m are as in Definition 3.2.

Clearly, an m-contraction for C along D is also an m′-contraction for C along D for any
m′ ≤ m. The following example is important and serves as a model case.

Notation 3.9. Let 0 = (0, o) be a germ of a smooth affine curve with a uniformizing
parameter u such that u(o) = 0, and let d(u) denote a nowhere vanishing function on 0.
We consider homogeneous coordinates (ζ1 : ζ2) on P1 and an affine coordinate v = ζ1/ζ2
on A1

= P1
\ {(1 : 0)}. The product S := 0 × P1 is a P1-fibered surface over 0. Its fiber,

say C, over o ∈ 0 and the section D = 0 × {(0 : 1)} ⊆ 0 × A1 can be described in
coordinates by

C = {u = 0} and D = {v = 0}.

Let us study the rational map gm : S 99K S, where m ∈ N, given in affine coordinates by

gm(u, v) =

(
u,

umv

d(u)v + um

)
. (3.4)

Its indeterminacy set consists of the intersection point C ∩D = {u = v = 0}, which will
be denoted by 0̄.

8 See 3.1.
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Lemma 3.10. Let

S′

	��
�σm @@@

g′m

R

S
gm - S

be the minimal resolution of indeterminacies of gm, where σm is a sequence of blowups
and g′m is a morphism. Then the total transform of C + D on S′ under σm has weighted
dual graph

c−1

C′

c−2

E′1

. . . c−2

E′m

cD′ −m

. . . c−2

E′2m−1

c−1

E′2m

(3.5)

where C′ and D′ are the proper transforms of C and D, respectively. The map σm con-
tracts the components E′1, . . . , E

′

2m to the origin 0̄ ∈ S, while g′m contracts the curves
C′, E′1, . . . , E

′

2m−1 to 0̄ ∈ S. Furthermore g′m(D
′) = D and g′m(E

′

2m) = C.

Proof. Letting v0 = v we define a sequence of coordinate charts (u, vi) on S′, i =
0, . . . , 2m, so that the 2m blowdowns over the origin with exceptional curves E′1, . . . ,
E′2m that constitute the map

σ : (u, v2m) 7→ (u, v2m−1) 7→ · · · 7→ (u, v1) 7→ (u, v)

can be described by the formulae

v1 = v/u, v2 = v1/u = v/u
2, . . . , vm = vm−1/u = v/u

m, (3.6)

and

vm+1 = (1+d(u)vm)/u, vm+2 = vm+1/u, . . . , v2m = v2m−1/u = (1+d(u)vm)/um.
(3.7)

The map gm can be written in these coordinate charts as

(u, v) 7→

(
u,

umv

d(u)v + um

)
=

(
u,

umv1

d(u)v1 + um−1

)
= · · · =

(
u,

umvm

1+ d(u)vm

)
=

(
u,
d(u)umvm+1 − u

m−1

vm+1

)
= · · · =

(
u,
d(u)umv2m − 1

v2m

)
.

Hence the curveE′i given in the chart (u, vi) by the equation u = 0 is contracted under g′m
for every i = 0, . . . , 2m−1, while the curve E′2m given by the same equation in the chart
(u, v2m) maps birationally onto the curve C in S. Now the assertion follows. ut

An immediate consequence is the following corollary.

Corollary 3.11. The birational map gm in (3.4) is an m-contraction of C along D.
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Note that gm is not an (m+1)-contraction of C alongD. This example can be generalized
to higher dimensions as follows.

Notation 3.12. Instead of a curve 0 in 3.9 we now consider a smooth affine algebraic
varietyQ and a smooth divisor T ⊆ Q given by the equation {u = 0}, where u ∈ OQ(Q).
The product X = Q× P1 is P1-fibered over Q and contains the divisors

C = T × P1 and D = Q× {(0 : 1)} ⊆ Q× A1,

where we equip P1 with homogeneous coordinates (ζ1 : ζ2). As before, v = ζ1/ζ2 stands
for an affine coordinate on A1

= P1
\ {(1 : 0)}. Thus we have

C = {u = 0} and D = {v = 0}.

Lemma 3.13. Given a nowhere vanishing function d(q) on Q and m ∈ N, the rational
map

gm : X 99K X, where gm(q, v) =

(
q,

u(q)mv

d(q)v + u(q)m

)
, (3.8)

is an m-contraction of C along D.

Proof. A resolution

X′

	��
�σm @@@

g′m

R

X
gm - X

of the indeterminacy points of gm can be obtained (with obvious changes) by the same
sequence of blowups as in the proof of Lemma 3.10. Letting v0 = v we define a sequence
of coordinate charts (q, vi) ∈ Ui = Q × A1 on X′, i = 0, . . . , 2m, so that the 2m
blowdowns over C ∩D with exceptional divisors E′1, . . . , E

′

2m that constitute the map

σ : (q, v2m) 7→ (q, v2m−1) 7→ · · · 7→ (q, v1) 7→ (q, v)

can be described by the formulae in (3.6) and (3.7), where u is now the function u(q).
With the same calculation as before, the map gm can be written in these coordinate charts
as

(q, v) 7→

(
q,
d(q)u(q)mv2m − 1

v2m

)
.

As in the proof of 3.10, the exceptional set E′i is given in the chart Ui by the equation
u = 0, and it is contracted under g′m to the subset C ∩ D for every i = 0, . . . , 2m − 1.
Finally, the exceptional setE′2m given by {u = 0} in the chartU2m maps under g′m isomor-
phically onto the divisorC inX. Since the divisorsC′, E′1, . . . , E

′

m−1 inX′ are contracted
under g′m to C ∩D, the result follows. ut

Next we show that m-contractions are compatible with certain blowups.
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Proposition 3.14. Let X be an algebraic variety and C, D be connected divisors on X,
which are Cartier near C ∩ D. Let g : X - X be an m-contraction of C along D
and p : Z→ X be a modification, which is an isomorphism over D ∪ (X \ C). Then the
rational map f : Z - Z induced by g is an m-contraction of CZ = p−1(C) along
DZ = p

−1(D) ∼= D.

Proof. Let Xm → X and Zm → Z be the m-blowups of X and Z, respectively. Since p
is an isomorphism at the points nearD, the exceptional sets E′1, . . . , E

′
m of Xm→ X can

be identified in a natural way with the exceptional sets, say E′1,Z, . . . , E
′

m,Z , of Zm→ Z.
Consider the composed rational maps

Z′m
fm- Z and X′m

gm- X

and a diagram
Ẑ

	�
�
�hm

@
@
@

f ′m

R

Z′m
fm - Z

X′m

p′

?
gm - X

p

?

where Ẑ is a resolution of the indeterminacy locus of fm and then also of gm. By our
assumption the set

(p′ ◦ hm)
−1(C′ ∪ E′1 ∪ · · · ∪ E

′

m−1) = h
−1
m (C′Z ∪ E

′

1,Z ∪ · · · ∪ E
′

m−1,Z)

is contracted under p ◦ f ′m to a subset of D. Since p is an isomorphism near D, the latter
set is already contracted under f ′m to a subset of D. This proves the assertion. ut

Let us now study the effect of anm-contraction of C alongD on the boundary of a closed
subset Y of X.

Proposition 3.15. Let X be an algebraic variety and C, D divisors on X, which are
Cartier near C ∩ D. Assume that g : X - X is an m-contraction of C along D and
that Y ⊆ X is a closed subset which is at most m-tangent to C along D with defect set
N = C ∩ Y ∩D \ C. Then the proper image Ŷ of Y under g satisfies

∂Ŷ ⊆ D ∪ g(N),

where g(N) is the total image of N , and ∂Ŷ denotes the intersection of Ŷ with D ∪ C.

Proof. Let σm : X′ = Xm → X be the m-blowup of C along D with exceptional
sets E′1, . . . , E

′
m and consider the composition gm = g ◦ σm : X′ - X. We can find a
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resolution of the indeterminacy locus of gm

X̂

	�
�
�hm

@
@
@

g′m

R

X′
gm - X

Since Y is at most m-tangent to C along D, the boundary ∂Y ′ of the proper transform Y ′

of Y in X′ satisfies
∂Y ′ ⊆ E′1 ∪ · · · ∪ E

′

m−1 ∪ σ
−1
m (P ),

where P = Y ∩D \ C (see Proposition 3.4). By condition (2) in Definition 3.8,

h−1
m (C′ ∪ E′1 ∪ · · · ∪ E

′

m−1)

is contracted under g′m to a subset of D. Hence

g′m(h
−1
m (∂Y ′)) ⊆ D ∪ g′m(h

−1
m (σ−1

m (P ))) = D ∪ g(P ).

Since g′m is proper, the set on the right is easily seen to contain ∂Ŷ , as stated. ut

4. Replicas as m-contractions

Notation 4.1. (a) Let X be a smooth quasi-affine algebraic variety and GN a group of
automorphisms on X generated by a set of3-saturated locally nilpotent derivations N ⊆
LND3(X) (see Notation 2.3 and 2.5). Suppose that GN acts transitively on X.

(b) We choose two locally nilpotent derivations δ, δ0 ∈ LND3(X) such that

ker δ 6= ker δ0.

Let U , U0 denote the associated one-parameter subgroups and choose partial quotients

% : X→ Q and %0 : X→ Q0

as introduced in 2.16.
(c) We can embed Q and Q0 into normal projective varieties Q̄ and Q̄0, respectively.

Let X̄ be a smooth projective completion of X. After blowing up X̄ in the boundary
∂X = X̄ \X, if necessary, we may extend % and %0 to morphisms

X̄
%̄0- Q̄0

Q̄

%̄

?

The general fiber of % is an orbit of U isomorphic to A1. Clearly %̄−1(q) ∼= P1 for a
general point q ∈ Q. Hence there is a unique divisorD ⊆ X̄ \X which maps birationally
onto Q̄. Similarly there is a unique divisor D0 in X̄ \ X mapping birationally onto Q̄0.
Thus both D and D0 are contained in the boundary ∂X = X̄ \X.

The following observations will be important.
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Lemma 4.2. (a) Let ϕ ∈ ker δ \ ker δ0 be a regular function on X. Then ϕ is a rational
function on X̄ with poles at general points of D0.

(b) %̄(D0) ⊆ Q̄ \Q and %̄0(D) ⊆ Q̄0 \Q0. In particular, D 6= D0.

Proof. (a) Since D0 → Q̄0 is dominant, an orbit closure H0.x of a general point x ∈ X
meets D0 at a general point x̄ ∈ D0. Let us consider ϕ as a rational map X̄ - P1.
Since the indeterminacy set of ϕ on X̄ is of codimension at least 2, ϕ is regular on the
orbit closure H0.x ∼= P1 for a general x ∈ X. Since ϕ 6∈ ker δ0, this map is not constant
on general orbits of H0. In particular it restricts to a dominant morphism ϕ : H0.x → P1

such that ϕ(x̄) = ∞.
(b) It is sufficient to prove the first part. If %̄(D0) ∩ Q 6= ∅ then a function ϕ ∈

O(Q) \ ker δ0 would be holomorphic at a general point of D0, contradicting (1). ut

Lemma 4.3. After blowing up the boundaries ∂X = X̄ \ X and ∂Q = Q̄ \Q suitably
we can achieve that

(a) T = %̄(D0) is a divisor in Q̄, and
(b) X̄, D and D0 are smooth.

Proof. (a) By Lemma 4.2(b), T sits in the boundary of Q̄. According to a theorem of
Zariski (see [20] and [13, Chapter VI, Theorem 1.3]9), there is a blowup Q̄′ → Q̄ with a
center in %̄(D0) such that the proper transform of D0 in X̄Q̄′ maps onto a divisor in Q̄′.
Thus replacing Q̄ by Q̄′ we can achieve that T is a divisor.

Since X is smooth and does not meet D ∪D0, by a suitable blowup of the boundary
X̄ \X we can achieve that (b) holds. ut

Lemma 4.4. There is a closed subset B0 of Q̄ with codimQ̄ B0 ≥ 2 such that

(a) Sing Q̄ ∪ Sing T ⊆ B0,
(b) D→ Q̄ is an isomorphism at the points of D \ %̄−1(B0), and
(c) X̄→ Q̄ is flat at the points over Q̄ \ B0.

Proof. (a) can be satisfied as Q̄ is normal and T is reduced. Since D→ Q̄ is a birational
map, also (b) can be achieved.

(c) By the theorem on generic flatness [5, Theorem 14.4] there is a proper closed
subset E in Q̄ such that %̄ is flat at the points over Q̄ \ E. Applying the theorem on
generic flatness again shows that %̄|E : %̄−1(E) → E is flat over a subset E \ B ′ of E,
where B ′ is a nowhere dense closed subset of E. Using [5, Corollary 6.9] it follows that
f is flat over Q̄ \ B ′′, where

B ′′ = B ′ ∪ {s ∈ E | E is not a Cartier divisor in Q̄ at x}.

Since Q̄ is normal, this set has codimension ≥ 2 in Q̄. After adding B ′′ to B0, also (c) is
satisfied. ut

9 We are grateful to Y. Prokhorov for pointing out to us this reference.
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The following facts should be well known; for lack of a reference we provide a brief
argument.

Lemma 4.5. Let p : S → 0 be a P1-fibration of a smooth surface S over a smooth affine
curve 0 admitting a smooth section D ⊆ S so that D ∼= 0. Then for any point t ∈ 0 the
fiber F = p−1(t) is a tree of rational curves. Furthermore:

(a) If {x} = F ∩D then h0(F,OF (x)) = 2 and H i(F,OF (x)) = 0 for i ≥ 1.
(b) The sheaf OF (x) is generated by its global sections.
(c) If s0, s1 ∈ H 0(F,OF (x)) is a basis, then the map (s0 : s1) : F → P1 is an isomor-

phism near x.

Proof. Blowing down successively (−1)-curves in the fibers of p not meeting D we
obtain a locally trivial P1-bundle V → 0. The curve D can also be considered as a
section of V → 0 and so we have an isomorphism V ∼= Proj0(p∗(OV (D))). If S = V
then assertions (a)–(c) are trivial. By blowing up subsequently points in the fibers we
prove these assertions also for p : S → 0. ut

In what follows we may assume that conditions (a), (b) in Lemma 4.3 are satisfied.

Lemma 4.6. Let X̄q = %̄−1(q) and Dq = D ∩ X̄q . Then there is a closed subset B of
codimension ≥ 2 in Q̄ such that for q ∈ Q̄ \ B the following assertions hold:

(a)q h0(X̄q ,OX̄q
(Dq)) = 2 and H i(X̄q ,OX̄q

(Dq)) = 0 for i ≥ 1.
(b)q The sheaf OX̄q

(Dq)) is generated by its global sections.

(c)q If s0, s1 ∈ H 0(X̄q ,OX̄q
(Dq)) is a basis, then the map (s0 : s1) : X̄q → P1 is an

isomorphism near Dq .
(d)q The map %̄∗(OX̄(D))q → H 0(X̄q ,OX̄q

(Dq)) is surjective, and %̄∗(OX̄(D))q is free
of rank 2.

Proof. Let B0 ⊆ Q̄ be a set as in Lemma 4.4. We choose a proper closed subset P of Q̄
such that any fiber over Q̄\P is isomorphic to P1. For any q ∈ Q̄\P assertions (a)q–(d)q
follow easily.

Let a curve 0 in Q̄ be the intersection of n− 1 general ample divisors in Q̄. Since Q̄
is normal and codimB0 ≥ 2, 0 meets neither Sing Q̄ nor B. By Bertini’s theorem both 0
and the surface S = %̄−1(0) are smooth. The restriction %̄|S : S → P1 is a P1-fibration.
This P1-fibration admits a section, namely D ∩ S. The intersection D ∩ S is smooth in
view of Bertini’s theorem and Lemma 4.3(b). The fiber of S → 0 over q ∈ 0 ⊆ Q̄

coincides with X̄q . By Lemma 4.5, X̄q is a tree of rational curves satisfying (a)q–(c)q .
Since 0 meets every component, say Pi , of P of codimension 1 and does not meet B0,
for some qi ∈ Pi \B0 conditions (a)qi–(c)qi are satisfied. By semicontinuity (see [10, III,
12.8]) we obtain

hj (X̄p,OX̄p
(Dp)) ≤ h

j (X̄q ,OX̄q
(Dq)) ≤ h

j (X̄qi ,OX̄qi
(Dqi )), j ≥ 0,

where q ∈ Pi is a point near qi and p ∈ Q̄ \P is a point near q. Since the outer terms are
equal, condition (a)q holds for q in some open dense subset P oi of Pi .
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By Grauert’s criterion (see [10, III, 12.9]) now also (d)q is satisfied. Since (b)q and
(c)q are open conditions on P oi , which are satisfied for some q ∈ P oi , they are satisfied
generically on Pi . Now the lemma follows. ut

Corollary 4.7. There is a proper closed subset B ⊆ Q̄ containing Sing T and Sing Q̄
with codimT (T ∩ B) ≥ 1 such that if we let

Xo = X̄ \ %̄−1(B), Qo
= Q̄ \ B, T o = T \ B and C = %̄−1(T ),

then there is a birational morphism

ϕ : Xo → X = Qo
× P1, (4.1)

compatible with the projection to Qo, which restricts to a biregular morphism

Xo \ C → X \ C = (Qo
\ T )× P1, (4.2)

where C = T o × P1. Furthermore ϕ is biregular in a neighborhood of Do = D ∩Xo.

Proof. Let B ⊆ Q̄ be the subset constructed in Lemma 4.6. Enlarging it in a suitable way
we may assume that it contains Sing T ∪ Sing Q̄. According to Lemma 4.6(c) the sheaf
E = %̄∗(OXo(D)) is locally free of rank 2 on Qo. Thus enlarging B we may suppose that
%̄∗(OXo(D)) is free. Choose two sections s0, s1 which form a basis of this bundle. They
provide a morphism

ϕ = (%̄, (s0 : s1)) : X
o
→ Qo

× P1.

Restricting to a fiber over q ∈ Qo, in view of Lemma 4.6(c)q , yields an isomorphism
near Dq . Hence ϕ is an isomorphism near Do. Enlarging B further we may also assume
that all fibers in Qo

\ T are isomorphic to P1. This implies that the restricted morphism
(4.2) is an isomorphism. ut

Notation 4.8. Consider the restriction of the locally nilpotent vector field δ to Xo ∩ X.
The associated action of U = exp(kδ) has no fixed points in this set and extends to an
action on Xo \ C, where as before C = %̄−1(T ). The fibers of Xo \ C → Qo

\ T are
preserved under U .

Under the isomorphism Xo \ C ' X = (Qo
\ T ) × P1 the second factor can be

equipped with a homogeneous coordinate system (ζ1 : ζ2) such that the image, say D, of
Do = D∩Xo inXo is defined by the equation ζ1 = 0. We treat v = ζ1/ζ2 as a coordinate
in the neighborhood X \ {ζ2 = 0} of D in X .

We fix a function f ∈ k[Q] whose pullback on X belongs to ker δ \ ker δ0. This
pullback induces rational functions on Xo and on X , denoted by the same symbol f . By
Lemma 4.2(a), f has poles along D0 ∩X

o.
By our choice of B in Corollary 4.7, T o is a submanifold of Qo. Thus locally the

ideal of T o is generated by some function, say u, on Qo. On Qo the function f is of the
form a/us . Here s ≥ 1 is the pole order of f along T o, so a is a rational function on Qo,
which is nonzero at the general point of T o.

Later on we will replace f by a sufficiently large power f k . Thus we can achieve that
the pole order s is arbitrarily large.
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Recall that Uf stands for the replica of U associated with the locally nilpotent vector
field f δ. We note that Uf is well defined on the set

Xo \ C ∼= (Q
o
\ T o)× P1

(cf. Corollary 4.7). Its element at time τ ∈ k will be denoted by hf,τ . Considered as an
automorphism of (Qo

\ T ) × P1 it preserves the first factor but not the second one. The
action of hf,τ on v is described by the following lemma.

Lemma 4.9. There exist a regular function d = d(f ) on Qo, which does not vanish at
general points of T , and an integer l such that the automorphism of (Qo

\T )×P1 defined
by hf,τ is given in the coordinates (q, v) by the formula

hf,τ : (q, v) 7→

(
q,

u(q)mv

u(q)m + τd(q)v

)
,

where m = s − l. In particular D ∩ C = {u = v = 0} is the set of indeterminacy points
of hf,τ .

Proof. In homogeneous coordinates (ζ1 : ζ2) the action of U = exp(kδ) on (Qo
\T )×P1

is of the form (ζ1 : ζ2) 7→ (ζ1, ζ2 + τcζ1) where c is a nonvanishing function on Qo
\ T .

That is, c = c0u
l where c0 is a nonvanishing function on Qo and l ∈ Z. Hence hf,τ is of

the form (ζ1 : ζ2) 7→
(
ζ1 : ζ2 +

τd
us−l

ζ1
)
, where d does not vanish at general points of T o.

Note thatm > 0 since f δ has a pole alongD0. Passing to the affine coordinate v = ζ1/ζ2
yields the desired conclusion. ut

Letting s be the pole order of f along T we consider the set

Pf = {q ∈ T | locally f = a/us with a(q) = 0 or a 6∈ OQ̄,q}, (4.3)

where u is as before (i.e. u = 0 is a local equation of T near q) and a is a rational
function. This set is a proper closed subset of T . The next proposition is the main result
of this section.

Proposition 4.10. Givenm and a function f ∈ k[Q]∩ker δ\ker δ0 there exists a positive
integer k0 such that any transformation

h ∈ Uf k , h 6= id, k ≥ k0,

is an m-contraction of C along D over the points of Qo
\ Pf .

Proof. Let s, l be as in Notation 4.8 and Lemma 4.9. If we choose k0 in such a way that
m′ = k0s− l ≥ m then by Lemma 3.13 the map h = hf k,τ is indeed anm-contraction for
any τ 6= 0. ut

Let now Y ⊆ X be a closed subset. Consider the partial boundary

∂0Y = Ȳ ∩D0.

For U ∈ U(X) we let U∗ = U \ {id}. With this notation the following result holds.
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Proposition 4.11. Let the notation and conventions be as in Notation 4.1 and assume
that (a) and (b) in Lemma 4.3 are satisfied. Let (Yα,β)(α,β)∈A×B be a flat family of proper
closed subsets of X. Suppose that there is a flat family (Eα)α∈A of proper closed subsets
of D such that

∂Yα,β ∩D ⊆ Eα for all (α, β) ∈ A× B.

Given an invariant function f ∈ ker δ \ ker δ0, there is a dense open subset Ao of A and
a flat family (E′α)α∈Ao of proper closed subsets of D0 satisfying

∂0h.Y(α,β) ⊆ E
′
α ∀(α, β) ∈ Ao × B, ∀h ∈ U∗

f k
, ∀k ≥ k0.

Proof. According to Proposition 3.4 and Remark 3.7 the closure Ȳαβ of Yαβ in X̄ is at
most m-tangent to D along C for m� 0 and for all (α, β) ∈ A× B simultaneously. Let
Nαβ = C ∩ D ∩ Yαβ \ C denote the defect set. By Proposition 4.10 for k � 0 any map
h ∈ U∗

f k
is an m-contraction of C along D over the points of Qo

\ Pf . By Proposition
3.15 the image h.Yαβ satisfies

h.Yαβ ∩ (D
o
∪ Co) ⊆ D ∪ h(Nαβ) ∪ %̄

−1(Pf ) (4.4)

where h(Nαβ) stands for the total transform ofNαβ under h. By our assumption the defect
set Nαβ is contained in Nα = C ∩ Eα \ C. Since our birational transformation h is com-
patible with the fibration %̄, the total image h(Nαβ) is contained in %̄−1(%̄(Nα)). Taking
in (4.4) the intersection with D0 gives

∂0(h.Yαβ) ⊆ E
′
α =

(
D ∪ %̄−1(B ∪ %̄(Nα) ∪ Pf )

)
∩D0,

where B = Q̄ \ Q̄o is as in Corollary 4.7. Using the theorem on generic flatness it is
easily seen that over an open dense subset Ao of A the sets E′α form a flat family of
closed subsets of D0. This yields the assertion. ut

5. Proof of the main theorem

5.1. Algebraic families of automorphisms

Following Ramanujam [17] let us introduce the following notion.

Definition 5.1. Given irreducible algebraic varieties X and A and a map ϕ : A →
Aut(X) we say that (A, ϕ) is an algebraic family of automorphisms on X if the induced
map A×X→ X, (α, x) 7→ ϕ(α).x, is a morphism.

By abuse of notation, we will not distinguishA and its image ϕ(A), and we identify α ∈ A
with its image ϕ(α) in Aut(X). As in the case of group action, given a point x ∈ X the
set A.x will be called the A-orbit of x, and the set Ax = {α ∈ A |α(x) = x} the stabilizer
of x in A. The stabilizer admits a natural linear representation dx : Ax → GL(TxX),
α 7→ dα|TxX, called the tangent representation.

The following result allows one to work with finite-dimensional algebraic families
instead of infinite-dimensional groups of automorphisms.
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Lemma 5.2. Let X be a smooth quasi-affine variety and G = GN a group of auto-
morphisms generated by a saturated set of locally nilpotent derivations such that G acts
transitively on X. Then there exists an algebraic family of automorphisms A ⊆ G such
that for any x ∈ X we have

(a) A.x = X and
(b) dx(Ax) = SL(TxX).
Proof. According to [1, Proposition 1.5] there exist one-parameter unipotent subgroups
H1, . . . , Hs of G such that with H = H1 · . . . · Hs ⊆ G we have H.x = G.x for any
x ∈ X. In particular, (a) holds with the algebraic family A = H .

By [1, Theorem 4.2 and its proof], for a fixed point x ∈ X the group SL(TxX) is
equal to the image dx(H ′) ⊆ GL(TxX) for an algebraic family H ′ = H ′1 · . . . · H

′
r ,

where H ′1, . . . , H
′
r are suitable one-parameter subgroups of GN ,x . Taking the product

A = HH ′H−1, where H is as in (a) and H−1
= Hs · . . . ·H1, we thus achieve that both

(a) and (b) are satisfied at every point x ∈ X. ut

Notation 5.3. (a) As before, we let X be a smooth quasi-affine variety and G = GN a
group of automorphisms generated by a saturated set of locally nilpotent derivations as
in Notation 4.1(a). We suppose that G acts transitively on X. According to Theorem 2.15
there are derivations δ0, δ1 ∈ N such that the group

H = 〈〈δ0, δ1〉〉 ⊆ G

generated by δ0, δ1 and their replicas acts with an open orbit on X.10 These locally nilpo-
tent vector fields generate one-parameter unipotent subgroupsU0, U1

∈ U(G). Any func-
tion f ∈ ker δ0 \ ker δ1 yields a replica U0

f , and similarly g ∈ ker δ1 \ ker δ0 yields a
replica U1

g .
(b) To any sequence of invariant functions

F = {f1, . . . , fs, g1, . . . , gs}, where fi ∈ ker δ1 \ ker δ0 and gi ∈ ker δ0 \ ker δ1,

(5.1)
we associate an algebraic family of automorphisms A2s

→ Aut(X) defined by the product

UF
= U1

fs
· U0

gs
· . . . · U1

f1
· U0

g1
⊆ H. (5.2)

More generally, given a tuple κ = (ki, li)i=1,...,s ∈ N2s , the product

Uκ = U
F
κ = U

1
f
ks
s

· U0
g
ls
s

· . . . · U1
f
k1
1

· U0
g
l1
1

⊆ H (5.3)

is also an algebraic family of automorphisms.

Corollary 5.4. There is a finite collection F of invariant functions as in (5.1) such that
for any sequence κ = (ki, li)i=1,...,s ∈ N2s the algebraic family of automorphisms Uκ as
in (5.3) has a dense open orbit in X. This orbit O(Uκ) coincides with O(H) and so does
not depend on the choice of κ ∈ N2s .

10 In contrast to Notation 4.1(a), in this section the roles of δ0 and δ1 will be symmetric so that it
is convenient to replace the former δ by δ1.



A Gromov–Winkelmann type theorem 2505

Proof. According to [1, Proposition 1.5] there is a sequence F as in (5.1) such that

H.x = UF .x ∀x ∈ X.

In particular, for x ∈ O(H) the orbit UF .x = O(H) is open in X. It is easily seen that
for any κ ∈ N2s we have O(Uκ) = O(UF ) = O(H). Indeed, O(H) consists of all the
UF -flexible points in X. Now the assertions follow. ut

5.2. Proof of the main theorem

Notation 5.5. We keep the notation and assumptions of 5.3(a).

(a) Let %0 : X→ Q0 and %1 : X→ Q1 be partial quotients with respect to the unipotent
subgroupsU0 andU1, respectively. Let us choose open embeddingsX ↪→ X̄,Q0 ↪→ Q̄0,
and Q1 ↪→ Q̄1 into normal projective varieties (see Notation 4.1). We may assume that
the following conditions are satisfied:

(1) %0 and %1 extend to morphisms %̄0 : X̄ → Q̄0 and %̄1 : X̄ → Q̄1. Let D0 and D1
as in 4.1 be the unique horizontal divisors that map birationally onto Q̄0 and Q̄1,
respectively.

(2) X̄, D0, and D1 are smooth (see Lemma 4.3(b)).
(3) T0 = %̄1(D0) and T1 = %̄0(D1) are divisors in Q̄1 and Q̄0, respectively (see Lemma

4.3(a)).

(b) Given a closed subscheme Y ⊆ X of codimension ≥ 2, we call

∂0Y = Ȳ ∩D0 and ∂1Y = Ȳ ∩D1

the partial boundaries. Furthermore OY will denote the open orbit of GN ,Y in X \ Y .

5.6. In the course of the proof of our Main Theorem 2.6 we move the given pair (Y, x)
to another one (Yα, xα) by means of an automorphism α ∈ GN , where Yα = α.Y and
xα = α.x. In this way we can make our pair adopt the position with respect to the P1-
fibration %̄0 : X̄→ Q̄0 so that conditions (i)–(iii) below hold.

(i) U0.xα ∩OYα 6= ∅;
(ii) U0.xα ∩ Yα = ∅;

(iii) ∂0(U
0.xα) /∈ ∂0(Yα).

The following lemma allows one to deduce Theorem 2.6 provided that (i)–(iii) hold
for any x ∈ X \ Y with some α ∈ G depending on x.

Lemma 5.7. If for a point x ∈ X \ Y and for some α ∈ G conditions (i)–(iii) in 5.6 are
fulfilled then x ∈ OY . If these conditions are fulfilled for any x ∈ X \ Y with some α ∈ G
depending on x, then the conclusion of Theorem 2.6 holds.
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Proof. Since OYα = α.OY we have

x ∈ OY ⇔ xα ∈ OYα .

Replacing (Y, x) by (Yα, xα) we will assume that (i)–(iii) hold for the pair (Y, x) and
α = id. We need to show that then x ∈ OY . Conditions (ii) and (iii) yield

%0(x) ∈ %0(OY ) \ %0(Y ).

Therefore there exists a regular function h ∈ O(Q0) such that h(%0(x)) = 1 and h
vanishes on %0(Y ). Replacing h by a suitable power of h we may suppose that the δ0-
invariant function f = h ◦ %0 on X vanishes on Y . Thus the replica U0

f = exp(kf δ0)

of U0 fixes Y pointwise, i.e. U0
f ∈ U(GN ,Y ). By (i) one can find u ∈ U0

f such that
u.x ∈ OY . Hence also x ∈ OY , as stated. ut

Thus to prove Theorem 2.6 it is enough to show that (i)–(iii) hold for every x ∈ X \ Y
with a suitable α ∈ G depending on x.

Lemma 5.8. Given x ∈ X \ Y and an algebraic family of automorphisms ϕ : A →
Aut(X), the following hold:

(a) The set of all α ∈ A satisfying (i) is open in A.
(b) The set of all α ∈ A satisfying (ii) is constructible in A.

Proof. (a) The subset B ⊆ A where (i) does not hold is the set of α ∈ A satisfying

U0.xα ⊆ Yα or equivalently α−1U0α.x ⊆ Y.

Thus B =
⋂
u∈U0 Bu, where Bu = {α ∈ A | α−1uα.x ∈ Y } is the preimage of Y under

the morphism A→ X, α 7→ α−1uα.x. Hence B is closed in A. This proves (a).
(b) Similarly, the subset C ⊆ A where (ii) does not hold is the set of α ∈ A with

α−1U0α ∩ Y 6= ∅. Consider the set

C′ = {(α, u) ∈ A× U0
| α−1uα.x ∈ Y }.

This set is closed inA×U0 since it is the preimage of Y under the morphismA×U0
→ X,

(α, u) 7→ α−1uα.x. Since C is the image of C′ under the projection to A, (b) follows. ut

The next proposition allows one to verify conditions (i) and (ii).

Proposition 5.9. Let as before x ∈ X \ Y .

(a) If A is an algebraic family of automorphisms of X with dx(Ax) ⊇ SL(TxX), then the
set of all α ∈ A satisfying (i) is a dense open subset of A.

(b) There exists an algebraic family A∗ ⊆ Gx transitive in X∗ = X \ {x} such that for
any subgroup U0

∈ U(X) condition (ii) holds for a general α ∈ A∗.
(c) Given an algebraic family B ⊆ Aut(X) let Ã = B · A∗ ⊆ Aut(X), where A∗ ⊆ Gx

is as in (b). Then (ii) holds for a general α̃ ∈ Ã.
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Proof. (a) By Lemma 5.8 it suffices to find α ∈ A satisfying (i), or equivalently such that
α−1U0α.x∩OY 6= ∅. By our assumptions in (a), for any nonzero vector v ∈ TxX there is
an element α ∈ Ax such that v is tangent to the orbit through x of the one-parameter group
α−1U0α ⊆ Aut(X). These orbits form an algebraic family of smooth rational curves in
X through the point x that dominates X and so meets the open orbit OY , as required.

(b) By the Transversality Theorem [1, 1.16] there exists an algebraic family A∗ ⊆ Gx
transitive in X∗ such that for any two subvarieties Y,Z ⊆ X there is a dense open subset
A0 ⊆ A

∗ with the property that for any α ∈ A0 the varieties α.Y and Z are transversal.
Applying this to Z = U0.x we find that the varieties U0.x and α.Y are disjoint, because
under our assumptions

dimU0.x + dimY < dimX.

Since xα = x, (b) follows.
To deduce (c) we note that the set, say C, of points α̃ ∈ Ã where (ii) fails is the set

of α̃ = (β, α) with α−1β−1U0βα.x ∩ Y 6= ∅. Consider, similarly to the proof of Lemma
5.8(b), the closed subset of B × A∗ × U0 given by

C′ = {(β, α, u) ∈ B × A∗ × U0
| α−1β−1uβα.x ∈ Y },

where A∗ satisfies the conclusion of (b). According to (b), for any β ∈ B the set

C′β = C
′
∩ ({β} × A∗ × U0)

maps under the projection to A∗ to a nowhere dense subset. Hence also the image C of C′

under the projection to Ã = B×A∗ will be nowhere dense. Thus its complement contains
an open dense subset, proving (c). ut

Notation 5.10. Given a one-parameter group U ∈ U(X) we let as before U∗ = U \ {id}.
Given a collection F of invariant functions

f1, . . . , fs ∈ ker δ1 \ ker δ0 and g1, . . . , gs ∈ ker δ0 \ ker δ1

and Uκ = U1
f
ks
s

· U0
g
ls
s

· . . . · U1
f
k1
1

· U0
g
l1
1

as in (5.2), we let

U∗κ = U
1∗
f
ks
s

· U0∗
g
ls
s

· . . . · U1∗
f
k1
1

· U0∗
g
l1
1

.

Using Proposition 4.11 we can deduce the following result.

Proposition 5.11. Let (Yα)α∈A be a flat family of proper closed subsets ofX. Assume that
the partial boundaries ∂iYα (see Notation 5.5) are contained inEα,i , where the (Eα,i)α∈A,
i = 0, 1, form flat families of proper closed subsets of Di . Then one can find an open
dense subset Ao of A, flat families (Eoα,i)α∈Ao of proper closed subsets of Di (i = 0, 1),
and a sequence κ = (k1, l1, . . . , ks, ls) ∈ N2s such that for any h ∈ U∗κ we have

∂i(h.Yα) ⊆ E
o
α,i, i = 0, 1, ∀α ∈ Ao.
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Proof. The proof proceeds by induction on s. For s = 0 the assertion clearly holds with
Ao = A and Eα,i = ∂iYα , i = 0, 1. Assume that it holds at step s − 1, i.e. we can find
κ ′ = (kj , lj )j=1,...,s−1 ∈ N2s−2, a dense open subset A′ ⊆ A and flat families (Eα,i)α∈A′
of proper closed subsets of Di such that for α ∈ A′,

∂i(h.Yα) ⊆ Eα,i, i = 0, 1, ∀h ∈ U∗κ ′ .

The varieties (h.Yα)(h,α)∈U∗
κ′
×A′ form a flat algebraic family. By Proposition 4.11 one can

find an open dense subsetA′′ ⊆ A′ and flat families (E′α,i)α∈A′′ , i = 0, 1, of proper closed
subsets of Di such that

∂i(h
′h.Yα) ⊆ E

′

α,i (i = 0, 1) ∀ls � 0, ∀α ∈ A′′, ∀(h′, h) ∈ U0∗
g
ls
s

× U∗κ ′ .

Fixing a sufficiently large ls and applying the same argument again, one can find an open
dense subset Ao ⊆ A′′ and flat families (Eoα,i)α∈Ao , i = 0, 1, of proper closed subsets
of Di such that

∂i(h
′′h′h.Y ) ⊆ Eoα,i (i = 0, 1) ∀k1 � 0, ∀α ∈ Ao, ∀(h′′, h′, h) ∈ U1∗

f
ks
s

×U0∗
g
ls
s

×U∗κ ′ .

This concludes the induction. ut

Using Proposition 5.11 and Corollary 5.4 we can now deduce Theorem 2.6.

Proof of Theorem 2.6.. Fix x ∈ X \ Y . We show that for a suitable choice of an algebraic
family A of automorphisms conditions (i)–(iii) are satisfied for the pair (Yα, xα) if α ∈ A
is generic. Then our theorem follows by applying Lemma 5.6.

STEP 1. Consider an algebraic familyA ⊆ G satisfying conditions (a) and (b) of Lemma
5.2. By Proposition 5.9(a) condition (i) holds when α varies in a dense open subset of A.
Replacing the original pair (Y, x) by a suitable new one (Yα, xα) = (α.Y, α.x) we may
suppose that (Y, x) satisfies (i).

STEP 2. In the following we construct an algebraic family B of automorphisms such that
for a generic choice of β ∈ B the translates (Yβ , xβ) satisfy (ii), (iii). Since by Proposition
5.9(a) condition (i) is open, the pair (Yβ , xβ) also satisfies (i).

Let A∗ be a family of automorphisms as in Proposition 5.9(b). The translates
Yα = α.Y , α ∈ A∗, form a flat family of proper closed subsets of X. Using the theo-
rem of generic flatness it is easily seen that over an open dense subset A′ ⊆ A∗ also the
partial boundaries Eα,i = ∂iYα , α ∈ A′, form flat families of proper closed subsets ofDi ,
i = 0, 1. Let now F , Uκ , and U∗κ be as in Notation 5.10. By Proposition 5.11 we can find
κ = (k1, l1, . . . , ks, ls) ∈ N2s , a dense open subset Ao ⊆ A′, and families (Eoα,i)α∈Ao ,
i = 0, 1, of proper closed subsets of Di such that ∂i(h.Yα) ⊆ Eoα,i for i = 0, 1, α ∈ Ao

and all h ∈ U∗κ .
We claim that for a generic choice of (h, α) ∈ B = U∗κ × A

∗ conditions (ii) and (iii)
are satisfied for h.Yα . To check (ii) we note that h.Yα = hα.Y . Thus applying Proposition
5.9(c) to the family B = U∗κ × A

∗ we see that condition (ii) is indeed satisfied for a
generic choice of (h, α).
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It remains to show that (iii) is satisfied for a generic choice of (h, α). Condition (iii)
is equivalent to %̄0(h.xα) 6∈ ∂0(h.Yα). By construction ∂0(h.Yα) ⊆ Eα,0 ⊆ D0 for any
h ∈ U∗κ , while for a fixed α ∈ Ao the points h.xα , h ∈ U∗κ , fill in a dense subset of X, and
so their images %̄0(h.x) fill in a dense subset of Q0 ⊆ Q̄0 \ %̄0(D0). Thus (iii) holds for a
generic choice of (h, α) ∈ U∗κ × A

o. This concludes the proof of Main Theorem 2.6. ut
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[6] Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. The Homotopy Prin-
ciple in Complex Analysis. Ergeb. Math. Grenzgeb. 56, Springer, Heidelberg (2011)
Zbl 1247.32001 MR 2975791

[7] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia Math.
Sci. 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer, Berlin
(2006) Zbl 1121.13002 MR 2259515

[8] Gromov, M.: Partial Differential Relations. Ergeb. Math. Grenzgeb. 9, Springer, Berlin (1986)
Zbl 0651.53001 MR 0864505

[9] Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math.
Soc. 2, 851–897 (1989) Zbl 0686.32012 MR 1001851

[10] Hartshorne, R.: Algebraic Geometry. Springer, New York (1977) Zbl 0367.14001
MR 0463157

[11] Kaliman, S., Kutzschebauch, F.: Criteria for the density property of complex manifolds. In-
vent. Math. 172, 71–87 (2008) Zbl 1143.32014 MR 2385667

[12] Kaliman, S., Zaidenberg, M.: Affine modifications and affine hypersurfaces with a very
transitive automorphism group. Transform. Groups 4, 53–95 (1999) Zbl 0956.14041
MR 1669174

[13] Kollár, J.: Rational Curves on Algebraic Varieties. Ergeb. Math. Grenzgeb. 32, Springer,
Berlin (1996) Zbl 0877.14012 MR 1440180

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1295.14057&format=complete
http://www.ams.org/mathscinet-getitem?mr=3039680
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1311.14059&format=complete
http://www.ams.org/mathscinet-getitem?mr=2986429
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06322161&format=complete
http://www.ams.org/mathscinet-getitem?mr=3217648
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1327.14221&format=complete
http://www.ams.org/mathscinet-getitem?mr=3114924
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0819.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1247.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2975791
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1121.13002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2259515
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0651.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0864505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0686.32012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1001851
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0367.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0463157
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1143.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2385667
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0956.14041&format=complete
http://www.ams.org/mathscinet-getitem?mr=1669174
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0877.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1440180


2510 Hubert Flenner et al.

[14] Kovalenko, S.: Transitivity of automorphism groups of Gizatullin surfaces. Int. Math. Res.
Notices 2015, 11433–11484 Zbl 06524221 MR 3456050

[15] Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergeb. Math. Grenzgeb.
34, Springer, Berlin (1994) Zbl 0797.14004 MR 1304906

[16] Popov, V. L., Vinberg, E. B.: Invariant Theory. In: Algebraic Geometry IV, A. N. Parshin and
I. R. Shafarevich (eds.), Springer, Berlin (1994) Zbl 0789.14008

[17] Ramanujam, C. P.: A note on automorphism groups of algebraic varieties. Math. Ann. 156,
25–33 (1964) Zbl 0121.16103 MR 0166198

[18] Winkelmann, J.: On automorphisms of complements of analytic subsets in Cn. Math. Z. 204,
117–127 (1990) Zbl 0701.32014 MR 1048069

[19] Winkelmann, J.: Invariant rings and quasiaffine quotients. Math. Z. 244, 163–174 (2003)
Zbl 1019.13003 MR 1981881

[20] Zariski, O.: The reduction of the singularities of an algebraic surface. Ann. of Math. 40,
639–689 (1939) Zbl 0021.25303 MR 0000159

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06524221&format=complete
http://www.ams.org/mathscinet-getitem?mr=3456050
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0797.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1304906
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0789.14008&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0121.16103&format=complete
http://www.ams.org/mathscinet-getitem?mr=0166198
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0701.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1048069
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1019.13003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981881
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0021.25303&format=complete
http://www.ams.org/mathscinet-getitem?mr=0000159

	Introduction
	Main theorem
	m-blowups, tangency, and m-contractions
	Replicas as m-contractions
	Proof of the main theorem
	References

