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Abstract. We introduce constructions of exact Lagrangian cobordisms with cylindrical Legendrian
ends and study their invariants which arise from Symplectic Field Theory. A pair (X,L) consisting
of an exact symplectic manifold X and an exact Lagrangian cobordism L ⊂ X which agrees with
cylinders over Legendrian links3+ and3− at the positive and negative ends induces a differential
graded algebra (DGA) map from the Legendrian contact homology DGA of 3+ to that of 3−.
We give a gradient flow tree description of the DGA maps for certain pairs (X,L), which in turn
yields a purely combinatorial description of the cobordism map for elementary cobordisms, i.e.,
cobordisms that correspond to certain local modifications of Legendrian knots. As an application,
we find exact Lagrangian surfaces that fill a fixed Legendrian link and are not isotopic through exact
Lagrangian surfaces.
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1. Introduction

The goal of this paper is to introduce constructions of exact Lagrangian cobordisms with
cylindrical Legendrian ends and study their invariants which arise from the Symplectic
Field Theory (SFT) of Eliashberg–Givental–Hofer [EGH].

1.1. Preliminaries

The standard contact structure on R3 is the 2-plane field ξ0 = ker(α0), where α0 =

dz−ydx with respect to the standard coordinates (x, y, z). A 1-dimensional submanifold
3 ⊂ R3 is Legendrian if it is everywhere tangent to ξ0. We assume that Legendrian knots
and links are closed and oriented, unless stated otherwise.
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The Reeb vector field Rα0 of α0 is given by Rα0 = ∂z. A Reeb chord of a Legendrian
link 3 ⊂ R3 is an integral curve of Rα0 with initial and terminal points on 3. We write
C(3) for the set of Reeb chords of 3.

An exact symplectic manifold is a triple (X, ω, β) consisting of a 2n-dimensional
symplectic manifold (X, ω) and a 1-form β satisfying dβ = ω. We will often abbreviate
an exact symplectic manifold as (X, β), (X, dβ), or even X. An n-dimensional subman-
ifold L ⊂ (X, ω, β) is Lagrangian if ω|L = 0 and is exact Lagrangian if β|L is exact in
addition.

The symplectization of (R3, α0) is the exact symplectic manifold (R × R3, etα0),
where t is the coordinate of the first R-factor. A Legendrian link 3 ⊂ R3 gives rise to a
cylindrical Lagrangian submanifold R×3 ⊂ R× R3.

Definition 1.1. Let 3+ and 3− be Legendrian links in R3, (X, β) an exact symplectic
manifold whose positive and negative ends agree with the positive and negative ends
of (R × R3, etα0), and L ⊂ (X, β) an oriented exact Lagrangian submanifold. Then
the pair ((X, β), L) is an exact Lagrangian cobordism from 3+ to 3− with cylindrical
Legendrian ends E±(L) if there exists T > 0 such that

E+(L) = L ∩ ((T ,∞)× R3) = (T ,∞)×3+,

E−(L) = L ∩ ((−∞,−T )× R3) = (−∞,−T )×3−,
(1.1)

and

(i) f is constant on each of E+(L) and E−(L) whenever df = β|L;1 and
(ii) L is compact with boundary 3+ −3− after removing the cylindrical ends E±(L).
An exact Lagrangian cobordism ((X, β), L) from 3 to ∅ is an exact Lagrangian filling
of 3.

Remark 1.2. The results of this paper carry over to the case where the exact Lagrangian
L is unoriented, with the following exception: the grading of a cobordism map induced
by L, as described in Section 1.2, is defined only mod 2.

The most general ambient exact symplectic manifold (X, ω,−θ) that we consider in
this paper is the completion of the cotangent bundle T ∗F of a surface F , where F =
(R×[a−, a+])#6 is the connected sum of a closed surface6 and a strip R×[a−, a+] and
θ is the canonical 1-form on T ∗F . Let ∂−F = R×{a−} and ∂+F = R×{a+}. Then X is
the exact symplectic manifold obtained by attaching half-symplectizations (−∞, 0]×R3

and [0,∞)× R3 to T ∗F along T ∗F |∂−F and T ∗F |∂+F ; for more details, see Section 2.
Below we will also consider deformations of exact Lagrangian cobordisms as above.

More precisely, we consider families (X, θs, Ls), s ∈ S, of exact Lagrangian cobordisms,
where both the 1-form θs and the Lagrangian Ls depend smoothly on the parameter s ∈ S

1 It is automatic that f is constant on each component of E±(L). If f is not the same constant on
all the components of E−(L) or on all the components of E+(L), then the composition of exact La-
grangians is not necessarily exact Lagrangian and there are problems defining the DGA morphism
8(X,L) (see Section 1.2). These were communicated to the authors by Chantraine and Ghiggini;
see [Cha2].
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but are constant outside some compact subset. In what follows we often think of θs as part
of the structure on X and denote the pair (X, θs) by Xs .

1.2. The Legendrian contact homology functor 8

Let cob be the category whose objects are “chord generic” Legendrian links3 ⊂ R3 (see
Definition 3.1) and whose morphisms Hom(3+,3−) are exact Lagrangian cobordisms
from 3+ to 3− with cylindrical Legendrian ends. The pair (R × R3,R × 3) is the
identity in Hom(3,3). If (X21, L21) ∈ Hom(32,31) and (X10, L10) ∈ Hom(31,30),
then their product (X20, L20) = (X21, L21) · (X10, L10) ∈ Hom(32,30) is obtained
from (X21, L21) and (X10, L10) by concatenating the two along their common 31-end.
We point out that the process of concatenation is noncanonical and some care is needed
to make the concatenation associative. One way to do this is to remember the data of the
cylindrical ends E±(L). When we concatenate we truncate the ends so that we have a
fixed width C that is left from each end, i.e., (T , T +C)×3+ and (−T −C,−T )×3−.

Let dgh be the homotopy category of unital (noncommutative) differential graded
algebras (DGAs) over a field F: the objects of dgh are unital DGAs and the morphisms
are unital DGA morphisms up to chain homotopy (see Lemma 3.14).

We now describe a noncanonical functor 8 : cob → dgh, which we call the “Leg-
endrian contact homology functor”. The functor 8 associates a unital DGA A(3) to a
generic Legendrian link 3 ⊂ R3 which is freely generated by C(3) over the group ring
F[H1(3;Z)] (see Section 3 for details). Here both the Reeb chords and the elements of
H1(3;Z) are graded by a Maslov index. The differential of A(3) is defined by a count of
punctured J -holomorphic disks in R×R3, where J is an “adjusted” almost complex struc-
ture; in particular, J is invariant with respect to the t-translation. (See Section 3.2 for more
details.) The disks have boundary on R×3 and are asymptotic to strips over Reeb chords
near the punctures (see the left panel of Figure 1). Furthermore, the disks that contribute
to the differential are required to be rigid up to translation in the t-direction. When3 = ∅,
then A(3) = F with the trivial differential ∂ = 0 and the degree of elements in F is zero.
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Fig. 1. Schematic picture of: R3 and R× R3 in blue (for colors, see the pdf file); the Legendrians
3, 3+, 3− and Lagrangians R × 3 and L in green; the Reeb chords a, b, and c in red; and the
holomorphic disks in black, with a positive puncture at a and negative punctures at b and c.
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The functor8 associates to (X,L) ∈ Hom(3+,3−) a chain homotopy class of DGA
morphisms, one of whose representatives is

8(X,L) : A(3+)→ A(3−),

defined by a count of rigid punctured holomorphic disks in X with boundary on L, for
a suitable almost complex structure. (See Section 3.2 for more details.) The right panel
of Figure 1 depicts a holomorphic disk that is counted in 8(X,L), if we note that our
statements hold not just in R × R3, but for more general exact Lagrangian cobordisms
(X,L) as well.

The usual compactness and gluing results for holomorphic disks imply that the cobor-
dism maps satisfy the following properties (see [E2] and Section 3.5):

Theorem 1.3. 8 : cob→ dgh is a functor, i.e.,

(1) If (X,L) = id, then 8(X,L) = id.
(2) If (X20, L20) = (X21, L21) · (X10, L10), then

8(X20,L20) ' 8(X10,L10) ◦8(X21,L21),

where ' indicates chain homotopy.

Theorem 1.4. If (Xt , Lt ), 0 ≤ t ≤ 1, is an isotopy of exact Lagrangian cobordisms
from 3+ to 3− with cylindrical ends, then 8(X0,L0) ' 8(X1,L1).

For simplicity we use F = Z/2-coefficients throughout, so that A(3±) are algebras
over F and 8(X,L) is an F-algebra morphism. In particular, all curve counts are mod 2
counts. The calculations of8(X,L) are expected to carry over to the setting of more general
coefficient rings using the orientation scheme developed in [EES3], for example.

An augmentation of 3 is a DGA morphism ε : A(3)→ A(∅) = F. Given an exact
Lagrangian filling (X,L) of3, the DGA morphism8(X,L) is an augmentation of3; such
augmentations will be called geometric.

1.3. Main results

The goal of this paper is to give Morse-theoretic and combinatorial descriptions of DGA
maps induced by exact Lagrangian cobordisms (X,L) ∈ Hom(3+,3−), where X is the
completion of T ∗F . This is done through an intermediary called a Morse cobordism, a
compact immersed exact Lagrangian submanifold LMo in T ∗F with double points only
over ∂F and with a Legendrian lift L̃Mo

⊂ J 1F , which is described in more detail in
Section 2. Here J 1F ' T ∗F × R denotes the 1-jet space of F with its standard contact
form dζ − θ , where ζ is the R-coordinate and θ is the canonical 1-form on T ∗F . We
assume that L̃Mo

∩ J 1F |∂F agrees with the Legendrian links 3± ⊂ J 1∂±F ⊂ J 1F

and all the Reeb chords of L̃Mo are contained in J 1F |∂F so that they are in a natural
one-to-one correspondence with the Reeb chords of 3±.

In Section 2 we associate to LMo a 2-parameter family of exact Lagrangian cobor-
disms (Xδ, Lδ;σ ) ∈ Hom(3+,3−), δ, σ > 0, where Xδ is a completion of T ∗F , and
prove:
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Lemma 1.5. Given (X,L) ∈ Hom(3+,3−), where X is the completion of T ∗F , there
exists a Morse cobordism LMo in T ∗F such that the exact Lagrangian cobordisms
(Xδ, Lδ;σ ) associated to LMo are exact Lagrangian isotopic to (X,L).

As in [E1], we define Morse flow trees of a Morse cobordism LMo
⊂ T ∗F from 3+

to 3−. If a is a Reeb chord of 3+ and b a monomial in A(3−), then let T (a;b) denote
the space of Morse flow trees of L̃Mo with a positive puncture at a and negative punctures
(as well as homotopy data) determined by b (see Section 4 for details).

The following main technical result, proved in Section 5.6, gives a Morse-theoretic
expression for the DGA morphism induced by (Xδ, Lδ;σ ).

Theorem 1.6. For all sufficiently small δ, σ > 0,8(Xδ,Lδ;σ ) : A(3+)→ A(3−) is given
as follows: if a ∈ C(3+) then

8(Xδ,Lδ;σ )(a) =
∑

dim(T (a;b))=0

|T (a;b)|b,

where |T (a;b)| is the mod 2 count of points in the compact 0-dimensional moduli
space T (a;b).

By combining Lemma 1.5 and Theorem 1.6, we obtain a Morse-theoretic description of
any 8(X,L), where (X,L) ∈ Hom(3+,3−) and X is the completion of T ∗F . Although
Theorem 1.6 is stated for general F , in applications we take F = R × [a, b]. In par-
ticular we use Theorem 1.6 to find explicit combinatorial formulas for 8(R×R3,L) in the
following special cases:

(a) L is induced by a Legendrian isotopy (see Sections 6.2 and 6.3);
(b) L is a minimum cobordism, i.e., a disk bounding the standard unknot (see Defini-

tion 6.11); and
(c) L is a saddle cobordism that is given by a 0-resolution of a contractible Reeb chord

in the Lagrangian projection (see Definition 6.15).

Explicit formulas for (a) are given in Lemmas 6.6–6.8; the formula for (b) is given in
Lemma 6.12; and the formula for (c) is given in Proposition 6.18.

Remark 1.7. The cobordisms in (b) and (c) above correspond to handle attachments of
Morse index 0 and 1 when dim(L) = 2 and admit generalizations to handle attachments
of Morse index 0, . . . , n − 1 when dim(L) = n; see [R] for a similar study in higher
dimensions.

As an application of these formulas we prove the following result:

Theorem 1.8. Let 3n be the Legendrian (2, n)-torus link in Figure 2, let An = (2n+1
−

(−1)n+1)/3, and let gn = (n− 1)/2 if n is odd and gn = (n− 2)/2 if n is even. Then
there are at least An (resp. An − 1) smoothly isotopic exact Lagrangian fillings of 3n of
genus gn that are pairwise nonisotopic through exact Lagrangian surfaces when n is odd
(resp. even).
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Fig. 2. Lagrangian diagram of a Legendrian (2, n)-torus knot or link, oriented as the closure of a
positive braid on two strands. The total number of crossings is n+ 2.

Theorem 1.8 is in sharp contrast to the situation of the Legendrian unknot U with rota-
tion number r(U) = 0 and Thurston–Bennequin invariant tb(U) = −1. By the isotopy
uniqueness for Lagrangian planes in C2 that are standard at infinity [EP], there is a unique
Lagrangian disk which fills U , up to exact Lagrangian isotopy. (See Figure 10 for such a
disk.)

In Section 9 we discuss some relationships with Khovanov homology [Kh].

Outline of the paper. In Section 2 we construct and relate the various forms of exact La-
grangian cobordisms that are used in this paper. In particular we prove Lemma 1.5. We
then review Legendrian contact homology in Section 3 and gradient flow trees from [E1]
in Section 4. Section 5 is the main technical part of this paper where we prove Theo-
rem 1.6. We then use Theorem 1.6 to compute the DGA maps of elementary exact La-
grangian cobordisms in Section 6. In Section 7 we collect some observations about exact
Lagrangian fillings and augmentations. In Section 8 we give some applications includ-
ing the proof of Theorem 1.8. The connections with Khovanov homology are given in
Section 9.

2. Lagrangian cobordisms with Legendrian ends

In this section we introduce the various forms of exact Lagrangian cobordisms that we
use in this paper.

2.1. Completion of T ∗F

As in Section 1, let F = (R × [a−, a+]) # 6, where 6 is a compact surface and
a+ > a− > 0. Let θ be the canonical 1-form on T ∗F and let ω = −dθ . Let U+ =
R × (a+ − ε, a+] be a neighborhood ∂+F and let (ξ1, η1, ξ2, η2) be the coordinates on
T ∗F |U+ such that (ξ1, ξ2) are the coordinates on U+ and (η1, η2) are the dual coordinates
on R2. Then θ = η1dξ1 + η2dξ2 on T ∗F |U+ .

Consider the map

8+ : (log(a+ − ε), log a+] × R3
→ T ∗F |U+ , (t, x, y, z) 7→ (x, ety, et , z).

Then
8∗+(−θ) = −e

t (ydx + zdt) = et (dz− ydx)− d(etz).

Hence 8+ is a symplectomorphism with respect to d(et (dz − ydx)) on the strip
(log(a+ − ε), log a+] × R3 and the canonical symplectic form ω = −dθ on T ∗F |U+ .
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Next, on (log(a+ − ε),∞)× R3, we consider the 1-form

α = et (dz− ydx)− d(β(t)etz),

where β(t) = 1 for t ∈ (a+ − ε, a+] and β(t) = 0 for t � a+. Then attaching
((log(a+− ε),∞)×R3, α) to T ∗F using8+ yields an exact symplectic manifold which
extends (T ∗F,−θ).

Similarly, let U− be a neighborhood of ∂−F with coordinates (ξ1, ξ2) ∈

R× [a−, a− + ε). We attach (−∞, log(a + ε))× R3 to T ∗F |U− using the map

8−(t, x, y, z) = (x, e
ty, et , z).

The result of these two attachments is an exact symplectic manifold X with cylindrical
ends, called the completion of T ∗F .

2.2. Conical cobordisms

We now explain how to translate the notion of a cylindrical Lagrangian cobordism
(= Lagrangian cobordism with cylindrical ends) to the notion of a conical Lagrangian
cobordism on T ∗F . Conical Lagrangian cobordisms serve as the intermediary between
cylindrical Lagrangian cobordisms and Morse cobordisms, where the latter is particularly
suited for holomorphic disk counting.

Consider the ends

E+(L) = (log(a+ − ε),∞)×3+ ⊂ [log(a+ − ε),∞)× R3,

E−(L) = (−∞, log(a− + ε)] ×3− ⊂ (−∞, log(a− + ε)] × R3,

of a cylindrical Lagrangian cobordism L, where 3± are Legendrian links with parame-
trizations

(x±(s), y±(s), z±(s)), s ∈ S±, (2.1)

and S± are closed 1-manifolds. Then 8±(E±(L)) ∩ T ∗F |U± are parametrized by

(x±(s), ξ2y±(s), ξ2, z±(s)),

where (s, ξ2) ∈ S+ × (a+ − ε, a+] and (s, ξ2) ∈ S− × [a−, a− + ε), respectively.

Definition 2.1. If 3+ and 3− are Legendrian links, then a Lagrangian submanifold
Lco
⊂ T ∗F is a conical Lagrangian cobordism from 3+ to 3− if Lco

∩ T ∗F |U± ad-
mits a parametrization (

x±(s), (ξ2 − a
′
±)y±(s), ξ2, z±(s)

)
, (2.2)

where a− < a+ and a′± < a±. We do not require a− > 0.
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The reader can verify that a surface which admits a parametrization of the form(
x±(s), f (ξ2)y±(s), ξ2, f

′(ξ2)z±(s)
)

is indeed exact Lagrangian.
Let F̂ be the surface obtained from F by gluing E− = R × (a′−, a−] to ∂−F and

E+ = R× [a+,∞) to ∂+F so that X ' T ∗F̂ .

Definition 2.2. Given a conical Lagrangian cobordism Lco
⊂ T ∗F , the long conical La-

grangian cobordism L̂co corresponding to Lco is a Lagrangian submanifold of T ∗F̂ such
that L̂co

∩T ∗F̂ |E−∪E+ admits a parametrization as in (2.2), where (s, ξ2) ∈ S+×[a+,∞)

and (s, ξ2) ∈ S− × (a
′
−, a−], respectively.

2.3. Morse cobordisms

We now define Morse cobordisms. Let 3± ⊂ R3 be Legendrian links with parametriza-
tions as in (2.1).

Definition 2.3. An compact immersed Lagrangian submanifoldLMo in T ∗F with double
points only over ∂F is a Morse cobordism from 3+ to 3− if LMo

∩ T ∗F |U± admits
parametrizations(

x±(s), (A± ∓ (ξ2 − a±)
2)y±(s), ξ2,∓2(ξ2 − a±)z±(s)

)
, (2.3)

where (s, ξ2) ∈ S+ × (a+ − ε, a+] and (s, ξ2) ∈ S− × [a−, a− + ε), respectively, and
A± > 0.

A Morse cobordism LMo has a Legendrian lift L̃Mo
⊂ J 1F which is unique up to

R-translation, and the Reeb chords of L̃Mo over ∂+F and ∂−F are canonically identi-
fied with the Reeb chords of 3+ and 3−, respectively.

2.4. From Morse to conical

We explain how to pass from a Morse cobordism to a conical cobordism.
Let hδ : [0, ε)→ R be a family of increasing functions parametrized by δ ∈ (0, ε/5)

such that

hδ(u) =

{
δu− 1

2δ
2 for u ∈ [0, δ/2],

u2 for u ∈ [δ, ε].

Let LMo be a Morse cobordism and let L′δ be an exact Lagrangian on T ∗F which agrees
with LMo on T ∗F |F−(U+∪U−) and is parametrized by(

x+(s), (A+ − hδ(a+ − ξ2))y+(s), ξ2, h
′
δ(a+ − ξ2)z+(s)

)
,(

x−(s), (A− + hδ(ξ2 − a−))y−(s), ξ2, h
′
δ(ξ2 − a−)z−(s)

) (2.4)

on T ∗F |U± .
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By adding ends R × (a′−(δ), a−] (for an appropriate a′−(δ)) and R × [a+,∞) to
∂±F we obtain a surface Fδ and by adding conical ends to L′δ we obtain a long conical
Lagrangian L̂co

δ ⊂ Xδ := T
∗Fδ .

Given σ > 0, let sσ be the fiber scaling map:

sσ : T
∗M → T ∗M, sσ (q, p) = (q, σp),

where q ∈ M and p ∈ T ∗qM . Taking M = Fδ , we define Lδ;σ := sσ (L̂co
δ ). We refer to

(Xδ, Lδ;σ ) as the conical exact Lagrangian cobordisms associated to LMo.

Proof of Lemma 1.5. Given an exact Lagrangian cobordism L with cylindrical Legen-
drian ends, we apply 8± to transform it into a long conical Lagrangian cobordism L̂co.
By truncating the ends of L̂co we obtain a conical Lagrangian cobordism Lco. Round-
ing Lco near its boundary yields a Morse cobordism LMo (details left to the reader). Now
applying the above procedure gives conical exact Lagrangian cobordisms Lδ;σ . One eas-
ily verifies that L̂co is exact Lagrangian isotopic to Lδ;σ . ut

3. Legendrian contact homology

In this section we review the Legendrian contact homology of links in standard con-
tact R3, first from the SFT perspective of [EGH] and then from the combinatorial per-
spective of [Ch].

3.1. The graded algebra of Reeb chords

We use the notation from Section 1. Let 3 be a Legendrian link in (R3, ξ0), 8t = 8tRα0
the time-t flow of the Reeb vector field Rα0 = ∂z, and C(3) the set of Reeb chords
of3. We remark that the discussion below easily extends to 1-jet spaces (and to R2n+1 in
particular) with the standard contact forms.

The α0-action of c ∈ C(3) is given by

Aα0(c) =

∫
c

α0.

If c± are the endpoints of c, then

Aα0(c) = z(c
+)− z(c−) > 0.

Hence we also refer to Aα0(c) as the length of c.

Definition 3.1 (Chord genericity). A Legendrian link 3 ⊂ (R3, ξ0) is chord generic if,
for any c ∈ C(3), d8`(Tc−3) is transverse to Tc+3 in the contact plane (ξ0)c+ at c+,
where ` = Aα0(c).
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We assume that3 is chord generic, since chord genericity can be attained by perturbing3
in its isotopy class. In particular, C(3) is a finite set and is in one-to-one correspondence
with the double points of the restriction of the Lagrangian projection

5C : R3
→ R2, (x, y, z) 7→ (x, y),

to 3.
Let 3 = 31 ∪ · · · ∪ 3k , where 3j , j = 1, . . . , k, are the connected components of

3. Fix a reference point pj ∈ 3j for each j . For each pair i 6= j , pick a path δij in R3

that connects pi to pj and a path of lines in the contact planes along δij that connects
Tpi3i to Tpj3j . When i = j , we let δii be the constant path at pi . For each Reeb chord
c ∈ C(3) with c± ∈ 3i± , i± ∈ {1, . . . , k}, pick capping paths γ±c in 3i± that connect
pi± to c±. We use the complex trivialization T of ξ0 that is induced from the Lagrangian
projection 5C : R3

→ R2 followed by the standard identification R2
' C. We also write

homology classes in H1(3j ) ' Z multiplicatively: the class which equals m times the
generator is denoted by τmj with τ 0

j = 1j .
Let 03j be a loop of tangent lines of 3j induced by a loop which traverses 3j once

in the direction determined by τj . Then the degree of τj is

|τj | = µ(03j ),

where the Maslov index µ is measured with respect to T.
Let c ∈ C(3) be a Reeb chord of length `. Let 0̂c denote the loop of tangent lines

in ξ0 which is the concatenation of the following four paths:

(i) the chosen path of tangent lines along −δi−i+ ;
(ii) the path of tangent lines of 3 along γ−c ;

(iii) the smallest positive rotation in the contact plane ξc+ that takes d8`(Tc−3) to Tc+3;
and

(iv) the path of tangent lines of 3 along −γ+c .

Here −γ+c is γ+c with the opposite orientation. Then define the degree of c as

|c| = µ(0̂c)− 1,

where the Maslov index µ is measured with respect to T.
The graded algebra A(3) underlying the Legendrian DGA of 3 is the unital algebra

over F which is freely generated by the Reeb chords in C(3) and the homology classes
τ±1
j ∈ H1(3j ), j = 1, . . . , k, modulo the relations that the homology generators com-

mute, with the grading given above.

Remark 3.2. It is often convenient to impose further commutation relations where the
Reeb chords and the homology generators commute. See [EENS, Section 2.3.2] for a
discussion of the various forms of Legendrian DGAs.
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Remark 3.3. If LMo is a Morse cobordism in T ∗F from3+ to3−, then the Reeb chords
of L̃Mo

⊂ J 1F = T ∗F × R over ∂−F (resp. ∂+F ) are in natural one-to-one correspon-
dence with the Reeb chords of 3− (resp. 3+). By abuse of notation, the Reeb chords
of C(L̃Mo) corresponding to c± ∈ C(3±) will be denoted by c±. Then |c−|L̃Mo = |c−|3−
and |c+|L̃Mo = |c+|3+ + 1, where | · |

L̃Mo refers to the grading of A(L̃Mo) and | · |3+
refers to the grading of A(3±).

3.2. Moduli spaces of holomorphic disks

Consider an exact Lagrangian cobordism (X,L) from 3+ to 3− with cylindrical Legen-
drian ends. For cobordisms (X,L), we use the natural maps H1(3±) → H1(L;Z) and
consider A(3±) as algebras generated by Reeb chords and a basis of H1(L;Z) (mod-
ulo the commutation relations for the homology generators). When we want to make the
coefficient ring R explicit we write A(3±;R).

We describe A(3+;F[H1(L;Z)]) more precisely: Pick a reference point qi in each
component of L and for each pj ∈ 3+,j a path δqipj in L from some qi to pj . Given
c ∈ C(3+), we define γ±c as the concatenation of γ±c with the appropriate δpiqj . Then
we repeat the construction of A(3+) from Section 3.1 with γ±c replaced by γ±c and
H1(3+;Z) replaced by H1(L;Z). This gives us A(3+;F[H1(L;Z)]); the construction
of A(3−;F[H1(L;Z)]) is similar.

Let a ∈ C(3+) and b1, . . . , bm ∈ C(3−) be Reeb chords, let τ0, . . . , τm be elements
of H1(L;Z), and let

b = τ0b1τ1b2τ2 . . . τm−1bmτm,

where b−s and b+s+1 both lie on 3js for s ≥ 1; a+ and b+1 both lie on 3j0 ; and b−m and a−

both lie on 3jm . Fix an almost complex structure J on X which is adjusted to the sym-
plectic form on X, i.e.,

• J is compatible with the symplectic form;
• J is R-invariant on the symplectization ends; and
• J (ξ) = ξ and J (∂t ) = Rα0 on the symplectization ends.

If c is a Reeb chord of 3±, then the product R± × c ⊂ R± × R3 of c and a half-line R±
in the R-direction in the symplectization ends is J -holomorphic. We call R± × c a strip
over the Reeb chord c.

Define M(X,L);J (a;b) as the moduli space of J -holomorphic disks

u : (Dm+1, ∂Dm+1)→ (X,L)

with the following properties:

(1) Dm+1 is the closed unit disk with m + 1 boundary points ζ0, . . . , ζm removed. Here
ζ0, . . . , ζm are arranged in counterclockwise order around the boundary of the disk.

(2) u has a positive puncture at ζ0 where it is asymptotic to the strip over the Reeb chord
a at∞.

(3) u has a negative puncture at ζj , j > 0, where it is asymptotic to the strip over the
Reeb chord bj at −∞.
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(4) The loop in L obtained by concatenating the capping path γ+bs , the image of the
boundary segment from ζs to ζs−1 under u, and the capping path −γ−bs−1

represents
the class τs . (Here we use the convention b0 = bm+1 = a.)

The J in the notation of the moduli space will often be suppressed. We will also refer to
u ∈M(X,L);J (a;b) as a J -holomorphic disk in (X,L) from a to b.

Similarly we define M(X,L);J (a1, . . . , ak;b1, . . . ,bk) as the moduli space of J -holo-
morphic disks in (X,L) with positive punctures at a1, . . . , ak and negative punctures
given by b1, . . . ,bk such that a1,b1, . . . , ak,bk are in counterclockwise order on the
boundary of the domain.

Definition 3.4. An (a+b+1)-level broken disk is a union u−b ∪· · ·∪ua , arranged from
bottom to top, such that uj , j 6= 0, maps toX0 = R×R3, u0 maps toX, each component
of uj , j = −b, . . . , a, has one positive puncture and zero or more negative punctures, and
the positive punctures of uj , j = −b, . . . , a − 1, are in one-to-one correspondence with
the negative punctures of uj+1.

An (a + b + 1)-level broken disk is a special case of an (a + b + 1)-level SFT building
(see [BEHWZ]).

3.3. Energy

Let ((X, dβ), L) be an exact Lagrangian cobordism from 3+ to 3− with cylindrical
Legendrian ends. Let

X+ = [T ,∞)× R3, X− = (−∞,−T ] × R3

be the positive and negative ends of X and let

X0 = X − int(X+ ∪X−),

where int(Y ) denotes the interior of Y . We write β0 = β|X0 , β± = β|∂X± , and ω0 for the
exact 2-form on X which agrees with dβ0 on X0 and with dβ± on X±.

Definition 3.5. If u ∈ M(X,L);J (a;b), then we define its ω0-energy Eω0(u) and β±-
energy Eβ±(u) as follows:

Eω0(u) =

∫
u

ω0, Eβ±(u) = sup
φ−

∫
u|X±

d(φ±(t)) ∧ β±,

where φ+ : [T ,∞) → R≥0 (resp. φ− : (−∞,−T ] → R≥0) is a smooth nondecreasing
function such that φ+(T ) = 0 and limt→∞ φ+(t) = 1 (resp. limt→−∞ φ−(t) = 0 and
φ−(−T ) = 0).

The following lemma is immediate (cf. [E2, Lemma B.3] for details):

Lemma 3.6. If u ∈M(X,L);J (a;b), then Eω0(u) ≤ A(a) and Eβ±(u) ≤ A(a).
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3.4. Fredholm theory and compactness

The Fredholm index ind(u) of u ∈M(X,L);J (a1, . . . , ak;b1, . . . ,bk) is the full expected
dimension count which includes conformal variations. If (X,L) is R-invariant, then u is
rigid if ind(u) = 1; otherwise u is rigid if ind(u) = 0.

Lemma 3.7. If u ∈M(X,L);J (a1, . . . , ak;b1, . . . ,bk), then

ind(u) =
k∑
i=1

(|ai | − |bi |)− 1+ k. (3.1)

Proof. Follows from [CEL, Theorem A.1]. ut

Lemma 3.8. For generic J , the moduli space M(X,L);J (a;b) is a transversely cut out
manifold of dimension ind = |a|− |b| and admits a natural compactification by multiple-
level broken disks.

Proof. The transversality can be achieved by perturbing J in the contact planes near the
positive puncture as in [EES4, Lemma 4.5(1)]. The compactness statement is a conse-
quence of [BEHWZ, Section 11.3] (see also [E2, Lemma B.4]). ut

In general, there are transversality problems when one counts holomorphic disks with
more than one positive puncture, since such disks may be multiply-covered.

In the special case of a cylindrical cobordism L = R×3 in the symplectizationX0 =

R × R3, we write MJ (a;b) = M(X0,R×3);J (a;b). Since J is R-invariant, R acts on
MJ (a;b) and we write M̂J (a;b) =MJ (a;b)/R for the reduced moduli space.

Corollary 3.9. For generic J , a reduced moduli space M̂J (a;b) of dimension 0 is a
compact 0-dimensional manifold and the boundary of a compactified reduced moduli
space of dimension 1 is a possibly empty union of two-level broken disks u0 ∪ u1 with
ind(u0) = ind(u1) = 1.

Proof. Follows from Lemma 3.8. ut

When (X,L) is a nontrivial cobordism, we have the following description of the low-
dimensional moduli spaces.

Corollary 3.10. For generic J , the moduli spaces M(X,L);J (a;b) of dimension 0 are
compact 0-dimensional manifolds and the boundary of a compactified moduli space of
dimension 1 is a possibly empty union of two-level broken disks of the following types:

(1) u0 ∪ u1, where u1 is an element of the form MJ+(a,b′) with ind(u1) = 1 and u0 is
the union of components of the form M(X,L);J (a′;b′′) with ind(u0) = 0; and

(2) u−1 ∪ u0, where u0 is an element of the form M(X,L);J (a;b′) with ind(u0) = 0 and
u−1 consists of one component in some MJ−(a′,b′′) with ind = 1 and strips over
Reeb chords.

Here J+ and J− are the almost complex structures on the positive and negative ends ofX.

Proof. Follows from Lemma 3.8. ut
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If (X′′, L′′) and (X′, L′) are exact Lagrangian cobordisms with cylindrical Legendrian
ends, where the positive end of (X′, L′) is the same as the negative end of (X′′, L′′),
then these cobordisms can be concatenated by truncating the ends {t ≥ ρ} ⊂ X′ and
{t ≤ −ρ} ⊂ X′′ for ρ � 0 and gluing the remaining pieces together. The resulting
Lagrangian cobordism is denoted by (Xρ, Lρ).

Corollary 3.11. For all sufficiently large ρ, there is a natural one-to-one correspondence
between rigid holomorphic disks in (Xρ, Lρ) and two-level broken disks u0 ∪ u1, where
u0 is a rigid disk in (X′, L′) and u1 is a rigid disk in (X′′, L′′).

Proof. Follows from Lemma 3.8 and a stretching argument (see [BEHWZ, Section 11.3]
or [E2, Lemma 3.13]). ut

3.5. Differentials and cobordism maps

The differential in the Legendrian DGA is defined by counting disks in 0-dimensional
reduced moduli spaces in trivial cobordisms. More precisely, if 3 ⊂ R3 is a Legen-
drian link, then the differential of A(3) is the F-linear map ∂ : A(3) → A(3) which
satisfies the Leibniz rule, maps homology generators (i.e., monomials of the group ring
F[H1(3;Z)]) to 0, and is defined on the Reeb chord generators as follows:

∂a =
∑

dim(M̂(a;b))=0

|M̂(a;b)|b.

Lemma 3.12. The map ∂ : A(3)→ A(3) is a differential (i.e., ∂2
= 0) of degree −1.

Proof. This is a direct consequence of Corollary 3.9. ut

Similarly, if (X,L) is an exact Lagrangian cobordism from 3+ to 3−, then it induces a
DGA map

8(X,L) : A(3+;F[H1(L;Z)])→ A(3−;F[H1(L;Z)]),
defined as follows: on the homology generators 8(X,L) = id and on the Reeb chord
generators a,

8(X,L)(a) =
∑

dim(M(X,L)(a;b))=0

|M(X,L)(a;b)|b.

We write 8A(X,L) when we want to emphasize the coefficient ring A.

Lemma 3.13. The map 8(X,L) is a chain map (i.e., ∂− ◦ 8(X,L) = 8(X,L) ◦ ∂+, where
∂± is the differential on A(3±)) of degree 0. Furthermore, if (X,L) is obtained from
concatenating (X′, L′) and (X′′, L′′), then

8
F[H1(L;Z)]
(X,L) ' 8

F[H1(L;Z)]
(X′′,L′′)

◦8
F[H1(L;Z)]
(X′,L′)

.

Proof. This is a direct consequence of Corollaries 3.10 and 3.11. ut

Next consider a 1-parameter family of cobordisms (Xt , Lt ), t ∈ [0, 1], together with al-
most complex structures Jt . Assume that the moduli spaces determined by (X0, L0, J0)

and (X1, L1, J1) are transversely cut out so that the cobordism maps 8(X0,L0) and
8(X1,L1) are well-defined.
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Lemma 3.14. The DGA maps 8(X0,L0) and 8(X1,L1) are chain homotopic, i.e., there
exists a degree +1 map K : A(3+)→ A(3−) such that

8(X1,L1) +8(X0,L0) = �K ◦ ∂+ + ∂− ◦�K , (3.2)

where �K is F-linear and is defined on monomials as follows:

�K(c1 . . . cm) =

m∑
j=1

8(X1,L1)(c1 . . . cj−1)K(cj )8(X0,L0)(cj+1 . . . cm).

Proof. The lemma follows from [E2, Lemma B.15]. Since the terminology of [E2, Lem-
ma B.15] is slightly different from that of this paper, we sketch the argument, referring
the reader to [E2, Section B.6] for details.

Consider the moduli space

M(r; s) =
∐
t∈[0,1]

M(Xt ,Lt );Jt (r; s),

where (Xt , Lt , Jt ), t ∈ [0, 1], is generic. If ind(r; s) = −1, then:

(1) M(Xt ,Lt );Jt (r; s) 6= ∅ if and only if t = tj for some tj , j = 1, . . . , `, where 0 < t1 <

· · · < t` < 1; and
(2) #M(Xtj ,Ltj );Jtj (r; s) = 1, where # denotes cardinality.

For simplicity we assume that
∐

ind(r;s)=−1 M(r; s) = {v} and v occurs at time t∗.
We then use v to construct the chain homotopy. A subtlety is that we need to treat the

gluing of an (a+b+1)-level broken disk u−b∪· · ·∪ua , where u0 contains several copies
of v. This is done using a time-ordered, domain-dependent abstract perturbation scheme,
which we describe now.

Let u : Dm+1 → X be a map that is close to breaking into u−b ∪ · · · ∪ ua . More
precisely,

• let ci1, . . . , ciji , i = −b, . . . , a, be the Reeb chords of the negative ends of ui , arranged
in counterclockwise order around the boundary of the disk obtained by pre-gluing ui ∪
· · · ∪ ua ;
• let Aij ⊂ Dm+1, i = −b + 1, . . . , a, j = 1, . . . , ji , be rectangles biholomorphic to
[0, 1] × [τij , τ ′ij ] for some τij < τ ′ij such that {0, 1} × [τij , τ ′ij ] ⊂ ∂Dm+1;
• let A−bj ⊂ Dm+1, j = 1, . . . , j−b, be half-infinite strips biholomorphic to [0, 1] ×
(−∞, τ ′

−bj ] for some τ ′
−bj such that {0, 1} × (−∞, τ ′

−bj ] ⊂ ∂Dm+1; similarly, let
Aa+1,1 ⊂ Dm+1 be the half-infinite strip corresponding to the positive end of ua ;
• the Aij are disjoint and u|Aij is close to a strip over cij ; and
• let Dm+1 −

⋃
i,j Aij = B−b t · · · t Ba such that u|Bi , i = −b, . . . , a, is close to ui

with ends truncated.

We will refer to the subscript ij in cij or Aij as a subscript at a negative end of ui .
Next choose ε > 0 small and N > 0 large and let

σ : C(3+) ∪ C(3−)→ (0, ε)

be a map such that σ(c)/σ (c′) > N whenever A(c) > A(c′). We then inductively con-
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struct the vector
(t∗ij ), i = −b, . . . , a + 1, j = 1, . . . , ji

as follows: First set t∗a+1,1 = 0. Suppose we have constructed t∗i1 < · · · < t∗iji
. Then

t∗i−1,j , j = 1, . . . , ji−1, is given by t∗τ(i−1,j)+σ(cτ(i−1,j))(pi−1,j −1), where τ(i−1, j)
is the subscript at the positive end of the component ũ of ui−1 which has (i − 1, j) as a
subscript at the negative end, and (i − 1, j) is the pi−1,j th negative end of ũ, arranged in
counterclockwise order.

We use a domain-dependent almost complex structure Jt to define the ∂-operator, i.e.,
Jt depends smoothly on x ∈ Dm+1: we set Jt = Jt+t∗ij on Aij and we extend Jt smoothly
to Bi so that Jt (x) = Jt+t (x), x ∈ Bi , and t∗i+1,b ≤ t (x) ≤ t

∗

ia , where (i + 1, b) is the
subscript at the positive end of the component ũ corresponding to x ∈ Bi and (i, a) is the
subscript of the last negative end of ũ.

Let M′(r; s) be the “perturbation of M(r; s)”, obtained using domain-dependent Jt
for curves close to breaking near t∗. We first consider the case ind(r; s) = −1. Observe
that new ind = −1 perturbed disks might get created when the perturbation is turned on:
for example, an ind = −1 disk might be created when gluing u1 with ind(u1) = 1 and
two negative ends to u0 consisting of two copies of v. On the other hand, all the ind = −1
perturbed broken disks are single-level disks. This is due to the spacing of (t∗ij ) and the
fact that if ind(̃u) = −1 for ũ in some M′(r; s), then the domain-dependent Jt for ũ is
close to Jt∗ at the positive end of ũ; the details are left to the reader.

Next we consider the case ind(r; s) = 0. As in the case of ind(r; s) = −1, the spacing
for (t∗ij ) is chosen so that a broken disk of ∂M′(r; s) will use an ind = −1 curve of∐
r ′,s′M′(r ′, s′) at most once (see Figure 3). Hence for ind(r; s) = 0 we obtain

∂M′(r; s) 'M(X0,L0);J0(r; s) tM(X1,L1);J1(r; s) tM′′, (3.3)

t∗

1

0
−1 0

in symplectization

in cobordism

Fig. 3. The numbers indicate indices. Letting the complex structure around the negative punctures
in the disks in the positive end depend on the parameter, we arrange that ind = −1 disks are glued
at most once.
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where M′′ is the set of perturbed broken disks of the form u0 ∪ u1 or u−1 ∪ u0, where
ind(u0) = −1, ind(u−1) = ind(u1) = 1, and an ind = −1 disk appears only once in u0.

Finally, if we define K(r), r ∈ 3+, as follows:

K(r) =
∑

ind(r;s)=−1

|M′(r; s)|s,

then (3.2) holds in view of (3.3). ut

3.6. Combinatorial description of the Legendrian DGA

Let 3 ⊂ (R3, ξ0) be a Legendrian link. Consider the Lagrangian projection
5C : R3

→ R2, (x, y, z) 7→ (x, y). Let J0 be the adjusted almost complex structure
on R×R3 which is induced from the complex structure on R2

' C via5C, i.e., J0 maps

∂x 7→ ∂y + y∂t , ∂y 7→ −∂x − y∂z, ∂t 7→ ∂z, ∂z 7→ −∂t . (3.4)

Then a J0-holomorphic disk in (R × R3,R × 3) from a to b projects to a holomorphic
disk in R2 whose boundary maps to the Legendrian knot diagram 5C(3) and whose
punctures “map to a and b”. On the other hand, by [EES2, Section 2.7], each such disk
in R2 lifts to a unique R-invariant family of disks in R× R3.

Thus we are led to the following combinatorial description of Legendrian contact ho-
mology, which is the version of the theory originally defined by Chekanov [Ch]: The set
of Reeb chords C(3) is in one-to-one correspondence with the set of double points of
5C(3). The Maslov index used to define the grading on A(3) is the Maslov index (i.e.,
twice the rotation number) of 5C(3). The rigid holomorphic disks correspond to im-
mersed polygons with convex corners at double points of 5C(3). The sign of a puncture
is positive (resp. negative) if the boundary orientation of the disk points towards (resp.
away from) the double point along the lower strand and points away from (resp. towards)
the double point along the upper strand. Consequently, the computation of the differential
is reduced to the combinatorial problem of finding all the immersed polygons with convex
corners, boundary on 5C(3), and exactly one positive puncture.

4. Gradient flow trees of Morse cobordisms

4.1. Gradient flow trees

We briefly summarize the definitions and notation for gradient flow trees (or flow trees for
short) from [E1, Sections 2.2 and 3.1]. We point out that a small part of the terminology
used here is slightly different from the terminology used in that paper. We will mainly
describe the case of a 2-dimensional Legendrian submanifold L̃ ⊂ J 1F , leaving the
simpler case of a 1-dimensional Legendrian link 3 ⊂ R3

= J 1R to Remark 4.8.
Let

5J 0F : J
1F → J 0F = F × R, 5T ∗F : J

1F → T ∗F, 5F : J
1F → F
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be the front projection, the Lagrangian projection, and the projection to the base. Let
L̃ ⊂ J 1F be a 2-dimensional Legendrian submanifold. For generic L̃ in its isotopy class,
the singular set 6 ⊂ L̃ of 5F consists of cusp edges and swallowtails (see [E1, equation
(2-1) and Remark 2.5]). In particular, for generic L̃, 5F (6) admits a stratification:

5F (6) = 61 ⊃ 6
dbl
2 ∪6

sw
2 ,

where 61 consists of all the critical values of5F and has codimension 1 in F , 6dbl
2 is the

set of transverse double points of 61, 6sw
2 is the set of swallowtail points, and both 6dbl

2
and 6sw

2 have codimension 2 in F . We write

6◦1 = 61 \ (6
dbl
2 ∪6

sw
2 ), 6◦0 = 5F (L̃) \61.

On a small neighborhood Uq of a point q ∈ L̃ − 6, L̃|Uq is given as the 1-jet of a
height function f : 5F (Uq)→ R.

Definition 4.1. Fix a Riemannian metric on F which agrees with the standard flat met-
ric near the boundary and let ∇ denote the corresponding gradient operator. Let I be a
compact interval or a half-line [0,∞).

(1) A flow line of L̃ in F is a curve γ : I → F , together with 1-jet lifts

γi : I → L̃ ⊂ J 1F, γ = 5F ◦ γi, i = 1, 2,

such that:

• for each t0 ∈ int(I ) there is a neighborhood Ni(t0) of γi(t0) ⊂ L̃ which is given
by a height function fi : 5F (Ni(t0))→ R; and
• on 5F (N1(t0) ∩N2(t0)), γ satisfies the downward gradient equation

γ̇ (t) = −∇(f1 − f2)(γ (t)).

(2) The cotangent lifts of a flow line (γ, γ1, γ2) are maps

5T ∗F ◦ γi : I → L ⊂ T ∗F, i = 1, 2.

(3) The flow orientation is the choice of orientation on the 1-jet lifts γ1, γ2 such that
locally 5F ◦ γ1 is oriented by −∇(f1 − f2) and 5F ◦ γ2 by −∇(f2 − f1).

Remark 4.2. A flow line is an immersion except when it is a constant map to a critical
point of f1 − f2.

Definition 4.3. A source tree 0 is a metric space which is either a copy of R or a tree with
edges that are compact intervals or half-lines [0,∞). We will assume that 0 is connected
unless stated otherwise. The endpoints of the edges are the vertices and the points at
infinity of the half-lines or lines are the 1-valent punctures. We also designate certain
vertices as interior punctures. Furthermore, at any vertex of the tree there is a cyclic
ordering of adjacent edges. Let E(0), V (0), P (0) be the sets of edges, vertices, and
punctures (both 1-valent and interior) of 0.
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Definition 4.4 (Gradient flow tree). Let 0 be a source tree. A gradient flow tree of L̃
is a map γ : 0 → F (called a flow tree map), together with 1-jet lifts γ e1 , γ

e
2 for each

e ∈ E(0), such that:

(1) for e ∈ E(0), (γ |e, γ e1 , γ
e
2 ) is a flow line of L̃;

(2) a neighborhood of each 1-valent puncture maps to a flow line into or out of a critical
point of some height function difference fi − fj , i.e., a Reeb chord;

(3) the cotangent lift C(γ ) of γ , i.e., the union of the closures of the cotangent lifts
5T ∗F ◦ γ

e
i , i = 1, 2, over all e ∈ P(0), is a closed oriented curve; and

(4) a vertex v ∈ V (0) is an interior puncture if and only if there are adjacent cotangent
lifts 5T ∗F ◦ γ

e1
i1

and 5T ∗F ◦ γ
e2
i2

of C(γ ) at v such that γ e1
i1
(v) 6= γ

e2
i2
(v) and are

connected by a Reeb chord.

The restriction of a flow tree map to a half-infinite edge may be constant by Remark 4.2.
See Figure 4 for examples of 1-valent punctures and interior punctures.

The cotangent and 1-jet lifts are oriented using the flow orientation. Near a puncture p,
one of the 1-jet lifts of the edge e adjacent to p is incoming (i.e., oriented towards the
critical point), and the other is outgoing (i.e., oriented away from the critical point).

Definition 4.5. A puncture of γ is positive if the height function of the incoming 1-jet
lift is smaller than that of the outgoing 1-jet lift; otherwise it is negative.

The 1-jet lift C̃(γ ) of a flow tree γ is a union of paths which connect the endpoints of
Reeb chords, just like the boundary of a holomorphic disk. In particular, C̃(γ ) determines
(a1, . . . , ak;b1, . . . ,bk), where a1, . . . , ak ∈ C(L̃) correspond to the positive punctures
and b1, . . . ,bk ∈ A(L̃) correspond to the negative punctures; it also determines homol-
ogy classes associated to the capped paths connecting them.

Definition 4.6. Two flow trees

(γ : 0→ F ; γ ei , i = 1, 2, e ∈ E(0)), (γ ′ : 0′→ F ; (γ ′)ei , i = 1, 2, e ∈ E(0′))

are equivalent if there is an isometry φ : 0
∼
→ 0′ such that γ = γ ′◦φ, γ ei = (γ

′)
φ(e)
i ◦φ|e

for all e ∈ E(0), and the cyclic orders around the vertices are preserved.

Definition 4.7. A partial flow tree γ : 0 → F satisfies the conditions of Definition 4.4
with the exception of (2). A 1-valent vertex of 0 where the cotangent lift of γ is nonclosed
is called a special vertex. We write V (0) for the set of vertices of 0 and SV (0) ⊂ V (0)
for the subset of special vertices. The sign of a special vertex is defined in the same way
as in Definition 4.5.

For example, if we cut a flow tree in two along an edge, then we obtain two partial flow
trees, each with one special puncture.

Remark 4.8. The definition of a flow tree of a 1-dimensional Legendrian link is exactly
the same as above. Here the situation is simpler in that61 = 6

◦

1 , i.e., generically the only
singularities of the front projection are isolated cusps.
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4.2. Formal dimension

Let T
L̃
(a1, . . . , ak;b1, . . . ,bk) be the space of flow trees from a1, . . . , ak to b1, . . . ,bk

modulo equivalence. The formal dimension of γ ∈ T
L̃
:= T

L̃
(a1, . . . , ak;b1, . . . ,bk) is

given by

dim(γ ) = dim(T
L̃
) =

k∑
i=1

(|ai |L̃ − |bi |L̃)+ k − 2. (4.1)

This formal dimension agrees with the Fredholm index of disks from a1, . . . , ak to
b1, . . . ,bk in the cotangent bundle T ∗F , which is one less than the Fredholm index in the
symplectization R× J 1F , given by (3.1). This is due to the extra R-translation.

We rewrite (4.1) in terms of Morse-theoretic data as in [E1, Definition 3.4]: Let n be
the dimension of the Legendrian submanifold (which in our applications will be 1 or 2).
Let P±(γ ) be the set of positive/negative punctures of γ and letR(γ ) be the set of vertices
of γ that are not punctures.

Definition 4.9 (Morse index I (p)). If p ∈ P±(γ ), then let c be the Reeb chord corre-
sponding to p and let f+, f− be the height functions for the two sheets containing c±.
Then the Morse index I (p) is the Morse index of the height function difference f+−f−

at p.

Definition 4.10 (Maslov content µ(r)). Let r ∈ R(γ ). If x ∈ 6 is a cusp point over r
which lies in the 1-jet lift C̃(γ ), then let µ̃(x) = 1 (resp. µ̃(x) = −1) if the incoming arc
of C̃(γ ) at x lies on the upper (resp. lower) sheet and the outgoing arc of C̃(γ ) lies on the
lower (resp. upper) sheet. The Maslov content of r is

µ(r) =
∑
x

µ̃(x),

where the sum is over all cusp points x ∈ 6 over r .

Then we have

dim(γ ) = (n−3)+
∑

p∈P+(γ )

(I (p)− (n−1))−
∑

q∈P−(γ )

(I (q)−1)+
∑
r∈R(γ )

µ(r). (4.2)

4.3. Generic flow trees on L̃

Suppose L̃ is generic. Then by [E1, Theorem 1.1], T
L̃
:= T

L̃
(a;b) is a stratified space

with strata that are manifolds, and its top-dimensional stratum has dimension dim(T
L̃
).

In particular, dim(T
L̃
) < 0 implies T

L̃
= ∅, and dim(T

L̃
) = 0 implies that T

L̃
is a finite

collection of flow trees that are transversely cut out. (A flow tree is transverse if it satis-
fies the preliminary transversality conditions from [E1, Section 3.1.1] and the conditions
indicated in the proof of [E1, Proposition 3.14].)

A flow tree γ : 0 → F in T
L̃

of dimension zero only has vertices of valency ≤ 3
whose neighborhoods are given as follows:
(1) 1-valent punctures;
(2) 2-valent interior punctures;
(3) ends;
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(4) Y0-vertices;
(5) Y1-vertices; and
(6) switches.

See Figures 4, 5, and 6 for some examples. Observe that a flow line limits to a cusp edge
corresponding to an end in finite time (cf. [E1, Lemma 2.8]).

A B C D E F−, π/2 +, π/2 −, 3π/2 +, 3π/2 −, π/2 +, π/2

Fig. 4. A 1-valent puncture (on the far left) and several 2-valent interior punctures, drawn in the
front projection. The sign of the puncture and the angle made in the Lagrangian projection are
given.

Fig. 5. From left to right, an end, a Y0-vertex, and a Y1-vertex, drawn in the front projection.

Fig. 6. A switch, drawn in the front projection.

4.4. Flow trees in Morse cobordisms

Let LMo be a Morse cobordism in T ∗F from 3+ to 3−.

Lemma 4.11. The 1-jet lift of a (connected) flow tree γ : 0 → F of L̃Mo
⊂ J 1F is

contained in J 1F |∂F if and only if γ (x) ∈ ∂F for some x ∈ 0. Furthermore, flow trees of
L̃Mo that are contained in J 1F |∂+F and J 1F |∂−F are in natural one-to-one correspon-
dence with flow trees of 3− and 3+, respectively.
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Proof. This follows from Definition 2.3. ut

Regularity. If we view a flow tree in T3+(a;b) as a flow tree γ : 0→ ∂+F in T
L̃Mo(a;b),

then

dim T
L̃Mo(a;b) = dim T3+(a;b)+ 1− #b, (4.3)

where #b is the number of ends of b. If #b > 1 and dim T3+(a;b) = 0, then there exist
flow trees γ : 0 → ∂+F of L̃Mo

|∂+F that are not generic as flow trees of L̃Mo. This
indicates that generically the Reeb chords of L̃Mo in J 1F |∂+F would not be “aligned”,
i.e., would not all lie above ∂+F .

However, for the purposes of this paper, there is no need to perturb out of this situa-
tion: A priori we may have a broken flow tree γ0 ∪ γ1 (i.e., a flow tree with more than one
level) from a ∈ C(3+) to b ∈ A(3−), where γ1 is a tree from a to b′ which is contained
in L̃Mo

|∂+F and γ0 is the union of trees from b′ to b. Since dim T3+(a;b′) ≥ 0 and each
of the #b′ components of γ0 has dim ≥ 0,

dim(γ0 ∪ γ1) ≥ dim T
L̃Mo(a;b′)+ 0+ #b′

= (dim T3+(a;b′)+ 1− #b′)+ #b′ ≥ 1,

where the #b′ in the first line comes from the #b′ gluing conditions. Therefore, by per-
turbing outside a neighborhood of J 1F |∂F , the flow trees of dim(T

L̃
(a;b)) = 0 that are

not entirely contained in J 1F |∂+F are transversely cut out.

5. Holomorphic disks and flow trees

The goal of this section is to prove Theorem 1.6, i.e., the correspondence between rigid
holomorphic disks and rigid Morse flow trees. The proof is an extension of the corre-
sponding results in the compact case from [E1] to immersed exact Lagrangian submani-
folds with cylindrical or conical ends.

This section is organized as follows: In Section 5.1 we show that certain rigid flow
trees of a Morse cobordism LMo are in bijection with the rigid long conical flow trees
(see Definition 5.1) of the associated long conical cobordisms Lδ;σ . In Section 5.2 we
make a small perturbation of Lδ;σ as in [E1, Section 4] that allows us to better control
holomorphic disks under scaling and introduce an almost complex structure Jδ;σ on Xδ
which agrees with the almost complex structure on T ∗F induced by a Riemannian metric
on F in the sense of [E1, Section 4.4] and is adjusted to the symplectization of (R3, α0)

at the ends. We then establish a key subharmonic estimate in Section 5.4 which allows us
to gain control of holomorphic disks under rescaling and thereby prove the convergence
of rigid holomorphic disks to rigid flow trees as σ → 0 in Section 5.5. In Section 5.6
we construct rigid holomorphic disks near rigid flow trees and show that the construction
captures all rigid disks.
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5.1. Morse cobordisms, conical cobordisms, and flow trees

We use the notation from Section 2. Consider a Morse cobordism LMo
⊂ T ∗F . In Sec-

tion 2.4 we associated a family of long conical cobordisms (Xδ, Lδ;σ ) to LMo, parame-
trized by δ, σ > 0 small.

A Reeb chord flow line is a flow line {x} × [a+,∞) ⊂ Fδ or {x} × (a′−(δ), a−] ⊂ Fδ
which corresponds to a cylinder over a Reeb chord in C(3±).

Definition 5.1. A long conical (LC) flow tree γ : 0→ Fδ ofLδ;σ satisfies the conditions
of Definition 4.4 with (2) and (3) replaced by:

(2′) a neighborhood of each puncture p ∈ P(0) (i.e., a half-line) either limits to a critical
point of some height function difference fi − fj or is asymptotic to a Reeb chord
flow line; and

(3′) if we partially compactify T ∗Fδ by (i) attaching R3
× {a′−(δ)} and R3

× {∞} and
(ii) compactifying the cotangent fibers, and compactify the cotangent lift C(γ ) of γ
to C(γ ) by attaching suitable arcs corresponding to c × {a′−(δ)} or c × {∞}, where
c ∈ C(3±), then C(γ ) is a closed oriented curve.

Lemma 5.2. There is a bijection between rigid flow trees of LMo that are not contained
in T ∗F |∂F and rigid LC flow trees of Lδ;σ .

Proof. The lemma follows from constructing a diffeomorphism φδ : F−∂F
∼
→ Fδ which

maps the gradient flow lines of LMo to the gradient flow lines of Lδ;σ after reparametriza-
tions. (Note that fiber scaling does not alter gradient flow lines.)

The following model calculation can be generalized to give φδ: Let I ⊂ R be an
interval and let f = f1−f2 : I → R be a height function difference. Consider the height
function difference (1 − t2)f (s) on I × (−ε, 0) with coordinates (s, t) and the height
function difference τf (s) on I × (0,∞) with coordinates (s, τ ). Their gradients are

((1− t2)∇f (s),−2tf (s)), (τ∇f (s), f (s)),

which are directed by

X1 :=

(
∇f (s),

2t
t2 − 1

f (s)

)
, X2 :=

(
∇f (s),

1
τ
f (s)

)
.

We are looking for a function τ = g(t) such that

φ : I × (−ε, 0)→ I × (0,∞), (s, t) 7→ (s, g(t)),

is a diffeomorphism and satisfies φ∗X1 = X2. Solving the differential equation 2t
t2−1

dτ
dt
=

1
τ

gives g(t) =
√
t2/2− log |t | + c, and for an appropriate c the desired condition holds.

Finally, observe that φ is independent of the height function difference f = f1 − f2. ut

Given ε > 0, let N ′ε,± denote the ε-neighborhood of the Reeb chord endpoints in3± and
let Nε = (N ′ε,+ × [a+,∞)) ∪ (N

′
ε,− × (a

′
−(δ), a−]).
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Corollary 5.3. If δ > 0 is sufficiently small, then the restriction of any rigid LC flow tree
of Lδ;σ to Xδ − T ∗F is contained in NCδ for some C > 0.

Proof. As δ → 0, the diffeomorphism φ−1
δ maps Fδ − F to smaller and smaller neigh-

borhoods of ∂F .
We first prove the corollary with Nε instead of NCδ for any sufficiently small ε > 0.

If this weaker version of the corollary does not hold, then there is a sequence of rigid flow
trees in LMo which converges to a broken flow tree with some level in T ∗F |∂F , which
necessarily has dimension at least one. This is a contradiction, which proves the corollary
with Nε instead of NCδ .

Now fix ε > 0. If γ is a rigid flow tree of LMo and γ̂ is the corresponding rigid LC
flow tree of Lδ;σ , then γ and γ̂ agree on

F̌ δ := F − R× ([a−, a− + δ] ∪ [a+ − δ, a+]).

Moreover the endpoints of γ and γ̂ on ∂F̌ δ are contained in N ′ε,± for δ > 0 sufficiently
small. The corollary then follows by looking at the gradient of a height function difference
ofLMo near a critical point and the continuation of γ |

F̌ δ
as it approaches the critical point.

ut

5.2. Almost complex structures and deformed Legendrian links

In this subsection we introduce small deformations of3± andLδ;σ and construct a family
of almost complex structures on Xδ .

5.2.1. Deforming Legendrian links. By a preliminary small Legendrian isotopy, we may
assume that the Lagrangian projection of 3± consists of straight lines near its double
points. We then perturb 3± slightly in a neighborhood of all its Reeb chords by making
the z-coordinates of 3± constant in a small neighborhood of the Reeb chord endpoints
without changing the Lagrangian projection. The resulting link 3̃± is not necessarily
Legendrian. Similarly, we perturb the ends of Lδ;σ so that the resulting totally real sub-
manifold L̃δ;σ has conical ends over 3̃±.

We will consider holomorphic disks with boundary condition given by R × 3̃±
and L̃δ;σ , which are only totally real and not Lagrangian. It is well-known that in general
the theory for holomorphic disks with boundary on totally real manifolds is very different
from the Lagrangian case. As is clear from their definition, the totally real submanifolds
considered here are very special: they have Lagrangian projections and lie very close
to actual Lagrangian submanifolds. We do not intend to develop any general theory for
holomorphic disks with totally real boundary conditions; rather we use these very specific
totally real manifolds together with specific almost complex structures as a technical tool
to obtain a combinatorial description of Legendrian contact homology chain maps. The
necessary analytical estimates in this context are developed in Lemmas 5.4, 5.6, 5.8, 5.9,
and 5.10.

Lemma 5.4. Let J0 be the almost complex structure on R×R3 given by (3.4). If 3± are
generic, then for 3̃± sufficiently close to 3±:
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(1) There is a diffeomorphism

M(R×R3,R×3±);J0(a;b) 'M(R×R3,R×3̃±);J0(a;b).

(2) Consider DGAs associated to 3̃± in direct analogy with the DGAs associated to3±.
Then (1) implies that the DGA of 3̃± is canonically isomorphic to that of 3±. There
are totally real cobordisms from 3̃± to3± (and vice versa) which induce the identity
map on DGAs.

Proof. (1) is immediate from the fact that in both cases the holomorphic disks are deter-
mined up to translation by their projections to C. (2) is similar. Note that deforming only
the z-coordinate in the cobordisms commutes with the projection to C. Hence the only
rigid disks of the cobordism are trivial strips. ut

5.2.2. The almost complex structure J . Let g be a Riemannian metric on F which is flat
near ∂F and let gδ be its extension to Fδ which restricts to the standard flat metric on
R × (a′−(δ), a−] and R × [a+,∞). Let J be the almost complex structure on Xδ which
is compatible with gδ in the sense of [E1, Section 4.4]. Although the precise definition of
J is not important here, J is given by

∂ξj 7→ ∂ηj , ∂ηj 7→ −∂ξj , j = 1, 2,

on the flat parts T ∗(R× (a′−(δ), a−]) and T ∗(R× [a+,∞)).
We now apply the coordinate change

8+ : [0,∞)× R3
→ T ∗(R× [1,∞)), (t, x, y, z) 7→ (x, ety, et , z),

from Section 2.1. (After composing with a ξ2-translation, we may assume that a+ = 1.)
At the positive symplectization end the almost complex structure J can be written as
follows:

∂x 7→ e−t∂y, ∂y 7→ −e
t∂x, ∂t 7→ et∂z − e

ty∂x, ∂z 7→ −e
−t∂t + e

−ty∂y .

The situation for the negative symplectic end is similar.

5.2.3. The family of almost complex structures Jδ;σ . Next we define a family of almost
complex structures Jδ;σ on Xδ that interpolates between J and the almost complex struc-
ture J0 given by (3.4).

First consider the positive symplectization end which we take to be [0,∞) × R3

without loss of generality. Fix a sufficiently large constantK � 1. For 0 ≤ t ≤ 1
2Kσ and

|y| ≤ 1, Jδ;σ is defined as follows:

∂x 7→ k(t)−1∂y, ∂y 7→ −k(t)∂x, ∂t 7→ k(t)∂z − k(t)b(t)y∂x,

∂z 7→ −k(t)
−1∂t + k(t)

−1b(t)y∂y,
(5.1)

where k(t) = et near t = 0 and k(t) = 1 near t = 1
2Kσ , and b(t) = 1 near t = 0 and

b(t) = 0 near t = 1
2Kσ . Here k(t) and b(t) (as well as a(t) below) depend on σ > 0.
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Hence Jδ;σ is given as follows near t = 1
2Kσ :

∂x 7→ ∂y, ∂y 7→ −∂x, ∂t 7→ ∂z, ∂z 7→ −∂t . (5.2)

For 1
2Kσ ≤ t ≤ Kσ and |y| ≤ 1, Jδ;σ is defined as follows:

∂x 7→ ∂y + a(t)y∂t , ∂y 7→ −∂x − a(t)y∂z, ∂t 7→ ∂z, ∂z 7→ −∂t , (5.3)

where a(t) = 0 near t = 1
2Kσ and a(t) = 1 near t = Kσ .

Lemma 5.5. On the region {0 ≤ t ≤ Kσ, |y| ≤ 1}, Jδ;σ is tamed by the canonical
symplectic form ω on T ∗Fδ .

Proof. For 1
2Kσ ≤ t ≤ Kσ, |y| ≤ 1 this is immediate from (5.3). We verify the assertion

for 0 ≤ t ≤ 1
2Kσ, |y| ≤ 1. By the identification 8± from Section 2.1 we may assume

that ω = et (dt ∧ (dz− ydx)+ dx ∧ dy). We compute

e−tω(a1∂x + a2∂y + a3∂t + a4∂z, Jδ;σ (a1∂x + a2∂y + a3∂t + a4∂z))

= (dx ∧ dy + dt ∧ (dz− ydx))
(
a1∂x + a2∂y + a3∂t + a4∂z, a1k(t)

−1∂y − a2k(t)∂x

+ a3(k(t)∂z − k(t)b(t)y∂x)+ a4(−k(t)
−1∂t + k(t)

−1b(t)y∂y)
)

= a2
1k(t)

−1
+ a1a4k(t)

−1b(t)y + a2
2k(t)+ a2a3k(t)b(t)y

+ a2
3k(t)+ a2a3k(t)y + a

2
3k(t)b(t)y

2
+ a2

4k(t)
−1
− a1a4k(t)

−1y.

Since |y| ≤ 1 and we may take |b(t) − 1| ≤ 1, the term a2
1 + (b(t) − 1)ya1a4 + a

2
4 is

positive. Similarly, since we may take |b(t)+ 1| ≤ 2, the term a2
2 + (b(t)+ 1)ya2a3+ a

2
3

is also positive. The positivity of the whole expression follows. ut

For 0 ≤ t ≤ Kσ and |y| ≥ 1, we arbitrarily extend Jδ;σ so that Jδ;σ is tamed by
the canonical symplectic form ω on T ∗Fδ . The precise form of Jδ;σ on this region is
not important since the holomorphic curves that we consider do not enter this region by
Sections 5.3 and 5.4.

Finally, Jδ;σ is t-translation invariant for t ≥ Kσ :

∂x 7→ ∂y + y∂t , ∂y 7→ −∂x − y∂z, ∂t 7→ ∂z, ∂z 7→ −∂t . (5.4)

Similarly, we define Jδ;σ on the negative end using a completely analogous interpola-
tion in a slice of width Kσ .

5.3. A priori energy bounds and monotonicity

Lemma 5.6. If L̃δ;σ is sufficiently close to Lδ;σ , then there exists C > 1 such that

Eω0(u) ≤ A(a), Eβ±(u) ≤ CA(a) for any u ∈M(Xδ,L̃δ;σ );Jδ;σ (a;b).
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Proof. If v ∈ M(Xδ,Lδ;σ );Jδ;σ (a;b), then Eω0(v) ≤ A(a) and Eβ±(v) ≤ A(a) by Lem-
ma 3.6. Let u ∈M(Xδ,L̃δ;σ );Jδ;σ (a;b). The first inequality Eω0(u) ≤ A(a) is immediate
from the definition of L̃δ;σ in Section 5.2.1. By the proof of Lemma 5.4, there is a diffeo-
morphism

φ :M(Xδ,Lδ;σ );Jδ;σ (a;b) ∼→M(Xδ,L̃δ;σ );Jδ;σ (a;b)

such that φ(u) is C1-close to u. This implies that Eβ±(u) ≤ CA(a). ut

Next we recall the monotonicity lemma for holomorphic curves (see for example [Si,
Proposition 4.3.1]). Let hδ be a metric which agrees with the standard Euclidean metric
on the ends [0,∞)×R3 and (−∞, 0]×R3 and is commensurate with the metric on T ∗F
induced by g. All the distances with be measured with respect to hδ . In particular, B(p, r)
is the ball of radius r around p ∈ Xδ with respect to hδ .

Lemma 5.7 (Monotonicity lemma). There exist r0, C > 0 such that

Eω0(u)+ Eβ+(u)+ Eβ−(u) ≥ C · r
2 (5.5)

for any 0 < r < r0 and any Jδ,σ -holomorphic map u : M → Xδ with u(0) = p and
u(∂M) ⊂ ∂B(p, r).

We use the monotonicity lemma to obtain the following a priori O(σ 1/2) bounds on |y|
and |z|, where |y| and |z| are measured with respect to the standard Euclidean metric
on R3. In Section 5.4 we improve the O(σ 1/2) bound that comes from monotonicity to
an O(σ) bound that comes from the maximum principle for harmonic functions.

Lemma 5.8. If u ∈M(Xδ,L̃δ;σ );Jδ;σ (a;b), then |y ◦ u| = O(σ 1/2) and |z ◦ u| = O(σ 1/2)

on the region {0 ≤ t ≤ Kσ }.

Proof. Towards a contradiction, suppose there are sequences σi → 0, ci → ∞, ui ∈
M(Xδ,L̃δ;σi );Jδ;σi (a;b), and pi in the domain of ui , such that |y ◦ ui |(pi) > ciσ

1/2
i and

ui(pi) ∈ {0 ≤ t ≤ Kσi}. Then there is a ball B(qi, (ci/3)σ
1/2
i ) such that:

(i) ui passes through qi , where qi ∈ {0 ≤ t ≤ Kσi}; and
(ii) B(qi, (ci/3)σ 1/2) ∩ L̃δ;σi = ∅.

Here (ii) follows from the fact that the distance between L̃δ;σ and the 0-section is O(σ).
By the Monotonicity Lemma 5.7,

Eω0(u)+ Eβ+(u)+ Eβ−(u) ≥ Cc
2
i σ/9.

On the other hand, by Lemma 5.6, Eω0(u) + Eβ+(u) + Eβ−(u) is bounded above by a
constant times σ , a contradiction. This proves the lemma for |y ◦ u|. The argument for
|z ◦ u| is the same. ut

In what follows we will work with 3̃± and L̃δ;σ and omit the tildes in the notation.
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5.4. Subharmonicity

Define a function p2
δ;σ
: Xδ → R as follows:

p2
δ;σ (q) =

{
η2

1 + η
2
2 for q ∈ T ∗F,

(k(t)y)2 + z2 for q /∈ T ∗F,

where k(t) = kσ (t) is the interpolation function used in the definition of Jδ;σ . Here k(t)
was defined on [0, 1

2Kσ ] and is extended by setting k(t) = 1 on t ≥ 1
2Kσ .

Lemma 5.9. There exist K � 1 and σ0, δ0 > 0 such that, for any 0 < σ < σ0, 0 < δ

< δ0, and u ∈M(Xδ,Lδ;σ );Jδ;σ (a;b), the function p2
δ;σ
◦ u is subharmonic with respect to

the metric gδ . In particular, p2
δ;σ
◦ u achieves its maximum on ∂D.

Proof. On the region t ≥ Kσ , k(t) = 1 is constant. By a straightforward calculation
the y- and z-coordinates are harmonic. This in turn implies that y2 and z2 are both sub-
harmonic. On the other hand, η2

1 + η
2
2 is subharmonic on T ∗F by [E1, Section 5.1.2

and Lemma 5.5]. It remains to verify the subharmonicity on the interpolation region
0 ≤ t ≤ Kσ .

Consider the region 0 ≤ t ≤ 1
2Kσ . The Cauchy–Riemann equations

∂τ1u+ Jδ;σ ∂τ2u = 0

imply that

∂τ1(k(t)y) = k(t)∂τ1y + yk
′(t)∂τ1 t

= −k(t)
(
k(t)−1(∂τ2x + b(t)y∂τ2z)

)
− yk′(t)(−k(t)−1∂τ2z)

= −∂τ2x − b(t)y∂τ2z+ yk
′(t)k(t)−1∂τ2z, (5.6)

∂τ2(k(t)y) = ∂τ1x + b(t)y∂τ1z− yk
′(t)k(t)−1∂τ1z. (5.7)

Next we claim that

∂2
τ1
(k(t)y)+ ∂2

τ2
(k(t)y) = Q1(t, y)(∂τ1y, ∂τ2y, ∂τ1z, ∂τ2z), (5.8)

where Q1(t, y) is a quadratic form whose coefficients satisfy an O(K−1σ−1/2) bound,
where K � 1 is the constant in the definition of Jδ;σ . By differentiating (5.6) and
(5.7) and using the Cauchy–Riemann equations to express ∂τ1 t and ∂τ2 t in terms of ∂τ1z

and ∂τ2z, we obtain

∂2
τ1
(k(t)y)+ ∂2

τ2
(k(t)y) = y

(
−b′(t)+ (log k(t))′′

)
k(t)−1((∂τ1z)

2
+ (∂τ2z)

2)

+
(
−b(t)+ (log k(t))′

)
(∂τ1y∂τ2z− ∂τ1z∂τ2y).

To see the bound on coefficients, note that we can choose b(t) and k(t) so that b′(t) =
O(K−1σ−1), c0 < k(t) < c1 where c0, c1 > 0 are independent of σ , (log k(t))′ = 1
near t = 0 and (log k(t))′ = 0 near t = 1

2Kσ , and (log k(t))′′ = O(K−1σ−1). Since
|y| = O(σ 1/2) by Lemma 5.8, the claim follows.

A similar but easier calculation gives

∂2
τ1
z+ ∂2

τ2
z = 0. (5.9)
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Using (5.8) and (5.9) we compute

(∂2
τ1
+ ∂2

τ2
)
(
(k(t)y)2 + z2)
= 2

(
|∇(k(t)y)|2 + |∇z|2 + k(t)y Q1(t, y)(∂τ1y, ∂τ2y, ∂τ1z, ∂τ2z)

)
,

where ∇ = (∂τ1 , ∂τ2). The bounds on the quadratic forms imply that there is a constant
C > 0 such that

Qj (t, y)(∂τ1y, ∂τ2y, ∂τ1z, ∂τ2z) ≤ CK
−1σ−1/2(|∇y|2 + |∇z|2)

for j = 1, 2. By Lemma 5.8, |y| = O(σ 1/2) and |z| = O(σ 1/2). Finally, since

∇(k(t)y) = k(t)∇y + (log k(t))′(∂σ z,−∂τ z)y,

the dominant term is k(t)∇y and we conclude that

(∂2
τ1
+ ∂2

τ2
)
(
(k(t)y)2 + z2)

≥ 0,

provided K � 1 is sufficiently large. Similarly, p2
δ;σ
◦ u is subharmonic on the region

1
2Kσ ≤ t ≤ Kσ . The lemma follows. ut

Lemma 5.10. If u ∈M(Xδ,Lδ;σ );Jδ;σ (a;b), then

|pδ;σ ◦ u| =

√
p2
δ;σ
◦ u = O(σ)

for all sufficiently small σ > 0.

Proof. This is immediate from the second assertion of Lemma 5.9 by observing that when
restricted to Lδ;σ ∩ ({0 ≤ t <∞}∪ {−∞ < t ≤ 0}), the function p2

δ;σ
= (kσ (t)y)

2
+ z2

is bounded above by Cy2
+ z2 for a positive constant C which is independent of σ and

|y|, |z| = O(σ). ut

5.5. From rigid disks to rigid trees

Consider a sequence

uδ;σ : (Dm+1, ∂Dm+1)→ (Xδ, Lδ;σ ), δ, σ → 0,

of rigid disks in M(Xδ,Lδ;σ );Jδ;σ (a;b).

Lemma 5.11. After passing to a subsequence, there exists δ0 > 0 such that for any
δ ∈ (0, δ0) there exists σ0 = σ0(δ) > 0 such that for any σ ∈ (0, σ0) there exists a
rigid LC flow tree γ̂δ of Lδ;σ such that:

(1) uδ;σ (Dm+1)∩T
∗F lies in anO(σ log(σ−1))-neighborhood of the cotangent lift of γ̂δ;

(2) γ̂δ lies in a φ(δ)-neighborhood of the Reeb chord flow lines over a and b and
uδ;σ (Dm+1) ∩ (Xδ − T

∗F) lies in a φ(δ)-neighborhood of the strips over a and b,
where limδ→0 φ(δ) = 0.
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Proof. The lemma is almost a consequence of [E1, Theorem 1.2].
(1) First observe that |pδ;σ ◦ uδ;σ | = O(σ) by Lemma 5.10. Then we obtain local (=

away from the points where the derivative blows up) flow tree convergence at a rate of
O(σ log(σ−1)) as in [E1, Sections 5.2–5.3]. As in the usual proof of Gromov compact-
ness, we add punctures at the points where the derivative blows up on the σ -scale, while
noting that the number of such points is controlled by the average linking number (cf.
[E1, Section 5.4]). This implies the flow tree convergence when restricted to T ∗F .

(2) By Corollary 5.3, the restriction of γ̂δ to Xδ − T ∗F is contained in Nφ(δ) for
some φ. The argument in [E1, Lemma 5.7] gives O(σ) bounds on the derivative of
uδ;σ on {0 ≤ t ≤ Kσ }. Hence, for σ > 0 sufficiently small, the restriction of uδ;σ to
{0 ≤ t ≤ Kσ } is close to cylinders over Reeb chords.

Finally, we claim that the restriction of uδ;σ to {t ≥ Kσ } is close to cylinders over
Reeb chords for δ, σ > 0 sufficiently small. Assume for contradiction that there is a se-
quence uδi ;σi such that some point of uδi ;σi |{t≥Kσi } maps outside a fixed ε-neighborhood
of cylinders over Reeb chords. Recalling that {t ≥ Kσ } coincides with the symplectiza-
tion of R3, the flow tree convergence applied to the 1-dimensional Legendrian subman-
ifold 3± yields a flow tree of 3± of dimension ≥ 0. This implies that ind(uδi ;σi ) ≥ 1,
which is a contradiction. ut

5.6. From rigid trees to rigid disks

In this subsection we construct holomorphic disks near rigid LC flow trees as in [E1,
Section 6].

The construction can be summarized as follows: As we take the limit σ → 0, the
Lagrangian boundary condition Lδ;σ degenerates to the 0-section and the domains Sσ of
rigid uσ ∈ M(Xδ,Lδ;σ );Jδ;σ (a;b) converge to a “broken domain” at the boundary of the
space of conformal structures (see [E1, Remark 5.35]). After subdividing Sσ for σ > 0
small, we find explicit local solutions in a neighborhood of the rigid LC flow tree γ̂ , except
in small shrinking regions where the neighboring local solutions are patched together.
This yields a disk in (Xδ, Lδ;σ ) which is close to being Jδ;σ -holomorphic as in [E1,
Section 6.2]. Finally, we use Newton iteration in order to produce actual solutions as in
[E1, Section 6.4].

In order to extend the argument to the case of a Lagrangian with cylindrical ends, we
first construct explicit local solutions in the cylindrical ends near Reeb chords.

5.6.1. Construction of a truncated local solution. Let J0 be the almost complex structure
on R × R3 given by (3.4). In this subsection we will write down an explicit local J0-
holomorphic map, i.e., a “truncated local solution”,

u = (t, x, y, z) : [0,∞)× [0, 1] → R× R3,

where [0,∞) × [0, 1] is a half-strip with coordinates ζ = τ1 + iτ2 and u is asymptotic
to the Reeb chord c ∈ C(3+) at the positive end. The situation at the negative end is
analogous.
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We may assume that there exist −π/2 < α+ < α− < π/2, α± = α±(σ ), such that
the Lagrangian projections 5C of the two branches of 3 = 3+ near c are contained
in eiα+R and eiα−R, and that 5C of the positive end of u sweeps out the (small) sector
from α+ to α−. As σ → 0, we have |α+|, |α−| = O(σ). Moreover, by the deformation
of 3 from Section 5.2.1, the z-coordinates of the two branches are constant, i.e., z = h+
and z = h−, where h± = h±(σ ) and |h±| = O(σ) as σ → 0. Here the subscript +
(resp. −) refers to the upper (resp. lower) strand.

The map u satisfies the Cauchy–Riemann equations if and only if v = x + iy and
w = t + iz satisfy

∂v = 1
2 (∂τ1 + i∂τ2)v = 0, (5.10)

∂w = 1
2 (∂τ1 + i∂τ2)w = −

1
2y∂τ2v. (5.11)

If we choose the solution

v(ζ ) = eiα−e(α+−α−)ζ (5.12)

for (5.10) and abbreviate θ = α+ − α−, then (5.11) becomes

∂̄w = 1
4θe

2θτ1(1− e−2i(α−+θτ2)) = 1
4θe

θ(ζ+ζ )
−

1
4θe
−2iα+e2θζ . (5.13)

In order to solve for w, first let

w0(ζ ) = (h+ − h−)ζ + ih− + c0 (5.14)

be a holomorphic map from [0,∞)× [0, 1] to the strip over the Reeb chord c, postcom-
posed with the projection to the (t, z)-coordinates. Here c0 is a constant. Next observe
that

w1(ζ ) =
1
4e
θ(ζ+ζ )

−
1
8e
−2iα+e2θζ

+
1
8e

2iα+e2θζ (5.15)

solves (5.13) and satisfies real boundary conditions, and limτ1→∞w1(ζ ) = 0. Then we
take w = w0 + w1.

The truncated local solution is then given by

u(ζ ) = (v(ζ ), w(ζ )). (5.16)

5.6.2. Gluing

Lemma 5.12. If δ > 0 is sufficiently small, then there exists σ0 > 0 such that for any 0 <
σ < σ0 and any rigid LC flow tree γ̂ of Lδ;σ , there is a unique rigid Jδ;σ -holomorphic
disk with boundary on Lδ;σ in a neighborhood of γ̂ .

Proof. This follows from the proof of [E1, Theorem 1.3], where the only new ingredient
is the presence of the cylindrical end. The local solutions are constructed as in [E1, Sec-
tion 6.1], where the solutions near the 1-valent punctures are replaced by the truncated
local solutions u from Section 5.6.1. We then construct the approximate holomorphic
disks by gluing as in [E1, Section 6.2]. The weight functions on the domains are still as
in [E1, Section 6.3.1]. In particular, we impose small positive exponential weights near
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the punctures and the weight function is equal to 1 on the strip regions of length O(Kσ)
and width O(σ) that map into the interpolation region {0 ≤ t ≤ Kσ }.2

The necessary conditions for applying Newton iteration are still satisfied after these
modifications are made. The uniform invertibility of the differential is shown as in [E1,
Proposition 6.21], the quadratic estimate is established as in [E1, proof of Theorem 1.3,
p. 1216]. The surjectivity of the construction, i.e., the fact that Newton iteration captures
all rigid holomorphic disks, follows from an analog of the calculation in [E1, p. 1218], as
follows. Let u be the truncated local solution from Section 5.6.1. It is not hard to check
that the C0-norm near the ends controls the Fourier coefficients of u and the Fourier
coefficients control the weighted Sobolev norm in the interpolation region {0 ≤ t ≤ Kσ }
via the C0-norm. The C0-norm is controlled by Lemma 5.11. ut

Proof of Theorem 1.6. Let LMo be a Morse cobordism in T ∗F and let (Xδ, Lδ;σ ) be the
associated conical exact Lagrangian cobordisms parametrized by δ, σ > 0. For δ, σ > 0
sufficiently small, any u ∈ M(Xδ,Lδ;σ );Jδ;σ (a;b) is “approximated” by a rigid LC flow
tree γ̂δ in the sense of Lemma 5.11.

On the other hand, by Lemma 5.12, for σ, δ > 0 sufficiently small, there is a unique
rigid holomorphic disk in M(Xδ,Lδ;σ );Jδ;σ (a;b) which “approximates” the rigid LC flow
tree γ̂δ . The theorem now follows from Lemma 5.2, which gives a bijection between rigid
flow trees of LMo and rigid LC flow trees of Lδ;σ . ut

6. Elementary exact Lagrangian cobordisms and their DGA maps

In this section we introduce elementary exact Lagrangian cobordisms and compute the
induced DGA maps. An elementary exact Lagrangian cobordism L is one of the follow-
ing:

(1) a cobordism induced by a 5C-simple Legendrian isotopy;
(2) a cobordism induced by a Legendrian Reidemeister move;
(3) a minimum cobordism; or
(4) a saddle cobordism.

The cobordisms will be discussed in Sections 6.2–6.5, respectively. An exact Lagrangian
cobordism L is decomposable if it is exact Lagrangian isotopic to a concatenation of
elementary exact Lagrangian cobordisms.

In this section the coefficient ring of the DGAs is F, unless stated otherwise.

6.1. Lagrangian cobordisms from Legendrian isotopies

Let 3τ ⊂ R3, τ ∈ [0, 1], be a 1-parameter family of Legendrian links from 30 to 31.
Choose a parametrization γτ : S → R3 of 3τ , where S is a (not necessarily connected)
closed 1-manifold. We reparametrize the τ -parameter via a map f : R → [0, 1] with

2 The interpolation region interpolates between the local solution on the symplectization part and
a local solution on T ∗F which is “approximated” by a flow line.
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small derivative so that f (t) = 1 for t ≥ t0 � 0 and f (t) = 0 for t ≤ −t0. Consider the
trace

0 : R× S → R× R3, (t, s) 7→ (t, γf (t)(s)),

of the isotopy γf (t). Then

0([t0,∞)× S) = [t0,∞)×31, 0((−∞,−t0] × S) = (−∞,−t0] ×30.

The following lemma is a version of a standard result (cf. e.g. [E2, Lemma A.1]).

Lemma 6.1. For any ε > 0, there exists δ > 0 such that if 0 satisfies
∣∣ ∂0
∂t

∣∣
C0 < δ, then

there is a cylindrical exact Lagrangian cobordism L from 31 to 30 which is ε-close (in
the C0-metric) to the image of 0.

Proof. Let H(t, s) = α0
(
∂0
∂t
(t, s)

)
, where α0 = dz− ydx. We then write

0(t, s) = (t, x(t, s), y(t, s), z(t, s)),

and consider the deformed map

0′(t, s) = (t, x(t, s), y(t, s), z(t, s)+H(t, s)). (6.1)

We calculate

(0′)∗(etα0) = (0
′)∗(et (dz− ydx))

= et
(
∂z

∂t
dt +

∂z

∂s
ds − y

(
∂x

∂t
dt +

∂x

∂s
ds

)
+
∂H

∂t
dt +

∂H

∂s
ds

)
= et

((
∂z

∂t
− y

∂x

∂t

)
dt +

∂H

∂t
dt +

∂H

∂s
ds

)
= et

(
H(t, s)dt +

∂H

∂t
dt +

∂H

∂s
ds

)
= d(etH(t, s)).

Hence 0′ is exact Lagrangian. Since 0 : R× S → R×M is an embedding, 0′ is also an
embedding, provided the modification H(t, s) is sufficiently small. Finally, condition (i)
in Definition 1.1 is satisfied since H(t, s) = 0 at the ends of 0′. The lemma follows. ut

6.2. Simple Legendrian isotopies

Let3τ ⊂ R3, τ ∈ [0, 1], be a 1-parameter family of Legendrian links from30 to31. Af-
ter a small perturbation, 3τ is chord generic except at isolated instances 0 < τ1 < · · · <

τk < 1, where the Lagrangian projection 5C(3τi ) has a self-tangency or a triple point
and passing from 5C(3τi−ε) to 5C(3τi+ε), ε > 0 small, corresponds to a Legendrian
Reidemeister move (see [Ka1, Figure 6]).

Definition 6.2. A Legendrian isotopy 3τ , τ ∈ [0, 1], is 5C-simple if the Lagrangian
projection of 3τ has only transverse double points for all τ ∈ [0, 1], i.e., there are no
Reidemeister moves during the isotopy.
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In particular, if 3τ , τ ∈ [0, 1], is 5C-simple, then there is a natural identification φτ,τ∗ :
C(3τ )

∼
→ C(3τ∗) for all τ, τ ∗ ∈ [0, 1].

We now use Lemma 6.1 to construct cobordisms of5C-simple isotopies and compute
the corresponding cobordism maps.

Lemma 6.3. Let 3τ , τ ∈ [0, 1], be a 5C-simple Legendrian isotopy. Then there exist
ε > 0 and a subdivision of [0, 1] into intervals [a, a + ε] of length ε such that the
Lagrangian cobordisms that correspond to 3τ , τ ∈ [a, a + ε], all induce the DGA iso-
morphisms

(A(3a), ∂a)
∼
→ (A(3a+ε), ∂a+ε)

which map c ∈ C(3a) to the corresponding chord φa,a+ε(c) ∈ C(3a+ε).
Proof. Arguing towards a contradiction, suppose there exist εi → 0 and intervals
[ai, ai + εi] such that the concordance corresponding to3τ , τ ∈ [ai, ai + εi], contains an
ind = 0 holomorphic disk which is not close to a trivial strip. By passing to a subsequence
we may assume that ai → a. By Gromov compactness, the trivial cylinder over 3a has
an ind = 0 disk which is not a trivial strip. Such a disk projects to a nontrivial disk of
Fredholm index −1 in C with boundary on 5C(3a).

On the other hand, no such disk exists by the argument principle: If u : Dm → C
is a holomorphic disk whose boundary maps to 5C(3a), then an easy calculation shows
that the Fredholm index ind(u) of u is given by µ(∂u) − 2, where µ(∂u) is the Maslov
index along ∂u with positive π/2-rotations at the corners. By the argument principle,
µ(∂u) ≥ 2. Hence ind(u) ≥ 0 and the lemma follows. ut

6.3. Cobordisms corresponding to Reidemeister moves

Following [EK], we consider three Reidemeister moves:

(L1) a triple point move;
(L2) pair cancellation of Reeb chords; and
(L3) pair creation of Reeb chords.

The (L1)-, (L2)-, and (L3)-moves are depicted in Figures 7, 8, and 9. The Morse cobor-
dismsLMo

⊂ T ∗F , F = R×[0, 1], corresponding to the (L1)-, (L2)-, and (L3)-moves are
referred to as the triple point, death, and birth cobordisms. Note that Morse cobordisms
are called “Legendrian submanifolds with standard ends” in [EK, Section 3.2].

We remark that the exact Lagrangian cobordisms corresponding to the triple point,
death, and birth Morse cobordisms, as well as the saddle and minimum cobordisms from
Sections 6.4 and 6.5, satisfy condition (i) of Definition 1.1 since we may assume that the
modifications occur inside a small region and outside this region the isotopy is trivial.

6.3.1. Abstract and geometric perturbations. We would like to apply Theorem 1.6 to
compute the DGA morphisms corresponding the above Morse cobordisms LMo from3+
to 3−. For simplicity we will be using F-coefficients.

Let L ⊂ T ∗F be an immersed exact Lagrangian cobordism which satisfies the fol-
lowing:
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• L is exact Lagrangian regular homotopic to LMo relative to 5T ∗F (3−) × {0} and
5T ∗F (3+)× {1};
• the exact Lagrangian regular homotopy is C0-small and supported on R × [0, ε] and
R× [1− ε, 1] ⊂ F for small ε > 0; and
• L restricts to 5T ∗F (3−) × [0, ε] and 5T ∗F (3+) × [1 − ε, 1] over R × [0, ε] and
R× [1− ε, 1] ⊂ F .

A geometric perturbation of L is a perturbation of the immersed exact Lagrangian L
relative to ∂L together with a perturbation of the Riemannian metric on F which is used to
define gradients. We assume additionally that the perturbation of L is a Morse cobordism.
For a generic geometric perturbation, the formal dimension ≤ 1 moduli spaces of flow
trees with one positive puncture on 3+ and arbitrarily many negative punctures on 3−
are transversely cut out by [E1, Theorem 1.1]. A count of rigid flow trees from a to b with
respect to a generic geometric perturbation immediately gives |T (a;b)| in Theorem 1.6.

However, it is easier to compute the DGA morphisms using Morse–Bott type con-
siderations since L is close to being Morse–Bott degenerate. In order to rigorously treat
Morse–Bott theory for flow trees, we use an abstract perturbation scheme which counts
perturbed Morse–Bott flow tree cascades. They are defined in [EK, Section 3.4] under the
name “perturbed generalized flow trees”. At this point the reader is encouraged to review
Sections 3.3 and 3.4 of [EK], including the notions of a Morse–Bott flow tree cascade
(= “generalized flow tree”), a slice tree, a connector, and the level of a cascade.3 In this
paper we will simply refer to a “Morse–Bott flow tree cascade” as a “cascade”. For a
generic abstract perturbation, the formal dimension ≤ 1 moduli spaces of perturbed cas-
cades with one positive puncture and arbitrarily many negative punctures are transversely
cut out by [EK, Lemma 3.9]. In [EK, Lemmas 6.6–6.8], for each of the moves, all the
rigid perturbed cascades were determined for a certain generic abstract perturbation of L.

Let
8a,8g : A(3+)→ A(3−)

be the maps defined by counting rigid perturbed cascades or rigid flow trees of L̃ using
an abstract perturbation and a geometric perturbation, respectively.

Lemma 6.4. The maps 8a and 8g are DGA morphisms and are chain homotopic, i.e.,
there is a degree +1 map K which takes generators of A(3+) to A(3−) so that

8a −8g = �K ◦ ∂+ + ∂− ◦�K .

Here �K is as in Lemma 3.14.

Proof. The fact that 8a and 8g are DGA morphisms follows from the compactness and
transversality properties of perturbed cascades in J 1F . The proofs require only standard
finite-dimensional arguments given in [EK, Lemma 3.9].

3 We need to slightly modify the definition of a boundary adjusted Morse function β : N → R in
[EK, Section 3.3, 2nd paragraph] so that on the collar neighborhood C × [0, ε) of each component
C of ∂N , β(x, t) = β∂ (x)+ kC t2 where kC is a nonzero constant.
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The proof of the chain homotopy is similar to that of [EK, Lemma 3.13] and is the
usual chain homotopy argument in disguise. We make the following simplifying assump-
tions:

(i) the abstract and geometric perturbations are close and are connected by a 1-parameter
family of abstract perturbations Pt , t ∈ [0, 1]; and

(ii) there is a single ind = 0 disk in the 1-parameter family of moduli spaces of rigid
disks

⊔
t∈[0,1]Mt , where Mt is with respect to Pt .4

Note that we can view a geometric perturbation as an instance of an abstract perturbation.
Let FI = F × [0, 1]/∼, where (x, t) ∼ (x, t ′) for all x ∈ ∂F and t, t ′ ∈ [0, 1], and

let LI = L × [0, 1]/∼ be a Legendrian submanifold of J 1(FI ). Also let D = [0, 1] ×
[0, 1]/∼, where (s, t) ∼ (s, t ′) for s ∈ {0, 1} and t, t ′ ∈ [0, 1], and let π : T ∗FI → D

be the corresponding projection. We assume that LI ∩ π−1(D±) is a trivial cobordism
over 3±, where

D− = {0 ≤ s ≤ 1/3}, D+ = {2/3 ≤ s ≤ 1}

are subsets of D.
We think of D and FI as smooth manifolds with boundary in the obvious way and

choose a Morse function f on D such that:

• f has one saddle point h = {s = 1}, one maximum point e+ in the interior of D+, one
minimum point e− = {s = 0}, and no other critical points;
• −∇f = −∂s on D −D+ −D−; and
• t = 0 and t = 1 are gradient trajectories from h to e−.

The set C(LI ) of Reeb chords of LI is given by

C(LI ) = C(3−) ∪ Ĉ(3+) ∪ C̃(3+),

where C(3−), Ĉ(3+), and C̃(3+) are the sets of Reeb chords that lie above e−, h, and
e+, respectively. Each of Ĉ(3+) and C̃(3+) is in one-to-one correspondence with C(3+),
except that |ĉ| = |c| + 1 and |c̃| = |c| + 2. Here c ∈ C(3+) and ĉ and c̃ are the corre-
sponding elements in Ĉ(3+) and C̃(3+); also let d ∈ C(3−). Let Â(3+) and Ã(3+) be
the algebras generated by Ĉ(3+) and C̃(3+).

Assume that the cobordism L and the perturbations P0 and P1 correspond to the two
flow lines connecting h to e−. As in the proof of [EK, Lemma 3.13], we claim that the
differential 1 of A(LI ) is given as follows:

1d = ∂−d, (6.2)

1ĉ = 8a(c)+8g(c)+ Ô(1), (6.3)
1c̃ = ĉ +K(ĉ)+Q(∂+c)+O(2). (6.4)

Here:

• Ô(n) (resp. O(n)) is a sum of words, each of which has at least n letters in Ĉ(3+)
(resp. Ĉ(3+) ∪ C̃(3+));

4 The reason we consider ind = 0 disks is that 8a and 8g count ind = 1 disks in R× J 1F .
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• K : Ĉ(3+)→ A(3−) is the chain homotopy corresponding to the ind = 0 disk; and
• Q(b1 . . . bm) = b̃18g(b2 . . . bm)+8a(b1)b̃28g(b3 . . . bm)+· · ·+8a(b1 . . . bm−1)b̃m.

We briefly indicate how the terms of (6.4) are obtained. We first enumerate the rigid
unperturbed cascades which contribute to O(0) and O(1). In the case of O(0), the chain
homotopy term K is obtained by viewing f as a perturbation of a Morse function f̃ such
that:

• f̃ has one maximum e+ = {s = 1} and one minimum e− = {s = 0} and no critical
points in int(D); and
• t = 0 and t = 1 are gradient trajectories from e+ to e−.

In the case of O(1), a rigid cascade 0 can have at most one level by an index computation.
If the level of 0 is zero, then it is a connector from c̃ to ĉ. If the level of 0 is one, then it
consists of a slice tree 0e+ from c̃ to b̃1, . . . , b̃m, together withm−1 rigid trees γi , i 6= i0,
from b̃i to some component ai = ai1 . . . aiji of 8a(bi) or 8g(bi). (In the case where LI
is not a product 3×D, we substitute rigid trees for connectors.)

An abstract perturbation analogous to the time-ordered, domain-dependent abstract
perturbation from the proof of Lemma 3.14 then gives the term Q(b1 . . . bm), as follows:
Let N(e+) ⊂ D be a small neighborhood of e+, q ∈ N(e+), 0q a parallel copy of the
slice tree 0e+ over q, and c(q) the Reeb chord over q corresponding to c ∈ C(3+).
Suppose that

(∗) the ind = 0 disk that contributes to K lies over the gradient trajectory t = 1/2 of f .

For q ∈ N(e+), we define the perturbation function (cf. [EK, Section 3.4])

v(0q) : C(0q)→ TqD ' R2,

where C(0q) is the cotangent lift of 0q , so that the following holds for all rigid slice
trees 0q :

(1) v(0q) is independent of q; and
(2) v(0q) is zero near c(q) and takes distinct constant values vi ∈ R2 near bi(q).

We specify vi further:

(3) Let vi = (si,−ε), where ε > 0 is small and s1 < · · · < sm. Then vi is a generic point
which is δ-close to vi , where 0 < δ � ε.

We will write 0q + v(0q) for 0q shifted in the D-direction via v(0q). A rigid perturbed
cascade 0̃ that corresponds to 0 consists of the following:

(a) a connector from c̃ to c(q) for some point q ∈ N(e+);
(b) a perturbed flow tree 0q +v(0q), where bi(q+vi) is the perturbed negative puncture

corresponding to bi(q); and
(c) for each i 6= i0, a flow tree starting at bi(q + vi).

In order for such a cascade to be rigid and contribute to a term that is linear in the C̃(3+)-
variables, we must have q + vi = e+ when i = i0; this uniquely determines q. By the
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choice (3) of the vi , together with (∗), there is exactly one perturbed cascade 0̃ corre-
sponding to 0, and it contributes to 8a(b1 . . . bi0−1)b̃i08g(bi0+1 . . . bm).

Applying 1 to (6.4) and using 12
= 0 we find that

8g(c)−8a(c) = ∂−(K(ĉ))+�K(∂+c).

This follows from restricting to the terms without letters in Ĉ(3+) and C̃(3+). ut

Remark 6.5. In [EK], the full DGA differentials of the Morse cobordisms corresponding
to (L1)–(L3) were computed using abstractly perturbed flow trees. The calculation needed
here is simpler: we only need to consider trees with one positive puncture at the maximum
and all other punctures at the minimum. In particular, the calculations for (L1) and (L2)
can be carried out with only geometric perturbations.

6.3.2. Triple point cobordisms. Let LMo
tr be a triple point cobordism from 3+ to 3−

and let (Xtr, Ltr) be the corresponding exact Lagrangian cobordism with cylindrical ends.
Then there is a canonical identification C(3+) ' C(3−). There are two types of (L1)-
moves, denoted by (L1a) and (L1b) (see Figures 7 and 8).

a b

c

ab

c

a b

c

b a

c

Fig. 7. An (L1a)-isotopy.

a b

c

a
b

c

a b

c

b a

c

Fig. 8. An (L1b)-isotopy.

We define two DGA morphisms

φ(L1a), φ(L1b) : A(3+)→ A(3−)

as follows: φ(L1a) maps x ∈ C(3+) to the corresponding x ∈ C(3−) and φ(L1b) maps
a 7→ a + bc and all other x ∈ C(3+) to the corresponding x ∈ C(3−).

Lemma 6.6. The cobordism map 8(Xtr,Ltr) : A(3+) → A(3−) is given by φ(L1a) or
φ(L1b), as appropriate.

Proof. Follows from [EK, Lemma 6.6] combined with Lemma 6.4 and Theorem 1.6. ut
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6.3.3. Death cobordisms. Let LMo
de be a death cobordism from 3+ to 3− and let

(Xde, Lde) be the corresponding exact Lagrangian cobordism with cylindrical ends. Then
there is a canonical identification C(3+) ' C(3−) ∪ {a, b}, where a and b are the can-
celing Reeb chords (see Figure 9).

a ba b

Fig. 9. An (L2)-isotopy from left to right. The (L3)-isotopy is from right to left.

We define the DGA morphism

φ(L2) : A(3+)→ A(3−)

as follows: Suppose ∂+a = b+ v, where ∂+ is the differential for A(3+). Observe that v
has no terms that contain a or b. Then φ(L2) maps a 7→ 0, b 7→ v, and all other x ∈ C(3+)
to the corresponding x ∈ C(3−).

Lemma 6.7. The cobordism map 8(Xde,Lde) : A(3+)→ A(3−) is given by φ(L2).

Proof. Follows from [EK, Lemma 6.7] combined with Lemma 6.4 and Theorem 1.6. ut

6.3.4. Birth cobordisms. LetLMo
bi be a birth cobordism from3+ to3− and let (Xbi, Lbi)

be the corresponding exact Lagrangian cobordism with cylindrical ends. Then there is a
canonical identification C(3+) ∪ {a, b} ' C(3−), where a and b are the newly created
Reeb chords.

We define the DGA morphism

φ(L3) : A(3+)→ A(3−)

inductively as follows (cf. [Ka1, Remark 3.4]): Suppose ∂−a = b + v, where ∂− is the
differential for A(3−), and

C(3−) = {b1, . . . , bm, b, a, a1, . . . , al},

arranged in action-nondecreasing order. We first set φ(L3)(bi) = bi . Suppose that

∂−a1 =
∑

B1bB2b . . . BkbA,

where Bi is a monomial in b1, . . . , bm, A is a monomial in b1, . . . , bm, b, a, and every b
in A is preceded by an a in A. Then

φ(L3)(a1) = a1 +
∑(

B1aB2b . . . BkbA+ B1vB2aB3b . . . BkbA

+ B1vB2vB3aB4b . . . BkbA+ · · · + B1vB2v . . . BkaA
)
.
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Next suppose that
∂−ai =

∑
B1bB2b . . . BkbA,

where Bi is a monomial in b1, . . . , bm, a1, . . . , ai−1, A is a monomial in b1, . . . , bm,

b, a, a1, . . . , ai−1, and every b in A is preceded by an a in A. Then

φ(L3)(ai) = ai +
∑(

B1aB2b . . . BkbA+ B1vB2aB3b . . . BkbA

+ B1vB2vB3aB4b . . . BkbA+ · · · + B1vB2v . . . BkaA
)
,

where the word Bj is obtained from Bj by replacing each occurrence of a1, . . . , ai−1 by
φ(L3)(a1), . . . , φ(L3)(ai−1).

Lemma 6.8. The cobordism map 8(Xbi,Lbi) : A(3+)→ A(3−) is given by φ(L3).

Proof. Follows from [EK, Lemma 6.8] combined with Lemma 6.4 and Theorem 1.6. ut

Remark 6.9. The chain maps φ(L1a), φ(L1b), φ(L2), and φ(L3) above are precisely the
chain maps used by Chekanov [Ch] to prove the invariance of Legendrian contact homol-
ogy under the Legendrian Reidemeister moves. The above exact Lagrangian cobordisms
can be interpreted as providing a geometric context where these maps arise naturally.

6.4. Minimum cobordisms

In this subsection and the next we consider two types of exact Lagrangian cobordisms—
minimum cobordisms and saddle cobordisms—that correspond to single Morse modifi-
cations of a Legendrian link.

Definition 6.10. A trivial Morse cobordism over a Legendrian3 ⊂ R3 is a Morse cobor-
dism in T ∗F , F = R×[0, 1], which is obtained from a conical Lagrangian in T ∗F over3
by a Morse modification near the boundary ξ2 = 0, 1 as given in Definition 2.3. Here the
coordinates of R× [0, 1] are (ξ1, ξ2).

Let3+ ⊂ R3 be a Legendrian link, one of whose components is the standard Legendrian
unknot U such that 5C(U) is contained in a disk which is disjoint from 5C(3+ − U).
Let 3− = 3+ − U .

Definition 6.11. A minimum cobordism from 3+ to 3− is a Morse cobordism in T ∗F ,
F = R × [0, 1], which is the union of a trivial Morse cobordism from 3+ − U to 3−
and a disk with boundary U in J 1(R × [0, 1]) with front in J 0(R × [0, 1]) as shown in
Figure 10.

Let LMo
mi be a minimum cobordism from3+ to3− and let (Xmi, Lmi) be the correspond-

ing exact Lagrangian cobordism with cylindrical ends. By assumption there are no Reeb
chords of3+ that connectU to any other component. Let a denote the unique Reeb chord
from U to itself. Then C(3+) = C(3−) ∪ {a}, where the identification is induced by the
trivial cobordisms on 3+ − U = 3−.
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a

ξ1
ξ2

z

Fig. 10. A minimum cobordism.

Lemma 6.12. The cobordism map 8(Xmi,Lmi) : A(3+)→ A(3−) is given by

8(Xmi,Lmi)(c) =

{
0 if c = a,
c if c 6= a,

where c ∈ C(3+).
Proof. This is an immediate consequence of |a| = 1 and the fact that the rigid holomor-
phic disks in a trivial cobordism are strips over Reeb chords. ut

6.5. Saddle cobordisms

In this subsection we treat saddle cobordisms.

6.5.1. Contractibility

Definition 6.13 (Contractible Reeb chord). Let 3 ⊂ R3 be a Legendrian link. A Reeb
chord a ∈ C(3) is contractible if there exists a homotopy 3τ , 0 ≤ τ ≤ 1, of Legendrian
immersions such that:

• 30 = 3;
• 3τ , τ ∈ [0, 1], is 5C-simple, i.e., 5C(3τ ) has only transverse double points for all
τ ∈ [0, 1]; and
• 31 has a transverse self-intersection which is obtained by sending A(aτ ) → 0 as
τ → 1, where aτ ∈ C(3τ ) is the Reeb chord corresponding to a.

Let 3′+ ⊂ R3 be a Legendrian link with a contractible Reeb chord a. Then, after Legen-
drian isotopy, we obtain3+ ⊂ R3 with a contractible Reeb chord a, whose neighborhood
is as shown on the left-hand side of Figure 11. Let 3− denote the Legendrian link ob-
tained by modifying the front of 3+ as shown on the right-hand side of Figure 11.

Now we consider the Lagrangian projection 5C. The modification of 3+ given in
Figure 11 corresponds to a 0-resolution of 5C(3+) at the crossing 5C(a). Also the
Legendrian regular homotopy can be continued so that a crossing of the opposite sign
emerges where 5C(a) used to be (see Figure 12).

We state a simple necessary and sufficient condition for contractibility with respect to
the Lagrangian projection. We refer to a component of C−5C(3+) as a “region”.
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a

3+ 3−

Fig. 11. Legendrian links at the ends of a saddle cobordism, viewed in the front projection.

R1 R2
a

Fig. 12. Crossing change at a contractible Reeb chord in the Lagrangian projection.

Lemma 6.14 (Criterion for contractibility). Let the quadrants with positive Reeb sign at
a ∈ C(3+) belong to the regions R1 and R2. The Reeb chord a is contractible if and only
if it is possible to apply a 5C-simple isotopy to 3+ so that the areas of both R1 and R2
exceed the action A(a). (If R1 = R2, the condition becomes A(R1) > 2 · A(a).)

Proof. If a contracts, then its action A(a) approaches 0 and eventually becomes smaller
than the area of any region in the diagram. If R1 and R2 have large enough areas, then it
is possible to carry out the isotopy shown in Figure 12. ut

6.5.2. Saddle cobordisms and simplicity

Definition 6.15. Let a be a contractible Reeb chord of a Legendrian link 3+ ⊂ R3 with
A(a) > 0 small and let 3− be the Legendrian link obtained by the modification given in
Figure 11. Then a saddle cobordism LMo

sa from 3+ to 3− corresponding to a is a Morse
cobordism in T ∗F , F = R×[0, 1], for which there exists an open set V ⊂ LMo

sa such that:

(1) the front of V , viewed as a subset of J 0(R × [0, 1]), is obtained from Figure 13 by
a Morse modification near the boundary ξ2 = 0, 1 as given in Definition 2.3 and
5F (V ) is a rectangle (ξ0

1 , ξ
1
1 )× [0, 1] ⊂ R× [0, 1]; and

a

ξ1
ξ2

z

Fig. 13. A saddle cobordism and a gradient flow line ρ0 from a to 1.
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(2) LMo
sa −V is a trivial Morse cobordism over3+−N(a), whereN(a) is a neighborhood

of a.

IfLMo
sa is a saddle cobordism from3+ to3− corresponding to a, then we write (Xsa, Lsa)

for the corresponding exact Lagrangian cobordism with cylindrical ends.
For c 6= a, let

M(c, ak;b) =M(R×R3,R×3+)(c, ak;b)

be the moduli space of holomorphic disks in R × R3 with boundary on R × 3+, one
positive puncture at c, k positive punctures at a, and negative punctures at b.

We make the following simplifying definition:

Definition 6.16. A contractible Reeb chord a ∈ C(3+) is simple if ind(u) ≥ k for all
broken holomorphic disks u in R×R3 with boundary on R×3+, one positive puncture
at a chord c 6= a, and k > 1 positive punctures at a. A saddle cobordism for a simple
contractible Reeb chord is a simple saddle cobordism.

6.5.3. The DGA morphism for a simple saddle cobordism. In view of the identification
C(3+) ' C(3−) ∪ {a}, we define an algebra map

90 : A(3+)→ A(3−)

on the generators by setting 90(a) = 1, 90(b) = b for b ∈ C(3−), and 90(A) = A for
A ∈ H1(Lsa). We also define

91 : C(3+)→ A(3−)

by setting
91(c) =

∑
dim(M(c,a;b))=1

|M(c, a;b)/R| ·90(b),

for c ∈ C(3−) and 91(a) = 0.

Remark 6.17. We may assume that the moduli spaces M(c, a;b) are transversely cut
out, since the disks in M(c, a;b) are not multiply-covered. Moreover, the bijection be-
tween flow trees with boundary on R × 3+ (resp. L̃Mo

sa ) and disks with boundary on
R×3+ (resp. L̃Mo

sa ) also holds for disks in M(c, a;b) of index 1.

Proposition 6.18. If a ∈ C(3+) is a simple contractible Reeb chord, then the corre-
sponding cobordism map 8(Xsa,Lsa) : A(3+)→ A(3−) is given by

8(Xsa,Lsa)(c) = 90(c)+91(c).

We often refer to the map 8(Xsa,Lsa) as the 0-resolution map at a.

Proof. Let LMo
sa be a saddle cobordism from 3+ to 3−, a the simple contractible chord

in 3+, and 31 the immersed Legendrian with a double point a′ corresponding to the
Reeb chord a of length 0. Given c ∈ C(3−), we write ĉ for the corresponding Reeb chord
in C(3+).
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First observe that there is a unique flow tree ρ0 of LMo
sa from a to 1—it is the flow line

given in Figure 13. To see that there is no other such tree, note that the positive function
difference along the flow line emanating from a cannot be split further into two (or more)
positive local function differences. The flow tree ρ0 will be called the basic tree and the
corresponding holomorphic disk the basic disk.

Step 1. We describe a degeneration Lt , t ∈ [0, 1], of L0 = L
Mo
sa to the immersed exact

Lagrangian L1 = 31 × [0, 1].
Let 3t , t ∈ [0, 1], be a regular homotopy of Legendrian immersions with 30 = 3+,

which is guaranteed by Definition 6.13. We may assume that:

• 5J 0R(3t ), t ∈ [0, 1], is independent of t outside a small rectangle R ⊂ J 0R;
• 5J 0R(3t ) ∩ R, t < 1, is as shown on the left-hand side of Figure 11; and
• 5J 0R(3t ) limits to 5J 0R(31) as t → 1; in particular, A(at )→ 0 as t → 1, where at

is the contractible chord corresponding to a.

Next let Lt , 0 ≤ t < 1, be a family of saddle cobordisms from 3t to 3− satisfying:

• Lt → L1 as t → 1;
• if Vt , t < 1, is the open set V for Lt which appears in Definition 6.15 and Ct is the cusp

edge corresponding to Vt , then5F (Ct ) is given by {ξ2 = (t−1)ξ2
1 +1/2, ξ2 ∈ [0, 1]}.

Step 2. Let ρ0(t), 0 ≤ t < 1, be the basic tree for Lt .

Claim 6.19. Let γt , 0 ≤ t < 1, be a sequence of rigid flow trees of Lt with one positive
end ĉ 6= at and m negative ends b1, . . . , bm. If γt 6= ρ0(t) and γt is not a connector
from ĉ to c, then γt has a subsequence which converges to a cascade 0 of L1 as t → 1,
and 0 consists of:

• a connector from ĉ to c × {1/2};
• a slice tree 01 ⊂ 31 × {1/2} ⊂ L1; and
• connectors from bi × {1/2} to bi for i = 1, . . . , m.

Proof. By the flow tree analog of Gromov compactness, there is a subsequence of γt
which converges to a cascade 0 of L1. (Here the boundary condition Lt varies with t and
Gromov compactness corresponds to local convergence of flow lines of the vector fields
defined by Lt to the flow lines of the limiting vector field as t → 1, provided an energy
bound is satisfied.) If a level of 0 contains a slice tree of 31 × {ξ2} with ξ2 6= 1/2, then
γt is not rigid. The claim follows. ut

Step 3. Consider the slice tree 01. Since the Reeb chords at limit to a1 with A(a1) = 0,
we can view 01 as a tree with punctures at a1, denoted by 0◦1 . Let k (resp. `) be the
number of positive (resp. negative) punctures at a1. For each negative (resp. positive)
puncture at a1, there is a corresponding end (resp. switch) of Lt , t < 1 (see Figure 14).

We now apply (4.2) to compute dim(0◦1) and dim(γt ): Since n = 1 and I (a1) = 0,

dim(0◦1) = −2+ I (c)−
m∑
i=1

(I (bi)− 1)+ `+
∑
r

µ(r).

On the other hand, since n = 2, I (ĉ) = I (c)+1, each positive puncture at a1 is converted
into a switch which contributes −1 to the Maslov content, and each negative puncture at
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end switch

5F (6) 5F (6)

Fig. 14. Producing rigid trees in a saddle cobordism. Here6 is the singular set of L̃Mo
sa . The arrows

in the bottom figures represent the negative gradients of the positive function differences.

a1 is converted into an end which contributes +1 to the Maslov content, it follows that

dim(γt ) = −1+ (I (ĉ)− 1)−
m∑
i=1

(I (bi)− 1)+
∑
r

µ(r)− k + `

= −1+ I (c)−
m∑
i=1

(I (bi)− 1)+
∑
r

µ(r)− k + `

= dim(0◦1)+ 1− k.

Since dim(γt ) = 0, it follows that dim(0◦1) = k − 1. By the simplicity of the chord at ,
there is no such holomorphic disk when k > 1.

Note that for t close to 1, the rigid flow tree Lt must intersect the basic flow tree ρ0
as well as 5F (6).

Step 4. It remains to construct a unique rigid tree γt in Lt , 1− ε < t < 1, corresponding
to the cascade 0. When we perturb 0 to γt , the unique positive puncture of the slice
tree 0◦1 at a becomes a switch of γt as depicted on the right-hand side of Figure 14. The
tree γt can be split into two partial flow trees γ+t and γ−t at the switching point d, where
γ+t has a positive puncture at ĉ and γ−t has no positive punctures; similarly, 0 can be split
into partial flow trees 0+ and 0−. At d, the incoming and outgoing gradient trajectories
are uniquely determined. Hence there is a unique pair (γ+t , γ

−
t ), where γ+t is close to 0+

and ends at some d , and γ−t is close to 0− and starts at the same d. This proves the
lemma. ut

Remark 6.20. Consider a rigid tree γ in the cobordismLMo
sa with one positive end c 6= a.

By applying “boundary gluing” to γ and the basic tree ρ0, we create a tree with two
positive ends c and a. Here a “boundary gluing” of two flow trees is the flow tree analog
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1 2

3 4

5F (6)

5F (6)

5F (6)

5F (6)

boundary glue

ρ0

γ
sw e sw e

collide

can now move up

Fig. 15. Boundary gluing rigid trees in the cobordism. Here “sw” refers to a switch and “e” refers
to an end.

of a gluing of two disks whose boundaries intersect at a point on the Lagrangian. The
end and the switch of this tree cancel as in Figure 15, the tree moves upwards, and we
eventually obtain a 1-dimensional family of trees in R × 3+ with two positive ends c
and a.

Corollary 6.21. If a ∈ C(3+) is a simple contractible Reeb chord, then the correspond-
ing cobordism map 8(Xsa,Lsa) : A(3+)→ A(3−) is surjective.

Proof. This follows from Proposition 6.18, together with the observation that

A(90(c)) > A(91(c)), c 6= a.

Here A(91(c)) is the supremum of A(b) over all the nonzero monomial summands b
of 91(c). ut

6.5.4. Pushing forward augmentations. If 8 : A(3+) → A(3−) is a DGA morphism
and ε′ is an augmentation of 3−, then the pullback 8∗ε′ := ε′ ◦ 8 is naturally an aug-
mentation of 3+.

For saddle cobordisms corresponding to simple contractible Reeb chords, augmenta-
tions also behave well under pushforwards:

Lemma 6.22. Let a ∈ C(3+) be a simple contractible Reeb chord, let ε be an augmenta-
tion of 3+ with ε(a) = 1, and let 8 = 8(Xsa,Lsa) be the corresponding DGA morphism.
Then there is a unique algebra map ε′ : A(3−)→ F such that ε = ε′ ◦8. Furthermore,
ε′ is an augmentation of 3−.
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Proof. The existence and uniqueness of ε′ uses the same key idea as that of Corol-
lary 6.21. Since 8(x) = 90(x) + 91(x) with A(90(x)) > A(91(x)), we can write
ε′(90(x)) = ε(x)− ε

′(91(x)) and use induction on the action.
To prove that ε′∂ ′ = 0, we compute

(ε′∂ ′)(90(x)) = (ε
′∂ ′)(8(x)−91(x)) = (ε

′8∂)(x)− (ε′∂ ′)(91(x))

= (ε∂)(x)− (ε′∂ ′)(91(x)) = (ε
′∂ ′)(−91(x)),

and use induction on the action. ut

6.5.5. Dipped diagrams. In this subsection we explain how to modify a Legendrian link
3 with a contractible Reeb chord a so that a becomes simple. The modification is called
dipping; it first appeared in [F] under the name “splashing” and was used extensively
in [Sa2].

Lemma 6.23. Let 3 be a Legendrian link with a contractible Reeb chord a. Then there
exist a Legendrian isotopy 3τ , τ ∈ [0, 1], and a 1-parameter family aτ , τ ∈ [0, 1], of
contractible Reeb chords such that:

(1) 30 = 3 and a0 = a;
(2) 5C(3τ ) is a transverse intersection at 5C(aτ ) for all τ ∈ [0, 1]; and
(3) a1 ∈ C(31) is simple.

Proof. We start with a 5C-simple isotopy 3τ , τ ∈ [0, 1/3], with 30 = 3, such that the
restriction of the front of31/3 to J 0I , where I is a small interval around the x-coordinate
of a1/3, satisfies the following: the two middle Legendrian arcs connected by a1/3 are
arranged as in Figure 16. The isotopy is obtained from the 5C-simple isotopy given by
Definition 6.13, by applying a C0-small perturbation near the Reeb chord a1/3.

a1/3

Fig. 16. Aligning all the local gradients in the front projection.

Next we shrink I to I ′ 3 x(a1/3) and apply a C0-small isotopy to5J 0F (31/3)∩J
0I ′

so that the following holds:

(∗) in the front projection, the slopes of the Legendrian arcs above (resp. below)
5J 0F (a1/3) are negative (resp. positive) and decrease as the z-coordinate increases.
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A

B

C

D

E

F

n

n− 1

0+

0−

−m+ 1

−m

Fig. 17. Isolating the contractible chord by dipping.

In other words, 5J 0F (31/3) ∩ J
0I ′ is as given in Figure 16. This yields 3τ , τ ∈

[1/3, 2/3].
Finally, we apply a C0-small isotopy to the front projection 5J 0F (32/3) ∩ J

0I ′ so
that the resulting front 5J 0F (31) ∩ J

0I ′ is as in Figure 17. The strands are numbered

−m, . . . ,−1, 0−, 0+, 1, . . . , n

from bottom to top. Let IL,i ⊂ I ′ (resp. IR,i ⊂ I ′) be the support of the perturbation of
strand i to the left (resp. right) of x(a1). Then IL,i ∩ IL,j = ∅ for i 6= j and the IL,i
move from left to right as i increases; the same holds for IR,i . The resulting Legendrian
isotopy will be denoted by 3τ , τ ∈ [2/3, 1]. The reason this isotopy 3τ , τ ∈ [2/3, 1], is
called a dipping is self-evident when the dipping is viewed in the Lagrangian projection
(see Figure 18). Conditions (1) and (2) immediately hold by construction.

Fig. 18. A dipping in the Lagrangian projection.

Next we claim that if a tree γ of31 has one positive puncture at c 6= a1 and k positive
punctures at a1, then its formal dimension is at least k − 1. Recall that a tree has formal
dimension k − 1 if and only if the Fredholm index of the corresponding disk is k. The
reader might prefer to translate the proof below to the situation of a Lagrangian projection.
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For each positive puncture of γ at a1 with a π/2-angle, there is a partial flow tree of one
of the following types:

• γ ′, which consists of a partial flow line (γ |e, γ e1 , γ
e
2 ) where 5J 0F maps γ e2 to the

upper sheet S2 of a1 and γ e1 to a sheet S3 above a1 for x ≤ x(a1) and a partial flow
line (γ |e′ , γ e

′

1 , γ
e′

2 ) where 5J 0F maps γ e
′

2 to the lower sheet S1 of a1 and γ e
′

1 to S3 for
x ≥ x(a1); γ ′ is given by the top right diagram of Figure 14; or
• γ ′′, which is obtained from γ ′ by reflecting across the x-axis.

Note that there are no Y1-vertices, switches, or ends on J 0I ′, since there are no cusps
on J 0I ′. A Y0-vertex and a 2-valent interior puncture with a 3π/2-angle both increase the
formal dimension by 1.

Let γ ′ ⊂ γ be a partial flow tree with a positive 2-valent interior puncture at a1.
We consider the continuation of γ ′ to the left; the case of γ ′′ ⊂ γ is similar. If there
is no Y0-vertex and no 2-valent interior puncture with a 3π/2-angle, then by a case-by-
case analysis there is always a positive puncture c 6= a1 whose corresponding Reeb chord
starts at 0+. Hence the continuation of γ ′ to the left has one of the following: (i) a positive
puncture c 6= a1; (ii) a Y0-vertex above 0+, when viewed in the front projection; or (iii) a
2-valent interior puncture with a 3π/2-angle, whose corresponding Reeb chord starts at or
above 0+. Moreover, for each positive 2-valent puncture of γ at a1, the corresponding (i),
(ii) or (iii) is distinct. Since γ has only one positive puncture c 6= a1 and each Y0-vertex
or 3π/2-angle increases the formal dimension by 1, it follows that dim(γ ) ≥ k − 1. This
proves the claim and the lemma. ut

6.5.6. The DGA morphism for a general saddle cobordism. Let L be a general saddle
cobordism from 3+ to 3− with a contractible Reeb chord a ∈ C(3+). We may assume
that A(a) is arbitrarily small. The DGA morphism 8 for L can then be computed as
follows: Let 3τ and aτ , τ ∈ [0, 1], be the isotopies from the proof of Lemma 6.23 such
that 30 = 3+, a0 = a, and a1 ∈ C(31) is simple and contractible. We then resolve a1
to obtain a simple saddle cobordism from 31 to 3′1. Finally, we “undo” the isotopy 3τ ,
τ ∈ [0, 1], to obtain 3′τ , τ ∈ [0, 1], such that 3′0 = 3−. This gives a composition of
three cobordisms with corresponding DGA morphism

80 ◦81 ◦82 : A(3+)→ A(3−),

where 80 and 82 correspond to Legendrian isotopies and can be computed using Lem-
mas 6.6–6.8, and 81 corresponds to a simple saddle cobordism and can be computed
using Proposition 6.18. Since the composition of the three cobordisms is isotopic to L,8
is chain homotopic to 80 ◦81 ◦82 by Lemma 3.14.

7. Exact Lagrangian fillings and augmentations

In this section we collect some general results on exact Lagrangian fillings and augmen-
tations.
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7.1. tb, r , and slice genus

The following is due to Chantraine [Cha1, Theorem 1.3]:

Theorem 7.1 (Chantraine). If the Legendrian knot 3 admits an orientable Lagrangian
filling L, then:

(1) g(L) = gs(3); and
(2) tb(3) = 2gs(3)− 1 = 2g(L)− 1 and r(3) = 0.

Here g(L) is the genus of L, gs(3) is the slice genus of 3, and tb(3) and r(3) are the
Thurston–Bennequin invariant and rotation number of 3.

Sketch of proof. This is obtained by combining the fact that the tangent bundle of L
is isomorphic to its normal bundle, the relation between linking on the boundary and
intersections in the interior, and the slice Thurston–Bennequin inequality. ut

7.2. Restriction on linearized Legendrian contact homology

Suppose 3 admits an exact Lagrangian filling (R× R3, L). Then the DGA morphism

ε = 8(R×R3,L) : A(3)→ F

is an augmentation of 3. The augmentation ε for (A(3), ∂) induces a “change of coor-
dinates” ai 7→ ai = ai + ε(ai) of A(3), where ai ∈ C(3), such that ∂ai does not have
any constant terms when expressed in terms of sums of words in aj . In other words, with
respect to the new generators ai , ∂ is nondecreasing with respect to the word length filtra-
tion, i.e., ∂ = ∂1+∂2+· · · , where ∂j is the part of the boundary map that counts words of
length j in the ai’s. The ε-linearized Legendrian contact homology group HCε(3) with
respect to ε is the homology of (A1, ∂1), where A1 is the Q-vector space generated by
{ai, ai ∈ C(3)}; let CCε(3) be the chain complex (A1, ∂1). For more details see [Ch].

The following theorem is essentially due to Seidel (see [E3]). Here we sketch a proof
that uses wrapped Floer homology (cf. [AS, FSS]).

Theorem 7.2 (Seidel). HCε(3) ' H ∗(L).

Sketch of proof. Let CFwr(L) be the wrapped Floer chain complex of L, which is defined
as follows: Let H : R×R3

→ R be a Hamiltonian function which outside a finite height
cylinder [−T , T ] × R3 is the composition of the projection π : R × R3

→ R and the
function f : R→ R, where:

• f (t) = 0 for t � 0;
• f (t) = w0e

t for t � 0, where w0 > Aα0(a) for all a ∈ C(3);
• f ′(t) ≥ 0; and
• H is small in π(L − E+(L)), where E+(L) ≈ [T ,∞) × 3 is the positive cylindrical

end of L, and L is invariant under the gradient flow of H .
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Let XH be the Hamiltonian vector field of H , i.e., iXH d(e
tα0) = dH , and let φt be

the time-t flow of XH . Then CFwr(L) is defined as the Floer chain complex gener-
ated by time-1 Hamiltonian chords of L, i.e., flow segments φt (p), t ∈ [0, 1], such that
φ0(p) = p ∈ L and φ1(p) ∈ L. For Hamiltonians H as above there are then two types
of generators: chords corresponding to critical points of H on L, and Reeb chords of 3,
where a Reeb chord c of action Aα0(c) appears in the t-slice where e−tf ′(t) = Aα0(c).
The differential on CFwr(L) then counts Floer holomorphic strips connecting Hamilto-
nian chords. More precisely, a Floer holomorphic strip is a map u : R× [0, 1] → R×R3

with boundary on L that solves the differential equation

(du−XH ⊗ dτ2)+ J (du−XH ⊗ dτ2)i = 0,

and that is asymptotic to Hamiltonian chords at ±∞, where (τ1, τ2) ∈ R × [0, 1] are
standard coordinates, J is a compatible almost complex structure on R× R3 and i is the
standard complex structure on R× [0, 1].

Let C′ ⊂ CFwr(L) be the “low energy” subcomplex generated by the critical point
chords; its homology is isomorphic to H ∗(L) by the usual identification of Floer holo-
morphic strips and gradient trajectories. The “high energy part” CFwr,+(L) of CFwr(L)

is the quotient CFwr(L)/C′. We then obtain the exact triangle

δ∗
−→ H ∗(L)

ι
→ HFwr(L)

j
→ HFwr,+(L)

δ∗
−→ . (7.1)

Let g : R → [0, 1] be a nonincreasing smooth function such that g(τ1) = 0 near∞
and g(τ1) = 1 near −∞. In analogy with the Morse–Bott description of symplectic
homology from [BO], there is a chain map

9 : CCε(3)→ CFwr(L)

that counts interpolating Floer holomorphic strips v : R×[0, 1] → R×R3 with boundary
on L that solves the differential equation

(dv −XH ⊗ g(τ1)dτ2)+ J (du−XH ⊗ g(τ1)dτ2)i = 0,

and which are asymptotic to a Reeb chord in C(3) as τ1 → ∞ and to a Hamiltonian
chord as τ1 →−∞.

The chain map 9 induces an isomorphism

9∗ : HCε(3)
∼
→ HFwr,+(L) (7.2)

by an action filtration argument. In particular, the leading term of 9(a), a ∈ C(3), in the
action filtration is given by the reparametrized trivial strip over a.

Since L is displaceable, HFwr(L) = 0 and the theorem follows from the exact triangle
(7.1) and (7.2). ut

Remark 7.3. The above theorem holds for displaceable Lagrangian fillings L in an exact
symplectic manifold of dimension 2n for n ≥ 1.



2678 Tobias Ekholm et al.

Remark 7.4 (Gradings). We are using the usual grading conventions for CFwr(L). In
the case when the Maslov class ofL is nonzero, CFwr(L) no longer has an integer grading.
However, there is still a differential, and the resulting homology HFwr(L) is invariant
under deformations.

Suppose CFwr(L) is Z-graded. Then the map ι has degree 0, and in particular the
intersection point of CF(L, φ1(L)) corresponding to the minimum of H |L has degree 0.
The quotient map j has degree zero, the isomorphism 9∗ has degree − dim(L) = −n,
and δ∗ has degree +1.

7.3. Nontriviality of augmentations

We state a related result concerning the nontriviality of augmentations. Let (R × R3, L)

be an exact Lagrangian filling of 3 and let

ε̃ : A(3;F[H1(L;Z)])→ F[H1(L;Z)]

be the induced augmentation map, i.e., the unital algebra map which satisfies the follow-
ing:

• ε̃ is the identity map on the homology generators; and
• ε̃ takes any Reeb chord a of3 to the count of rigid once-punctured disks with boundary

on L which are asymptotic to a at the positive end.

Remark 7.5. If the Maslov class of L is nonzero, then ε̃ is an ungraded augmentation.

Proposition 7.6. If H1(L;Z) 6= 0, then ε̃ 6≡ 0, i.e., there exists a Reeb chord a of grad-
ing 0 such that ε̃(a) 6= 0.

The proof below does not depend on whether ε̃ is graded.

Sketch of proof. Let C∗(L;F) be the Morse cochain complex of L with respect to the
function H |L from Theorem 7.2, which we assume is Morse. Let

δ : CCε̃(3;F)→ C∗(L;F)

be the chain map which induces the connecting homomorphism δ∗ in the exact trian-
gle (7.1). Since L is displaceable, δ∗ is an isomorphism. The map δ admits the following
geometric description (which follows from a generalization of the discussion in the proof
of Theorem 7.2 that adds the Morse complex of L to CCε̃ and then includes also the low-
energy generators in the isomorphism): Let p be a critical point of f and let x ∈ C(3). If
we write δ(x) =

∑
p〈δ(x), p〉·p, then 〈δ(x), p〉 is the count of rigid pairs (u, γ ), where u

is a holomorphic disk with a positive end at x and boundary on L, and γ is a gradient flow
line of L emanating from the boundary of u and ending at p. In particular, if ind(p) = 1,
then 〈δ(x), p〉 is the sum of the intersection numbers of γ ′ and the boundary of u, where
we are ranging over all pairs (u, γ ′) such that

• γ ′ is a gradient trajectory that ends at p; and
• u is a rigid disk with a positive end at x.
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Assume for contradiction that ε̃ ≡ 0. Then, for each x ∈ C(3) and η ∈ H1(L;Z), the
number of rigid disks with a positive end at x and boundary on L that represent η is even.
Let L be the compactification of L obtained by adding {∞} ×3. If ind(p) = 1, then the
two gradient trajectories that end at p form a class in H1(L, ∂L). In view of the above
description of 〈δ(x), p〉 for ind(p) = 1, it follows that δ(x) = 0. This is a contradiction
of H1(L;Z) 6= 0. ut

7.4. The fundamental class

Let ε : A(3)→ F be an augmentation of 3 ⊂ R3.

Definition 7.7. An ε-augmented holomorphic disk in (R × R3,R ×3) from a to b is a
holomorphic disk

u : (Dm+1, ∂Dm+1)→ (R× R3,R×3)

from a to b′ = τ0b1τ1 . . . τm−1bmτm, together with a subset c of {1, . . . , m} such that
applying ε to all the bi , i ∈ c, yields b.

If (X,L) is an exact Lagrangian cobordism from3+ to3− and ε− is an augmentation
of 3−, then an ε−-augmented holomorphic disk in (X,L) is defined similarly.

Given y ∈ R × 3 and a ∈ C(3), let 〈∂ya,b〉 be the count of ε-augmented ind = 1
holomorphic disks u from a to b that pass through y. We then write ∂ya =

∑
∞

i=0 ∂
i
ya,

where ∂ iy counts the ε-augmented disks from a to b, and b has i negative ends.

Definition 7.8. An ε-fundamental class is an element ηε of HCε(3) such that ∂0
yx = 1

for any generic y ∈ R×3 and representative x of ηε.

The following is a theorem of Sabloff [Sa2] and Ekholm–Etnyre–Sabloff [EESa, Theo-
rem 5.5].

Theorem 7.9. For any augmentation ε of 3 ⊂ R3, there exists an ε-fundamental class
in HCε(3).

Theorem 7.10. Let (X,L) be an exact Lagrangian cobordism from 3+ to 3− with cor-
responding chain map 8(X,L) : A(3+) → A(3−), let ε− be an augmentation of 3−,
and let ε+ = 8∗(X,L)(ε−) be the induced augmentation of 3+. Assume L, 3+, and 3−
are connected. Then the linearization

8(X,L) : HCε+(3+)→ HCε−(3−)

maps an ηε+ -fundamental class to an ηε− -fundamental class.

Proof. The conclusion follows from observing that (X,L) induces a chain map
from A(3+) to A(3−), where the differentials are “twisted by point conditions”. The
proof is similar to the usual case (see [BEE, Section 4.2]).

More precisely, let T > 0 be sufficiently large and let y± ∈ 3± be generic. Take a
generic path y : R → L such that y(t) = (t, y+) for t ≥ T and (t, y−) for t ≤ −T .
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Define My(t)(a), a ∈ C(3+), as the moduli space of ε−-augmented ind = 1 holomorphic
disks in L from a to ∅ that pass through y(t). As t →∞, My(t)(a) limits to the moduli
space of ε+-augmented ind = 1 disks in R × 3+ from a to ∅ that pass through (0, y+).
To see this, note that by SFT compactness a sequence in My(t)(a) limits to a multiple-
level building, where the top level u1 is a level in the symplectization (at the positive end)
and satisfies ind(u1) ≥ 1 since it must pass through the generic point (0, y+). Hence
ind(u1) = 1 by transversality and the additivity of the Fredholm index. There is only one
other level u0, which is a collection of rigid ε−-augmented disks in the cobordism, i.e., a
collection of disks contributing to the pullback augmentation ε+.

Similarly, as t → −∞, My(t)(a) limits to the moduli space of two-level buildings
u−1 ∪ u0, where u0 is an ε−-augmented ind = 0 disk from a to some b ∈ C(3−),
and u−1 is an ε−-augmented ind = 1 disk from b to ∅ that passes through (0, y−). The
resulting chain homotopy implies that if x ∈ ηε+ then the mod 2 count of ε−-augmented
disks from 8(X,L)(x) to ∅ that pass through (0, y−) is equal to the mod 2 count of ε+-
augmented disks from x to ∅ that pass through (0, y+), which in turn is 1. This proves the
theorem. ut

8. Applications

8.1. Lagrangian fillings of (2, n)-torus links

In this subsection we consider the Legendrian (2, n)-torus link 3n whose Lagrangian
projection is given by Figure 2. The main result is Proposition 8.5, which immediately
implies Theorem 1.8.

Each component of 3n has Maslov number 0. When n is even, 3n consists of two
unknots with Thurston–Bennequin number tb(3n) = −1. Let a1 and a2 be the two right-
most Reeb chords in Figure 2 with grading |aj | = 1, j = 1, 2. The remaining Reeb
chords, from left to right, are denoted by b1, . . . , bn and satisfy |bj | = 0. (If n is even, we
choose the reference path δ12 to be one of the Reeb chords connecting the two compo-
nents of 3n. We then choose the path of lines in the contact planes along δ12 so it makes
a π/2-rotation with respect to the trivialization induced by C.)

Claim 8.1. The chords a1 and a2 are noncontractible and the chords bj , j = 1, . . . , n,
are all contractible. Moreover, all pairs bj , bk , |k− l| > 1, of nonadjacent degree 0 Reeb
chords of 3n are simultaneously contractible.

Proof. Follows from Lemma 6.14. ut

By Claim 8.1 there is a sequence of saddle cobordisms that resolves the crossings of 3n
in each of the n! possible orders. We denote a permutation σ ∈ Sn = Aut({1, . . . , n})
by (i1, . . . , in) if σ(j) = ij . For each permutation σ = (i1, . . . , in), let Lσ be a La-
grangian cobordism in R×R3 which is deformation-equivalent to the composition of the
saddle cobordisms that resolve the degree 0 crossings in the order bi1 , . . . , bin from top
to bottom.
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Let σ = (i1, . . . , in) be a permutation and ij , ij+1 be adjacent entries such that there
is some ip, p > j + 1, with ij < ip < ij+1 or ij > ip > ij+1. If

σ ′ = (i1, . . . , ij−1, ij+1, ij , ij+2, . . . , in),

then Lσ and Lσ ′ are exact Lagrangian isotopic. Two permutations σ and σ ′ are isotopy
equivalent if they are related by a sequence of transpositions of the above type.

Remark 8.2. If we drop the Lagrangian condition on the cobordism, then any two chords
become simultaneously contractible. Thus all of our Lagrangian fillings3σ are smoothly
isotopic.

Lemma 8.3. The number of isotopy equivalence classes of permutations is the Catalan
number Cn =

(2n
n

)
/(n+ 1).

Proof. It is well-known that the Catalan numbers are determined by the initial value
C0 = 1 and the recurrence relation

Cn+1 =

n∑
k=0

CkCn−k, (8.1)

for n ≥ 0. We prove that the number an of isotopy equivalence classes of permutations
satisfies the same recurrence relation.

First note that a0 = 1. If two permutations (i1, . . . , in+1), (i
′

1, . . . , i
′

n+1) ∈ Sn+1 are
equivalent, then in+1 = i

′

n+1 since the last entry can never be part of an isotopy move. Let
Sk+1
n be the set of permutations such that in+1 = k+1 and let σ = (i1, . . . , in) ∈ Sk+1

n . If
ij > k + 1 and ij+1 < k + 1, then ij and ij+1 can be swapped by an isotopy equivalence.
Hence any σ ∈ Sk+1

n is equivalent to a permutation in normal form λ = (λ1, λ2, k + 1),
where λ1 ∈ Aut({1, . . . , k}) and λ2 ∈ Aut({k + 2, . . . , n + 1}). Now, two permutations
in Sk+1

n in normal form are isotopy equivalent if and only if the corresponding permuta-
tions λ1 and λ2 are isotopy equivalent. Hence there are akan−k isotopy equivalence classes
in Sn+1 with in+1 = k + 1. Summing over k gives the recurrence relation (8.1). ut

Example 8.4. When n = 3, we have C3 = 5 and the five sequences of resolutions
produce the five different augmentations of the Legendrian right-handed trefoil. Hence the
corresponding exact Lagrangian fillings are pairwise not exact Lagrangian isotopic. The
only two isotopy equivalent permutations in this case are (1, 3, 2) and (3, 1, 2), and they
both give rise to the augmentation ε(b1) = ε(b2) = ε(b3) = 1. In Figure 19 we illustrate
the sequence of resolutions and hence the Lagrangian cap corresponding to (2, 1, 3). It
yields the augmentation ε(b1) = 0, ε(b2) = ε(b3) = 1.

For larger n, however, the pattern is less clear. The total number of augmentations is
An = (2n+1

− (−1)n+1)/3 by [Ka2, Proposition 7.1], which is much smaller than Cn.
When n = 5, we have C5 = 42 and A5 = 21. Computing the augmentations belonging
to the 42 sequences of resolutions, we find that all 21 possibilities occur at least once.

We can prove by a relatively easy construction that this is the case for general 3n.
More precisely, we have:
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b1 b2 b3

b1 + 1 1 b3 + 1

1+ 1 1 b3 + 1+ 1

0 1 1+ 1+ 1 = 1

Fig. 19. Constructing a Lagrangian cap and computing its induced augmentation.

Proposition 8.5. Any augmentation of the (2, 2k+1)-torus knot is induced by a sequence
of crossing resolutions of the standard diagram, and so are all nonzero augmentations of
the (2, 2k)-torus link.

An augmentation ε : A(3)→F is the zero augmentation (written as ε ≡ 0) if ε|C(3)=0.

Proof. View3n, n = 2k or 2k+1, as the closure of a positive braid on two strands which
is given by σ n. Here σ is a positive generator of the braid group on two strands. Define
the matrix

Bn =

[
b1 1
1 0

] [
b2 1
1 0

]
. . .

[
bn 1
1 0

]
,

where the indeterminates b1, . . . , bn are the Reeb chord generators of A(3n). Let ε :
A(3n) → F be an algebra map defined by sending each degree 0 generator bi to 0 or 1
and each degree 6= 0 generator to 0. According to [Ka2, Theorem 5.3], the algebra map ε
is an augmentation of 3n if and only if ε(Bn) is of the form

[
1 ∗
∗ ∗

]
.

Given an augmentation ε for 3n, resolving a crossing q with ε(q) = 1 and changing
the ε-value (from 1 to 0 or from 0 to 1) associated to the one or two adjacent degree zero
crossings yields 3n−1 with an algebra map ε′ : A(3n−1) → F. We claim that ε′ is an
augmentation. Indeed, the Boolean algebra identity[

x 1
1 0

]
·

[
1 1
1 0

]
·

[
y 1
1 0

]
=

[
x + 1 1

1 0

]
·

[
y + 1 1

1 0

]
implies that ε′(Bjn−1) is of the form

[
1 ∗
∗ ∗

]
, where

B
j

n−1 =

[
b1 1
1 0

]
. . .

[
bj−1 + 1 1

1 0

] [
bj+1 + 1 1

1 0

]
. . .

[
bn 1
1 0

]
.

Next we claim that ε′ 6≡ 0 by a suitable choice of q: If there are index 0 crossings r
with ε(r) = 0, then choose q with ε(q) = 1 so that it has a neighbor r with ε(r) = 0. If
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ε ≡ 1 on the index 0 crossings, then let q be the leftmost or rightmost crossing. We have
ε′ 6≡ 0 as long as n > 2. Finally, observe that ε(b1) = ε(b2) = 1 is not an augmentation
for the Hopf link 32.

The proof then proceeds by induction. ut

Remark 8.6. Although ε(b1) = ε(b2) = 0 is an augmentation of the Hopf link 32, ε
cannot come from an embedded Lagrangian by Theorem 7.2.

Not much is known about exact Lagrangian fillings of Legendrian links. We conclude this
subsection with some open questions.

Question 8.7. If σ1, σ2 ∈ Sn are not isotopy equivalent but correspond to exact La-
grangian fillings Lσ1 , Lσ2 of 3n which induce the same augmentation, are Lσ1 and Lσ2

isotopic through exact Lagrangians?

Question 8.8. Is any exact Lagrangian filling of 3n which induces a nonzero augmen-
tation exact Lagrangian isotopic to one coming from a sequence of resolutions of the
“standard model” of 3n given by Figure 2? This is not known even for n = 3.

Question 8.9. If3 is a Legendrian knot and gs is its slice genus, is every augmentation ε
of3 geometric, provided HCε(3) ' H∗(6gs ), where 6gs is the once-punctured oriented
surface of genus gs? In other words, is Theorem 7.2 the only obstruction to the existence
of an exact Lagrangian filling that induces ε?

Question 8.10. Is every exact Lagrangian filling of a Legendrian knot3 decomposable?

In the case of a concave filling, there is an example of Sauvaget [Sau], which after some
modification, yields an exact Lagrangian cobordism of genus 2 from ∅ to a stabilized
unknot. A concave filling cannot be decomposable.

8.2. Connected sums

8.2.1. Comultiplication. We now introduce the exact Lagrangian cobordism and the ac-
companying comultiplication map induced by (the inverse of) a connected sum. Let
31,32 ⊂ (R3, ξ0) be Legendrian knots and let31 #32 be their connected sum, schemat-
ically given in Figure 20.

A B

A B31 32

31 32

Fig. 20. The inverse of a connected sum of 31 and 32 in the front projection.
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Suppose without loss of generality that31t32 is obtained from31 #32 by resolving
a simple contractible Reeb chord a. Then

C(31 #32) ' C(31) ∪ C(32) ∪ {a}

and the corresponding simple saddle cobordism L induces the coproduct map

8L : A(31 #32)→ A(31 t32) (8.2)

which maps x 7→ x if x ∈ C(31) or C(32) and a 7→ 1. This is due to the fact that there
are no holomorphic disks in 31 #32 that have a at the positive end.

Example 8.11. Let 31 and 32 both be standard tb = −1, r = 0 Legendrian unknots
U and let xi , i = 1, 2, be the generators of A(3i). Then 31 # 32 is isotopic to U
with generator x. Let F{S} be the free F-algebra generated by the set S. On the level of
homology the coproduct map is

F{x} → F{x1, x2}, x 7→ x1 + x2.

If we abelianize the DGA morphism A(31 # 32) → A(31 t 32), then on the level of
homology the coproduct map is

F[x] → F[x1] ⊗ F[x2], x 7→ x1 ⊗ 1+ 1⊗ x2,

which is the coproduct on the S1-equivariant cohomology of a point.

8.2.2. Multiplication. Next we introduce the exact symplectic cobordism induced by a
stabilized connected sum S+S−(31 #32), where S+ (resp. S−) denotes a single positive
(resp. negative) stabilization. This is given by Figure 21. Unfortunately, the multiplication
map

A(31)⊗A(32)→ A(S+S−(31 #32))

is the zero map and Legendrian contact homology gives no information.

A

B

A

B
31

32

31
32

Fig. 21. The stabilized connected sum of 31 and 32 in the front projection.

The above operation nonetheless can be used to prove the following theorem:

Theorem 8.12. Given any Legendrian link3 ⊂ R3, there is an exact Lagrangian cobor-
dism from 3 to some stabilized unknot.
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Fig. 22. Iterated pinching.

Proof. Consider the image of3 under the front projection5J 0R : R3
→ R2, (x, y, z) 7→

(x, z). We slice 5J 0R(3) along x = xi for x1 < · · · < xn such that there is at most
one crossing on each {xi < x < xi+1} and there are no cusps or crossings on each
x = xi . (Here we are assuming that 3 is sufficiently generic.) We then repeatedly apply
the pinching procedure of Figure 11, making sure that at each step we pinch strands
that are pointing in opposite directions. The result of applying the procedure to the slice
{xi < x < xi+1} is given in Figure 22, and is a disjoint union of possibly stabilized
unknots. Finally, we apply the stabilized connected sum operation to obtain a stabilized
unknot. ut

9. Khovanov homology

In this section we assume that the reader is familiar with basic facts about Khovanov
homology [Kh]. We refer the reader to [Ja] for a discussion of the map on Khovanov
homology induced by a cobordism of links.

The Khovanov homology of a link3⊂R3 will be denoted by Kh(3)=
⊕

i,j K
i,j (3),

where i is the homological grading and j is the q-grading. (Strictly speaking, when 3
is Legendrian, we consider the Lagrangian projection πC(3).) The following is due to
Jacobsson [Ja, Section 4.2].

Theorem 9.1 (Jacobsson). If3+,3− ⊂ R3 are links and L ⊂ [−1, 1]×R3 is a smooth
cobordism from {1} ×3+ to {−1} ×3−, then it induces a map

9L : Kh(3−)→ Kh(3+)

that is well-defined up to ±1 and is invariant under smooth isotopies relative to ∂L.

The isotopy is required to fix 3+ and 3− pointwise to avoid monodromy issues. Note
that any isotopy invariant derived from 9L will have this ±1 ambiguity as well.

Let K denote the mirror of the link K . Given a Legendrian link 3 ⊂ R3 and an exact
Lagrangian cobordism L from 3 to ∅, Theorem 9.1 gives a map

9L : Kh(∅) ' Z→ Kh(3).

Let 3 ⊂ R3 be a Legendrian link. Let S (resp. Sdec) be the set of isotopy classes of
exact (resp. decomposable exact) Lagrangian cobordisms L from 3 to ∅. Then we define

L3 =
⊔

L∈Sdec

{9L(±1)} ⊂ Kh(3), L′3 =
⊔
L∈S
{9L(±1)} ⊂ Kh(3).
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By definition, L3 and L′3 are invariants of 3, although not particularly computable.
Let L be a decomposable exact Lagrangian cobordism from 3+ to 3− which is the

composition of elementary cobordisms Li from 3i to 3i+1, i = 1, . . . , n − 1, where
3+ = 31 and 3− = 3n. Then we define

9 ′
Li
: Kh(3i+1)→ Kh(3i)

and 9 ′
L

as the composition of the 9 ′
Li

as follows: If K1 is the 1-resolution of K , then
there exists a map Kh(K1)→ Kh(K). In our case, mirroring transforms a 0-resolution to
a 1-resolution and we have a map Kh(3i+1)→ Kh(3i) if 3i+1 is a 0-resolution of 3i .
If 3i+1 is obtained from 3i by a Legendrian isotopy, then the isotopy induces the map
Kh(3i+1)→ Kh(3i).

Lemma 9.2. The map 9 ′
L
: Kh(3n) → Kh(31) induced by the decomposable exact

Lagrangian cobordism L agrees with 9L, where we view L as a smooth surface from 3n

to 31.

Proof. In [Ja], the 1-resolution map Kh(K1) → Kh(K) is not used in the definition of
the cobordism map 9L. Instead, the 1-resolution K1 → K must be factored into the
composition of a Reidemeister I move K1 → K ′ followed by a Morse saddle move
K ′ → K . One easily verifies that the composition Kh(K1)→ Kh(K ′)→ Kh(K) agrees
with the 1-resolution map. ut

Let L be an exact Lagrangian filling of3. We view L as a composition of a cobordism L1
from 3 to the unknot U , followed by a minimal cobordism L2. Let ε− and ε+ be the
augmentations induced by L2 and L, respectively. The augmentation ε+ gives rise to an
automorphism of A(3) which takes a ∈ C(3) to a = a + ε+(a), so that the differential
respects the filtration by word length in the a’s. Let E1(A(3), ε+) be the E1-term of
the associated spectral sequence; one easily sees that E1(A(3), ε+) is the unital tensor
algebra generated by HCε+(3). The we can define a map

2 : E1(A(3), ε+)→ Kh(3),

obtained by composing the maps

8L1 : E
1(A(3), ε+)→ E1(A(U), ε−), 9L1

: Kh(U)→ Kh(3+),

in Legendrian contact homology and Khovanov homology, together with

E1(A(U), ε−) ' F[x] → Kh(U) ' V,

where 1 7→ v+, x 7→ v−, and V is a 2-dimensional F-vector space generated by v+ of
degree 1 and v− of degree −1.

We close this subsection with some questions and a remark.

Question 9.3. Is the map 2 good for anything?
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Question 9.4. Can the set L3 and L′3 have more than two elements? Are L3 and L′3
finite?

Observe that L3 and L′3 are empty if there are no exact Lagrangian cobordisms from 3

to ∅. By the ±1 ambiguity, the cardinalities of L3 and L′3 are even.

Question 9.5. Are there only finitely many exact Lagrangian isotopy classes of exact
Lagrangians which bound a given Legendrian knot 3?

Since there are no local Lagrangian 2-knots in 4-space [EP], one might expect that the
answer is yes.

Example 9.6. Let 33 be the Legendrian right-handed trefoil knot with tb = 1 from
Section 8.1. For each of the five exact Lagrangian cobordisms L1, . . . , L5 constructed
in Section 8.1, we can assign an element of Kh(3). For each Li , the element 9Li (1)
coincides with Plamenevskaya’s transverse knot invariant [Pl], and also lies on Ng’s [Ng]
line j − i = C, where

C = {max(j − i) | Khi,j (L) 6= 0}.

By Remark 8.2, the exact Lagrangians Li are all smoothly isotopic.

Question 9.7. Clarify the relationship among L3 and L′3, Plamenevskaya’s transverse
knot invariant, and Ng’s line.
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