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Abstract. We provide new results on the vanishing of local cohomology modules supported at ide-
als of minors of matrices over arbitrary commutative Noetherian rings. In the process, we compute
the local cohomology of rings of polynomials with integer coefficients—supported at generic de-
terminantal ideals—and also obtain results on F -modules and D-modules that are likely to be of
independent interest.
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1. Introduction

In [HKM, Corollary 6.5], Huneke, Katz, and Marley proved the following striking result:
If A is a commutative Noetherian ring containing the field of rational numbers, with
dimA ≤ 5, and a is the ideal generated by the size 2 minors of an arbitrary 2× 3 matrix
with entries from A, then the local cohomology module H 3

a(A) equals zero. What makes
this striking is that it does not follow from classical vanishing theorems as in [HL]. It
is natural to ask whether the same holds for rings that do not necessarily contain the
rationals, and whether such results extend to matrices and minors of other sizes. Indeed,
we prove:

Theorem 1.1. Let a be the ideal generated by the size t minors of an m× n matrix with
entries from a commutative Noetherian ring A, where 1 ≤ t ≤ min{m, n}, and t differs
from at least one of m and n. If dimA < mn, then Hmn−t2+1

a (A) = 0.

The index mn− t2 + 1 is the cohomological dimension in the case of a matrix X = (xij )
of indeterminates over Q by Bruns and Schwänzl [BS]; specifically,

Hmn−t2+1
It (X)

(Q[X]) 6= 0,
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where It (X) is the ideal generated by the size t minors of the matrix X. Theorem 1.1
implies that the asserted vanishing holds whenever the entries of the matrix are not alge-
braically independent. In the case m = 2, n = 3, and t = 2, the theorem says precisely
that H 3

a(A) = 0 if dimA ≤ 5, as proved in [HKM] when A contains the field of rational
numbers. The result is straightforward when A contains a field of prime characteristic,
and one of the main points of the present paper is that it includes the case of rings that
do not necessarily contain a field. This requires calculations of local cohomology in poly-
nomial rings Z[X]; these calculations are of independent interest, and a key ingredient is
proving that there is no integer torsion in the critical local cohomology modules. More
generally, we prove:

Theorem 1.2. Let R = Z[X] be a polynomial ring, where X is an m × n matrix of
indeterminates. Let It be the ideal generated by the size t minors of X. Then:

(1) H k
It
(R) is a torsion-free Z-module for all integers t, k.

(2) If k differs from the height of It , then H k
It
(R) is a Q-vector space.

(3) Consider the N-grading on R with [R]0 = Z and deg xij = 1 for all i, j . Set m =
(x11, . . . , xmn). If 2 ≤ t ≤ min{m, n}, and t differs from at least one of m and n,
then there exists a degree-preserving isomorphism

Hmn−t2+1
It

(Z[X]) ∼= Hmn
m (Q[X]).

Theorem 1.2 is extremely useful: once we know that H k
It
(Z[X]) is a Q-vector space, it

can then be computed using the D-module algorithms of Walther [Wal] or Oaku and
Takayama [OT]; it can also be studied using singular cohomology and comparison the-
orems as in [BS], or using representation theory as in [Wi, RWW, RW1]. For example,
Theorem 1.2 implies that the module H k

It
(Z[X]) is nonzero precisely if H k

It
(C[X]) is

nonzero; for recent results on the nonvanishing and structure of H k
It
(C[X]) in terms of

Schur functors, we refer the reader to [RWW, RW1].
As an illustration of Theorem 1.2, consider a 2×3 matrix of indeterminatesX over Z.

Then the theorem gives
H 3
I2
(Z[X]) ∼= H 6

m(Q[X]).

The first proof that H 3
I2
(Z[X]) is a Q-vector space used equational identities from [Si1,

Si2] that were constructed using the hypergeometric series algorithms of Petkovšek, Wilf,
and Zeilberger [PWZ]; the module H 3

I2
(Z[X]) is computed as well in Kashiwara and

Lauritzen [KaL]. The approach in the present paper is as follows: Let p be a prime integer;
we study the annihilator of p in H 3

I2
(Z[X]) as a D-module, and use a duality result for

D-modules, Theorem 2.16, to show that it vanishes. This requires Lyubeznik’s theory of
F -modules [Ly2], and also differential operators over Z[X], Fp[X], and Q[X]. These
techniques work in good generality.

Section 2 develops the theory of graded F -modules and D-modules; the key result
for our applications is Theorem 2.16, but in the process, we arrive at several results of
independent interest: e.g., we prove that for a polynomial ring R over a separably closed
field of prime characteristic, the F -module H dimR

m (R) is an injective object in the cat-
egory of graded F -finite modules (Corollary 2.10). By an example of Ma, the module
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H dimR
m (R) need not be an injective object in the category of F -finite modules (see [Ma,

Example 4.8]).
Some preliminary results on local cohomology are recorded in Section 3; this includes

an interpretation of Bass numbers of m-torsion local cohomology modules as ranks of
singular cohomology groups (Theorem 3.1). Our study of the local cohomology of poly-
nomial rings over Z has its origins in a question of Huneke [Hu] on the associated primes
of local cohomology modules; this, as well, is discussed in Section 3.

The proof of Theorem 1.2 occupies Section 4, and in Section 5 we prove a vanishing
theorem that subsumes Theorem 1.1. In addition to determinantal ideals, our methods
extend to ideals generated by Pfaffians of alternating matrices (Section 6), and minors
of symmetric matrices (Section 7). For these, we use Barile’s computations of arithmetic
rank from [Ba2]. Section 8 deals with questions on arithmetic rank related to the vanishing
theorems proved in our paper.

To assist the reader, we mention that R will typically denote a commutative Noethe-
rian ring that is regular, and A an arbitrary commutative Noetherian ring.

2. Graded F -modules

Let R = F[x1, . . . , xn] be the polynomial ring in variables x1, . . . , xn over a field F of
characteristic p > 0. We fix the standard N-grading on R where [R]0 = F and deg xi = 1
for each i. By a graded module M , we mean a Z-graded module; we use [M]k for the
graded component of M in degree k, and M(j) to denote the module M with the shifted
grading [M(j)]k = [M]j+k .

F -modules

The concept of F -modules was introduced in [Ly2]. Set R′ to be the R-bimodule that
agrees with R as a left R-module, and has the right R-action

r ′r = rpr ′ for r ∈ R and r ′ ∈ R′.

For an R-moduleM , we set F(M) = R′⊗RM; this is an R-module via the left R-module
structure on R′.

An F -module is a pair (M , θ), where M is an R-module, and θ : M → F(M ) is
an R-module isomorphism called the structure isomorphism; we sometimes suppress θ
from the notation. A morphism of F -modules (M , θ) → (M ′, θ ′) is an R-module ho-
momorphism ϕ : M →M ′ that commutes with the structure isomorphisms, i.e.,

θ ′ ◦ ϕ = F(ϕ) ◦ θ

(see [Ly2, Definition 1.1]). With these definitions, F -modules form an Abelian category.
Graded F -modules have been studied previously in [Bl, Chapter 4.3.3] and [Zh, MZ].

In this section, we establish properties of graded F -modules that will be used later in the
paper; we believe these are also of independent interest.
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If M is a graded R-module, then there is a natural grading on F(M) = R′ ⊗R M

given by
deg(r ′ ⊗m) = deg r ′ + p · degm,

for homogeneous elements r ′ ∈ R′ andm ∈ M . With this grading, a graded F -module is
an F -module (M , θ) where M is a graded R-module, and θ is degree-preserving, i.e., θ
maps homogeneous elements to homogeneous elements of the same degree. A morphism
of graded F -modules is a degree-preserving morphism of F -modules. It is not hard to
see that graded F -modules form an Abelian subcategory of the category of F -modules.

The ring R has a natural graded F -module structure with structure morphism

R→ R′ ⊗R R, r 7→ r ⊗ 1.

Let m be the homogeneous maximal ideal of R. Let f denote the Frobenius action on
the local cohomology moduleH n

m(R); the image of f generatesH n
m(R) as an R-module.

Thus, the following structure morphism defines a graded F -module structure onH n
m(R):

H n
m(R)→ R′ ⊗R H

n
m(R), rf (η) 7→ r ⊗ η.

D-modules

The ring D = DF(R) of F-linear differential operators on R is the subring of the ring
EndF R generated by R and all operators of the form

∂
[t]
i =

1
t !

∂ t

∂xti

(see [Gro2, Théorème 16.11.2]). In fact, D is a free R-module, with basis

∂
[t1]
1 · · · ∂ [tn]n for (t1, . . . , tn) ∈ Nn.

As shown in [Ly2, pp. 115–116], each F -module carries a natural D-module struc-
ture; there exists a functor

ξ : F -mod→ D-mod

from the category of F -modules to the category of D-modules, where the F -module M
and the D-module ξ(M ) have the same underlying R-module structure, and the maps
ϕ : M →M ′ and ξ(ϕ) : ξ(M )→ ξ(M ′) agree as maps of sets.

Following [MZ], for each positive integer k, we set Ek to be the differential operator∑
ti≥0

t1+···+tn=k

x
t1
1 · · · x

tn
n ∂
[t1]
1 · · · ∂

[tn]
n ,

which is the k-th Euler operator; note that E1 = x1∂1 + · · · + xn∂n is the classical Euler
operator. By [MZ, Theorem 4.4], if M is a graded F -module, then the D-module ξ(M )

is Eulerian, which, by definition, means that

Ek(m) =

(
degm
k

)
m

for each positive integer k and each homogeneous element m of M .
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We record an elementary lemma:

Lemma 2.1. Let d be a positive integer with base p expansion

d = s0 + s1p + · · · + stp
t , where 0 ≤ se ≤ p − 1 for each e.

Then, for each e, the binomial coefficient
(
d
pe

)
is congruent to se modulo p.

Proof. Working in the polynomial ring Fp[z], the binomial coefficient
(
d
pe

)
modp is the

coefficient of zp
e

in the expansion of (1+ z)d . Note that

(1+ z)d = (1+ z)
∑
e sep

e

=

∏
e

(1+ z)sep
e

=

∏
e

(1+ zp
e

)se =
∏
e

∑
i

(
se

i

)
zip

e

.

When expanding the right hand side, each z` appears at most once by the uniqueness of
the base p expansion of `; specifically, zp

e
occurs with coefficient

(
se
1

)
= se. ut

Proposition 2.2. The category of graded F -modules is a full subcategory of the cate-
gory of F -modules, i.e., every F -module morphism of graded F -modules is degree-
preserving.

Let N ⊂M be F -modules. If M is a graded F -module, then N and M /N are
graded F -modules.

By the above proposition, the category of graded F -modules is closed, in the category of
F -modules, under the formation of subquotients; it is not closed under extensions: see
Example 2.14, which uses [Ma, Example 4.8].

Proof of Proposition 2.2. Let ϕ : M → M ′ be an F -module map, where M ,M ′ are
graded F -modules; we need to show that ϕ is degree-preserving. Let m be a homoge-
neous element of M of degree d . Express ϕ(m) as a sum of homogeneous elements,

ϕ(m) = m1 + · · · +mv,

where mi ∈ M ′ is homogeneous of degree di , and the integers di are pairwise distinct.
Since ξ is a functor and ξ(M ) and ξ(M ′) agree with M and M ′ respectively as sets, the
map ϕ is a D-module map. It follows that

ϕ(Ek(m)) = Ek(ϕ(m)) for each k ≥ 1.

Expanding each side, one has ∑
i

(
d

k

)
mi =

∑
i

(
di

k

)
mi,

and hence (
d

k

)
≡

(
di

k

)
modp for each i, k.

Lemma 2.1 implies that di = d for each i, and hence also that v = 1. Thus, the ele-
ment ϕ(m) is homogeneous of degree d, which proves the first assertion.
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We next show that N is a graded F -module. Given m ∈ N , write it as a sum of
homogeneous elementsm = m1+· · ·+mv , wheremi ∈M is homogeneous of degree di ,
and the integers di are pairwise distinct; we need to show that mi ∈ N for each i. By
a slight abuse of notation we denote ξ(N ) and ξ(M ) by N and M respectively. Since
N is a D-submodule of M , and m ∈ N , it follows that Ek(m) ∈ N for each k ≥ 1.
But then(

dv

k

)
m− Ek(m) =

v∑
i=1

[(
dv

k

)
−

(
di

k

)]
mi =

v−1∑
i=1

[(
dv

k

)
−

(
di

k

)]
mi

is an element of N for each k ≥ 1; by Lemma 2.1,
(
dv
k

)
−
(
di
k

)
is nonzero for some

choice of k. As the displayed element is a sum of at most v − 1 homogeneous elements,
an induction on v shows that mi ∈ N for each i. The final assertion, namely that M /N
is a graded F -module, follows immediately. ut

The proof of the previous proposition also yields:

Proposition 2.3. A D-module map between Eulerian D-modules is degree-preserving.
Let N ⊂M be D-modules. If M is Eulerian, then so are N and M /N .

F -finite modules

An F -module (M , θ) is F -finite if M is the direct limit of the top row in the commuta-
tive diagram

M
β
−−→ F(M)

F(β)
−−−→ F 2(M) −−→ · · ·

β

y F(β)

y F 2(β)

y
F(M)

F(β)
−−−→ F 2(M)

F 2(β)
−−−→ F 3(M) −−→ · · ·

where M is a finitely generated R-module, β : M → F(M) is an R-module homomor-
phism, and the structure isomorphism θ is induced by the vertical maps in the diagram
(see [Ly2, Definition 2.1]). WhenM is graded and β is degree-preserving, we say that the
F -module M is graded F -finite.

The map β : M → F(M) above is a generating morphism of M . If β is injective,
we say that M is a root of M , and that β is a root morphism. The image of M in M
will also be called a root of M . A minimal root of M is a root M such that no other root
of M is contained in M . The minimal root is unique (see [Ly2, Theorem 3.5]). If M is
a graded F -finite module, then its minimal root M is graded, and β : M → F(M) is
degree-preserving; we say β is the minimal root morphism of M .

A basic result in the theory of F -modules says that an F -finite module M has finite
length in the category of F -modules. This means, in particular, that every filtration of M
in the category of F -modules can be completed to a maximal filtration

0 =M0 ⊂M1 ⊂ · · · ⊂M` =M .
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Every maximal filtration has the same length `, which is defined to be the length of M .
The set of the composition factors {M1/M0, . . . ,M`/M`−1} depends only on M , and
not on the maximal filtration. It follows from Proposition 2.2 that the composition factors
of a graded F -finite module are all graded.

Set m to be the homogeneous maximal ideal of R, and ∗E to be the injective hull
of R/m in the category of graded R-modules. Shifting the grading by n, one has a degree-
preserving isomorphism

∗E(n) ∼= H
n
m(R)

(see, for example, [GW, Theorem 1.2.7]). Set
∗D(−) = HomR(−, H

n
m(R)),

which is the graded Matlis duality functor; this is a contravariant exact functor. If M is a
graded R-module that is cofinite (respectively, finitely generated), then ∗D(M) is graded
and finitely generated (respectively, cofinite). For a graded module M that is cofinite or
finitely generated, one has

∗D(∗D(M)) = M

(see [GW, Theorem 1.2.10]); in particular, there is a one-to-one correspondence between
graded submodules of M and graded quotients of ∗D(M), namely, an inclusion N → M

corresponds to a surjection ∗D(M)→ ∗D(N).
The following is a version of [Ly2, Lemma 4.1]; the proof is similar when M is

cofinite, and is readily adapted to the case where M is a finitely generated R-module.

Lemma 2.4. Let M be a graded R-module that is either cofinite or finitely generated.
Then there is an R-module isomorphism

∗τ : ∗D(F(M))→ F(∗D(M))

that is degree-preserving, and functorial in M .

The functor ∗H (−)

We set R{f } to be the ring extension of R generated by an element f subject to the
relations f r = rpf for each r ∈ R. By an R{f }-module we mean a left R{f }-module.
Thus, an R{f }-module is an R-module M equipped with a Frobenius action, i.e., an
additive map f : M → M such that f (rm) = rpf (m) for each m ∈ M .

By a graded R{f }-module, we mean a graded R-module M such that

f : [M]d → [M]pd for each integer d.

It is straightforward to check that the induced R-module homomorphism

F(M) = R′ ⊗R M → M, r ′ ⊗m 7→ r ′f (m),

is degree-preserving, i.e., it is a morphism in the category of gradedR-modules. Applying
the graded Matlis duality functor ∗D to this morphism, we see that the induced natural
map

∗D(M)→ ∗D(F(M))
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is degree-preserving. Following this map with ∗τ produces the natural map

βM :
∗D(M)→ F(∗D(M)),

which, again, is degree-preserving. If M is cofinite, then ∗D(M) is finitely generated,
and we set ∗H (M) to be the F -finite module with generating morphism βM . As βM
is degree-preserving, the module ∗H (M) is graded. Thus, ∗H (−) is a functor from the
category of graded cofinite R{f }-modules to the category of graded F -finite modules.

Let M be an R{f }-module. An element m of M that is annihilated by some power
of f is said to be nilpotent; the module M is nilpotent if f e(M) = 0 for some e. The set
of nilpotent elements of M is an R{f }-submodule of M , this is the nilpotent part of M ,
denoted Mnil. The reduced R{f }-module

Mred = M/Mnil

has no nonzero nilpotent elements. Set Mf e to be the R-submodule generated by the
set f e(M). We use Mst to denote the intersection of the descending chain

M ⊇ Mf
⊇ Mf 2

⊇ · · · .

Each Mf e is an R{f }-module, hence so is Mst. It is straightforward to verify that

(Mred)
st
= (Mst)red,

and we denote this R{f }-module byMst
red. IfM is a graded R{f }-module, then so are the

modules Mred, Mst, and Mst
red. The following is a graded version of [Ly2, Theorem 4.2]:

Theorem 2.5. Consider the functor ∗H (−) from the category of graded cofinite R{f }-
modules to the category of graded F -finite modules. Then:

(1) The functor ∗H (−) is contravariant, additive, and exact.
(2) ∗H (M) = 0 if and only if M is nilpotent.
(3) The minimal root morphism of ∗H (M) is βMst

red
:
∗D(Mst

red)→ F(∗D(Mst
red)).

(4) ∗H (M) is isomorphic to ∗H (M ′) in the category of F -modules if and only ifMst
red is

isomorphic to (M ′)st
red in the category of R{f }-modules.

The proofs of assertions (1) and (2) are, aside from minor modifications, the same as
those of [Ly2, Theorem 4.2 (i), (ii)], while the proofs of (3) and (4) require the following
lemma that is a graded analogue of [Ly2, Lemma 4.3]. We point out that

βM :
∗D(M)→ F(∗D(M))

is injective if and only if Mst
= M (see [Ly2, p. 105, lines 3–6]).

Lemma 2.6. LetM be a graded cofinite R{f }-module withM = Mst; it follows that βM
is a root morphism of ∗H (M). Let N be a graded R-submodule of ∗D(M).

(1) N is a root of an F -submodule N of ∗H (M) if and only ifN = ∗D(M ′′), whereM ′′

is a homomorphic image of M in the category of R{f }-modules; in this case, βM ′′ is
a root morphism of N .
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(2) N is a root of ∗H (M) if and only if N = ∗D(M/M ′), where M ′ is a nilpotent R{f }-
submodule of M; in this case, βM/M ′ is a root morphism of ∗H (M/M ′).

(3) N is the minimal root of ∗H (M) if and only if N = ∗D(Mred); in this case, the
morphism βMred is the minimal root morphism of ∗H (M).

The proof of the lemma parallels that of [Ly2, Lemma 4.3].

Proposition 2.7. The functor ∗H (−) from the category of graded cofinite R{f }-modules
to the category of graded F -finite modules is surjective.

Proof. Let β : M → F(M) be a generating morphism for a graded F -finite module M .
Using Lemma 2.4, we have an R-module homomorphism γ which is the composition

R′ ⊗R
∗D(M) = F(∗D(M))

∗τ−1

−−→
∗D(F(M))

∗D
−→ (β)∗D(M).

We define an additive map f : ∗D(M)→ ∗D(M) by f (η) = γ (1⊗ η). Note that

f (r η) = γ (1⊗ r η) = γ (rp ⊗ η) = rpγ (1⊗ η) = rpf (η),

i.e., ∗D(M) has a natural R{f }-module structure. Observe that ∗H (∗D(M)) =M . ut

Proposition 2.8. Let I be a homogeneous ideal of R. Then

∗H (H n−k
m (R/I)) ∼= H

k
I (R).

The proof mirrors that of [Ly2, Example 4.8]; one replaces local duality by graded local
duality, which says that if M is a finitely generated graded R-module, then there is a
natural functorial degree-preserving isomorphism

∗D(H n−k
m (M)) ∼= ExtkR(M,R(−n))

(see [GW, Proposition 2.1.6]); note that R(−n) is the graded canonical module of R.
We now prove our main theorem on graded F -modules:

Theorem 2.9. Let M be a graded cofinite R{f }-module. Then the following are equiva-
lent:

(1) Among the composition factors of the Eulerian D-module ξ(∗H (M)), there is at least
one composition factor with support {m}.

(2) Among the composition factors of the graded F -finite module ∗H (M), there is at
least one composition factor with support {m}.

(3) There exists an F -submodule M of ∗H (M) such that every composition factor
of M has support bigger than {m}, and ∗H (M)/M has support {m}.

(4) The action of the Frobenius f on [M]0, the degree zero part of M , is not nilpotent.
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Proof. Without loss of generality, we assume that M = Mst
red is reduced; each of the

statements is unaffected by replacing M with Mst
red.

By [Ly2, Theorem 5.6], if M is an F -finite module that is simple in the category of
F -modules, then, in the category of D-modules, ξ(M ) is the direct sum of finitely many
simple D-modules, say ξ(M ) ∼=

⊕
i Ni , where each Ni is a simple D-module.

If M is any F -finite module, then the composition factors of ξ(M ) in the category of
D-modules are the modules Ni appearing in the direct sum decomposition of the mod-
ules ξ(M ′), where M ′ runs through the composition factors of M in the category of
F -modules. By [Ly2, Theorem 2.12], each simple F -module M ′ has a unique asso-
ciated prime, which must then be the unique associated prime of each Ni appearing in
the direct sum decomposition of ξ(M ′) in the category of D-modules. Thus, ξ(M ) has
a composition factor with support {m} if and only if M has a composition factor with
support {m}. This proves the equivalence of (1) and (2).

Note that ∗D(M) → ∗H (M) is injective since M = Mst
red; we think of ∗D(M) as a

submodule of ∗H (M) via this map. The map ∗D(M) → F(∗D(M)) is the minimal root
morphism of ∗H (M). Let

0 =M0 ⊂M1 ⊂ · · · ⊂M` =
∗H (M)

be a maximal filtration of ∗H (M) in the category of F -finite modules. Set Ni to be the
module Mi ∩

∗D(M). Then Ni is a root of Mi . The surjection M → ∗D(Ni) is an R{f }-
module map. We denote the kernel of this surjection by Mi ; this is an R{f }-submodule
of M; thus, there exists a chain of graded R{f }-submodules

M = M0 ⊃ M1 ⊃ · · · ⊃ M` = 0

such that the natural map

βMi/Mi+1 :
∗D(Mi/Mi+1)→ F(∗D(Mi/Mi+1))

is a generating morphism of Mi+1/Mi .
Suppose Mi+1/Mi has support {m}. Since ∗D((Mi/Mi+1)

st) is a root of Mi+1/Mi ,
hence isomorphic to a submodule of Mi+1/Mi , it has support {m}. As ∗D((Mi/Mi+1)

st)

is finitely generated, it has finite length as an R-module. It follows that (Mi/Mi+1)
st
red is

concentrated in degree zero: indeed, if m is a nonzero element of degree d 6= 0, then, for
each e, the element f e(m) is nonzero of degree dpe, contradicting the finite length.

Since Mi+1/Mi is nonzero, the action of the Frobenius f on (Mi/Mi+1)
st
red cannot

be nilpotent. But (Mi/Mi+1)
st
red is a subquotient of [M]0, hence the action of f on [M]0

is not nilpotent. This proves that (2) implies (4).
Assuming (4) holds, set M ′ = [M]≥0, which is the R-submodule of M generated by

the homogeneous elements of nonnegative degree. This is then anR{f }-submodule ofM ,
and one has an exact sequence in the category of graded R{f }-modules,

0→ M ′→ M → M/M ′→ 0.

This yields the exact sequence in the category of graded F -modules,

0→ ∗H (M/M ′)→ ∗H (M)→ ∗H (M ′)→ 0.
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Since M ′ has finite length and a nonnilpotent Frobenius action, the module ∗H (M ′) is
nonzero with support {m}. Since [M/M ′]0 = 0, it follows from the fact that (2) implies (4)
that all the composition factors of ∗H (M/M ′) have support bigger than {m}. This proves
that (4) implies (3), which in turn trivially implies (2). ut

By Hochster [Ho, Theorem 3.1], the category of F -modules has enough injectives. How-
ever, sinceH n

m(R) is typically not an injective object in the category of F -finite modules
(see [Ma, Example 4.8]), the following corollary is very unexpected:

Corollary 2.10. Let R be a standard graded polynomial ring of dimension n over a sep-
arably closed field. Then the R-module H n

m(R), with its natural F -module structure, is
an injective object in the category of graded F -finite modules.

Proof. Let M be a graded F -finite module with H n
m(R) as an F -submodule; it suffices

to show that H n
m(R) ⊂ M splits in the category of graded F -modules. The module

H n
m(R) is a composition factor of M with support {m}; we first reduce to the case where

M has support precisely {m} as follows.
By Theorem 2.9, there exists a surjection ϕ : M → N of graded F -modules such

that each composition factor of kerϕ has support bigger than {m}, and N has support {m}.
Since H n

m(R) is a simple F -module that is not in kerϕ, it maps to an isomorphic copy
that is an F -submodule of N . Assuming that there is a splitting N = ϕ(H n

m(R))⊕N ′

in the category of graded F -modules, the composition

M
ϕ
−→ N = ϕ(H n

m(R))⊕N ′
π1
−→ ϕ(H n

m(R))
ϕ−1

−−→ H n
m(R),

where π1 is the projection to the first component, provides a splitting of H n
m(R) ⊂M in

the category of graded F -modules.
We may thus assume that M is a graded F -finite module with support {m}; we need

to show that H n
m(R) ⊂ M splits in the category of F -modules. Take ∗D(M) to be

the minimal root of M ; then M is a graded R{f }-module by Proposition 2.7. Note that
Mred = M , and M has finite length as an R-module. Since homogeneous elements of M
of nonzero degree are necessarily nilpotent, it follows that M is concentrated in degree 0.
Thus,M is annihilated by m, and is a finite F{f }-module, where F is viewed as the residue
field R/m.

Since H n
m(R) is an F -submodule of M , there exists an F{f }-module homomorphic

image N of M such that
∗D(N) = ∗D(M) ∩H n

m(R).

By the following lemma, the surjection M → N splits in the category of F{f }-modules.
Applying ∗H , we conclude that the inclusion H n

m(R) ⊂ M splits in the category of
graded F -modules. ut

Remark 2.11. For R as in Corollary 2.10, we do not know whether H n
m(R) is injective

in the category of graded F -modules.
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Lemma 2.12. Let F be a separably closed field of positive characteristic. Then every
exact sequence of F{f }-modules

0→ L→ M → N → 0,

whereL,M ,N , are F-vector spaces of finite rank, splits in the category of F{f }-modules.

Proof. We identify L with its image in M , and N with M/L. Using [Ho, Theorem 4.2],
choose a basis e1, . . . , e` for L such that f (ei) = ei for each i; when F is algebraically
closed, this also follows from [Di, p. 233]. Similarly, N has a basis v1, . . . , vn with
f (vj ) = vj for each j . It suffices to prove that each vj lifts to an element wj ∈ M
with f (wj ) = wj .

Set v = vj and let ṽ inM be a lift of v. Since f (v) = v, it follows that f (̃v)− ṽ is an
element of L. Thus, there exist elements ci ∈ F with

f (̃v)− ṽ =
∑̀
i=1

ciei .

For each i, the separable equation T p − T + ci = 0 has a root ti in F. Setting

w = ṽ +
∑̀
i=1

tiei,

we readily see that f (w) = w. ut

The following example of Ma shows that the corollary does not hold over arbitrary fields;
more generally, Ma computes the relevant Ext groups in [Ma, Theorem 4.5].

Example 2.13. We consider F -modules over the field F = Fp. Take M to be F ⊕ F
with structure morphism

θM : M → F(M ), (a, b) 7→ (a ⊗ 1, (a + b)⊗ 1).

Then F, with structure morphism

θF : F→ F(F), b 7→ b ⊗ 1,

may be identified with the F -submodule 0⊕F of M . We claim that the inclusion F ⊂M
does not split in the category of F -modules. Indeed, a splitting is a map of F-vector
spaces

ϕ : M → F, (a, b) 7→ aα + b,

for some α in F, such that the following diagram commutes:

M
ϕ
−−→ F

θM

y yθF
F(M )

F(ϕ)
−−−→ F(F)
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However, θF ◦ ϕ(a, b) = (aα + b)⊗ 1, whereas

F(ϕ) ◦ θM (a, b) = F(ϕ)(a ⊗ 1, (a + b)⊗ 1) = F(ϕ)(a ⊗ (1, 1)+ b ⊗ (0, 1))
= a ⊗ (α + 1)+ b ⊗ 1 = (aαp + a + b)⊗ 1.

Thus, the commutativity forces αp + 1 = α, which is not possible for α ∈ Fp.

Example 2.14. Let R = F[x1, . . . , xn], where n ≥ 1 and F is an algebraically closed
field of characteristic p > 0. By [Ma, Example 4.8], there exists an exact sequence

0→ H n
m(R)→M → R→ 0

that is not split in the category of F -finite modules. Since H n
m(R) is an injective object

in the category of graded F -finite modules by Corollary 2.10, it follows that M is not a
graded F -module; thus, the category of graded F -modules is not closed—as a subcate-
gory of the category of F -modules—under extensions.

We record another consequence of Theorem 2.9:

Corollary 2.15. If M ′ and M ′′ are graded F -finite modules such that M ′ has sup-
port {m} and M ′′ has no composition factor with support {m}, then every extension

0→M ′
→M →M ′′

→ 0

in the category of graded F -modules is split.

Proof. By Theorem 2.9, there exists an F -module surjection M →M1 where M1 is an
F -module with support {m}, and the kernel of this surjection has no composition factor
with support {m}. Restricting to M ′ induces an isomorphism M ′

→M1. Thus, we have
an F -module splitting M →M ′. ut

Applying Theorem 2.9 to Proposition 2.8, we obtain the following theorem:

Theorem 2.16. Let R be a standard graded polynomial ring, where [R]0 is a field of
prime characteristic. Let m be the homogeneous maximal ideal of R, and I an arbitrary
homogeneous ideal. For each nonnegative integer k, the following are equivalent:

(1) Among the composition factors of the Eulerian D-module ξ(H k
I (R)), there is at least

one composition factor with support {m}.
(2) Among the composition factors of the graded F -finite module H k

I (R), there is at
least one composition factor with support {m}.

(3) H k
I (R) has a graded F -module homomorphic image with support {m}.

(4) The natural Frobenius action on [H dimR−k
m (R/I)]0 is not nilpotent.

Example 2.17. Consider the polynomial ring R = Fp[x1, . . . , x6], where p is a prime
integer. Let m denote the homogeneous maximal ideal of R, and set I to be the ideal
generated by

x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6;
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this is the Stanley–Reisner ideal for a triangulation of the real projective plane RP2 as
in [SW2, Example 5.2]. The ideal I has height 3. We claim that H 3

I (R) has a graded
F -module homomorphic image with support {m} if and only if p = 2.

For each k ≥ 1, one has

[H k+1
m (R/I)]0 = H

k
sing(RP

2
;Z/pZ),

by Hochster’s formula (see, for example, [BH2, Section 5.3]). This implies

[H 3
m(R/I)]0 =

{
Z/2Z if p = 2,
0 if p > 2.

The ring R/I is F -pure since I is a square-free monomial ideal; when p = 2, the Frobe-
nius action on [H 3

m(R/I)]0 is thus injective. The claim now follows from Theorem 2.16.

Corollary 2.18. Let R = Z[x1, . . . , xn] be a polynomial ring with the N-grading [R]0
= Z and deg xi = 1 for each i. Let I be a homogeneous ideal, p a prime integer, and k a
nonnegative integer. Suppose that the Frobenius action on

[H n−k
(x1,...,xn)

(R/(I + pR))]0

is nilpotent, and that the multiplication by p map

H k+1
I (R)

xi

·p
−→ H k+1

I (R)
xi

is injective for each i. Then the multiplication by p map on H k+1
I (R) is injective.

Proof. The ring DZ(R) of differential operators on R is a free R-module with basis

∂
[t1]
1 · · · ∂ [tn]n for (t1, . . . , tn) ∈ Nn

(see [Gro2, Théorème 16.11.2]). Multiplication by p on R induces

→ H k
I (R)→ H k

I (R/pR)
δ
−→ H k+1

I (R)
·p
−→ H k+1

I (R)→,

which is an exact sequence of DZ(R)-modules. Specifically, the kernel of multiplication
by p on H k+1

I (R) is a DZ(R)-module; since it is annihilated by p, it is also a module
over

DZ(R)/pDZ(R) = DFp (R/pR).

If this kernel is nonzero, then it is a homomorphic image of H k
I (R/pR) in the cate-

gory of Eulerian DFp (R/pR)-modules, supported precisely on the homogeneous maxi-
mal ideal m of R/pR. But this is not possible, since the DFp (R/pR)-moduleH k

I (R/pR)

has no composition factor with support {m} by Theorem 2.16. ut
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Example 2.19. Let E be an elliptic curve in P2
Q, and consider the Segre embedding of

the product E × P1
Q in P5

Q. Set R = Z[x1, . . . , x6], and let I ⊂ R be an ideal such that
(R/I) ⊗Z Q is the homogeneous coordinate ring of the embedding. For all but finitely
many primes p, the reduction of E modulo p is an elliptic curve that we denote by Ep.
By Serre [Se] and Elkies [El] respectively, there exist infinitely many prime integers p
such that Ep is ordinary, and infinitely many such that Ep is supersingular.

Take a prime p for which Ep is an elliptic curve; then (R/I)⊗ZFp is a homogeneous
coordinate ring for Ep × P1

Fp . Using the Künneth formula, one obtains

H 2
m(R/(I + pR)) = H 1(Ep,OEp )⊗H

0(P1
Fp ,OP1

Fp
).

Hence, the Frobenius action on the rank one Fp-vector space H 2
m(R/(I + pR)) may be

identified with the map

H 1(Ep,OEp )⊗H
0(P1

Fp ,OP1
Fp
)
f
−→ H 1(Ep,OEp )⊗H

0(P1
Fp ,OP1

Fp
),

which is zero when Ep is supersingular, and nonzero when Ep is ordinary. It follows that
the module H 2

m(R/(I + pR))
st is zero when Ep is supersingular, and nonzero when it is

ordinary. By [HS, p. 75] or [Ly5, Theorem 3.1], the same holds forH 4
I (R/pR), implying

that the multiplication by p map

H 4
I (R)

·p
−→ H 4

I (R)

is surjective for infinitely many prime integers p, and also not surjective for infinitely
many p (see also [SW1]). Corollary 2.18 implies that the map is injective for each p for
which Ep is an elliptic curve, since

[H 3
m(R/(I + pR))]0 = H

1(Ep,OEp )⊗H
1(P1

Fp ,OP1
Fp
) = 0,

andH 4
I (R)xi

= 0 for each i because the arithmetic rank of IRxi (defined in Section 3) is 3
(cf. [BBL+, Example 3.3]).

3. Preliminaries on local cohomology

The following theorem enables the calculation of the Bass numbers of certain local coho-
mology modules in terms of singular cohomology:

Theorem 3.1. Consider the polynomial ring R = C[x1, . . . , xn]. Let I be an ideal of R,
and m a maximal ideal. If k0 is a positive integer such that SuppH k

I (R) ⊆ {m} for each
integer k ≥ k0, then, for each k ≥ k0, one has an isomorphism of R-modules

H k
I (R)

∼= H
n
m(R)

µk ,

where µk is the C-rank of the singular cohomology group H n+k−1
sing (Cn \ Var(I );C). If I

and m are homogeneous with respect to the standard grading on R, then the displayed
isomorphism is degree-preserving.
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Proof. Set D to be the Weyl algebra R〈∂1, . . . , ∂n〉, where ∂j denotes partial differentia-
tion with respect to the variable xj ; this is the ring of C-linear differential operators on R.
Each H k

I (R) is a holonomic D-module (see for example, [Ly1, Section 2] or [ILL+, Lec-
ture 23]). We claim that for each integer k with k ≥ k0, the module H k

I (R) is isomorphic,
as a D-module, to a finite direct sum of copies of the injective hull E = H n

m(R) of R/m
as an R-module. This follows from Kashiwara’s equivalence [Kash, Proposition 4.3]; al-
ternatively, see [Ly4, Lemma (c), p. 208].

For each k ≥ k0, set µk to be the C-rank of the socle of H k
I (R); it follows that

H k
I (R)

∼= E
µk .

Regard ∂j as the endomorphism of D which sends a differential operator P to the
composition ∂j · P . Then ∂1, . . . , ∂n are commuting endomorphisms of D . Let K•(∂;D)
be the Koszul complex on these endomorphisms; this is a complex of right D-modules.
For a left D-module M , set

dR(M) = K•(∂;D)⊗D M,

which is typically a complex of infinite-dimensional C-vector spaces. Define dRi(M) to
be the i-th cohomology group of the complex dR(M). We regard dR(−) as a functor
from the category of D-modules to the category of complexes of C-vector spaces. Alter-
natively, consider the map that is the projection from X = SpecR to a point; then dR(M)
is the direct image of M under the projection map (see [BGK+, Section VI.5]).

If M is a holonomic D-module, then each dRi(M) is a C-vector space of finite rank
by [BGK+, Theorem VII.10.1]. It is straightforward to verify that

dRi(E) =

{
0 if i 6= n,
C if i = n.

For k ≥ k0, it follows that the complex dR(H k
I (R)) is concentrated in cohomological

degree n, and that
dRn(H k

I (R)) = Cµk .
Let U be a Zariski open subset of X, and let U an be the corresponding analytic open

subset. By the Poincaré Lemma, the complex K•(∂;D) ⊗D OU an is a resolution of the
constant sheaf C onU an. Grothendieck’s Comparison Theorem [Gro1, Theorem 1] shows
that the hypercohomology of the complexK•(∂;D)⊗D OU coincides with the cohomol-
ogy of the constant sheaf on U an, which is the singular cohomology of U an.

For an element g of R, set Ug = X \ Var(g). Since Ug is affine, and hence U an
g is

Stein, the singular cohomology of U an
g is the cohomology of the complex dR(Rg).

Let g = g1, . . . , gm be generators of I , and consider the complex of left D-modules

C•(g;R) : 0→
⊕
i

Rgi →
⊕
i<j

Rgigj → · · · → Rg1···gm → 0;

it is supported in cohomological degrees 0, . . . , m. For each p ≥ 1, this complex has
cohomology Hp(C•(g;R)) = H

p+1
I (R).
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The sets Ugi = X \ Var(gi) form an affine open cover for U = X \ Var(I ), so the
double complex Q•,• with

Qp,q
= Kq(∂;D)⊗D Cp(g;R)

is a local trivialization of dR(OU ). It follows that the cohomology of the total complex
of Q•,• is the singular cohomology of U an (see [BT, Theorem 8.9] and the surrounding
discussion). Consider the spectral sequence associated to Q•,•, with the differentials

E
p,q
r → E

p−r+1,q+r
r .

Taking cohomology along the rows, one obtains the E1 page of the spectral sequence,
where the q-th column is dR(Hp(C•(g;R))). Thus,

E
p,q

2 = dRq(Hp(C•(g;R))) = dRq(Hp+1
I (R)) for p ≥ 1.

Suppose that p ≥ max{1, k0 − 1}. Then Ep,q2 = dRq(Eµp+1), which is zero for
q 6= n. It follows that the differentials to and from E

p,q

2 are zero, and so Ep,q∞ = E
p,q

2 . In
particular,

H
p+n

sing (U
an) = E

p,n
∞ = Cµp+1 for p ≥ max{1, k0 − 1}.

This proves the isomorphism asserted in the theorem for k ≥ max{2, k0}.
It remains to consider the case where H k

I (R) is m-torsion for each k ≥ 1. If there
exists a minimal prime p of I with p 6= m, then H k

p(Rp) = 0 for each k ≥ 1, which
forces p = 0 and thus I = 0; the theorem holds trivially in this case. Lastly, we have the
case where I has radical m; without loss of generality, I = m. Then the only nonvanishing
module H •m(R) is H n

m(R) = E; since Cn \Var(m) is homotopic to the real sphere S2n−1,
we have

H n+k−1
sing (Cn \ Var(m);C) =

{
0 if 1 ≤ k ≤ n− 1,
C if k = n.

If I and m are homogeneous, thenH k
I (R) andH n

m(R) are Eulerian graded D-modules
and the isomorphismH k

I (R)
∼= H n

m(R)
µk is degree-preserving by [MZ, Theorem 1.1]. ut

Arithmetic rank

The arithmetic rank of an ideal I of a ring A, denoted ara I , is the least integer k such that

rad I = rad(g1, . . . , gk)A

for elements g1, . . . , gk of A. It is readily seen that H i
I (A) = 0 for each i > ara I . The

corresponding result for singular cohomology is the following (see [BS, Lemma 3]):

Lemma 3.2. Let W ⊆ W̃ be affine varieties over C such that W̃ \W is nonsingular of
pure dimension d . If there exist polynomials f1, . . . , fk with

W = W̃ ∩ Var(f1, . . . , fk),

then
H d+i

sing (W̃ \W ;C) = 0 for each i ≥ k.
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Lemma 3.3. Let B → A be a homomorphism of commutative rings; let I be an ideal
of B. If I can be generated up to radical by k elements, then

H k
I (B)⊗B A

∼= H
k
IA(A).

Proof. Let b1, . . . , bk be elements of B that generate I up to radical. Computing H k
I (B)

using a Čech complex on the bi , one obtainsH k
I (B) as the cokernel of the homomorphism∑

i Bb1···b̂i ···bk
→ Bb1···bk .

Since the functor −⊗B A is right-exact, H k
I (B)⊗B A is isomorphic to the cokernel of∑

i Ab1···b̂i ···bk
→ Ab1···bk ,

which is the local cohomology module H k
IA(A). ut

The a-invariant

Let A be an N-graded ring such that [A]0 is a field; let m be the homogeneous maximal
ideal of A. Following [GW, Definition 3.1.4], the a-invariant of A, denoted a(A), is the
largest integer k such that

[H dimA
m (A)]k 6= 0.

The following lemma is taken from [HH, Discussion 7.4]:

Lemma 3.4. Let A be an N-graded ring with [A]0 = Z that is finitely generated as an
algebra over [A]0. Assume moreover that A is a free Z-module. Let p be a prime integer.
If the rings A/pA and A⊗Z Q are Cohen–Macaulay, then

a(A/pA) = a(A⊗Z Q).

Proof. The freeness hypothesis implies that for each integer n, one has

rankFp [A/pA]n = rankZ [A]n = rankQ [A⊗Z Q]n,

so the rings A/pA and A ⊗Z Q have the same Hilbert–Poincaré series; the rings are
Cohen–Macaulay, so the Hilbert–Poincaré series determines the a-invariant. ut

Suppose A is an N-graded normal domain that is finitely generated over a field [A]0 of
characteristic zero. Consider a desingularization ϕ : Z→ SpecA, i.e., a proper birational
morphism with Z a nonsingular variety. Then A has rational singularities if

Riϕ∗OZ = 0 for each i ≥ 1;

the vanishing is independent of ϕ. By Flenner [Fl] or Watanabe [Wat], a(A) is negative
whenever A has rational singularities. By Boutot’s theorem [Bou], direct summands of
rings with rational singularities have rational singularities; specifically, if A is the ring
of invariants of a linearly reductive group acting linearly on a polynomial ring, then
a(A) < 0.
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Associated primes of local cohomology

Huneke [Hu, Problem 4] asked whether local cohomology modules of Noetherian rings
have finitely many associated prime ideals. A counterexample was given by Singh [Si1]
(see Example 3.5 below) by constructing p-torsion elements for each prime integer p. The
same paper disproved a conjecture of Hochster about p-torsion elements in H 3

I2
(Z[X]),

whereX is a 2×3 matrix of indeterminates, and motivated our study of p-torsion in local
cohomology modules H k

It
(Z[X]) for It a determinantal ideal; this is completely settled

by Theorem 1.2 of the present paper.

Example 3.5. Let A be the hypersurface Z[u, v,w, x, y, z]/(ux + vy + wz), and let a
be the ideal (x, y, z). By [Si1] the module H 3

a(A) has p-torsion for each prime integer p;
equivalently, H 3

a(A), viewed as an Abelian group, contains a copy of Z/pZ for each p.
Chan [Ch] proved that H 3

a(A) contains a copy of each finitely generated Abelian group;
moreover, the ring and module in question have a Z4-grading, and Chan shows that any
finitely generated Abelian group may be embedded into a single Z4-graded component.

When R is a regular ring, H k
a(R) is conjectured to have finitely many associated prime

ideals [Ly1, Remark 3.7]. This conjecture is now known to be true when R has prime
characteristic by Huneke and Sharp [HS]; when R is local or affine of characteristic zero
by Lyubeznik [Ly1]; when R is an unramified regular local ring of mixed characteristic
by [Ly3]; and when R is a smooth Z-algebra by [BBL+]. For rings R of equal characteris-
tic, local cohomology modules H k

a(R) with infinitely many associated prime ideals were
constructed by Katzman [Katz], and subsequently Singh and Swanson [SS].

A related question is whether, for Noetherian rings A, the sets of primes that are
minimal in the support of H k

a(A) is finite, or equivalently, whether the support is closed
in SpecA. For positive answers, we point the reader to [HKM] and the references therein.

4. Determinantal ideals

We prove Theorem 1.2 using the results of the previous sections; we begin with a well-
known lemma (see, for example, [BV, Proposition 2.4]). We sketch the proof since it is
an elementary idea that is used repeatedly.

Lemma 4.1. Consider the matrices X = (xij ) of indeterminates where 1 ≤ i ≤ m,
1 ≤ j ≤ n, and Y = (yij ) where 2 ≤ i ≤ m, 2 ≤ j ≤ n. Set R = Z[X] and R′ = Z[Y ].
Then the map

R′[x11, . . . , xm1, x12, . . . , x1n]x11 → Rx11 with yij 7→ xij −
xi1x1j

x11

is an isomorphism. Moreover, Rx11 is a free R′-module, and for each t ≥ 1, one has

It (X)Rx11 = It−1(Y )Rx11

under this isomorphism.
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Proof. After inverting the element x11, one may perform row operations to transform X

into a matrix where x11 is the only nonzero entry in the first column. Then, after subtract-
ing appropriate multiples of the first column from other columns, one obtains a matrix

x11 0 . . . 0
0 x′22 . . . x′2n
...

...
...

0 x′m2 . . . x′mn

 where x′ij = xij −
xi1x1j

x11
;

the asserted isomorphism is then yij 7→ x′ij . The ideal It (X)Rx11 is generated by the size
t minors of the displayed matrix, and hence equals It−1(Y )Rx11 . The assertion that Rx11

is a free R′-module follows from the fact that the ring extension

Z[xij − xi1x1j/x11 | 2 ≤ i ≤ m, 2 ≤ j ≤ n] ⊂ Z[X, 1/x11]

is obtained by adjoining indeterminates x11, . . . , xm1, x12, . . . , x1n, and inverting x11. ut

Proof of Theorem 1.2. Multiplication by a prime integer p on R induces the exact se-
quence

→ H k
It
(R/pR)

δ
−→ H k+1

It
(R)

·p
−→ H k+1

It
(R)→ H k+1

It
(R/pR)→,

and (1) is precisely the statement that each connecting homomorphism δ as above is zero.
The ideal ItR/pR is perfect by Hochster–Eagon [HE], i.e., R/(It + pR) is a Cohen–
Macaulay ring (alternatively, see [DEP, Section 12]). By [PS, Proposition III.4.1], it fol-
lows that

H k
It
(R/pR) = 0 if and only if k 6= height It .

Thus, to prove (1) and (2), it suffices to prove the injectivity of the map

H
height It+1
It

(R)
·p
−→ H

height It+1
It

(R). (4.1.1)

We proceed by induction on t . The ideal I1 is generated by a regular sequence, so the
injectivity holds when t = 1 as the modules in (4.1.1) are zero.

We claim that the a-invariant of the ring R/(It + pR) is negative. This follows from
the fact that R/(It + pR) is F -rational (see [HH, Theorem 7.14]); alternatively, the a-
invariant is computed explicitly in [BH1, Corollary 1.5] as well as [Gra]. In particular,
one has [

H
dimR/(It+pR)

(x11,...,xmn)
(R/(It + pR))

]
0 = 0.

By Corollary 2.18, it now suffices to show that the map (4.1.1) is injective upon inverting
each xij , without loss of generality, x11. We use the matrix Y as in Lemma 4.1 with
identifications yij = xij − xi1x1j/x11, and R′ = Z[Y ]. The ring Rx11 is a free R′-module
by Lemma 4.1, so one has an R′-module isomorphism Rx11

∼=
⊕
R′, and so

H
height It (X)+1
It (X)

(Rx11) = H
height It (X)+1
It−1(Y )

(Rx11)
∼=

⊕
H

height It (X)+1
It−1(Y )

(R′).
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But
height It (X) = (m− t + 1)(n− t + 1) = height It−1(Y ),

and multiplication by p is injective on H height It−1(Y )+1
It−1(Y )

(R′) by the inductive hypothesis.
This completes the proof of (1) and (2).

We next verify thatHmn−t2+1
It

(Z[X]) is a Q-vector space under the hypotheses of (3).
By (2), it is enough to check that mn− t2 + 1 is greater than

height It = (m− t + 1)(n− t + 1).

After rearranging terms, the desired inequality reads

(t − 1)(m+ n− 2t) > 0,

and the hypotheses on t ensure that this is indeed the case. Hence

Hmn−t2+1
It

(Z[X]) ∼= Hmn−t2+1
It

(Q[X]).

We claim that Hmn−t2+1
It

(Q[X]) is m-torsion; it suffices to check that it vanishes upon
inverting, say, x11. Using Lemma 4.1 as before, one has

Hmn−t2+1
It (X)

(Q[X])x11
∼=

⊕
Hmn−t2+1
It−1(Y )

(Q[Y ]),

but these modules are zero since mn− t2 + 1 is greater than

ara It−1(Y ) = (m− 1)(n− 1)− (t − 1)2 + 1.

Hence the support of Hmn−t2+1
It

(Q[X]) is contained in {m}; of course, H k
It
(Q[X]) = 0

for all k > mn− t2 + 1. By the D-module arguments as in the proof of Theorem 3.1, we
have

Hmn−t2+1
It

(Q[X]) ∼= Hmn
m (Q[X])µ,

and it remains to determine the integer µ. It suffices to compute this after base change
to C, so we work instead with C[X]. By [BS, Lemma 2], one has

H 2mn−t2
sing (Cmn \ Var(It );C) ∼= C,

and Theorem 3.1 now implies that µ = 1. ut

We examine Theorem 1.2 for a 2× 3 matrix of indeterminates:

Example 4.2. Let R = Z[u, v,w, x, y, z] be a polynomial ring over Z. Take I2 to be the
ideal generated by the size 2 minors of the matrix(

u v w

x y z

)
.
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Let p be a prime integer, and set R = R/pR. Multiplication by p on R induces the
cohomology exact sequence

→ H 2
I2
(R)

π
−→ H 2

I2
(R)

δ
−→ H 3

I2
(R)

·p
−→ H 3

I2
(R)→ 0;

bear in mind that H 3
I2
(R) = 0 since I2 is perfect. Theorem 1.2 implies that the connect-

ing homomorphism δ is zero, i.e., π is surjective; we examine this in elementary terms.
Towards this, view H 2

I2
(R) as the direct limit

lim
−→
e∈N

Ext2
R

(
R/(1

[pe]

1 ,1
[pe]

2 ,1
[pe]

3 ), R
)
,

where 11 = vz− wy, 12 = wx − uz, and 13 = uy − vx. The complex

0→ R
2

[
u x
v y
w z

]
−−−−→ R

3 [11 12 13 ]
−−−−−−−→ R→ 0

is a free resolution of R/(11,12,13). By the flatness of the Frobenius map, it follows
that

0→ R
2

 upe xpevp
e
yp
e

wp
e
zp
e


−−−−−−−→ R

3 [1
pe

1 1
pe

2 1
pe

3
]

−−−−−−−−−→ R→ 0

is a free resolution of R/(1[p
e
]

1 ,1
[pe]

2 ,1
[pe]

3 ) for each e ≥ 1. Hence H 2
I2
(R) is generated

by elements αe and βe corresponding to the relations

up
e

1
pe

1 + v
pe1

pe

2 + w
pe1

pe

3 ≡ 0 modpR,

xp
e

1
pe

1 + y
pe1

pe

2 + z
pe1

pe

3 ≡ 0 modpR,

respectively, where e ≥ 1. As π is surjective, these relations must lift to R; indeed, in
[Si1], we constructed the following equational identity:∑
i,j

(
k

i + j

)(
k + i

k

)(
k + j

k

)[
uk+112k+1

1 (−wx)i(vx)j1k−i2 1
k−j

3

+ vk+112k+1
2 (−uy)i(wy)j1k−i3 1

k−j

1 + wk+112k+1
3 (−vz)i(uz)j1k−i1 1

k−j

2
]
= 0

for each k ≥ 0. Viewed as a relation on the elements 12k+1
1 , 12k+1

2 , and 12k+1
3 , the

identity yields an element of H 2
I2
(R) for each k. Take k = pe − 1. Since(

k

i + j

)(
k + i

k

)(
k + j

k

)
≡ 0 modp unless (i, j) = (0, 0),

the element of H 2
I2
(R) maps to an element of H 2

I2
(R) corresponding to the relation

(111213)
pe−1[upe1pe1 + v

pe1
pe

2 + w
pe1

pe

3
]
≡ 0 modpR,

i.e., precisely to αe. The case of βe is of course similar.
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5. The vanishing theorem

Let M be an m × n matrix with entries from a commutative Noetherian ring A. Set a
to be the ideal generated by the size t minors of M . By Bruns [Br, Corollary 2.2], the
ideal a can be generated up to radical by mn − t2 + 1 elements. It follows that cdR(a),
the cohomological dimension of a, satisfies

cdA(a) ≤ mn− t2 + 1.

While this inequality is sharp in general [BS, Corollary, p. 440], we can do better when
additional conditions are imposed upon the ring A:

Theorem 5.1. Let M = (mij ) be an m × n matrix with entries from a commutative
Noetherian ring A. Let t be an integer with 2 ≤ t ≤ min{m, n} that differs from at least
one of m and n. Set a to be the ideal generated by the size t minors of M . Then:

(1) The local cohomology module Hmn−t2+1
a (A) is a Q-vector space, and thus vanishes

if the canonical homomorphism Z→ A is not injective.
(2) Suppose that dimA < mn, or, more generally, dimA ⊗Z Q < mn. Then one has

cdA(a) < mn− t2 + 1; in particular, Hmn−t2+1
a (A) = 0.

(3) If the images of mij in A ⊗Z Q are algebraically dependent over a field that is a
subring of A⊗Z Q, then cdA(a) < mn− t2 + 1.

Remark 5.2. The hypotheses of the theorem exclude t = 1 and t = m = n, since in
these cases assertion (1) need not hold.

The cohomological dimension bounds in (2) and (3) are sharp: Take R = Q[X] to be
the ring of polynomials in an m × n matrix of indeterminates X, and set A = R/x11R;
note that dimA < mn. Let t be as in Theorem 5.1. Multiplication by x11 on R induces
the local cohomology exact sequence

→ Hmn−t2

ItA
(A)

δ
−→ Hmn−t2+1

It
(R)

·x11
−−→ Hmn−t2+1

It
(R)→ 0.

By Theorem 1.2, the support of Hmn−t2+1
It

(R) is precisely the homogeneous maximal
ideal of R, so image δ = ker x11 is nonzero. It follows that Hmn−t2

ItA
(A) is nonzero.

Proof of Theorem 5.1. Set R to be the polynomial ring Z[X], whereX is anm×nmatrix
of indeterminates. By Theorem 1.2 we have

Hmn−t2+1
It

(R) ∼= H
mn
m (Q⊗Z R),

where m = (x11, . . . , xmn)R. Let R → A be the ring homomorphism with xij 7→ mij ;
the extended ideal ItA equals a. Since It is generated up to radical bymn−t2+1 elements,
and m by mn elements, Lemma 3.3 provides the first and the third of the isomorphisms
below:

Hmn−t2+1
a (A) ∼= H

mn−t2+1
It

(R)⊗RA ∼= Hmn
m (Q⊗ZR)⊗RA ∼= Hmn

m (Q⊗ZA).

(5.2.1)

It follows that Hmn−t2+1
a (A) is a Q-vector space, which settles (1).
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For (2), if dimA⊗Z Q < mn, then Hmn
m (A⊗Z Q) vanishes since the cohomological

dimension is bounded above by the Krull dimension of the ring. Thus, by (5.2.1),

Hmn−t2+1
a (A) = 0.

Since a can be generated up to radical by mn− t2+ 1 elements, H k
a(A) also vanishes for

all integers k with k > mn− t2 + 1. Hence, cdA(a) < mn− t2 + 1.
For (3), let F be the field, and set B to be the F-subalgebra of A ⊗Z Q generated

by the images of mij . Take b to be the ideal of B generated by the size t minors. Then

dimB < mn, so (2) gives Hmn−t2+1
b (B) = 0. Using (1) along with Lemma 3.3 shows

that

Hmn−t2+1
a (A) ∼= H

mn−t2+1
a (A⊗Z Q) ∼= Hmn−t2+1

b (B)⊗B (A⊗Z Q) = 0. ut

6. Pfaffians of alternating matrices

We prove the analogues of Theorems 1.2 and 5.1 for Pfaffians of alternating matrices. Let
t be an even integer. The ideal generated by the Pfaffians of the t× t diagonal submatrices
of an n× n alternating matrix of indeterminates has height(

n− t + 2
2

)
(see for example [JP, Section 2]), and its arithmetic rank is(

n

2

)
−

(
t

2

)
+ 1

by Barile [Ba2, Theorem 4.1]. We need the following result, which is the analogue of
Lemma 4.1 for alternating matrices (see [JP, Lemma 1.2] or [Ba2, Lemma 1.3]):

Lemma 6.1. Let X be an n × n alternating matrix of indeterminates; set R = Z[X].
Then there exists an (n−2)× (n−2) generic alternating matrix Y with entries from Rx12

such that Rx12 is a free Z[Y ]-module, and

Pt (X)Rx12 = Pt−2(Y )Rx12 for each even integer t ≥ 4.

Theorem 6.2. Let R = Z[X] be a polynomial ring, where X is an n × n alternating
matrix of indeterminates. Let t be an even integer, and let Pt denote the ideal generated
by the Pfaffians of the size t diagonal submatrices of X. Then:

(1) H k
Pt
(R) is a torsion-free Z-module for all integers k.

(2) If k differs from the height of Pt , then H k
Pt
(R) is a Q-vector space.

(3) Let m be the homogeneous maximal ideal of Q[X]. If 2 < t < n, then

H
(
n
2 )−(

t
2 )+1

Pt
(Z[X]) ∼= H

(
n
2 )

m (Q[X]).
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Proof. We follow the logical structure of the proof of Theorem 1.2. Let p be a prime
integer. The ring R/(Pt+pR) is Cohen–Macaulay by [KL] or [Mar1, Mar2], so the mod-
ule H k

Pt
(R/pR) vanishes for k 6= heightPt by [PS, Proposition III.4.1]. For (1) and (2),

it thus suffices to prove the injectivity of the map

H
heightPt+1
Pt

(R)
·p
−→ H

heightPt+1
Pt

(R), (6.2.1)

and this is done by induction on t , the case t = 2 being trivial since P2 is generated
by a regular sequence. The a-invariant of R/(Pt + pR) is computed explicitly in [BH1,
Corollary 1.7]; alternatively, (R/Pt ) ⊗Z Q is the ring of invariants of the symplectic
group—which is linearly reductive in the case of characteristic zero—and hence has ratio-
nal singularities; from Lemma 3.4 it follows that the a-invariant of the ring R/(Pt + pR)
is negative.

By Lemma 6.1, the inductive hypothesis implies that (6.2.1) is injective upon invert-
ing x12, equivalently, any xij . But then Corollary 2.18 yields the injectivity of (6.2.1).

For (3), note that H
(
n
2 )−(

t
2 )+1

Pt
(Z[X]) is a Q-vector space by (2), since the hypothesis

(t − 2)(n− t) > 0

is equivalent to (
n

2

)
−

(
t

2

)
+ 1 >

(
n− t + 2

2

)
.

To verify that H
(
n
2 )−(

t
2 )+1

Pt
(Q[X]) is m-torsion, it suffices to check that

H
(
n
2 )−(

t
2 )+1

Pt
(Q[X])x12 = 0,

and this follows from Lemma 6.1 since(
n

2

)
−

(
t

2

)
+ 1 > araPt−2(Y ) =

(
n− 2

2

)
−

(
t − 2

2

)
+ 1.

By Theorem 3.1, it follows that

H
(
n
2 )−(

t
2 )+1

Pt
(Q[X]) ∼= H

(
n
2 )

m (Q[X])µ,

where µ is the rank of the singular cohomology group

H
2( n2 )−(

t
2 )

sing (L \ Var(Pt );C)

as a complex vector space, where L is the affine space C(
n
2 ). The computation of this

cohomology follows entirely from [Ba2]; however, since it is not explicitly recorded, we
include a sketch for the convenience of the reader. The cohomology groups below are
with coefficient group C.
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Let V = Var(Pt ) and Ṽ = Var(Pt+2). Then Ṽ \ V is smooth by [KL, Theorem 17],
and of complex dimension

(
n
2

)
−
(
n−t

2

)
. Consider the exact sequence of cohomology with

compact support:

→ H
(
t
2 )
c (L \ Ṽ )→ H

(
t
2 )
c (L \ V )→ H

(
t
2 )
c (Ṽ \ V )→ H

(
t
2 )+1
c (L \ Ṽ )→ .

We claim that the middle map is an isomorphism; for this, it suffices to prove that

H
(
t
2 )
c (L \ Ṽ ) = 0 = H

(
t
2 )+1
c (L \ Ṽ ).

By Poincaré duality, this is equivalent to

H
2( n2 )−(

t
2 )

sing (L \ Ṽ ) = 0 = H
2( n2 )−(

t
2 )−1

sing (L \ Ṽ ),

which follows from Lemma 3.2 since Pt+2 has arithmetic rank
(
n
2

)
−
(
t+2

2

)
+ 1.

Using Poincaré duality once again, we have

H
2( n2 )−(

t
2 )

sing (L \ V ) ∼= H
2( n2 )−2( n−t2 )−(

t
2 )

sing (Ṽ \ V ).

By [Ba2, p. 73], the space Ṽ \ V is a fiber bundle over the Grassmannian Gn−t,n, with
the fiber being the space Alt(t) of invertible alternating matrices of size t ; the latter space
is homotopy equivalent to a compact, connected, orientable manifold of real dimension(
t
2

)
. Since Gn−t,n is simply connected, the Leray spectral sequence

E
p,q

2 = H
p

sing(Gn−t,n;H
q

sing(Alt(t))) =⇒ H
p+q

sing (Ṽ \ V )

shows that H
2( n2 )−2( n−t2 )−(

t
2 )

sing (Ṽ \ V ) ∼= C, and it follows that µ = 1. ut

We next record the vanishing theorem for local cohomology supported at Pfaffian ideals:

Theorem 6.3. LetM = (mij ) be an n×n alternating matrix with entries from a commu-
tative Noetherian ringA. Let t be even with 2 < t < n, and set a to be the ideal generated
by the Pfaffians of the size t diagonal submatrices of M . Set c =

(
n
2

)
−
(
t
2

)
+ 1. Then:

(1) The local cohomology module H c
a(A) is a Q-vector space, and thus vanishes if the

canonical homomorphism Z→ A is not injective.
(2) If dimA ⊗Z Q <

(
n
2

)
, or, more generally, if the images of mij in A ⊗Z Q are

algebraically dependent over a field that is a subring of A⊗Z Q, then cdA(a) < c.

Proof. Set R = Z[X], where X is an n × n alternating matrix of indeterminates. Define
an R-algebra structure on A using xij 7→ mij . The theorem now follows from

H c
Pt
(R) ∼= H

(
n
2 )

m (Q⊗Z R),

by using arguments as in the proof of Theorem 5.1. ut

Remark 6.4. Once again, the bound on cdA(a) is sharp: Take R = Q[X] to be a poly-
nomial ring in an n × n alternating matrix of indeterminates X. As in Remark 5.2, set
A = R/x12R. Then H c−1

PtA
(A) is nonzero.
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7. Minors of symmetric matrices

We prove the analogue of Theorem 1.2 for minors of symmetric matrices, and also the
analogue of Theorem 5.1 in the case of minors of odd size; the corresponding result is not
true for even sized minors—see Remark 7.5. The ideal It generated by the size t minors
of an n× n symmetric matrix of indeterminates has height(

n− t + 2
2

)
(see, for example, [Jo, Section 2]). By [Ba2, Theorems 3.1, 5.1], the arithmetic rank of It
is

ara It =

{(
n
2

)
−
(
t
2

)
+ 1 if the characteristic equals 2, and t is even,(

n+1
2

)
−
(
t+1

2

)
+ 1 else.

For a symmetric matrix of indeterminates over a field of characteristic zero, the cohomo-
logical dimension of the ideal It is

cd(It ) =

{(
n+1

2

)
−
(
t+1

2

)
+ 1 if t is odd,(

n
2

)
−
(
t
2

)
+ 1 if t is even,

as proved in [Ba2, Theorem 6.3] and [RW2, (1.6)] respectively.

Theorem 7.1. Let R = Z[X] be a polynomial ring, where X is a symmetric matrix of
indeterminates. Let It denote the ideal generated by the size t minors of X. Then:

(1) H k
It
(R) is a torsion-free Z-module for all integers t, k.

(2) If k differs from the height of It , then H k
It
(R) is a Q-vector space.

(3) Let m be the homogeneous maximal ideal of Q[X]. If t is odd with 1 < t < n, then

H
(
n+1

2 )−(
t+1

2 )+1
It

(Z[X]) ∼= H
(
n+1

2 )
m (Q[X]).

The analogue of Lemma 4.1 for symmetric matrices is the following; for a proof, see
[MV, Lemme 2] or [Jo, Lemma 1.1] or [Ba2, Lemma 1.2].

Lemma 7.2. Let X be an n× n symmetric matrix of indeterminates. Set R = Z[X] and
1 = x11x22 − x

2
12. Then:

(1) There exists an (n− 1)× (n− 1) generic symmetric matrix Y with entries from Rx11

such that Rx11 is a free Z[Y ]-module, and

It (X)Rx11 = It−1(Y )Rx11 for each t ≥ 2.

(2) There exists an (n− 2)× (n− 2) generic symmetric matrix Y ′ with entries from R1
such that R1 is a free Z[Y ′]-module, and

It (X)R1 = It−2(Y
′)R1 for each t ≥ 3.
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Proof of Theorem 7.1. For the most part, the proof is similar to those of Theorems 1.2
and 6.2: The ringR/(It+pR) is Cohen–Macaulay by Kutz [Ku], soH k

It
(R/pR) vanishes

for k 6= height It by [PS, Proposition III.4.1]. For (1) and (2), it suffices to prove the
injectivity of the map

H
height It+1
It

(R)
·p
−→ H

height It+1
It

(R), (7.2.1)

and this is done by induction on t , the case t = 1 being trivial since I1 is generated by a
regular sequence. The a-invariant of R/(It +pR) is computed in [Ba1] as well as in [Co,
Section 2.2]; alternatively, (R/It )⊗Z Q is the ring of invariants of the orthogonal group,
and hence has rational singularities, and so R/(It + pR) has a negative a-invariant by
Lemma 3.4.

In view of Lemma 7.2, the inductive hypothesis implies that (7.2.1) is injective upon
inverting x11 as well as upon inverting 1. The radical of the ideal generated by the el-
ements xii for 1 ≤ i ≤ n and xjjxkk − x2

jk for j < k is (x11, x12, . . . , xnn), so the
map (7.2.1) is indeed injective by Corollary 2.18.

For (3), note that H
(
n+1

2 )−(
t+1

2 )+1
It

(Z[X]) is a Q-vector space, since (t − 1)(n− t) > 0
ensures that (

n+ 1
2

)
−

(
t + 1

2

)
+ 1 >

(
n− t + 2

2

)
.

To verify that H
(
n+1

2 )−(
t+1

2 )+1
It

(Q[X]) is m-torsion, it suffices to check that

H
(
n+1

2 )−(
t+1

2 )+1
It

(Q[X])x11 = 0 = H
(
n+1

2 )−(
t+1

2 )+1
It

(Q[X])1.

By Lemma 7.2, it is enough to check that(
n+ 1

2

)
−

(
t + 1

2

)
+ 1 > ara It−1(Y ) =

(
n

2

)
−

(
t

2

)
+ 1

and that(
n+ 1

2

)
−

(
t + 1

2

)
+ 1 > ara It−2(Y

′) =

(
n− 1

2

)
−

(
t − 1

2

)
+ 1,

which is indeed the case. Theorem 3.1 now implies that

H
(
n+1

2 )−(
t+1

2 )+1
It

(Q[X]) ∼= H
(
n+1

2 )
m (Q[X])µ

with µ being the rank of the singular cohomology group

H
2( n+1

2 )−(
t+1

2 )

sing (L \ Var(Pt );C),

where L = C(
n+1

2 ). This again follows from [Ba2], though we sketch a proof:
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Let V = Var(It ) and Ṽ = Var(It+1). Then Ṽ \ V is smooth by [Ba2, Theorem 2.2],
and of complex dimension

(
n+1

2

)
−
(
n−t+1

2

)
. Consider the exact sequence of cohomology

with compact support:

H
(
t+1

2 )
c (L \ Ṽ )→ H

(
t+1

2 )
c (L \ V )→ H

(
t+1

2 )
c (Ṽ \ V )→ H

(
t+1

2 )+1
c (L \ Ṽ ).

The ideal It+1 has arithmetic rank
(
n+1

2

)
−
(
t+2

2

)
+ 1, so Lemma 3.2 implies that

H
2( n+1

2 )−(
t+1

2 )

sing (L \ Ṽ ) = 0 = H
2( n+1

2 )−(
t+1

2 )−1
sing (L \ Ṽ ).

By Poincaré duality, one then has

H
(
t+1

2 )
c (L \ Ṽ ) = 0 = H

(
t+1

2 )+1
c (L \ Ṽ ).

Thus, Poincaré duality gives

H
2( n+1

2 )−(
t+1

2 )

sing (L \ V ) ∼= H
2( n+1

2 )−2( n−t+1
2 )−(

t+1
2 )

sing (Ṽ \ V ).

By [Ba2, p. 68], the space Ṽ \V is a fiber bundle over the GrassmannianGn−t,n, with the
fiber being the space Sym(t) of invertible symmetric matrices of size t ; the latter space
is homotopy equivalent to a compact, connected manifold of real dimension

(
t+1

2

)
, and

when t is odd, the manifold is orientable. The Leray spectral sequence

E
p,q

2 = H
p

sing(Gn−t,n;H
q

sing(Sym(t))) =⇒ H
p+q

sing (Ṽ \ V )

now gives H
2( n+1

2 )−2( n−t+1
2 )−(

t+1
2 )

sing (Ṽ \ V ) ∼= C, completing the proof. ut

Theorem 7.3. Let M = (mij ) be an n× n symmetric matrix with entries from a commu-
tative Noetherian ring A. Let t be an odd integer with 1 < t < n, and set a to be the ideal
generated by the size t minors of M . Set c =

(
n+1

2

)
−
(
t+1

2

)
+ 1. Then:

(1) The local cohomology module H c
a(A) is a Q-vector space, and thus vanishes if the

canonical homomorphism Z→ A is not injective.
(2) If dimA ⊗Z Q <

(
n+1

2

)
, or, more generally, if the images of mij in A ⊗Z Q are

algebraically dependent over a field that is a subring of A⊗Z Q, then cdA(a) < c.

Proof. The proof is similar to that of Theorem 5.1. ut

Remark 7.4. The bound on cdA(a) above is sharp: Take R = Q[X] to be a polynomial
ring in an n×n symmetric matrix of indeterminates. The moduleH c

It
(R) is m-torsion for

t odd, and it follows as in Remark 5.2 that H c−1
ItA

(A) is nonzero for A = R/x11R.

Remark 7.5. Let R = Q[X] be a polynomial ring in an n × n symmetric matrix of
indeterminates, and consider the ideal I2 generated by the size 2 minors of X. Then
cdR(I2) =

(
n
2

)
by [Og, Example 4.6]. Set A = R/(x11, x22, . . . , xnn). Then the ideal

I2A is primary to the homogeneous maximal ideal of A, and hence

cdA(a) = dimA =

(
n

2

)
.

Thus, while dimA < dimR, we have cdA(I2A) = cdR(I2).
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8. A question on arithmetic rank

The vanishing result, Theorem 5.1, raises the following question:

Question 8.1. Let A be a polynomial ring over a field, and a the ideal generated by the
size t minors of an m× n matrix with entries from A. Suppose dimA < mn and t differs
from at least one of m, n. Can a be generated up to radical by mn− t2 elements?

There are, of course, corresponding questions when M is a symmetric or alternating ma-
trix. While we admittedly have no approach to these questions, we record two examples:

Example 8.2. This is an example from [Ba3]. Let A be the polynomial ring
F[v,w, x, y, z], and let a be the ideal generated by the size 2 minors of(

0 v w

x y z

)
,

i.e., a = (vx, wx, vz − wy). Then ara a = 2, since height a = 2, and a is the radical of
the ideal generated by

f = wx2
+ z(vz− wy) and g = vx2

+ y(vz− wy);

to see this, note that vf − wg = (vz− wy)2.

The following example, and generalizations, may be found in [Va]; see also [BV, Ba4].

Example 8.3. Let A be the polynomial ring F[u, v,w, x, y], and let a be the ideal gen-
erated by the size 2 minors of (

u v w

v x y

)
.

Then, again, ara a = 2, since a is the radical of the ideal generated by v2
− ux and

det

u v w

v x y

w y 0


(see, for example, [Va, Example 2.2]).

For some recent results concerning matrices of linear forms, see [BCM+].
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[BV] Bădescu, L., Valla, G.: Grothendieck–Lefschetz theory, set-theoretic complete intersec-
tions and rational normal scrolls. J. Algebra 324, 1636–1655 (2010) Zbl 1211.14055
MR 2673755

[Ba1] Barile, M.: The Cohen–Macaulayness and the a-invariant of an algebra with straightening
laws on a doset. Comm. Algebra 22, 413–430 (1994) Zbl 0840.13012 MR 1255876

[Ba2] Barile, M.: Arithmetical ranks of ideals associated to symmetric and alternating matrices.
J. Algebra 176, 59–82 (1995) Zbl 0842.13006 MR 1345294

[Ba3] Barile, M.: On ideals generated by monomials and one binomial. Algebra Colloq. 14,
631–638 (2007) Zbl 1140.13003 MR 2352894

[Ba4] Barile, M.: On binomial equations defining rational normal scrolls. Algebra Colloq. 18,
121–128 (2011) Zbl 1208.13007 MR 2753662

[BBL+] Bhatt, B., Blickle, M., Lyubeznik, G., Singh, A. K., Zhang, W.: Local cohomology mod-
ules of a smooth Z-algebra have finitely many associated primes. Invent. Math. 197, 509–
519 (2014) Zbl 1318.13025 MR 3251828

[Bl] Blickle, M.: The intersection homology D-module in finite characteristic. Ph.D. Thesis,
Univ. of Michigan (2001) MR 2702619

[BCM+] Bolognini, D., Caminata, A., Macchia, A., Mostafazadehfard, M.: Cohomological dimen-
sion and arithmetical rank of some determinantal ideals. Matematiche (Catania) 70, 273–
300 (2015) Zbl 1329.13026 MR 3351469

[BGK+] Borel, A., Grivel, P.-P., Kaup, B., Haefliger, A., Malgrange, B., Ehlers, F.: Algebraic D-
modules. Perspectives in Math. 2, Academic Press, Boston, MA (1987) MR 0882000

[BT] Bott, R., Tu, L. W.: Differential Forms in Algebraic Topology. Grad. Texts Math. 82,
Springer, New York (1982) Zbl 0496.55001 MR 0658304

[Bou] Boutot, J.-F.: Singularités rationnelles et quotients par les groupes réductifs. Invent. Math.
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[Di] Dieudonné, J.: Lie groups and Lie hyperalgebras over a field of characteristic p > 0, II.
Amer. J. Math. 77, 218–244 (1955) Zbl 0064.25504 MR 0067872

[El] Elkies, N. D.: The existence of infinitely many supersingular primes for every elliptic
curve over Q. Invent. Math. 89, 561–567 (1987) Zbl 0631.14024 MR 0903384

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1211.14055&format=complete
http://www.ams.org/mathscinet-getitem?mr=2673755
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0840.13012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1255876
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0842.13006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1345294
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.13003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2352894
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1208.13007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2753662
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1318.13025&format=complete
http://www.ams.org/mathscinet-getitem?mr=3251828
http://www.ams.org/mathscinet-getitem?mr=2702619
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1329.13026&format=complete
http://www.ams.org/mathscinet-getitem?mr=3351469
http://www.ams.org/mathscinet-getitem?mr=0882000
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0496.55001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0658304
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0619.14029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0877006
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0731.13014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1015515
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0783.13018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1188581
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0788.13005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0725.14039&format=complete
http://www.ams.org/mathscinet-getitem?mr=1082012
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0673.13006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0953963
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1271.13035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2966837
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0810.13010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1309380
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0509.13026&format=complete
http://www.ams.org/mathscinet-getitem?mr=0680936
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0064.25504&format=complete
http://www.ams.org/mathscinet-getitem?mr=0067872
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0631.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0903384


2576 Gennady Lyubeznik et al.

[Fl] Flenner, H.: Rationale quasihomogene Singularitäten. Arch. Math. (Basel) 36, 35–44
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