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Abstract. We consider the anisotropic Calderón problem of recovering a conductivity matrix or
a Riemannian metric from electrical boundary measurements in three and higher dimensions. In
the earlier work [14], it was shown that a metric in a fixed conformal class is uniquely deter-
mined by boundary measurements under two conditions: (1) the metric is conformally transver-
sally anisotropic (CTA), and (2) the transversal manifold is simple. In this paper we will consider
geometries satisfying (1) but not (2). The first main result states that the boundary measurements
uniquely determine a mixed Fourier transform/attenuated geodesic ray transform (or integral against
a more general semiclassical limit measure) of an unknown coefficient. In particular, one obtains
uniqueness results whenever the geodesic ray transform on the transversal manifold is injective.
The second result shows that the boundary measurements in an infinite cylinder uniquely determine
the transversal metric. The first result is proved by using complex geometrical optics solutions in-
volving Gaussian beam quasimodes, and the second result follows from a connection between the
Calderón problem and Gel’fand’s inverse problem for the wave equation and the boundary control
method.
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1. Introduction

The anisotropic Calderón problem consists in determining the electrical conductivity ma-
trix of a medium, up to a change of coordinates, from current and voltage measurements
made at the boundary. More generally, the problem may be posed on a smooth Rieman-
nian manifold with boundary. In this case the question is to determine the geometric
structure of the manifold from the Cauchy data of harmonic functions. The purpose of
this paper is to study the anisotropic Calderón problem in transversally anisotropic geo-
metries, where the manifold admits a distinguished Euclidean direction, and to prove
uniqueness results for inverse problems in this setting.

Let (M, g) be a compact oriented Riemannian manifold with smooth boundary ∂M .
Harmonic functions in M are solutions of the Laplace–Beltrami equation

1gu = 0 in M.

Here, the Laplace–Beltrami operator is given in local coordinates by

1gu = |g|
−1/2 ∂

∂xj

(
|g|1/2gjk

∂u

∂xk

)
where (gjk) is the metric in local coordinates, (gjk) = (gjk)−1, and |g| = det(gjk). Here
and below we are using the Einstein summation convention.

The boundary data of harmonic functions on M is given by the Cauchy data set

Cg = {(u|∂M , ∂νu|∂M) ; 1gu = 0 in M, u ∈ H 1(M)}.

The normal derivative ∂νu|∂M = 〈du, ν〉|∂M , where ν is the 1-form corresponding to the
unit outer normal of ∂M , is interpreted in the weak sense as an element ofH−1/2(∂M). It
is clear that if ψ : M → M is a diffeomorphism satisfying ψ |∂M = Id, then Cψ∗g = Cg .
On manifolds of dimension ≥ 3, the anisotropic Calderón problem [34] amounts to prov-
ing that Cg uniquely determines g up to isometry.

Conjecture. Let (M, g1) and (M, g2) be two compact Riemannian manifolds with
smooth boundary, and let dim(M) ≥ 3. If Cg1 = Cg2 , then

g2 = ψ
∗g1

where ψ : M → M is a diffeomorphism with ψ |∂M = Id.

This statement has only been proved for real-analytic metrics [34] with topological as-
sumptions relaxed in [32], [33], and for Einstein metrics (which are real-analytic in the
interior) [19]. The general case remains a major open problem, and we refer to [14] for
a discussion and further references. The corresponding two-dimensional result, involving
an additional obstruction arising from the conformal invariance of the Laplace–Beltrami
operator, is known [33]. See [7], [8] for another interesting approach to this problem.

The work [14] introduced methods for studying the anisotropic Calderón problem in
manifolds which are not real-analytic, but where the metric has a certain form. This was
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based on the concept of limiting Carleman weights, introduced earlier in the Euclidean
case in [31]. One of the main results of [14] states that on a simply connected open
manifold, the existence of a limiting Carleman weight is equivalent to the existence of
a nontrivial parallel vector field for some conformal metric. Locally, this condition is
equivalent to the manifold being conformal to a product of a Euclidean interval and some
(n− 1)-dimensional manifold. We formalize this notion in two definitions:

Definition 1.1. Let (M, g) be a compact oriented manifold with C∞ boundary. In this
paper we always assume that n = dim(M) ≥ 3.

(a) (M, g) is called transversally anisotropic if (M, g) ⊂⊂ (T , g) where T = R×M0,
g = e ⊕ g0, (R, e) is the Euclidean line, and (M0, g0) is some compact (n − 1)-
dimensional manifold with boundary. Here (M0, g0) is called the transversal mani-
fold.

(b) (M, g) is called conformally transversally anisotropic (CTA) if (M, cg) is transver-
sally anisotropic for some smooth positive function c.

Examples of CTA manifolds include compact subdomains of the model spaces Rn,
sphere Sn minus a point, or hyperbolic space H n, compact subdomains of locally con-
formally flat manifolds such as 3D symmetric spaces as long as they are contained in a
conformally flat coordinate neighborhood, and conformally warped products

(M, g) ⊂⊂ (R×M0, g), g = c(e ⊕ fg0),

where f is a positive function depending only on the Euclidean variable in R ×M0. If
(x1, x

′) are local coordinates in R×M0, the last condition reads in terms of matrices

g(x1, x
′) = c(x1, x

′)

(
1 0
0 f (x1)g0(x

′)

)
.

See [14], [13], [36] for more details.
The first main theorem in this paper concerns the anisotropic Calderón problem in a

fixed conformal class. Since any conformal diffeomorphism fixing the boundary must be
the identity map, there is no obstruction to uniqueness arising from isometries in this case
(see [37]). The article [14] gave a uniqueness result for this problem on CTA manifolds if
additionally the transversal manifold (M0, g0) is simple, meaning that M0 is simply con-
nected, has no conjugate points, and ∂M0 is strictly convex (its second fundamental form
is positive definite). Moreover, a reconstruction procedure was given in [30] and stability
estimates (of double logarithmic type) were established in [11]. The proof used the fact
that the geodesic ray transform is injective on simple manifolds. On general transversal
manifolds we use the following definition.

Definition 1.2. We say that the (geodesic) ray transform on the transversal manifold
(M0, g0) is injective if any function f ∈ C(M0) which integrates to zero over all non-
tangential geodesics in M0 must satisfy f = 0. Here, a unit speed geodesic segment
γ : [0, L] → M0 is called nontangential if γ̇ (0), γ̇ (L) are nontangential vectors on ∂M0
and γ (t) ∈ M int

0 for 0 < t < L.
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Theorem 1.3. Let (M, g1) and (M, g2) be two CTA manifolds in the same conformal
class. Assume in addition that the ray transform in the transversal manifold is injective.
If Cg1 = Cg2 , then g1 = g2.

In fact this result is a consequence of a corresponding result for the Schrödinger equation.
Let q ∈ L∞(M), and define the Cauchy data set for the Schrödinger operator −1g + q
by

Cg,q = {(u|∂M , ∂νu|∂M) ; (−1g + q)u = 0 in M, u ∈ H 1(M)}.

Again, the normal derivative ∂νu|∂M is interpreted in the weak sense as an element of
H−1/2(∂M).

Theorem 1.4. Let (M, g) be a CTA manifold, and let q1, q2 ∈ C(M). Assume in addition
that the ray transform in the transversal manifold is injective. If Cg,q1 = Cg,q2 , then
q1 = q2.

Starting from the pioneering works [10], [16], [21], [40], [42], [51] (see also [43],
[54]), the standard approach to proving uniqueness and reconstruction results for the
Calderón problem is based on special complex geometrical optics solutions to elliptic
equations. The paper [14] presented a construction of such solutions on CTA manifolds
and proved Theorems 1.3 and 1.4 under the additional restriction that the transversal man-
ifold (M0, g0) is simple. The simplicity assumption was used to produce solutions that
concentrate near geodesics in (M0, g0) and also to show that the potentials can be deter-
mined by inverting the geodesic ray transform (actually with attenuation) in the transver-
sal manifold.

In this paper we remove the simplicity assumption on the transversal manifold in the
construction of complex geometrical optics solutions, and prove Theorems 1.3 and 1.4
on any CTA manifold for which the ray transform is injective. In cases where the ray
transform is not injective, we obtain partial results (see Theorems 1.6 and 1.9) but the
problem remains open in general. Injectivity of the ray transform is known to hold in the
following classes of compact manifolds (M0, g0):

(a) Simple manifolds of any dimension [48].
(b) Negatively curved manifolds with strictly convex boundary [18].
(c) Manifolds of dimension ≥ 3 that have strictly convex boundary and are globally

foliated by strictly convex hypersurfaces [55], [44].
(d) A class of nonsimple manifolds of any dimension such that there are sufficiently many

geodesics without conjugate points and the metric is close to a real-analytic one (see
[49] for the precise description of this class).

(e) Any manifold having a dense subset that is covered by totally geodesic submanifolds
in which the ray transform is injective (injectivity of the ray transform follows imme-
diately from the injectivity in the totally geodesic submanifolds). Examples include
subdomains of (N1 × N2, h1 ⊕ h2) where (N1, h1) has injective ray transform and
(N2, h2) is any manifold.



Calderón problem in transversally anisotropic geometries 2583

(f) There are counterexamples to injectivity of the ray transform. The standard one is
the sphere with a small cap removed: any function on the sphere that is odd with
respect to the antipodal map and vanishes near the removed cap integrates to zero
over nontangential geodesics. See also [4], [5], [39], [50] for microlocal analysis of
the ray transform in nonsimple geometries.

In fact, Theorems 1.3 and 1.4 involving the ray transform will be obtained as a special
case from a more general complex geometrical optics construction on CTA manifolds.
If (M, g) is a CTA manifold, so (M, g) ⊂⊂ (R × M0, g) for some compact manifold
(M0, g0) where g = c(e ⊕ g0), we denote points on M by x = (x1, x

′) where x1 is
the Euclidean variable and x′ ∈ M0. If q ∈ L∞(M), we will consider solutions of the
Schrödinger equation (−1g + q)u = 0 in M of the form

u(x) = esx1c(x)−(n−2)/4(vs(x)+ rs(x))

where s is a slightly complex large frequency,

s = τ + iλ,

where the real parameter τ will tend to infinity while λ ∈ C is fixed, and where vs =
vs(x

′) ∈ C2(M0) is a quasimode, or approximate eigenfunction, with frequency s in the
transversal manifold. The correction term rs will satisfy ‖rs‖L2(M) → 0 as τ →∞. The
concentration properties of the quasimodes vs in the high frequency limit as τ →∞ will
be crucial in determining properties of the potential.

Definition 1.5. If λ ∈ C, we denote by Mλ the set of all bounded measures µ on M0
for which there is a sequence (τj )∞j=1 of positive numbers with τj → ∞ and a sequence
(vj )
∞

j=1 ⊂ C
2(M0) satisfying

‖(−1g0 − (τj + iλ)
2)vj‖L2(M0)

= o(τj ), ‖vj‖L2(M0)
= O(1)

as j →∞, such that in the weak topology of measures on M0 one has

lim
j→∞
|vj |

2 dVg0 = µ

where dVg0 is the volume form of (M0, g0).

Theorem 1.6. Let (M, g) be a CTA manifold, and let q1, q2 ∈ C(M). If Cg,q1 = Cg,q2 ,
then ∫

M0

[∫
∞

−∞

e−2iλx1(c(q1 − q2))(x1, x
′) dx1

]
dµ(x′) = 0

for any λ ∈ C and any µ ∈Mλ. Here q1 − q2 is extended by zero to R×M0.

The measures µ ∈Mλ are called semiclassical defect measures, or quantum limits, of the
families (vτ+iλ) of quasimodes. The properties of such measures are the central object of
interest in the study of high frequency limits of eigenfunctions and in quantum ergodicity.
In general, the dynamics of the geodesic flow of the underlying manifold (M0, g0) will be
visible in the semiclassical measures. These topics have a large literature, and we refer to
[25], [56], [57] for surveys. However, our situation seems to be somewhat different from
many of these works for the following three reasons:
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1. We only have access to limit measures in the base manifold M0 instead of the more
usual phase space measures in T ∗M0.

2. The measures Mλ are associated to a family of quasimodes in a manifold (M0, g0)

with boundary, but there is no boundary condition imposed on the quasimodes. This
leads to a certain amount of flexibility in our setting.

3. It is useful to consider measures for slightly complex frequencies τ + iλ where Re(λ)
is nonzero.

Theorem 1.4 will be obtained from Theorem 1.6 by a rather direct construction of Gaus-
sian beam quasimodes that concentrate on a given nontangential geodesic. This construc-
tion goes back at least to [1], [2], [3], [12], [22] and has been developed further by many
authors (often for hyperbolic equations): see for instance [26], [45]. In our case, we need
the next result which follows by adapting the methods in the literature in a suitable way.
The fact that the frequency is slightly complex leads to the attenuated geodesic ray trans-
form with constant attenuation −2λ, but eventually analyticity will allow us to make a
reduction to the case λ = 0.

Theorem 1.7. Let (M0, g0) be a compact oriented manifold with smooth boundary, let
γ : [0, L] → M0 be a nontangential geodesic, and let λ ∈ R. For any K > 0 there is a
family (vs) ⊂ C∞(M0), where s = τ + iλ and τ ≥ 1, such that

‖(−1g0 − s
2)vs‖L2(M0)

= O(τ−K), ‖vs‖L2(M0)
= O(1)

as τ →∞, and for any ψ ∈ C(M0) one has

lim
τ→∞

∫
M0

|vs |
2ψ dVg0 =

∫ L

0
e−2λtψ(γ (t)) dt.

We remark that a similar Gaussian beam quasimode construction was used to deal with
partial data inverse problems in the paper [28] which was in preparation simultaneously
with this manuscript. It is an interesting question whether other quasimode constructions
could be used to extract more information about the potentials via Theorem 1.6. In par-
ticular, the following question is of interest. (By Theorem 1.7 we know that this question
has a positive answer if λ = 0 for any (M0, g0) in which the ray transform is injective; on
the other hand, having λ 6= 0 might help.)

Question 1.8. Let (M0, g0) be a compact oriented manifold with smooth boundary, and
let λ ∈ R. Under which conditions on (M0, g0) is the set Mλ dense in the set of all
bounded measures on M0?

The previous results are all based on extensions of the complex geometrical optics
method. In the final results of this paper, we will use a completely different approach and
reduce the anisotropic Calderón problem to an inverse problem for the wave equation.
To motivate this, note that the Laplace–Beltrami operator 1g in a product type manifold
(R ×M0, g), where g = e ⊕ g0 and we now write t for the Euclidean variable, has the
form

∂2
t +1g0 .
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By formally complexifying the t variable by t 7→ it (Wick rotation), we arrive at the
wave operator

∂2
t −1g0 .

Let us next describe a standard inverse problem for the wave equation. If (M0, g0) is a
compact oriented manifold with smooth boundary, if q0 ∈ C(M0), and if T > 0, consider
the initial-boundary value problem

(∂2
t −1g0 + q0)u = 0 in (0, T )×M0,

u(0) = ∂tu(0) = 0, u|(0,T )×∂M0 = f.

This problem has a unique solution u ∈ C∞((0, T )×M0) for any f ∈ C∞c ((0, T )×∂M0),
and we can define the hyperbolic DN map

3
Hyp
g0,q0 : C

∞
c ((0, T )× ∂M0)→ C∞((0, T )× ∂M0), f 7→ ∂νu|(0,T )×∂M0 .

The inverse problem is to determine the metric g0 up to isometry and the potential q0

from the knowledge of the DN map 3Hyp
g0,q0 . This problem is closely related (and often

equivalent) to an inverse boundary spectral problem [26], to a multidimensional Borg–
Levinson theorem [41], and also to an inverse problem posed by Gel’fand [17]. In this
paper, the wave equation inverse problem will be called the Gel’fand problem, although
of course there are many other important problems due to Gel’fand.

The Gel’fand problem in the above formulation has a positive answer, under the nat-
ural necessary condition that T > 2r(M0) where r(M0) = sup{r > 0 ; B(x, r) ⊂ M int

0
for some x ∈ M0} is the time needed to fill in the manifold by waves from the bound-
ary. This follows from the boundary control method introduced by Belishev [6] and later
developed by several authors; we refer to the book [26] for further details. The boundary
control method is based on three components:

1. Integration by parts (Blagoveshchenskiı̆ identity): recover inner products of solutions
at a fixed time from the hyperbolic DN map.

2. Approximate controllability based on the unique continuation theorem of Tataru [53]:
solutions u(t0, · ) are L2 dense in the appropriate domain of influence.

3. Recovering the coefficients: this uses a boundary distance representation of (M0, g0)

together with projectors to domains of influence and special solutions such as Gaussian
beams.

An elliptic analogue of the Gel’fand problem is given by the following version of the
anisotropic Calderón problem. Let (M0, g0) be a compact oriented manifold with smooth
boundary, let q0 ∈ C

∞(M0), and let T = R×M0 be an infinite cylinder equipped with the
metric g = e⊕ g0. Write (t, x) for the coordinates in R×M0. Let also Spec(−1g0 + q0)

= {λj }
∞

j=1 where λ1 ≤ λ2 ≤ · · · is the set of Dirichlet eigenvalues of −1g0 + q0 in
(M0, g0). Consider the Schrödinger equation in T ,

(−∂2
t −1g0 + q0 − λ)u = 0 in T , u|∂T = f.
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Let us first make the assumption that λ ∈ C \ [λ1,∞), that is, λ is outside the contin-
uous spectrum of −1g + q0 in T . Then for any f ∈ C∞c (∂T ) the above equation has a
unique solution u ∈ C∞(T ) ∩H 1(T ), and there is a linear DN map

3Ell
g0,q0

(λ) : C∞c (∂T )→ C∞(∂T ), f 7→ ∂νu|∂T .

The next result shows that one can reconstruct the isometry class of an unknown manifold
(M0, g0) and also a potential q0 from the knowledge of ∂M0 and the DN map 3Ell

g0,q0
(λ).

Theorem 1.9. Given the data (∂T ,3Ell
g0,q0

(λ)) for a fixed λ ∈ C \ [λ1,∞), where ∂T =
R×∂M0 and3Ell

g0,q0
(λ) : C∞c (∂T )→ C∞(∂T ) corresponds to the Schrödinger operator

−1g+q0 on T , one can reconstruct the potential q0 and a Riemannian manifold (M̂0, ĝ0)

isometric to (M0, g0).

We obtain a uniqueness result as a consequence (̃λ1 is the first Dirichlet eigenvalue of
−1g̃0 + q̃0 in M0):

Theorem 1.10. Let (M0, g0) and (M0, g̃0) be two compact manifolds with boundary
∂M0, and let q0, q̃0 ∈ C

∞(M0). If

3Ell
g0,q0

(λ) = 3Ell
g̃0 ,̃q0

(λ) for some λ ∈ C \ ([λ1,∞) ∪ [̃λ1,∞)),

then g̃0 = ψ
∗

0 g0 for some diffeomorphism ψ0 : M0 → M0 with ψ0|∂M0 = Id, and also
q̃0 = ψ

∗

0 q0.

Next we consider the case where the spectral parameter is in the continuous spectrum but
not in the set of thresholds (that is, λ ∈ [λ1,∞) \ Spec(−1g0 + q0)). In that case one
needs a radiation condition to have a well defined DN map, and one obtains the following
result for the inverse problem. We refer to Section 6 for the details.

Theorem 1.11. Given the data (∂T ,3Tg0,q0
(λ)) for a fixed λ ∈ [λ1,∞) \ {λ1, λ2, . . .},

where ∂T = R × ∂M0 and 3Tg0,q0
(λ) : C∞c (∂T ) → C∞(∂T ) corresponds to the

Schrödinger operator −1 + q0 on T , one can reconstruct the potential q0 and a Rie-
mannian manifold (M̂0, ĝ0) isometric to (M0, g0).

As mentioned above, the proof involves a reduction from the elliptic DN map to the
hyperbolic DN map and the boundary control method. We also use the elliptic DN map
on the transversal manifold, defined for λ outside Spec(−1g0 + q0) by

3Tr
g0,q0

(λ) : v|∂M0 7→ ∂νv|∂M0 , (−1g0 + q0 − λ)v = 0 in M0.

The argument proceeds roughly as follows:

1. Extend 3Ell
g0,q0

(λ) to act on weighted Sobolev spaces on ∂T .
2. If k > 0, obtain 3Tr

g0,q0
(λ− k2) for any h ∈ C∞(∂M0) via

3Tr
g0,q0

(λ− k2)h = e−ikt3Ell
g0,q0

(λ)(eikth).
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3. Recover3Tr
g0,q0

(µ) for µ ∈ C from {3Tr
g0,q0

(λ−k2)}k>0 by meromorphic continuation.

4. Recover 3Hyp
g0,q0 from {3Tr

g0,q0
(µ)}µ∈C by Laplace transform in time.

5. Use the boundary control method to determine (M0, g0) up to isometry and q0

from 3
Hyp
g0,q0 .

It was proved in [27] that knowing the transversal DN maps {3Tr
g0,q0

(µ)}µ∈C is equivalent
to knowing the DN map for the following equations:

• Wave equation (∂2
t −1g0 + q0)u = 0 in (0,∞)×M0,

• Heat equation (∂t −1g0 + q0)u = 0 in (0,∞)×M0,
• Schrödinger equation (i∂t −1g0 + q0)u = 0 in (0,∞)×M0.

Our results show that the elliptic equation (−∂2
t − 1g0 + q0)u = 0 in R × M0 can be

added to this list.
Note that Theorems 1.9 and 1.10 are valid for arbitrary transversal manifoldsM0 with-

out any restriction on the geometry, and they allow recovering both the transversal metric
and the potential from the elliptic DN map. They are also the first uniqueness results for
the Calderón problem that we are aware of which employ control theory methods (in par-
ticular approximate controllability based on unique continuation for the wave equation).
At the moment we can only show these results by going through the wave equation. It
would be interesting to understand if there is a proof that would work with the elliptic
equation directly.

However, there is a severe restriction: the potential q0 has to be independent of the t
variable, unlike in Theorems 1.3–1.6 where the scalar coefficient may depend on the
Euclidean variable. In fact, the analogue of Theorem 1.10 on a fixed compact manifold
(M, g) ⊂⊂ (R×M0, e⊕g0) with two potentials independent of the t variable can easily
be reduced to standard boundary determination results [14, Section 8]. Of course, in the
infinite cylinder T , boundary determination is not so helpful and we use a reduction to
the wave equation instead.

This paper is structured as follows. Section 2 gives the construction of complex ge-
ometrical optics solutions based on quasimodes and proves Theorem 1.6. Section 3 con-
tains a direct construction of Gaussian beam quasimodes and the proofs of Theorems 1.3,
1.4 and 1.7. In Section 4 we give an alternative construction of Gaussian beam quasimodes
based on a microlocal reduction via Fourier integral operators. The Calderón problem in
an infinite cylinder is considered in the last two sections. Section 5 discusses the case
where the spectral parameter is outside the continuous spectrum and gives the proofs of
Theorems 1.9 and 1.10, and Section 6 extends these results to the case where the spectral
parameter may be in the continuous spectrum but not in the set of thresholds.

2. Complex geometrical optics

In this section we explain the construction of complex geometrical optics solutions based
on quasimodes in (M0, g0) and use this construction to prove Theorem 1.6. The argument
is close to [14, Section 5].
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We assume that (M, g) is CTA with (M, g) ⊂⊂ (R×M0, g)where g = c(e⊕g0), and
(M0, g0) is a compact (n−1)-dimensional manifold with boundary. Let also q ∈ L∞(M).
We first note the identity

c(n+2)/4(−1g + q)(c
−(n−2)/4ũ) = (−1g̃ + q̃ )̃u

where
g̃ = e ⊕ g0, q̃ = c(q − c(n−2)/41g(c

−(n−2)/4)).

This shows that it is enough to construct solutions to (−1g̃ + q̃ )̃u = 0.
Write x = (x1, x

′) for coordinates in R × M0. The function ϕ(x) = x1 is a limit-
ing Carleman weight in a neighborhood of M [14]. In particular, we have the following
solvability result which follows from [14, Section 4] (see also [29, Section 4] where one
obtains H 2 solutions).

Proposition 2.1. Let q̃ ∈ L∞(M). There exists τ0 ≥ 1 such that whenever |τ | ≥ τ0, then
for any f ∈ L2(M) the equation

eτx1(−1g̃ + q̃)e
−τx1r = f in M

has a solution r ∈ H 1(M) satisfying the estimates

‖r‖Hα(M) ≤ C|τ |
α−1
‖f ‖L2(M), 0 ≤ α ≤ 1.

Consider complex frequencies

s = τ + iλ, τ real with |τ | large, λ complex and fixed.

We are interested in finding complex geometrical optics solutions to the equation
(−1g̃ + q̃)u = 0 in M , having the form

u = e−sx1(v + r).

Here v = vs will be an amplitude type term, and r = rs is a correction term with
‖r‖L2(M) → 0 as |τ | → ∞. Further, we require certain asymptotic properties of vs
as |τ | → ∞ when λ is kept fixed.

A function u of the above type is a solution provided that

eτx1(−1g̃ + q̃)e
−τx1(e−iλx1r) = f

where the right-hand side is

f = −e−iλx1esx1(−1g̃ + q̃)e
−sx1v.

The point is to choose v so that ‖f ‖L2(M) does not grow when |τ | → ∞, and to choose r
so that e−iλx1r is the solution given by Proposition 2.1.

At this point we use the product structure on (R ×M0, g̃) where g̃ = e ⊕ g0, which
implies that 1g̃ = ∂2

1 +1g0 . Consequently ,

esx1(−1g̃ + q̃)e
−sx1v = (−∂2

1 + 2s∂1 − s
2
−1g0 + q̃)v.
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This expression simplifies if we choose v independent of x1, that is, v = v(x′), and in
this case

f = −eiλx1(−1g0 − s
2
+ q̃)v.

Now ‖f ‖L2(M) will not be too large with respect to |τ | if v = vs(x′) is a quasimode or an
approximate eigenfunction in the transversal manifold (M0, g0), in the sense that

‖(−1g0 − s
2)vs‖L2(M0)

= o(|τ |), ‖vs‖L2(M0)
= O(1)

as |τ | → ∞.
The following result describes the complex geometrical optics solutions.

Proposition 2.2. Let q ∈ L∞(M), let τ0 be sufficiently large, and let λ be a fixed real
number. Suppose that {vs ; s = τ + iλ, |τ | ≥ τ0} is a family of functions in L2(M0)

satisfying
‖(−1g0 − s

2)vs‖L2(M0)
= o(|τ |), ‖vs‖L2(M0)

= O(1)

as |τ | → ∞. Then for any τ with |τ | ≥ τ0 there is a solution u ∈ H 1(M) of the equation
(−1g + q)u = 0 in M having the form

u = e−sx1c−(n−2)/4(vs + rs)

where ‖rs‖L2(M) = o(1) as |τ | → ∞.

Proof. We first produce a solution of the equation (−1g̃ + q̃ )̃u = 0 having the form
ũ = e−sx1(vs + rs) as in the preceding discussion, and then define u = c−(n−2)/4ũ to
obtain a corresponding solution of (−1g + q)u = 0. ut

The next result is slightly more general than Theorem 1.6.

Proposition 2.3. Let (M, g) ⊂⊂ (R×M0, g) be a CTA manifold, where g = c(e⊕ g0),
and let q1, q2 ∈ C(M). Let λ1, λ2 ∈ C, let (τj )∞j=1 be a sequence of positive numbers
with τj →∞, and let

sj = τj + iλ1, tj = τj + iλ2.

Suppose that (vsj ), (wtj ) ⊂ C
2(M0) are sequences satisfying

‖(−1g0 − s
2
j )vsj ‖L2(M0)

= o(τj ), ‖vsj ‖L2(M0)
= O(1),

‖(−1g0 − t
2
j )wtj ‖L2(M0)

= o(τj ), ‖wtj ‖L2(M0)
= O(1)

as j →∞, and in the weak topology of measures on M0,

lim
j→∞

vsjwtj dVg0 = µλ1,λ2

for some bounded measure µλ1,λ2 on M0. If

Cg,q1 = Cg,q2 ,

then ∫
M0

[∫
∞

−∞

e−i(λ1+λ2)x1(c(q1 − q2))(x1, x
′) dx1

]
dµλ1,λ2(x

′) = 0.

Here q1 − q2 is extended by zero to R×M0.
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Proof. We use Proposition 2.2 to find solutions of (−1g+q1)usj = 0 and (−1g+q2)utj
= 0, of the form

usj = e
−sj x1c−(n−2)/4(vsj + rsj ), utj = e

tj x1c−(n−2)/4(wtj + rtj ),

where ‖rsj ‖L2(M), ‖rtj ‖L2(M) = o(1) as j → ∞. Note that utj solves the equation
(−1+ q2)utj = 0 in M .

Next the usual integration by parts yields∫
M

(q1 − q2)usj utj dV =

∫
M

[(1gusj )utj − usj (1gutj )] dV

=

∫
∂M

[(∂νusj )utj − usj (∂νutj )] dS

where the normal derivatives of the H 1 solutions are interpreted in the weak sense as
elements in H−1/2(∂M). The condition Cg,q1 = Cg,q2 implies that there is some ũ ∈
H 1(M) with (−1g + q2)̃u = 0 in M and

ũ|∂M = usj |∂M , ∂ν ũ|∂M = ∂νusj |∂M .

This shows that∫
M

(q1 − q2)usj utj dV =

∫
∂M

[(∂ν ũ)utj − ũ(∂νutj )] dS

=

∫
M

[(1gũ)utj − ũ(1gutj )] dV =

∫
M

(q2 − q2)̃uutj dV = 0.

Substituting the forms of the solutions usj and utj in the last identity, we see that∫
M

(q1 − q2)e
−i(λ1+λ2)x1c−(n−2)/2vsjwtj dV = o(1) as j →∞,

using the norm estimate for the correction terms rsj and rtj and theL2 estimates for vsj and
wtj . We now extend q1−q2 by zero to R×M0 and note that dVg(x) = cn/2 dx1 dVg0(x

′).
Then, taking the limit as j → ∞ and using the assumption that vsjwtj converges in the
weak topology of measures, we obtain∫

M0

[∫
∞

−∞

e−i(λ1+λ2)x1(c(q1 − q2))(x1, x
′) dx1

]
dµλ1,λ2(x

′) = 0.

To be precise, we would like the expression in brackets to be a continuous function with
respect to x′ in M0 in order to take the limit. However, the condition Cg,q1 = Cg,q2

implies by boundary determination that q1|∂M = q2|∂M , and thus the zero extension of
q1 − q2 is in fact a continuous compactly supported function in R ×M0. The boundary
determination result is essentially contained in [20, Proposition A.1] for n = 2, and a
similar argument works also for n ≥ 3 (see [14, Section 8] for the case of DN maps with
smooth q1 and q2). ut
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Proof of Theorem 1.6. This follows from Proposition 2.3 by taking λ1 = λ2 real and
taking vsj = wsj . ut

At this point it is useful to compare the solutions in Proposition 2.2 to the ones appearing
in [14, Section 5], where the additional assumption that (M0, g0) is simple was imposed.
The complex geometrical optics solutions in [14], satisfying (−1g+q)u = 0 inM , have
the form

u = e−τx1(e−iτψa + r).

Here ψ is a real function chosen as a solution of an eikonal equation, and the amplitude a
solves a complex transport equation in M . Since (M0, g0) is simple, these equations can
be solved globally in M , and in fact ψ only depends on x′. Then e−iτψa satisfies

eτx1(−1g)e
−τx1(e−iτψa) = OL2(M)(1)

as τ → ∞. If a were independent of x1, then e−iτψ(x
′)a(x′) would be an approximate

eigenfunction in M0 in the sense that

(−1g0 − τ
2)(e−iτψa) = OL2(M0)

(1).

However, such functions are not quite sufficient to prove uniqueness results for the inverse
problem. In [14] one instead employed amplitudes of the form a(x1, x

′) = e−iλx1 ã(x′)

which allow the use of the Fourier transform in x1.
There are two differences between Proposition 2.2 and the construction in [14], al-

though the two are very closely related. The first one is that we use large complex fre-
quencies s = τ + iλ instead of large real frequencies τ , which amounts to incorporating
the factor e−iλx1 from the amplitude a as part of the complex frequency (thus making
it possible to use the Fourier transform in x1). The second difference is roughly that
instead of using approximate eigenfunctions e−iτψ(x

′)a(x′) with real frequency, we con-
sider more general approximate eigenfunctions vs(x′) with slightly complex frequency.
This approach loses some generality since vs is not allowed to depend on x1, but has the
benefit that one can use much more general approximate eigenfunctions vs(x′) than those
of the form e−iτψ(x

′)a(x′) obtained from a global WKB construction on M0.

3. Gaussian beam quasimodes

We will now give the Gaussian beam construction of approximate eigenfunctions, or
quasimodes, with desirable concentration properties. In fact, these quasimodes will con-
centrate near a geodesic in the high frequency limit. On a compact manifold without
boundary, it is well known that there are quasimodes concentrating near a stable elliptic
periodic geodesic for large real frequencies. We refer to [56, Section 10] and references
therein.

The setup here is more flexible since there are no boundary conditions or global con-
ditions on a closed manifold required of the family {vs}. Therefore, a construction of
local nature is sufficient. We will give a direct argument analogous to the construction
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of Gaussian beams, which are approximate solutions of the wave equation localized near
a geodesic [26]. The fact that we need approximate eigenfunctions with slightly com-
plex frequencies instead of real ones will not present any complications. A version of this
construction that also takes into account possible reflections is given in [28].

For most of this section we will write (M, g) for the transversal manifold instead of
(M0, g0) in order to simplify notation. Let (M, g) be anm-dimensional compact oriented
manifold with smooth boundary (thus m = n− 1 ≥ 2). Recall that a unit speed geodesic
γ : [0, L] → M is called nontangential if γ̇ (0) and γ̇ (L) are nontangential vectors
on ∂M and γ (t) ∈ M int for 0 < t < L. Theorem 1.7 is the following statement.

Proposition 3.1. Let γ : [0, L] → M be a nontangential geodesic, and let λ ∈ R. For
any K > 0 there is a family (vs) ⊂ C∞(M), where s = τ + iλ and τ ≥ 1, such that

‖(−1g − s
2)vs‖L2(M) = O(τ

−K), ‖vs‖L2(M) = O(1)

as τ →∞, and for any ψ ∈ C(M) one has

lim
τ→∞

∫
M

|vs |
2ψ dVg =

∫ L

0
e−2λtψ(γ (t)) dt.

In the case where (M, g) is simple, the method in [14] (although it was not written exactly
in this way) reduces to using approximate eigenfunctions of the above type to recover at-
tenuated geodesic ray transforms of desired quantities. In fact, a version of Proposition 3.1
on simple manifolds follows easily from the methods in [14].

Proposition 3.2. Let (M, g) be simple, letλ be a fixed real number, and let γ : [0, L]→M

be a nontangential geodesic. For any 0 < α < 1 there is a family {vs ; s = τ+iλ, τ ≥ 1}
in C∞(M) such that

‖(−1g − s
2)vs‖L2(M) = O(τ

α), ‖vs‖L2(M) = O(1)

as τ →∞, and for any ψ ∈ C(M),∫
M

|vτ+iλ|
2ψ dVg →

∫ L

0
e−2λtψ(γ (t)) dt as τ →∞.

Proof. One first embeds (M, g) in a slightly larger simple manifold (D, g) and considers
polar normal coordinates (r, θ) centered at a point ω ∈ D\M . There exist ω ∈ D\M and
θ0 ∈ S

m−1 so that γ is part of the geodesic r 7→ (r, θ0) in D (any nontangential geodesic
inM arises in this way for some ω and θ0). By using a WKB Ansatz and choosing suitable
solutions of the eikonal and transport equations as in [14, Section 5], the quasimodes at
frequency s = τ + iλ can be chosen as

vs(r, θ) = e
isr
|g(r, θ)|−1/4bτ (θ)

where bτ ∈ C∞(Sm−1) is an approximation of the delta function such that

‖bτ‖L2(Sm−1) = 1, ‖bτ‖W 2,∞(Sm−1) = O(τ
α),

|bτ |
2 dS → δθ0 weakly as τ →∞.
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A direct computation gives the required norm bounds, and for any ψ ∈ C∞c (M
int) we

have ∫
M

|vτ+iλ|
2ψ dVg →

∫ L

0
e−2λrψ(r, θ0) dr as τ →∞. ut

We now move to the proof of Proposition 3.1. The main difference from the case where
(M, g) is simple is that the quasimodes cannot be constructed using the WKB Ansatz by
solving eikonal and transport equations globally in M , due to the presence of conjugate
points. Instead, we follow the construction of Gaussian beams: the eikonal and trans-
port equations are only solved to high order on the geodesic, and we employ a complex
phase function with Gaussian decay away from the geodesic. The phase function will be
obtained by solving a matrix Riccati equation. It will be computationally convenient to
use Fermi coordinates, since these are globally defined near a geodesic (modulo possible
self-intersections).

We first record a few elementary lemmas (for proofs see [28, Section 7]).

Lemma 3.3. Let (M̂, g) be a closed manifold, and let γ : (a, b) → M̂ be a unit speed
geodesic segment having no loops. Then there are only finitely many times t ∈ (a, b) for
which γ intersects itself at γ (t).

Lemma 3.4. Let F be a C∞ map from a neighborhood of (a, b) × {0} in Rn into a
smooth manifold such that F |(a,b)×{0} is injective andDF(t, 0) is invertible for t ∈ (a, b).
If [a0, b0] is a closed subinterval of (a, b), then F is a C∞ diffeomorphism in some
neighborhood of [a0, b0] × {0} in Rn.

The next lemma gives a system of Fermi coordinates near a geodesic that will be useful
for the construction of Gaussian beam quasimodes. If the geodesic self-intersects, one
needs several coordinate neighborhoods. The proof is standard (see [15, Section 3] for
details).

Lemma 3.5. Let (M̂, g) be a compact manifold without boundary, and assume that γ :
(a, b) → M̂ is a unit speed geodesic segment with no loops. Given a closed subinterval
[a0, b0] of (a, b) such that γ |[a0,b0] self-intersects only at times tj with a0 < t1 < · · · <

tN < b0 (set t0 = a0 and tN+1 = b0), there is an open cover {(Uj , ϕj )}N+1
j=0 of γ ([a0, b0])

consisting of coordinate neighborhoods having the following properties:

1. ϕj (Uj ) = Ij × B where Ij are open intervals and B = B(0, δ′) is an open ball in
Rn−1 where δ′ can be taken arbitrarily small,

2. ϕj (γ (t)) = (t, 0) for t ∈ Ij ,
3. tj only belongs to Ij and Ij ∩ I k = ∅ unless |j − k| ≤ 1,
4. ϕj = ϕk on ϕ−1

j ((Ij ∩ Ik)× B).

Further, the metric in these coordinates satisfies gjk|γ (t) = δjk , ∂igjk|γ (t) = 0.

Proof of Proposition 3.1. We begin by embedding (M, g) in some closed manifold
(M̂, g), and extend γ as a unit speed geodesic in M̂ . Let ε > 0 be such that γ (t) ∈ M̂ \M
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for t ∈ [−2ε, 0)∪ (L,L+ 2ε] (here we use the fact that γ is nontangential). Our purpose
is to construct a Gaussian beam quasimode near γ ([−ε, L+ ε]).

Fix a point p0 = γ (t0) on γ ([−ε, L+ε]) and let (t, y) be coordinates near p0, defined
in a set U = {(t, y) ; |t − t0| < δ, |y| < δ′}, such that the geodesic near p0 is given by
0 = {(t, 0) ; |t − t0| < δ}, and

gjk|0 = δ
jk, ∂ig

jk
|0 = 0.

Here we write x = (t, y)where t = x1 and y = (x2, . . . , xm). (Of course we will later use
the coordinates in Lemma 3.5.) We will construct a quasimode vs concentrated near 0,
having the form

vs = e
is2a

where s = τ + iλ, and 2 and a are smooth complex functions near 0 with a supported
in {|y| < δ′/2}.

We compute

(−1− s2)vs = f

where

f = eis2
(
s2
[(〈d2, d2〉 − 1)a] − is[2〈d2, da〉 + (12)a] −1a

)
.

Here, the g-inner product 〈 · , · 〉 has been extended as a complex bilinear form to
complex-valued tensors. We first choose 2 so that

〈d2, d2〉 = 1 to N th order on 0. (3.1)

In fact we look for 2 of the form 2 =
∑N
j=02j where

2j (t, y) =
∑
|α|=j

2j,α(t)

α!
yα. (3.2)

We also write gjk =
∑N
l=0 g

jk
l + r

jk

N+1 where

g
jk
l (t, y) =

∑
|β|=l

g
jk
l,β(t)

β!
yβ , r

jk

N+1 = O(|y|
N+1).

By the properties of our coordinates, gjk0 = δ
jk and gjk1 = 0.

Choose 20(t) = t and 21(t, y) = 0. With the understanding that j, k run from 1 to
m and α, β run from 2 to m, we have
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gjk∂j2∂k2− 1 = (1+ g11
2 + · · · )(1+ ∂t22 + · · · )(1+ ∂t22 + · · · )

+ 2(g1α
2 + · · · )(1+ ∂t22 + · · · )(∂yα22 + · · · )

+ (δαβ + g
αβ

2 + · · · )(∂yα22 + ∂yα23 + · · · )(∂yβ22 + ∂yβ23 + · · · )− 1

= [2∂t22 +∇y22 · ∇y22 + g
11
2 ]

+

N∑
p=3

[
2∂t2p + 2∇y22 · ∇y2p +

p∑
l=0

g11
l

∑
j+k=p−l
j,k<p

∂t2j∂t2k

+ 2
p∑
l=2

g1α
l

∑
j+k=p+1−l

k≥2

∂t2j∂α2k +

p−2∑
l=0

g
αβ
l

∑
j+k=p+2−l

2≤j,k<p

∂α2j∂β2k

]
+O(|y|N+1). (3.3)

In the last equality, we have grouped the terms in such a way that each quantity in brackets
is a homogeneous polynomial in y (the first term in brackets has degree 2, and the others
have degree p for p = 3, . . . , N ).

We will first choose 22 so that the first term in brackets vanishes. Write 22(t, y) =
1
2H(t)y · y where H(t) is a smooth complex symmetric matrix. Then H should satisfy
the matrix Riccati equation

Ḣ (t)+H(t)2 = F(t)

where F(t) is the symmetric matrix such that g11
2 (t, y) = −F(t)y · y. If we choose

H(t0) = H0 where H0 is some complex symmetric matrix with Im(H0) positive defi-
nite, the Riccati equation has a unique smooth complex symmetric solution H(t) with
Im(H(t)) positive definite [26, Lemma 2.56]. This completes the construction of 22.

We now look at the p = 3 term in brackets in (3.3), and want to choose 23 so that
this term becomes zero. The equation becomes

2∂t23 + 2∇y22 · ∇y23 = F(t, y)

where F is a third order homogeneous polynomial in y only depending on22 and g. If we
write23 as in (3.2), this equation becomes a linear first order system of ODEs for the Tay-
lor coefficients 23,α(t), and we can solve these equations uniquely by prescribing some
initial conditions on t0. Thus we have found23, and repeating this argument we may find
24, . . . ,2N successively by solving linear first order ODEs on 0 with prescribed initial
conditions at t0. In this way, we obtain a smooth 2 satisfying (3.1).

The next step is to find a such that, up to a small error,

s[2〈d2, da〉 + (12)a] − i1a = 0 to N th order on 0.

We look for a in the form

a = τ (m−1)/4(a0 + s
−1a−1 + · · · + s

−Na−N )χ(y/δ
′)
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where χ is a smooth function with χ = 1 for |y| ≤ 1/4 and χ = 0 for |y| ≥ 1/2. Writing
η = 12, it is sufficient to determine aj so that

2〈d2, da0〉 + ηa0 = 0 to N th order on 0,
2〈d2, da−j 〉 + ηa−j − i1aj−1 = 0 to N th order on 0, for j = 1, . . . , N.

Consider a0 = a00 + · · · + a0N where a0j (t, y) is a polynomial of order j in y, and
similarly let η = η0 + · · · + ηN . The equation for a0 becomes

2(1+ g11
2 + · · · )(1+ ∂t22 + · · · )(∂ta00 + ∂ta01 + · · · )

+ 4(g1α
2 + · · · )(1+ ∂t22 + · · · )(∂yαa01 + ∂yαa02 + · · · )

+ 2(δαβ + gαβ2 + · · · )(∂yα22 + ∂yα23 + · · · )(∂yβa01 + ∂yβa02 + · · · )

+ (η0 + η1 + · · · )(a00 + a01 + · · · )

= [2∂ta00 + η0a00] + [2∂ta01 + 2∇y22 · ∇ya01 + η0a01 + η1a00] + · · · .

Here
η0(t) = 12(t, 0) = ∂yα (Hαβ(t)yβ) = trH(t).

We want to choose a00 so that the first term in brackets vanishes, that is,

∂ta00 +
1
2 (trH(t))a00 = 0.

This has the solution

a00(t) = c0e
−

1
2
∫ t
t0

trH(s) ds
, a00(t0) = c0.

For later purposes we choose the constant as

c0 =

√

[4]det Im(H(t0))
√∫

Rm−1 e
−|y|2 dy

. (3.4)

We obtain a01, . . . , a0N successively by solving linear first order ODEs with prescribed
initial conditions at t0. The functions a1, . . . , aN may be determined in a similar way so
that the required equations are satisfied toN th order on0. This completes the construction
of a.

We have constructed a function vs = eis2a in U where

2(t, y) = t + 1
2H(t)y · y + 2̃,

a(t, y) = τ (m−1)/4(a0 + s
−1a−1 + · · · + s

−Na−N )χ(y/δ
′),

a0(t, 0) = c0e
−

1
2
∫ t
t0

trH(s) ds
.

Here 2̃ = O(|y|3), and 2 and each aj are independent of τ . Also, f = (−1 − s2)vs is
of the form

f = eis2τ (m−1)/4(s2h2a + sh1 + · · · + s
−(N−1)h−(N−1) − s

−N1a−N )χ(y/δ
′)

+ eis2τ (m−1)/4sbχ̃(y/δ′)
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where for each j one has hj = 0 to N th order on 0, b vanishes near 0, and χ̃ is a smooth
function with χ̃ = 0 for |y| ≥ 1/2.

To prove the norm estimates for vs in U , note that

|eis2| = e−λRe2e−τ Im 2
= e−λte−

1
2 τ Im(H(t))y·ye−λO(|y|

2)e−τO(|y|
3).

Here Im(H(t))y · y ≥ c|y|2 for (t, y) ∈ U where c > 0 depends on H0 and δ. This
implies that for t in a compact interval, after decreasing δ′ if necessary, we have

|vs(t, y)| . τ (m−1)/4e−
1
4 cτ |y|

2
χ(y/δ′).

This shows that

‖vs‖L2(U) . ‖τ
(m−1)/4e−

1
4 cτ |y|

2
‖L2(U) = O(1),

‖(−1− s2)vs‖L2(U) . ‖τ
(m−1)/4e−

1
4 cτ |y|

2
(τ 2
|y|N+1

+ τ−N )‖L2(U) = O(τ
(3−N)/2)

as τ →∞. The norm estimates for vs in U follow upon replacing N by 2K + 3.
For later purposes we record an additional estimate: if U ∩ ∂M 6= ∅, the fact that

the geodesic is nontangential allows writing ∂M locally in the (t, y) coordinates as
{(t (y), y) ; |y| < ε} for some smooth function t = t (y). By choosing δ′ small enough,
we then have

‖vs‖
2
L2(∂M)

=

∫
|y|<ε

|vs(t (y), y)|
2 dS(y) .

∫
Rm−1

τ (m−1)/2e−
1
2 cτ |y|

2
dy

= O(1) as τ →∞. (3.5)

We will now construct the quasimode vs in M by gluing together quasimodes de-
fined on small pieces. Let γ ([−ε, L + ε]) be covered by open sets U (0), . . . , U (r) as
in Lemma 3.5 corresponding to intervals I (j) (with the same δ′ for each U (j)) such
that one can find quasimodes in each U (j). We first find a function v(0)s = eis2

(0)
a(0)

in U (0) as above, with some fixed initial conditions at t = −ε for the ODEs determin-
ing 2(0) and a(0). Choose some t ′0 with γ (t ′0) ∈ U

(0)
∩ U (1), and construct a quasimode

v
(1)
s = e

is2(1)a(1) inU (1) by choosing the initial conditions for the ODEs for2(1) and a(1)

at t ′0 to be the corresponding values of 2(0) and a(0) at t ′0. Continuing in this way we ob-
tain v(2)s , . . . , v

(r)
s . Let {χj (t)} be a partition of unity near [−ε, L + ε] corresponding to

the intervals {I (j)}, let χ̃j (t, y) = χj (t) in U (j), and define

vs =

r∑
j=0

χ̃jv
(j)
s .

Note that the ODEs for the phase functions and amplitudes have the same initial data
in U (j) and in U (j+1), which shows that we actually have v(j)s = v

(j+1)
s in U (j)∩U (j+1).

In particular, if p1, . . . , pR are the distinct points where the geodesic self-intersects, if
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0 ≤ t1 < · · · < tR are the times when the geodesic self-intersects, and if V1, . . . , VR are
small balls centered at pj , then choosing δ′ small enough we have a covering

supp(vs) ∩M ⊂
( R⋃
j=1

Vj

)
∪

( S⋃
k=1

Wk

)
where, in each Vj , the quasimode is a finite sum

vs |Vj =
∑

γ (tl)=pj

v(l)s ,

and in each Wk there is some l(k) such that the quasimode is given by

vs |Wk = v
l(k)
s .

This shows that L2 bounds for vs and (−1− s2)vs in M follow from the corresponding
bounds for each v(l)s .

We still need to verify the limit∫
M

|vτ+iλ|
2ψ dVg →

∫ L

0
e−2λtψ(γ (t)) dt as τ →∞

for any ψ ∈ C(M). By a partition of unity, it is enough to consider ψ ∈ Cc(Vj ∩M) and
ψ ∈ Cc(Wk ∩ M) (thus ψ may be nonzero on ∂M). Let us begin with the case where
ψ ∈ Cc(Wk ∩M) for some k. Then vs = eis2a where 2 = t + 1

2H(t)y · y + O(|y|
3)

and a = τ (m−1)/4(a0 +O(τ
−1))χ(y/δ′). Let ρ = |g|1/2. We have∫

M

|vτ+iλ|
2ψ dVg

=

∫ L

0

∫
Rm−1

e−2λte−τ Im(H(t))y·yeτO(|y|
3)eO(|y|

2)τ (m−1)/2(|a0|
2
+O(τ−1))

× χ(y/δ′)2ψρ dt dy

=

∫ L

0
e−2λt

∫
Rm−1

e− Im(H(t))y·yeτ
−1/2O(|y|3)eτ

−1O(|y|2)

× (|a0(t, τ
−1/2y)|2 +O(τ−1))χ(y/τ 1/2δ′)2ψ(t, τ−1/2y)ρ(t, τ−1/2y) dt dy.

Since Im(H(t)) is positive definite and δ′ is sufficiently small, the term e− Im(H(t))y·y

dominates the other exponentials and one obtains

lim
τ→∞

∫
M

|vτ+iλ|
2ψ dVg

=

∫ L

0
e−2λt

(∫
Rm−1

e− Im(H(t))y·y dy

)
|a0(t, 0)|2ψ(t, 0)ρ(t, 0) dt.
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Evaluating the integral over y and using the fact that ρ(t, 0) = 1 gives

lim
τ→∞

∫
M

|vτ+iλ|
2ψ dVg =

(∫
Rm−1

e−|y|
2
dy

)∫ L

0
e−2λt |a0(t, 0)|2

√

det Im(H(t))
ψ(t, 0) dt.

Here a0(t, 0) = a0(t0, 0)e−
1
2
∫ t
t0

trH(s) ds . Now we use the fact in [26, Lemma 2.58] that
solutions of the matrix Riccati equation have the property

det Im(H(t)) = det Im(H(t0))e
−2

∫ t
t0

tr Re(H(s)) ds
.

It follows that |a0(t, 0)|2/
√

det Im(H(t)) is constant in time. The choice (3.4) fixes this
constant and proves the limit for ψ ∈ Cc(Wk ∩M).

Now assume that ψ ∈ Cc(Vj ∩M), so that

vs =
∑

γ (tl)=pj

v(l)s in supp(ψ), v(l)s = e
is2(l)a(l).

It follows that

|vs |
2
=

∑
γ (tl)=pj

|v(l)s |
2
+

∑
l 6=l′

γ (tl)=γ (t
′
l )=pj

v(l)s v
(l′)
s .

The computation above gives the right limit for each |v(l)s |2 term. Therefore, it is enough
to show that limits for the cross terms vanish as τ →∞.

Since all self-intersections must be transversal, and since d2(l)(γ (tl)) is the covector
corresponding to γ̇ (tl) with respect to the metric, we may assume (by decreasing the
sets Vj in the original construction if necessary) that Re(d2(l) − d2(l

′)) is nonvanishing
in Vj if γ (tl) = γ (tl′) = pj but l 6= l′. The cross terms lead to terms of the form∫

Vj∩M

v(l)v(l
′)ψ dV =

∫
Vj∩M

eiτφw(l)w(l
′)ψ dV

where φ = Re(2(l) − 2(l
′)) has nonvanishing gradient in Vj , and where we have set

w(r) = eis Im(2(r))e−λRe(8(r))a(r). We wish to prove that

lim
τ→∞

∫
Vj∩M

eiτφw(l)w(l
′)ψ dV = 0, l 6= l′, (3.6)

showing that the cross terms vanish in the limit. To show (3.6), let ε > 0, and de-
compose ψ = ψ1 + ψ2 where ψ1 ∈ C

∞
c (Vj ∩ M) (ψ1 may be nonzero on ∂M) and

‖ψ2‖L∞(Vj∩M) ≤ ε. Then∣∣∣∣∫
Vj∩M

eiτφw(l)w(l
′)ψ2 dV

∣∣∣∣ . ‖w(l)‖L2‖w
(l′)
‖L2‖ψ2‖L∞ . ε
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since ‖w(r)‖L2 . ‖v(r)‖L2 . 1. For the smooth part ψ1, we employ a nonstationary
phase argument and integrate by parts using

eiτφ =
1
iτ
L(eiτφ), Lw = 〈|dφ|−2dφ, dw〉.

This gives∫
Vj∩M

eiτφw(l)w(l
′)ψ1 dV =

∫
∂M

∂νφ

iτ |dφ|2
eiτφv(l)v(l

′)ψ1 dS

+
1
iτ

∫
Vj∩M

eiτφLt (w(l)w(l
′)ψ1) dV .

Since ‖v(r)‖L2(∂M) = O(1) by (3.5), the boundary term can be made arbitrarily small
as τ → ∞. As for the last term, the worst behavior is when the transpose Lt acts on
eis Im(2(r)), and these terms have bounds of the form∥∥|d(Im(2(l)))|v(l)∥∥

L2‖v
(l′)
‖L2‖ψ1‖L∞ .

Here |d(Im(2(l)))| . |y| if (t, y) are coordinates along the geodesic segment correspond-
ing to v(l), and the computation above for ‖v(l)‖L2 shows that∥∥|d(Im(2(l)))|v(l)∥∥

L2‖v
(l′)
‖L2‖ψ1‖L∞ . τ−1/2.

This finishes the proof of (3.6). ut

Until the end of this section, we switch back to writing (M0, g0) for the transversal man-
ifold. Instead of using injectivity for the attenuated ray transform (see [14, Section 7] and
[47] for injectivity results), we will reduce matters to the unattenuated ray transform.

Proof of Theorem 1.7. This is exactly Proposition 3.1. ut

Proof of Theorem 1.4. Assume the conditions in Theorem 1.4, and write q = c(q1− q2).
As discussed at the end of the proof of Theorem 1.6, we can extend q by zero to R×M0
so that the extension, also denoted by q, is in Cc(R × M0). Now, the combination of
Theorems 1.6 and 1.7 implies that∫

γ

q̂(2λ, γ (t))e−2λt dt = 0 (3.7)

for any λ ∈ R and for any nontangential geodesic γ in M0, where

q̂(2λ, x′) =
∫
∞

−∞

e−2iλx1q(x1, x
′) dx1.

Thus the attenuated geodesic ray transform of q̂(2λ, · ), with constant attenuation −2λ,
vanishes over all nontangential geodesics in M0.
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Assume now that the unattenuated ray transform in M0 (the case λ = 0) is injective.
Evaluating (3.7) at λ = 0 shows that∫

γ

q̂(0, γ (t)) dt = 0

for all nontangential geodesics γ . Injectivity of the ray transform then gives q̂(0, · ) = 0
in M0. Next we differentiate (3.7) with respect to λ and evaluate at λ = 0, to obtain∫

γ

[
2
∂q̂

∂λ
(0, γ (t))− 2t q̂(0, γ (t))

]
dt = 0.

But since q̂(0, · ) = 0, this implies the vanishing of the ray transform of ∂q̂
∂λ
(0, · ) and

hence also the vanishing of ∂q̂
∂λ
(0, · ) in M0. Taking higher derivatives with respect to λ

in (3.7) and continuing this argument implies that(
∂

∂λ

)k
q̂(0, x′) = 0 for all x′ ∈ M0

and for all k ≥ 0. Using the fact that q̂( · , x′) is analytic as the Fourier transform of a
compactly supported function, we see that q̂(ξ1, x

′) = 0 for all ξ1 ∈ R and x′ ∈ M0.
Thus q = 0, or q1 = q2 as required. ut

Proof of Theorem 1.3. First note that Cg = {(f,3gf ) ; f ∈ H 1/2(∂M)}, where 3g is
the DN map

3g : u|∂M 7→ ∂νu|∂M , 1gu = 0 in M.

If (M, g1) and (M, g2) are two CTA manifolds in the same conformal class with
Cg1 = Cg2 , we write g2 = g and g1 = cg where c is some positive function. Then

3cg = 3g.

Boundary determination [14, Proposition 8.1] implies that c|∂M = 1 and ∂νc|∂M = 0.
In view of [14, Proposition 8.2], this implies the following identity for DN maps of
Schrödinger equations in (M, g):

3g,−cqc = 3g,0,

where qc = c(n−2)/41cg(c
−(n−2)/4). Since (M, g) is a CTA manifold and the ray trans-

form in the transversal manifold was assumed to be injective, we can now use Theo-
rem 1.4 to deduce uniqueness of the potentials, −cqc = 0. But this implies that

1cg(c
−(n−2)/4) = 0 in M, c−(n−2)/4

|∂M = 1.

Uniqueness in the Dirichlet problem implies c = 1 in M , which shows that g1 = g2. ut



2602 David Dos Santos Ferreira et al.

4. Microlocal construction

Another possible approach to constructing quasimodes is a microlocal one; canonical
quantization by a Fourier integral operator allows one to reduce the semiclassical oper-
ator 1g + s2 to a simple form and construct the corresponding quasimodes. It will be
convenient to use semiclassical conventions, and choose h = τ−1 as a small parameter.
We hope that this general construction might help to better understand the problem by
providing a different viewpoint, and might suggest a way to answer Question 1.8 in the
introduction perhaps via some other normal forms. We refer to [38] and [58] for a general
presentation of semiclassical analysis. Let us nevertheless begin, for the convenience of
the reader and to set our notation, by recalling a few definitions and results which we will
need in our exposition.

4.1. Elements of semiclassical analysis

Semiclassical Sobolev spaces H k
scl on a closed Riemannian manifold (or in Euclidean

space) are defined like classical Sobolev spaces but are endowed with the following norms
depending on the semiclassical parameter h ∈ (0, 1]:

‖u‖H k
scl
=

( k∑
j=0

‖(h∇)ju‖2
L2

)1/2

where ∇j are covariant derivatives on the Riemannian manifold. Semiclassical symbols
of order k on T ∗Rm are smooth functions a on R2m depending on h ∈ (0, 1] for which
for all multiindices (α, β) ∈ N× N we have

Cαβ = sup
(x,ξ)∈T ∗Rm, h∈(0,1]

(1+ |ξ |2)(−k+|β|)/2|∂αx ∂
β
ξ a(x, ξ, h)| <∞.

The linear space of such symbols is denoted Skscl(T
∗Rm). Pseudodifferential operators are

defined through the semiclassical Weyl quantization

(Oph a)u(x) = (2πh)
−n

∫∫
e
i
h
(x−y)·ξa

(
x + y

2
, ξ, h

)
u(y) dy dξ

of a symbol a ∈ Skscl(T
∗Rm) and we denote by 9kscl(R

m) the corresponding space of
operators. Symbols on the cotangent bundle on a compact manifold are smooth functions
on T ∗M̂×(0, 1]which after cutoff to a coordinate patch pull back under local coordinates
to symbols on T ∗Rm. Pseudodifferential operators of order k on a compact manifold M̂
are operators Ah : C∞(M̂)→ C∞(M̂) such that for all pairs of coordinate patches U,V
and all cutoff functions ϕ ∈ C∞c (U), ψ ∈ C

∞
c (V ),

• ‖ψAhϕ‖L(H−Nscl ,H
N
scl)
= O(h∞) for all integersN if the supports of ϕ andψ are disjoint,

• ψAhϕ written in local coordinates is a pseudodifferential operator Oph a on Rm with
symbol a ∈ Sk(T ∗Rm).



Calderón problem in transversally anisotropic geometries 2603

We write 9kscl(M̂) for the linear space of semiclassical pseudodifferential operators of or-
der k on M̂ . Using a partition of unity and local coordinates, it is possible to quantize any
semiclassical symbol a ∈ Skscl(T

∗M̂) into a pseudodifferential operator Oph a ∈ 9
k
scl(M̂).

Conversely, one can define a map which to any pseudodifferential operatorAh ∈ 9kscl(M̂)

associates a class [a] of symbols in Skscl(M̂)/hS
k−1
scl (M̂) called the semiclassical princi-

pal symbol of A such that Ah − Oph a ∈ h9
k−1
scl (M̂). As usual, one identifies a class of

symbols with any of its representatives.

Definition 4.1. A family u = {uh}0<h≤h0 of distributions on a closed compact mani-
fold M̂ or on Rm is said to be tempered if there exists an integer N such that ‖uh‖H−Nscl

= O(h−N ).
The semiclassical wavefront set WFscl(u) of a tempered family u = {uh}0<h≤h0 of

distributions on a compact manifold M̂ (resp. Rm) is the complement of the set of points
(x0, ξ0) ∈ T

∗M̂ (resp. T ∗Rm) for which there exists a symbol a ∈ S0
scl such that, for

some constant c > 0 independent of h, one has |a(x0, ξ0)| ≥ c and

‖(Oph a)uh‖L2 = O(h
∞).

If Ah = Oph a, one traditionally denotes by WFscl(Ah) the essential support of a, i.e.
the complement of points (x, ξ) in the cotangent bundle for which ∂αx ∂

β
ξ a = O(h

∞) near
(x, ξ) for all α, β.

In the Euclidean space Rm, there is an equivalent definition involving the semiclassi-
cal Fourier transform

Fhu(ξ) =
∫
e−

i
h
y·ξu(y) dy.

Definition 4.2. A point (x0, ξ0) ∈ T
∗Rm does not belong to the semiclassical wavefront

set of a tempered family of distributions on Rm if there exist smooth compactly supported
functions χ,ψ which equal 1 near x0 and ξ0, respectively, such that

ψFh(χu) = O(h∞).

Remark. From the previous definition, the behavior of the semiclassical wavefront set
with respect to tensor products is clear:

WFscl(u⊗ w) = {(x, y, ξ, η) ; (x, ξ) ∈WFscl(u), (y, η) ∈WFscl(v)}.

Example 4.3. The following examples of semiclassical wavefront sets of functions in
the Euclidean space will be useful for our purposes; both are easily deducible from the
definition involving the semiclassical Fourier transform.

1. Coherent states or wave packets:

WFscl((πh)
−m/4e−

1
2h |x−x0|

2
+
i
h
(x−x0)·ξ0) = {(x0, ξ0)}

(this is example (i) in [58, p. 195, Section 8.4.2]).
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2. Smooth functions independent of the semiclassical parameter h:

WFscl(u) = supp u× {0}

(see Remark (ii) in [58, p. 195, Section 8.4.2]).

We also recall the action of semiclassical Fourier integral operators whose canonical re-
lation is the graph of a canonical transformation. Fourier integral operators are opera-
tors whose Schwartz kernels are semiclassical Lagrangian distributions associated with
a Lagrangian manifold. We will consider Fourier integral operators associated with a
Lagrangian manifold which is the graph of a canonical transformation. We denote by
π1 : T

∗Rm → Rm the first projection. A Fourier integral operator of order k associated
with the graph

G = {(x, ξ, ς(x, ξ)) ; (x, ξ) ∈ V }

of a canonical transformation ς : V → W between two open subsets V,W of T ∗Rm is an
operator which maps distributions on X = π1(V ) to distributions on Y = π1(W) whose
kernel can be written modulo a smooth function which is O(h∞) as the sum of terms of
the form

Uh(x, y) = (2πh)−m
∫
e
i
h
(ϕ(x,ξ)−y·ξ)a(x, ξ, h) dξ

where a ∈ Sk(T ∗Rm) and ϕ is a generating function of the canonical transformation ς .
We recall that a function ϕ : Ṽ → W̃ is a generating function of G if

G = {(x, ∂xϕ(x, ξ), ∂ξϕ(x, ξ), ξ) ; (x, ξ) ∈ Ṽ },

in other words, the relation between the canonical transformation ς and the generating
function ϕ is given by

ς(x, ∂xϕ) = (∂ξϕ, ξ).

For notational purposes, one needs to introduce the twisted relation

G′ = {(x, y, ξ,−η) ; (x, ξ, y, η) ∈ G}.

Indeed, the semiclassical wavefront set of the kernel Uh is contained inG′ ⊂ T ∗(X×Y ).
One denotes by I kscl(X × Y,G

′) the space of such Fourier integral operators. The
reason for adopting this notation is that one abuses notation by identifying Fourier in-
tegral operators with their kernels which are semiclassical Lagrangian distributions on
X × Y with semiclassical wavefront set contained in the Lagrangian submanifold G′ of
T ∗(X × Y ). If X or Y is a manifold without boundary, then the previous form has to be
understood in local coordinates in x or y.

Lemma 4.4. Let Uh ∈ I kscl(X × Y,G
′) be a Fourier integral operator associated with

the graph G of a canonical transformation ς : V → W (mapping distributions on the
open set X = π1(V ) ⊂ Rm to distributions on the open set Y = π1(W) ⊂ M̂). Then the
semiclassical wavefront set is transformed under the action of Uh in the following way:

WFscl(Uhuh) ⊂ ς(WFscl(uh) ∩ V ).
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We will also need a semiclassical version of Egorov’s theorem.

Theorem 4.5. Let Uh ∈ I kscl(R
m
×M̂,G′) and Vh ∈ I−kscl (M̂×Rm, (G−1)′) be semiclas-

sical Fourier integral operators respectively associated with the graphG of the canonical
transformation ς and the graph G−1 of ς−1, and A ∈ 9 lscl(M̂) a pseudodifferential op-
erator. Then VhAUh is a pseudodifferential operator in M̂ with principal symbol χ(ς∗a)
where χ is the principal symbol of the pseudodifferential operator VhUh ∈ 90

scl(M̂).

In the classical setting, this is Theorem 25.3.5 in [24]; for semiclassical versions one can
refer to [35, Theorem 4.7.8] and [58, Theorem 11.5].

4.2. Semiclassical defect measures

It is time to introduce the notion of semiclassical defect measures which our introduc-
tion evoked and which lift the measure used in our proofs to the cotangent bundle. Let
(M, g) be a compact Riemannian manifold with boundary. We refer to [9] for a survey on
semiclassical measures and to [58, Section 5.3].

Definition 4.6. Let (vj )∞j=1 be a bounded sequence of L2 functions on M and (hj )∞j=1
a sequence of reals in (0, 1] (called a sequence of scales) converging to 0. There exist
subsequences (vjk )

∞

k=1, (hjk )
∞

k=1 and a positive Radon measure µ on T ∗M int such that for
all a ∈ C∞c (T

∗M int),

lim
k→∞

∫
M

Ahjk
vjk vjk dV =

∫
T ∗M

a dµ

where Ahjk is a semiclassical pseudodifferential operator with principal symbol a and
parameter hjk . Such a measure is called a semiclassical defect measure associated to the
sequences (vj )∞j=1 and (hj )∞j=1.

We are interested in the semiclassical defect measures associated with our family (vsj )
∞

j=1
of quasimodes for a sequence sj = h−1

j + iλ with (hj )∞j=1 converging to 0,

‖(−h2
j1g − (1+ iλhj )

2)vj‖L2(M) = o(hj ), ‖vj‖L2(M) = O(1) (4.1)

as j →∞.

Lemma 4.7. All semiclassical measures associated to the sequence (4.1) of quasimodes
are supported in the cosphere bundle S∗M int.

This is a consequence of [58, Theorem 5.3] since the semiclassical principal symbol of
−h21g − (1+ iλh)2 is |ξ |2g − 1. The adaptation to the manifold case is straightforward.

Lemma 4.8. All semiclassical measures associated to the sequence (4.1) of quasimodes
satisfy the transport equation

t (Hp)µ = 4λµ

where Hp is the Hamiltonian vector field of the symbol p(x, ξ) = |ξ |2g = g
jk(x)ξj ξk .
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Proof. Let a ∈ C∞c (T
∗M int) be real-valued, and choose ψ ∈ C∞c (M

int) which equals
one on the projection of supp a on M int. Since a is real-valued, the pseudodifferential
operator Ahj = Ophj a is self-adjoint and we have

1
ihj

(
[Ahj ,−h

2
j1g]ψvj , ψvj

)
L2(M)

=
2
hj

Im
(
−h2

j1g(ψvj ), Ahj (ψvj )
)
L2(M)

=
2
hj

Im (−h2
j1gvj , Ahj vj )L2(M) +O(h

∞

j )

= 4λ(Ahj vj , vj )L2(M) + o(1). (4.2)

The principal symbol of the commutator ih−1
j [Ahj ,−h

2
j1g] is the Poisson bracket

{a, |ξ |2g} = −Hpa, therefore the left-hand side equals

(Ophj (Hpa)vj , vj )L2 +O(hj ).

Passing to the limit in (4.2), we finally get∫
T ∗M

(Hpa) dµ = 4λ
∫
T ∗M

a dµ,

which proves the claim. ut

Remark. If we were considering the semiclassical defect measure µ̂ associated with
quasimodes on a closed manifold M̂ then the transport equation would imply φ̂∗t µ̂ =
e2λt µ̂ where φ̂t denotes the cogeodesic flow on (M̂, g).

4.3. Microlocal quasimodes

As in the previous section, to simplify notation we will write (M, g) for the transversal
manifold instead of (M0, g0). Thus, let (M, g) be an m-dimensional compact oriented
manifold with smooth boundary and let γ be a nontangential geodesic. Once again, we
embed (M, g) in some closed manifold (M̂, g), extend γ as a unit speed geodesic in M̂ ,
and let ε > 0 be such that γ (t) ∈ M̂ \M for t ∈ [−2ε, 0) ∪ (L,L + 2ε]. We recall that
h = τ−1 is our semiclassical parameter. After factorization of the operator

1g + (τ + iλ)
2
= τ 2(h21g + (1+ iλh)2)

= −τ 2(√
−h21g + 1+ iλh

)(√
−h21g − 1− iλh

)
it becomes clear that one has to seek vs such that∥∥(√−h21g − 1− iλh

)
vs
∥∥
H 1

scl(M)
= O(hK+2), s = h−1

+ iλ.

In fact, we will construct an O(h∞) quasimode. First, we will need the following propo-
sition from [24], which is a global version of the microlocal canonical reduction of a
principal type operator.
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Proposition 4.9. Let I be a compact real interval, 0 : I → S∗M̂ a nonclosed co-
geodesic curve, and εm = (0, . . . , 0, 1) ∈ Rm. Then one can find a neighborhood V of
the segment 3 = {((x1, 0), εm) ; x1 ∈ I } ⊂ R2m and a smooth canonical transformation
ς : V → ς(V ) from V to the open neighborhood ς(V ) of 0(I) such that

ς((x1, 0), εm) = 0(x1), ς∗
(√
g−1
− 1

)
(x, ξ) = ξ1.

This is (a nonhomogeneous version of) Proposition 26.1.6 in [24] applied to the symbol
a =
√

gjk(x)ξj ξk − 1. The proof is essentially the same as in [24] and we omit it (see
also [15, Section 4] for more details).

Our choice for 0 is the cogeodesic curve in S∗M̂ which projects on the geodesic γ
in M̂ and we take I = [−ε, L+ ε]. The next step is the quantization of such a canonical
transformation.

Proposition 4.10. Let 0 : I → S∗M̂ be a nonclosed cogeodesic curve, and let ς be the
canonical transformation introduced in Proposition 4.9. For all λ ∈ R, there exist semi-
classical Fourier integral operators Uh ∈ I 0

scl(R
m
× M̂,G′), Vh ∈ I 0

scl(M̂ ×Rm, (G−1)′)

associated with the graphs G, resp. G−1, of the canonical transformation ς , resp. ς−1,
such that WFscl(UhVh−1), resp. WFscl(VhUh−1), does not intersect 0(I), resp.3, and

Vh
(√
−h21g − 1− iλh

)
Uh = (hD1 − iλh)+ Rh + Ah

where Rh ∈ h∞9−∞scl (M̂) and Ah ∈ 90
scl(M̂) is such that WFscl(Ah) ∩3 = ∅.

Proof. There exist1 semiclassical Fourier integral operators Uh ∈ I 0
scl(R

m
× M̂,G′) and

Vh ∈ I
0
scl(M̂ × Rm, (G−1)′) such that WFscl(U

0
hV

0
h − 1), resp. WFscl(V

0
hU

0
h − 1), does

not intersect 0(I), resp. 3. By Egorov’s theorem one has

V 0
h

(√
−h21g − 1

)
U0
h = V

0
hU

0
hhD1 + hR

0
h

where R0
h ∈ 9

0
scl(M̂). It remains to improve the remainder R0

h, and this can be done by
further conjugation by two elliptic pseudodifferential operators U1

h , V
1
h ∈ 9

0
scl(R

m) such
that V 1

hU
1
h − 1 ∈ h∞9−∞scl (R

m) and

[hD1, U
1
h ] + hR

0
hU

1
h ∈ h

∞9−∞scl (R
m).

This can be done by choosing U1
h = Oph a where a ∼

∑
j≥0 h

jaj is the asymptotic sum
of a sequence (aj )j≥0 of symbols satisfying the recursive equations

1
i
∂x1aj + raj = −rj−1

1 One choosesUh to be noncharacteristic near3×0(I) and the construction of Vh is the standard
construction of a parametrix (see Remark in [24, bottom of p. 27 after Definition 25.3.4] for the
classical case, and Theorem 11.5 in [58] for the semiclassical case).
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where r is the principal symbol of R0
h, r−1 = 0, and rj−1 is a principal symbol of the

operator

Rj = h
−j−2(

[hD1,Oph(a0 + · · · + h
jaj )] + hR

0
h Oph(a0 + · · · + h

jaj )
)
∈ 9

−j−1
scl .

This sequence of equations can be explicitly solved and the solutions

a0 = exp
(∫ x1

0
r(y1, x

′) dy1

)
,

aj = −ia0(x, ξ)

(∫ x1

0
rj−1(y1, x1)a

−1
0 (y1, x

′) dy1

)
are symbols of order j .

Taking Uh = U0
hU

1
h and Vh = V 1

h V
0
h we finally get

Vh
(√
−h21g − 1− iλh

)
Uh = (hD1 − iλh)+ Ah + Rh

with

Rh = V
1
h ([hD1, U

1
h ] + hR

0
hU

1
h )+ (V

1
hU

1
h − 1)(hD1) ∈ h

∞9−∞scl (R
m)

and where the remainder

Ah = V
1
h (V

0
hU

0
h − 1)(hD1)U

1
h + iλh(1− VhUh)

has a semiclassical wavefront set which does not meet 3 because of the wavefront set
properties of U0

h and V 0
h . ut

Having reduced the operator, it is now easy to construct quasimodes for the simple normal
form hD1− iλh; in fact, we may as well choose a solution of the equation (∂1+λ)v = 0,
and take as our quasimode the function

vs = Uh(H(x1)e
−λx1wh(x

′)), ‖wh‖L2(Rm−1) = O(1) (4.3)

where x = (x1, x
′) ∈ Rm, wh is smooth and where H is a smooth cutoff function sup-

ported in [−2,∞) which equals 1 on [−1,∞) so that H(x1)e
−λx1wh(x

′) is an L2 func-
tion. That this could indeed be a possible quasimode is a consequence of the relation

UhVh
(√
−h21g − 1− iλh

)
vs = Uh (hD1 − iλh)(H(x1)e

−λx1wh(x
′))︸ ︷︷ ︸

=−i(h∂x1H)e
−λx1wh

+ UhRh(He
−λx1wh(x

′))+ UhAh(He
−λx1wh(x

′)),

which leads to the estimate∥∥(Oph χ)
(√
−h21g−1− iλh

)
vs
∥∥
H 1

scl
≤ ‖(Oph χ)UhAh(He

−λx1wh(x
′))‖H 1

scl
+O(h∞)
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when χ ∈ C∞c (V ) is a symbol which equals 1 close to 0(I). It follows from

WFscl(UhAh(He
−λx1wh(x

′)) ∩ 0(I) ⊂ (ς(WFscl(Ah)))
′
∩ 0(I) = ∅

that

‖(Oph χ)UhAh(He
−λx1wh(x

′))‖H 1
scl
= O(h∞).

Since χ is localized in a neighborhood of the cogeodesic 0, we need an additional
estimate away from 0(I); in order to have such an estimate, we must require that the
semiclassical wavefront set of our quasimode be contained in 0(I). This means that we
require

WFscl(wh) = {(0, εm)}. (4.4)

Lemma 4.11. The semiclassical wavefront set of the quasimode vs given by (4.3) with
the microlocal constraint (4.4) is contained in the cogeodesic curve 0(I):

WFscl(vh−1+iλ) ⊂ 0(I).

Proof. Let ψ be a cutoff function. From the remark just after the definition of wavefront
sets involving the semiclassical Fourier transform and from Example 4.3.2, we deduce
that the semiclassical wavefront set of ψ(x)e−λx1wh(x

′) is contained in the line 3 =
{(x1, 0, εm) ∈ R2m

; x1 ∈ R}. The conclusion then follows from Lemma 4.4 since the
line 3 is mapped into the cogeodesic 0 by the canonical transformation ς . ut

From Lemma 4.11, we have WFscl((
√

−h21g−1−iλh)vh−1+iλ) ⊂ 0(I) and since 1−χ
is supported away from 0(I), we deduce∥∥(1− Oph χ)

(√
−h21g − 1− iλh

)
vs
∥∥
H 1

scl
= O(h∞).

Together with the previous estimate, this proves that vs is a quasimode.
Having constructed our quasimode, we proceed to the study of the corresponding

semiclassical measure µ. Let a ∈ C∞c (T
∗M int). We have∫

M

(Oph a)vh−1+iλ vh−1+iλ dV

=

∫
Rm
U∗h (Oph a)Uh(H(x1)e

−λx1wh(x
′))H(x1)e−λx1wh(x′) dx1 dx

′. (4.5)

By Egorov’s theorem, the conjugate operator has a simple principal expression

U∗h (Oph a)Uh = Oph(χς
∗a)+ hRh

where χ is the principal symbol of U∗hUh and Rh ∈ 90
scl. We choose our function wh to

be a wave packet
wh = (πh)

−(m−1)/4e−
1

2h |x
′
|
2
+
i
h
xm ,

and in the construction of Uh, one can take χ to be 1 on 0(I).
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Lemma 4.12. The semiclassical measure associated to the family

ṽs = (πh)
−(m−1)/4H(x1)e

−λx1e−
1

2h |x
′
|
2
+
i
h
xm

is H 2(x1)e
−2λx1 dx1 ⊗ δx′=0,ξ=εm .

Proof. Let a ∈ C∞c (R2m). We have

((Oph a)̃vs, ṽs)L2(Rm) = 2−m(πh)−(3m−1)/2
∫∫∫

H(x1)H(y1)e
−λ(x1+y1)

× e−
1

2h (|x
′
|
2
+|y′|2)e

i
h
(x−y)·(ξ−εm)a

(
x + y

2
, ξ

)
dx dy dξ.

We can take (x + y)/2 and (x − y)/2 as new coordinates, and after integration we get

((Oph a)̃vs, ṽs)L2(Rm) = (πh)
−m

∫∫∫
e−2λx1H(x1 + y1)H(x1 − y1)

× e
2i
h
y1ξ1e−

1
h
(|x′|2+|ξ ′−ε′m|

2)a(x1, x
′, ξ1, ξ

′) dx dy1 dξ.

We let h tend to 0 and obtain

lim
h→0

((Oph a)̃vs, ṽs)L2(Rm) =

∫
∞

−∞

H(x1)
2a(x1, 0, εm)e−2λx1 dx1,

which completes the proof. ut

Using the lemma and Egorov’s theorem, and passing to the limit in (4.5), we get∫
T ∗M

a dµ =

∫ L+ε

−ε

χ(x1, 0, εm)ς∗a(x1, 0, εm)e−2λx1 dx1

=

∫ L

0
a(0(x1))e

−2λx1 dx1, a ∈ C∞c (M
int),

since χ equals 1 on 0(I). One can sum up our construction in the following theorem.

Theorem 4.13. For any nontangential geodesic on a compact Riemannian manifold
(M0, g0) with boundary, there exists a family (vh−1+iλ)h∈(0,1) of quasimodes such that

(h21g0 + (1+ iλh)
2)vh−1+iλ = O(h

∞), ‖vh−1+iλ‖L2(M0)
= O(1),

with semiclassical wavefront set contained in the cogeodesic 0 projecting on γ and with
the associated semiclassical measure µ on M int

0 given by∫
T ∗M0

a dµ =

∫ L

0
a(0(x1))e

−λx1 dx1.

From this alternative construction, one can also deduce Theorem 1.7.
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5. Calderón problem in a cylinder

In this section we will prove Theorems 1.9 and 1.10, which concern an inverse problem
in the infinite cylinder T = R×M0 with metric g = e⊕ g0. Here (M0, g0) is a compact
oriented m-dimensional manifold with smooth boundary, m ≥ 2. We write (t, x) for
coordinates on T where t is the Euclidean coordinate and x are coordinates on M0. The
Laplace–Beltrami operator in T is given by

1 = 1g = ∂
2
t +1g0 .

We consider more generally the Schrödinger operator on T ,

−1+ q0 = −∂
2
t −1g0 + q0

where q0 ∈ C
∞(M0) is real-valued. It will be crucial that the coefficients g0 and q0 are

independent of the t variable.
The first point is to set up boundary measurements related to the Dirichlet problem

(−∂2
t −1g0 + q0)u = 0 in T , u = h on ∂T .

The spectral properties of the Schrödinger operator in the infinite cylinder are differ-
ent from those on a compact manifold because of the presence of continuous spectrum.
Let λ1 ≤ λ2 ≤ · · · → ∞ be the Dirichlet eigenvalues of −1g0 + q0 in M0, write
Spec(−1g0 + q0) = {λ1, λ2, . . .}, and let {φl}∞l=1 be an orthonormal basis of L2(M0)

consisting of eigenfunctions which satisfy (−1g0 + q0)φl = λlφl in M0, φl ∈ H 1
0 (M0).

We next define certain function spaces. Let L2(T ) = L2(T , dV ) be the standard L2

space in T , and letH s(T ) be the corresponding L2 Sobolev spaces. SinceM0 is compact,
we define

H s
loc(T ) = {f ; f ∈ H

s([−R,R] ×M0) for any R > 0}.

Writing 〈t〉 = (1+ t2)1/2, we introduce for s ≥ 0 the weighted spaces

L2
δ(T ) = {f ∈ L

2
loc(T ) ; 〈t〉

δf ∈ L2(T )},

H s
δ (T ) = {f ∈ H

s
loc(T ) ; 〈t〉

δf ∈ H s(T )},

H 1
δ,0(T ) = {f ∈ H

1
δ (T ) ; f |∂T = 0}.

Also, H 1
0 (T ) = {f ∈ H

1(T ) ; f |∂T = 0}. We define, in the L2(T ) duality,

H−1(T ) = (H 1
0 (T ))

∗.

If s ≥ 1/2 define the abstract trace spaces

H s(∂T ) = H s+1/2(T )/(H s+1/2(T ) ∩H 1
0 (T )),

H s
δ (∂T ) = H

s+1/2
δ (T )/(H

s+1/2
δ (T ) ∩H 1

0 (T )).

Since ∂M0 is smooth and compact, these spaces can also be identified with standard
weighted Sobolev spaces on ∂T .
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We will see the following facts:

• −1+ q0 with domain H 2(T ) ∩H 1
0 (T ) is self-adjoint on L2(T ),

• the spectrum of −1+ q0 is [λ1,∞),
• if λ ∈ C \ [λ1,∞) then for any δ ∈ R,

(−1+ q0 − λ)
−1
: L2

δ(T )→ {u ∈ H
2
δ (T ) ; u|∂T = 0},

• if λ ∈ [λ1,∞) and λ /∈ Spec(−1g0 + q0) then for any δ > 1/2 the following limiting
absorption principle holds:

(−1+ q0 − λ− i0)−1
: L2

δ(T )→ {u ∈ H
2
−δ(T ) ; u|∂T = 0}.

The case of thresholds, where λ = λl , is special and will not be considered here.
In this section we will assume that λ is not in the spectrum [λ1,∞) (the general case

λ ∈ C \ {λ1, λ2, . . .} is considered in the next section). The following proposition shows
that there is a well defined DN map 3Tg0,q0

(λ) related to the operator −1+ q0 − λ in the
cylinder T .

Proposition 5.1. If λ ∈ C \ [λ1,∞), then for any f ∈ H 3/2(∂T ) there is a unique
solution u ∈ H 2(T ) of the equation

(−1+ q0 − λ)u = 0 in T , u|∂T = f.

If f ∈ C∞c (∂T ) then u ∈ C∞(T ) and there is a linear map

3Tg0,q0
(λ) : C∞c (∂T )→ C∞(∂T ), f 7→ ∂νu|∂T .

For any δ ∈ R, this map extends to a bounded linear map

3Tg0,q0
(λ) : H

3/2
δ (∂T )→ H

1/2
δ (∂T ).

The first observation is that one has unique solvability of the Dirichlet problem in T when
one is outside the continuous spectrum. The next result also gives elliptic regularity, even
in weighted spaces, based on a Fourier analysis argument.

Lemma 5.2. Let λ ∈ C \ [λ1,∞) and let δ ∈ R. For any F ∈ L2
δ(T ) there is a unique

solution u ∈ H 1
δ,0(T ) of the equation (−1 + q0 − λ)u = F in T . Further, u ∈ H 2

δ (T )

and ‖u‖H 2
δ (T )
≤ Cδ,λ‖F‖L2

δ (T )
.

Proof. Write ṽ(t, l)=(v(t, · ), φl)L2(M0)
for the partial Fourier coefficients. If F ∈L2

δ(T )

we note that

‖F‖2
L2
δ (T )
=

∫
∞

−∞

∫
M0

〈t〉2δ|F(t, x)|2 dVg0 dt =

∫
∞

−∞

〈t〉2δ
∞∑
l=1

|F̃ (t, l)|2 dt

=

∞∑
l=1

‖F̃ ( · , l)‖2
L2
δ (R)

.
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This implies that F̃ ( · , l) ∈ L2
δ(R) for all l, and the Fourier transform satisfies F̂ ( · , l)

∈ H δ(R). Formally, the equation (−1+ q0 − λ)u = F reduces to a system of ODEs:

(−∂2
t + λl − λ)̃u( · , l) = F̃ ( · , l) on R, for l = 1, 2, . . . .

By taking Fourier transforms in t (with dual variable η), we obtain

ũ(t, l) = F−1
η

{
1

η2 + λl − λ
F̂ (η, l)

}
. (5.1)

Uniqueness follows immediately since if u ∈ H 1
δ,0(T ) solves (−1 + q0 − λ)u = 0

in T for some δ ∈ R, then ũ( · , l) ∈ L2
δ(R) and by taking Fourier transforms we get

(η2
+ λl − λ)̂u(η, l) = 0 for η ∈ R and for all l. Here η2

+ λl − λ is never zero since
λ ∈ C \ [λ1,∞), so ũ( · , l) = 0 for all l and u = 0.

We move to existence and let F ∈ L2
δ(T ). If ũ(t, l) is defined by (5.1), then for

k ≥ |δ|,

‖ũ( · , l)‖L2
δ (R)
= ‖û( · , l)‖H δ(R) ≤ ‖(η

2
+ λl − λ)

−1
‖W k,∞(R)‖F̂ ( · , l)‖H δ(R).

It is easy to see (see [15, Section 5] for details) that

‖(η2
+ λl − λ)

−1
‖W k,∞(R) ≤ Ck,λ.

Thus
‖ũ( · , l)‖L2

δ (R)
≤ Cδ,λ‖F̃ ( · , l)‖L2

δ (R)
.

We define

uN (t, x) =

N∑
l=1

ũ(t, l)φl(x).

It follows that when M ≤ N ,

‖uM − uN‖
2
L2
δ (T )
=

N∑
l=M+1

‖ũ( · , l)‖2
L2
δ (R)
≤ C

N∑
l=M+1

‖F̃ ( · , l)‖2
L2
δ (R)

.

Thus (uN ) is a Cauchy sequence in L2
δ(T ) and converges to some u ∈ L2

δ(T ). Since

(−1+ q0 − λ)uN (t, x) =

N∑
l=1

F̃ (t, l)φl(x),

we conclude that u is a distributional solution of (−1+ q0 − λ)u = F in T .
The higher regularity result, stating that u ∈ H 2

δ (T ) with appropriate estimates, is
proved in a standard way. We refer to [15, Section 5]. ut

The previous lemma also implies self-adjointness.

Lemma 5.3. If q0 ∈ C
∞(M0) is real-valued, then the operator −1 + q0 with domain

H 2(T ) ∩H 1
0 (T ) is self-adjoint on L2(T ).
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Proof. The operator−1+q0 with this domain is densely defined and symmetric, and by
Lemma 5.2 the range of −1+ q0 ± i is all of L2(T ). ut

Proposition 5.1 is a straightforward consequence of Lemma 5.2 and elliptic regularity
(see also the proof of Proposition 6.1 below). The key point in the proof of the uniqueness
result, Theorem 1.9, is the following connection between the DN map for the Schrödinger
operator −∂2

t −1g0 + q0 in T and the DN map for the transversal Schrödinger operator
−1g0 + q0 in M0. We define the transversal DN map at energy µ ∈ C \ {λ1, λ2, . . .} as

3M0
g0,q0

(µ) : H 3/2(∂M0)→ H 1/2(∂M0), h 7→ ∂νvh|∂M0 ,

where vh is the unique solution of the Dirichlet problem

(−1g0 + q0 − µ)vh = 0 in M0, vh|∂M0 = h.

Proposition 5.4. If λ ∈ C \ [λ1,∞) and k ∈ R, then

3M0
g0,q0

(λ− k2)h = e−ikt3Tg0,q0
(λ)(eikth|∂T ).

In particular, the expression on the right is independent of the t variable.

Proof. Let h ∈ H 3/2(∂M0), and let vh ∈ H 2(M0) solve

(−1+ q0 − (λ− k
2))vh = 0 in M0, vh|∂M0 = h.

Note that since λ /∈ [λ1,∞), the number λ−k2 is not a Dirichlet eigenvalue of−1g0+q0
and there is a unique solution vh. Define

f (t, x) = eikth(x).

Since k is real, we have f ∈ H 3/2
δ (∂T ) for any δ < −1/2. The function u(t, x) =

eiktvh(x) is in H 2
δ (T ) and solves

(−∂2
t −1g0 + q0 − λ)u = 0 in T , u|∂T = f.

Thus
3Tg0,q0

(λ)f = ∂νu|∂T = e
ikt (∂νvh|∂M0) = e

ikt3M0
g0,q0

(λ− k2)h.

This proves the result. ut

We can now prove Theorems 1.9 and 1.10, showing that the DN map 3Tg0,q0
(λ) at a

fixed energy λ /∈ [λ1,∞) uniquely determines the metric g0 up to isometry and also the
potential q0.

Proof of Theorem 1.9. Suppose one is given the manifold ∂T = R × ∂M0 and the map
3Tg0,q0

(λ) : C∞c (∂T )→ C∞(∂T ) for some fixed λ ∈ C \ [λ1,∞). We may assume that

∂M0 is known. Since C∞c (∂T ) is dense in H 3/2
δ (∂T ) for all δ, we also know the map

3Tg0,q0
(λ) : H

3/2
δ (∂T )→ H

1/2
δ (∂T )

for all δ.
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Since eikth ∈ H 3/2
δ (∂T ) whenever k ∈ R and δ < −1/2, we may compute the map

3M0
g0,q0

(λ− k2) : H 3/2(∂M0)→ H 1/2(∂M0)

for all k ∈ R from the knowledge of (∂T ,3Tg0,q0
(λ)) by Proposition 5.4. Since µ 7→

3
M0
g0,q0(µ) is a meromorphic operator-valued function whose poles are contained in
{λ1, λ2, . . .} [26, Lemma 4.5], this information determines 3M0

g0,q0(µ) for all µ in the
complex plane by analytic continuation. This is equivalent to knowing the DN map for
the wave equation ∂2

t −1g0 + q0 in M0 × {t > 0} [26, Chapter 4]. The boundary control
method then allows one to construct a manifold isometric to (M0, g0) and the potential
q0 from the DN map for the wave equation. See [26], [27] for more details. ut

6. Calderón problem in a cylinder: continuous spectrum

Assume the conditions in the first paragraph of Section 5 hold. We will next consider
the case when λ is in the continuous spectrum [λ1,∞) but outside the set of thresholds
{λ1, λ2, . . .}. In this case the Schrödinger equation in T admits generalized eigenfunc-
tions, and a radiation condition is required for uniqueness of solutions and for the defini-
tion of the DN map.

Proposition 6.1. Let λ ∈ [λ1,∞) \ {λ1, λ2, . . .}, choose l0 ≥ 1 so that λl0 < λ < λl0+1,
let δ > 1/2, and let m ≥ 2. Then for any f ∈ Hm−1/2

δ (∂T ), the equation

(−1+ q0 − λ)u = 0 in T , u|∂T = f

has a unique solution u ∈ Hm
−δ(T ) satisfying the outgoing radiation condition

(∂t ∓ i
√
λ− λl )̃u(t, l)→ 0 as t →±∞ for all 1 ≤ l ≤ l0.

If f ∈ C∞c (∂T ), then u ∈ C∞(T ) and there is a linear map

3Tg0,q0
(λ) : C∞c (∂T )→ C∞(∂T ), f 7→ ∂νu|∂T .

For any δ > 1/2, this map extends to a bounded linear map

3Tg0,q0
(λ) : H

m−1/2
δ (∂T )→ H

m−3/2
−δ (∂T ).

Recall that when λ ∈ C \ [λ1,∞), the main point in the reduction from the Calderón
problem in the cylinder to the boundary control method was Proposition 5.4. This result
states that

eikt3M0
g0,q0

(λ− k2)h = 3Tg0,q0
(λ)(eikth|∂T ), h ∈ H 3/2(∂M0).

This identity does not directly generalize to the case where λ is in the continuous spec-
trum, because the boundary value eikth|∂T on the right-hand side is not in H 3/2

δ (∂T ) for
δ > 1/2. However, by using suitable cutoff and averaging arguments we can still recover
the transversal DN maps from 3Tg0,q0

(λ).
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Proposition 6.2. Let λ ∈ [λ1,∞) \ {λ1, λ2, . . .}, let k ∈ R, and assume that λ − k2 /∈

{λ1, λ2, . . .}. There is a family (9R)R≥1 ⊂ C
∞
c (R) with 9R(t) = 1 for |t | ≤ R such that

eikt3M0
g0,q0

(λ− k2)h = lim
R→∞

1
R − 1

∫ R

1
3Tg0,q0

(λ)(eikt9R′(t)h|∂T ) dR
′

pointwise on ∂T for any h ∈ C∞(∂M0).

We now obtain an extension of Theorem 1.9 to the case where λ is in the continuous
spectrum (but not in the set of thresholds). This result was stated as Theorem 1.11 in the
introduction.

Proof of Theorem 1.11. The proof is exactly the same as that of Theorem 1.9, except that
the use of Proposition 5.4 is replaced by Proposition 6.2. ut

We now move to the proofs of Propositions 6.1 and 6.2. The first step is an existence and
uniqueness result for the inhomogeneous Schrödinger equation in the cylinder.

Lemma 6.3. Let λ ∈ [λ1,∞) \ {λ1, λ2, . . .} and choose l0 ≥ 1 so that λl0 < λ < λl0+1.
Let δ > 1/2, let µ ∈ R, and let m ≥ 0 be an integer. For any F = F1 + F2 where
F1 ∈ H

m
δ (T ), F2 ∈ H

m
µ (T ) and

F1(t, x) =

l0∑
l=1

F̃1(t, l)φl(x), F2(t, x) =

∞∑
l=l0+1

F̃2(t, l)φl(x),

there is a solution u = u1 + u2 of the equation

(−∂2
t −1g0 + q0 − λ)u = F in T

where u1 ∈ H
m+2
−δ (T ) ∩ H 1

−δ,0(T ) and u2 ∈ H
m+2
µ (T ) ∩ H 1

µ,0(T ) are of the form u1 =∑l0
l=1 ũ1( · , l)φl and u2 =

∑
∞

l=l0+1 ũ2( · , l)φl . Further,

‖u1‖Hm+2
−δ (T )

≤ C‖F1‖Hm
δ (T )

, ‖u2‖Hm+2
µ (T )

≤ C‖F2‖Hm
µ (T )

.

The solution is unique up to an element of the form

l0∑
l=1

c±l e
±i

√
λ− λl tφl(x)

where c±l are constants. If one assumes the outgoing radiation condition

(∂t ∓ i
√
λ− λl )̃u(t, l)→ 0 as t →±∞ for all 1 ≤ l ≤ l0,

then the solution u is unique.
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Proof. For uniqueness, suppose that u ∈ H 1
r,0(T ) for some real number r solves the

equation (−∂2
t − 1g0 + q0 − λ)u = 0 in T . Then the partial Fourier coefficients ũ(t, l)

satisfy
(−∂2

t + λl − λ)̃u( · , l) = 0 in R, for all l ≥ 1.

If l ≥ l0 + 1, then λl − λ > 0 and by taking Fourier transforms we see that the only
tempered distribution solving this equation on R is zero. Thus ũ( · , l) = 0 for l ≥ l0 + 1.
If 1 ≤ l ≤ l0, then λl − λ < 0 and an easy argument shows that the only distributional
solution of the above equation for ũ( · , l) is

ũ(t, l) = c+l e
i

√
λ− λl t + c−l e

−i

√
λ− λl t

for some constants c±l . If the radiation condition holds it follows that c±l = 0, concluding
the proof of uniqueness.

For existence, let first m = 0. We define

ũ2(η, l) = F−1
η

{
1

η2 + λl − λ
F̂2(η, l)

}
, l ≥ l0 + 1.

Since λl − λ > 0 for l ≥ l0 + 1, the proof of Lemma 5.2 shows that the function
u2 =

∑
∞

l=l0+1 ũ2( · , l)φl solves (−∂2
t − 1g0 + q0 − λ)u2 = F2 and has the required

properties. The function u1 is obtained as u1 =
∑l0
l=1 ũ1( · , l)φl , where ũ1( · , l) should

satisfy
(−∂2

t + λl − λ)̃u1( · , l) = F̃1( · , l) in R, for 1 ≤ l ≤ l0.

We choose the solution

ũ1( · , l) = R0(λ− λl + i0)F̃1( · , l)

where R0(z) = (−∂2
t − z)

−1 is the resolvent of the Laplacian on the real line, and
R0(s + i0) is the outgoing resolvent at energy s > 0. If k > 0 one has the well known
formula (which follows from a direct computation)

(R0(k
2
+ i0)f )(t) =

∫
∞

−∞

G(t − t ′)f (t ′) dt ′, G(t) =
i

2k
eik|x|.

Agmon’s limiting absorption principle (see [24, Section 14.3], [46, Section XIII.8]) shows
that ũ1( · , l) ∈ H

2
−δ(R), and so u1 is a solution of (−∂2

t − 1g0 + q0 − λ)u1 = F1 with
the required properties (also satisfying the outgoing radiation condition). This concludes
the proof for m = 0.

The case of general m can be easily proved by induction, and we refer to [15, Sec-
tion 6] for details. ut

Proof of Proposition 6.1. Let δ > 1/2, and suppose that f ∈ Hm−1/2
δ (∂T ). Choose

Ef ∈ Hm
δ (T ) with Ef |∂T = f and ‖Ef ‖Hm

δ (T )
≤ C‖f ‖

H
m−1/2
δ (∂T )

. We look for a
solution of

(−1+ q0 − λ)u = 0 in T , u|∂T = f
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having the form u = Ef + w. Thus, we obtain the equivalent equation

(−1+ q0 − λ)w = F in T , w|∂T = 0

where F = −(−1 + q0 − λ)E
f . Since ‖F‖

Hm−2
δ (T )

≤ C‖f ‖
H
m−1/2
δ (∂T )

, Lemma 6.3

shows that there is a unique solution w ∈ Hm
−δ(T ) ∩H

1
−δ,0(T ) satisfying

(∂t ∓ i
√
λ− λl)w̃(t, l)→ 0 as t →±∞ for all 1 ≤ l ≤ l0.

One also has ‖w‖Hm
−δ(T )

≤ C‖f ‖
H
m−1/2
δ (∂T )

. Thus we have a unique solution u = Ef +w

∈ Hm
−δ(T ) to the original problem, satisfying the same radiation condition as w since

(∂t ∓ i
√

λ− λl)Ẽ
f ( · , l) ∈ H 1

δ (R) for all l. We also have

‖u‖Hm
−δ(T )

≤ C‖f ‖
H
m−1/2
δ (∂T )

.

The result follows. ut

Before the proof of Proposition 6.2, we record some further properties of solutions of the
Schrödinger equation in the cylinder having boundary values of the form

f (t, x) = a(t)h(x)

where h ∈ Hm−1/2(∂M0). Given v ∈ L2
µ(R×M0), we define

P1v(t, x) =

l0∑
l=1

ṽ(t, l)φl(x), P2v(t, x) =

∞∑
l=l0+1

ṽ(t, l)φl(x),

where ṽ(t, l) = (v(t, · ), φl)L2(M0)
.

Lemma 6.4. Assume that λ ∈ [λ1,∞) \ {λ1, λ2, . . .}, choose l0 ≥ 1 so that λl0 < λ

< λl0+1, let m ≥ 2, and let E0 : H
m−1/2(∂M0) → Hm(M0) be a bounded extension

operator. Let f (t, x) = a(t)h(x) where a ∈ Hm
µ (R) with µ ∈ R and h ∈ Hm−1/2(∂M0),

and define

Ef (t, x) = a(t)E0h(x), F f = −(−∂2
t −1g0 + q0 − λ)E

f .

Also define
Ej (· ; f ) = PjE

f , Fj (· ; f ) = PjF
f .

If µ > 1/2, denote by u(t, x; f ) the solution of the Dirichlet problem

(−∂2
t −1g0 + q0 − λ)u = 0 in T , u|∂T = f,

(∂t ∓ i
√
λ− λl )̃u(t, l; f )→ 0 as t →±∞ for all 1 ≤ l ≤ l0,

where ũ(t, l; f ) = (u(t, · ; f ), φl)L2(M0)
. Then

u = u1 + u2, uj = Ej + wj ,
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where wj = wj (· ; f ) are the solutions of

(−∂2
t −1g0 + q0 − λ)w1 = F1(· ; f ) in T , w1|∂T = 0,

(∂t ∓ i
√
λ− λl)w̃1(t, l)→ 0 as t →±∞ for all 1 ≤ l ≤ l0,

with w̃j (t, l) = (wj (t, · ), φl)L2(M0)
, and

(−∂2
t −1g0 + q0 − λ)w2 = F2(· ; f ) in T , w2|∂T = 0.

If a ∈ Hm
δ (R) with δ > 1/2, then the equation for w1 has a unique solution w1 ∈

Hm
−δ(T ) ∩H

1
−δ,0(T ) with w1 ∈ Ran(P1). Similarly, if a ∈ Hm

µ (R) for some µ ∈ R, then
the equation for w2 has a unique solution w2 ∈ H

m
µ (T ) ∩ H

1
µ,0(T ) with w2 ∈ Ran(P2).

We have the norm estimates

‖Ej‖Hm
µ (T )
+ ‖Fj‖Hm−2

µ (T )
≤ C‖a‖Hm

µ (R)‖h‖Hm−1/2(∂M0)
, µ ∈ R,

and

‖u1‖Hm
−δ(T )
+ ‖w1‖Hm

−δ(T )
≤ C‖a‖Hm

µ (R)‖h‖Hm−1/2(∂M0)
, δ > 1/2,

‖u2‖Hm
µ (T )
+ ‖w2‖Hm

µ (T )
≤ C‖a‖Hm

µ (R)‖h‖Hm−1/2(∂M0)
, µ ∈ R.

Proof. We note the estimate

‖a(t)ϕ(x)‖Hm
µ (T )
≤ C‖a‖Hm

µ (R)‖ϕ‖Hm(M0).

Consequently,

‖Ef ‖Hm
µ (T )
+ ‖F f ‖

Hm−2
µ (T )

≤ C‖a‖Hm
µ (R)‖h‖Hm−1/2(∂M0)

.

The same estimates are true for Ej and Fj , since the projections Pj commute with ∂t ,1g0

and with multiplication by 〈t〉µ. The result now follows from Lemma 6.3 and the standard
reduction from the Dirichlet problem to an inhomogeneous problem with zero boundary
values. ut

Proof of Proposition 6.2. Assume that λ ∈ [λ1,∞) \ {λ1, λ2, . . .}, and choose l0 ≥ 1 so
that λl0 < λ < λl0+1. Fix k ∈ R so that λ− k2 is not a Dirichlet eigenvalue of −1g0 + q0
in M0. Also fix an integer m > dim(T )/2+ 1.

We will show that for any h ∈ Hm−1/2(∂M0), one has the pointwise limit

eikt3M0
g0,q0

(λ− k2)h = lim
R→∞

1
R − 1

∫ R

1
3Tg0,q0

(λ)fR′ dR
′

where fR is the function on ∂T given by

fR(t, x) = e
ikt9R(t)h(x)
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and 9R ∈ C∞c (R) are suitable cutoffs. Below, we will use the notation of Lemma 6.4.
For later purposes we choose the extension operator E0 : H

m−1/2(∂M0)→ Hm(M0) in
Lemma 6.4 to be E0 : h 7→ v(x;h), where v(x;h) is the unique solution of the problem

(−1g0 + q0 − (λ− k
2))v(x;h) = 0 in M0, v(· ;h)|∂M0 = h.

The proof below will make use of the splitting

u = u1 + u2,

and also the splitting
v = v1 + v2

where vj (· ;h) ∈ Hm(M0) are the projections vj (· ;h) = Qjv(· ;h). Here, for V ∈
L2(M0),

Q1V =

l0∑
l=1

Ṽ (l)φl(x), Q2V =

∞∑
l=l0+1

Ṽ (l)φl(x),

with Ṽ (l) = (V , φl)L2(M0)
. In fact, we will prove that

lim
R→∞

1
R − 1

∫ R

1
∂νu1(· ; fR′) dR

′
= eikt∂νv1(· ;h)|∂T , (6.1)

lim
R→∞

1
R − 1

∫ R

1
∂νu2(· ; fR′) dR

′
= eikt∂νv2(· ;h)|∂T . (6.2)

Note that

3Tg0,q0
(λ)fR = ∂νu(t, x; fR)

∣∣
∂T
,

3M0
g0,q0

(λ− k2)h = ∂νv(· ;h)|∂M0 .

Thus the proposition will follow immediately from (6.1) and (6.2).
Let us next describe the cutoff functions. If R → ∞, the boundary value

eikt9R(t)h(x) converges to eikth(x), a function inHm−1/2
µ (∂T ) for µ < −1/2. Fix some

µ < −1/2, and let ψR(t) = 1 for |t | < R and ψR(t) = 0 for |t | > R. We approximate
the functions ψR by 9R ∈ C∞c ((−R − 1, R + 1)) that are functions for which

lim
R→∞

‖9R − ψR‖L1(R) = 0, lim
R→∞

‖9R − 1‖Hm
µ (R) = 0. (6.3)

Such functions can be chosen to be

9R(t) =

{
1 for |t | ≤ R,
8(Rα(|t | − R)) for |t | > R,

where 8 ∈ C∞c ((−1, 1)) is equal to 1 near 0, and α is a positive constant chosen so
that mα + µ + 1/2 < 0. The norm bounds as R → ∞ are valid because 9R − ψR is
supported in R ≤ |t | ≤ R + R−α , 9R − 1 is supported in |t | ≥ R, ‖9R‖Wm,∞ ≤ CRmα ,
and (

∫
∞

R
t2µ dt)1/2 ≤ CRµ+1/2.
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Let us denote

fR(t, x) = e
ikt9R(t)h(x), f (t, x) = eikth(x)

where h ∈ Hm−1/2(∂M0). We will now prove (6.2). Note that by construction we have

EfR − Ef = EfR−f

and thus Ej ( · , fR) − Ej ( · , f ) = Ej ( · , fR − f ). The functions Fj , wj , and uj have a
similar property. Using Lemma 6.4, we see that

‖w2(· ; fR)− w2(· ; f )‖Hm
µ (T )
= ‖w2(· ; fR − f )‖Hm

µ (T )

≤ C‖eikt (9R − 1)‖Hm
µ (R)‖h‖Hm−1/2(∂M0)

.

Similarly,

‖E2(· ; fR)− E2(· ; f )‖Hm
µ (T )
= ‖E2(· ; fR − f )‖Hm

µ (T )

≤ C‖eikt (9R − 1)‖Hm
µ (R)‖h‖Hm−1/2(∂M0)

.

Since u2 = E2 + w2, the estimate (6.3) implies that

‖u2(· ; fR)− u2(· ; f )‖Hm
µ (T )
→ 0,

and consequently
lim
R→∞

∂νu2(· ; fR) = ∂νu2(· ; f )

in Hm−3/2
µ (∂T ). By Sobolev embedding this limit also holds pointwise, and moreover

lim
R→∞

1
R − 1

∫ R

1
∂νu2(· ; fR′) dR

′
= ∂νu2(· ; f ). (6.4)

We can connect the last expression to the v2 component of the time-harmonic solution
v = v(· ;h). As in Proposition 5.4, we see that the function eiktv2(x;h) ∈ H

2
µ(T ) solves

the equation (−∂2
t −1g0+q0−λ)u = 0 in T with boundary value eiktv2|∂T . Similarly, the

function u2 = u2(· ; f ) solves the same equation with boundary value eikt (Q2E0h)|∂T ,
where E0 was the bounded extension operator. But since we chose E0h(x) = v(x;h), the
two solutions have the same boundary values and by uniqueness one has

u2(t, x; f ) = e
iktv2(x;h).

Together with (6.4), this proves (6.2).
It remains to show the identity (6.1) concerning u1 and v1. Recall that

u1(t, x; fR) =

l0∑
l=1

ũ(t, l; fR)φl(x).
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We start by giving formulae for the Fourier coefficients ũ(t, l; fR) for 1 ≤ l ≤ l0. If
η ∈ H 3/2(∂T ) is compactly supported in the t variable, we have

0 =
(
(−∂2

t −1g0 + q0 − λ)u(t, · ; η), φl
)
L2(M0)

= (−∂2
t + λl − λ)̃u(t, l; η)+

∫
∂M0

η(t, y)∂νφl(y) dS(y).

Since λ− λl > 0 for 1 ≤ l ≤ l0, this and the radiation condition imply that

ũ(t, l; η) =

∫
∞

−∞

Gl(t − t
′)̃η(t ′, l) dt ′,

where

Gl(t) =
1
2i
(λ− λl)

−1/2ei|t |
√
λ− λl , η̃(t, l) =

∫
∂M0

η(t, y)∂νφl(y) dS(y).

Consider the function I1(R) = I1(t, x;R) in H 1/2
−δ (∂T ) for any δ > 1/2, given by

I1(R) = ∂νu1(t, x; fR) =

l0∑
l=1

ũ(t, l; fR)∂νφl(x).

Using the expression for the Fourier coefficients above, we have

I1(R) =

l0∑
l=1

(λ− λl)
−1/2

2i

[∫
∞

−∞

ei|t−t
′
|
√
λ−λl f̃R(t

′, l) dt ′
]
∂νφl(x)

=

l0∑
l=1

(λ− λl)
−1/2

2i

[∫
∂T

ei|t−t
′
|
√
λ−λlfR(t

′, y)∂νφl(y) dt
′ dS(y)

]
∂νφl(x)

=

l0∑
l=1

(λ− λl)
−1/2

2i

[∫
∂T

ei|t−t
′
|
√
λ−λleikt

′

9R(t
′)h(y)∂νφl(y) dt

′ dS(y)

]
∂νφl(x).

Replacing here 9R by ψR and using the first estimate in (6.3) results in an o(1) error in
L∞(∂T ) as R→∞. We thus obtain

I1(R) =

l0∑
l=1

(λ− λl)
−1/2

2i

[∫ R

−R

ei|t−t
′
|

√
λ− λl eikt

′

dt ′
]
h̃(l)∂νφl(x)+ o(1)

where

h̃(l) =

∫
M0

h(y)∂νφl(y) dS(y).
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For a given t , we assume R so large that t ∈ (−R,R). The t ′ integral can be computed
explicitly, and we obtain∫ R

−R

ei|t−t
′
|
√
λ−λleikt

′

dt ′ =
2i(λ− λl)1/2

λ− λl − k2 e
ikt

+
ei(k+

√
λ−λl)R−it

√
λ−λl

i(k +
√
λ− λl)

−
e−i(k−

√
λ−λl)R+it

√
λ−λl

i(k −
√
λ− λl)

.

The last two terms oscillate with respect to R, but we can remove them by averaging:
since by assumption k ±

√

λ− λl 6= 0, we have

lim
R→∞

1
R − 1

∫ R

1
ei(k±
√
λ− λl )R′ dR′ = 0.

This shows that for any fixed (t, x) ∈ ∂T , we have

lim
R→∞

1
R − 1

∫ R

1
I1(R

′) dR′ =

l0∑
l=1

1
λ− λl − k2 e

ikt h̃(l)∂νφl(x).

We can relate the last expression to the time-harmonic solutions v(· ;h) of
(−1g0 + q0 − (λ− k

2))v = 0 in M0 with v|∂M0 = h. We have

0 =
(
(−1g0 + q0 − (λ− k

2))v(· ;h), φl
)
L2(M0)

= (λl − (λ− k
2))̃v(l;h)+

∫
∂M0

h(y)∂νφl(y) dS(y),

which implies

h̃(l) = (λ− λl − k
2)̃v(l;h).

This yields

lim
R→∞

1
R − 1

∫ R

1
∂νu1(t, x; fR′) dR

′
=

l0∑
l=1

eikt ṽ(l;h)∂νφl(x) = e
ikt∂νv1( · ;h),

showing (6.1), which concludes the proof. ut
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