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Abstract. We study equivalence relations R(0 y G) that arise from left translation actions of
countable groups on their profinite completions. Under the assumption that the action 0 y G is
free and has spectral gap, we describe precisely when R(0 y G) is orbit equivalent or Borel re-
ducible to another such equivalence relation R(3 y H). As a consequence, we provide explicit
uncountable families of free ergodic probability measure preserving (p.m.p.) profinite actions of
SL2(Z) and its non-amenable subgroups (e.g. Fn with 2 ≤ n ≤ ∞) whose orbit equivalence rela-
tions are not mutually orbit equivalent or Borel reducible to each other. In particular, we show that
if S and T are distinct sets of primes, then the orbit equivalence relations associated to the actions
SL2(Z) y

∏
p∈S SL2(Zp) and SL2(Z) y

∏
p∈T SL2(Zp) are neither orbit equivalent nor Borel

reducible to each other. This settles a conjecture of S. Thomas [Th01, Th06]. Other applications
include the first calculations of outer automorphism groups for concrete treeable p.m.p. equiva-
lence relations, and the first concrete examples of free ergodic p.m.p. actions of F∞ whose orbit
equivalence relations have trivial fundamental group.

Keywords. Spectral gap, rigidity, orbit equivalence, Borel reducibility, equivalence relations, profi-
nite actions, outer automorphism group, II1 factor

1. Introduction and statement of main results

1.1. Introduction

The general goal of this paper is to establish new rigidity results for countable equiv-
alence relations, in both the measure-theoretic and Borel contexts. Our main technical
result (Theorem A) gives necessary and sufficient conditions for equivalence relations,
which are associated to “translation profinite” actions 0 y G with spectral gap, to be
orbit equivalent or Borel reducible to each other. The novelty of this theorem lies in that
there are no assumptions on the groups, but instead, all the assumptions are imposed on
their actions. In particular, our result applies to many natural families of translation profi-
nite actions of SL2(Z) and the free groups Fn that are known to have spectral gap as a
consequence of Selberg’s theorem and its recent generalizations [BG05, BV10].

As an application, we provide explicit uncountable families of free ergodic p.m.p.
actions of SL2(Z) and the free groups whose orbit equivalence relations are not pairwise
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orbit equivalent or Borel reducible to each other. Additionally, we compute the outer
automorphism and fundamental groups of the orbit equivalence relations arising from
several of these actions. This improves on several results from [GP03,OP07,PV08,Ga08,
Hj08] which showed the existence of such families of actions.

In order to state our results in detail, we first need to review a few concepts concerning
countable equivalence relations. Recall that a standard probability space (X,µ) is a Pol-
ish space X equipped with its σ -algebra of Borel sets and a Borel probability measure µ.

Countable p.m.p. and countable Borel equivalence relations are fundamental objects
of study in orbit equivalence theory and descriptive set theory. If 0 y (X,µ) is a p.m.p.
(respectively, Borel) action of a countable group 0 on a standard probability space (X,µ),
then the orbit equivalence relation R(0 y X) := {(x, y) ∈ X2

| 0 · x = 0 · y} is
a countable p.m.p. (respectively, Borel) equivalence relation. Conversely, it was shown
in [FM77, Theorem 1] that any countable p.m.p. and any countable Borel equivalence
relation can be realized in this way.

The study of countable equivalence relations is organized using the notions of orbit
equivalence and Borel reducibility. Firstly, let R, S be countable p.m.p. equivalence rela-
tions on standard probability spaces (X,µ), (Y, ν). Then R is said to be orbit equivalent
to S if there exists an isomorphism of probability spaces θ : (X,µ) → (Y, ν) such that
(θ × θ)(R) = S. Moreover, we say that R, S are stably orbit equivalent if there exist
Borel subsets A ⊂ X,B ⊂ Y of positive measure such that the restrictions R|A, S|B are
orbit equivalent. Two p.m.p. actions 0 y (X,µ),3y (Y, ν) are [stably] orbit equivalent
if their orbit equivalence relations are [stably] orbit equivalent.

Secondly, let R, S be countable Borel equivalence relations on standard Borel spaces
X, Y . Then R is Borel reducible to S if there exists a Borel map θ : X → Y such
that (x, y) ∈ R iff (θ(x), θ(y)) ∈ S. The condition that R is Borel reducible to S is
usually interpreted to mean that the classification problem associated to R is at most as
complicated as the classification problem associated to S.

1.2. Orbit equivalence rigidity and Borel reducibility rigidity

We are now ready to state the main technical result of this paper. Recall that an ergodic
p.m.p. action 0 y (X,µ) is said to have spectral gap if the Koopman representation of 0
on L2(X,µ)	C1 has no almost invariant vectors. Let 0 be a residually finite group and
G = lim

←−
0/0n be its profinite completion with respect to a descending chain {0n}n of

finite index, normal subgroups with trivial intersection,
⋂
n 0n = {e}. Let ρ : 0 ↪→ G be

the embedding given by ρ(g) = (g0n)n. Then the left translation action 0 y G defined
by g · x = ρ(g)x is free, ergodic, and preserves the Haar measure of G. Moreover, this
action is profinite, i.e. it is an inverse limit of actions of 0 on finite probability spaces.

Theorem A. Let 0, 3 be residually finite groups. Let G = lim
←−

0/0n, H = lim
←−

3/3n
be profinite completions of 0, 3 with respect to descending chains {0n}n, {3n}n of fi-
nite index normal subgroups with trivial intersection. Denote by mG and mH the Haar
measures of G and H . Assume that the left translation action 0 y (G,mG) has spectral
gap. Then:
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(1) 0 y (G,mG) is stably orbit equivalent (respectively, orbit equivalent) to 3 y
(H,mH ) if and only if we can find open subgroups G0 < G and H0 < H and
a continuous isomorphism δ : G0 → H0 such that δ(0 ∩ G0) = 3 ∩ H0 (and,
respectively, [G : G0] = [H : H0]).

(2) R(0 y G) is Borel reducible to R(3 y H) if and only if we can find an open
subgroup G0 < G, a closed subgroup H0 < H , and a continuous isomorphism
δ : G0 → H0 such that δ(0 ∩G0) = 3 ∩H0.

Next, let us make a few comments on the statement of Theorem A and discuss some
classes of actions to which it applies.

Assume that 0 has property (T) of Kazhdan (e.g. take 0 = SLn(Z) for n ≥ 3). Then
every ergodic p.m.p. action 0 y (X,µ) has spectral gap. In particular, the first part of
Theorem A holds for any left translation action of 0 on one of its profinite completionsG.
Let us point out that in this case much more can be said. Indeed, if 0 has property (T), we
showed that the action 0 y G is orbit equivalent superrigid, in the sense that any free
ergodic p.m.p. action 3y (Y, ν) that is orbit equivalent to 0 y G is virtually conjugate
to it (see [Io08, Theorem A]). This means that we can find a finite index subgroup30 < 3

and an open subgroupG0 < G such that an ergodic component of the action30 y (Y, ν)

is conjugate to the action 0 ∩G0 y G0. Moreover, if 0 has property (T), then the action
0 y G satisfies a cocycle superrigidity theorem [Io08, Theorem B] which can be used to
deduce the second part of Theorem A.

In this paper, however, we are interested in studying actions of groups such as SL2(Z)
and the free groups Fn, for which property (T) fails. Nevertheless, these groups still satisfy
a weak form of property (T). Recall that a countable group 0 has property (τ) with respect
to a family {0n}n of subgroups if the unitary representation of 0 on

⊕
n `

2
0(0/0n) has no

almost invariant vectors, where `2
0(0/0n) = `

2(0/0n)	 C1 (see [LZ03, Lu12]).
Selberg’s famous theorem implies that SL2(Z) has property (τ) with respect to

the family of congruence subgroups 0(n) = ker(SL2(Z) → SL2(Z/nZ)). Recently,
Selberg’s theorem has been vastly generalized starting with the breakthrough work of
J. Bourgain and A. Gamburd [BG05]. In particular, J. Bourgain and P. Varjú have shown
that any non-amenable subgroup 0 < SL2(Z) has property (τ) with respect to the fam-
ily {0 ∩ 0(n)}n≥1 of subgroups (see [BV10, Theorem 1]). Note that a translation action
0 y lim

←−
0/0n has spectral gap if and only if 0 has property (τ) with respect to {0n}n.

Thus, the results mentioned above can be used to construct many interesting families of
translation actions with spectral gap. We single out two such families that we will use
subsequently:

Examples. Consider the profinite groups GS=
∏
p∈S SL2(Fp) and KS=

∏
p∈S SL2(Zp)

for a set S of primes. Whenever S is infinite, we view SL2(Z) as a subgroup of GS , via
the diagonal embedding. We also embed SL2(Z) diagonally intoKS , for any set S. By the
Strong Approximation Theorem (see e.g. [LS03]) both of these embeddings are dense.

Given a subgroup 0 < SL2(Z), we denote by G0,S and K0,S its closures in GS
and KS , respectively. If 0 is non-amenable, then the translation actions 0 y G0,S ,
0 y K0,S have spectral gap [BV10]. Moreover, the Strong Approximation Theorem
implies that G0,S < GS and K0,S < KS are open.
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Let us point out that the closuresG0,S andK0,S of 0 are, at least in principle, explicit.
In general, ifG = lim

←−
0/0n is a profinite completion of a countable group 0 and 00 < 0

is a subgroup, then the closure of 00 in G is isomorphic, as a topological group, to the
profinite group lim

←−
00/(00 ∩ 0n).

Remarks. • The conclusion of the first part of Theorem A is optimal, in the sense that
the translation action 3 y (H,mH ) cannot be replaced with an arbitrary free ergodic
p.m.p. action 3 y (Y, ν). In other words, the action 0 y (G,mG) is not neces-
sarily orbit equivalent superrigid. This is easy to see if 0 is a free group. Indeed, by
[MS02, Theorem 2.27], any free ergodic p.m.p. action of a free group is orbit equiva-
lent to actions of uncountably many non-isomorphic groups, and hence cannot be orbit
equivalent superrigid.
• If 0 is the product of two groups having property (τ) and the action 0 y G satisfies a

certain growth condition, then the conclusion of Theorem A can be deduced from the
cocycle rigidity result of [OP08, Theorem C].
• An analogous result to the first part of Theorem A, where orbit equivalence is replaced

with weak equivalence of actions, was recently obtained by M. Abért and G. Elek
[AE10, Theorem 2]. Their result in particular shows that, under the assumptions of
Theorem A, the actions 0 y (G,mG), 3 y (H,mH ) are weakly equivalent if and
only if they are conjugate.
• The notion of “spectral gap rigidity” has been introduced by S. Popa in the context of

von Neumann algebras and used to great effect starting with [Po06a].
• Several rigidity results were recently proven in [Po09] for II1 factors M that are an

inductive limit of a sequence {Mn} of subfactors with spectral gap. If 0 is not inner
amenable and 0 y X = lim

←−
Xn is a profinite action with spectral gap, then the II1

factor M = L∞(X)o 0 has this property, where Mn = L
∞(Xn)o 0. Note, however,

that one cannot directly apply [Po09, Theorem 3.5] as the relative commutant condition
(M ′n ∩M)

′
∩M = Mn fails.

• We do not know to what extent Theorem A can be extended to arbitrary ergodic com-
pact (or profinite) actions. Recall that these are actions of the form 0 y G/K , where
G is a compact (respectively, compact profinite) group in which 0 embeds densely,
andK < G is a closed subgroup. However, the proof of Theorem A relies on a cocycle
rigidity result (Theorem 3.1) for translation profinite actions which admits an analogue
in the case of translation actions 0 y G on compact connected groups G with finite
fundamental group (Theorem 3.2). As a consequence, we are able to prove an analogue
of Theorem A in this case (see Corollary 4.7 and Theorem 6.1). Moreover, Theorem 6.1
establishes an analogue of Theorem A for a fairly general class of compact actions.

1.3. Orbit inequivalent and Borel incomparable actions

In the rest of the introduction, we discuss several applications of Theorem A and of its
method of proof. Our first applications provide examples of actions of the free groups
that are orbit inequivalent and Borel incomparable. We begin by giving some context and
motivation.
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In the last 15 years, remarkable progress has been made in the study of countable
equivalence relations, in both the measure-theoretic and Borel contexts (see the surveys
[Po06b,Fu09,Ga10] and [Th06,TS07]). In particular, considerable effort has been devoted
to the investigation of equivalence relations that arise from actions of free groups and,
more generally, of treeable equivalence relations (i.e. equivalence relations whose classes
are the connected components of a Borel acyclic graph).

On the orbit equivalence side, D. Gaboriau proved that free ergodic p.m.p. actions
Fn y X, Fm y Y of free groups of different ranks (n 6= m) are never orbit equivalent
[Ga99,Ga01]. This result, however, offered little insight on how to distinguish between ac-
tions of the same free group. It was not until the work of D. Gaboriau and S. Popa [GP03]
that every non-abelian free group Fn (2 ≤ n ≤ ∞) was shown to admit a continuum
of non-orbit equivalent free ergodic p.m.p. actions. However, [GP03] only demonstrates
the existence of such a continuum of actions. This motivated our work [Io06], where we
found an explicit list of uncountably many orbit inequivalent free ergodic p.m.p. actions
of Fn. Note that finding natural classes of orbit inequivalent actions of Fn is a difficult
task, since some obvious candidates turn out to be orbit equivalent. Indeed, L. Bowen
proved that any two Bernoulli actions of Fn are orbit equivalent if 2 ≤ n ≤ ∞, and any
two Bernoulli actions of Fn,Fm are stably orbit equivalent whenever 2 ≤ n,m < ∞

[Bo09a, Bo09b] (see also [MRV11]).
In descriptive set theory, the investigation of treeable equivalence relations started in

[JKL01] where it was proved that the orbit equivalence relation E∞T of the free part of
the Bernoulli action F∞ y {0, 1}F∞ is maximal among treeable countable Borel equiv-
alence relations, with respect to Borel reducibility. In the same paper, the authors asked
whether there exist infinitely many treeable countable Borel equivalence relations, up to
Borel reducibility. After providing a first example of a non-hyperfinite treeable equiva-
lence relation that lies strictly below E∞T [Hj03], G. Hjorth answered this question in
the affirmative in [Hj08]. More precisely, he proved that there exist uncountably many
treeable countable Borel equivalence relations that are mutually incomparable with re-
spect to Borel reducibility. Since the proof of [Hj08] uses a separability argument, it only
provides an existence result, leaving open the problem of finding specific treeable equiva-
lence relations that are Borel incomparable. In fact, at the time of the writing, not a single
example of a pair of treeable countable Borel equivalence relations such that neither is
Borel reducible to the other was known.

As a first application of Theorem A, we exhibit the first concrete uncountable families
of actions of SL2(Z) and the free groups Fn that are neither orbit equivalent nor Borel
reducible.

Corollary B. Let S, T be infinite sets of primes, and 0,3 < SL2(Z) non-amenable
subgroups.
(1) If S 6= T , then the actions SL2(Z) y GS and SL2(Z) y GT are not stably orbit

equivalent, and the equivalence relations R(SL2(Z)y GS) and R(SL2(Z)y GT )

are not comparable with respect to Borel reducibility.
(2) If |S 4 T | = ∞, then the actions 0 y G0,S and 3 y G3,T are not stably orbit

equivalent, and the equivalence relations R(0 y G0,S) and R(3y G3,T ) are not
comparable with respect to Borel reducibility.
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Corollary B improves on a result of N. Ozawa and S. Popa who were the first to show
the existence of uncountably many orbit inequivalent free ergodic profinite actions of Fn
[OP07, Theorem 5.4]. More precisely, in the context of Corollary B, they proved that if
{Si}i∈I is an uncountable family of infinite sets of primes such that |Si ∩ Sj | < ∞ for
all i 6= j , then among the actions {0 y G0,Si }i∈I there are uncountably many orbit
equivalence classes.

In [Th01, Conjecture 5.7] and [Th06, Conjecture 2.14], S. Thomas proposed a sce-
nario for providing an explicit uncountable family of treeable countable Borel equivalence
relations that are pairwise incomparable with respect to Borel reducibility. Specifically, he
conjectured that if S, T are distinct non-empty sets of primes, then the orbit equivalence
relations of the actions of SL2(Z) on KS , KT are neither Borel reducible nor stably orbit
equivalent. Note that the analogous results with SL2 replaced by SLn, for some n ≥ 3,
were shown to hold in [Th01] and [GG88], respectively.

As a consequence of Theorem A, we settle this conjecture and, more generally, show
that:

Corollary C. Let S, T be distinct non-empty sets of primes, and 0,3 < SL2(Z) non-
amenable subgroups. Then the actions 0 y K0,S and 3 y K3,T are not stably orbit
equivalent, and the equivalence relations R(0 y K0,S) and R(3 y K3,T ) are not
comparable with respect to Borel reducibility.

Remarks. • Since the matrices a =
(

1 2
0 1
)

and b =
(

1 0
2 1

)
generate an isomorphic copy

of F2 inside SL2(Z), we have an embedding of Fn into SL2(Z) for any 2 ≤ n ≤ ∞.
Therefore, both Corollaries B and C yield concrete uncountable families of pairwise
orbit inequivalent and Borel incomparable free ergodic p.m.p. actions of Fn.
• The orbit inequivalent actions of Fn provided by Corollaries B and C are different from

the ones found in [GP03, Io06]. Indeed, the latter actions admit quotients that have the
relative property (T) [Po01], and hence are not orbit equivalent to profinite actions.
• By a well-known result from [OP07], if 0 y (X,µ) is a free ergodic p.m.p. profinite

action of a non-amenable subgroup of SL2(Z), then the II1 factor L∞(X) o 0 has a
unique Cartan subalgebra, up to unitary conjugacy. This implies that the orbit inequiv-
alent actions given by Corollaries B and C have in fact non-isomorphic II1 factors.

Our techniques also allow us to confirm a second conjecture of S. Thomas [Th01, Con-
jecture 6.10]. This conjecture asserts that the orbit equivalence relations arising from
the natural actions of SL2(Z) on the projective lines over the various p-adic fields are
pairwise incomparable with respect to Borel reducibility. More generally, we prove:

Corollary D. For a prime p, let PG(1,Qp) = Qp ∪ {∞} be the projective line over
the field Qp of p-adic numbers. Consider the action of GL2(Qp) on PG(1,Qp) by lin-
ear fractional transformations. Let 0 < GL2(Qp) and 3 < GL2(Qq) be countable
subgroups for some primes p and q. If p 6= q and 0 ∩ SL2(Z) is non-amenable, then
R(0 y PG(1,Qp)) is not Borel reducible to R(3y PG(1,Qq)).

Corollary D strengthens and offers a different approach to a theorem of G. Hjorth and
S. Thomas. Namely, the case 0 = 3 = GL2(Q) of Corollary D recovers the main result
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of [HT04]. The original motivation for this result came from the classification problem for
torsion-free abelian groups of finite rank (for more on this, see the survey [Th06]). More
precisely, by [Th00, Theorem 5.7], the main result of [HT04] can be reformulated as
follows: if p 6= q are primes, then the classification problems for the p-local and q-local
torsion-free abelian groups of rank 2 are incomparable with respect to Borel reducibility.

1.4. Calculations of outer automorphism groups and fundamental groups

The second direction in which our techniques apply is the calculation of the fundamental
group F(R) and the outer automorphism group Out(R) of orbit equivalence relations R
associated to actions of free groups (see Section 2.1 for the definitions). Let us briefly
recall known results along these lines.

First, it was shown in [Ga99, Ga01] that if 2 ≤ n < ∞, then the fundamental group
of R(Fn y X) is trivial for any free ergodic p.m.p. action of Fn. On the other hand, no
calculations of fundamental groups of equivalence relations arising from actions of F∞ or
outer automorphism groups of equivalence relations arising from actions of Fn (2 ≤ n ≤
∞) were available until recently. S. Popa and S. Vaes proved that the fundamental group
of R(F∞ y X) can be equal to any countable subgroup as well as many uncountable
subgroups of R∗+ [PV08]. Moreover, they showed the existence of free ergodic p.m.p.
actions F∞ y X such that R(F∞ y X) has trivial outer automorphism group. Shortly
after, D. Gaboriau proved that the outer automorphism group of R(Fn y X) can in fact
be trivial for any 2 ≤ n ≤ ∞ [Ga08]. Nevertheless, the proofs of [PV08, Ga08] did not
provide a single explicit example of an action of F∞ (respectively, of Fn with 2 ≤ n ≤ ∞)
for which the fundamental group (respectively, the outer automorphism group) of the orbit
equivalence relation could be computed.

We address this problem here by exhibiting the first examples of free ergodic p.m.p.
actions of F∞ whose orbit equivalence relation has trivial fundamental group, and the first
examples of actions of F2 for which the outer automorphism group of the orbit equiva-
lence relation can be calculated.

Corollary E. Let S be an infinite set of primes and 0 < SL2(Z) a non-amenable sub-
group. Then:

(1) Out(R(SL2(Z) y GS)) ∼= (GS/Z) o Z/2Z. Here, Z = {±I } denotes the center of
GS and the action of Z/2Z on GS is given by conjugation with

( 1 0
0 −1

)
∈ GL2(Z).

(2) The equivalence relation R(0 y G0,S) and the associated II1 factor L∞(G0,S)o0
have trivial fundamental groups, i.e. F(R(0 y G0,S)) = F(L∞(G0,S)o0) = {1}.

Remarks. • Consider a fixed embedding F∞ ⊂ SL2(Z). Then the combination of
Corollaries C and E yields a continuum of pairwise non-stably orbit equivalent free
ergodic p.m.p. actions of F∞ whose equivalence relations and II1 factors have trivial
fundamental groups.
• Let us explain how Corollary E also leads to examples of orbit equivalence relations

of free ergodic p.m.p. actions of F2 whose outer automorphism group can be explicitly
computed. Let S be an infinite set of primes containing 2. Denote by GS(2) the kernel
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of the natural homomorphismGS → SL2(Z/2Z). Note that Z ⊂ GS(2) and SL2(Z)∩
GS(2) is the congruence subgroup 0(2). If A ⊂ GS(2) is a fundamental domain for
the left translation action Z y GS(2), it is easy to see that R(SL2(Z) y GS)|A ∼=

R(0(2)/Z y GS(2)/Z). Since the quotient 0(2)/Z is isomorphic to F2 and the outer
automorphism group is insensitive to taking restrictions (i.e. Out(R|A) ∼= Out(R) for
any ergodic countable p.m.p. equivalence relation R), we get examples of actions of
F2 with the desired property.
• Let n be a natural number of the form n = p1 . . . pk , where 3 ≤ p1 < · · · < pk

are prime numbers. Let S be an infinite set of primes containing p1, . . . , pk . Denote
by GS(n) the kernel of the natural homomorphism GS →

∏k
i=1 SL2(Z/piZ). Then

SL2(Z) ∩ GS(n) = 0(n) and R(SL2(Z) y GS)|GS (n) = R(0(n) y GS(n)). Since
0(n) is a free group (of rank 1 + 1

12
∏k
i=1 pi(p

2
i − 1)), by Corollary E we get more

examples of actions of free groups with the same property as above.
• Let 0 be free group and 0 yσ (X,µ) a free ergodic p.m.p. profinite action. Denote
R = R(0 y X) and M = L∞(X) o 0. Then the main result of [OP07] implies
that L∞(X) is the unique Cartan subalgebra of M , up to unitary conjugacy. As a con-
sequence, Out(M) ∼= H 1(σ ) o Out(R), where H 1(σ ) denotes the first cohomology
group of σ with values in T. Thus, if σ is any of the actions from the previous two
remarks, then the outer automorphism group of its II1 factor M can be computed ex-
plicitly in terms of H 1(σ ).

Our next result provides further computations of fundamental groups and outer automor-
phism groups.

Corollary F. Let p be a prime number and 0 < SL2(Z) a non-amenable subgroup.
Then:

(1) Out(R(SL2(Z) y SL2(Zp))) is a (Z/2Z)2-extension of PSL2(Qp), i.e. there is an
(explicit) exact sequence 1 → PSL2(Qp) → Out(R(SL2(Z) y SL2(Zp))) →
(Z/2Z)2 → 1.

(2) F(R(0 y K0)) = F(L∞(K0) o 0) = {1}, where K0 denotes the closure of 0 in
SL2(Zp).

Note that a statement similar to the first part of Corollary F, where SL2 is replaced
with SLn for some n ≥ 3, was obtained by A. Furman [Fu03, Theorem 1.6].

1.5. Treeable equivalence relations with trivial outer automorphism group

Corollaries E and F leave open the problem of finding concrete actions of Fn for which
R(Fn y X) has trivial outer automorphism group. Furthermore, they do not provide any
examples of treeable equivalence relations with trivial outer automorphism groups. To
approach these problems, we show that, under fairly general assumptions on a countable
subgroup 0 < SO(3), the outer automorphism groups of the equivalence relations asso-
ciated to the natural actions of 0 on SO(3), S2 and P 2(R) can be explicitly expressed in
terms of the normalizer of 0 in SO(3).
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Corollary G. Let 0 be a countable icc subgroup of G = SO(3). Assume that 0 contains
matrices g1, . . . , gk which have algebraic entries and generate a dense subgroup of G.
Consider the free ergodic p.m.p. actions 0 y (G,m), 0 y (S2, λ) and 0 y (P 2(R), µ),
where m denotes the Haar measure of G, while λ and µ denote the Lebesgue measures
of the 2-dimensional sphere S2 and the 2-dimensional real projective space P 2(R). Then

Out(R(0 y G)) = NG(0)/0 ×G, Out(R(0 y S2)) ∼= NG(0)/0 × (Z/2Z),

Out(R(0 y P 2(R))) ∼= NG(0)/0,

where NG(0) denotes the normalizer of 0 in G. Moreover,

F(R(0 y G)) = F(R(0 y S2)) = F(R(0 y P 2(R))) = {1}.

The work of J. Bourgain and A. Gamburd [BG06] implies that, under the assumptions
imposed on 0, the left translation action 0 y (G,mG) has spectral gap. This fact will be
a key ingredient in the proof of Corollary G.

In view of Corollary G, in order to give examples of actions of 0 = Fn whose equiv-
alence relations have trivial outer automorphism group, it suffices to a find a copy of 0
inside G which is generated by matrices with algebraic entries and has trivial normal-
izer. We were unable, however, to compute the normalizer of 0 for any of the known
“algebraic” embeddings of 0 into G (see Remark 10.6).

Nevertheless, we managed to calculate the normalizer of certain countable subgroups
0 < G (see Corollary 10.4). These groups 0, although not free, are treeable, in the sense
that any equivalence relation R(0 y X) arising from a free p.m.p. action of 0 is treeable.
Moreover, for some of these groups we showed that NG(0) = 0. This leads to the first
concrete examples of treeable countable p.m.p. equivalence relations which have trivial
outer automorphism group.

Corollary H. Let p ≥ 4, q ≥ 6 be even integers such that p 6= q and q = 2s with s odd.
Denote by 0 the subgroup of G = SO(3) generated by the rotation about the x-axis by
angle 2π/p and the rotation about the z-axis by angle 2π/q. Then

Out(R(0 y G)) ∼= G, Out(R(0 y S2)) ∼= Z/2Z, Out(R(0 y P 2(R))) ∼= {e}.

Moreover,

F(R(0 y G)) = F(R(0 y S2)) = F(R(0 y P 2(R))) = {1}.

C. Radin and L. Sadun [RS98] showed that 0 is isomorphic to an amalgamated free
product of the form Dp ∗D2 Dq , where Dn = Z/nZ o Z/2Z denotes the dihedral group
of order 2n. By a result of D. Gaboriau [Ga99] it follows that 0 is treeable, showing that
the equivalence relations from Corollary H are indeed treeable.

1.6. Comments on the proofs

Since all the results stated above are derived from either Theorem A or variations of it, let
us give an outline of its proof. There are two main ingredients in that proof.
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The first is a criterion for untwisting cocycles of translation profinite actions (The-
orem 3.1). As we explain in the next paragraphs, this criterion shows that any cocycle
satisfying a certain local condition is essentially cohomologous to a homomorphism.

In [Io08, Theorem B], we proved a cocycle superrigidity theorem for profinite actions.
In [Fu09, Theorem 5.21], A. Furman provided an alternative proof. His proof applies to
the wider class of compact actions and has partially inspired our approach.

The main result of [Io08], in the formulation given in [Fu09], shows that if 0 has prop-
erty (T) and 0 y G is a translation profinite action, then any cocyclew : 0×G→ 3 tak-
ing values in a countable group3 is “virtually cohomologous to a homomorphism”. More
precisely, we can find an open subgroup G0 < G and a homomorphism δ : 0 ∩G0 → 3

such that the restriction of w to (0 ∩G0)×G0 is cohomologous to δ.
In both [Io08] and [Fu09], one combines property (T) with S. Popa’s deformation/

rigidity approach to deduce that w satisfies a “local uniformity” condition, which is then
exploited to conclude that w is virtually cohomologous to a homomorphism. This condi-
tion, in the form which appears in [Fu09], amounts to the existence of a neighborhood V
of the identity in G and of a constant C ∈ (31/32, 1) such that mG({x ∈ G | w(g, xt) =
w(g, x)}) ≥ C for all g ∈ 0 and every t in V .

The second ingredient in the proof of Theorem A is an elementary lemma which,
roughly speaking, asserts that if 0 y (X,µ) is a p.m.p. action with spectral gap, then
any “almost 0-invariant” Borel map ρ : X→ Y into a Polish space Y is “almost constant”
(Lemma 2.5). In precise terms, this means that for any ε > 0, we can find a finite subset
F ⊂ 0 and δ > 0 such that whenever a Borel map ρ : X → Y satisfies µ({x ∈ X |
ρ(gx) = ρ(x)}) ≥ 1− δ for all g ∈ F , there exists y ∈ Y with µ({x ∈ X | ρ(x) = y}) ≥
1 − ε. In particular, for any such map ρ we have µ({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1 − 2ε
for all g ∈ 0.

To explain how the above ingredients are combined to prove Theorem A, assume that
the translation action 0 y (G,mG) has spectral gap and let θ : G→ H be a Borel map
such that θ(0x) ⊂ 3θ(x) for almost every x ∈ G. Consider the cocycle w : 0×G→ 3

defined by θ(gx) = w(g, x)θ(x).
The key idea of the proof is to show that w satisfies the local uniformity condition

defined above. Once this is achieved, the first ingredient of the proof implies that w is
virtually cohomologous to a homomorphism, and the conclusion of Theorem A follows
easily by using standard arguments.

To prove the local uniformity condition, for every t ∈ G we introduce a Borel map
ρt : G → H given by ρt (x) = θ(x)−1θ(xt). It is clear that if we fix g ∈ 0, then
θt (gx) = θt (x) ⇔ w(g, xt) = w(g, x). Since w takes values in a countable group, it
follows that mG({x ∈ G | θt (gx) = θt (x)}) → 1 as t approaches the identity in G.
Since g ∈ 0 is arbitrary, the second ingredient of the proof implies that we must have
infg∈0 mG({x ∈ G | θt (gx) = θt (x)})→ 1 as t approaches the identity. This implies that
w indeed satisfies the local uniformity condition.

1.7. Approximately trivial cocycles

As explained in the previous subsection, the proofs of our main results ultimately rely
on studying cocycles. As a byproduct of this study, we obtain two results which give
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instances of when “approximately trivial” cocycles are cohomologous to the trivial ho-
momorphism. I am grateful to one of the referees for pointing out that these results are of
independent interest, and suggesting that they be included in the introduction.

Lemma I. Let 0 y (X,µ) be a strongly ergodic p.m.p. action, H a Polish group, and
w : 0 × X → H a cocycle. Assume that there exists a sequence {φn : X → H }n≥1 of
Borel maps such that for all g ∈ 0 we haveµ({x ∈ X | w(g, x) = φn(gx)φn(x)−1

})→ 1
as n→∞. Then w is cohomologous to the trivial homomorphism from 0 to H , i.e. there
exists a Borel map ψ : X → H such that w(g, x) = ψ(gx)ψ(x)−1 for all g ∈ 0 and
almost every x ∈ X.

For the definition of strong ergodicity, see Subsection 2.3. If H is a compact Polish
group, then the proof of [Sc80, Proposition 2.3] implies the following stronger version
of Lemma I.

Lemma J ([Sc80]). Let 0 y (X,µ) be a strongly ergodic p.m.p. action, H a compact
Polish group, and w : 0 × X → H a cocycle. Assume that there exists a sequence
{φn : X → H }n≥1 of Borel maps such that limn→∞ φn(gx)φn(x)

−1
= w(g, x) for all

g ∈ 0 and almost every x ∈ X. Then w is cohomologous to the trivial homomorphism
from 0 to H .

1.8. Organization of the paper

In Sections 2 and 3, we collect a number of results that are needed in the rest of the paper,
including the two main ingredients of the proof of Theorem A. In Sections 4–6, we prove
several rigidity results for homomorphisms between equivalence relations associated to
compact actions. In particular, Theorem A is proven in Section 4. Finally, the last four
sections are devoted to the proofs of the corollaries presented in the introduction.

2. Preliminaries

In this section we collect several basic notions and results that we will use throughout the
paper.

Recall that a standard Borel space is a Polish space X (i.e. a separable complete
metrizable topological space) endowed with its σ -algebra of Borel subsets. A standard
probability space (X,µ) is a Polish spaceX endowed with a Borel probability measureµ.

Given a compact group G and a closed subgroup K < G, we denote by mG the Haar
measure of G and by mG/K the unique G-invariant Borel probability measure on G/K .

2.1. Countable equivalence relations

We continue by recalling several notions about countable equivalence relations.
An equivalence relation R on a standard Borel space X is called countable Borel if

• the equivalence class [x]R := {y ∈ X | (x, y) ∈ R} is countable for every x ∈ X, and
• R is a Borel subset of X ×X.
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If 0 y X is a Borel action of a countable group 0, then the orbit equivalence relation

R(0 y X) := {(x, y) ∈ X ×X | 0x = 0y}

is countable Borel. Conversely, J. Feldman and C. C. Moore proved that every countable
Borel equivalence relation arises in this way [FM77, Theorem 1].

Let R and S be countable Borel equivalence relations on standard Borel spaces X
and Y . We say that R is Borel reducible to S, and write R ≤B S, if there exists a Borel
map θ : X → Y such that (x, y) ∈ R if and only if (θ(x), θ(y)) ∈ S. In this case, θ is
called a reduction from R to S.

A Borel map θ : X → Y is called a homomorphism from R to S if (θ(x), θ(y)) ∈ S
for all (x, y) ∈ R. If X is endowed with a Borel probability measure µ, then we say that
a homomorphism θ : X → Y from R to S is trivial if there is some y ∈ Y such that
θ(x) ∈ [y]S for µ-almost every x ∈ X.

A countable Borel equivalence relation R on a standard probability space (X,µ) is
called probability measure preserving (abbreviated p.m.p.) if every Borel automorphism
θ : X→ X that satisfies θ(x) ∈ [x]R for all x ∈ X preserves µ.

The full group of R, denoted [R], is the group of automorphisms of (X,µ) such that
θ(x) ∈ [x]R for µ-almost every x ∈ X. The full pseudogroup of R, denoted [[R]], is
the set of µ-preserving bijections θ : A → B between Borel subsets of X satisfying
θ(x) ∈ [x]R for µ-almost every x ∈ A.

The automorphism group of R, denoted Aut(R), is the group of automorphisms θ
of (X,µ) such that (x, y) ∈ R if and only if (θ(x), θ(y)) ∈ R. Then [R] is a normal
subgroup of Aut(R), and the outer automorphism group of R is defined as Out(R) =
Aut(R)/[R].

Let R and S be countable p.m.p. equivalence relations on standard probability space
(X,µ) and (Y, ν). We say that R and S are orbit equivalent, and write R ∼OE S, if there
exists an isomorphism of probability spaces θ : X→ Y such that (x, y) ∈ R if and only
if (θ(x), θ(y)) ∈ S almost everywhere. Moreover, we say that R and S are stably orbit
equivalent if R|X0 ∼OE S|Y0 for some Borel subsets X0 ⊂ X and Y0 ⊂ Y of positive
measure. Here, we denote by R|X0 := R ∩ (X0 × X0) the restriction of R to the Borel
subset X0 of X.

Two p.m.p. actions 0 y (X,µ) and 3 y (Y, ν) are said to be [stably] orbit equiva-
lent if the associated equivalence relations R(0 y X) and R(3 y Y ) are [stably] orbit
equivalent.

Let R be a countable ergodic p.m.p. equivalence relation on a standard probability
space (X,µ). The fundamental group of R, denoted F(R), is the multiplicative group
of t > 0 for which there exist Borel sets X1, X2 ⊂ X of positive measure such that
R|X1 ∼OE R|X2 and µ(X1) = tµ(X2).

2.2. Profinite and compact actions

A p.m.p. action 0 y (X,µ) of a countable group 0 on a standard probability space
(X,µ) is called profinite if it is the inverse limit of a sequence of p.m.p. actions of 0
on finite probability spaces (see [Io08, Definition 1.1]). This means that we can write



Profinite actions with spectral gap 2745

(X,µ) = lim
←−

(Xn, µn), where Xn is a probability space of finite cardinality such that the
subalgebra L∞(Xn) ⊂ L∞(X) is 0-invariant for all n.

If such an action is ergodic, then it is isomorphic to an action of the form 0 y
lim
←−

(0/0n, µn), where {0n}n is a descending chain of finite index subgroups of 0, and
µn denotes the normalized counting measure on 0/0n (see [Io08, Remark 1.3]).

If 0n is a normal subgroup of 0 for all n, then the action 0 y lim
←−

(0/0n, µn) can
be identified with the left translation action 0 y (G,mG), where G := lim

←−
0/0n is the

profinite completion of 0 with respect to {0n}. Note that the action 0 y (G,mG) is free
if and only if

⋂
n 0n = {e}.

Now, recall that a p.m.p. action 0 y (X,µ) is compact if the image of 0 in the
automorphism group of (X,µ) is compact. Any compact action is isomorphic to an action
of the form 0 y (G/K,mG/K), where G is some compact group in which 0 embeds
densely andK < G is a closed subgroup. Note that any profinite action is compact. More
precisely, any ergodic profinite p.m.p. action 0 y (X,µ) is isomorphic to a compact
action 0 y (G/K,mG/K), where G is some profinite completion of 0.

Convention. In order to distinguish the actions 0 y G from the general profinite/com-
pact actions 0 y G/K , we will refer to the former as translation profinite/compact
actions.

Next, we give some examples of translation profinite actions that we will use later.

Example 2.1. Let S be a set of primes. We define the profinite groups

GS =
∏
p∈S

SL2(Fp) and KS =
∏
p∈S

SL2(Zp),

where Fp is the field with p elements and Zp is the ring of p-adic integers. The Strong
Approximation Theorem states that the diagonal embeddings of SL2(Z) intoGS and into
KS are dense. Therefore, the left translation actions SL2(Z) y GS and SL2(Z) y KS
are profinite and ergodic.

For a subgroup 0 < SL2(Z), we denote by G0,S and K0,S the closures of 0 in GS
and KS . If 0 is non-amenable, then an extension of the Strong Approximation Theorem
to linear groups established in the 1980s by Nori, Weisfeiler and others guarantees that
G0,S < GS and K0,S < KS are open subgroups (see [LS03, Theorem 16.4.1]). Thus, the
left translation actions 0 y G0,S and 0 y K0,S are also profinite and ergodic.

2.3. Spectral gap and strong ergodicity

An ergodic p.m.p. action 0 y (X,µ) is called strongly ergodic if for any sequence
{An}n of Borel subsets of X satisfying µ(gAn 4 An) → 0 for all g ∈ 0, we have
µ(An)(1 − µ(An)) → 0. The action 0 y (X,µ) is said to have spectral gap if the
associated unitary representation π of 0 on L2

0(X) = L
2(X) 	 C1 has spectral gap, i.e.

there is no sequence {ξn}n of unit vectors in L2
0(X) satisfying ‖π(g)(ξn)− ξn‖2 → 0 for

all g ∈ 0.
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If an action has spectral gap then it is strongly ergodic. The converse is false in gen-
eral (see [HK05, Theorem A.3.2]), even within the class of profinite actions (see [AE10,
Theorem 5]). Nevertheless, the converse is true for translation profinite actions [AE10].
Moreover, the following holds:

Proposition 2.2. Let 0 be a residually finite group and {0n}n a descending chain of
finite index, normal subgroups with

⋂
n 0n = {e}. Let G = lim

←−
0/0n be the profinite

completion of 0 with respect to {0n}n. Consider the left translation action 0 y (G,mG),
where mG is the Haar measure of G. Then the following conditions are equivalent:

(1) 0 y (G,mG) is strongly ergodic.
(2) 0 y (G,mG) has spectral gap.
(3) 0 has property (τ ) with respect to the family {0n}n of subgroups, i.e. the represen-

tation of 0 on
⊕

n `
2
0(0/0n) has spectral gap, where `2

0(0/0n) denotes the Hilbert
space of functions f ∈ `2(0/0n) with

∑
x∈0/0n

f (x) = 0.

Moreover, if 0 is generated by a finite set S, then conditions (1)–(3) are also equivalent
to

(4) The Cayley graphs Cay(0/0n, S) form a sequence of expanders.

Proof. The implication (1)⇒(2) is clear, while (2)⇒(1) was proved in [AE10, Theo-
rem 4]. The proof that (2)⇔(3)⇔(4) is well-known and straightforward (see e.g. [LZ03]
or [Lu12]). ut

Next, we collect from the literature several examples of profinite actions with spectral
gap.

Example 2.3. If 0 has Kazhdan’s property (T) (e.g. if 0 = SLn(Z) for n ≥ 3), then any
ergodic action of 0 has spectral gap. In this paper, however, we are interested in profinite
actions with spectral gap of groups such as SL2(Z) and Fn (n ≥ 2), which do not have
property (T).

One main source of examples will be the famous theorem of Selberg asserting that
SL2(Z) has property (τ ) with respect to the congruence subgroups 0(m) := ker(SL2(Z)
→ SL2(Z/mZ)) (see[LZ03, Chapter 4]). This implies that the actions SL2(Z)y GS and
SL2(Z) y KS defined in Example 2.1 have spectral gap. Moreover, it shows that when-
ever 0 < SL2(Z) is a finite index subgroup, then the actions 0 y G0,S and 0 y K0,S
have spectral gap, where G0,S and K0,S denote the closures of 0 in GS and KS , respec-
tively.

Recently, Selberg’s theorem has been vastly generalized in a series of papers starting
with J. Bourgain and A. Gamburd’s breakthrough work [BG05]. In particular, J. Bourgain
and P. Varjú have shown that any non-amenable subgroup 0 < SL2(Z) has property (τ )
with respect to the family {0 ∩ 0(m)}m∈Z (see [BV10, Theorem 1]). Hence, the actions
0 y G0,S and 0 y K0,S have spectral gap whenever 0 < SL2(Z) is a non-amenable
subgroup.

Remark 2.4. Note that if 0 is a co-amenable subgroup of SL2(Z), then property (τ ) of
0 relative to the family {0 ∩ 0(m)}m∈Z can be deduced from Selberg’s theorem (see
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[Sh99]). If we consider a finite index embedding of Fn, 2 ≤ n < ∞, into SL2(Z), then
the commutator subgroup 0 = [Fn,Fn] ∼= F∞ is co-amenable inside SL2(Z). We thus
have an alternative way of seeing that the actions 0 y G0,S and 0 y K0,S have spectral
gap, for this specific group 0.

We continue this section with a lemma that will be a key ingredient in the proof of Theo-
rem A.

Lemma 2.5. Let 0 y (X,µ) be a strongly ergodic p.m.p. action and let ε > 0. Then we
can find δ > 0 and F ⊂ 0 finite such that if a Borel map ρ : X → Y with values in a
standard Borel space Y satisfies µ({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1− δ for all g ∈ F , then
there exists y ∈ Y such that µ({x ∈ X | ρ(x) = y}) ≥ 1− ε.

Proof. We may clearly assume that ε ∈ (0, 1). Then we can find δ > 0 and F ⊂ 0

finite such that there is no Borel set A ⊂ X satisfying µ(A) ∈ (ε/2, 1 − ε/2) and
µ(g−1A4 A) ≤ δ for all g ∈ F .

Let ρ : X → Y be as in the hypothesis and denote by ν = ρ∗µ the push-forward
of µ through ρ. Let B ⊂ Y be a Borel set and set A = ρ−1(B). Then g−1A 4 A ⊂

{x ∈ X | ρ(gx) 6= ρ(x)}, and therefore µ(g−1A1A) ≤ δ for all g ∈ F . It follows that
ν(B) = µ(A) 6∈ (ε/2, 1− ε/2).

Thus, ν is a Borel probability measure on Y such that ν(B) 6∈ (ε/2, 1−ε/2) for every
Borel set B ⊂ Y . This implies that there is y ∈ Y such that ν({y}) ≥ 1− ε. ut

2.4. Smooth actions

Next, we recall the notion of smooth actions and prove an elementary result that we will
need in Section 5.

Definition 2.6. A Borel space X is called countably separated if there exists a sequence
of Borel sets which separate points. A Borel action H y X of a topological group H
on a standard Borel space X is called smooth if the quotient Borel structure on X/H is
countably separated.

Lemma 2.7. Let H be a locally compact Polish group, � a Polish space, and H y �

a smooth continuous action. Denote by �0 the set of x ∈ � such that hx 6= x for all
h ∈ H \ {e}. Then �0 is aGδ subset of � and there exists a Borel map p : �0 → H such
that p(hx) = hp(x) for all h ∈ H and x ∈ �0.

Proof. We denote by dH and d� the distance functions on H and � which give the
respective Polish topologies. Since H is locally compact, the distance dH can be chosen
proper, i.e. such that the closed ball {h ∈ H | dH (h, e) ≤ M} is compact for all M > 0.

Let m, n ≥ 1. We denote by Um,n the set of x ∈ � such that d�(hx, x) > 1/m for
all h ∈ H satisfying 1/n ≤ dH (h, e) ≤ n. We claim that Um,n is an open set. Indeed,
let xk be a sequence in � \ Um,n which converges to a point x ∈ �. Then we can find a
sequence hk ∈ H such that d�(hkxk, xk) ≤ 1/m and 1/n ≤ dH (hk, e) ≤ n for all k ≥ 1.
Since the set of h ∈ H which satisfy 1/n ≤ dH (h, e) ≤ n is compact, after passing
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to a subsequence we may assume that hk converges to some h ∈ H . But then 1/n ≤
dH (h, e) ≤ n and d�(hx, x) = limk→∞ d�(hkxk, xk) ≤ 1/m. Thus, x ∈ � \ Um,n. This
shows that � \ Um,n is closed, and hence Um,n is open. Since �0 =

⋂
n≥1

⋃
m≥1 Um,n,

we deduce that �0 is a Gδ set.
Next, since the action H y � is smooth, it admits a Borel selector. More precisely,

we can find a Borel map s : �→ � such that s(x) ∈ Hx and s(x) = s(hx) for all x ∈ �
and h ∈ H (see [Ke95, Exercise 18.20 iii)]). Since the action H y �0 is free, for every
x ∈ �0 there is a unique p(x) ∈ H such that x = p(x)s(x). The map p : �0 → H

clearly satisfies p(hx) = hp(x) for all h ∈ H and x ∈ �0.
Let us show that p is Borel. To this end, let F ⊂ H be a closed subset. Then the map

f : � → [0,∞) given by f (x) = infh∈F d�(x, hs(x)) is Borel. Note that if x ∈ �0
and p(x) ∈ F , then f (x) = 0. Conversely, let x ∈ �0 be such that f (x) = 0. We
claim that p(x) ∈ F . Indeed, there is a sequence {hn}n≥1 in F such that hns(x)→ x as
n → ∞. Since the action H y � is smooth and the stabilizer of x is trivial, the map
H 3 h 7→ hx ∈ Hx is a homeomorphism [Zi84, Theorem 2.1.14]. Thus, we can find
h ∈ H such that hn → h as n→∞. Since F is closed, we find that h ∈ F . This implies
that hs(x) = x, and hence p(x) = h ∈ F .

Altogether, it follows that {x ∈ �0 | p(x) ∈ F } = �0 ∩ {x ∈ � | f (x) = 0} is a
Borel set. Since this holds for any closed set F ⊂ H , we conclude that p is Borel. ut

2.5. Extensions of homomorphisms

We finish this section with an elementary result about extending homomorphisms from a
dense subgroup of a Polish group to the whole group.

Lemma 2.8. Let G be a locally compact Polish group, mG a Haar measure of G, and
H a Polish group. Let 0 < G be a dense subgroup and δ : 0 → H a homomorphism.
Assume that θ : G→ H is a Borel map such that for all g ∈ 0 we have θ(gx) = δ(g)θ(x)
for mG-almost every x ∈ G. Then δ extends to a continuous homomorphism δ : G→ H

and we can find h ∈ H such that θ(g) = δ(g)h for mG-almost every g ∈ G.

Proof. Let f : G × G→ H be given by f (x, y) = θ(x)−1θ(y). Define S to be the set
of g ∈ G such that f (gx, gy) = f (x, y) for (mG × mG)-almost every (x, y) ∈ G×G.
Since H is Polish, S is a closed subgroup of G. Since 0 < G is dense and 0 ⊂ S by the
hypothesis, we deduce that S = G.

This implies that given g ∈ G, we have θ(gx)θ(x)−1
= θ(gy)θ(y)−1 for (mG×mG)-

almost every (x, y) ∈ G × G. Thus, we can find δ(g) ∈ H such that θ(gx)θ(x)−1
=

δ(g) for almost every x ∈ G. It is easy to see that δ : G → H must be a continuous
homomorphism.

Finally, since θ(gx)θ(x)−1
= δ(g) for (mG×mG)-almost every (g, x) ∈ G×G, we

can find x0 ∈ G such that θ(gx0)θ(x0)
−1
= δ(g) for mG-almost every g ∈ G. Hence,

for almost every g ∈ G we have θ(g) = δ(gx−1
0 )θ(x0) = δ(g)(δ(x

−1
0 )θ(x0)). Thus, the

conclusion holds for h = δ(x−1
0 )θ(x0). ut
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3. Cocycle rigidity

The purpose of this section is twofold. Firstly, we extract from [Io08] and [Fu09] two
rigidity results for cocycles associated with profinite and compact actions. These results
will be essential in the proofs of our main results. Secondly, we prove that for strongly
ergodic actions, any cocycle that is approximately cohomologous to the trivial cocycle
must be cohomologous to the trivial cocycle. We start by recalling some notions.

Let 0 y (X,µ) be a p.m.p. action of a countable group 0 on a standard probability
space (X,µ). A measurable map w : 0 ×X→ 3 into a group 3 is called a measurable
cocycle (or just a cocycle) if it satisfies the identity w(gh, x) = w(g, hx)w(h, x) for
all g, h ∈ 0 and almost every x ∈ X. Two cocycles w1, w2 : 0 × X → 3 are said
to be cohomologous if there exists a Borel map φ : X → 3 such that w1(g, x) =

φ(gx)w2(g, x)φ(x)
−1 for all g ∈ 0 and almost every x ∈ X.

3.1. Cocycle rigidity for profinite actions

Now, assume that 0 has property (T) and let 0 y (X,µ) = lim
←−

(Xn, µn) be a free
ergodic profinite p.m.p. action. We proved that any cocycle w : 0 ×X→ 3 with values
in a countable group 3 is cohomologous to a cocycle which factors through the map
0 × X → 0 × Xn for some n (see [Io08, Theorem B]). In [Fu09], A. Furman extended
this result from profinite to compact actions (see [Fu09, Theorem 5.21]).

A main ingredient in the proof of Theorem A is the following criterion for untwisting
cocycles for profinite actions 0 y (X,µ). This criterion is an easy consequence of the
proof of [Io08, Theorem B] and is implicitly proved in [Fu09, proof of Theorem 5.21].
A crucial aspect of this criterion is that it applies to arbitrary residually finite groups 0,
which are not assumed to have property (T).

Theorem 3.1 ([Io08], [Fu09]). Let0 be a residually finite group and {0n}n a descending
chain of finite index, normal subgroups with trivial intersection,

⋂
n 0n = {e}. Let G =

lim
←−

0/0n be the profinite completion of 0 with respect to {0n}n and consider the left
translation action 0 y (G,mG). Let 3 be a countable group and w : 0 × G → 3 a
cocycle. Assume that for some constant C ∈ (31/32, 1) we can find a neighborhood V of
the identity e in G such that

mG({x ∈ G | w(g, xt) = w(g, x)}) ≥ C for all g ∈ 0 and every t ∈ V. (3.1)

Then we can find an open subgroupG0 < G such that the restriction ofw to (0∩G0)×G0
is cohomologous to a homomorphism δ : 0 ∩G0 → 3.

For the reader’s convenience, we give two proofs of Theorem 3.1, following [Io08] and
[Fu09], respectively.

First proof of Theorem 3.1. Denote by c the counting measure on 3. Following [Io08],
consider the infinite measure preserving action of 0 on (Z, ρ) := (G × G × 3,

mG ×mG × c) given by

g · (x, y, λ) = (gx, gy,w(g, x)λw(g, y)−1).
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Denote by π : 0→ U(L2(Z, ρ)) the associated Koopman representation. For n ≥ 0, we
let rn : G→ 0/0n be the quotient homomorphism and ζn the characteristic function of
the subset {(x, y) ∈ G×G | rn(x) = rn(y)} × {e} of Z.

Since V is a neighborhood of the identity, we can find n ≥ 0 such that V contains
Gn := ker(rn). We claim that ‖π(g)(ζn)−ζn‖2 ≤

√
2− 2C ‖ζn‖2 for all g ∈ 0. Towards

this, let g ∈ 0. Since rn(x) = rn(y) if and only if x−1y ∈ Gn, a simple computation
shows that

〈π(g)(ζn), ζn〉 = (mG×mG)({(x, y) ∈ G×G | rn(x) = rn(y) and w(g, x) = w(g, y)}
= (mG×mG)({x, t) ∈ G×G | t ∈ Gn and w(g, x) = w(g, xt)}.

Since mG({x ∈ G | w(g, xt) = w(g, x)}) ≥ C for all t ∈ Gn, and mG(Gn) = ‖ζn‖22 =
|0/0n|

−1, we deduce that 〈π(g)ζn, ζn〉 ≥ Cµ(Gn) = C‖ζn‖22. This implies the claim.
Now, define ξn :=

√
|0/0n| ζn ∈ L

2(Z, ρ). Then ξn is a unit vector and the above
claim says that ‖π(g)(ξn)−ξn‖2 ≤

√
2− 2C for all g ∈ 0. By using a standard averaging

argument, we can find a π(0)-invariant vector η ∈ L2(Z, ρ) such that ‖η − ξn‖2 ≤√
2− 2C.

Since
√

2− 2C < 1/4, continuing as in part 2 of the proof of [Io08, Theorem B]
shows that w is cohomologous to a cocycle which factors through the map 0 × G →
0 × 0/0N for some N ≥ n. Then G0 := ker rN clearly satisfies the conclusion. ut

Second proof of Theorem 3.1. Let us now explain how the proof of [Fu09, Theorem
5.21] also implies Theorem 3.1. Following [Fu09], fix t ∈ V and define a new cocycle
wt : 0 × G → 3 by letting wt (g, x) = w(g, xt). Since 0 y (G,mG) is ergodic and
C > 7/8, [Io08, Lemma 2.1] implies that wt is cohomologous to w. Hence, we can find
a Borel map φt : G→ 3 such that wt (g, x) = φt (gx)w(g, x)φt (x)−1 for all g ∈ 0 and
almost every x ∈ G.

Moreover, a close inspection of the proof of [Io08, Lemma 2.1] shows that φt satisfies
the following: there exists ηt ∈ L2(G×3,mG × c) such that φt (x) is the unique λ ∈ 3
satisfying |ηt (x, λ)| > 1/2 for almost every x ∈ G, and ‖ηt − 1G×{e}‖2 ≤

√
2− 2C

< 1/4. Since

mG({x ∈ G | |ηt (x, e)| ≤ 1/2}) ≤ 4
∫
G

|ηt (x, e)− 1|2 dmG(x)

≤ 4‖ηt − 1G×{e}‖22 < 1/4,

we conclude that mG({x ∈ G | φt (x) = e}) > 3/4. The proof of [Fu09, Theorem 5.21]
now applies verbatim to give the conclusion. ut

3.2. Cocycle rigidity for compact actions

Later on, we will also need the following variant of Theorem 3.1 for compact actions.
This result is an immediate consequence of [Fu09].
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Theorem 3.2 ([Fu09]). Let 0 be a countable group together with a dense embedding
τ : 0 ↪→ G into a connected, compact group G. Consider the left translation action
0 y (G,mG), wheremG is the Haar measure of G. Assume that π1(G), the fundamental
group of G, is finite. Let 3 be a countable group and w : 0×G→ 3 a cocycle. Assume
that for some constant C ∈ (31/32, 1) we can find a neighborhood V of the identity e in
G such that condition (3.1) holds.

(1) If any homomorphism π1(G)→ 3 is trivial (e.g. π1(G) = {e} or 3 is torsion free),
then w is cohomologous to a homomorphism δ : 0→ 3.

(2) In general, we can find a subgroup 30 < 3, a finite subgroup 31 < Z(30), a Borel
map φ : G → 3, and a homomorphism δ : 0 → 30/31 such that if p : 30 →

30/31 denotes the quotient homomorphism, then w′(g, x) = φ(gx)−1w(g, x)φ(x)

∈ 30 and p(w′(g, x)) = δ(g) for all g ∈ 0 and almost every x ∈ G.

Here and after we denote by Z(3) the center of a group 3.

Proof. (1) Assume that the only homomorphism π1(G)→ 3 is the trivial one. As in the
second proof of Theorem 3.1, for every t ∈ V we can find a Borel map φt : G → 3

which satisfies mG({x ∈ G | φt (x) = e}) > 3/4 and wt (g, x) = φt (gx)w(g, x)φt (x)−1

for all g ∈ 0 and almost every x ∈ G. The conclusion then follows from the proof of
[Fu09, Theorem 5.21].

(2) Let G̃ be the universal covering group of G, and denote by π : G̃ → G the
covering map. Let 0̃ = π−1(0) and define a cocycle w̃ : 0̃ × G̃ → 3 by letting
w̃(g, x) = w(π(g), π(x)). Since G̃ is connected, it follows that 0̃ < G̃ is dense. Since
π1(G̃) = {e}, the first part of the proof shows that w̃ is cohomologous to a homomorphism
δ : 0̃→ 3. Let ψ : G̃→ 3 be a Borel map satisfying w̃(g, x) = ψ(gx)δ(g)ψ(x)−1 for
all g ∈ 0̃ and almost every x ∈ G̃.

Fix k ∈ kerπ and define ρk : G̃ → 3 by letting ρk(x) = ψ(x)−1ψ(xk). We claim
that ρk is constant. Note that ρk(gx) = δ(g)ρk(x)δ(g)−1 for all g ∈ 0̃ and almost every
x ∈ G̃. Let h ∈ 3 be such that Ah = {x ∈ G̃ | ρk(x) = h} has positive measure. Then
gAh = Aδ(g)hδ(g)−1 for all g ∈ 0̃. This implies that for any g1, g2 ∈ 0̃, the sets g1Ah and
g2Ah are either disjoint or equal. Hence, Ah is invariant under some finite index subgroup
00 < 0̃. Since G̃ is connected and 0̃ < G̃ is dense, we see that 00 < G̃ is also dense. As
a consequence, Ah = G̃ almost everywhere. This proves the claim.

Thus, there is a homomorphism ρ : kerπ → 3 such that ψ(x)−1ψ(xk) = ρ(k)

for all k ∈ kerπ and almost every x ∈ G̃. Moreover, ρ(k) commutes with δ(0̃) for all
k ∈ kerπ . Since w̃(kg, x) = w̃(g, x), we also find that ψ(x)−1ψ(kx) = δ(k)−1 for
all k ∈ kerπ and almost every x ∈ G. By combining these two facts, we deduce that
δ(k)−1

= ρ(x−1kx), which implies that δ(k)−1
= ρ(k) for all k ∈ kerπ . Thus, if 30 :=

δ(0̃) and 31 := δ(kerπ) = ρ(kerπ), then 31 is finite and 31 < Z(30). In particular,
we have a homomorphism δ̄ : 0 = 0̃/kerπ → 30/31 given by δ̄(x kerπ) = δ(x)31.

Finally, choose a Borel map φ : G → 3 such that φ ◦ π = ψ . Note that
if y, y′ ∈ G̃ are such that π(y) = π(y′), then y−1y′ ∈ kerπ , hence ψ(y′) =
ψ(y)ρ(y−1y′) ∈ ψ(y)31. It follows that if g ∈ 0 and g̃ ∈ δ−1({g}), then w′(g, x) :=
φ(gx)−1w(g, x)φ(x) ∈ δ(g̃)31 ⊂ 30 for almost every x ∈ G. This shows that
p(w′(g, x)) = δ(g̃)31 = δ̄(g) and finishes the proof. ut
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3.3. Approximately trivial cocycles

We end this section by proving Lemmas I and J.

Proof of Lemma I. Let n ≥ 1. Since the action 0 y (X,µ) is strongly ergodic, by
applying Lemma 2.5 we can find δn > 0 and Fn ⊂ 0 finite such that if a Borel map
ρ : X→ H satisfies µ({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1− δn for every g ∈ Fn, then there
exists y ∈ H such that µ({x ∈ X | ρ(x) = y}) ≥ 1 − 1/2n. Moreover, we may clearly
assume that δn+1 ≤ δn ≤ 1/2n and Fn ⊂ Fn+1 for every n ≥ 1.

Now, after replacing {φn : X→ H }n≥1 with a subsequence, we may assume that

µ({x ∈ X | w(g, x) = φn(gx)φn(x)
−1
})

≥ 1− δn/2 ≥ 1− 1/2n+1 for all g ∈ Fn and n ≥ 1. (3.2)

Next, we claim that there exists a sequence {ψn : X → H }n≥1 of Borel maps such
that

(1) µ({x ∈ X | w(g, x) = ψn(gx)ψn(x)−1
}) ≥ 1−δn/2 for all g ∈ Fn and every n ≥ 1,

and
(2) µ({x ∈ X | ψn(x) = ψn+1(x)}) ≥ 1− 1/2n for every n ≥ 1.

We proceed by induction. Thus, let ψ1 := φ1. Assume that we have constructed
ψ1, . . . , ψn and let us construct ψn+1. To this end, we define ρ : X → H by letting
ρ(x) = ψn(x)

−1φn+1(x).
If g ∈ Fn, then by combining (3.2) with condition (1), we derive that the set of x ∈ X

such that w(g, x) = ψn(gx)ψn(x)
−1
= φn+1(gx)φn+1(x)

−1 has measure ≥ 1 − δn.
Hence µ({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1 − δn for all g ∈ Fn. This implies that we can
find h ∈ H such that µ({x ∈ X | ρ(x) = h}) ≥ 1− 1/2n.

Therefore, if we define ψn+1(x) := φn+1(x)h
−1, then µ({x ∈ X | ψn(x) =

ψn+1(x)}) ≥ 1 − 1/2n and also µ({x ∈ X | w(g, x) = ψn+1(gx)ψn+1(x)
−1
}) =

µ({x ∈ X | w(g, x) = φn+1(gx)φn+1(x)
−1
}) ≥ 1 − δn for all g ∈ Fn. This finishes the

proof of the claim.
For N ≥ 1, let XN := {x ∈ X | ψn(x) = ψN (x) for all n ≥ N}. Then condition (2)

implies that µ(XN ) ≥ 1− 1/2N−1. Thus, if X′ =
⋃
N≥1XN , then µ(X′) = 1. We define

ψ : X→ H by letting

ψ(x) =

{
ψN (x) if x ∈ XN for some N ≥ 1,
e if x ∈ X \X′.

We claim that ψ satisfies the conclusion of the lemma. To see this, fix g ∈ 0. For
every N ≥ 1, we define YN := {x ∈ X | w(g, x) = ψn(gx)ψn(x) for all n ≥ N}. Then
(3.2) implies that µ(YN ) ≥ 1− 1/2N+1. Hence, Y ′ =

⋃
N≥1 YN satisfies µ(Y ′) = 1. It is

now clear that for every x ∈ g−1X′ ∩ X′ ∩ Y ′ we have w(g, x) = ψ(gx)ψ(x)−1. Since
µ(X′) = µ(Y ′) = 1, we are done. ut
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Proof of Lemma J. Let d : H × H → [0,∞) be a left-right invariant metric
on H . Define φm,n : X → H by φm,n(x) = φ−1

m (x)φn(x) for m, n ≥ 1. Then
limm,n→∞ d(φm,n(gx), φm,n(x)) = 0 for all g ∈ 0 and almost every x ∈ X. By us-
ing the strong ergodicity of the action 0 y (X,µ) as in the proof of [Sc80, Propo-
sition 2.3] we can find hm,n ∈ H such that limm,n→∞ d(φm,n(x), hm,n) = 0 for al-
most every x ∈ X. This further implies that we can find hn ∈ H such that the limit
ψ(x) = limn→∞ φn(x)hn exists for almost every x ∈ X. But then ψ : X→ H is a Borel
map such that w(g, x) = ψ(gx)ψ(x)−1 for all g ∈ 0 and almost every x ∈ X. ut

4. Homomorphism rigidity and proof of Theorem A

4.1. Homomorphism rigidity for profinite actions

The main goal of this section is to prove Theorem A. The proof relies on the following
rigidity result for homomorphisms between equivalence relations arising from translation
profinite actions with spectral gap.

Theorem 4.1. Let 0 be a residually finite group. Let G = lim
←−

0/0n be the profinite
completion of 0 with respect to a chain of finite index normal subgroups with trivial
intersection. Assume that the left translation action 0 y (G,mG) has spectral gap. Let
3 be a countable subgroup of a Polish group H and consider the left translation action
3 y H . Let θ : G → H be a Borel map such that θ(0x) ⊂ 3θ(x) for almost every
x ∈ G. Let w : 0×G→ 3 be the cocycle defined by θ(gx) = w(g, x)θ(x) for all g ∈ 0
and almost every x ∈ G.

Then we can find an open subgroup G0 < G, a continuous homomorphism δ :

G0 → H , a Borel map φ : G0 → 3, and h ∈ H such that

• δ(0 ∩G0) ⊂ 3,
• w(g, x) = φ(gx)δ(g)φ(x)−1 for all g ∈ 0 ∩G0 and almost every x ∈ G0, and
• θ(x) = φ(x)δ(x)h for almost every x ∈ G0.

Remark 4.2. There are two useful ways of interpreting the conclusion of Theorem 4.1.
Firstly, Theorem 4.1 describes all homomorphisms between R(0 y G) and R(3y H).
Thus, it shows that any Borel map θ : G→ H which satisfies θ(0x) ⊂ 3θ(x) for almost
every x ∈ G arises from a homomorphism δ : G0 → H for some open subgroupG0 < G.

Secondly, Theorem 4.1 can be viewed as a rigidity result for cocyclesw : 0×G→ 3.
More precisely, assume that if we view w as a cocycle with values in H , then w is co-
homologous to the trivial cocycle. This means that there exists a Borel map θ : G→ H

such that w(g, x) = θ(gx)θ(x)−1 for all g ∈ 0 and almost every x ∈ G. Theorem 4.1
then shows that there exists an open subgroup G0 < G such that the restriction of w to
(0 ∩G0)×G0 is cohomologous to a homomorphism δ : 0 ∩G0 → 3.

Proof of Theorem 4.1. We claim that we can find an open subgroup G0 < G and a Borel
map φ : G0 → 3 such that w(g, x) = φ(gx)δ(g)φ(x)−1 for all g ∈ 0 ∩G0 and almost
every x ∈ G0. To this end, let ε ∈ (0, 1/64).



2754 Adrian Ioana

Since the action 0 y (G,mG) has spectral gap, it is strongly ergodic. Lemma 2.5
yields δ > 0 and a finite set F ⊂ 0 such that if a Borel map ρ : G → H satisfies
mG({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1 − δ for all g ∈ F , then mG({x ∈ X | ρ(x) = y}) ≥
1− ε for some y ∈ H .

Now, if A ⊂ G is a Borel set, then limt→emG(At 4 A) = 0. Since 3 is countable,
it follows that limt→emG({x ∈ G | w(g, xt) = w(g, x)}) = 1. Thus, we can find a
neighborhood V of e in G such that

mG({x ∈ G | w(g, xt) = w(g, x)}) ≥ 1− δ for all ∈ F and t ∈ V. (4.1)

Fix t ∈ V and define ρt : G → H by ρt (x) = θ(x)−1θ(xt). Then for almost every
x ∈ G we have ρt (gx) = θ(gx)−1θ(gxt) = θ(x)−1w(g, x)−1w(g, xt)θ(xt). Thus,
ρt (gx) = ρt (x) if and only if w(g, xt) = w(g, x). Consequently, (4.1) implies that
mG({x ∈ G | ρt (gx) = ρt (x)}) ≥ 1− δ for all g ∈ F .

We deduce that there is yt ∈ H such that mG({x ∈ G | ρt (x) = yt }) ≥ 1 − ε. This
implies that mG({x ∈ G | ρt (gx) = ρt (x)}) ≥ 1− 2ε for all g ∈ 0. Equivalently,

mG({x ∈ G | w(g, xt) = w(g, x)}) ≥ 1− 2ε for all g ∈ 0.

Since 1− 2ε > 31/32 and t ∈ V is arbitrary, Theorem 3.1 implies the claim.
Denoting θ̃ (x) = φ(x)−1θ(x) and using the claim we deduce that

θ̃ (gx) = δ(g)θ̃(x) for all g ∈ 0 ∩G0 and almost every x ∈ G0. (4.2)

By applying Lemma 2.8 we conclude that δ extends to a continuous homomorphism
δ : G0 → H and we can find h ∈ H such that θ̃ (g) = δ(g)h for almost every g ∈ G0.

ut

4.2. Proof of part (1) of Theorem A

In order to prove Theorem A, we handle parts (1) and (2) separately. First, we use The-
orem 4.1 to describe the stable orbit equivalences between translation profinite actions
with spectral gap. More generally, we have:

Corollary 4.3. Let 0,3 be residually finite groups. Let G = lim
←−

0/0n and H =

lim
←−

3/3n be the profinite completions of 0 and 3 with respect to chains of finite in-
dex normal subgroups with trivial intersection. Assume that the left translation action
0 y (G,mG) has spectral gap. Let A ⊂ G and B ⊂ H be Borel sets of positive measure
endowed with the probability measures obtained by restricting and rescalingmG andmH .
Let θ : A→ B be an isomorphism of probability spaces such that θ(0x∩A) ⊂ 3θ(x)∩B
for almost every x ∈ A.

Then we can find τ ∈ [R(0 y G)], ρ ∈ [R(3y H)], open subgroups G0 < G and
H0 < H , a continuous isomorphism δ : G0 → H0, and h ∈ H such that τ(G0) ⊂ A,
µ(A)/ν(B) = [H : H0]/[G : G0],

δ(0 ∩G0) ⊂ 3 ∩H0 and (ρ ◦ θ ◦ τ)(x) = δ(x)h for almost every x ∈ G0.

If moreover θ(0x ∩A) = 3θ(x)∩B for almost every x ∈ A, then δ(0∩G0) = 3∩H0.



Profinite actions with spectral gap 2755

Corollary 4.3 clearly implies the “only if” assertion from part (1) of Theorem A. Note
that the “if” assertion of (1) is obvious because R(0 y G)|G0 = R((0 ∩ G0) y G0)

whenever G0 < G is an open subgroup.

Proof of Corollary 4.3. After replacing θ with θ ◦ τ for some τ ∈ [R(0 y G)], we may
assume that A contains an open subgroup G1 < G. We will prove that the conclusion
holds for τ = idG.

Note that the action 0 ∩ G1 y (G1, mG1) has spectral gap. Indeed, since the action
0 y (G,mG) has spectral gap, it follows that R(0 y G) and hence R(0 y G)|G1 =

R((0∩G1)y G1) are strongly ergodic. Thus, 0∩G1 y (G1, mG1) is strongly ergodic,
and so it must have spectral gap by Proposition 2.2.

By applying Theorem 4.1 to θ|G1 we can find an open subgroup G0 < G1, a contin-
uous homomorphism δ : G0 → H , a Borel map φ : G0 → 3, and h ∈ H such that
δ(0 ∩G0) ⊂ 3 ∩H0 and θ(x) = φ(x)δ(x)h for almost every x ∈ G0.

Next, we claim that K := ker δ is finite. Assume that is not the case. Let λ ∈ 3 be
such that C := {x ∈ G0 | φ(x) = λ} satisfies mG(C) > 0. Since K is assumed to be
infinite, we can find g ∈ K \ {e} such that mG(g−1C ∩ C) > 0. Since θ(gx) = θ(x) for
almost every x ∈ g−1C ∩ C, this contradicts the fact that θ is 1-1.

Thus, after replacing G0 with a smaller open subgroup of G, we may assume that δ
is 1-1. Hence, if we let H0 := δ(G0), then δ : G0 → H0 is a continuous isomorphism.
Note that H0 is an open subgroup of H . Indeed, since mH (θ(G0)) > 0 and θ(G0) ⊂⋃
λ∈3 λH0h, we see that mH (H0) > 0. Therefore, [H : H0] < ∞ and since H0 < H is

a closed subgroup (being the continuous image of a compact group), it must be open.
Now, since the map G0 3 x 7→ δ(x)h ∈ H0h is 1-1 and δ(x)h ∈ 3θ(x) for almost

every x ∈ G0, we can find ρ ∈ [R(3y H)] such that

ρ(θ(x)) = δ(x)h for almost every x ∈ G0. (4.3)

In particular, ν(θ(G0)) = ν(H0h) = ν(H0) = [H : H0]
−1. Since θ : A→ B is an iso-

morphism of probability spaces, we have ν(θ(G0)) =
ν(B)
µ(A)

µ(G0) =
ν(B)
µ(A)
[G : G0]

−1. By
combining the last two identities we get µ(A)/ν(B) = [H : H0]/[G : G0]. This finishes
the proof of the first assertion.

For the “moreover” assertion, assume that θ(0x ∩ A) = 3θ(x) ∩ B for almost every
x ∈ A. This implies that θ(0x ∩ G0) = 3θ(x) ∩ θ(G0) for almost every x ∈ G0. By
applying ρ to this identity and using (4.3) we get δ(0x ∩G0) = 3δ(x) ∩ H0 for almost
every x ∈ G0. In particular, if λ ∈ 3 ∩ H0, then λδ(x) ∈ δ(0x ∩ G0) = δ((0 ∩ G0)x)

for some x ∈ G0. Thus, λ ∈ δ(0 ∩ G0), and therefore 3 ∩ H0 ⊂ δ(0 ∩ G0). Since the
other inclusion also holds, we are done. ut

4.3. Proof of part (2) of Theorem A

Next, we use Theorem 4.1 to prove the second part of Theorem A. Moreover, we give an
explicit characterization of when there exists a non-trivial homomorphism between two
given equivalence relations arising from translation profinite actions with spectral gap.
More generally, we have:
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Corollary 4.4. Let 0 be a residually finite group. Let G = lim
←−

0/0n be the profinite
completion of 0 with respect to a chain of finite index normal subgroups with trivial
intersection. Assume that the left translation action 0 y (G,mG) has spectral gap. Let
3 be a countable subgroup of a Polish group H and consider the left translation action
3y H . Then:

(1) R(0 y G) ≤B R(3 y H) if and only if we can find an open subgroup G0 < G,
a closed subgroup H0 < H , and a continuous isomorphism δ : G0 → H0 such that
δ(0 ∩G0) = 3 ∩H0.

(2) There exists a non-trivial homomorphism from R(0 y G) to R(3 y H) if and
only if there exist an open subgroup G0 < G and a continuous homomorphism δ :

G0 → H such that δ(0 ∩G0) ⊂ 3 and δ(G0) 6⊂ 3.

Remark 4.5. (1) If any homomorphism from R(0 y G) to R(3 y H) is trivial, then
one says that R(0 y G) is R(3y H)-ergodic (see [HK05, Appendix A]).

(2) If a continuous homomorphism δ : G0 → H satisfies δ(G0) ⊂ 3, then δ(G0)

must be finite. This implies that δ(G0) = δ(0 ∩G0) and the restriction of δ to some open
subgroup G1 < G0 is trivial.

Proof of Corollary 4.4. (1) For the “if” assertion, assume that there exist an open sub-
groupG0 < G, a closed subgroupH0 < H , and a continuous isomorphism δ : G0 → H0
such that δ(0 ∩G0) = 3 ∩ H0. Then δ witnesses the fact that R((0 ∩G0) y G0) ≤B
R(3y H).

Since 0 < G is dense, we have 0G0 = G. This implies that we can find F ⊂ 0 finite
such that G =

⊔
g∈F gG0. Define a Borel map α : G → G0 by α(x) = g−1x, where

g ∈ F is such that x ∈ gG0. Then y ∈ 0x if and only if α(y) ∈ (0 ∩G0)α(x), showing
that R(0 y G) ≤B R((0 ∩ G0) y G0). Altogether, we deduce that R(0 y G) ≤B
R(3y H).

For the “only if” assertion, let θ : G → H be a Borel map such that 0x = 0y if
and only if 3θ(x) = 3θ(y). By applying Theorem 4.1 we can find an open subgroup
G0 < G, a continuous homomorphism δ : G0 → H , a Borel map φ : G0 → 3, and
h ∈ H such that δ(0 ∩G0) ⊂ 3 and

θ(x) = φ(x)δ(x)h for almost every x ∈ G0. (4.4)

We claim thatK := ker δ is finite. If g ∈ K , then (4.4) implies that3θ(gx) = 3θ(x)
for almost every x ∈ G0. From this we deduce that 0gx = 0x for almost every (and
thus for some) x ∈ G0, and hence g ∈ 0. This shows that K ⊂ 0, so K is countable.
It follows that K is a countable compact group. Since the Haar measure of K has finite
mass, it must be the case that K is finite.

Next, since ker δ is finite, after replacing G0 with a smaller open subgroup of G we
may assume that δ is 1-1. Define H0 := δ(G0); then H0 is a closed subgroup of H and
δ : G0 → H0 is a continuous isomorphism.

We know that δ(0 ∩ G0) ⊂ 3 ∩ H0, so it remains to show the reverse inclusion.
Thus, let λ ∈ 3 ∩ H0 and let g ∈ G0 be such that δ(g) = λ. Then (4.4) implies that
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3θ(gx) = 3δ(gx)h = 3δ(x)h = 3θ(x) for almost every x ∈ G0. We deduce that
0gx = 0x for almost every x ∈ G0. Hence g ∈ 0, and therefore λ ∈ δ(0 ∩G0).

(2) Assume that there is a homomorphism θ : G→H from R(0yG) to R(3yH)

which is non-trivial, in the sense that θ(x) does not belong to the same3-orbit for almost
every x ∈ G. By Theorem 4.1 we can find an open subgroup G0 < G, a continuous
homomorphism δ : G0 → H , a Borel map φ : G0 → 3, and h ∈ H such that δ(0 ∩G0)

⊂ 3 and θ(x) = φ(x)δ(x)h for almost every x ∈ G0. If δ(G0) ⊂ 3, then θ(x) ∈ 3h for
almost every x ∈ G0. Since 0G0 = G, we would get θ(x) ∈ 3h for almost every x ∈ G,
contradicting the assumption that θ is non-trivial.

Conversely, assume that we have a continuous homomorphism δ : G0 → H such that
δ(0 ∩G0) ⊂ 3 and δ(G0) 6⊂ 3, where G0 < G is an open subgroup. Let α : G→ G0
be as in the proof of (1). Then β := δ ◦α : G→ H is a homomorphism from R(0 y G)

to R(3 y H). If β is trivial, then we can find h ∈ H such that δ(x) ∈ 3h for almost
every x ∈ G0. This implies that δ(G0) ⊂ 3, a contradiction. ut

4.4. Homomorphism rigidity for compact actions

We end this section by proving analogues of Theorem 4.1 and Corollary 4.4 for translation
compact actions.

Theorem 4.6. Let 0 be a countable group together with a dense embedding τ : 0 ↪→ G

into a connected compact Polish group G. Assume that π1(G) is finite and the left trans-
lation action 0 y (G,mG) has spectral gap. Let 3 be a countable subgroup of a Polish
groupH and consider the left translation action3y H . Let θ : G→ H be a Borel map
such that θ(0x) ⊂ 3θ(x) for almost every x ∈ G. Let w : 0 × G → 3 be the cocycle
defined by θ(gx) = w(g, x)θ(x) for all g ∈ 0 and almost every x ∈ G.

Then we can find a finite abelian subgroup 1 < 3 such that if H1 denotes the cen-
tralizer of 1 in H and π : H → 1\H the quotient, then we can find a continuous
homomorphism δ : G→ H1/1, a Borel map φ : G→ 3, and h ∈ 1\H satisfying

• δ(0) ⊂ (3 ∩H1)/1,
• w′(g, x) = φ(gx)−1w(g, x)φ(x) ∈ 3 ∩ H1 and π(w′(g, x)) = δ(g) for all g ∈ 0

and almost every x ∈ G, and
• π(φ(x)−1θ(x)) = δ(x)h for almost every x ∈ G.

Proof. By repeating verbatim the first part of the proof of Theorem 4.1 we can find C ∈
(31/32, 1) and a neighborhood V of e in G such that

mG({x ∈ X | w(g, xt) = w(g, x)}) ≥ C for all g ∈ 0 and t ∈ V .

By applying Theorem 3.2 we find a subgroup30 < 3, a finite subgroup1 < Z(30),
a Borel map φ : G → 3, and a homomorphism δ : 0 → 30/1 such that w′(g, x) =
φ(gx)−1w(g, x)φ(x) ∈ 30 and p(w′(g, x)) = δ(g) for all g ∈ 0 and almost every
x ∈ G. Here p : 30 → 30/1 is the quotient homomorphism. Let π : H → 1\H

denote the quotient. Since 1 < 30 is central, we can identify 30/1 = 1\30. Under
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this identification we have p = π|30 , hence π(w′(g, x)) = δ(g) for all g ∈ 0 and almost
every x ∈ G.

Define θ̃ : G → 1\H by letting θ̃ (x) = π(φ(x)−1θ(x)). Let H1 be the centralizer
of1 inH . Notice thatH1/1, and hence30/1, acts on1\H by left multiplication. Then

θ̃ (gx) = δ(g)θ̃(x) for all g ∈ 0 and almost every x ∈ G. (4.5)

Now, define the quotient topological space6 := (H1/1)\(1\H). Since6 is homeo-
morphic to H1\H and H1 < H is a closed subgroup, [BK96, Proposition 1.2.3] implies
that 6 is a Polish space. If q : 1\H → 6 denotes the quotient map, then q(θ̃(gx)) =
q(θ̃(x)) for all g ∈ 0 and almost every x ∈ G. Since 0 < G is dense, the map G 3 x 7→
q(θ̃(x)) ∈ 6 is constant. Thus, we can find h0 ∈ 1\H and a Borel map α : G→ H1/1

such that θ̃ (x) = α(x)h0 for almost every x ∈ G.
In combination with (4.5), this implies that α(gx)h0 = δ(g)α(x)h0 for all g ∈ 0 and

almost every x ∈ G. Since the left multiplication action H1/1y 1\H is free, we get

α(gx) = δ(g)α(x) for all g ∈ 0 and almost every x ∈ G. (4.6)

By Lemma 2.8, δ : 0 → 30/1 < H1/1 extends to a continuous homomorphism
δ : G → H1/1 and we can find h1 ∈ H1/1 such that α(x) = δ(x)h1 for almost every
x ∈ G. Thus, if we let h = h1h0 ∈ 1\H , then θ̃ (x) = δ(x)h for almost every x ∈ G.
This finishes the proof of the theorem. ut

As a consequence of Theorem 4.6 we obtain the following analogue of Corollary 4.4 for
translation compact actions.

Corollary 4.7. Assume the setting from Theorem 4.6. Then:

(1) R(0 y G) ≤B R(3 y H) if and only if there exist a finite subgroup 6 < 0

such that 6 < Z(G), a finite subgroup 1 < 3 and a closed subgroup H0 < H

such that 1 < Z(H0), and a continuous isomorphism δ : G/6 → H0/1 such that
δ(0/6) = (3 ∩H0)/1.

(2) There exists a non-trivial homomorphism from R(0 y G) to R(3 y H) if and
only there exist a finite subgroup 1 < 3 and a closed subgroup H0 < H such that
1 < Z(H0), and a non-trivial continuous homomorphism δ : G→ H0/1 such that
δ(0) ⊂ (3 ∩H0)/1.

Proof. Since the “if” assertions of both (1) and (2) are immediate, let us prove the “only
if” assertions. To this end, let θ : G → H be a Borel map such that θ(x) ∈ 3θ(y)
whenever x ∈ 0y. By Theorem 4.6, we can find a finite subgroup 1 < 0 such that if
H1 is the centralizer of 1 in H and π : H → 1\H the quotient map, then there exists
a continuous homomorphism δ : G → H1/1, a Borel map φ : G → 3, and h ∈ 1\H
satisfying

δ(0) ⊂ (3 ∩H1)/H1, π(φ(x)−1θ(x)) = δ(x)h for mG-almost every x ∈ G.

Define θ̄ : G→ H by letting θ̄ (x) = φ(x)−1θ(x), and θ̃ : G→ 1\H by θ̃ = π ◦ θ̄ .
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Let H0 be the unique subgroup of H1 which contains 1 and satisfies δ(G) = H0/1.
Then δ(0) ⊂ (3 ∩H0)/1.

In the rest of the proof we derive the “only if” assertions by treating cases (1) and (2)
separately.

(1) Assume that θ is a reduction, that is, θ(x) ∈ 3θ(y) if and only if x ∈ 0y. By
arguing as in the proof of Corollary 4.4(1), it follows that 6 := ker δ is contained in 0
and is finite. Since G is connected, we find that 6 ⊂ Z(G). We still denote by δ the
resulting homomorphism δ : G/6→ H0/1.

Then δ(0/6) ⊂ (3 ∩ H0)/1. To show the reverse inclusion, let λ ∈ 3 ∩ H0. Then
we can find g ∈ G such that δ(g6) = λ1. Further, θ̃ (gx) = δ(g6)θ̃(x) = (λ1)θ̃(x) for
almost every x ∈ G. This implies that θ̄ (gx) ∈ 3θ̄(x), and hence θ(gx) ∈ 3θ(x), for
almost every x ∈ G. Thus, gx ∈ 0x for almost every x ∈ G. This implies that g ∈ 0,
and so g6 ∈ 0/6, as claimed. This finishes the proof of (1).

(2) Assume that θ is not trivial, i.e. θ(x) is not contained is a single3-orbit for almost
every x ∈ G. We claim that δ is non-trivial. Suppose for contradiction that δ(g) = e

for all g ∈ G. Then for every g ∈ G we have θ̃ (gx) = θ̃ (x) for almost every x ∈ G.
By Fubini’s theorem we can find x0 ∈ G such that θ̃ (gx0) = θ̃ (x0) for almost every
g ∈ G. This clearly implies that θ(y) ∈ 3θ(x0) for almost every y ∈ G, leading to a
contradiction. ut

5. Homomorphism rigidity for general compact actions

In Section 4, we proved several rigidity results for translation compact actions with spec-
tral gap. The purpose of this and the next section is to establish analogous rigidity re-
sults for more general compact actions. More precisely, in this section we will use Theo-
rems 4.1 and 4.6 to prove the following result which generalizes both of these theorems.

Theorem 5.1. Let 0 be a countable group together with a dense embedding τ : 0 ↪→ G

into a compact Polish groupG. Assume that the left translation action 0 y (G,mG) has
spectral gap. Let3 be a countable group together with an embedding ρ : 3 ↪→ H into a
locally compact Polish groupH . LetH y Y be a continuous action on a Polish space Y .
Let θ : G → Y be a Borel map such that θ(0x) ⊂ 3θ(x) for almost every x ∈ G.
Assume that there exist k ≥ 1 and an H -invariant Gδ subset � ⊂ Y k such that

• the action H y � is smooth and free, and
• (θ(xi))

k
i=1 ∈ � for m⊗kG -almost every x = (xi)ki=1 ∈ G

k .

Then:

(1) Assume that G = lim
←−

0/0n is a profinite completion of 0. Then we can find an
open subgroup G0 < G, a continuous homomorphism δ : G0 → H , a Borel map
φ : G0 → 3, and y ∈ Y such that δ(0∩G0) ⊂ 3 and θ(x) = φ(x)δ(x)y for almost
every x ∈ G0.

(2) Assume that G is connected and π1(G) is finite. Then we can find a finite abelian
subgroup 1 < 3 such that if H1 denotes the centralizer of 1 in H and π : Y →
1\Y the quotient, then we can find a continuous homomorphism δ : G → H1/1,
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a Borel map φ : G → 3, and y ∈ 1\Y satisfying δ(0) ⊂ (3 ∩ H1)/1 and
π(φ(x)−1θ(x)) = δ(x)y for almost every x ∈ G. (Here, we are using the action of
H1/1 on 1\Y by left multiplication).

Since the actionH y � = H is free and smooth, Theorem 5.1 generalizes Theorems 4.1
and 4.6. Before proceeding to the proof, let us mention that part (1) of Theorem 5.1 will
be employed in Section 8 to prove Corollary D.

Proof of Theorem 5.1. Let w : 0 × G → 3 be a Borel map such that θ(gx) =
w(g, x)θ(x) for all g ∈ 0 and almost every x ∈ G. Since the action 3 y Y is not
assumed to be free, we cannot conclude that w is a cocycle at this point. However, as a
consequence of the claim below, it will follow that w is indeed a cocycle.

Since � ⊂ Y k is a Gδ set and Y k is a Polish space, � is a Polish space (see [Ke95,
Theorem 3.11]). Since the action H y � is continuous, free and smooth, Lemma 2.7
implies that there exists a Borel map p : �→ H such that p(hx) = hp(x) for all h ∈ H
and x ∈ �.

The rest of the proof relies on the following:

Claim. There exists a sequence of Borel maps φn : G → H such that for all g ∈ 0 we
have mG({x ∈ G | w(g, x) = φn(gx)φn(x)−1

})→ 1 as n→∞.

Proof of the claim. It suffices to show that for every ε > 0 and any finite subset F ⊂ 0,
we can find a Borel map φ : G→ H such that mG({x ∈ G | w(g, x) = φ(gx)φ(x)−1

})

≥ 1− ε for all g ∈ F .
Since 3 is countable, we can find a neighborhood V of the identity e in G such that

mG({x ∈ G | w(g, xt) = w(g, x)}) ≥ 1−
ε

k|F |
for all g ∈ F and t ∈ V. (5.1)

Recall that (θ(xi))ki=1 ∈ � for almost every (xi)ki=1 ∈ G
k . It follows that for all x ∈ G

we have (θ(xti))ki=1 ∈ � for almost every (ti)ki=1 ∈ G
k . Sincem⊗kG (V

k) = mG(V )
k > 0,

using Fubini’s theorem we deduce that there exist t1, . . . , tk ∈ V such that (θ(xti))ki=1 ∈

� for almost every x ∈ G.
Further, we define ψ : G → Y k by letting ψ(x) := (θ(xt1), . . . , θ(xtk)). Then

ψ(x) ∈ � for almost every x ∈ G. We denote by C the set of all x ∈ G such that

• ψ(x) ∈ � and ψ(gx) ∈ � for all g ∈ F ,
• θ(gxti) = w(g, xti)θ(xti) for all g ∈ F and 1 ≤ i ≤ k, and
• w(g, x) = w(g, xti) for all g ∈ F and 1 ≤ i ≤ k.

Since ψ(x) ∈ � and θ(gx) = w(g, x)θ(x) for all g ∈ 0 and almost every x ∈ G,
(5.1) implies that mG(C) ≥ 1− ε.

Finally, we define φ : G→ H by letting

φ(x) =

{
π(ψ(x)) if x ∈ ψ−1(�),

e if x 6∈ ψ−1(�).
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Then for every x ∈ C and g ∈ F we have

φ(gx) = π(ψ(gx)) = π(θ(gxt1), . . . , θ(gxtk))

= π(w(g, xt1)θ(xt1), . . . , w(g, xtk)θ(xtk))

= π(w(g, x)θ(xt1), . . . , w(g, x)θ(xtk)) = w(g, x)π(θ(xt1), . . . , θ(xtk))

= w(g, x)φ(x).

This finishes the proof of the claim. ut

Now, since the action 0 y G is strongly ergodic, the claim and Lemma I imply that there
exists a Borel map ψ : G → H such that w(g, x) = ψ(gx)ψ(x)−1 for all g ∈ 0 and
almost every x ∈ G. We are therefore in a position to apply Theorems 4.1 and 4.6, in
cases (1) and (2), respectively.

Assume that we are in case (1). By Theorem 4.1 we can find an open subgroup
G0 < G, a continuous homomorphism δ : G0 → H , and a Borel map φ : G0 → 3

such that w(g, x) = φ(gx)δ(g)φ(x)−1 for all g ∈ 0 ∩G0 and mG-almost every x ∈ G0.
Thus, if we define θ̃ : G0 → Y by θ̃ (x) = φ(x)−1θ(x), then θ̃ (gx) = δ(g)θ̃(x) for

all g ∈ 0 ∩ G0 and almost every x ∈ G0. Since δ is continuous and 0 ∩ G0 < G0 is
dense, for every g ∈ G0 we have θ̃ (gx) = δ(g)θ̃(x) for almost every x ∈ G0. By Fubini’s
theorem, we can find x0 ∈ G0 such that θ̃ (gx0) = δ(g)θ̃(x0) for almost every g ∈ G0.
Denoting y = δ(x−1

0 )θ̃(x0) ∈ Y , we see that θ̃ (g) = δ(g)y for almost every g ∈ G0. This
clearly implies the conclusion.

Finalizing the proof in case (2) is similar; we leave the details to the reader. ut

6. Orbit equivalence rigidity for compact actions

In this section, we study orbit equivalences between general compact actions with spectral
gap. More precisely, assuming thatG and H are connected, we provide conditions which
ensure that any orbit equivalence between the actions 0 y G/K and 3 y H/L comes
from a conjugacy between them. This result will be used in Section 10 to give examples
of ergodic treeable equivalence relations without outer automorphisms.

Theorem 6.1. Let 0 and 3 be countable groups together with dense embeddings τ :
0 ↪→ G and σ : 3 ↪→ H into compact Polish groups G and H . Let K < G and L < H

be closed subgroups. Assume that:

(1) The actions 0 y (G/K,mG/K) and 3y (H/L,mH/L) are free.
(2) The left translation action 0 y (G,mG) has spectral gap.
(3) G and H are connected, π1(G) is finite,

⋂
g∈G gKg

−1
= {e}, and

⋂
h∈H hLh

−1

= {e}.
(4) 0 has no non-trivial finite normal subgroups, and 3 has infinite conjugacy classes

(icc).
(5) For any h ∈ 3 \ {e}, we have

(mH ×mH )({(x, y) ∈ H ×H | h ∈ xLx
−1yLy−1

}) = 0.



2762 Adrian Ioana

Let B ⊂ H/L be a Borel set with mH/L(B) > 0. Endow B with the probability measure
obtained by restricting and rescaling mH/L. Let θ : G/K → B be an isomorphism of
probability spaces such that θ(0x) = 3θ(x) ∩ B for mG/K -almost every x ∈ G/K .

Then B = H/L almost everywhere, and we can find a continuous isomorphism δ :

G→ H , y ∈ H , and α ∈ [R(3y H/L)] such that

• δ(0) = 3 and δ(K) = yLy−1, and
• θ̃ := α ◦ θ : G/K → H/L is given by θ̃ (gK) = δ(g)yL for mG-almost every g ∈ G.

Remark 6.2. The technical condition (5) is imposed so that we can adapt the strategy of
the proof of Theorem 4.1 to this new context. Condition (5) is trivially satisfied ifL = {e}.
More interestingly, it also holds if L = SO(n) < H = SO(n+ 1) for n ≥ 2 (see Claim 2
in the proof of Theorem 10.2).

Proof of Theorem 6.1. Let π : G → G/K denote the quotient map. Define the cocycle
w : 0×G/K → 3 by θ(gx) = w(g, x)θ(x). DenoteW = w ◦ (id0 ×π) : 0×G→ 3

and 2 = θ ◦ π : G→ H/L. The proof of Theorem 6.1 relies on four claims.

Claim 1. There exist a subgroup 30 < 3, a finite central subgroup 31 < Z(30),
a Borel map φ : G → 3 and a homomorphism δ : 0 → 30/31 such that W ′(g, x) :=
φ(gx)W(g, x)φ(x)−1

∈ 30 and p(W ′(g, x)) = δ(g) for all g ∈ 0 and almost every
x ∈ G, where p : 30 → 30/31 denotes the quotient homomorphism.

Proof of Claim 1. We will apply Theorem 3.2. To this end, note that W : 0 ×G→ 3 is
a cocycle and we have

2(gx) = W(g, x)2(x) for all g ∈ 0 and almost every x ∈ G. (6.1)

We start by adapting the beginning of the proof of Theorem 4.1. Let ε ∈ (0, 1/64).
Since the action 0 y (G,mG) has spectral gap, Lemma 2.5 provides δ > 0 and F ⊂ 0
finite such that whenever Y is a standard Borel space and ρ : G → Y is a Borel map
satisfying mG({x ∈ G | ρ(gx) = ρ(x)}) ≥ 1− δ for all g ∈ F , we can find y ∈ Y such
that mG({x ∈ G | ρ(x) = y}) ≥ 1− ε. Thus, µ({x ∈ X | ρ(gx) = ρ(x)}) ≥ 1− 2ε for
all g ∈ 0.

Since 3 is countable, we can find a neighborhood V of e ∈ G such that

mG({x ∈ G | W(g, xt) = W(g, x)}) ≥ 1− δ for all g ∈ F and every t ∈ V. (6.2)

Let Y denote the double coset space L\H/L. Fix t ∈ V and define ρt : G → Y by
letting ρt (x) = L2(x)−12(xt)L. By (6.1), for almost every x ∈ G we have

ρt (gx) = L2(gx)
−12(gxt)L = L2(x)−1W(g, x)−1W(g, xt)2(xt)L. (6.3)

Combining (6.2) and (6.3) implies that mG({x ∈ G | ρt (gx) = ρt (x)}) ≥ 1 − δ for all
g ∈ F . Since Y is a standard Borel space, by using the above consequence of the spectral
gap property we get

mG({x ∈ G | ρt (gx) = ρt (x)}) ≥ 1− 2ε for all g ∈ 0 and every t ∈ V . (6.4)
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Now, let Zt be the set of x ∈ G for which there is h ∈ 3 \ {e} such that h ∈
2(x)L2(x)−12(xt)L2(xt)−1. We claim that mG(Zt ) = 0 for almost every t ∈ G. By
Fubini’s theorem, it suffices to show that the set Z of (x, y) ∈ G ×G for which there is
h ∈ 3 \ {e} with h ∈ 2(x)L2(x)−12(y)L2(y)−1 has measure zero. To see this, note
that assumption (5) implies that (mH/L ×mH/L)((2×2)(Z)) = 0. Since θ is measure
preserving, it follows that (mG ×mG)(Z) = 0.

Next, by (6.3) we have {x ∈ G | ρt (gx) = ρt (x) and W(g, x) 6= W(g, xt)} ⊂ Zt .
Since mG(Zt ) = 0, by (6.4) we deduce that mG({x ∈ G | W(g, x) = W(g, xt)}) ≥

1− 2ε for all g ∈ 0 and every t ∈ V . Since 1− 2ε > 31/32, G is connected and π1(G)

is finite, part (2) of Theorem 3.2 gives the claim. ut

Claim 2. δ is injective.

Proof of Claim 2. Since 0 has no non-trivial finite normal subgroups, in order to show
that δ is injective it suffices to argue that ker δ is finite. Assume that it is infinite and let
F ⊂ 3 be a finite set such that mG({x ∈ G | φ(x) ∈ F }) > 2/3. Claim 1 implies that

mG/K({x ∈ G/K | w(g, x) ∈ F
−131F }) > 1/3 for all g ∈ ker δ.

Since ker δ is assumed to be infinite, we can find h ∈ F−131F and a sequence {gn}n
of distinct elements of ker δ such that if Xn = {x ∈ G/K | w(gn, x) = h}, then
mG/K(Xn) > 1/(3|F−131F |) for all n. Since the sets {Xn}n are mutually disjoint, this
provides a contradiction. ut

Claim 3. 31 = {e}, and δ(0) < 3 has finite index.

Proof of Claim 3. Let 6 := p−1(δ(0)) < 30. We claim that 6 < 3 has finite index.
Assume the index is infinite. We denote R = R(3 y H/L) and S = R(6 y H/L).
We define ϕS : [[R]] → [0, 1] by letting

ϕS(β) = mH/L({x ∈ H/L | β(x) is defined and β(x) ∈ [x]S}) for every β ∈ [[R]].

Since mG({x ∈ G | φ(x) ∈ F }) > 2/3, Claim 1 implies that

mG/K({x ∈ G/K | θ(gx) ∈ F
−16Fθ(x)}) > 1/3 for all g ∈ 0. (6.5)

Now, for every g ∈ 0, we define αg = θgθ−1
: B → B. Then αg ∈ [[R]], and inequality

(6.5) gives ∑
h,k∈F

ϕS(hαgk
−1) > 1/3 for all g ∈ 0. (6.6)

Note that the equivalence relation associated to the action (αg)g∈0 of 0 on B is equal
to R|B . By using (6.6) and a straightforward modification of the proof of [IKT08, Theo-
rem 2.5], it follows that we can find a Borel set A ⊂ H/L of positive measure and κ ≥ 1
such that every R|A-class contains at most κ S|A-classes. In other words, the inclusion
S|A ⊂ R|A has index at most κ .

We will show that this contradicts our assumption that 6 < 3 has infinite index.
Let us first show that if g1, . . . , gκ+1 ∈ 3 and gi6 6= gj6 for all i 6= j , then



2764 Adrian Ioana

mH/L(
⋂κ+1
i=1 giA) = 0. Indeed, if x ∈

⋂κ+1
i=1 giA, let y = g−1

1 x. Then y ∈ A and
(g−1
i g1)y ∈ [y]R ∩ A = [y]R|A for all 2 ≤ i ≤ κ + 1. Since 6 6= 6(g−1

i g1) 6=

6(g−1
j g1) for all i, j ∈ {2, . . . , κ + 1} with i 6= j , we deduce that the S|A-classes of

y, (g−1
2 g1)y, . . . , (g

−1
κ+1g1)y are disjoint. This would imply that [y]R|A contains more

than κ S|A-classes, which is a contradiction.
Next, let p be the smallest natural number such that whenever g1, . . . , gp ∈ 3 are

such that gi6 6= gj6 for all 1 ≤ i < j ≤ p, then mH/L(
⋂p

i=1 giA) = 0. Then clearly
1 < p ≤ κ + 1. Let q be a natural number such that q < p and 2q ≥ p. Since q < p, we
can find g1, . . . , gq ∈ 3 such that gi6 6= gj6 for all i 6= j , and Ã =

⋂q

i=1 giA satisfies
mH/L(Ã) > 0.

Since 6 < 3 has infinite index, for any finite set S ⊂ 3 we have S6S 6= 3. Using
this fact, we can find a sequence {ha}∞a=1 of elements of 3 such that ha(

⋃q

i=1 gi6) ∩

hb(
⋃q

i=1 gi6) = ∅ for all a 6= b. Since haÃ ∩ hbÃ = (
⋂q

i=1 hagiA) ∩ (
⋂q

i=1 hbgiA)

and 2q ≥ p, we conclude thatmH/L(haÃ∩hbÃ) = 0 for all a 6= b. SincemH/L(Ã) > 0,
this gives the desired contradiction.

We have thus proved that 6 < 3 has finite index. Since 6 < 30 and 31 < Z(30),
we see that 6 commutes with31. Since 6 < 3 has finite index, the set {ghg−1

| g ∈ 3}

is finite for every h ∈ 31. As 3 is assumed icc, we get 31 = {e}. Hence δ(0) = 6 has
finite index in 3. ut

Claim 4. φ : G→ 3 factors through π : G→ G/K .

Proof of Claim 4. Let k ∈ K . Claim 1 implies that

φ(gxk)δ(g)φ(xk)−1
= w(g, π(x)) = φ(gx)δ(g)φ(x)−1

for all g ∈ 0 and almost every x ∈ G. Hence, if we denote λ(x) = φ(x)−1φ(xk), then
λ(gx) = δ(g)λ(x)δ(g)−1 for all g ∈ 0 and almost every x ∈ G.

For h ∈ 3, letAh = {x ∈ G | λ(x) = h}. Then gAh = Aδ(g)hδ(g)−1 andmH/L(Ah) =
mH/L(Aδ(g)hδ(g)−1) for all g ∈ 0. Since δ(0) < 3 has finite index by Claim 2 and 3 is
icc, {δ(g)hδ(g)−1

| g ∈ 0} is infinite for any h ∈ 3 \ {e}. Since the sets {Ah}h∈3 are
mutually disjoint, we conclude that mH/L(Ah) = 0 for all h ∈ 3 \ {e}. This implies that
φ(x) = φ(xk) for almost every x ∈ G. Therefore, φ factors through π : G→ G/K , as
claimed. ut

We are now ready to finish the proof of Theorem 6.1. By Claim 4, we can define θ̃ :
G/K → H/L by letting θ̃ (x) = φ(x)−1θ(x). Also, let B̃ = θ̃ (G/K). Claims 1 and 3
show that θ̃ (gx) = δ(g)θ̃(x) for all g ∈ 0 and almost every x ∈ G/K .

Next, let x ∈ G/K and y ∈ 0x be such that θ̃ (x) = θ̃ (y). If y = gx for some
g ∈ 0, then θ̃ (y) = δ(g)θ̃(x) = δ(g)θ̃(y). By freeness, we infer that δ(g) = e. Since
δ is injective, we deduce that g = e and hence x = y. This argument implies that there
exists α ∈ [R(3 y H/L)] such that θ̃ = α ◦ θ . In particular, θ̃ (0x) = 3θ̃(x) ∩ B̃ for
mG/K -almost every x ∈ G/K .

Now, since δ(0) < 3 has finite index and 3 < H is dense, it follows that H0 =

δ(0) < H is a finite index closed subgroup. Since H is connected, we derive that
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H0 = H , hence δ(0) < H is dense. Therefore, the left translation actions of δ(0) on
H and on H/L are ergodic. Since B̃ ⊂ H is a δ(0)-invariant set of positive measure, we
find that B̃ = K/L, and hence B = K/L almost everywhere.

By combining the last two paragraphs, we deduce that θ̃ (0x) = 3θ̃(x) for almost
every x ∈ G/K . Since θ̃ (0x) = δ(0)θ̃(x) for almost every x ∈ G/K , we conclude that
δ(0) = 3.

Altogether, θ̃ : (G/K,mG/K) → (H/L,mH/L) is an isomorphism of probability
spaces such that θ̃0θ̃−1

= 3. Since
⋂
g∈G gKg

−1
= {e} and

⋂
h∈H hLh

−1
= {e}, the

closure of 0 in Aut(G/K,mG/K) is equal toG, and the closure of3 in Aut(H/L,mH/L)
isH . Hence θ̃Gθ̃−1

= H . Thus, δ extends to a continuous isomorphism δ : G→ H such
that for all g ∈ G we have θ̃ (gx) = δ(g)θ̃(x) for almost every x ∈ G/K .

By Fubini’s theorem, there is x0K ∈ G/K such that θ̃ (gx0K) = δ(g)θ̃(x0K) for al-
most every g ∈ G. Let y ∈ H be such that δ(x0)

−1θ̃ (x0K) = yL. Then θ̃ (gK) = δ(g)yL
for almost every g ∈ G. By using this identity, it is easy to see that δ(K) = yLy−1. ut

Specializing Theorem 6.1 to the case when K = L = {e}, we obtain the following
analogue of the first part of Theorem A for certain translation compact actions.

Corollary 6.3. Let 0 and 3 be countable icc groups together with dense embeddings
τ : 0 ↪→ G and σ : 3 ↪→ H into connected compact metrizable groups G and H . As-
sume that π1(G) and π1(H) are finite, and the left translation action 0 y (G,mG) has
spectral gap. Then the actions 0 y (G,mG) and 3y (H,mH ) are stably orbit equiva-
lent if and only if there exists a continuous isomorphism δ : G→ H such that δ(0) = 3.

Proof. Assume that 0 y (G,mG) and 3 y (H,mH ) are stably orbit equivalent. Since
0 y (G,mG) is strongly ergodic, 3y (H,mH ) is also strongly ergodic, and hence has
spectral gap by Proposition 2.2. The conclusion then follows from Theorem 6.1. ut

7. Proofs of Corollaries B and C

The aim of this section is to prove Corollaries B and C. We start by introducing some
notation.

Notation 7.1. Let S be a set of primes.

• We define the profinite groups

GS =
∏
p∈S

SL2(Fp), HS =
∏
p∈S

GL2(Fp), KS =
∏
p∈S

SL2(Zp).

• For every p, we denote by πp : SL2(Z) → SL2(Fp) reduction modulo p and by
τp : SL2(Z)→ SL2(Zp) the natural embedding.
• Whenever S is infinite, we view SL2(Z) as a subgroup of GS via the diagonal embed-

ding πS = (πp)p∈S .
• We view SL2(Z) as a subgroup of KS via the diagonal embedding τS = (τp)p∈S .
• For a subgroup 0 < SL2(Z), we denote by G0,S and K0,S the closures of 0 in GS

and KS , respectively.
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Next, let us record the following fact that we will use several times in the next three
sections:

Fact 7.2. If 0 < SL2(Z) is a non-amenable subgroup, then

• G0,S < GS and K0,S < KS are open subgroups (see Example 2.1), and
• the left translation actions 0 y G0,S and 0 y K0,S have spectral gap (see Ex-

ample 2.3).

We continue with several elementary rigidity results about homomorphisms between the
groups defined above. We start by collecting some properties of SL2(Fp) that we will use
repeatedly.

Proposition 7.3. Let p be a prime and denote by I ∈ SL2(Fp) the identity matrix. Then:

(1) |SL2(Fp)| = p(p2
− 1).

(2) If p ≥ 5, then the only proper normal subgroups of SL2(Fp) are {I } and {±I }.
(3) Any automorphism of SL2(Fp) is given by conjugation with an element of GL2(Fp).
(4) Any proper subgroup L < SL2(Fp) with |L| > 60 is 2-step solvable. In particular,

for every a, b, c, d ∈ L we have [[a, b], [c, d]] = I .

The first three facts are well-known. The last fact is a consequence of Dickson’s clas-
sification of subgroups of SL2(Fp) (see [BG05, Theorem 7 and Proposition 3] and the
references therein).

Below, whenever S ⊂ T , we consider the natural embeddingsGS<GT andKS<KT .

Lemma 7.4. Let S and T be sets of primes ≥ 7. If δ : GS → GT is an injective homo-
morphism, then S ⊂ T and we can find g ∈ HS such that δ(x) = gxg−1 for all x ∈ GS .
In particular, δ(GS) = GS .

Proof. The lemma is an immediate consequence of the following:

Claim. If p ≥ 7 and q ≥ 5 are primes and ρ : SL2(Fp) → SL2(Fq) is a non-trivial
homomorphism, then p = q and we can find h ∈ GL2(Fp) such that ρ(x) = hxh−1 for
all x ∈ SL2(Fp).

Proof of the Claim. Since ker ρ is a proper normal subgroup of SL2(Fp), either
ker ρ = {I } or ker ρ = {±I }. Thus, ρ(SL2(Fp)) is isomorphic to either SL2(Fp) or
PSL2(Fp). As p ≥ 5, neither of these groups is solvable (they are perfect groups, by
Proposition 7.3(2)). Hence, ρ(SL2(Fp)) is not solvable. Moreover, it has cardinality either
p(p2

− 1) or p(p2
− 1)/2.

Since p(p2
− 1)/2 > 60, by using Proposition 7.3(4) we deduce that ρ(SL2(Fp)) =

SL2(Fq). Since the equation q(q2
−1) = p(p2

− 1)/2 has no solutions p ≥ 7, q ≥ 5, we
conclude that p = q and that ρ is an automorphism of SL2(Fp). By Proposition 7.3(3),
we are done. ut

Corollary 7.5. Let S and T be infinite sets of primes. Let G < GS be an open subgroup
and 0 < SL2(Z) an infinite subgroup. If there exists an injective continuous homomor-
phism δ : G→ GT such that δ(0 ∩G) ⊂ SL2(Z), then |S 4 T | <∞.
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Proof. Let T0 = T \ {2, 3, 5}. Since GT0 < GT is an open subgroup and δ is continuous,
we find that δ−1(GT0) < G is an open subgroup. Thus, δ−1(GT0) < GS is an open
subgroup, and therefore we can find a set S0 ⊂ S \ {2, 3, 5} such that GS0 ⊂ δ

−1(GT0)

and S \ S0 is finite. Altogether, δ|GS0
: GS0 → GT0 is an injective homomorphism.

By Lemma 7.4 we know that S0 ⊂ T0 and δ(GS0) = GS0 . We claim that T0 \ S0 is
finite. Assume it is infinite. Then SL2(Z) ∩GS0 = {e} (where we view both SL2(Z) and
GS0 as subgroups ofGT0). On the other hand, since δ is injective, δ(0∩GS0) is an infinite
subgroup of SL2(Z) ∩ δ(GS0) = SL2(Z) ∩GS0 . This gives a contradiction.

Finally, the claim implies that |S0 4 T0| <∞, and hence |S 4 T | <∞. ut

For the rest of this section, form≥1, we denote SL2(mZ)=ker(SL2(Z)→SL2(Z/mZ)).

Lemma 7.6. Let S be an infinite set of primes andm, n ≥ 1. Assume that p - m for every
p ∈ S. Assume that there exists g ∈ HS =

∏
p∈S GL2(Fp) such that gπS(SL2(mZ))g−1

= πS(SL2(nZ)). Thenm = n and we can find k ∈ GL2(Z) and l in the center of HS such
that g = πS(k)l.

Proof. Write g = (gp)p∈S . Denote by A the set of x ∈ M2(Z) for which there exists
y ∈ M2(Z) such that gpπp(x)g−1

p = πp(y) for all p ∈ S. Since S is infinite, such a y
must be unique and we denote it by φ(x). Moreover, A is a subring of M2(Z) and the
map φ : A→M2(Z) is an injective ring homomorphism.

By hypothesis, A contains the ring generated by SL2(mZ) inside M2(Z). Since the
latter contains m2M2(Z), we deduce that m2M2(Z) ⊂ A.

Next, we find a matrix k ∈ M2(Z) with non-zero determinant such that φ(x)k = kx
for all x ∈ A. We view every v ∈ Z2 as a 2 × 1 matrix over Z and denote by vt its
transpose. Let v ∈ Z2 and w ∈ (m2Z)2 be non-zero vectors. Since vwt ∈ m2M2(Z) \ {0}
and φ is injective, we see that φ(vwt ) 6= 0. Let z ∈ Z2 be such that φ(vwt )z 6= 0.

We define k : Z2
→ Z2 by letting k(ω) = φ(ωwt )z. Fix ω ∈ Z2 and x ∈ A. Since φ

is multiplicative on A, we have φ(xωwt ) = φ(x)φ(ωwt ). Thus, k(xω) = φ(xωwt )z =
φ(x)φ(ωwt )z = φ(x)k(ω). Hence, if we view k as an element of M2(Z), then kx =
φ(x)k for all x ∈ A. This implies that ker k is an A-invariant subgroup of Z2. Since
A ⊃ m2M2(Z), ker k is either {0} or Z2. Since k(v) 6= 0, it follows that k is injective,
proving our claim.

Now, write k =
(
a b
c d

)
, where a, b, c, d are integers. After replacing k with 1

N
k for

someN ≥ 1, we may assume that the greatest common divisor of a, b, c, d is 1. We claim
that k ∈ GL2(Z). Note that if x ∈ SL2(mZ), then the hypothesis gives φ(x) ∈ SL2(nZ).
Since also x ∈ A, we get kxk−1

= φ(x) ∈ SL2(nZ). By applying this relation to x ∈{(
1 m
0 1

)
,
(

1 0
m 1

)}
, it follows that mk

(
0 1
0 0

)
k−1, mk

(
0 0
1 0

)
k−1
∈ nM2(Z).

These relations imply that n det k divides ma2, mb2, mc2 and md2. Thus, n det k |m
and so n |m. By symmetry, we also get m | n. Hence m = n and det k ∈ {±1}, and thus
k ∈ GL2(Z).

Finally, let p ∈ S. Then for every x ∈ A we have

gpπp(x)g
−1
p πp(k) = πp(φ(x)k) = πp(kx) = πp(k)πp(x).
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This shows that g−1
p πp(k) commutes with πp(A). By using again the fact that A ⊃

m2M2(Z) and p - m, we deduce that g−1
p πp(k) is a multiple of the identity. Therefore,

we can find lp ∈ Z/pZ \ {0} such that πp(k)lp = gpI . Since l = (lp)p∈S belongs to the
center of G, the conclusion follows. ut

Lemma 7.7. Let p be a prime and S a set of primes such that p 6∈ S.

(1) ([GG88]) If K < KS is an open subgroup and δ : K → SL2(Zp) is a continuous
homomorphism, then δ(K) is finite.

(2) If L < SL2(Zp) is an open subgroup, then there is no injective continuous homo-
morphism δ : L→ KS .

Proof. We denote by ρq : SL2(Zq) → SL2(Fq) for q ≥ 3 and by ρ2 : SL2(Z2) →

SL2(Z/4Z) the obvious surjective homomorphisms. Then 0q := ker ρq is a pro-q normal
open subgroup of SL2(Zq) for any prime q. (Recall that a profinite group G is pro-q if
the index [G : G0] is a power of q for any open subgroup G0 < G.)

Moreover, as is well-known, 0q is torsion free. Thus, if 1 is a finite subgroup of
SL2(Zq), then ρq |1 is injective, and therefore |1| divides [SL2(Zq) : 0q ].

(1) This part follows from the proof of [GG88, Lemma A.6]. For completeness, we
include the argument from [GG88]. We first treat the case when S has one element. Thus,
let δ : K → SL2(Zp) be a continuous homomorphism, where K is an open subgroup of
SL2(Zq) for some prime q 6= p. Since [δ(K) : δ(K ∩ 0q)] ≤ [K : K ∩ 0q ] < ∞, we
may assume that K < 0q .

Fix n ≥ 2 and define 0p,n = ker(SL2(Zp) → SL2(Z/pnZ)). Then δ−1(0p,n) is an
open subgroup of δ−1(0p). Let m = [δ−1(0p) : δ

−1(0p,n)]. Since δ−1(0p) is a pro-q
group (being an open subgroup of K), we can write m = qα for some α ≥ 0. On the
other hand, since m | [0p : 0p,n] and 0p is pro-p, we have m = pβ for some β ≥ 0.
Since p 6= q, we must have m = 1.

In other words, δ−1(0p) = δ
−1(0n,p) for all n ≥ 2. Since

⋂
n≥2 0p,n = {e}, we get

δ−1(0p) = {e}. This implies that δ(K) is finite.
Now, in general, let K < KS be an open subgroup and δ : K → SL2(Zp) a

continuous homomorphism. Then K contains an open subgroup L < KS of the form
L =

∏
q∈S Lq , such that Lq < SL2(Zq) is an open subgroup for all q ∈ S, and the

set {q ∈ S | Lq 6= SL2(Zq)} is finite. For every subset F ⊂ S, we denote LF =∏
q∈F Lq < KS .

The first part of the proof shows that δ(Lq) is a finite subgroup of SL2(Zp) for all
q ∈ S. Since {δ(Lq)}q∈S are mutually commuting subgroups of SL2(Zp), we infer that
δ(LF ) is a finite group whenever F ⊂ S is finite. This implies that |δ(LF )| ≤ N :=

[SL2(Zp) : 0p]. Thus, we can choose F such that |δ(LF )| ≥ |δ(LF ′)| for any other finite
subset F ′ of S. In particular, if F ′ ⊃ F then δ(LF ′) = δ(LF ). Since δ is continuous,
we deduce that δ(L) = δ(LF ), hence δ(L) is finite. Since L < K has finite index, we
conclude that δ(K) is finite as well.

(2) Assume for contradiction that there is an injective continuous homomorphism
δ : L→ KS , where L < SL2(Zp) is an open subgroup and p 6∈ S. We may take L < 0p
so that L is pro-p.
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We denote ρ = (ρq)q∈S : KS →
∏
q∈S SL2(Zq)/0q and claim that ρ ◦ δ is injective.

To see this, for q ∈ S, we denote by σq : KS → SL2(Zq) the quotient homomorphism.
Then σq◦δ : L→ SL2(Zq) is a continuous homomorphism. Since p 6∈ S, part (1) implies
that σq(δ(L)) is finite. Since 0q is torsion free, we derive that σq(δ(L)) ∩ 0q = {e} for
all q ∈ S.

Now, assume that ρ(δ(x)) = e for some x ∈ L. Then, given q ∈ S, we have
ρq(σq(δ(x))) = e, or equivalently σq(δ(x)) ∈ 0q . Using the last paragraph, we find
that σq(δ(x)) = e, hence δ(x) = e. Since δ is injective, we deduce that x = e. Hence,
ρ ◦ δ is also injective.

Next, we note that ρq ◦ σq ◦ δ : L→ SL2(Zq)/0q is not onto, for any q ∈ S. This is
because L is pro-p, while the cardinality of SL2(Zq)/0q is q(q2

− 1) if q ≥ 3, and 40 if
q = 2.

To finish the proof we use an idea from [Gam02]. Let Lq = ρq(σq(δ(L))). Then Lq
is a proper subgroup of SL2(Zq)/0q ∼= SL2(Zq) when q ≥ 3, and of SL2(Z2)/02 ∼=

SL2(Z/4Z) when q = 2. By Proposition 7.3(4), either |Lq | ≤ 60, or [[a, b], [c, d]] = e
for all a, b, c, d ∈ Lq . In either case we deduce that [[a, b], [c, d]]60!

= e for all
a, b, c, d ∈ Lq and q ∈ S. Since ρ(δ(L)) ⊂

∏
q∈S Lq and ρ ◦ δ is injective, we con-

clude that [[a, b], [c, d]]60!
= e for all a, b, c, d ∈ L. This is however impossible, since

L contains a non-abelian free group (e.g. L ∩ SL2(Z)). ut

Corollary 7.8. Let S and T be sets of primes. Let K < KS be an open subgroup and
0 < SL2(Z) an infinite subgroup. If there exists an injective continuous homomorphism
δ : K → KT such that δ(0 ∩K) ⊂ SL2(Z), then S = T .

Proof. Firstly, Lemma 7.7(2) implies that S ⊂ T . Assume that we can find p ∈ T \ S,
and let ρ : KT → SL2(Zp) be the quotient homomorphism. By Lemma 7.7(1) we see
that ρ(δ(K)) is finite. On the other hand, by hypothesis, 3 = δ(0 ∩ K) is an infinite
subgroup of SL2(Z). Since the restriction of ρ to SL2(Z) is injective, we deduce that
ρ(3) is infinite, a contradiction. ut

Proof of Corollary B. By Fact 7.2, G0,S < GS is an open subgroup and the action
0 y G0,S has spectral gap for any infinite set of primes S and every non-amenable
subgroup 0 < SL2(Z).

Let S and T be infinite sets of primes. Below, we prove assertions (1) and (2) sepa-
rately.

(1) Assume that either SL2(Z) y GS is stably orbit equivalent to SL2(Z) y GT , or
R(0 y G0,S) is Borel reducible to R(3 y G3,T ). In either case, by Theorem A, we
can find an open subgroup G0 < GS , a closed subgroup G1 < GT , and a continuous
isomorphism δ : G0 → G1 such that δ(πS(SL2(Z)) ∩G0) = πT (SL2(Z)) ∩G1.

Let S1 = S \ {2, 3, 5} and T0 = T \ {2, 3, 5}. Then GS1 ∩ δ
−1(G1 ∩ GT0) is an

open subgroup of G0, and thus of GS . Hence, we can find a subset S0 ⊂ S1 such that
S \ S0 is finite, GS0 ⊂ G0, and δ(GS0) ⊂ GT0 . Lemma 7.4 implies that S0 ⊂ T0,
δ(GS0) = GS0 , and there is g ∈ HS0 such that δ(x) = gxg−1 for all x ∈ GS0 . Moreover,
δ(πS(SL2(Z)) ∩GS0)) = πT (SL2(Z)) ∩GS0 .
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Next, we denote by m the product of the primes in S \ S0. Then πS(SL2(Z)) ∩
GS0 = πS0(SL2(mZ)). Since πT (SL2(Z)) ∩GS0 is infinite (hence, non-trivial), T \ S0 is
finite. Moreover, if n is the product of the primes in T \ S0, then πT (SL2(Z)) ∩ GS0 =

πS0(SL2(nZ)). Altogether, gπS0(SL2(mZ))g−1
= πS0(SL2(nZ)).

Lemma 7.6 implies that m = n, and thus S \ S0 = T \ S0. This gives S = T , as
claimed.

(2) Let 0,3 < SL2(Z) be non-amenable subgroups. Assume that either 0 y G0,S
is stably orbit equivalent to 3 y G3,T , or R(0 y G0,S) is Borel reducible to
R(3 y G3,T ). In either case, Theorem A implies that we can find an open subgroup
G0 < G0,S , a closed subgroupG1 < G3,T , and a continuous isomorphism δ : G0 → G1
such that δ(0 ∩G0) = 3 ∩G1. Since G0,S < GS is open, G0 < GS is open. By Corol-
lary 7.5, we conclude that |S 4 T | <∞. ut

Proof of Corollary C. By Fact 7.2, K0,S < KS is an open subgroup and the action
0 y K0,S has spectral gap for any non-empty set S of primes and every non-amenable
subgroup 0 < SL2(Z).

Let 0,3 < SL2(Z) be non-amenable subgroups and S, T non-empty sets of primes.
Assume that either 0 y K0,S is stably orbit equivalent to 3y K3,T , or R(0 y K0,S)

is Borel reducible to R(3 y K3,T ). Theorem A then implies that we can find an open
subgroup K0 < K0,S , a closed subgroup K1 < K3,T , and a continuous isomorphism
δ : K0 → K1 such that δ(0 ∩K0) = 3 ∩K1.

Since K0,S < KS is open, so is K0 < KS , and Corollary 7.8 implies that S = T . ut

We end this section by proving the following strengthening of part of Corollary C.

Corollary 7.9. Let S, T be non-empty sets of primes, and 0,3 < SL2(Z) non-amenable
subgroups. If T 6⊂ S, then any homomorphism from R(0 y K0,S) to R(3y K3,T ) is
trivial.

Proof. Assume that there is a non-trivial homomorphism from R(0 y K0,S) to
R(3 y K3,T ). By Corollary 4.4 we can find an open subgroup K0 < K0,S and a
continuous homomorphism δ : K0 → KT such that δ(0 ∩ K0) ⊂ 3 and δ(K0) 6⊂ 3.
Also, Fact 7.2 implies that K0 < KS is an open subgroup.

Let p ∈ T \ S and let ρ : KT → SL2(Zp) be the quotient homomorphism. By
Lemma 7.7(1) we know that ρ(δ(K0)) is finite. Thus, we can find an open subgroup
K1 < K0 such that ρ(δ(K1)) = {e}. Since the restriction of ρ to SL2(Z) is injective and
δ(0 ∩ K1) ⊂ SL2(Z), we deduce that δ(0 ∩ K1) = {e}. As 0 ∩ K1 < K1 is dense, it
follows that δ(K1) = {e}. Since 0 ∩K0 < K0 is dense, we also have (0 ∩K0)K1 = K0.
This yields δ(K0) = δ(0 ∩K0) ⊂ 3, a contradiction. ut

8. Proof of Corollary D

This section is devoted to the proof of Corollary D. In fact, we will establish a stronger
result from which Corollary D will follow easily. Before stating this result, let us recall
some notation.
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For a prime p, let PG(1,Qp) = Qp ∪ {∞} be the projective line over the field Qp of
p-adic numbers. Consider the Borel action of GL2(Qp) on PG(1,Qp) by linear fractional
transformations: (

a b

c d

)
· x =

ax + b

cx + d
.

Theorem 8.1. Let p 6= q be primes, and 0 < SL2(Z), 3 < GL2(Qq) countable sub-
groups. Assume that 0 is non-amenable and denote by G the closure of 0 in SL2(Zp).
Then any homomorphism from R(0 y G) to R(3y PG(1,Qq)) is trivial with respect
to mG.

Proof. Since 0 < SL2(Z) is non-amenable, Fact 7.2 shows thatG < SL2(Zp) is an open
subgroup and the action 0 y (G,mG) has spectral gap.

We denote PGL2(Qq) = GL2(Qq)/Zq , where Zq = {zI | z ∈ Q∗q} is the center of
GL2(Qq). Let ρ : GL2(Qq) → PGL2(Qq) be the quotient homomorphism. Notice Zq
acts trivially on PG(1,Qq) and consider the resulting action PGL2(Qq)y PG(1,Qq).

Let � := {(x1, x2, x3) ∈ PG(1,Qq)3 | xi 6= xj for all 1 ≤ i < j ≤ 3}.

Claim 1. The action PGL2(Qq)y � is transitive and free.

Proof of Claim 1. This claim is well-known, but we include a proof for completeness.
Let x1, x2, x3 ∈ PG(1,Qq) be distinct. Consider the matrix

g =

(
x2 − x3 −x1(x2 − x3)

x2 − x1 −x3(x2 − x1)

)
.

Then g ∈ GL2(Qq) and the function x 7→ g · x =
(x−x1)(x2−x3)
(x−x3)(x2−x1)

maps x1 7→ 0, x2 7→ 1,
and x3 7→ ∞. This shows that the action PGL2(Qq)y � is transitive.

If g =
(
a b
c d

)
∈ GL2(Qq) and the equation g ·x = ax+b

cx+d
= x has at least three distinct

solutions x ∈ PG(1,Qq), then a = d and b = c = 0, hence g ∈ Zq . This shows that the
action PGL2(Qq)y � is also free. ut

Now, since Zq acts trivially on PG(1,Qq), it follows that R(3 y PG(1,Qq)) is Borel
isomorphic to R(ρ(3)y PG(1,Qq). Let θ : G→ PG(1,Qq) be a homomorphism from
R(0 y G) to R(ρ(3)y PG(1,Qq)). Assume for contradiction that θ is not trivial.

Claim 2. (θ(x1), θ(x2), θ(x3)) ∈ � for almost every (x1, x2, x3) ∈ G
3.

Proof of Claim 2. If the claim is false, then {(x1, x2) ∈ G
2
| θ(x1) = θ(x2)} has positive

measure. Then there exists y ∈ PG(1,Qq) such that {x ∈ G | θ(x) = y} has positive
measure. Since 0 < G is dense, we get θ(x) ∈ 3y for almost every x ∈ G. This
contradicts our assumption that θ is not trivial. ut

Since 0 y (G,mG) has spectral gap and any transitive action is smooth, Claims 1 and 2
imply that the hypothesis of Theorem 5.1(1) is satisfied. Thus, we can find an open
subgroup G0 < G, a continuous homomorphism δ : G0 → PGL2(Qq), a Borel map
φ : G0 → ρ(3), and y ∈ PG(1,Qq) such that δ(0∩G0) ⊂ ρ(3) and θ(x) = φ(x)δ(x)y
for almost every x ∈ G0.
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Claim 3. We can find an open subgroup G1 < G0 such that δ(G1) = {e}.

Proof of Claim 3. Let Kq = I + qM2(Zq) =
{( 1+a b

c 1+d

)
| a, b, c, d ∈ qZq

}
. Then

Kq < GL2(Qq) is an open compact subgroup, hence ρ(Kq) < PGL2(Qq) is an open
subgroup. Since δ is continuous and G0 < SL2(Zp) is an open subgroup, we can find an
open subgroup G1 < G0 such that δ(G1) ⊂ ρ(Kq). Moreover, we may assume that G1
is a pro-p group (see the proof of Lemma 7.7).

Now, let Kq,n = I + qnM2(Zq). Then Kq,n is an open subgroup of Kq for every
n ≥ 1, and {Kq,n}n≥1 is a basis of open neighborhoods of the identity in Kq . Since
Kq/Kq,n ∼= I + qM2(Z/qnZ) and |I + qM2(Z/qnZ)| = q4(n−1), we deduce that Kq is
a pro-q group. Thus so is ρ(Kq), being a continuous image of Kq .

Since G1 is pro-p and Kq is pro-q, and p 6= q, any continuous homomorphism from
G1 to Kq is trivial (see e.g. the proof of Lemma 7.7). This proves the claim. ut

Finally, Claim 3 implies that θ(x) ∈ 3y for almost every x ∈ G1. Since 0 < G is dense
andG1 < G is open, we have 0G1 = G. From this we deduce that θ(x) ∈ 3y for almost
every x ∈ G, and hence θ is trivial. ut

Proof of Corollary D. Let 0 < GL2(Qp) and 3 < GL2(Qq) be countable subgroups,
for some primes p 6= q, such that 00 := 0 ∩ SL2(Z) is non-amenable. Assume for
contradiction that there exists a Borel reduction θ : PG(1,Qp) → PG(1,Qq) from
R(0 y PG(1,Qp)) to R(3y PG(1,Qq)).

Next, note that SL2(Zp) y PG(1,Qp) is Borel isomorphic to the left multiplication
action SL2(Zp) y SL2(Zp)/Kp, where Kp < SL2(Zp) denotes the subgroup of lower
triangular matrices. Indeed, the former action is transitive (see e.g. [Th01, Lemma 6.1])
andKp is the stabilizer of 0 ∈ PG(1,Qp). This implies that there exists a unique SL2(Zp)-
invariant Borel probability measure on PG(1,Qp), which we denote by µp.

Let π : SL2(Zp) → SL2(Zp)/Kp be the quotient map, and define 2 := θ ◦ π :

SL2(Zp) → PG(1,Qq). Denote also by G the closure of 00 in SL2(Zp). Since 00
is non-amenable, Fact 7.2 implies that G < SL2(Zp) is an open subgroup. Let k =
[SL2(Zp) : G] and let g1, . . . , gk ∈ SL2(Zp) be such that SL2(Zp) =

⊔k
i=1Ggi . For

1 ≤ i ≤ k, let 2i : G→ PG(1,Qp) be given by 2i(x) = 2(xgi).
Then 2i is a homomorphism from R(00 y G)) to R(3 y PG(1,Qq)). By Theo-

rem 8.1 we conclude that2i is trivial, i.e. there is yi ∈ PG(1,Qq) such that2i(x) ∈ 3yi
for mG-almost every x ∈G. Hence θ(x)∈

⋃k
i=13yi for µp-almost every x ∈PG(1,Qp).

This contradicts the fact that θ is countable-to-one. ut

9. Proofs of Corollaries E and F

In this section we will use Corollary 4.3 to deduce Corollaries E and F. We start by
proving Corollary E. As at the beginning of Section 7, we denote GS =

∏
p∈S SL2(Fp)

and HS =
∏
p∈S GL2(Fp) for any infinite set S of primes. Let πp : M2(Z) → M2(Fp)

be reduction modulo p.
Let α =

( 1 0
0 −1

)
∈ GL2(Z). We still denote by α the element (πp(α))p∈S of HS .

Then α2
= I and α ∈ HS normalizes GS . Below we consider the semidirect product
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GS o Z/2Z, where Z/2Z = {I, α} and α acts on GS by conjugation. Note also that α
commutes with the center Z = {±I } of GS .

We begin by proving the first part of Corollary E.

Corollary 9.1. Let S be an infinite set of primes and denote R = R(SL2(Z) y GS).
Then Out(R) ∼= (GS/Z)o Z/2Z.

Proof. We define σh : GS → GS for h ∈ GS and σβ : GS → GS for β ∈ {I, α} by
letting

σh(x) = xh and σβ(x) = βxβ
−1 for all x ∈ G.

As σh commutes with SL2(Z) y GS and β normalizes SL2(Z), we have σh, σβ ∈
Aut(R). Moreover, since σβσhσ−1

β = σβhβ−1 , we have a homomorphism σ : GS oZ/2Z
→ Aut(R). We denote ρ = ε◦σ : GSoZ/2Z→ Out(R), where ε : Aut(R)→ Out(R)
is the quotient homomorphism.

To prove the corollary, we only have to argue that ker ρ = Z and ρ is surjective.
Firstly, let h ∈ GS and β ∈ {I, α} be such that σ(h,β) = σhσβ belongs to [R]. Thus, we
can find γ ∈ SL2(Z) and a Borel set A ⊂ GS of positive (Haar) measure such that

βxβ−1h = γ x for all x ∈ A. (9.1)

This implies that γ−1β commutes with xy−1 for all x, y ∈ A. Since AA−1 contains an
open neighborhood of the identity in GS , we deduce that γ−1β commutes with GT for
some subset T ⊂ S with S \ T finite. Hence, πp(γ−1β) ∈ {±I } for all p ∈ T . Since T
is infinite and γ−1β ∈ GL2(Z), it follows easily that γ−1β = ±I . Thus, we must have
β = I and γ = ±I . By using (9.1), we conclude that h = ±I , showing that (h, β) ∈ Z.

To show that ρ is surjective, let θ ∈ Aut(R). Then by Corollary 4.3, after replacing θ
with θ ◦ τ for some τ ∈ [R], we can find open subgroupsG0,G1 < GS , an isomorphism
δ : G0 → G1, and h ∈ GS such that δ(SL2(Z) ∩G0) = SL2(Z) ∩G1 and θ(x) = δ(x)h
for all x ∈ G1.

Let S0 ⊂ S be such that S0 ⊂ S \ {2, 3, 7}, S \ S0 is finite, GS0 ⊂ G0, and δ(GS0) ⊂

G1 ∩ GS0 . By Lemma 7.4 we infer that δ(GS0) = GS0 and there is g ∈ HS0 such that
δ(x) = gxg−1 for all x ∈ GS0 . Since δ(SL2(Z)∩GS0) = SL2(Z)∩GS0 , from Lemma 7.6
we deduce that there is k ∈ GL2(Z) such that δ(x) = kxk−1 for all x ∈ GS0 .

Let β ∈ {I, α} be such that k = γβ for some γ ∈ SL2(Z). Then for almost every
x ∈ GS0 we have θ(x) = δ(x)h = γβxβ−1γ−1h = γ σ(γ−1h,β)(x). Thus, the set A of
x ∈ GS such that θ(x) ∈ 0σγ−1h,β(x) containsGS0 . Since A is invariant under R, and R
is ergodic, we deduce that A = GS almost everywhere.

This implies ε(θ) = ε(σ(γ−1h,β)) = ρ(γ−1h,β), which proves that ρ is surjective. ut

We continue by establishing the second part of Corollary E.

Corollary 9.2. Let S be an infinite set of primes and 0 < SL2(Z) a non-amenable sub-
group. Let G0,S denote the closure of 0 in GS . Then the equivalence relation R =
R(0 y G0,S) and the II1 factor M = L∞(G0,S) o 0 have trivial fundamental groups,
i.e. F(R) = F(M) = {1}.
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Proof. Fact 7.2 shows that G0,S < GS is an open subgroup and the action 0 y G0,S
has spectral gap. Let t ∈ F(R). Corollary 4.3 provides open subgroups G0,G1 < G0,S
such that t = [G0,S : G0]/[G0,S : G1] and a continuous isomorphism δ : G0 → G1.

Since G0,S < GS is open, we see that G0 < GS is open. Thus, we may find a sub-
set S0 of S such that S0 ⊂ S\{2, 3, 5}, S\S0 is finite,GS0 ⊂ G0, and δ(GS0) ⊂ G1∩GS0 .
But then applying Lemma 7.4 to the injective homomorphism δ|GS0

: GS0 → GS0 gives
δ(GS0) = GS0 . Hence,

t =
[G0,S : G0]

[G0,S : G1]
=
[G1 : GS0 ]

[G0 : GS0 ]
=
[δ(G0) : δ(GS0)]

[G0 : GS0 ]
= 1.

Finally, by a result of N. Ozawa and S. Popa [OP07, Corollary 3], M has a unique Cartan
subalgebra, up to unitary conjugacy. This implies that F(M) = F(R) = {1}. ut

Remark 9.3. Note that in the above proof one can use [Io11, Theorem 1.1 and Re-
mark 4.1] instead of [OP07, Corollary 3] to conclude that F(M) = F(R).

Proof of Corollary F. (1) Let p be a prime and denote 0 = SL2(Z),G = SL2(Zp),
R = R(0 y G). Our goal is to show that Out(R) is isomorphic to a (Z/2Z)2-extension
of PSL2(Qp). To this end, let K = SL2(Qp). Then K is a unimodular locally compact
group, i.e. it admits a Haar measure mK which is invariant under both left and right
multiplication by elements of K .

Claim 1. mK is invariant under the conjugation action of GL2(Qp) on K .

Proof of Claim 1. Recall that if we parametrize (a co-null subset of) SL2(Qp) by{(
x y

z
yz+1
x

) ∣∣∣∣ x ∈ Qp \ {0}, y, z ∈ Qp},
then, up to a multiplicative factor, mK is given by the differential form 1

x
dx ∧ dy ∧ dz.

Now, let a ∈ Qp\{0} and set ζ =
(
a 0
0 1

)
. Since ζ

( x y
z t

)
ζ−1
=
( x ay
z/a t

)
, we deduce that

mK is invariant under conjugation with ζ . Since mK is also invariant under conjugation
with elements from SL2(Qp), and every η ∈ GL2(Qp) can be written as η =

( det η 0
0 1

)
η′

with η′ ∈ SL2(Qp), the claim follows. ut

Next, we let

H = {h ∈ GL2(Qp) | deth = ±pn for some n ∈ Z}, 3 = H ∩ GL2(Z[1/p]).

Following S. Gefter [Ge96, Remark 2.8] and A. Furman [Fu03, proof of Theorem 1.6],
we will define a homomorphism ρ : H → Out(R). Fix h ∈ H . We claim that there are
λ ∈ 3 and g ∈ G such that h = g−1λ. Note that λ0 =

(
deth 0

0 1

)
∈ 3 and hλ−1

0 ∈ K =

SL2(Qp). Since SL2(Z[1/p]) and G are dense and, respectively, open in K , we can find
λ1 ∈ SL2(Z[1/p]) and g ∈ G such that λ−1

0 h = g−1λ1. Since λ1λ0 ∈ 3, the claim is
proven.

Let G′ = λ−1Gλ ∩ G and define σh : G′ → G by letting σh(x) = λxh−1
=

(λxλ−1)g. ThenG′ < G is an open subgroup. Moreover, Claim 1 implies thatmG(σh(A))
= mG(A) for any Borel subset A ⊂ G′. Furthermore, since 3 ∩ G = 0, if x, y ∈ G,
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then 0x = 0y if and only if 3x = 3y. Also, if x, y ∈ G′ then 3x = 3y if and only if
3σh(x) = 3σh(y). Altogether, if x, y ∈ G′, then

0x = 0y ⇔ 0σh(x) = 0σh(y).

This implies that σh extends to an automorphism of R, which we still denote by σh.
We define ρh = ε(σh), where ε : Aut(R)→ Out(R) is the quotient homomorphism.

Note that ρh only depends on h, and not on the choices made in its definition. Further-
more, it is easy to see that ρ : H → Out(R) is a homomorphism.

The rest of the proof is divided between two claims.

Claim 2. ker ρ = Z := {±pnI | n ∈ Z} ⊂ H .

Proof of Claim 2. Let h ∈ ker ρ. Let λ ∈ 3 and g ∈ G be such that h = g−1λ.
Since σh ∈ [R], we can find γ ∈ 0 such that A = {x ∈ G | γ x = λxh−1

} has
positive measure. Notice that λ−1γ commutes with xy−1 for all x, y ∈ A. Since A has
positive measure, AA−1 contains an open subgroup of G. Thus λ−1γ ∈ 3 commutes
with

( 1 pn
0 1

)
and

( 1 0
pn 1

)
for some n ≥ 1. Hence λ−1γ = cI for some c ∈ Z[1/p]. Since

det(λ−1γ ) ∈ {±pn | n ∈ Z}, we get c = ±pm for some m ∈ Z. Since there is x ∈ G
such that γ x = λxh−1, finally h = c−1I = ±p−mI ∈ Z. ut

Claim 3. ρ is surjective.

Proof of Claim 3. Let θ ∈ Aut(R). We will prove that ε(θ) = ρh for some h ∈ H .
Since the action 0 y (G,mG) has spectral gap, Corollary 4.3 implies that after

composing θ with an element from [R], we can find open subgroupsG0,G1 < G, a con-
tinuous isomorphism δ : G0 → G1, and g ∈ G such that δ(0 ∩ G0) = 0 ∩ G1 and
θ(x) = δ(x)g−1 for almost every x ∈ G0.

Next, by a result of R. Pink, since G0,G1 < H = SL2(Qp) are compact open
subgroups, δ extends to a continuous automorphism of H (see [Pi98, Corollary 0.3]).
Since the field Qp has no non-trivial automorphisms, there exists λ ∈ GL2(Qp) such that
δ(x) = λxλ−1 for all x ∈ G0.

As δ(0 ∩ G0) = 0 ∩ G1, we get λ(0 ∩ G0)λ
−1
⊂ 0. Hence λSL2(p

nZ)λ−1
⊂ 0

for some n ≥ 1. As the subring of M2(Z) generated by SL2(mZ) contains m2M2(Z)
for every m ∈ Z, we deduce that p2nλM2(Z)λ−1

⊂ M2(Z). If we write λ =
(
a b
c d

)
,

where a, b, c, d ∈ Qp, then xy ∈ p−2n(det λ)Z for all x, y ∈ {a, b, c, d}. Thus, after
replacing λ with kλ for some k ∈ Qp \ {0}, we may assume that a, b, c, d ∈ Z, i.e.
λ ∈ GL2(Qp) ∩M2(Z).

Moreover, we may assume that the greatest common divisor of a, b, c, d is 1. Since
a2, b2, c2, d2

∈ p−2n(det λ)Z, we see that det λ |p2n, hence det λ = ±pm for some
m ∈ N. This shows that λ ∈ 3. Since θ(x) = λxλ−1g for almost every x ∈ G0, it
follows that ε(θ) = ρh, where h = g−1λ ∈ H . ut

Claims 2 and 3 imply that Out(R) ∼= H/Z. Let π : H → H/Z be the quotient homomor-
phism. Then π(SL2(Qp)) ∼= PSL2(Qp) and (H/Z)/PSL2(Qp) =

{(
1 0
0 x

)
PSL2(Qp)

∣∣
x = ±1,±p

}
. It is now easy to see that (H/Z)/PSL2(Qp) ∼= (Z/2Z)2.
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(2) Let 0 < SL2(Z) be a non-amenable subgroup. Denote by L the closure of 0 in
SL2(Zp), and let S = R(0 y L) and M = L∞(L) o 0. Our goal is to show that
F(S) = F(M) = {1}.

By [OP07, Corollary 3] , M has a unique Cartan subalgebra, up to unitary conjugacy.
Thus, F(M) = F(S), and hence it suffices to show that F(S) = {1}.

Towards this goal, let t ∈ F(S). By Fact 7.2, L < SL2(Zp) is an open subgroup and
the action 0 y (L,mL) has spectral gap. By applying Corollary 4.3 we can find open
subgroups L0, L1 < L such that t = [L : L0]/[L : L1] and a continuous homomorphism
δ : L0 → L1.

Since L0, L1 < SL2(Qp) are compact open subgroups, [Pi98, Corollary 0.3] yields
λ ∈ GL2(Qp) such that δ(x) = λxλ−1 for all x ∈ L0. As in the proof of (1), we denote
by mK the Haar measure of K = SL2(Qp). Since mK is invariant under the conjugation
action of GL2(Qp) by Claim 1, we deduce that mK(L0) = mK(λL0λ

−1) = mK(L1).
Since L < K is an open subgroup, we have mK(L) > 0. Since L is a compact

group, the uniqueness of the Haar measure of L implies that we can find a constant c > 0
such that mK(A) = cmL(A) for any Borel subset A ⊂ L. Thus, mL(L0) = mL(L1), or
equivalently [L : L0]

−1
= [L : L1]

−1. This shows that t = 1, and thus F(S) = {1}. ut

10. Proofs of Corollaries G and H

In this section we use Theorem 6.1 to calculate the outer automorphism groups of equiv-
alence relations arising from the natural actions of rather general countable subgroups
0 < SO(n + 1) on Sn and P n(R). In particular, we derive Corollaries G and H, leading
to examples of treeable equivalence relations with trivial outer automorphism group.

We start by fixing some notation:

Notation 10.1. Let n ≥ 2.

• We denote by λn the Lebesgue probability measure on the n-dimensional sphere Sn,
and consider the p.m.p. action SO(n+ 1)y (Sn, λn).
• We denote by µn the probability measure on the n-dimensional real projective space
P n(R) obtained by pushing forward λn through the quotient map Sn → P n(R) :
ξ 7→ [ξ ].
• We consider the action Z/2Z y (Sn, λn) given by the involution T (x) = −x. Then
(Sn, λn)/(Z/2Z) = (P n(R), µn). Moreover, since the actions of Z/2Z and SO(n+ 1)
on Sn commute, we have a p.m.p. action SO(n+ 1)y (P n(R), µn).

Theorem 10.2. Let 0 < G := SO(n + 1) be a countable icc dense subgroup for some
n ≥ 2. Assume that the left translation action 0 y (G,mG) has spectral gap.

(1) Let R = R(0 y (G,mG)). Then:

(a) F(R) = {1}.
(b) If n is even, then Out(R) ∼= NG(0)/0 ×G.
(c) If n is odd, then Out(R) ∼= (NG(0) × G)/0̃, where 0̃ = {(αγ, αI) | γ ∈ 0,

α = ±1} and I ∈ G is the identity matrix.
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(2) Let S = R(0 y (Sn, λn)). Then:
(a) F(S) = {1}.
(b) If n is even, then Out(S) ∼= NG(0)/0 × (Z/2Z).
(c) If n is odd, then Out(S) ∼= (NG(0)× K̃)/K0, where K =

{(
1 0
0 a

∣∣ a ∈ SO(n)
}
,

K̃ =
{(

α 0
0 αa

) ∣∣ a ∈ SO(n), α = ±1
}
, and K0 = {(αγ, αk) | α = ±1, γ ∈

0, k ∈ K}.
(3) Let T = R(0 y (P n(R), µn)) and assume that −I 6∈ 0. Then:

(a) F(T ) = {1}.
(b) If n is even, then Out(T ) ∼= NG(0)/0.
(c) If n is odd, then Out(T ) ∼= NG(0)/0̄, where 0̄ = {αγ | α = ±1, γ ∈ 0}.

Remark 10.3. J. Bourgain and A. Gamburd proved that if 0 < H = SU(2) is a dense
subgroup generated by finitely many matrices {g1, . . . , gk} having algebraic entries, then
the representation π : 0 → U(L2(H,mH )) (equivalently, the action 0 y (H,mH ))
has spectral gap [BG06]. More recently, they proved that this result holds forH = SU(n)
whenever n ≥ 2 [BG11]. In particular, if 0 < G = SO(3) is any dense subgroup which is
generated by finitely many matrices with algebraic entries, then the action 0 y (G,mG)

has spectral gap. This provides a large family of actions to which the above theorem
applies.

Proof of Theorem 10.2. Let us first record a fact that we will use repeatedly:

(?) 0 y (G,mG) has spectral gap, G is connected, π1(G) ∼= Z/2Z is finite, and 0 is
icc, hence has no non-trivial normal subgroups.

By using (?) and applying Theorem 6.1 to H = G, K = {e}, L = {e}, we see that
F(R) = {1}. Moreover, Theorem 6.1 shows that if θ ∈ Aut(R), then after composing θ
with an element of [R], we can find an automorphism δ : G→ Gwith δ(0) = 0, and y ∈
G, such that θ(g) = δ(g)y for almost every g ∈ G. SinceG has no outer automorphisms,
δ(g) = zgz−1 for some z ∈ NG(0). Therefore, if θ : NG(0) × G → Aut(R) denotes
the homomorphism defined by θz,w(g) = zgw, and ε : Aut(R) → Out(R) denotes the
natural quotient homomorphism, then ε ◦ θ is surjective.

Let z ∈ NG(0) and w ∈ G be such that θz,w ∈ [R]. Let γ ∈ 0 be such that
A = {g ∈ G | zgw = γg} has positive measure. Then zgh−1z−1

= γgh−1γ−1 for all
g, h ∈ A. Hence γ−1z commutes with AA−1 and further with G0 :=

⋃
n≥1(AA

−1)n.
Since A has positive measure, AA−1 contains a neighborhood of I ∈ G. Thus, G0 is an
open subgroup of G. Since G is connected, we deduce that G0 = G, and therefore γ−1z

must be in the center of G.
If n is even, then Z(G) = {I }, and hence z = γ . Since there is g ∈ G such that

zgw = γg, we further get w = 1. This shows that the kernel of ε ◦ θ is 0 × {I }, hence
Out(R) ∼= NG(0)/0 × G. If n is odd, then Z(G) = {±I }. It follows that z = αγ and
w = α for α ∈ {±I }. Thus ker(ε ◦ θ) = 0̃, hence Out(R) ∼= (NG(0)×G)/0̃.

This finishes the proof of (1). We now turn to the proofs of (2) and (3).
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We begin by giving an alternative description of the actions of G = SO(n+ 1) on Sn

and P n(R). Let ξ = (1, 0, . . . , 0) ∈ Sn. Since G y Sn is transitive and StabG(ξ) = K ,
it follows that Gy (Sn, λn) is isomorphic to Gy (G/K,mG/K).

Also, notice that K̃ = {g ∈ G | gξ = ±ξ} and K < K̃ is an open normal subgroup
of index 2. Since the actionGy P n(R) is transitive and StabG([ξ ]) = K̃ , it follows that
Gy (P n(R), µn) is isomorphic to Gy (G/K̃,m

G/K̃
).

We are now ready to calculate F(S) and Out(S). Note that (?) ensures that conditions
(1)–(3) of Theorem 6.1 are satisfied for3 = 0,H = G, and L = K . Since (4) is also sat-
isfied by Claim 2, we can apply Theorem 6.1 to deduce that F(S) = {1}. Moreover, if θ ∈
Aut(S), then after composing θ with an element from [S], we can find an automorphism
δ : G→ G and y ∈ G such that δ(0) = 0, δ(K) = yKy−1, and θ(gK) = δ(g)yK for
almost every g ∈ G.

Since G has no outer automorphisms, we can find z ∈ G such that δ(g) = zgz−1 for
all g ∈ G. Thus, if we setw = z−1y, then z ∈ NG(0),w ∈ NG(K), and θ(gK) = zgwK
for almost every g ∈ G. SinceK stabilizes ξ ∈ Sn and w normalizesK , it follows thatK
stabilizes wξ ∈ Sn. This easily implies that wξ = ±ξ , i.e. w ∈ K̃ .

Consider the well-defined homomorphism θ : NG(0) × K̃ → Aut(S) given by
θz,w(gK) = zgwK . Then the above shows that ε ◦ θ : NG(0) × K̃ → Out(S) is
surjective, where ε : Aut(S)→ Out(S) denotes the quotient homomorphism.

Let z ∈ NG(0) and w ∈ K̃ be such that θz,w ∈ [S]. Then we can find γ ∈ 0 such
that A = {gK ∈ G/K | zgwK = γgK} has positive measure. Let α ∈ {±1} be such
that wξ = αξ . Then for every gK ∈ A we have αz(gξ) = γ (gξ). Since mG/K(A) > 0,
Claim 1 implies that αz = γ . Since there exists gK ∈ G/K such that zgwK = γgK , we
deduce that wK = αK , and hence αI ∈ G.

If n is even, then −I 6∈ G, which forces α = 1. Hence w ∈ K and z = γ ∈ 0.
Therefore ker(ε◦θ) = 0×K and thus Out(S) ∼= (NG(0)×K̃)/(0×K) ∼= NG(0)/0×
(Z/2Z). If n is odd, then −I ∈ G, and so ker(ε ◦ θ) = K0. This finishes the proof of (2).

Finally, we compute F(T ) and Out(T ). Recall that we may identify T =

R(0 y G/K̃). By (?), conditions (1)–(3) of Theorem 6.1 are satisfied for H = G,
K and L both equal to K̃ , and 3 = 0. Since −I 6∈ 0, Claim 2 shows that condition (4)
of Theorem 6.1 also holds.

Hence F(T ) = {1}. Moreover, if θ ∈Aut(S), then after composing θ with an element
from [S], we can find z ∈ NG(0) and w ∈ NG(K̃) such that θ(gK̃) = zgwK̃ for
almost every g ∈ G. Since K̃ stabilizes [ξ ] ∈ P n(R) and w normalizes K̃ , we see
that K̃ stabilizes [wξ ] ∈ P n(R). Thus [wξ ] = [ξ ], hence w ∈ K̃ . As a consequence,
θ(gK̃) = zgK̃ for almost every g ∈ G.

Define θ : NG(0) → Aut(T ) by letting θz(gK̃) = zgK̃ . If ε : Aut(T ) → Out(T )
denotes the quotient homomorphism, then the above implies that ε ◦ θ is surjective.

Let z ∈ NG(0) be such that θz ∈ [T ]. Then A = {gK̃ ∈ G/K̃ | zgK̃ = γgK̃} has
positive measure for some γ ∈ 0. If gK̃ ∈ A, then z(gξ) = ±γ (gξ). By using Claim 1,
we get z = αγ for α ∈ {±1}.

If n is even, then −I 6∈ G, so we must have α = 1, hence z = γ ∈ 0. This shows
that ker θ = 0, and therefore Out(T ) ∼= NG(0)/0. If n is odd, then −I ∈ G and we get
ker(ε ◦ θ) ⊂ 0̄. Since also 0̄ ⊂ ker(ε ◦ θ), we deduce that Out(T ) ∼= NG(0)/0̄. ut
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10.1. Proof of Corollary G

Let 0 < G be a subgroup which contains matrices {g1, . . . , gk} with algebraic entries
such that the subgroup 00 of 0 generated by the {g1, . . . , gk} is dense inG. Let us briefly
explain how [BG06] implies that 0 y (G,mG) has spectral gap.

Recall that there is a surjective continuous homomorphism 8 : H = SU(2)→ G =

SO(3) whose kernel is {±I } (see e.g. [Ha03, Section 1.6.1]). More precisely, 8 is given
by

8

((
x y

−ȳ x̄

))

=

 <(x2
− y2) =(x2

+ y2) −2 <(xy)
−=(x2

− y2) <(x2
+ y2) 2 =(xy)

2 <(xȳ) 2 =(xȳ) |x|2 − |y|2

 for all x, y ∈ C with |x|2 + |y|2 = 1.

Let h1, . . . , hk ∈ H be such that 8(h1) = g1, . . . , 8(hk) = gk , and denote by
3 < H the subgroup generated by {h1, . . . , hk}. Since 0 is dense in G, the closure
H0 = 3̄ < H satisfies8(H0) = G. Since8 is a 2-1 map, we get [H : H0] ≤ 2. SinceH
is connected, we must have H0 = H , hence 3 is dense in H . Moreover, since the entries
of g1, . . . , gk are algebraic, the above formula for8 implies that the entries of h1, . . . , hk
are also algebraic.

By a result of J. Bourgain and A. Gamburd [BG06, Theorem 1], since 3 < H is a
dense subgroup generated by the matrices {h1, . . . , hk} with algebraic entries, the action
3y (H,mH ) has spectral gap. This readily implies that 0 y (G,mG) has spectral gap.

Corollary G now follows directly from Theorem 10.2. ut

We continue by proving the following more general form of Corollary H.

Corollary 10.4. Let p, q ≥ 3 be natural numbers. Denote by αp the rotation about the
x-axis by angle 2π/p, and by βq the rotation about the z-axis by angle 2π/q, i.e.

αp =

1 0 0
0 cos 2π

p
− sin 2π

p

0 sin 2π
p

cos 2π
p

 and βq =

cos 2π
q
− sin 2π

q
0

sin 2π
q

cos 2π
q

0
0 0 1

 .
Denote by 0 = 0(p, q) the subgroup of G = SO(3) generated by αp and βq .

(1) If p, q are odd and p 6= q, then 0 ∼= (Z/pZ) ∗ (Z/qZ), Out(R(0 y G)) ∼=

(Z/2Z)3 ×G, Out(R(0 y S2)) ∼= (Z/2Z)3, and Out(R(0 y P 2(R)) ∼= (Z/2Z)2.
(2) If p ≥ 4 is even and q ≥ 3 is odd, then 0 ∼= (Z/pZ) ∗Z/2Z Dq , Out(R(0 y G)) ∼=

(Z/2Z)2 ×G, Out(R(0 y S2)) ∼= (Z/2Z)2, and Out(R(0 y P 2(R)) ∼= Z/2Z.
(3) If p ≥ 4 is even, q = 2s, s ≥ 3 odd, and p 6= q, then 0 ∼= Dp ∗D2 Dq and

Out(R(0 y G))∼=(Z/2Z)×G, Out(R(0 y S2))∼=Z/2Z and Out(R(0 y P 2(R))
∼= {e}.

Here, Dn denotes the dihedral group with 2n elements. More precisely, Dn is the semi-
direct product Dn = (Z/nZ) o Z/2Z associated with the order two automorphism
x 7→ −x of Z/nZ.
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The isomorphisms between 0 and the corresponding amalgamated free product
groups are due to C. Radin and L. Sadun [RS98, Corollary 2]. Notice that they imply
that 0 is icc.

Proof of Corollary 10.4. Note that αp, βq have algebraic entries, and 0 < G = SO(3)
is dense (since it contains a copy of F2). Corollary G implies Out(R(0 y G)) ∼=

(NG(0)/0)×G, Out(R(0 y S2)) ∼= NG(0)/0× (Z/2Z), and Out(R(0 y P 2(R)) ∼=
NG(0)/0.

In the rest of the proof, we calculate NG(0) in each of the three cases. Towards this,
we let g ∈ NG(0) and denote by ρ the automorphism of 0 given by ρ(x) = gxg−1. Also,
we define

a =

1 0 0
0 −1 0
0 0 −1

 and b =

−1 0 0
0 −1 0
0 0 1

 .
(1) Assume that p, q are odd and p 6= q. Denote 01 = 〈αp〉 ∼= Z/pZ and 02 =

〈βq〉 ∼= Z/qZ. Then 0 = 01 ∗ 02 by [RS98, Corollary 2]. The Kurosh subgroup theorem
implies that we can find h1, h2 ∈ 0 and i1, i2 ∈ {1, 2} such that ρ(01) ⊂ h10i1h

−1
1 and

ρ(02) ⊂ h20i2h
−1
2 . Since 0i and h0ih−1 cannot generate 0 for any h ∈ 0 and i ∈ {1, 2},

we conclude that i1 6= i2. Since p 6= q, we must have i1 = 1 and i2 = 2. It follows that
ρ(01) = h101h

−1
1 and ρ(02) = h202h

−1
2 .

Since h101h
−1
1 and h202h

−1
2 generate 0, we can find k1 ∈ 01 and k2 ∈ 02 such

that h−1
2 h1 = k−1

2 k1. Denote l = h1k
−1
1 = h2k

−1
2 ∈ 0. Then ρ(01) = l01l

−1 and
ρ(02) = l02l

−1.
Therefore, l−1g ∈ NG(01) ∩NG(02). It is easy to see that

NG(01)=

{(
detA 0

0 A

) ∣∣∣∣ A ∈ O(2)
}

and NG(01)=

{(
A 0
0 detA

) ∣∣∣∣ A ∈ O(2))
}
.

(10.1)
If we let D < G be the subgroup consisting of diagonal matrices, then (10.1) implies

that D = NG(01) ∩ NG(02). Hence l−1g ∈ D, showing that g ∈ 〈0,D〉. In conclusion,
NG(0) = 〈0,D〉.

Finally, notice that D = {I, a, b, ab}, a = α
p

2p, b = β
q

2q , αp = α2
2p, βq = β2

2q .
Therefore, 〈0,D〉 = 0(2p, 2q). Moreover, [RS98, Corollary 2] shows that 0(2p, 2q) =
〈αp, b〉 ∗〈a,b〉 〈βq , a〉. Since 0 = 0(p, q) = 〈αp〉 ∗ 〈βq〉, it follows that NG(0)/0 =
0(2p, 2q)/0(p, q) ∼= (Z/2Z)× (Z/2Z).

(2) Assume that p ≥ 4 is even and q ≥ 3 is odd. Note that αp/2p = a normalizes the
cyclic group 〈βq〉. Denote 01 = 〈αp〉 ∼= Z/pZ, 02 = 〈βq , a〉 ∼= Dq , and 3 = 〈a〉 ∼=
Z/2Z. Then by [RS98, Corollary 2] we have 0 = 01 ∗3 02.

Since 01 6∼= 02, by reasoning as in the proof of (1) we can find l ∈ 0 such that
ρ(01) = l01l

−1 and ρ(02) = l02l
−1. Hence l−1g ∈ NG(01) ∩NG(02). It is easy to see

thatNG(01)∩NG(02) = D, which implies that g ∈ 〈0,D〉, and henceNG(0) = 〈0,D〉.
Since D = {I, a, b, ab}, a = α

p/2
p ∈ 0, b = β

q

2q and βq = β2
2q , we deduce that

〈0,D〉 = 0(p, 2q). By [RS98, Corollary 2] we have 0(p, 2q) = 〈αp, b〉 ∗〈a,b〉 〈β2q , a〉.
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Since 0(p, q) = 〈αp〉 ∗〈a〉 〈β2
2q , a〉, we conclude that NG(0)/0 = 0(p, 2q)/0(p, q) ∼=

Z/2Z.
(3) Assume that p ≥ 4 is even, q = 2s, s odd, and p 6= q. Note that αp/2p = a

normalizes the cyclic group 〈βq〉, and βq/2q normalizes the cyclic group 〈αp〉. If we denote
01 = 〈αp, b〉 ∼= Dp, 02 = 〈βq , a〉 ∼= Dq , and 3 = 〈a, b〉 ∼= (Z/2Z)2, then [RS98,
Corollary 2] yields 0 = 01 ∗3 02.

Since 01 6∼= 02, by reasoning as in the proof of (1) we can find l ∈ 0 such that
ρ(01) = l01l

−1 and ρ(02) = l02l
−1. Hence l−1g ∈ NG(01) ∩NG(02). It is easy to see

thatNG(01)∩NG(02) = D, which implies that g ∈ 〈0,D〉, and henceNG(0) = 〈0,D〉.
Since D ⊂ 0, we get NG(0) = 0. ut

Finally, let us note the the actions 0(p, q) y G are neither stably orbit equivalent nor
Borel reducible to each other, for varying values of (p, q). More generally, we have:

Corollary 10.5. Let 0,3 be countable icc dense subgroups of G = SO(3). Assume
that 0 contains matrices g1, . . . , gk which have algebraic entries and generate a dense
subgroup of G. Then:

(1) The actions 0 y (G,mG) and 3y (G,mG) are stably orbit equivalent if and only
if there exists g ∈ G such that g0g−1

= 3.
(2) R(0 y G) ≤B R(3y G) if and only if there exists g ∈ G such that g0g−1

= 3.
(3) There exists a non-trivial homomorphism from R(0 y G) to R(3y G) if and only

if there exists g ∈ G such that g0g−1
⊂ 3.

Moreover, let p, q, r, s ≥ 3 be integers such that (p, q) 6= (r, s), (p, q) 6= (s, r), and
(p, q), (r, s) 6∈ (4Z)2. Then the actions 0(p, q) y (G,mG) and 0(r, s) y (G,mG)

are not stably orbit equivalent, and the equivalence relations R(0(p, q) y G) and
R(0(r, s)y G) are not comparable with respect to Borel reducibility.

Proof. As in the proof of Corollary G, the main result of [BG06] implies that the action
0 y (G,mG) has spectral gap. We claim that if δ : G→ H/1 is a non-trivial continuous
homomorphism, whereH < G is a subgroup and1 < Z(H) is a subgroup, thenH = G,
1 = {e}, and there exists g ∈ G such that δ(x) = gxg−1 for all x ∈ G. This is because
G is a simple group, any proper subgroup H � G has dimension strictly smaller than G,
and G has no outer automorphisms.

By Corollaries 6.3 and 4.7, assertions (1)–(3) follow immediately.
To see the “moreover” assertion, note that the assumptions made and [RS98, Corol-

lary 2] imply that 0(p, q), 0(r, s) are non-isomorphic icc groups. By applying (1) and (2)
we get the conclusion. ut

Remark 10.6. In [Sw94], S. Świerczkowski exhibits an interesting family of embed-
dings of F2 into G = SO(3). Let a, b be integers such that b > 0 and |a| ≤ b. Set
c = b2

− a2 and define 0 to be the subgroup of G generated by the following rotation
matrices:

A =

 a/b −
√
c/b 0

√
c/b a/b 0
0 0 1

 and B =

1 0 0
0 a/b −

√
c/b

0
√
c/b a/b

 .
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The main result of [Sw94] asserts that if a/b /∈ {0,±1/2,±1}, then 0 = 〈A〉 ∗ 〈B〉 ∼= F2.
Thus, if a/b /∈ {0,±1/2,±1}, then since the entries ofA andB are algebraic, Corollary G
applies to 0 and, more generally, to any non-cyclic subgroup 00 < 0. Therefore, the
calculation of the outer automorphism groups of the equivalence relations associated to
the actions of 0 onG, S2, P 2(R) reduces to the calculation of NG(0). However, we have
been unable to compute NG(0) or, more generally, NG(00).
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