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Abstract. Using the analytic theory of differential equations, we construct, in any positive CR-
dimension and CR-codimension, examples of formally but not holomorphically equivalent real-
analytic CR-submanifolds in complex space.
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1. Introduction

Let M,M ′ be smooth real-analytic generic CR-submanifolds in CN , N ≥ 2, passing
through the origin (in what follows we assume that all CR-submanifolds considered are
generic). The germs (M, 0) and (M ′, 0) of these hypersurfaces at the origin are called
holomorphically equivalent if there exists a germ of an invertible holomorphic map-
ping F : (CN , 0) → (CN , 0), called a holomorphic equivalence between (M, 0) and
(M ′, 0), such that F(M) ⊂ M ′. Starting with the celebrated papers of Poincaré [39],

I. Kossovskiy: Department of Mathematics and Statistics, Masaryk University,
Brno, Czech Republic; e-mail: kossovskiyi@math.muni.cz
R. Shafikov: Department of Mathematics, The University of Western Ontario,
London, Ontario, N6A 5B7 Canada; e-mail: shafikov@uwo.ca

Mathematics Subject Classification (2010): Primary 32H02; Secondary 32V40



2786 Ilya Kossovskiy, Rasul Shafikov

É. Cartan [10], Tanaka [44], Chern and Moser [12], problems related to holomorphic
equivalence of real submanifolds in complex spaces have been intensively studied.

In particular, the following remarkable fact, demonstrating the difference between
complex analysis in one and several variables, was discovered in [12]. To describe it, we
need the following definition. A formal mapping F : (CN , 0)→ (CN , 0) is anN -tuple of
formal power series in N variables without a constant term. If (M, 0) and (M ′, 0) are the
germs at the origin of smooth real-analytic CR submanifolds of CR-dimensions n and k,
given by the defining equations θ(z, z̄) = 0 and θ ′(z, z̄) = 0 respectively, we say that
(M, 0) and (M ′, 0) are formally equivalent if there exists an invertible formal mapping
F : (CN , 0) → (CN , 0), called a formal equivalence between (M, 0) and (M ′, 0), and
a k × k matrix-valued formal power series λ(z, z̄) with an invertible constant term such
that θ ′(F (z), F̄ (z̄)) = λ(z, z̄) · θ(z, z̄). Holomorphic equivalence of hypersurfaces obvi-
ously implies formal equivalence. In the other direction, the convergence of the Chern–
Moser [12] normalizing transformation for real hypersurfaces implies

If real-analytic hypersurfaces M,M ′ ⊂ CN are Levi-nondegenerate, then any formal
equivalence between them is in fact convergent.

Recall that a real hypersurface is called Levi-nondegenerate (resp. Levi-nonflat) if
the restriction of the complex Hessian of its defining function to the complex tangent is
nondegenerate (resp. not identically zero). The problem of convergence of formal map-
pings between real submanifolds is closely related to the problem of analyticity of smooth
CR-mappings (see [5]). Additional motivation comes from the fact that if the convergence
phenomenon for some class of CR-submanifolds is established, then a merely formal nor-
mal form solves the holomorphic equivalence problem for this class of CR-submanifolds.
For example, the normal form of Kolář [28] for real-analytic hypersurfaces of finite type
in C2 is in general divergent, as shown by Kolář [29]. However, convergence results for
formal CR-maps known in this setting (e.g. [6]) show that Kolář’s normal form gives a
complete set of local biholomorphic invariants of a finite type hypersurface in C2.

Starting with the work of Baouendi, Ebenfelt and Rothschild [4], who established
the Chern–Moser convergence phenomenon for a wider class of hypersurfaces, a lot of
work has been done to investigate the convergence problem for formal maps; see the re-
cent survey [35] of Mir with a discussion of its connection with Artin’s Approximation
Problem [3]. For hypersurfaces the problem is best understood when M ⊂ CN is holo-
morphically nondegenerate (i.e., not locally biholomorphically equivalent at a generic
point to a product of a positive-dimensional complex space and a real submanifold of
smaller dimension), and minimal at a reference point p ∈ M (i.e., there is no germ at p
of a complex hypersurface X ⊂ M , see [46]). In fact, holomorphic nondegeneracy, as
well as minimality at a generic point q ∈ M , are necessary for convergence of all for-
mal automorphisms of (M, 0) (see [4, 5]). The only known result in the nonminimal case
is due to Juhlin and Lamel [26], who proved convergence of formal equivalences for 1-
nonminimal hypersurfaces in C2. Nevertheless, the general question of convergence of
formal equivalences between merely holomorphically nondegenerate hypersurfaces has
remained open; in particular, it was conjectured in [7] that the groups Aut(M, p) and
F(M, p) of respectively holomorphic and formal self-equivalences of the germ (M, p)

coincide for a holomorphically nondegenerate hypersurface M .
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Even a more intriguing question in the context of formal CR-maps, which has re-
mained open for any CR-dimension n > 0 and CR-codimension k > 0, is the relationship
between formal and holomorphic equivalences of CR-manifolds. Namely, the following
question has been a long-standing problem in CR-geometry:

Does the local holomorphic classification of real-analytic CR-manifolds of CR-dimen-
sion n and CR-codimension k (in particular, of real hypersurfaces) coincide with the
formal classification?

Just recently a positive answer to the above open problem was conjectured in [35]. We
should also mention the work by Moser and Webster [37], and by Gong [21], who found
examples of formally but not holomorphically equivalent real surfaces in C2 near complex
points. However, complex points constitute CR-singularities, and so such surfaces do not
fall into the category of CR-manifolds. Similar results for Lagrangian submanifolds in C2

are due to Webster [48] and Gong [20].
The main results of this paper give a negative answer to the conjectures of Mir [35]

and Baouendi, Mir and Rothschild [7]. To formulate the results precisely, we need the fol-
lowing definition. LetM ⊂ C2 be a real-analytic Levi-nonflat hypersurface which is non-
minimal at the origin (note that a real-analytic hypersurfaceM ⊂ C2 is Levi-nonflat if and
only if it is holomorphically nondegenerate [5]). Then in suitable coordinates (z, w) ∈ C2

near the origin (see, e.g., [16]) M can be represented by a defining equation

Imw = (Rew)m8(z, z̄,Rew), (1.1)

where the power series 8(z, z̄,Rew) contains no harmonic terms, and 8(z, z̄, 0) 6≡ 0.
The integerm ≥ 1 in (1.1), known to be a biholomorphic invariant of (M, 0), is called the
nonminimality order ofM at 0. IfM is given by equation (1.1), it is calledm-nonminimal.
The existence of the representation (1.1) is equivalent to M being Levi-nonflat.

Theorem A. For any integer m ≥ 2 there exist real-analytic hypersurfacesM,M ′ ⊂ C2

nonminimal at the origin of nonminimality order m such that the germs (M, 0) and
(M ′, 0) are formally equivalent, but holomorphically inequivalent.

The real hypersurfaces in Theorem A can be described explicitly, namely, using elemen-
tary functions and solutions of rational complex differential equations (see Theorem 4.7
below and also Remark 5.2).

Theorem A provides the first known examples of formally but not holomorphically
equivalent CR-manifolds.

The next result shows that the answer is also negative for automorphisms. Recall that
a (formal) holomorphic vector field L near the origin such that its real part L + L̄ is
(formally) tangent to M is called a (formal) infinitesimal automorphism of M .

Theorem B. For any integer m ≥ 2 there exist real-analytic hypersurfaces M,M ′ ⊂ C2

nonminimal at the origin of nonminimality order m with a divergent formal infinitesimal
automorphismL vanishing to orderm at 0. In particular, the real flowH t (z, w) generated
by L consists of divergent formal automorphisms of the germ (M, 0) for any t ∈ R \{cZ},
where c ∈ R is some constant.

Theorem 5.1 of Section 5 gives a refinement of Theorem B.
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It is possible to give a generalization of the phenomenon in Theorems A and B to
higher dimensions. For a real submanifold M ⊂ CN , M 3 0, we distinguish its stability
algebra aut(M, 0) at the origin and the formal stability algebra f(M, 0) (see Section 2 for
more details).

Theorem C. (a) For any integers n, k > 0 there exist real-analytic holomorphically non-
degenerate CR-submanifolds M,M ′ ⊂ Cn+k of CR-dimension n and CR-codimen-
sion k through the origin such that the germs (M, 0) and (M ′, 0) are formally equiv-
alent but holomorphically inequivalent. In particular, the holomorphic and formal
equivalence problems for real-analytic holomorphically nondegenerate CR-subman-
ifolds of CR-dimension n and CR-codimension k are not equivalent.

(b) For any integers N,m ≥ 2 there exists a real-analytic holomorphically nondegener-
ate hypersurface M ⊂ CN through the origin with a divergent formal infinitesimal
automorphism L vanishing to order m. The real flow H t of L consists of divergent
formal automorphisms of the germ (M, 0) for any t ∈ R \ {cZ}, where c ∈ R is some
constant.

For a real-analytic submanifold M ⊂ CN through the origin one can consider its holo-
morphic isotropy dimension dim aut(M, 0) as well as its formal isotropy dimension
dim f(M, 0).

Corollary 1.1. The holomorphic and formal isotropy dimensions do not coincide in gen-
eral for a holomorphically nondegenerate hypersurface M ⊂ CN .

The main tool of the paper is a development, in the Levi-degenerate case, of the fun-
damental connection between CR-geometry and the geometry of completely integrable
systems of complex PDEs, first observed by É. Cartan and B. Segre. In particular, the
geometry of real-analytic Levi-nondegenerate hypersurfaces in C2 is closely related to
that of second order ODEs, as discussed in Section 2. For a modern treatment of the
subject in the nondegenerate case, see also Sukhov [42, 43], Gaussier and Merker [19,
34], and Nurowski and Sparling [36]. By discovering a way to connect nonminimal real-
analytic hypersurfaces in C2 with singular complex linear second order ODEs with a re-
ality condition, we obtain the desired counterexamples. These examples arise from local
holomorphic dynamics of second order ODEs with an isolated non-Fuchsian (irregular)
singularity.

We point out that the paper contains an intermediate result which is a characterization
of real hypersurfaces nonminimal at the origin and spherical at a generic point and hav-
ing the infinitesimal automorphism iz ∂

∂z
(“rotations inside the complex tangent”)—see

Theorem 3.15 and the algorithm at the end of Section 3. Real-analytic hypersurfaces of
this type were intensively studied by Ebenfelt, Lamel and Zaitsev [17], Beloshapka [8],
Kolář and Lamel [30] and the present authors [31]. As the construction of each example
in the cited papers is technically quite involved, the explicit description, given in Sec-
tion 3 of this paper, is of independent interest. In fact, one can show that this description
is complete (see Remark 3.19).

The paper is organized as follows. Because we use tools from a broad range of topics
in complex analysis and dynamical systems, in Section 2 we provide relevant background
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material. In Section 3 we introduce a class of 2-parameter families of planar holomorphic
curves, which can potentially be the Segre families of real hypersurfaces nonminimal at
the origin and spherical at a generic point, and, at the same time, serve as a family of
integral curves for certain second order linear ODEs with an isolated meromorphic singu-
larity (we call these m-admissible ODEs with a real structure). The explicit characteriza-
tion of these ODEs, given in Theorem 3.15, allows us to obtain in Section 4 nonminimal
real hypersurfaces for which the associated ODE has essentially prescribed behaviour of
solutions. Then, by finding a divergent formal equivalence between holomorphically in-
equivalent ODEs with a real structure, we obtain in Propositions 4.2 and 4.3 the potential
formal equivalence, and the rest of the section is dedicated to proving that this formal
mapping is the mapping between the initial real hypersurfaces, which proves Theorem A
and the first statement of Theorem C. In Section 5 we apply the divergent transformation
from Theorem A to infinitesimal automorphisms, which gives the proof of Theorem B
and the second statement in Theorem C. We also give a description of the hypersurface
M ′ from Theorem A by elementary functions, and a hint of a similar description for M
(see Remark 5.2). Finally, we formulate some open problems and conjectures, arising
from the results of this paper.

2. Preliminaries and background material

2.1. Segre varieties

Let M be a smooth connected real-analytic hypersurface in Cn+1, Z = (z, w) ∈ Cn ×C,
0 ∈ M , and let U be a neighbourhood of the origin such thatM∩U admits a real-analytic
defining function φ(Z, Z̄) holomorphic inU×Ū . For every point ζ ∈ U we can associate
to M its Segre variety in U defined as

Qζ = {Z ∈ U : φ(Z, ζ̄ ) = 0}.

Segre varieties depend holomorphically on the variable ζ̄ . One can find a pair of neigh-
bourhoods U2 = U z2 × U

w
2 ⊂ Cn × C and U1 b U2 such that

Qζ = {(z, w) ∈ U
z
2 × U

w
2 : w = h(z, ζ̄ )}, ζ ∈ U1,

is a closed complex analytic graph. Here h is a holomorphic function. Following [15]
we call U1, U2 a standard pair of neighbourhoods of the origin. The antiholomorphic
(n + 1)-parameter family {Qζ }ζ∈U1 of complex hypersurfaces is called the Segre family
of M at the origin. From the definition and the reality condition on the defining function
the following basic properties of Segre varieties follow (we assume Z, ζ ∈ U1 below):

Z ∈ Qζ ⇔ ζ ∈ QZ,

Z ∈ QZ ⇔ Z ∈ M,

(2.1)

ζ ∈ M ⇔ {Z ∈ U1 : Qζ = QZ} ⊂ M.
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The fundamental role of Segre varieties for holomorphic mappings is illuminated by their
invariance property: if f : U → U ′ is a holomorphic map sending a smooth real-analytic
hypersurface M ⊂ U into another such hypersurface M ′ ⊂ U ′, and U is as above, then

f (Z) = Z′ ⇒ f (QZ) ⊂ Q
′

Z′ .

For the proofs of these and other properties of Segre varieties, see, e.g., [49], [14], [15],
[40], or [5].

In the particularly important case when M is a real hyperquadric, i.e.,

M = {[ζ0, . . . , ζN ] ∈ CPN : H(ζ, ζ̄ ) = 0},

where H(ζ, ζ̄ ) is a nondegenerate Hermitian form in CN+1 with k + 1 positive and l + 1
negative eigenvalues, k + l = N − 1, 0 ≤ l ≤ k ≤ N − 1, the Segre variety of a point
ζ ∈ CPN is the projective hyperplane Qζ = {ξ ∈ CPN : H(ξ, ζ̄ ) = 0}. The Segre
family {Qζ : ζ ∈ CPN } coincides in this case with the space (CPN )∗ of all projective
hyperplanes in CPN .

The space {QZ : Z ∈ U1} of Segre varieties can be identified with a subset of CK for
some K > 0 in such a way that the Segre map λ : Z → QZ is holomorphic (see [14]).
For a hypersurface M Levi-nondegenerate at a point p, its Segre map is one-to-one in a
neighbourhood of p. When M contains a complex hypersurface X, for any p ∈ X we
have Qp = X and Qp ∩X 6= ∅ ⇔ p ∈ X, so that the Segre map λ sends the entire X to
a unique point in CK , and so λ is not even finite-to-one near each p ∈ X (i.e., M is not
essentially finite at points p ∈ X). For a hyperquadric Q ⊂ CPN the Segre map λ′ is a
global natural one-to-one correspondence between CPN and (CPN )∗.

2.2. Real hypersurfaces and second order differential equations

Using the Segre family of a Levi-nondegenerate real hypersurface M ⊂ CN , one can
associate to it a system of second order holomorphic PDEs with 1 dependent and N − 1
independent variables. The corresponding remarkable construction goes back to É. Cartan
[11], [10] and Segre [41], and was recently revisited in [42], [43], [36], [19], [34] (see also
references therein). We describe the procedure for N = 2, which will be relevant for our
purposes. In what follows we denote the coordinates in C2 by (z, w), and write z = x+iy,
w = u + iv. Let M ⊂ C2 be a smooth real-analytic hypersurface passing through the
origin, and let (U1, U2) be its standard pair of neighbourhoods. In this case one associates
to M a second order holomorphic ODE, uniquely determined by the condition that it is
satisfied by the Segre family {Qζ }ζ∈U1 of M in a neighbourhood of the origin where the
Segre varieties are considered as graphs w = w(z). More precisely, it follows from the
Levi-nondegeneracy of M near the origin that the Segre map ζ 7→ Qζ is injective and
also that the Segre family has the transversality property: if two distinct Segre varieties
intersect at a point q ∈ U2, then their intersection at q is transverse. Thus, {Qζ }ζ∈U1 is
a 2-parameter family of holomorphic curves in U2, holomorphic with respect to ζ̄ with
the transversality property. It follows from the holomorphic version of the fundamental
ODE theorem (see, e.g., [24]) that there exists a unique second order holomorphic ODE
w′′ = 8(z,w,w′) satisfied by the graphs {Qζ }ζ∈U1 .
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This procedure can be made more explicit if one considers the so-called complex
defining equation (see, e.g., [5]) w = ρ(z, z̄, w̄) of M near the origin, which can be
obtained by substituting u = 1

2 (w+w̄), v =
1
2i (w−w̄) into the real defining equation and

applying the holomorphic implicit function theorem. The complex defining function ρ
here satisfies an additional reality condition

w ≡ ρ(z, z̄, ρ̄(z̄, z, w)), (2.2)

reflecting the fact that M is a real hypersurface. The Segre variety Qp of a point p =
(a, b) close to the origin is given by

w = ρ(z, ā, b̄). (2.3)

Differentiating (2.3) once, we obtain

w′ = ρz(z, ā, b̄). (2.4)

Considering (2.3) and (2.4) as a holomorphic system of equations with the unknowns
ā, b̄, and applying the implicit function theorem near the origin, we get

ā = A(z,w,w′), b̄ = B(z,w,w′).

The implicit function theorem is applicable here because the Jacobian of the system co-
incides with the Levi determinant of M for (z, w) ∈ M (see, e.g., [34]). Differentiation
of (2.3) twice and substitution of the expressions for ā, b̄ finally yields

w′′ = ρzz(z, A(z,w,w
′), B(z,w,w′)) =: 8(z,w,w′). (2.5)

Now (2.5) is the desired holomorphic second order ODE E .
The concept of a PDE system associated with a CR-manifold can be generalized to

arbitrary l-nondegenerate, l ≥ 1, CR-submanifolds (see [5] for the definition of this non-
degeneracy condition). Namely, to any l-nondegenerate CR-submanifold M ⊂ Cn+k of
CR-dimension n and codimension k one can assign a completely integrable system E(M)
of holomorphic PDEs with n independent and k dependent variables. The correspondence
M 7→ E(M) has the following fundamental properties:

(1) Every local holomorphic equivalence F : (M, 0) → (M ′, 0) between two l-nonde-
generate CR-submanifolds is an equivalence between the corresponding PDE systems
E(M), E(M ′).

(2) The complexification of the infinitesimal automorphism algebra hol(M, 0) of M at
the origin coincides with the Lie symmetry algebra of the associated PDE system
E(M) (for the details, see, e.g., [38]).

For the proof and applications of the properties (1) and (2) we refer to [42], [43], [36],
[19], and [34]. In general, for a hypersurfaceM ⊂ C2 nonminimal at the origin there is no
a priori way to associate to M a second order ODE or even a more general PDE system
near the origin. However, in Section 3 we provide a way to connect a special class of
nonminimal real hypersurfaces in C2 with a class of complex linear differential equations
with an isolated singularity.
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2.3. Equivalences of differential equations

For simplicity, here we consider only scalar ordinary differential equations, even though
all the constructions below can be applied to arbitrary systems of PDEs. We refer to
Olver [38] as a general reference for this subsection. Also note that our approach is noth-
ing but a simple interpretation of a more general concept of a jet bundle.

Consider two ODEs E = {y(n) = 8(x, y, y′, . . . , y(n−1))} and E∗ = {y(n) =
8∗(x, y, y′, . . . , y(n−1))}, where the functions8 and8∗ are holomorphic in some neigh-
bourhood of the origin in Cn. We say that a biholomorphism F : (C2, 0)→ (C2, 0) trans-
forms E into E∗ if it sends (locally) graphs of solutions of E to graphs of solutions of E∗.
Introducing the (n + 2)-dimensional n-jet space J (n), which is a linear space with the
coordinates x, y, y1, . . . , yn, corresponding to the independent variable x, the dependent
variable y and its derivatives up to order n, one can naturally consider E and E∗ as com-
plex submanifolds in J (n). Moreover, for any biholomorphism F as above, sufficiently
close to the origin one may consider the n-jet prolongation F (n) : (J (n), 0)→ (J (n), 0).
The jet prolongation procedure can be conveniently interpreted as follows. The first two
components of the mapping F (n) coincide with those of F . To obtain the remaining com-
ponents, we denote the coordinates in the preimage by (x, y) and in the target domain by
(X, Y ). Then the derivative dY

dX
can be symbolically recalculated, using the chain rule, in

terms of x, y, y′, so that the third coordinate Y1 in the target jet space becomes a function
of x, y, y1. In the same manner one obtains all the n missing components of the pro-
longation of the mapping F . It is then nothing but a tautology to say that the mapping F
transforms the ODE E into E∗ if and only if the prolonged mapping F (n) transforms (E, 0)
into (E∗, 0) as submanifolds in the jet space J (n). A similar statement can be formulated
for certain singular differential equations, for example, for linear ODEs (see, e.g., [24]).

For n = 2 the local equivalence problem for nonsingular ODEs was solved in the
celebrated papers of É. Cartan [11] and A. Tresse [45]. Of particular interest to us is
the special case when the ODE is equivalent to the simplest (flat) equation y′′ = 0. We
refer to the book of Arnold [1] for a modern treatment of the problem and some further
developments.

2.4. Formal power series, formal equivalences and formal flows

For the set-up and basic properties of formal power series and formal mappings we refer
to [24] and [5]. Below we give a list of statements that will be useful in what follows.

• The substitution of a formal mapping (Cn, 0)→ (Cn, 0) into a formal power series
is well-defined. In particular, the composition of two formal mappings (Cn, 0)→ (Cn, 0)
is always well-defined (as before, for a formal mapping (Cn, 0) → (Cm, 0) we always
assume the absence of the constant term).

• A formal mapping F : (Cn, 0) → (Cn, 0) is called invertible if there exists a
formal mapping G : (Cn, 0) → (Cn, 0) with F ◦ G being the identity map. Note that a
formal mapping (Cn, 0) → (Cn, 0) is invertible whenever its linear part is invertible as
an element of GLn(C).
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• For any formal mapping F(z,w) : (Cm × Cn, 0) → (Cn, 0) the following formal
version of the implicit function theorem holds: if the linear part ∂F

∂w
(0) of F with respect

to w is invertible, then there exists a unique formal mapping ϕ : (Cm, 0)→ (Cn, 0) such
that F(z, ϕ(z)) = 0 as a formal mapping.

Let X = f1(z)
∂
∂z1
+ · · · + fn(z)

∂
∂zn

be a formal vector field with X(0) = 0. A formal
flow of X is a 1-parameter family of formal mappings F t (z) : (Cn, 0) → (Cn, 0) holo-
morphic with respect to t ∈ C such that d

dt
F t (z)

∣∣
t=0 = X and the mapping t 7→ F t

is a group homomorphism from (C,+) to the group of formal invertible mappings
(Cn, 0) → (Cn, 0). A 1-parameter group F t (z) as above is called holomorphic if all
the truncations j kz F

t (z), i.e., the Taylor polynomials of F t (z) of degree k in z, are holo-
morphic with respect to t .

• For any formal vector field X with X(0) = 0, its formal flow always exists and is
uniquely determined.

Following Fels and Kaup (e.g. [27]), for a real submanifold M ⊂ CN with M 3 0
we define its infinitesimal automorphism algebra at the origin as the real Lie algebra
hol(M, 0) of holomorphic vector fields X near the origin such that their real parts X+ X̄
are tangent to M at each point. The stability algebra aut(M, 0) ⊂ hol(M, 0) is the sub-
algebra of vector fields vanishing at 0. One can further define the formal infinitesimal
automorphism algebra f(M, 0), which consists of formal vector fields in CN , formally
satisfying the tangency condition to M , and the formal stability algebra f(M, 0), which
consists of formal vectors fields X ∈ f(M, 0) with X(0) = 0.

• A formal vector field X with X(0) = 0 is a formal infinitesimal automorphism of
(M, 0) if and only if the formal flow of X formally preserves the germ (M, 0).

Finally, we will need the following property of formal CR-mappings. For a real-
analytic submanifold M ⊂ CN passing through the origin and given in some neigh-
bourhood U 3 0 by the defining equation θ(z, z̄) = 0, we define its complexification to
be the complex submanifold

MC
= {(z, ζ ) ∈ U × U : θ(z, ζ ) = 0} ⊂ C2N .

• LetM1,M2 ⊂ CN be real-analytic submanifolds passing through the origin. A (for-
mal) transformation F : (CN , 0)→ (CN , 0)without a free term sends (formally) (M1, 0)
to (M2, 0) if and only if the product map (F (z), F̄ (ζ )) : (C2N , 0) → (C2N , 0) (called
the complexification of F ) sends (formally) (MC

1 , 0) to (MC
2 , 0).

2.5. Complex linear differential equations with an isolated singularity

Perhaps the most important and geometric class of complex differential equations is the
class of complex linear ODEs. We refer to [24], [2], [9], [47], [13] and references therein
for various facts and problems concerning complex linear differential equations. A first
order linear system of n complex ODEs in a domain G ⊂ C (or simply a linear system
in G) is a holomorphic ODE system L of the form y′(w) = A(w)y, where A(w) is
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an n × n matrix-valued function holomorphic in G and y(w) = (y1(w), . . . , yn(w))

is an n-tuple of unknown functions. Solutions of L near a point p ∈ G form a linear
space of dimension n. Moreover, all the solutions y(w) of L are defined globally in G
as (possibly multiple-valued) analytic functions, i.e., any germ of a solution near a point
p ∈ G of L extends analytically along any path γ ⊂ G starting at p. A fundamental
system of solutions for L is a matrix whose columns form some collection of n linearly
independent solutions of L.

If G is a punctured disc centred at 0, we call L a system with an isolated singularity
at w = 0. An important (and sometimes even complete) characterization of an isolated
singularity is given by its monodromy operator, defined as follows. If Y (w) is some funda-
mental system of solutions of L inG, and γ is a simple loop about the origin, then it is not
difficult to see that the monodromy of Y (w) with respect to γ is given by right multipli-
cation by a constant nondegenerate matrix M , called the monodromy matrix. The matrix
M , unique up to similarity, defines a linear operator Cn → Cn, called the monodromy
operator of the singularity.

If the matrix-valued function A(w) is meromorphic at the singularity w = 0, we call
it a meromorphic singularity. As the solutions of L are holomorphic in any proper sec-
tor S ⊂ G of a sufficiently small radius with vertex at w = 0, it becomes important
to study the behaviour of the solutions as w → 0. If all solutions of L admit a bound
‖y(w)‖ ≤ C|w|α in any such sector (with some constants C > 0, α ∈ R, depending
possibly on the sector), then w = 0 is called a regular singularity, otherwise it is an irreg-
ular singularity. In particular, in the case of trivial monodromy the singularity is regular
if and only if all the solutions of L extend meromorphically to the singular point w = 0.
L. Fuchs introduced the following condition: a singular point w = 0 is called Fuchsian if
A(w) is meromorphic atw = 0 and has a pole of order≤ 1 there. The Fuchsian condition
turns out to be sufficient for the regularity of a singular point. Another remarkable prop-
erty of Fuchsian singularities can be described as follows. We call two complex linear
systems L1,L2 with an isolated singularity (formally) equivalent if there exists a (for-
mal) transformation F : (Cn+1, 0)→ (Cn+1, 0) of the form F(w, y) = (w,H(w)y) for
some (formally) invertible matrix-valued functionH(w), which (formally) transforms L1
into L2. It turns out that two Fuchsian systems are formally equivalent if and only if they
are holomorphically equivalent (moreover, any formal equivalence between them must be
convergent). However, this is not the case for non-Fuchsian systems (see [9] and [47, Ch.
IV] for some related constructions).

A scalar linear complex ODE of order n in a domainG ⊂ C is an ODE E of the form

z(n) = an(w)z+ an−1(w)z
′
+ · · · + a1(w)z

(n−1),

where {aj (w)}j=1,...,n is a given collection of holomorphic functions in G and z(w) is
the unknown function. By a reduction of E to a first order linear system (see the above
references and also [22] for various approaches to doing that) one can naturally transfer
most of the definitions and facts, relating to linear systems, to scalar equations of order n.
The main difference here is in the definition of Fuchsian: a singular point w = 0 for
an ODE E is called Fuchsian if the orders of poles pj of the functions aj (w) satisfy the
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inequalities pj ≤ j , j = 1, . . . , n. It turns out that the condition of Fuchs also becomes
necessary for the regularity of a singular point in the case of n-th order scalar ODEs.

Further information on the classification of isolated singularities (including Poincaré–
Dulac normalization) can be found in [24], [47] or [13].

3. Meromorphic linear differential equations with real structure

The main purpose of this section is to establish a class of complex linear second order
ODEs with a meromorphic singularity that generate, in a certain sense, real hypersurfaces
nonminimal at the origin and spherical at a generic point. We start with a number of
definitions. Denote by 1ε the disc in C centred at w = 0 and of radius ε, and by 1∗ε the
corresponding punctured disc.

Definition 3.1. A complex linear second order ODE with an isolated singularity at the
origin is called m-admissible if it is of the form

z′′ =
P(w)

wm
z′ +

Q(w)

w2m z, (3.1)

where m ≥ 1 is an integer and P(w),Q(w) ∈ O(1ε) for some ε > 0.

Direct calculations show that if a germ z(w) of a solution of (3.1) is invertible in some
domain, then the inverse function w(z) satisfies in the image domain the ODE

w′′ = −
P(w)

wm
(w′)2 −

Q(w)

w2m (w′)3 z. (3.2)

We call (3.2) the inverse ODE for (3.1). Note that in (3.1) the independent variable is
w, while z is the independent variable for the inverse ODE. Also note that without the
requirement that P(w)/wm andQ(w)/w2m are irreducible, a complex linear ODE mero-
morphic at the origin is admissible for different integers m ≥ 1.

We next introduce a class of antiholomorphic 2-parameter families of planar complex
curves that potentially can be the family of solutions for anm-admissible ODE and, at the
same time, the family of Segre varieties of a real hypersurface in C2.

Definition 3.2. An m-admissible Segre family is a parametrized antiholomorphic family
of planar holomorphic curves in a polydisc 1δ ×1ε of the form

w = η̄e±iη̄
m−1ψ(zξ̄ ,η̄), (3.3)

where m ≥ 1 is an integer, ξ ∈ 1δ and η ∈ 1ε are holomorphic parameters, and the
function ψ(x, y) is holomorphic in the polydisc 1δ2 ×1ε and has there an expansion

ψ(x, y) = x +
∑
k≥2

ψk(y)x
k, ψk ∈ O(1ε).

We can rewrite an m-admissible Segre family in the form

S = {w = η̄e±iη̄
m−1(zξ̄+

∑
k≥2 ψk(η̄)z

k ξ̄ k)
: (ξ, η) ∈ 1δ ×1ε}. (3.4)
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The fact that an antiholomorphic 2-parameter family of planar complex curves is
m-admissible can be easily checked: a family w = ρ(zξ̄ , η̄), where ρ is holomorphic
in some polydisc U ⊂ C2 centred at the origin, ism-admissible if and only if the defining
function ρ has the expansion ρ(zξ̄ , η̄) = η̄ ± iη̄mzξ̄ +O(η̄mz2ξ̄2).

For any real-analytic hypersurface M ⊂ C2 nonminimal at the origin with nonmini-
mality order m, of the form

v = um
(
±|z|2 +

∑
k≥2

hk(u)|z|
2k
)
, (3.5)

it is not difficult to check that its Segre family is an m-admissible Segre family. We call a
real hypersurface of the form (3.5) an m-admissible nonminimal hypersurface. Note that
in the case of m-admissible Segre families (respectively, nonminimal hypersurfaces) the
integer m is uniquely determined by the Segre family (respectively, by the hypersurface).
Depending on the sign in the exponent e±iη̄

m−1ψ(zξ̄ ,η̄), we call an m-admissible Segre
family positive or negative respectively, and the same for real hypersurfaces. In analogy
with the case of real hypersurfaces, we call the holomorphic curve in the family (3.3)
corresponding to ξ = a, η = b the Segre variety of the point p = (a, b) ∈ 1δ × 1ε,
and denote it by Qp. We point out that the Segre map λ : p 7→ Qp does depend on the
parametrization of the family. We call the hypersurface

X = {w = 0} ⊂ 1δ ×1ε

the singular locus of the m-admissible Segre family. The following proposition provides
some simple properties of Segre families.

Proposition 3.3. The following properties hold for an m-admissible family:

(i) Qp ∩X 6= ∅ ⇔ p ∈ X⇔ Qp = X.
(ii) The Segre mapping λ : p 7→ Qp is injective in (1δ ×1ε) \X.

Proof. The first property follows directly from (3.3). For the proof of (ii) we note that if
a Segre variety Qp is given as a graph w = w(z), then, from (3.3), w(0) = η̄, w′(0) =
±iξ̄ η̄m, depending on the sign of the Segre family, and that implies the global injectivity
of λ in (1δ ×1ε) \X. ut

The next definition connects admissible Segre families with second order linear ODEs
with a meromorphic singularity.

Definition 3.4. We say that an m-admissible Segre family S is associated with an m-
admissible ODE E if after an appropriate shrinking of the basic neighbourhood 1δ ×1ε
of the origin all the elements Qp ∈ S with p /∈ X, considered as graphs w = w(z),
satisfy the inverse ODE for E .

Given an ODE E , we denote the associated m-admissible Segre family by S±E , depending
on the sign of the Segre family. By Proposition 3.3, w 6= 0 for p /∈ X, and so we may
alway substitute the Segre varieties into (3.2).
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Proposition 3.5. For any m-admissible ODE E (3.1) there exist a unique positive and
a unique negative m-admissible (with the same m) Segre families S associated with E .
The ODE E and the associated Segre families S±E given by (3.4) satisfy the following
relations:

P(w) = ±2iψ2(w)− w
m−1, (3.6)

Q(w) = 6ψ3(w)− 8(ψ2(w))
2
± 2i(m− 1)wm−1ψ2(w)∓ 2iwmψ ′2(w). (3.7)

In particular, for any fixed m the correspondences E 7→ S+E and E 7→ S−E are injective.

Proof. Consider a positivem-admissible Segre family S as in (3.3), and anm-admissible
ODE E . We first express the condition that S is associated with E in the form of a differ-
ential equation. Fix p = (ξ, η) ∈ 1δ × 1ε and consider the Segre variety Qp given by
(3.3) as a graph w = w(z). For the function ψ(x, y) we denote by ψ̇ and ψ̈ its first and
second derivatives with respect to the first argument. Then one computes

w′ = iξ̄ η̄meiη̄
m−1ψ(zξ̄ ,η̄)ψ̇(zξ̄ , η̄),

w′′ = iξ̄2η̄meiη̄
m−1ψ(zξ̄ ,η̄)ψ̈(zξ̄ , η̄)− ξ̄2η̄2m−1eiη̄

m−1ψ(zξ̄ ,η̄)(ψ̇(zξ̄ , η̄))2.

Plugging these expressions into (3.2) yields after simplifications

ψ̈(zξ̄ , η̄) = −i(ψ̇(zξ̄ , η̄))2
(
η̄m−1

+ P(η̄eiη̄
m−1ψ(zξ̄ ,η̄))ei(1−m)η̄

m−1ψ(zξ̄ ,η̄)
)

+ (ψ̇(zξ̄ , η̄))3Q(η̄eiη̄
m−1ψ(zξ̄ ,η̄))ei(2−2m)η̄m−1ψ(zξ̄ ,η̄)zξ̄ . (3.8)

Consider now the differential equation

y′′ = −i(y′)2
(
η̄m−1

+ P(η̄eiη̄
m−1y)ei(1−m)η̄

m−1y
)
+ (y′)3tQ(η̄eiη̄

m−1y)ei(2−2m)η̄m−1y,

(3.9)
holomorphic near the origin, where y is the dependent variable, t is the independent vari-
able, and η̄ is a holomorphic parameter near the origin. The Cauchy problem for (3.9)
with the initial data y(0) = 0, y′(0) = 1 is well-posed, as the right-hand side is polyno-
mial with respect to y′. By the analytic dependence of solutions of a holomorphic ODE
on a holomorphic parameter (see, e.g., [24]), its solution y = y0(t, η̄) is unique and holo-
morphic in some polydisc U ⊂ C2 centred at the origin. The comparison of (3.8) and
(3.9) shows that the functions y0(zξ̄ , η̄) and ψ(zξ̄ , η̄) coincide. Observe that the above
arguments are reversible.

For the proof of the proposition, given an m-admissible ODE E , we solve the corre-
sponding equation (3.9) with the initial data y(0) = 0, y′(0) = 1, and obtain a solution
y0(t, η̄) = t +

∑
k≥2, l≥0 ckl t

k η̄l . Then

w = η̄eiη̄
m−1y0(zξ̄ ,η̄)

is the desired positivem-admissible Segre family S = SE associated with E . The unique-
ness of SE also follows from the uniqueness of the solution of the Cauchy problem.
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To prove the relations (3.6), (3.7), we substitute (3.3) into (3.2). As (ξ̄ , η̄) ∈ 1δ×1ε is
arbitrary, we compare the z0ξ̄2η̄l-terms in the resulting identity, which gives 2iη̄mψ2(η̄)−

η̄2m−1
= η̄mP(η̄). This is equivalent to (3.6). Comparing then the z1ξ̄3η̄l-terms, we get

6iη̄mψ3(η̄)− 6η̄2m−1ψ2(η̄)− iη̄
3m−2

= iη̄mQ(η̄)− 2iP (η̄)(2iη̄mψ2(η̄)− η̄
2m−1)

− imP (η̄)η̄2m−1
+ iη̄2mP ′(η̄).

From this and (3.6), we finally obtain (3.7).
The proof for the negative Segre family is analogous. ut

Proposition 3.5 gives an effective algorithm for computing them-admissible Segre family
for a given linear meromorphic second order ODE. Our goal is, however, to identify
those ODEs that produce Segre families with a reality condition, that is, Segre families of
nonminimal real hypersurfaces.

Definition 3.6. We say that an m-admissible Segre family has a real structure if it is
the Segre family of an m-admissible real hypersurface M ⊂ C2. We also say that an m-
admissible ODE E has a positive (respectively, negative) real structure if the associated
positive (respectively, negative) m-admissible Segre family S±E has a real structure. We
say that the corresponding real hypersurface M is associated with E .

We will need a development of the following construction from the theory of second order
ODEs, going back to A.Tresse [45] and É. Cartan [11] (see also [1], [36], [34], [19] and
references therein). Let ρ(z, ξ̄ , η̄) be a holomorphic function near the origin in C3 with
ρ(0, 0, 0) = 0 and dρ(0, 0, 0) = η̄. For z, ξ ∈ 1δ, w and η ∈ 1ε, let

S = {w = ρ(z, ξ̄ , η̄)}

be a parametrized antiholomorphic family of holomorphic curves near the origin,
parametrized by (ξ, η). We will call such a family a (general) Segre family, and for
each point p = (ξ, η) ∈ 1δ × 1ε we call the corresponding holomorphic curve
Qp = {w = ρ(z, ξ̄ , η̄)} ∈ S its Segre variety. Clearly, an m-admissible Segre family
is a particular example of a general Segre family.

We say that two (general) Segre families coincide if there exists a nonempty open
neighbourhood G of the origin such that for any point p ∈ G the Segre varieties of p
in both families coincide. Further, given a (general) Segre family S, from the implicit
function theorem we conclude that the parametrized antiholomorphic family of planar
holomorphic curves

S∗ = {η̄ = ρ(ξ̄ , z, w)}
is also a (general) Segre family for some, possibly smaller, polydisc 1δ̃ ×1ε̃.

Definition 3.7. The Segre family S∗ is called the dual Segre family for S.

Importantly, the dual Segre family does depend on the parametrization of the initial fam-
ily. The dual Segre family has a simple interpretation: in the defining equation of the
family S one should consider the parameters ξ̄ , η̄ as new coordinates, and the variables
z,w as new parameters. We denote the Segre variety of a point p with respect to the
family S∗ by Q∗p.
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Lemma 3.8. Suppose that S is a positive (respectively, negative) m-admissible Segre
family. Then S∗ is a negative (respectively, positive) m-admissible Segre family.

Proof. To obtain the defining function ρ∗(z, ξ̄ , η̄) of the general Segre family S∗ we solve
for w its defining equation

η̄ = we±iw
m−1(zξ̄+

∑
k≥2 ψk(w)z

k ξ̄ k). (3.10)

Note that (3.10) implies
w = η̄e∓iw

m−1(zξ̄+O(z2 ξ̄2)). (3.11)

We then obtain from (3.11) w = ρ∗(z, ξ̄ , η̄) = η̄(1+O(zξ̄)). Substituting this back into
(3.11) gives w = ρ∗(z, ξ̄ , η̄) = η̄e∓iη̄

m−1(zξ̄+O(z2 ξ̄2)), which proves the lemma. ut

We also consider the following Segre family, connected with S:

S̄ = {w = ρ̄(z, ξ̄ , η̄)}.

Definition 3.9. The Segre family S̄ is called the conjugate family of S.

If σ : C2
→ C2 is the antiholomorphic involution (z, w) 7→ (z̄, w̄), then one simply

has σ(Qp) = Qσ(p). We will denote by Q̄p the Segre variety of the point p with respect
to the family S̄. It follows from the definition that if S is a positive (respectively, nega-
tive)m-admissible Segre family, then S̄ is a negative (respectively, positive)m-admissible
Segre family.

Just as for the case of an m-admissible Segre family, we say that a (general) Segre
family S = {w = ρ(z, ξ̄ , η̄)} has a real structure if there exists a smooth real-analytic
hypersurface M ⊂ C2 passing through the origin such that S coincides with the Segre
family of M (as a parametrized family!).

The use of the dual and conjugate Segre families stems from the following

Proposition 3.10. A (general) Segre family S has a real structure if and only if the dual
Segre family S∗ coincides with the conjugate one: S∗ = S̄.

Proof. Suppose that S is the Segre family at the origin of a real hypersurface M ⊂ C2

with the complex defining equationw = ρ(z, z̄, w̄). Then S is given by {w = ρ(z, ξ̄ , η̄)},
and if (z, w) ∈ Q∗(ξ,η), then η̄ = ρ(ξ̄ , z, w), so that (ξ̄ , η̄) ∈ Q(z̄,w̄). Then (2.1) gives
(z̄, w̄) ∈ Q(ξ̄ ,η̄), and so (z, w) ∈ σ(Q(ξ̄ ,η̄)) = Q̄(ξ,η). In the same way one shows that
(z, w) ∈ Q̄(ξ,η) implies (z, w) ∈ Q∗(ξ,η), so that S∗ = S̄.

Conversely, if S∗ = S̄, then [η̄ = ρ(ξ̄ , z, w)] ⇔ [w = ρ̄(z, ξ̄ , η̄)], which is possible
only if

η̄ ≡ ρ(ξ̄ , z, ρ̄(z, ξ̄ , η̄)).

Changing notation and replacing in the latter identity the variables η̄, ξ̄ , z by w, z, ξ̄ re-
spectively, we obtain the complexification of the reality condition (2.2). Hence, the equa-
tion w = ρ(z, z̄, w̄) determines the germ at the origin of a smooth real-analytic hypersur-
face M . This proves the proposition. ut

We next transfer the above real structure criterion from m-admissible families to the as-
sociated ODEs.
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Definition 3.11. Let E be an m-admissible ODE. We say that an m-admissible ODE E∗
is dual to E if the negative m-admissible Segre family dual to the family S+E is associated
with E∗, i.e.,

E∗ is dual to E ⇔ (S+E )
∗
= S−E∗ .

In the same manner, we say that an m-admissible ODE Ē is conjugate to E if the negative
m-admissible Segre family conjugate to S+E is associated with Ē , i.e.,

Ē is conjugate to E ⇔ S̄+E = S−Ē .

From Proposition 3.5 we conclude that both the conjugate and dual ODEs are unique
(if they exist). The existence of the conjugate ODE is obvious: if E is given by z′′ =
P(w)
wm

z′ +
Q(w)

w2m z, then clearly the desired ODE Ē is given explicitly by

z′′ =
P̄ (w)

wm
z′ +

Q̄(w)

w2m z. (3.12)

However, the existence of the dual ODE is a more subtle issue. To prove it, we first need

Proposition 3.12 (Transversality Lemma). Let S be an m-admissible Segre family in a
polydisc 1δ × 1ε, and X be its singular locus. After possibly shrinking the polydisc
1δ ×1ε, the following property holds: if p, q ∈ (1δ ×1ε) \X, p 6= q, andQp andQq

intersect at a point r , then the intersection is transverse.

Proof. Suppose first that S is positive. Take p = (ξ, η) ∈ (1δ × 1ε) \ X and consider
Qp as a graph w = w(z) = η̄eiη̄

m−1(zξ̄+O(z2 ξ̄2)). Then

w = η̄ +O(zξ̄ η̄),
w′

wm
= iξ̄ +O(zξ̄). (3.13)

The latter implies that by shrinking the polydisc 1δ ×1ε, one can make the map

(ξ, η) 7→

(
w(z),

w′(z)

wm(z)

)
,

which is defined for each z, injective in (1δ×1ε) \X (for all z). Then the same property
holds for the map

(ξ, η) 7→ (w(z), w′(z)),

which shows that the graphs Qp and Qq cannot have the same slope at a point of inter-
section. The proof for the negative case is analogous. ut

Proposition 3.13. Let E be an m-admissible ODE. Then the dual ODE E∗ always exists.

Proof. Let1δ×1ε be the polydisc where S+E is defined, andX be the singular locus. For
simplicity, we will assume that the dual family is defined in the same polydisc. Consider
two (possibly multiple-valued) linearly independent solutions h1(w), h2(w) of E in the
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punctured disc 1∗ε . Then, by the definition of the associated Segre family, for any p =
(ξ, η) ∈ (1δ ×1ε) \X, ξ, η 6= 0, there exist unique complex numbers λ1(ξ̄ , η̄), λ2(ξ̄ , η̄)

such that Qp is contained in the graph

z = λ1(ξ̄ , η̄)h1(w)+ λ2(ξ̄ , η̄)h2(w).

As the family S depends on the parameters holomorphically, λ1(ξ̄ , η̄), λ2(ξ̄ , η̄) are two
(possibly multiple-valued) analytic functions in 1∗δ ×1

∗
ε .

We claim that ξ̄λ1(ξ̄ , η̄) and ξ̄λ2(ξ̄ , η̄) are independent of ξ̄ . Indeed, we note from
the defining equation (3.4) that the expression zξ̄ for the family S depends only on w
and η̄, so that in some polydisc U in 1δ × 1∗ε × 1δ × 1

∗
ε we have λ1(ξ̄ , η̄)ξ̄h1(w) +

λ2(ξ̄ , η̄)ξ̄h2(w) = 9(w, η̄) for an appropriate holomorphic function 9. Differentiating
this equality with respect to w and solving the resulting system of linear equations with
respect to λ1ξ̄ , λ2ξ̄ , we get

(λ1(ξ̄ , η̄)ξ̄ , λ2(ξ̄ , η̄)ξ̄ ) = (9(w, η̄),9w(w, η̄)) ·H
−1(w), (3.14)

where H(w) is the Wronski matrix for the linearly independent functions h1(w), h2(w)

(we consider the single-valued branches of these functions, defined in the polydisc U ).
As the right-hand side of (3.14) depends on η̄ only, we conclude that λ1(ξ̄ , η̄)ξ̄ , λ2(ξ̄ , η̄)ξ̄

are independent of ξ̄ , which proves the claim.
It follows from the claim that each Qp as above is contained in the graph

zξ̄ = τ1(η̄)h1(w)+ τ2(η̄)h2(w)

for some (possibly multiple-valued) functions τ1(η̄), τ2(η̄) analytic in 1∗ε . It follows that
for any p = (ξ, η) ∈ (1δ × 1ε) \ X, ξ 6= 0, the dual Segre variety Q∗p is contained in
the graph

zξ̄ = τ1(w)h1(η̄)+ τ2(w)h2(η̄). (3.15)

We now claim that the Wronskian d(w) =
∣∣ τ1(w) τ2(w)
τ ′1(w) τ

′

2(w)

∣∣ does not vanish in1∗ε . Indeed,
suppose d(w0) = 0 for some w0, and let (0, w0) ∈ Q

∗

(ξ0,η0)
for some (ξ0, η0), ξ0 6= 0

(one can take (ξ0, η0) = (ξ, w̄0) for some ξ ∈ 1∗δ ). We seek all (ξ, η) such that Q∗(ξ,η)
passes through (0, w0) and has 1-jet there the same as Q∗(ξ0,η0)

. Clearly, such (ξ, η) are
given by (

τ1(w0) τ2(w0)

τ ′1(w0) τ ′2(w0)

)
·

1
ξ̄

(
h1(η̄)

h2(η̄)

)
=

(
0
α

)
, (3.16)

where α = (h1(η̄0)τ
′

1(w0) + h2(η̄0)τ
′

2(w0))/ξ̄0. If we think of
( 1
ξ̄
h1,

1
ξ̄
h2
)

as the un-
known variables in the above linear system, then since d(w0) = 0, its solution contains
an affine line L passing through

( 1
ξ̄0
h1(η̄0),

1
ξ̄0
h2(η̄0)

)
. The linear independence of h1(w)

and h2(w) implies that the mapH : (ξ, η) 7→
( 1
ξ
h1(η),

1
ξ
h2(η)

)
is locally biholomorphic

near (ξ̄0, η̄0), so that there exist points (ξ, η) 6= (ξ0, η0) near (ξ0, η0) with H(ξ̄ , η̄) ∈ L.
We conclude that there exists a 1-dimensional family of dual Segre varieties Q∗p passing
through (0, w0) that have the same 1-jet at w = w0. But this contradicts Proposition 3.12,
and so d(w0) 6= 0.
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It follows that the graphs (3.15) satisfy the linear differential equation

W(z, τ1, τ2) =

∣∣∣∣∣∣
z τ1(w) τ2(w)

z′ τ ′1(w) τ ′2(w)

z′′ τ ′′1 (w) τ ′′2 (w)

∣∣∣∣∣∣ = 0,

which can be rewritten as
z′′ = A(w)z′ + B(w)z, (3.17)

with the inverse ODE being

w′′ = −A(w)(w′)2 − B(w)(w′)3z (3.18)

for some functions A(w), B(w) holomorphic in 1∗ε . The relation (3.18) is satisfied by
every dual Segre variety Q∗p, p ∈ (1δ ×1ε) \X.

On the other hand, we may consider relations (3.13), applied to the dual family S∗,
and use them to obtain a second order ODE satisfied by all Q∗p, p ∈ (1δ ×1ε) \ X. To
do so, we apply the implicit function theorem to (3.13) to obtain

ξ̄ = 3(z,w,w′/wm), η̄ = �(z,w,w′/wm)

for some functions 3(z,w, ζ ) = iζ +O(zζ ), �(z,w, ζ ) = w +O(zwζ), holomorphic
in a polydisc V ⊂ C3 centred at the origin. We next differentiate twice the relation (3.4),
applied to the dual family S∗, with respect to z and get w′′ = O(ξ̄2η̄m). Plugging ξ̄ =
3(z,w,w′/wm), η̄ = �(z,w,w′/wm) into this, one gets a second order ODE

w′′ = 8(z,w,w′/wm) (3.19)

for some function 8(z,w, ζ ) holomorphic in a polydisc Ṽ ⊂ C3 centred at the origin
(compare this with the procedure in Section 2.2). The ODE (3.19) is satisfied by all Q∗p
with p ∈ (1δ ×1ε) \X. The function 8(z,w, ζ ) also satisfies 8(z,w, ζ ) = O(ζ 2wm).

We now compare (3.19) with (3.18). We set ζ := w′/wm and observe that in some
domain G ⊂ Ṽ we have 8(z,w, ζ ) = −A(w)w2mζ 2

− B(w)w3mζ 3z, which shows
that the function 8(z,w, ζ ) is cubic with respect to the third argument. Since, in addi-
tion, 8(z,w, ζ ) = O(ζ 2wm), we conclude that 8(z,w, ζ ) has the form wm(82(w)ζ

2
+

83(w)ζ
3z) for some 82(w) and 83(w) holomorphic in a disc 1r ⊂ C, r > 0. Then the

substitution ζ = w′/wm turns (3.19) into an m-admissible ODE, rewritten in the inverse
form. This proves the proposition. ut

Combining Proposition 3.13 with Propositions 3.5 and 3.10, we immediately obtain a
crucial

Corollary 3.14. An m-admissible ODE E has a positive real structure if and only if the
conjugate ODE coincides with the dual one: E∗ = Ē .

We can now prove the main result of this section.
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Theorem 3.15. Let E : z′′ = P(w)
wm

z′ +
Q(w)

w2m z be an m-admissible ODE, w ∈ 1r , r > 0.
Then E has a positive real structure if and only if the functions P(w),Q(w) have the form

P(w) = 2ia(w)−mwm−1, Q(w) = b(w)+ iwma′(w), (3.20)

where a(w) =
∑
∞

j=0 ajw
j , aj ∈ R, and b(w) =

∑
∞

j=0 bjw
j , bj ∈ R, are power series

convergent in 1r . Moreover, if E has a positive real structure, then the associated real
hypersurface M ⊂ C2 is Levi-nondegenerate and spherical outside the complex locus
X = {w = 0}.

Proof. Let E∗ be given as z′′ = (P ∗(w)/wm)z′ + (Q∗(w)/w2m)z. As previously ob-
served, the conjugate ODE Ē has the form z′′ = (P̄ (w)/wm)z′ + (Q̄(w)/w2m)z. Let
S = S+E be given in a polydisc 1δ × 1ε by w = η̄eiη̄

m−1ψ(zξ̄ ,η̄) with ψ as in (3.4), and

S∗ be given (in the same polydisc, for simplicity) by w = η̄e−iη̄
m−1ψ∗(zξ̄ ,η̄) with ψ∗ as in

(3.4). Then S̄ is given by w = η̄e−iη̄
m−1ψ̄(zξ̄ ,η̄). According to Corollary 3.14, E has a real

structure if and only if P̄ (w) = P ∗(w) and Q̄(w) = Q∗(w). It follows from (3.6), (3.7)
that the latter conditions are equivalent to

ψ̄2 = ψ
∗

2 , ψ̄3 = ψ
∗

3 , (3.21)

so that one has to develop condition (3.21). By the definition of the dual family, one has

[η̄ = weiw
m−1ψ(zξ̄ ,w)

] ⇔ [w = η̄e−iη̄
m−1ψ∗(zξ̄ ,η̄)

],

and using the expansion (3.4), it is not difficult to deduce that

zξ̄ +ψ2(w)z
2ξ̄2
+ψ3(w)z

3ξ̄3
+O(z4ξ̄4) =

(
zξ̄ +ψ∗2 (η̄)z

2ξ̄2
+ψ∗3 (w)z

3ξ̄3
+O(z4ξ̄4)

)
× ei(m−1)wm−1(zξ̄+ψ2(w)z

2 ξ̄2
+O(z3 ξ̄3))

|η̄=w+iwmzξ̄+O(z2 ξ̄2). (3.22)

Gathering in (3.22) terms with z2ξ̄2 and z3ξ̄3 respectively, one gets

ψ2 = ψ
∗

2 + i(m− 1)wm−1,

ψ3 = ψ
∗

3 + iw
m(ψ∗2 )

′
+ i(m− 1)wm−1ψ2 −

1
2 (m− 1)2w2m−2

+ i(m− 1)wm−1ψ∗2 .

In view of these identities, (3.21) can be rewritten as

ψ2(w) = λ(w)+ i
m− 1

2
wm−1,

ψ3(w) = µ(w)+
i

2
wmλ′(w)+ i(m− 1)wm−1λ(w),

(3.23)

where λ(w), µ(w) are convergent power series in 1r with real coefficients. Applying
(3.6), (3.7) again, we conclude that (3.23) is equivalent to

P(w) = 2iλ(w)−mwm−1,

Q(w) = 6µ(w)− 8λ(w)2 + iwmλ′(w)+ 2(m− 1)2w2m−2,
(3.24)
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which is already equivalent to (3.20) after setting

a(w) := λ(w), b(w) := 6µ(w)− 8λ(w)2 + 2(m− 1)2w2m−2. (3.25)

It remains to prove that if E has a real structure, then the associated nonminimal real
hypersurface M ⊂ C2 is Levi-nondegenerate and spherical in M \ X, where X is the
singular locus of the Segre family S (and, at the same time, the nonminimal locus of M).
Fix p ∈ M \ X and its small neighbourhood V . It follows from Proposition 3.12 that if
two Segre varieties of M intersect at a point r ∈ V , then the intersection is transverse.
Accordingly, any Segre variety of M near p is uniquely determined by its 1-jet at a given
point. This implies (see, e.g., [15], [5]) that M is Levi-nondegenerate at p.

Finally, to prove thatM is spherical at p = (z0, w0), w0 6= 0,we argue as in the proof
of Proposition 3.13: Fix two linearly independent solutions h1(w), h2(w) of E in 1∗ε .
Then each Qq with q = (ξ, η) /∈ X is contained in the graph

zξ̄ = τ1(η̄)h1(w)+ τ2(η̄)h2(w) (3.26)

for some (possibly multiple-valued) analytic functions τ1(η̄), τ2(η̄) in 1∗ε . We then use
slightly modified arguments from [1] to construct the desired mapping into a sphere:
Since the Wronskian d(w) =

∣∣ h1(w) h2(w)
h′1(w) h

′

2(w)

∣∣ is nonzero in 1∗ε , we may suppose that either
h1(w0) 6= 0 or h2(w0) 6= 0 (for some fixed analytic elements of h1, h2 in V ). If, for
example, h1(w0) 6= 0, consider in V the mapping

3 : (z, w) 7→

(
z

h1(w)
,
h2(w)

h1(w)

)
. (3.27)

As the Wronskian d(w) is nonzero in V , we may assume that 3 is biholomorphic there.
By the definition of 3, the graphs (3.26) are the preimages of complex lines under the
map 3, so that 3 maps Segre varieties of M to complex lines. It is not difficult to deduce
that 3(M) is contained in a quadric Q ⊂ CP2 (see, for example, [31, proof of Theorem
6.1]), which implies that M is spherical at p. ut

Note that formula (3.27) gives an effective map ofM into a quadric, by using the solutions
of the associated ODE. We will use this fact in the next section.

Remark 3.16. It is also possible to give a characterization of the ODEs with a negative
real structure: these are obtained by conjugating ODEs with a positive real structure.

Remark 3.17. It follows from (3.20) that a complex linear ODE with an isolated mero-
morphic singularity at the origin is m-admissible with a positive real structure for at most
one m ∈ Z+.

Remark 3.18. Theorem 3.15, combined with the proof of Proposition 3.5, gives an ef-
fective algorithm for obtaining real hypersurfacesM ⊂ C2 nonminimal at the origin with
prescribed nonminimality order m ≥ 1, Levi-nondegenerate and spherical outside the
nonminimal locus X ⊂ M , and invariant under the group z 7→ eitz of rotational sym-
metries. Moreover, one can prescribe an essentially arbitrary 6-jet to the hypersurfaceM .
For the reader’s convenience we summarize this algorithm below.
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Algorithm for obtaining nonminimal spherical real hypersurfaces

1. Take any power series a(w), b(w) with real coefficients, convergent in some disc cen-
tred at the origin, and compute P(w),Q(w) by (3.20). This gives an m-admissible
ODE (3.1).

2. Solve the holomorphic ODE (3.9) with a holomorphic parameter η̄ and the initial data
y(0) = 0, y′(0) = 1. This gives a function ψ(t, η̄) holomorphic near the origin in C2.

3. Then the equation w = w̄eiw̄
m−1ψ(zz̄,w̄) determines a real hypersurface M ⊂ C2 non-

minimal at the origin of nonminimality order m, invariant under the group of rota-
tional symmetries, Levi-nondegenerate and spherical outside the nonminimal locus
X = {w = 0}. The 6-jet of M is determined by finding λ(w), µ(w) using (3.25), and
then ψ2, ψ3 from (3.23).

Remark 3.19. Theorem 3.15 and the algorithm above provide in fact a complete descrip-
tion of real-analytic Levi nonflat hypersurfaces M ⊂ C2, nonminimal at the origin, Levi-
nondegenerate and spherical outside the complex locus, such that iz ∂

∂z
∈ aut(M, 0). To

prove that, one needs to associate to eachM as above a second order m-admissible ODE.
The fact that every nonminimal spherical M admits an associated ODE is proved in [32].

4. Formally but not holomorphically equivalent real hypersurfaces

In this section we will use the explicit description of linear meromorphic ODEs with a
real structure given by Theorem 3.15 to construct, for each fixed nonminimality order
m ≥ 2, a family of pairwise formally equivalent real hypersurfaces m-nonminimal at the
origin, Levi-nondegenerate and spherical outside the nonminimal locus, which are, how-
ever, generically pairwise holomorphically inequivalent at the origin. The construction
is based on existence of families of linear ODEs with a meromorphic singularity at the
origin and a positive real structure, with the ODEs in the family pairwise formally but not
holomorphically equivalent.

The desired ODEs and the associated real hypersurfaces are introduced as follows.
Fix an integer m ≥ 2 and set a(w) ≡ 1 and b(w) = βw2m−2, where β ∈ R is a real
constant. Applying (3.20), we obtain the following 1-parameter family Emβ of complex
linear ODEs with a meromorphic singularity at the origin, which are m-admissible and
have a positive real structure:

z′′ =

(
2i
wm
−
m

w

)
z′ +

β

w2 z. (4.1)

As m ≥ 2, each Emβ has a non-Fuchsian singularity at the origin, which plays a crucial
role in our construction. We denote by Mm

β the real hypersurfaces m-nonminimal at the
origin, associated with Emβ . Each Mm

β is Levi-nondegenerate and spherical outside the
complex locus X = {w = 0}.

Introducing a new dependent variable u := z′w, one can rewrite (4.1) as a first order
system (

z

u

)′
=

[
1
wm

(
0 0
0 2i

)
+

1
w

(
0 1
β 1−m

)](
z

u

)
(4.2)

with a non-Fuchsian singularity at the origin.
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Definition 4.1. A ( formal) gauge transformation is a (formally) invertible local trans-
formation (C2, 0)→ (C2, 0) of the form

(z, w) 7→ (zf (w), g(w)), (4.3)

where f (w) and g(w) are two (formal) power series with f (0) 6= 0, g(0) = 0, g′(0) 6= 0.
A ( formal) special gauge transformation is a (formally) invertible local transformation of
the form (4.3), where f (w) and g(w) are (formal) power series that satisfy an additional
normalization f (0) = 1, g(w) = w +O(wm+1).

Clearly, the set of (formal) gauge transformations, as well as the set of (formal) special
gauge transformations, form a group. We also note that for a formal gauge transformation
the formal recalculation of derivatives is well-defined (see Section 2), so that one can
correctly define, in the natural way, formal equivalence of m-admissible linear ODEs by
means of gauge transformations.

Proposition 4.2. For any m ≥ 2 and β ∈ R the ODE Emβ is formally equivalent to the
ODE Em0 by means of a formal special gauge transformation.

Proof. The strategy of the proof is based on finding the fundamental system of formal
solutions of the ODE Emβ (we refer to [24], [2], [47], [13] for more information on the
concepts of a formal normal form and a fundamental system of formal solutions). It is
straightforward to verify that the function exp

( 2i
1−mw

1−m) is a solution of the ODE Em0 ,
so that the fundamental system of solutions for Em0 is

{
1, exp

( 2i
1−mw

1−m)}. For the system
Emβ with β 6= 0 we consider the corresponding system (4.2) and note that the principal ma-
trix A0 =

(
0 0
0 2i

)
is diagonal and its eigenvalues are distinct, hence the system is nonreso-

nant. We first perform a transformation
(
z
u

)
7→ (I +wm−1H)

(
z
u

)
, where I is the identity

matrix andH is a constant 2×2 matrix, and obtain the system
(
z
u

)′
=

1
wm
A(w)

(
z
u

)
, where

A(w) is a holomorphic matrix-valued function of the form A0 + Am−1w
m−1
+ O(wm).

Here A0 is the same as for the initial system, and

Am−1 =

(
0 1
β 1−m

)
+ A0H −HA0.

By choosingH = 1
2i

( 0 1
−β 0

)
we may eliminate the nondiagonal elements, and soAm−1 =( 0 0

0 1−m
)
. We now follow the Poincaré–Dulac formal normalization procedure for non-

Fuchsian systems (see, e.g., [24, Thm. 20.7]), and using the fact that the system is non-
resonant, bring it to a polynomial diagonal normal form with the (m− 1)-jet being equal
to A0 +w

m−1Am−1. As all terms of the form O(wm) can be removed in the nonresonant
case, the formal normal form of system (4.2) becomes(

z

u

)′
=

[
1
wm

(
0 0
0 2i

)
+

1
w

(
0 0
0 1−m

)](
z

u

)
. (4.4)
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This implies that systems (4.2) for different β are formally gauge equivalent; however,
our goal is to deduce the equivalence of the ODEs (4.1), which is a different issue. The
normal form (4.4) admits the fundamental matrix of solutions

e
1

1−mw
1−m
(

0 0
0 2i

)
· w

(
0 0
0 1−m

)
.

We conclude from this that the fundamental system of formal solutions for (4.2) is of the
form

F̂β(w) · e
1

1−mw
1−m
(

0 0
0 2i

)
· w

(
0 0
0 1−m

)
(4.5)

where F̂β(w) =
( fβ (w) gβ (w)
hβ (w) sβ (w)

)
is a matrix-valued formal power series of the form I +∑

k≥2 Fkw
k (I denotes the unit 2 × 2 matrix). This means that the columns of (4.5) are

formally linearly independent and their formal substitution into (4.2) gives the identity.
Representation (4.5) implies that equation (4.1) has a formal fundamental system of so-
lutions

{
fβ(w), gβ(w) · exp

( 2i
1−mw

1−m)
· w1−m} with formal power series

fβ(w) = 1+O(w), gβ(w) = w
m−1
+O(wm) (4.6)

(the expansion of gβ follows from the fact that, in view of (4.2),(
gβ(w) exp

(
2i

1−m
w1−m

))′
=

1
w
sβ(w) exp

(
2i

1−m
w1−m

)
,

and sβ(w) = 1 + O(w), so that ord0 gβ = m − 1, and after scaling we get gβ(w) =
wm−1

+O(wm)).
We set

χ(w) :=
1

fβ(w)
, τ (w) := w

(
1+

1−m
2i

wm−1 ln
gβ(w)

wm−1fβ(w)

) 1
1−m
.

In view of (4.6), τ(w) is a well-defined formal power series of the form w + O(wm+1),
and χ(w) is a well-defined formal power series of the form 1+O(w). We claim that

(z, w) 7→ (χ(w)z, τ (w)) (4.7)

is the desired formal special gauge transformation sending Emβ into Em0 . This can be seen
either from a straightforward computation (one has to perform the substitution (4.7) in Emβ
and use the fact that

{
fβ(w), gβ(w) · exp

( 2i
1−mw

1−m)
·w1−m} is the fundamental system

of solutions for Emβ ), or as follows. As is shown in [1], if z1(w), z2(w) are linearly inde-
pendent holomorphic solutions of a second order linear ODE z′′ = p(w)z′+ q(w)z, then
the transformation z 7→ (1/z1(w))z,w 7→ z2(w)/z1(w) transfers the initial ODE into the
simplest ODE z′′ = 0. The same fact can be verified, by a simple computation, for more
general classes of functions, for example, for series of type h(w) · exp(awα), where h(w)
is a formal Laurent series with a finite principal part, and a, α ∈ C are fixed constants.
Then

z 7→
1

fβ(w)
z, w 7→

gβ(w)

wm−1fβ(w)
exp

(
2i

1−m
w1−m

)
(4.8)
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transforms formally Emβ into z′′ = 0, and

z 7→ z, w 7→ exp
(

2i
1−m

w1−m
)

(4.9)

transforms Em0 into z′′ = 0. It follows that the formal substitution of (4.7) into (4.9)
gives (4.8). Since the chain rule agrees with the above formal substitutions, this shows
that (4.7) transfers Emβ into Em0 . This proves the proposition. ut

On the other hand, the ODEs Emβ and Em0 are holomorphically inequivalent for a generic β,
as the following proposition shows.

Proposition 4.3. For anym ≥ 2 and β 6= l(l−m+1), l ∈ Z, the ODE Emβ has nontrivial
monodromy, while the ODE Em0 has trivial one.

Proof. For the ODE Em0 the fundamental system of holomorphic solutions is given in
C \ {0} by

{
1, exp

( 2i
1−mw

1−m)}, so that all solutions of Em0 are single-valued in C \ {0}.
Hence, its monodromy is trivial. One now needs to obtain the monodromy matrix for a
generic system (4.2). To this end we consider ∞ as an isolated singular point for (4.2)
and perform the change of variables t := 1/w. We obtain the system(

y

u

)′
=

[
tm−2

(
0 0
0 −2i

)
+

1
t

(
0 −1
−β m− 1

)](
y

u

)
(4.10)

with an isolated Fuchsian singularity at t = 0. As (4.2) does not have any more singular
points in C̄ besides w = 0 and w = ∞, it is sufficient to prove nontriviality of the mon-
odromy matrices at t = 0 for systems (4.10) with β 6= l(l−m+1), l ∈ Z. For the residue
matrixRβ =

( 0 −1
−β m−1

)
of (4.10) at t = 0, denote by λ1, λ2 its eigenvalues. The Poincaré–

Dulac procedure for Fuchsian systems implies (see, e.g., [24, Corollary 16.20]) that the
eigenvalues of the monodromy operator for (4.10) are {e2πiλ1 , e2πiλ2}. In particular, if one
of the eigenvalues is not an integer, the system (4.2) (and the corresponding ODE Emβ ) has
nontrivial monodromy. Applying the relations λ1 + λ2 = m− 1, λ1λ2 = −β, we obtain
the claim of the proposition. ut

Next we need to establish a connection between equivalences of the m-admissible
ODEs Emβ and the associated real hypersurfaces. We start with

Proposition 4.4. The only formal special gauge transformation preserving the ODE Em0
is the identity. In particular, the only formal special gauge transformation transferring
Emβ into Em0 is given by (4.7).

Proof. Let F : z∗ = zf (w), w∗ = g(w), f = 1 + O(w), g = w + O(wm+1) be a
formal special gauge self-transformation of Em0 . It is not difficult to calculate that F−1

transforms Em0 into a well-defined formal meromorphic second order linear ODE

f

(g′)2
z′′ +

(
2
f ′

(g′)2
−
fg′′

(g′)3

)
z′ +

(
f ′′

(g′)2
−
f ′g′′

(g′)3

)
z =

(
2i
gm
−
m

g

)(
f

g′
z′ +

f ′

g′
z

)
.



Divergent CR-equivalences 2809

Comparing the above identity with (4.1) with β = 0 gives(
2i
gm
−
m

g

)
f ′

g′
−

(
f ′′

(g′)2
−
f ′g′′

(g′)3

)
= 0, (4.11)

g′
(

2i
gm
−
m

g

)
− 2

f ′

f
+
g′′

g′
=

2i
wm
−
m

w
. (4.12)

If f 6≡ 1, then (4.11) gives f ′′

f ′
= g′

( 2i
gm
−

m
g

)
+

g′′

g′
, and comparing with (4.12),

we obtain f ′′

f ′
= 2f

′

f
+

2i
wm
−

m
w

. Substituting h := 1/f (note that h(w) is also a well-
defined formal power series with h(w) = 1 + O(w)) it is not difficult to deduce that
h′′ =

( 2i
wm
−

m
w

)
h′, so that h satisfies the initial ODE Em0 . But any (formal) power series

solution for Em0 is constant (as can be seen, for example, from the fact that the fundamental
system of solutions for Em0 is

{
1, exp

( 2i
1−mw

1−m)}), which contradicts h 6≡ 1, f 6≡ 1.
Suppose now that f ≡ 1. Then (4.11) holds trivially, and we examine (4.12). Assum-

ing that g(w) 6≡ w, (4.12) can be rewritten as a well-defined differential relation

2i
(

1
gm−1(1−m)

)′
− 2i

(
1

wm−1(1−m)

)′
+ (ln g′)′ −m

(
ln
g

w

)′
= 0,

which gives 2i
1−m

( 1
gm−1 −

1
wm−1

)
+ ln g′ − m ln g

w
= C1 for some constant C1 ∈ C.

It follows that the formal meromorphic Laurent series 1
1−m

( 1
gm−1 −

1
wm−1

)
is in fact

a formal power series, and a straightforward computation shows that the substitution
1

1−m

( 1
gm−1 −

1
wm−1

)
=: u, where u(w) is a formal power series, transforms the lat-

ter equation for g into 2iu + ln(wmu′ + 1) = C1. Shifting u, we get the equation
2iu + ln(wmu′ + 1) = 0, where u(0) = 0. Hence we finally obtain the following mero-
morphic first order ODE for the formal power series u(w):

u′ =
1
wm

(e−2iu
− 1). (4.13)

However, (4.13) has no nonzero formal power series solutions. To see this, we note that
for u 6≡ 0, u(0) = 0, equation (4.13) can be represented as − 1

2iu
′
( 1
u
+ H(u)

)
=

1
wm

,
whereH(t) is a function holomorphic at the origin. Hence, the logarithmic derivative u′/u
has the expansion −2i/wm + · · · , where the dots denote a formal power series in w. But
this clearly cannot happen for a formal power series u(w). Hence u ≡ 0, and returning to
the unknown function g, we get 1

gm−1 −
1

wm−1 = C for some constant C ∈ C, so that

g(w) =
w

(1+ Cwm−1)1/(m−1) .

Taking into account g(w) = w + O(wm+1), we conclude that C = 0 and g(w) = w.
This proves the proposition. ut

Let now S = {w = ρ(z, ξ̄ , η̄)} be a (general) Segre family in a polydisc 1δ × 1ε. We
consider the complex submanifold

MS = {(z, w, ξ, η) ∈ 1δ ×1ε ×1δ ×1ε : w = ρ(z, ξ, η)} ⊂ C4, (4.14)



2810 Ilya Kossovskiy, Rasul Shafikov

and call it the associated foliated submanifold of the family S. If S is associated with
an m-admissible ODE E , we call MS the associated foliated submanifold of E . We call
MS m-admissible if S is m-admissible. If S is the Segre family of a real hypersurface
M ⊂ C2, then the associated foliated submanifold is simply the complexification of M .
The concept of the associated foliated submanifold is somewhat analogous to that of the
submanifold of solutions of a nonsingular completely integrable PDE system (see, e.g.,
[11], [38], [19], [34]). Here we consider the case of singular differential equations and
formal mappings between them.

The foliated submanifold MS admits two natural foliations. The first one is the initial
foliation S with leaves {(z, w, ξ, η) ∈MS : ξ = const, η = const}. The second one is
the family of dual Segre varieties with leaves {(z, w, ξ, η) ∈ MS : z = const, w =
const}. If now E1, E2 are two m-admissible ODEs, then it is crucial for the study of (for-
mal) biholomorphisms between them to consider (formal) biholomorphisms between the
associated foliated submanifolds MS1 ,MS2 , preserving the origin and both foliations.
Clearly, any such biholomorphism has the form

(z, w, ξ, η) 7→ (F (z,w),G(ξ, η)), (4.15)

where F(z,w),G(ξ, η) are (formal) biholomorphisms (C2, 0)→ (C2, 0). In this case we
call the transformation (F (z,w),G(ξ, η)) : (MS1 , 0) → (MS2 , 0) a ( formal) coupled
transformation of MS1 into MS2 .

Using the notion of associated foliated submanifolds, one can push the concept of a
Segre family to the formal level. Namely, let ρ(z, ξ, η) be a formal power series without a
constant term and the linear part equal to η. We then call the formal complex submanifold
M = {w = ρ(z, ξ, η)} of C4 a formal foliated submanifold. A formal foliated submani-
fold can be identified with its formal defining function ρ. If, in addition, ρ is as in (3.4),
we call Mm-admissible. If M = {w = ρ(z, ξ, η̄)} is a formal foliated submanifold such
that the defining function ρ(z, ξ, η) contains η as a factor (for example, all m-admissible
formal foliated submanifolds have this property), and E is an m-admissible ODE, then
the derivatives ρz(z, ξ, η̄) and ρzz(z, ξ, η) are well-defined power series, and we say that
M is formally associated with the ODE E if the well-defined substitution of the power
series ρ(z, ξ, η) into the inverse ODE to E gives the identity of the formal power series in
z, ξ, η on both sides of the equation.

Let now E1, E2 be two m-admissible ODEs, let M1 be a foliated submanifold as-
sociated with E1, and F(z,w) : (C2, 0) → (C2, 0) be a formal invertible mapping
tangent to the identity map at the origin. Then the formal recalculation of the deriva-
tives zw, zww, wz, wzz is well-defined (see Section 2), and one can correctly define the
formal equivalence of E1, E2 by means of F . In addition, consider a similar formal trans-
formation G(ξ, η) : (C2, 0) → (C2, 0) of the space of parameters ξ, η. One can then
correctly define the image of the foliated submanifold M1 under the formal direct prod-
uct (F (z,w),G(ξ, η)) : (C4, 0) → (C4, 0) and obtain a unique formal foliated sub-
manifold M (one has to substitute (F−1,G−1) into M1 and apply the implicit function
theorem in the category of formal power series). It is then immediate that for any for-
mal invertible transformation F(z,w) transferring E1 into E2, and any formal invertible
transformationG(ξ, η) in the space of parameters, where both F andG are tangent to the
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identity at zero, the image of M1 under the direct product (F (z,w),G(ξ, η)) is a foliated
submanifold M2 associated with E2.

Consider then a (formal) special gauge transformation (z, w) 7→ F(z,w) =

(zf (w), g(w)) transforming an m-admissible ODE E1 into an m-admissible ODE E2. Let
S1,S2 be the associated positivem-admissible Segre families and M1,M2 the associated
foliated submanifolds. We claim that there exists a (formal) special gauge transformation
(ξ, η) 7→ G(ξ, η) = (ξλ(η), µ(η)) such that (z, w, ξ, η) 7→ (F (z,w),G(ξ, η)) is a
(formal) coupled transformation of M1 into M2. Indeed, let us first prove

Lemma 4.5. There exists a unique ( formal) special gauge transformation

(ξ, η) 7→ G(ξ, η) = (ξλ(η), µ(η))

such that the ( formal) transformation (z, w, ξ, η) 7→ (F (z,w),G(ξ, η)) sends M1 to
an m-admissible ( formal) foliated submanifold M.

Proof. To simplify notation we will prove the same statement for the special gauge map-
ping F−1 of the ODE E2. Let M2 be given by (4.14) with ψ as in (3.4). Our goal is to
uniquely determine two (formal) power series λ(η), µ(η) with λ(η) = 1+O(η), µ(η) =
η +O(ηm+1) such that

g(w) = µ(η)eiµ(η)
m−1ψ(zf (w),ξλ(η)) (4.16)

defines an m-admissible foliated submanifold. Note that (4.16) can be represented as

g(w) = µ(η)+ iµ̄(η)mzξf (w)λ(η)+O(z2ξ2ηm), (4.17)

from which we conclude that (4.16) defines a formal foliated submanifold of the form
w =

∑
j≥0 ϕj (η)(zξ)

j with ϕ0(η) = O(η) and ϕj (η) = O(ηm) for j ≥ 1. Hence
we are interested in the choice of λ(η), µ(η) which gives ϕ0(η) = η, ϕ1(η) = iηm.
The latter is equivalent to the fact that the substitution w = η + iηmzξ + O(z2ξ2ηm)

(corresponding to the desired target foliated submanifold M) into (4.17) makes (4.17) an
identity modulo z2ξ̄2. Thus we get g(η) + iηmg′(η)zξ = µ(η) + iµ(η)mzξf (η)λ(η) +
O(z2ξ2), which is equivalent to

g(η) = µ(η), ηmg′(η) = µ(η)mf (η)λ(η). (4.18)

Equations (4.18) enable one to determine λ(η), µ(η)with the desired properties uniquely,
and this proves the lemma. ut

If now G(ξ, η) is the special gauge transformation provided by Lemma 4.5, it fol-
lows from the above arguments that the (formal) image of M1 under the direct prod-
uct (F (z,w),G(ξ, η)) is a (formal) m-admissible foliated submanifold M associated
with E2. However, it is not difficult to show, in the same manner as in the proof of Propo-
sition 3.5, that even in the formal category the associated m-admissible foliated subman-
ifold is unique (since the uniqueness follows from the uniqueness of the solution of the
Cauchy problem for the holomorphic ODE (3.9), which holds true in the formal category
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as well, see [23]). Thus we conclude that M =M2, and this proves the existence of the
special gauge transformation G in both holomorphic and formal settings.

Conversely, let (z, w, ξ, η) 7→ (F (z,w),G(ξ, η)) be a (formal) coupled transforma-
tion, sending M1 to M2, where both F and G are special gauges. It is easy to check,
by a computation similar to those in Proposition 4.4, that F(z,w) transfers E1 into some
(formal) m-admissible ODE E . On the other hand, (F (z,w),G(ξ, η)) (formally) trans-
fers M1 into M2, so that M2 is (formally) associated with E . This shows that E = E2
in the case of a holomorphic coupled transformation. To treat the formal case we note
that relations (3.6), (3.7) similarly hold for formalm-admissible families, associated with
formal m-admissible ODEs (the proof does not change), so that the conclusion E = E2
holds true in the formal case as well.

We summarize the above arguments in the following

Proposition 4.6. Let E1, E2 be two m-admissible ODEs, and M1,M2 ⊂ C4 be the
associated foliated submanifolds. There is a one-to-one correspondence F(z,w) 7→
(F (z,w),G(ξ, η)) between ( formal) special gauge equivalences F(z,w), transforming
E1 into E2, and ( formal) coupled transformations (F (z,w),G(ξ, η)) sending M1 to M2.

We are now ready to prove the main result of this section. It is a more detailed version of
Theorem A.

Theorem 4.7. For any m ≥ 2 and β 6= l(l − m + 1), l ∈ Z, the real hypersurface
Mm
β ⊂ C2, nonminimal at the origin, associated with the ODE Emβ as in (4.1), is formally

equivalent at the origin to the hypersurface Mm
0 by means of the formal special gauge

transformation (4.7), but is locally biholomorphically inequivalent to Mm
0 .

Proof. Consider the foliated submanifolds Mm
β associated with Emβ . It follows from the

definitions of the associated real submanifold and the associated foliated submanifold that
Mm

β is the complexification of Mm
β . Considering now the reality condition (2.2) for Mm

β

and complexifying it, we conclude that Mm
β is invariant under the antiholomorphic linear

mapping σ : C4
→ C4 given by

(z, w, ξ, η) 7→ (ξ̄ , η̄, z̄, w̄). (4.19)

Let now F(z,w) be the formal special gauge equivalence provided by Proposition 4.2,
and (F (z,w),G(ξ, η)) the formal coupled special gauge transformation between Mm

β

and Mm
0 provided by Proposition 4.6. Then σ◦(F (z,w),G(ξ, η))◦σ =(Ḡ(z, w), F̄ (ξ, η)

is also a formal coupled special gauge transformation between Mm
β and Mm

0 . Applying
now Proposition 4.4, we conclude that G(ξ, η) = F̄ (ξ, η). This immediately implies that
the transformation (F (z,w),G(ξ, η)) is the complexification of F(z,w) (see Section 2),
so that F(z,w) maps Mm

β into Mm
0 formally.

Finally, to prove the nonequivalence of Mm
β and Mm

0 for β 6= l(l − m + 1), l ∈ Z,
we use the fact that each Mm

β is Levi-nondegenerate and spherical in Mm
β \ X, where

X = {w = 0} is the complex locus. As was explained in the proof of Theorem 3.15, for a
fixed point p = (z0, w0) ∈ M

m
β \ X and two fixed solutions h1(w), h2(w) of Emβ near p
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with h1(w0) 6= 0, one of the possible mappings 3 of Mm
β into a quadric Q ⊂ CP2 is

given by (3.27). Clearly,3 has trivial monodromy about the complex locus X if and only
if both h1(w), h2(w) have trivial monodromy about the origin, and the latter is equivalent
to the ODE Emβ having trivial monodromy at w = 0. Now the desired statement follows
from Proposition 4.3 and the fact that the monodromy of a mapping into a quadric for a
nonminimal hypersurface, Levi-nondegenerate and spherical outside the complex locus,
is a biholomorphic invariant (see [31]). This completes the proof of the theorem. ut

Proof of statement (a) of Theorem C. The main step of the proof is the generalization
of the constructions of Theorem 4.7 to hypersurfaces in CN with N ≥ 3. Fix m ≥ 2
and β 6= l(l − m + 1), l ∈ Z, and suppose that Mm

β ,M
m
0 ⊂ C2 are given near the

origin by the defining equations Imw = θ(zz̄,Rew) and Imw = θ ′(zz̄,Rew). We
also denote the mapping (4.7) by F(z,w) = (zf (w), g(w)) and the coordinates in CN
by z1, . . . , zN−1, w. Then it is not difficult to see that the formal invertible mapping H :
(z1, . . . , zN−1, w) 7→ (z1f (w), . . . , zN−1f (w), g(w)) transfers the smooth real-analytic
hypersurface M = {Imw = θ(z1z̄1 + · · · + zN−1z̄N−1,Rew)} nonminimal at the origin
formally into the smooth real-analytic hypersurface M ′ = {Imw = θ ′(z1z̄1 + · · · +

zN−1z̄N−1,Rew)} nonminimal at the origin. Since Mm
β and Mm

0 are Levi-nondegenerate
outside the complex locus {w = 0}, the same holds true for M and M ′, so that M and M ′

are holomorphically nondegenerate.
It can be seen from the proof of Theorem 4.7 that for any choice of a single-valued

branch of the mapping 3, the target quadric Q, considered in the affine chart C2
⊂ CP2,

is invariant under the rotations z∗ 7→ eitz∗, t ∈ R. Thus one can argue as in the proof of
Theorem 4.7 and consider, in the spirit of (3.27), the mapping

3n : (z1, . . . , zN−1, w) 7→

(
z1

h1(w)
, . . . ,

zN−1

h1(w)
,
h2(w)

h1(w)

)
,

where h1(w) and h2(w) are some linearly independent analytic solutions of the ODE
Emβ in C \ {0}. Since 3 sends a germ of Mm

β at a Levi-nondegenerate point to a quadric
Q ⊂ CP2, the mapping 3n transfers a germ of M at a Levi-nondegenerate point into a
nondegenerate quadric QN ⊂ CPN , obtained from Q by the substitution of z1z̄1 + · · · +

zN−1z̄N−1 for zz̄. Since 3 has nontrivial monodromy, we conclude that the nonminimal
hypersurfaceM has a nontrivial monodromy operator in the sense of [31]. In a similar way
we deduce that the monodromy operator of the nonminimal hypersurface M ′ is trivial.
Hence,M andM ′ are holomorphically inequivalent at the origin. This proves the theorem
in the hypersurface case.

For each class of CR-submanifolds of codimension k ≥ 2 and CR-dimension n ≥ 1
we consider the holomorphically nondegenerate CR-submanifolds P = M × 5k−1 and
P ′ = M ′ × 5k−1, where M,M ′ ⊂ Cn+1 are chosen from the hypersurface case and
5k−1 ⊂ Ck−1 is the totally real plane ImW = 0,W ∈ Ck−1. Then the direct product
of the above mapping H and the identity map gives a divergent formal equivalence be-
tween P and P ′. Finally, to show that P and P ′ are holomorphically inequivalent, we
denote the coordinates in Cn+k by (Z,W), Z ∈ Cn+1,W ∈ Ck−1, and note that since 5
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is totally real, for each holomorphic equivalence

(8(Z,W),9(Z,W)) : (M ×5k−1, 0)→ (M ′ ×5k−1, 0),

one has 9(Z,W) = 9(W) for a vector power series 9(W) with real coefficients and
9(0) = 0. Since the initial mapping (8(Z,W),9(Z,W)) is invertible at 0, we con-
clude that the mapping 8(Z, 0) : (Cn, 0)→ (Cn, 0) is invertible at 0 as well, and since
(8(Z,W),9(W)) : (M × 5k−1, 0) → (M ′ × 5k−1, 0), the map 8(Z, 0) is a local
equivalence between (M, 0) and (M ′, 0). Now the desired statement is obtained from the
hypersurface case.

5. Real hypersurfaces with divergent CR-automorphisms

As an application of Theorem 4.7 we will show in this section that a generic hypersur-
face Mm

β from Section 4 with m ≥ 2 has the following property: there exists a divergent
formal vector field of the form L = zA(w) ∂

∂z
+ B(w) ∂

∂w
, vanishing to order m at zero,

such that its real part ReL = L+ L̄ is formally tangent to Mm
β . In particular, the formal

flow of ReL provides generically divergent formal automorphisms of (Mm
β , 0).

We start with a detailed study of the real hypersurfaces Mm
0 ⊂ C2. It turns out that

they can be described explicitly using elementary functions. Fix an integer m ≥ 2 and
recall that the fundamental system of holomorphic solutions for the ODE Em0 is given in
C \ {0} by

{
1, exp

( 2i
1−mw

1−m)}. Applying (3.27), we find that the locally biholomorphic
map

3 : (Z,W) =
(
z, e

2i
1−mw

1−m)
(5.1)

maps Em0 into the simplest equation ZWW = 0. Consider now the real hyperquadric

Q = {2|Z|2 + |W |2 = 1} ⊂ C2,

linearly equivalent to the standard sphere S3
⊂ C2. We claim that 3−1(Q) contains the

Levi-nondegenerate part of the desired hypersurface Mm
0 . Indeed, the set 3−1(Q) ⊂ C2

can be described as
2|z|2 + e

2i
1−mw

1−m
· e
−2i
1−m w̄

1−m
= 1,

so that it contains the set 2i
1−mw

1−m
=

2i
1−m w̄

1−m
+ ln(1 − 2|z|2), |z|2 < 1/2, and the

union of this real-analytic set, considered in a sufficiently small polydisc U 3 0, and the
complex line {w = 0} contains the component

w = w̄

(
1+

i

2
(1−m)w̄m−1 ln

1
1− 2|z|2

) 1
1−m
. (5.2)

Since 3 is locally biholomorphic in C2
\ {w = 0}, equation (5.2) defines in the polydisc

U 3 0 a smooth real-analytic real hypersurface M nonminimal at the origin. As the
right-hand side of (5.2) has the expansion w̄ + iw̄m|z|2 + O(w̄m|z|4), we conclude that
M is m-admissible. The mapping 3 maps locally biholomorphically each of the two
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sides {Rew > 0} and {Rew < 0} of M into Q. Since all Segre varieties Q(A,B) of Q
with A 6= 0 satisfy the simplest ODE ZWW = 0, and 3 transforms the ODE Em0 into
ZWW = 0, we conclude that all Segre varieties Q(a,b) of M with a, b 6= 0 satisfy the
ODE Em0 . Hence M is an m-admissible real hypersurface associated with Em0 , and we
finally conclude from Proposition 3.5 that M = Mm

0 , so that the hypersurfaces Mm
0 are

given by (5.2) for each m ≥ 2.
Consider now a holomorphic vector field X = 2iW ∂

∂W
∈ hol(Q). Computation

shows that its pull-back under the mapping 3 near each point with w 6= 0 equals wm ∂
∂w

.
This holomorphic vector field extends holomorphically to the origin, and we conclude
that

Lm0 = w
m ∂

∂w
∈ hol(Mm

0 , 0).

We may construct the desired divergent formal vector field tangent to a hypersurface Mm
β

with m ≥ 2 and β 6= l(l − m + 1), l ∈ Z, by pulling back the vector field Lm0 with the
invertible formal mapping (4.7) (denoted by8 in what follows). Since the real flow F t of
the vector field Lm0 preserves (Mm

0 , 0), and8 formally transforms (Mm
β , 0) into (Mm

0 , 0),
the well-defined real flow H t

:= 8 ◦ F t ◦ 8−1 formally preserves (Mm
β , 0), and the

derivation of H t at t = 0 gives a formal vector field Lmβ whose real part is formally
tangent to (Mm

β , 0). As follows from the construction, Lmβ can be obtained from Lm0 by
applying the usual chain rule. Since Lm0 vanishes to order m, we conclude that the same
holds forLmβ . Using the facts that8(z,w) = (zχ(w), τ (w)), χ(w) = 1+O(w), τ(w) =
w +O(wm+1) (see Proposition 4.2), we finally calculate

Lmβ = −
χ ′τm

χτ ′
z
∂

∂z
+
τm

τ ′

∂

∂w
= A(w)z

∂

∂z
+ B(w)

∂

∂w
. (5.3)

Below we formulate the main result of this section, which is a detailed formulation of
Theorem B.

Theorem 5.1. For any m ≥ 2 and β 6= l(l − m + 1), l ∈ Z, the germ (Mm
β , 0) admits

a divergent formal infinitesimal automorphism Lmβ , vanishing to order m. In fact, Lmβ
is given by (5.3), where χ and τ are defined by (4.7). The real formal flow Ft (z, w),
generated byLmβ consists of divergent formal automorphisms of (Mm

β , 0) for all t ∈ R\C,
where C is a cyclic subgroup in (R,+).

Proof. The proof is based on the detailed analysis of the proof of Proposition 4.2. First,
we show that the formal power series B(w) in (5.3) is divergent. We denote by C[[w]] the
algebra of formal power series in w and byϒ the linear space of formal series of the form
f (w)w−m exp

( 2i
1−mw

1−m), where f (w) ∈ C[[w]]. Recall that z1(w) = fβ(w) ∈ C[[w]]
and z2(w) = gβ(w) ·w

1−m
·exp

( 2i
1−mw

1−m)
∈ ϒ form the fundamental system of formal

solutions for Emβ . It is not difficult to verify, by combining the facts that z1(w) and z2(w)

satisfy the ODE Emβ , that for the well-defined formal WronskianD(w) = z′2z1−z
′

1z2 ∈ ϒ
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the classical Liouville–Ostrogradsky formula holds:

D′(w) =

(
2i
wm
−
m

w

)
D(w). (5.4)

Since D(w) ∈ ϒ , we deduce from (5.4) that D(w) = C0w
−m exp

( 2i
1−mw

1−m), C0 ∈

C, so that the element D(w) ∈ ϒ is convergent. We claim that the ratio gβ (w)

wm−1fβ (w)
∈

C[[w]] is divergent. Indeed, otherwise z2(w)/z1(w) ∈ ϒ is convergent as well, and from
the relation (z1(w))

2(z2(w)/z1(w))
′
= D(w) it follows that z1(w) is convergent, and

hence the mapping (4.7) is convergent, which contradicts Proposition 4.3. Now, from the
definition of τ(w) we conclude that τ(w) is divergent, and (5.3) shows that B(w) =
(1−m)/(τ 1−m)′ is divergent, which proves the divergence of the vector field Lmβ .

Finally, to prove the divergence of a generic transformation in the flow of Lmβ , we
consider the one-dimensional divergent formal vector field Y = B(w) ∂

∂w
, vanishing to

order m. We then apply to Y the theory of Ecalle–Voronin (we refer to [24] for details).
Denote by H t (w) the formal flow of Y , and assume that it contains a convergent trans-
formation H t0(w), t0 6= 0. In the terminology of [24], the convergent transformations in
H t (w) with t 6= 0 are parabolic germs, and as the vector field Y is divergent,H t0(w) is a
nonembeddable parabolic germ (its Ecalle–Voronin invariants are nontrivial). As any con-
vergent transformation inH t (w) commutes withH t0(w), it necessarily lies in the central-
izer ofH t0(w), and it follows from the Ecalle–Voronin theory that the set {t ∈ C : H t (w)

is convergent} is contained in a cyclic subgroup of (R, 0), generated by some c ∈ R.
Since the flow of Y is the second coordinate function of the flow of Lmβ , we obtain the
desired divergence statement. The theorem is now completely proved. ut

Proof of statement (b) of Theorem C. The arguments are similar to those for statement (a)
(see Section 4). We fix m ≥ 2, β 6= l(l − m + 1), l ∈ Z, and N ≥ 3. Arguing as
in the proof of statement (a), we construct, using the real hypersurface Mm

β , a smooth
real-analytic holomorphically nondegenerate hypersurface M ⊂ CN nonminimal at the
origin. Then the real part of the divergent formal vector field Lmβ = A(w)z

∂
∂z
+ B(w) ∂

∂w
is formally tangent to Mm

β , and it is not difficult to see that the real part of the divergent
formal vector field L = A(w)

(
z1

∂
∂z1
+ · · · + zN−1

∂
∂zN−1

)
+ B(w) ∂

∂w
is formally tangent

to M . The vector field L vanishes to order m. The divergence statement for the elements
of the real flow of L can be verified in the same way as in the proof of Theorem 5.1. This
completes the proof of Theorem C. ut

Note that Corollary 1.1 follows directly from Theorem C.

Remark 5.2. As can be verified, for example, from [18], solutions of the ODEs Emβ with
arbitrary β ∈ R can be described using Bessel functions. Accordingly, it is possible
to follow the above method and describe the real hypersurfaces Mm

β in terms of Bessel
functions. However, the required computations are quite involved and we do not provide
them here.
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In conclusion we formulate some open questions. The first one concerns the holo-
morphic and formal isotropy dimensions (see Introduction) for a Levi-nonflat hypersur-
face M ⊂ C2. The investigation of these two characteristics of a real hypersurface goes
back to Poincaré [39], who proved the bound dim aut(M, 0) ≤ 5 for the holomorphic
isotropy dimension of a Levi-nondegenerate hypersurface. Combining the known results
in the holomorphic category with the convergence results in [6], [26], one can deduce
the bounds dim aut(M, 0) ≤ 5, dim f(M, 0) ≤ 5 for all minimal hypersurfaces, as well
as for 1-nonminimal ones. In [32] the authors prove the bound dim aut(M, 0) ≤ 5 for
an arbitrary Levi-nonflat hypersurface. Somewhat surprisingly, for the formal isotropy
dimension, even its finiteness does not seem to follow from any known results. As Theo-
rem B shows, the formal and holomorphic dimensions do not coincide in general, so that
the bound dim f(M, 0) ≤ 5 cannot be deduced from the holomorphic case. This leads to
the following

Conjecture 5.3. The bound dim f(M, 0) ≤ 5 holds for an arbitrary real-analytic Levi-
nonflat germ (M, 0) ⊂ C2, in particular, dim f(M, 0) <∞.

The above question becomes even more delicate if one considers the isotropy group
Aut(M, 0) as well as the formal isotropy group F(M, 0). The group structure results in
[25], [26] were obtained in the settings where a posteriori Aut(M, 0) = F(M, 0) and
aut(M, 0) = f(M, 0). Since the m-nonminimal case with m ≥ 2 is significantly different
in the sense that Aut(M, 0) ( F(M, 0) and aut(M, 0) ( f(M, 0) in general, it is of
interest to establish a connection between the objects aut(M, 0), f(M, 0), Aut(M, 0) and
F(M, 0), as well as the group structures for Aut(M, 0) and F(M, 0) in the case m ≥ 2.
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