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Abstract. Non-forking is one of the most important notions in modern model theory capturing the
idea of a generic extension of a type (which is a far-reaching generalization of the concept of a
generic point of a variety).

To a countable first-order theory we associate its non-forking spectrum—a function of two
cardinals κ and λ giving the supremum of the possible number of types over a model of size λ that
do not fork over a submodel of size κ . This is a natural generalization of the stability function of a
theory.

We make progress towards classifying the non-forking spectra. On the one hand, we show
that the possible values a non-forking spectrum may take are quite limited. On the other hand, we
develop a general technique for constructing theories with a prescribed non-forking spectrum, thus
giving a number of examples. In particular, we answer negatively a question of Adler whether NIP
is equivalent to bounded non-forking.

In addition, we answer a question of Keisler regarding the number of cuts a linear order may
have. Namely, we show that it is possible that ded κ < (ded κ)ω.
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1. Introduction

The notion of a non-forking extension of a type (see Definition 2.3) was introduced by
Shelah for the purposes of his classification program to capture the idea of a “generic”
extension of a type to a larger set of parameters which essentially does not add new
constraints to the set of its solutions. In the context of stable theories non-forking gives
rise to an independence relation enjoying a lot of natural properties (which in the special
case of vector spaces amounts to linear independence and in the case of algebraically
closed fields to algebraic independence) and is used extensively in the analysis of models.
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In a subsequent work of Shelah [She80] and Kim and Pillay [Kim98, KP97] the basic
properties of forking were generalized to a larger class of simple theories. Recent work
of the first and second authors shows that many properties of forking still hold in a larger
class of theories without the tree property of the second kind [CK12].

Here we consider the following basic question: how many non-forking extensions can
there be? More precisely, given a complete first-order theory T , we associate to it its
non-forking spectrum, a function fT (κ, λ) from cardinals κ ≤ λ to cardinals defined as

fT (κ, λ) = sup{Snf(N,M) | M � N |= T , |M| ≤ κ, |N | ≤ λ},

where Snf(A,B) = {p ∈ S1(A) | p does not fork over B} (counting 1-types rather than
n-types is essential, as the value may depend on the arity, see Section 5.8).

This is a generalization of the classical question “how many types can a theory have
over a model?”. Recall that the stability function of a theory is defined as fT (κ) =
sup {S(M) | M |= T , |M| = κ}. It is easy to see that fT (κ, κ) = fT (κ). This function
has been studied extensively by Keisler [Kei76] and the third author [She71], where the
following fundamental result was proved:

Fact 1.1. For any complete countable first-order theory T , fT is one of the following:
κ , κ + 2ℵ0 , κℵ0 , ded κ , (ded κ)ℵ0 , 2κ .

Here ded κ is the supremum of the number of cuts that a linear order of size κ may have
(see Definition 6.1). While this result is unconditional, in some models of ZFC, some of
these functions may coincide. Namely, if GCH holds, ded κ = (ded κ)ℵ0 = 2κ . By a result
of Mitchell [Mit73], it was known that for any cardinal κ with cof κ > ℵ0, consistently
ded κ < 2κ . In 1976, Keisler [Kei76, Problem 2] asked whether ded κ < (ded κ)ℵ0 is
consistent with ZFC. We give a positive answer in Section 6.

The aim of this paper is to classify the possibilities of fT (κ, λ). The philosophy of
“dividing lines” of the third author suggests that the possible non-forking spectra are
quite far from being arbitrary, and that there should be finitely many possible functions,
distinguished by the lack (or presence) of certain combinatorial configurations. We work
towards justifying this philosophy and arrive at the following picture.

Main Theorem. Let T be a countable complete first-order theory. Then for λ � κ ,
fT (κ, λ) can be one of the following, in increasing order (meaning that we have an ex-
ample for each item in the list except for (11), and “???” means that we do not know if
there is anything between the previous and the next item, while the lack of “???” means
that there is nothing in between):

(1) κ
(2) κ + 2ℵ0

(3) κℵ0

(4) ded κ

(5) ???
(6) (ded κ)ℵ0

(7) 22κ

(8) λ

(9) λℵ0

(10) ???
(11) λ<iℵ1 (κ)

(12) ded λ

(13) ???
(14) (ded λ)ℵ0

(15) ???
(16) 2λ

In particular, note that the existence of an example of fT (κ, λ) = 22κ answers negatively
a question of Adler [Adl08, Section 6] whether NIP is equivalent to bounded non-forking.
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The restriction λ � κ is in order to make the statement clearer. It can be taken to
be λ ≥ iℵ1(κ). In fact we can say more about smaller λ in some cases. In the class of
NTP2 theories (see Section 4), we have a much nicer picture, meaning that there is a gap
between (6) and (16).

In the first part of the paper, we prove that the non-forking spectra cannot take values
which are not listed in the Main Theorem. The proofs here combine techniques from
generalized stability theory (including results on stable and NIP theories, splitting and
tree combinatorics) with a two-cardinal theorem for Lω1,ω.

The second part of the paper is devoted to examples.
We introduce a general construction which we call circularization. Roughly speaking,

the idea is the following: modulo some technical assumptions, we start with an arbitrary
theory T0 in a finite relational language and an (essentially) arbitrary prescribed set F
of formulas. We expand T by putting a circular order on the set of solutions of each
formula in F , iterate the construction and take the limit. The point is that in the limit
all the formulas in F are forced to fork, and we have gained some control on the set
of non-forking types. This construction turns out to be quite flexible: by choosing the
appropriate initial data, we can find a wide range of examples of non-forking spectra
previously unknown.

2. Preliminaries

Our notation is standard: κ, λ, µ are cardinals; α, β, . . . are ordinals; M,N, . . . are mod-
els; M is always a monster model of the theory in question; B[κ] is the set of subsets of B
of size≤ κ; T is a complete countable first-order theory; for a sequence ā = 〈ai | i < α〉,
EM(ā/A) denotes its Ehrenfeucht–Mostowski type over A. Given a formula φ(x) and a
truth value t , φif t (x) denotes φ(x) if t is true, and ¬φ(x) if t is false.

2.1. Basic properties of forking and dividing

We recall the definition of forking and dividing (see e.g. [CK12, Section 2] for more
details).

Definition 2.1 (Dividing). Let A be a set, and a a tuple. We say that the formula ϕ(x, a)
divides over A if there is a number k < ω and tuples {ai | i < ω} such that:

• tp(ai/A) = tp(a/A).
• The set {ϕ(x, ai) | i < ω} is k-inconsistent (i.e. every subset of size k is not consistent).

In this case, we say that the formula k-divides.

Remark 2.2. From Ramsey and compactness it follows that ϕ(x, a) divides over A if
and only if there is an indiscernible sequence 〈ai | i < ω〉 over A such that a0 = a and
{ϕ(x, ai) | i < ω} is inconsistent.

Definition 2.3 (Forking). Let A be a set, and a a tuple.

• Say that the formula ϕ(x, a) forks over A if there are formulas ψi(x, ai) for i < n such
that ϕ(x, a) `

∨
i<n ψi(x, ai) and ψi(x, ai) divides over A for every i < n.
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• Say that a type p forks over A if there is a finite conjunction of formulas from p which
forks over A.

It follows immediately from the definition that if a partial type p(x) does not fork over A
then there is a global type p′(x) ∈ S(M) extending p(x) that does not fork over A.

Lemma 2.4. Let (A,≤) be a κ+-directed order and let f : A → κ . Then there is a
cofinal subset A0 ⊆ A such that f is constant on A0.

Proof. Assume not; then for every α < κ there is some aα ∈ A such that f (a) 6= α for
any a ≥ aα . By κ+-directedness there is some a ≥ aα for all α < κ . But then whatever
f (a) is, we get a contradiction. ut

Lemma 2.5. Assume that p(x) ∈ S(A) does not fork over B. Then there is some B0 ⊆ B

such that |B0| ≤ |A| + |T | and p(x) does not fork over B0.

Proof. Let κ = |A| + |T |, and assume the conclusion fails. Then p(x) forks over every
C ⊆ B with |C| ≤ κ . That is, for every C ∈ B[κ] there are pC ⊆ p with |pC | < ω,
ψC0 (x, y0), . . . , ψ

C
mC−1(x, ymC ) ∈ L and kC < ω such that for some dC0 , . . . , d

C
mC−1,

pC(x) `
∨
i<mC

ψCi (x, d
C
i ) and each ψCi (x, d

C
i ) is kC-dividing over C. As B[κ] is κ+-

directed under inclusion and |p(x)| ≤ κ , it follows by Lemma 2.4 that for some finite
p0 ⊆ p, {ψi | i < m} and k, this holds for every C ∈ B[κ]. But then by compactness
p0(x) forks over B—a contradiction. ut

2.2. The non-forking spectra

Definition 2.6. For a countable first-order T and infinite cardinals κ ≤ λ, let

fT (κ, λ) = sup{Snf(N,M) | M � N |= T , |M| ≤ κ, |N | ≤ λ},

where Snf(A,B) = {p ∈ S1(A) | p does not fork over B}. We call this function the
non-forking spectrum of T .

For n > 1, we define f nT (κ, λ) and Snf
n similarly with 1-types replaced with n-types.

Note 2.7. All the proofs in Section 3 remain valid for fT replaced by f nT .

Remark 2.8. A special case fT (κ, κ) is the well-known stability function fT (κ) because
Snf(N,N) = S(N) (as no type over a model M forks over M).

Some easy observations:

Lemma 2.9. For all κ ≤ λ,

(1) fT (κ) ≤ fT (κ, λ).
(2) κ ≤ fT (κ, λ) ≤ 2λ.
(3) If fT (κ, λ) ≥ µ and κ ≤ κ ′ then fT (κ ′, λ) ≥ µ.
(4) f nT (κ, λ) ≤ f

n+1
T (κ, λ).

For set-theoretic preliminaries, see Section 6.
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3. Gaps

In the following series of subsections, we exclude all the possibilities for fT which are
not in our list (except when “???” is indicated).

3.1. On (1)–(4)

Definition 3.1. Recall that a theory T is called stable if fT (κ) ≤ κℵ0 for all κ (see
[She90, Theorem II.2.13] for equivalent definitions).

Remark 3.2. If T is stable then every type over a model M has a unique non-forking
extension to any model containing M , so fT (κ) = fT (κ, λ) for all λ ≥ κ ≥ ℵ0.

If T is unstable, then fT (κ) ≥ ded κ for all κ (see [She90, Theorem II.2.49]), so
fT (κ, λ) ≥ ded κ for all λ ≥ κ .

Proposition 3.3. (1) If fT (κ, λ) > κ for some λ ≥ κ then fT (κ, λ) ≥ κ + 2ℵ0 for all
λ ≥ κ .

(2) If fT (κ, λ) > κ + 2ℵ0 for some λ ≥ κ then fT (κ, λ) ≥ κℵ0 for all λ ≥ κ .
(3) If fT (κ, λ) > κℵ0 for some λ ≥ κ then fT (κ, λ) ≥ ded κ for all λ ≥ κ .

Proof. (3): Suppose fT (κ, λ) > κℵ0 for some λ ≥ κ . Then T is unstable, so by Re-
mark 3.2, fT (κ, λ) ≥ ded κ for all λ ≥ κ .

(1): Suppose fT (κ, λ) > κ for some λ ≥ κ . Without loss of generality T is stable.
So fT (κ) = fT (κ, λ) > κ . By Fact 1.1, fT (κ) ≥ κ + 2ℵ0 for all κ , and we are done.

(2): Similar to (1). ut

3.2. The gap between (6) and (7)

Definition 3.4. A formula ϕ(x, y) has the independence property (IP) if there are sets
{ai | i < ω} and {bs | s ⊆ ω} in M such that ϕ(ai, bs) holds if and only if i ∈ s for all
i < ω and s ⊆ ω.

A theory T is NIP (dependent) if no formula ϕ(x, y) has IP.

See [Adl08] for more about NIP.

Fact 3.5. If T is NIP and M |= T then |S(M)| ≤ (ded |M|)ℵ0 [She71] and if M ≺ N
and p ∈ S(M) then p has at most (ded |M|)ℵ0 non-forking extensions (e.g. follows from
the proof of [Adl08, Theorem 42], noticing that |Sω(M)| ≤ (ded |M|)ℵ0). Consequently,∣∣Snf(N,M)

∣∣ ≤ (ded |M|)ℵ0 .

This is a generalization of a result due to Poizat [Poi81].

Proposition 3.6. Assume that fT (κ, λ) > (ded κ)ℵ0 for some λ ≥ κ . Then fT (κ, λ) ≥
2min{λ,2κ } for all λ ≥ κ .

Proof. By Fact 3.5, some formula ϕ(x, y) in T has IP.
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Recall that a set S ⊆ P(κ) is called independent if every finite intersection of elements
of S or their complements is non-empty. By a theorem of Hausdorff there is such a family
of size 2κ . Fix some κ and µ ≤ 2κ , and let S be a family of independent subsets of κ such
that |S| = µ.

LetA = {ai | i < κ} be such that bs |= {ϕ(x, ai)if i∈s | i < κ} for every s ⊆ κ . LetM
be a model of size κ containing A, and N a model of size µ containing M ∪ {bs | s ∈ S}.
Now for every D ⊆ S, there is an ultrafilter on κ containing D, and let pD ∈ S(N) be{

ψ(x, c)
∣∣ c ∈ N, ψ ∈ L, {a ∈ M | ψ(a, c)} ∈ D},

so it is finitely satisfiable in A. Notice that if D1 6= D2 then pD1 6= pD2 , as ϕ(x, bs) ∈
pD1 ∧ ¬ϕ(x, bs) ∈ pD2 for any s ∈ D1 \D2. Thus Snf(N,M) ≥ 2µ.

If λ ≤ 2κ , then let µ = λ, and we have fT (λ, κ) ≥ 2λ.
If λ > 2κ , then let µ = 2κ , so fT (κ, λ) ≥ 22κ , and we are done. ut

Note that in the Main Theorem we have assumed that λ ≥ 22κ , so in this case we have
fT (κ, λ) ≥ 22κ .

3.3. The gap between (7) and (8)

We recall the basic properties of splitting.

Definition 3.7. Suppose A ⊆ B are sets. A type p(x) ∈ S(B) splits over A if there
is some formula ϕ(x, y) and b, c ∈ B such that tp(b/A) = tp(c/A) and ϕ(x, b) ∧
¬ϕ(x, c) ∈ p.

Fact 3.8 (see e.g. [Adl08, Sections 5, 6]). Let M ≺ N be models.

(1) The number of types in S(N) that do not split over M is bounded by 22|M| .
(2) If N is |M|+-saturated and p ∈ S(N) splits over M , then there is an indiscernible

sequence 〈ai | i < ω〉 in N over M such that ϕ(x, a0) ∧ ¬ϕ(x, a1) ∈ p for some ϕ.
(3) If T is NIP, and p ∈ Snf(N,M), then p does not split over M .

Definition 3.9. A non-forking pattern of depth θ overA consists of an array {āα | α < θ}

where āα = 〈aα,i | i < ω〉 and formulas {ϕα(x, y) | α < θ} such that

• āα0 is indiscernible over {āα | α < α0} ∪ A.
• {ϕα(x, aα,0) ∧ ¬ϕα(x, aα,1) | α < θ} does not fork over A.

Definition 3.10. A pair non-forking pattern of depth θ over a set A is defined similarly,
but here we only demand that āα0 is indiscernible over {aα,0, aα,1 | α < α0} ∪ A.

Lemma 3.11. If there is a pair non-forking pattern of depth θ over A, then there is a
non-forking pattern of depth θ over A.

Proof. Suppose {āα | α < θ} is a pair non-forking pattern of depth θ . It is enough to find
an array {b̄α | α < θ} as in the first point of Definition 3.9 such that bα,0bα,1 = aα,0aα,1.
By compactness we may assume that θ is finite. The proof is by induction on θ . For
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θ = 0, 1 there is nothing to do. Suppose θ = n + 1. By induction, we may assume
that the first n sequences satisfy the first point. By Ramsey and compactness (see e.g.
[TZ12, Lemma 5.1.3]), there is an indiscernible sequence b̄′n which is indiscernible over
A∪{āα | α < n} and such that the type of any finite subtuple in b̄′n is the same as a subtuple
of the same length in ān over A ∪ {aα,0, aα,1 | α < n}. So there is an automorphism
taking b̄′n to ān which fixes A ∪ {aα,0, aα,1 | α < n}. Now let b̄α for α < n be the image
of this automorphism, and b̄n = ān. ut

Definition 3.12. For an infinite cardinal κ , let gT (κ) be the smallest cardinal θ such that
there is no (pair) non-forking pattern of depth θ over some model of size κ .

Remark 3.13. It is clear that gT (κ ′) ≥ gT (κ) whenever κ ′ ≥ κ . In addition, from
Lemma 2.5 it follows that if gT (κ) > θ then gT (θ + ℵ0) > θ .

Lemma 3.14. If gT (κ) > θ then there is M of size κ such that for any λ we can find a
non-forking pattern {āα, ϕα | α < θ} such that in addition:

• āα = 〈aα,i | i < λ〉.
• {ϕα(x, aα,0) | α < θ} ∪ {¬ϕα(x, aα,i) | α < θ, 0 < i < λ} does not fork over M .

Proof. By assumption we have some non-forking pattern {āα, ϕα | α < θ} over some
M of size κ . By compactness, we may assume that āα is of length λ for all α < θ . Let
p(x) ∈ S(M) be a non-forking extension of {ϕα(x, aα,0) ∧ ¬ϕα(x, aα,1) | α < θ}. By
omitting some elements from each sequence āα and maybe changing ϕα to ¬ϕα we may
assume

{ϕα(x, aα,0) | α < θ} ∪ {¬ϕα(x, aα,i) | α < θ, 0 < i < λ} ⊆ p. ut

Proposition 3.15. The following are equivalent:

(1) For some κ , gT (κ) > 1.
(2) For every λ ≥ κ ≥ ℵ0, fT (κ, λ) = 2λ if λ ≤ 2κ and fT (κ, λ) ≥ λ otherwise.
(3) For some λ ≥ κ , fT (κ, λ) > 22κ .

Proof. (1) implies (2): By Remark 3.13, we may assume that κ = ℵ0. By Lemma 3.14
there is some countable M such that for any λ there is some b̄ = 〈bi | i < λ〉 such that
{ϕ(x, b0)} ∪ {¬ϕ(x, bi) | i < λ} does not fork over M . So, for every i < λ, pi(x) =
{ϕ(x, bj )

if j=i
| i ≤ j < λ} does not fork over M .

Taking some model N ⊇ b̄ of size λ we can expand each pi to some qi ∈ Snf(N,M).
Notice that for any i < j < λ, qi 6= qj as ¬ϕ(x, aj ) ∈ pi , but ϕ(x, aj ) ∈ pj . So we
conclude that Snf(N,M) ≥ λ. By Lemma 2.9, we see that fT (κ, λ) ≥ λ for every λ ≥ κ .

Note that by Fact 3.5, we know that T is not NIP, so if λ ≤ 2κ , then by Proposition 3.6,
fT (κ, λ) = 2λ.

(2) implies (3) is clear.
(3) implies (1): Let M ≺ N witness that fT (κ, λ) > 22κ . By Fact 3.8(1), there is

some p ∈ Snf(N,M) that splits over M .
Let N ′ � N be |M|+-saturated and p′ ∈ Snf(N ′,M) a non-forking extension of p.

By Fact 3.8(2) we find an indiscernible sequence ā = 〈ai | i < ω〉 in N ′ and a formula
ϕ(x, a0) ∧ ¬ϕ(x, a1) ∈ p—and we get (1). ut
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3.4. The gap between (8) and (9)

Lemma 3.16. For any cardinals λ and θ , if θ is regular or λ ≥ 2<θ then (λ<θ )<θ = λ<θ .

Proof. By [She86, Observation 2.11(4)], if λ ≥ 2<θ , then λ<θ = λν for some ν < θ .
So (λ<θ )<θ = (λν)<θ = λ<θ . If θ is regular, then let λ′ = λ<θ ; since λ′ ≥ 2<θ ,
(λ′)<θ = (λ′)ν for some ν < θ , so we have

(λ′)<θ = (λ′)ν = (λ<θ )ν =
(∑
µ<θ

λµ
)ν
=

∑
µ<θ

(λµ·ν) = λ<θ = λ′. ut

Lemma 3.17. Suppose fT (κ, λ) > λ<θ and λ ≥
∑
µ<θ 22κ+µ . Then gT (κ) > θ .

Proof. Let λ′ = λ<θ . By Lemma 3.16, (λ′)<θ = λ′. Hence fT (κ, λ′) ≥ fT (κ, λ) >

λ<θ = (λ′)<θ , so we may replace λ with λ′ and assume λ<θ = λ.
Let (N,M) be a witness to fT (κ, λ) > λ. For every A ⊆ N of size < θ , let

MA ⊆ M be a (κ + |A|)+-saturated model of size ≤ 2|A|+κ containing M ∪ A. Let
N0 =

⋃
A∈N [<θ ]MA. So N0 ⊇ N and |N0| ≤ λ · 2<θ+κ = λ. Repeating the construction

with respect to (N0,M), construct N1, and more generally Ni for i ≤ θ , taking union at
limit steps. So |Nθ | ≤ λ · θ = λ.

Fix p(x) ∈ Snf(Nθ ,M).
We try to choose by induction on α < θ formulas ϕpα (x, y) and sequences āpα =

〈a
p
α,i | i < ω〉 in Nα+1 such that āpα is indiscernible over {apβ,0, a

p

β,1 | β < α} ∪M and
ϕ
p
α (x, a

p

α,0)∧¬ϕ
p
α (x, a

p

α,1) ∈ p. If we succeed, then we get a pair non-forking pattern of
depth θ over M as desired (by Lemma 3.11). Otherwise, we are stuck at some αp < θ .
Let Ap =

⋃
{a
p

β,0, a
p

β,1 | β < αp}.
Let F ⊆ Snf(Nθ ,M) be a set of size > λ such that for p 6= q ∈ F , p|N 6= q|N . As

the size of the set {Ap | p ∈ F } is bounded by λ<θ = λ, there is some A of size < θ and
α such that the set S = {p ∈ F | Ap = A ∧ αp = α} has |S| > λ. Let M0 ⊆ Nα be some
model containing A ∪ M of size κ + |A|. Suppose p ∈ S and p|Nα splits over M0, so
already p|M0B splits over M0 for some finite B. Then there is some (κ + |A|)+-saturated
model N ′ ⊆ Nα+1 containing M ∪ A ∪ B and some M ′0 ⊆ N

′ such that M ′0 ≡MAB M0,
so p|N ′ splits over M ′0. By Fact 3.8(2), we can find an M ′0-indiscernible sequence 〈apα,i |
i < ω〉 in N ′ ⊆ Nα+1 such that ϕ(x, apα,0) ∧ ¬ϕ(x, a

p

α,1) ∈ p—contradicting the choice
of α. So, for every p ∈ S, p|Nα does not split over M0. But then by the choice of F and
Fact 3.8(1), |S| ≤ 22κ+|A|—a contradiction. ut

Lemma 3.18. If gT (κ) > θ then fT (κ, λ) ≥ λ〈θ〉tr for all λ ≥ κ (see Definition 6.3).

Proof. Fix λ ≥ κ + θ (if λ < θ then λ〈θ〉tr is 0). By Lemma 3.14, there is some non-
forking pattern {āα, ϕα | α < θ} over a model M of size κ such that āα = 〈aα,i | i < λ〉

and p(x) = {ϕα(x, aα,0) | α < θ} ∪ {¬ϕα(x, aα,i) | α < θ, 0 < i < λ} does not
fork over M . By induction on β ≤ θ we define elementary mappings Fη, η ∈ λβ , with
dom(Fη) = Aβ = M ∪ {āα | α < β}:

• F∅ is the identity on M .
• If β is a limit ordinal, then let Fη =

⋃
α<β Fη�α .
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• If β = α + 1, let Fη0 be an arbitrary extension of Fη to Aα+1. For i < λ, let Fηi be an
arbitrary elementary mapping extending Fη such that Fηi(aα,j ) = Fη0(aα,i+j ). This
could be done by indiscernibility.

Let pη = Fη(p). Then:

• pη(x) does not fork over M—as Fη is an elementary map fixing M .
• If η 6= ν ∈ λθ , then pη 6= pν . To see this, let α = min{β < θ | η�β 6= ν�β} and

suppose α = β + 1, ρ = η�β = ν�β. Assume η(β) = i < j = ν(β) and 0 < k < λ

is such that i + k = j . Then ϕ(x, aα,0) ∈ p ⇒ ϕ(x, Fν(aα,0)) ∈ pν . Similarly,
¬ϕ(x, aα,k) ∈ p⇒ ¬ϕ(x, Fη(aα,k)) ∈ pη. But

Fν(aα,0) = Fρj (aα,0) = Fρ0(aα,j ) = Fρ0(ai+k) = Fρi(aα,k) = Fη(aα,k),

so pη 6= pν .

Let T ⊆ λ<θ be a tree of size ≤ λ such that if x ∈ T and y < x then y ∈ T . Let
B =

⋃
{Fη(āα) | α < lg(η) ∧ η ∈ T } ∪ M , so |B| ≤ λ + κ = λ. Let N be some

model containing B of size λ. Thus, |Snf(N,M)| is at least the number of branches in T
of length θ . By the definition of λ〈θ〉tr we are done. ut

Proposition 3.19. If fT (κ, λ) > λ for some λ ≥ 22κ , then fT (κ, λ) ≥ λℵ0 for all λ ≥ κ .

Proof. By Lemma 3.17 with θ = ℵ0, we have gT (κ) > ℵ0, and then by Remark 3.13,
gT (ℵ0) > ℵ0. By Lemma 3.18, fT (ℵ0, λ) ≥ λ〈ℵ0〉tr for all λ, and λ〈ℵ0〉tr = λℵ0 (see
Remark 6.4). By Remark 2.9, fT (κ, λ) ≥ fT (ℵ0, λ) ≥ λ

ℵ0 , so we are done. ut

3.5. On (10)

Proposition 3.20. If fT (κ, λ) > λµ for some λ ≥ 22κ+µ , then fT (κ, λ) ≥ λ〈µ
+
〉tr for all

λ ≥ κ ≥ µ+.

Proof. By Lemma 3.17, gT (κ) > µ+. By Lemma 2.5, gT (µ+) > µ+. By Lemma 3.18,
fT (µ

+, λ) ≥ λ〈µ
+
〉tr for all λ ≥ µ+, and so by Lemma 2.9 , fT (κ, λ) ≥ λ〈µ

+
〉tr for any

λ ≥ κ ≥ µ+. ut

Corollary 3.21. If fT (κ, λ) > λℵn for some λ ≥ 22κ+ℵn , then fT (κ, λ) ≥ λ〈ℵn+1〉tr for all
λ ≥ κ ≥ ℵn+1.

This corollary says that morally there are gaps between λ and λℵ0 , between λℵ0 and λℵ1 etc.

3.6. On the gap between (11) and (12)

The following fact follows from the proof of Morley’s two-cardinal theorem. For details,
see [Kei71, Theorem 23].

Fact 3.22. Suppose ψ ∈ Lω1,ω, < is a binary relation, P and Q are predicates in L and
ψ implies that “< is a linear order on Q”. Suppose that for every countable ordinal ε
there is a structure B such that:

• B |= ψ .
• There is an embedding of the order iε(|PB |) into (QB , <B).
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Then for every cardinal λ there is some structure B such that:

• B |= ψ .
• |PB | = ℵ0.
• There is an embedding of (λ,<) into (QB , <B).

Lemma 3.23. Let M ≺ N and a ∈ N . Then the following are equivalent:

(1) ϕ(x, a) forks over M .
(2) The following holds in N :∨

{ψ0,...,ψm−1}⊆L

∨
ki<ω,i<m

∧
1⊆L finite

∧
n<ω ∀c0, . . . , cn−1 ∈ M ∃ȳ0, . . . , ∃ȳm−1[

ϕ(x, a) `
∨
i<n

ψ(x, yi,0)∧
∧

i<m,j<n

(yi,j ≡
1
c̄ yi,0)∧

∧
i<m, s∈n[ki ]

∀x
(
¬

∧
j∈s

ϕ(x, yi,j )
)]

where ȳi = 〈yi,j | j < n〉 for i < m and c̄ = 〈ci | i < n〉.

Proof. By compactness. ut

Lemma 3.24. If gT (κ) > µ > ℵ0, then there is a non-forking pattern {ϕα, āα | α < µ}

such that ϕα = ϕ for some formula ϕ.

Proof. By the pigeon-hole principle. ut

Proposition 3.25. If for all ε < ℵ1, there is some κ such that gT (κ) > iε(κ), then
gT (ℵ0) = ∞.

Proof. By Lemma 3.24, for every ε < ℵ1 there is some formula ϕε and a non-forking
pattern {ϕε, āεα | α < iε(κ)} over a model Mε of size κ . We may assume that ϕε = ϕ for
all ε < ℵ1.

Let ψ be the Lω1,ω sentence in the language

{P(x), S(x),Q(α),<(α, β), R(x, α),<R(x, y, α)} ∪ L(T )

saying:

(1) S |= T .
(2) P is an L-elementary substructure of S.
(3) S ∩Q = ∅.
(4) The universe is S ∪Q.
(5) Q is infinite and < is a linear order on Q.
(6) For each α ∈ Q,R(−, α) is infinite and contained in S, and<R(−,−, α) is a discrete

linear order on R(−, α) with a first element.
(7) For each α ∈ Q, R(−, α) is an L-indiscernible sequence over P ∪

⋃
β<α R(−, β)

ordered by <R(−,−, α).
(8) The set {ϕ(x, yα,0) ∧ ¬ϕ(x, yα,1) | α ∈ Q} does not fork over P (in the sense of L),

where yα,0 and yα,1 are the first elements in the sequence R(−, α).

Note that (6) can be expressed in Lω1,ω by Lemma 3.23.
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As the assumptions of Fact 3.22 are satisfied, for each λ we find a model B of ψ such
that:
• |PB | = ℵ0.
• There is an embedding h of (λ,<) into (QB , <B).
For all α < λ let āα be an infinite subsequence of R(B, h(α)) and let M = P(B). By
(1)–(8), {ϕ, āα | α < λ} is a non-forking pattern of depth λ over M—as desired. ut

Corollary 3.26. (1) If for all ε < ℵ1 there is some κ such that gT (κ) > iε(κ), then
fT (λ, κ) ≥ ded λ for all λ ≥ κ .

(2) If for every ε < ℵ1 there is some λ ≥ iε(κ) such that fT (λ, κ) > λ<iε(κ), then
fT (λ, κ) ≥ ded λ for all λ ≥ κ .

(3) If fT (λ, κ) > λ<iℵ1 (κ) for some λ ≥ iℵ1(κ), then fT (λ, κ) ≥ ded λ for all λ ≥ κ .
Proof. (1) By Lemma 3.25, we know that gT (ℵ0) = ∞. For any λ ≥ κ , by Lemma 3.18
we have fT (κ, λ) ≥ λ〈θ〉tr for all θ ≤ λ. As ded λ = sup{λ〈θ〉tr | θ ≤ λ, is regular} by
Proposition 6.5(6) we get fT (κ, λ) ≥ ded λ.

(2) Let ε < ℵ1 be a limit ordinal and θ = iε(κ). Then∑
µ<θ

22κ+µ
=

∑
α<ε

22iα(κ)
=

∑
α<ε

iα+2(κ) = iε(κ).

By Lemma 3.17, gT (κ) > iε(κ). So we can apply (1) to conclude the proof.
(3) follows from (2). ut

4. Inside NTP2

NTP2 is a large class of first-order theories containing both NIP and simple theories in-
troduced by Shelah. For a general treatment, see [Che14]. In this section we show that for
theories in this class, the non-forking spectrum is well behaved, i.e. it cannot take values
between (6) and (16).

Fact 4.1 (see e.g. [HP11]). Let p(x) be a global type non-splitting over a set A. For any
set B ⊇ A and an ordinal α, let the sequence c̄ = 〈ci | i < α〉 be such that ci |= p|Bc<i .
Then c̄ is indiscernible over B and its type over B does not depend on the choice of c̄.
Call this type p(α)|B , and let p(α) =

⋃
B⊇A p

(α)
|B . Then p(α) also does not split over A.

Definition 4.2 (strict invariance). Let p(x) be a global type. We say that p is strictly
invariant over a set A if p does not split over A, and whenever B ⊇ A and c |= p|B then
tp(B/cA) does not fork over A.

Lemma 4.3. Let p be a global type finitely satisfiable in A. Then there is some model
M ⊇ A with |M| ≤ |A| + ℵ0 such that p(ω) is strictly invariant over M .
Proof. Let M0 be some model containing A of size |A| + ℵ0. Construct by induction an
increasing sequence of modelsMi for i < ω such that |Mi | = |M0| and for every formula
ϕ(x, y) over M , if ϕ(x, c) ∈ p(ω) for some c, then there is some c′ ∈ Mi+1 such that
ϕ(x, c′) ∈ p(ω). Let M =

⋃
i<ωMi . ut

In lieu of giving a definition of NTP2, we only state the properties which we will be using.
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Fact 4.4 ([CK12]). Let T be NTP2 and M |= T . Then:
(1) ϕ(x, c) divides over M if and only if ϕ(x, c) forks over M .
(2) Let p(x) be a global type strictly invariant over M and 〈ci | i < ω〉 |= p(ω)|M . Then

for any formula ϕ(x, c0) dividing over M , {ϕ(x, ci) | i < ω} is inconsistent.

Improving on [CK12, Theorem 4.3] we establish the following:

Theorem 4.5. Let T be NTP2. Then the following are equivalent:
(1) fT (κ, λ) > (ded κ)ℵ0 for some λ ≥ κ .
(2) T has IP.
(3) fT (κ, λ) = 2λ for every λ ≥ κ .
Proof. (1) implies (2) follows from Fact 3.5, and (3) implies (1) is clear.

(2) implies (3): Fix λ ≥ κ . Let ϕ(x, y) have IP, and ā = 〈ai | i < ω〉 be an in-
discernible sequence such that ∀U ⊆ ω ∃bU ϕ(ai, bU ) ⇔ i ∈ U . Let p(x) be a global
non-algebraic type finitely satisfiable in ā. By Lemma 4.3, there is a model M ⊇ ā such
that |M| ≤ ℵ0 and p(ω) is strictly invariant over M .

Let b̄ = 〈bi | i < λ〉 realize p(λ)|M . We show that pη(x) = {ϕ(x, bi)if η(i)=1
| i < λ}

does not divide over M for any η ∈ 2λ.
First note that pη(x) is consistent for any η, as tp(b̄/M) is finitely satisfiable in ā. But

as for any k < ω, 〈(bk·i, bk·i+1, . . . , bk·(i+1)−1) | i < ω〉 realizes (p(k))(ω), Fact 4.4(2)
implies that pη(x)|b0...bk−1 does not divide overM for any k < ω. Thus by indiscernibility
of b̄, pη(x) does not divide over M .

Take N ⊇ b̄∪M of size λ. By Fact 4.4(1) every pη extends to some p′η ∈ S
nf(N,M),

thus fT (κ, λ) = 2λ. ut

5. Examples

5.1. Examples of (1)–(6)

Proposition 5.1. (1) If T is the theory of equality, then fT (κ, λ) = κ for all λ ≥ κ .
(2) Let T be the model companion of the theory of countably many unary relations. Then

fT (κ, λ) = κ + 2ℵ0 for all λ ≥ κ .
(3) Let T be the model companion of the theory of countably many equivalence relations.

Then fT (κ, λ) = κℵ0 for all λ ≥ κ .
(4) Let T = DLO. Then fT (κ, λ) = ded κ for all λ ≥ κ .
(5) Let T be the model companion of infinitely many linear orders. Then fT (κ, λ) =

(ded κ)ℵ0 .
Proof. (1)–(3): It is well known that these examples have the corresponding fT (κ)’s,
and that they are stable. It follows from Remark 3.2 that they have the corresponding
fT (κ, λ).

(4): It is easy to check that every type has finitely many non-splitting global exten-
sions, but DLO is NIP so by Fact 3.8 every non-forking extension is non-splitting. Since
fT (κ) = ded κ for this theory, we are done.

(5): This theory is NIP so fT (κ, λ) ≤ (ded κ)ℵ0 by Fact 3.5, and clearly fT (κ) =
(ded κ)ℵ0 . ut
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5.2. Circularization

We shall first describe a general construction for examples of non-forking spectra func-
tions.

For this section, a “formula” means an ∅-definable formula unless otherwise specified.
Most formulas we work with are partitioned formulas, ϕ(x̄; ȳ), where the variables are
broken into two distinct sets. We write ϕ instead of ϕ(x̄; ȳ) when the partition is clear
from the context. We let ϕ1

= ϕ and ϕ0
= ¬ϕ. We assume that our languages are

relational in this section (so a subset is a substructure).

5.2.1. Circularization: Base step. The dense circular order was used as an example of a
theory where forking is not the same as dividing (see e.g. [Kim96, Example 2.11]). The
reason is that with circular ordering around, it is hard not to fork.

Definition 5.2. A circular order on a finite set is a ternary relation obtained by placing
the points on a circle and taking all triples in clockwise order. For an infinite set, a circular
order is a ternary relation such that the restriction to any finite set is a circular order.
Equivalently, a circular order is a ternary relation C such that for every x, C(x,−,−) is a
linear order on {y | y 6= x} and C(x, y, z)→ C(y, z, x) for all x, y, z. Denote the theory
of circular orders by TC .

The following definitions are well-known.

Definition 5.3. Let K be a class of L-structures (where L is relational). We say that K
has the strong amalgamation property (SAP) if for every A,B,C ∈ K and embeddings
i1 : A→ B and i2 : A→ C there exist a structure D ∈ K and embeddings j1 : B → D

and j2 : C → D such that

• j1 ◦ i1 = j2 ◦ i2 and
• j1(B) ∩ j2(C) = (j1 ◦ i1)(A) = (j2 ◦ i2)(A).

We say thatK has the disjoint embedding property (DEP) if for any structures A,B ∈ K ,
there exists a structure C ∈ K and embeddings j1 : B → C and j2 : A → C such that
j1(A) ∩ j2(B) = ∅.

We say that a first-order theory T has these properties if its class of (finite) models
has them.

Remark 5.4. TC is universal and it has DEP and SAP.

Fact 5.5. Let T be a universal theory with DEP and SAP in a finite relational languageL.
Then:

(1) ([Hod93, Theorem 7.4.1]) T has a model completion T0 which is ω-categorical and
eliminates quantifiers.

(2) ([Hod93, Theorem 7.1.8]) If A ⊆ M |= T0 then acl(A) = A.

Corollary 5.6. Suppose that ϕ(x̄; ȳ) is a formula in L, and ā ∈ M |= T0. If M |=
∃z̄ ϕ(z̄; ā) ∧ z̄ * ā then {t̄ ∈ M | ϕ(t̄; ā)} is infinite.
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Definition 5.7. For any formula ϕ(x̄; ȳ) in L where x̄ is not empty, let C[ϕ(x̄; ȳ)] be a
new lg(ȳ)+ 3 · lg(x̄)-place relation symbol. Denote L[ϕ(x̄; ȳ)] = L ∪ {C[ϕ(x̄; ȳ)]}.

Definition 5.8. Suppose ϕ(x̄; ȳ) is a quantifier free formula in L with x̄ not empty. Let
T [ϕ(x̄; ȳ)] be the theory in L[ϕ(x̄; ȳ)] containing T and the following axioms:

• For all t̄ in the length of ȳ, the set

S[ϕ(x̄; ȳ)](t̄) := {s̄ | s̄ ∩ t̄ = ∅ ∧ lg(s̄) = lg(x̄) ∧ ϕ(s̄; t̄ )}

is circularly ordered by the relation

C[ϕ(x̄; ȳ)](t̄) := {(s̄1, s̄2, s̄3) | C[ϕ(x̄, ȳ)](t̄ , s̄1, s̄2, s̄3)}

(i.e. C[ϕ(x̄; ȳ)] with index t̄ orders this set in a circular order). Call t̄ the index vari-
ables, and s̄ the main variables.
• If C[ϕ(x̄; ȳ)](t̄)(s̄1, s̄2, s̄3) then s̄1, s̄2, s̄3 ∈ S[ϕ(x̄; ȳ)](t̄).

Claim 5.9. If ϕ is as in the definition, then

(1) T [ϕ] is universal.
(2) T [ϕ] has DEP.
(3) T [ϕ] has SAP.

Proof. As TC is universal, (1) is clear (note that this uses the fact that ϕ is quantifier free).
(3): Let M ′0, M ′1 and M ′2 be models of T [ϕ] such that M ′0 = M ′1 ∩ M

′

2. Let Mi =

M ′i�L for i < 3. By assumption, there is a model M3 |= T such that M1 ∪M2 ⊆ M3. We
define M ′3 as an expansion of M3. Let t̄ ∈ M3 be a tuple of length lg(ȳ). Split into cases:

Case 1: t̄ ∈ M ′0. In this case, (SM
′
i [ϕ](t̄), CM

′
i [ϕ](t̄)) are circular orders for i < 3 and

SM
′

1 [ϕ](t̄) ∩ SM
′

2 [ϕ](t̄) = SM
′

0 [ϕ](t̄) so we can amalgamate them as circular
orders and extend arbitrarily to SM3 [ϕ](t̄), and that will be CM

′

3 [ϕ](t̄).
Note that in the special case where SM0 [ϕ](t̄) = ∅, there are no restrictions on
the place of SMi [ϕ](t̄) for i < 3 in this order.

Case 2: t̄ ∈ M1\M2. Then (SM
′

1 [ϕ](t̄), CM
′

1 [ϕ](t̄)) is a circular order. Extend it so that
its domain would be SM3 [ϕ](t̄) arbitrarily.

Case 3: t̄ ∈ M2\M1—the same.
Case 4: t̄ /∈ M1 and t̄ /∈ M2. Then CM

′

3 [ϕ](t̄) is any circular order on SM3 [ϕ](t̄).

(2): Similar to (3), but easier. ut

Remark 5.10. It follows from the proof of amalgamation that ifM |= T contains models
M0 ⊆ Mi ⊆ M for i < n such that M0 = Mi ∩Mj for i < j < n, and for each Mi there
is an expansionM ′i to a model of T [ϕ] such thatM ′0 ⊆ M

′

i , then there is an expansionM ′

of M to a model of T [ϕ] such that M ′i ⊆ M
′.

Claim 5.11. (1) If M |= T , then we can expand it to a model M ′ of T [ϕ].
(2) Moreover, if B ⊆ M and there is already an expansion B ′ of B to a model of T [ϕ],

then we can expand M in such a way that B ′ ⊆ M ′.
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(3) Moreover, suppose that:

• A ⊆ M .
• 〈c̄i | i < n〉 is a finite sequence of finite tuples from M such that c̄i ∩ c̄j ⊆ A and

tpqf(c̄i/A) = tpqf(c̄j/A) for all i < j < n.
• M ′0 is an expansion of Ac̄0 to a model of T [ϕ].

Then we can find an expansion M ′ such that the quantifier free types are still equal
in the sense of L[ϕ] and M ′0 ⊆ M

′.

Proof. (2): For any t̄ in the length of ȳ, if t̄ ∈ B then we choose a circular order
CM

′

[ϕ](t̄) that extends CB
′

[ϕ](t̄) on SM [ϕ](t̄). If not, then define it arbitrarily.
(3): Let Mi = Ac̄i . As c̄0 ≡

qf
A c̄i for i < n, there are isomorphisms fi : M0 → Mi

of L that fix A and take c̄0 to c̄i . So fi induces expansions M ′i of Mi , isomorphic (via fi)
toM ′0. As the intersection of any two modelsMi is exactly A, by Remark 5.10 there is an
expansion M ′ of M to a model of T [ϕ] that contains M ′i . In this expansion the quantifier
free types will remain the same because the fi are L[ϕ]-isomorphisms. ut

Corollary 5.12. Suppose that M ′ |= T [ϕ] and M ′�L ⊆ N |= T . Then there is an
expansion of N to a model N ′ of T [ϕ] such that M ′ ⊆ N ′. In particular, if M ′ |= T [ϕ]
is existentially closed, then M ′�L is an existentially closed model of T . Denote by T0[ϕ]

the model completion of T [ϕ]. We will call it the ϕ-circularization of T0. It follows that
T0[ϕ]�L = T0 (for more see [Hod93, Theorem 8.2.4]).

We turn to dividing:

Claim 5.13. Assume that M |= T0[ϕ], A ⊆ M , ā ∈ M , SM [ϕ](ā) ∩ Alg(x̄)
= ∅, and

c̄ 6= d̄ ∈ SM [ϕ](ā). Then the formula ψ(z̄; ā, c̄, d̄) = C[ϕ](ā, c̄, z̄, d̄) 2-divides over Aā.

Proof. Let M0 = Aā, M1 = M0c̄d̄ and M2 = M0c̄
′d̄ ′ where M1 ∩M2 = M0 and there

is an isomorphism f : M1 → M2 that fixes M0 and takes c̄d̄ to c̄′d̄ ′.
By SAP, there is a model M3 |= T [ϕ] that contains M1 ∪M2. We wish to choose it

carefully: in the proof of Claim 5.9, we saw that there are no constraints on the amalgama-
tion of CM1 [ϕ](ā) and CM2 [ϕ](ā) (because SM0 [ϕ](ā) = ∅, see the definition of S[ϕ]).
In particular we can put c̄′ and d̄ ′ so that in the circular order we have c̄ → d̄ → c̄′ →

d̄ ′→ c̄, and in this case there is no z̄ such that C[ϕ](ā)(c̄, z̄, d̄) and C[ϕ](ā)(c̄′, z̄, d̄ ′).
Applying the same technique n times yields a model of T [ϕ] with a sequence 〈c̄i, d̄i |

i < n〉 that containsM1 and satisfies tpqf(c̄i d̄i/Aā) = tpqf(c̄d̄/Aā), so that in the circular
order C[ϕ](ā) the tuples will be ordered as follows: c̄ → d̄ → c̄1 → d̄1 → · · · →

c̄n → d̄n → c̄. Hence, there is a model of T0[ϕ] and an infinite such sequence, and this
sequence witnesses the 2-dividing of ψ(z̄; a, c̄, d̄).

Note that the tuples c̄i d̄i were chosen so that the intersection of each pair c̄i d̄i , c̄j d̄j is
contained in A. ut

The last sentence justifies the following auxiliary definition which will make life a bit
easier:

Definition 5.14. Say that a formula ϕ(x̄, ā) k-divides disjointly over A if there is an in-
discernible sequence 〈āi | i < ω〉 that witnesses k-dividing and moreover āi ∩ āj ⊆ A.
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Remark 5.15. Note that if ϕ(x̄, ā) divides over A, then it divides disjointly over some
B ⊇ A (if I is an indiscernible sequence witnessing dividing, then B = A ∪

⋂
I ).

We shall also need some kind of converse to the last claim. More precisely, we need to
say when a formula does not divide.

Claim 5.16. Suppose:

(1) A ⊆ M |= T0[ϕ].
(2) p(x̄) = p1(x̄) ∪ p2(x̄) is a complete quantifier free type over M .
(3) p1(x̄) is a complete L type over M and p2(x̄) is a complete {C[ϕ]} type over M .
(4) p1(x̄) does not divide over A (as an L-type so also as an L[ϕ]-type).
(5) For all t̄ ∈ M lg(ȳ), p2(x̄)�{C[ϕ](t̄ ,−,−,−)} does not divide over At̄ (this means all

formulas in p2(x̄) of the form C[ϕ](t̄ , z̄1, z̄2, z̄3) where x̄ substitutes the z̄’s in some
places and in the others there are parameters from M).

Then p(x̄) does not divide overA. In particular, if neither p1(x̄) nor p2(x̄) divides overA,
then p(x̄) does not divide over A.

Proof. Denote x̄ = (x0, . . . , xm−1) and p(x̄,M) = p(x̄). We may assume that p�xi is
non-algebraic for all i < m (otherwise, by Fact 5.5, (xi = c) ∈ p for some c ∈ M , so
c ∈ A as x = c divides over A, and we can replace xi by c). Suppose 〈Mi | i < ω〉 is an
L[ϕ]-indiscernible sequence over A in some model N ⊇ M such that M0 = M . We will
show that

⋃
{p(x̄,Mi) | i < ω} is consistent.

Let c̄ |=
⋃
{p1(x̄,Mi)} (exists by (4)) and B =

⋃
{Mi | i < ω}, and let B ′ = Bc̄�L

(i.e. forget C[ϕ]). Also let d̄ |= p(x̄) be in some other model N ′ = Md̄ of T [ϕ].
For t̄ ∈ (Bc̄)lg(ȳ) we define a circular order on S[ϕ](t̄) to make B ′ into a model U of

T [ϕ] extending B such that c̄ |=
⋃
{p(x̄,Mi)}.

Case 1: t̄ * Mi c̄ for any i < ω. In this case, there is no information on C[ϕ](t̄) in⋃
{p2(x̄,Mi)}, so let C[ϕ]U (t̄) be any circular order on S[ϕ](t̄) that extends the

circular order C[ϕ]B(t̄) (in case t̄ ⊆ B).
Case 2: t̄ ⊆ Mi c̄ for some i < ω, but t̄ * Mj c̄ for some other j 6= i. By indiscernibility,

t̄ 6⊆ Mj c̄ for all j 6= i. Let σ : Mi c̄ → Md̄ be an L-isomorphism. There are
two subcases:

• t̄ ∩ c̄ 6=∅. Let C[ϕ]U (t̄) be any extension of σ−1(C[ϕ]N
′

(σ (t̄))) to SU [ϕ](t̄).
• t̄ ∩ c̄ = ∅. Then C[ϕ]B(t̄) is already a circular order on SB [ϕ](t̄). On the

other hand, σ−1(C[ϕ]N
′

(σ (t̄))) defines some circular order on SMi c̄[ϕ](t̄).
The intersection is SMi [ϕ](t̄) on which they agree, so we can amalgamate the
two circular orders.

Case 3: t̄ ⊆
⋂
Mi . In this case, by (5), p2(x̄)�{C[ϕ](t̄ ,−,−,−)} does not divide over

At̄ , so let c̄′ |=
⋃
{p2(x̄,Mi)�C[ϕ](t̄ ,−,−,−) | i < ω}. Let U ′ be the L[ϕ]

structure Bc̄′. Let f : Bc̄ → Bc̄′ fix B and take c̄ to c̄′. Now, CU
′

[ϕ](f (t̄))

induces a circular order on

S = f−1(SU ′ [ϕ](f (t̄))) ∩ SB ′ [ϕ](t̄).
Extend it to some circular order on SU [ϕ](t̄) and let it be CU [ϕ](t̄).
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Case 4: t̄ ⊆
⋂
Mi c̄ and t̄ ∩ c̄ 6= ∅. Let σi : Mi c̄ → Md̄ be the L-isomorphism fixing⋂

Mi and taking c̄ to d̄ . Then σi induces a circular order on SMi c̄[ϕ](t̄), and
the intersection of any two SMi c̄[ϕ](t̄) and SMj c̄[ϕ](t̄) is S

⋂
Mi c̄[ϕ](t̄), on which

these circular orders agree. By amalgamation, we have a circular order on the
union

⋃
i S

Mi c̄[ϕ](t̄) that we can expand to a circular order on SU [ϕ](t̄). ut

Claim 5.17. Let A ⊆ M |= T0[ϕ] be |A|+-saturated and M ′ = M�L. Suppose that
ψ(z̄, ā), a quantifier free L-formula, k-divides disjointly over A in M ′. Then the same is
true in M .

Proof. Suppose that I = 〈āi | i < ω〉 ⊆ M witnesses k-dividing disjointly of ψ(z̄, ā)
over A in the sense of L. Assume that ā0 = ā.

By Claim 5.11(3) and compactness, we can expand and extendM ′ toM ′′ |= T0[ϕ] that
will keep the equality of types of the tuples in the sequence. In addition, the interpretation
of the new relation C[ϕ] on Aā remains as it was in M . In particular, in M ′′, ψ(z̄, ā) still
k-divides over A. We may amalgamate a copy of M ′′ with M over Aā to get a bigger
model in which ψ(z̄, ā) still k-divides disjointly, and by saturation this is still true in M .

ut

5.2.2. Circularization: Iterations. Assume there are theories T = 〈T ∀i | i ≤ ω〉 and
formulas 〈ϕi(x̄i; ȳi) | i < ω〉 in the finite relational languages 〈Li | i ≤ ω〉 where:

• T ∀0 is a universal theory with SAP and DEP in L0.
• T ∀i is a theory in Li for i ≤ ω.
• ϕi(x̄i; ȳi) is a quantifier free formula in Li .
• Li = Li[ϕi(x̄i; ȳi)] and T ∀i+1 = T

∀

i [ϕi(x̄i; ȳi)].
• Lω =

⋃
{Li | i < ω} and T ∀ω =

⋃
{T ∀i | i < ω}.

Proposition 5.18. In the situation above, T ∀i has a model completion Ti , Ti ⊆ Ti+1 and
Ti ⊆ Tω which is the model completion of T ∀ω for all i < ω.

Proof. Follows from Claims 5.9 and 5.12. ut

From now on, we work in T := Tω. Call Tω the ϕ̄-circularization of T0 where ϕ̄ =
〈ϕi | i < ω〉. Let M |= T and A ⊆ M .

Claim 5.19. Suppose ϕ(x̄; ȳ) = ϕi(x̄i; ȳi) for some i < ω. Then for all ā ∈ M lg(ȳ),
ϕ(z̄, ā) ∧ (z̄ ∩ (ā ∩ A) = ∅) forks over A if and only if it is not satisfied in A.

Proof. Denote ā′ = ā ∩ A and α(z̄, ā) = ϕ(z̄, ā) ∧ (z̄ ∩ ā′ = ∅). Obviously, if α is
satisfied in A, it does not fork over A.

Suppose α is not satisfied inA. Consider the formula ψ(z̄, ā) = ϕ(z̄, ā)∧(z̄∩ ā = ∅).
First we prove that ψ forks. It defines S[ϕ]M(ā), and by assumption S[ϕ]M(ā) ∩ A = ∅.
Note that for all c̄ 6= d̄ ∈ SM [ϕ](ā), since CM [ϕ](ā) orders this set in a circular order,

S[ϕ](ā)(z̄) ` C[ϕ](ā)(c̄, z̄, d̄) ∨ C[ϕ](ā)(d̄, z̄, c̄) ∨ z̄ = c̄ ∨ z̄ = d̄.

If S[ϕ]M(ā) = ∅ we are done. If not, (by Corollary 5.6) this set is infinite and there are
such c̄, d̄.
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By Claims 5.13 and 5.17, C[ϕ](ā)(c̄, z̄, d̄) and C[ϕ](ā)(d̄, z̄, c̄) divide over Aā. By
Corollary 5.6, both z̄ = c̄ and z̄ = d̄ divide over Aā. This means that S[ϕ](ā)(z̄) =
ψ(z̄, ā) forks over A.

Now, α(z̄, ā) ` ψ(z̄, ā) ∨
∨
i,j (zi = aj ) (where zi, aj run over all the variables and

parameters from ā\A in ϕ). But the formula zi = aj divides over A when aj /∈ A (by
Corollary 5.6), so we are done. ut

On the other hand, we have:

Claim 5.20. Suppose that p(x̄) is a (quantifier free) type over M such that:

• p0(x̄) = p�L0 does not divide over A.
• pi(x̄) = p�Li+1\Li does not divide over A.

Then p does not divide over A.

Proof. By induction on i < ω we show that p′i = p�Li does not divide over A. For i = 0
this is given. For i + 1 use Claim 5.16. ut

The following definition is a bit vague:

Proposition 5.21. Let F be a function defined on the class of all countable relational
first-order languages such that F(L) is a set of quantifier free partitioned formulas in L.
Let T0 be a universal theory in the language L0 satisfying SAP and DEP. We define:

• For n < ω, let Ln+1 =
⋃
{Ln[ϕ(x̄; ȳ)] | ϕ(x̄; ȳ) ∈ F(Ln)}, and let Lω =

⋃
{Ln | n <

ω}.

• For n < ω, let T ∀n be a universal theory in Ln defined by induction on n ≤ ω:
– T ∀0 = T0.
– T ∀n+1 =

⋃
{T ∀n [ϕ(x̄; ȳ)] | ϕ ∈ F(Ln)}.

– T ∀ω =
⋃
{T ∀n | n < ω}.

Then T ∀ω has a model completion which we denote by �T0,L0,F . Moreover, it is a
ϕ̄-circularization for some choice of ϕ̄.

Proof. By carefully choosing an enumeration of the formulas in Lω, we can reconstruct
T ∀ω , Lω in such a way that at each step we deal with one formula and it has a model
completion by Proposition 5.18. ut

5.3. Example of (7)

Definition 5.22. Let L0 = {=} and T0 be empty. Let F(L) be the set of all quantifier
free partitioned formulas from L. Let T =�T0,L0,F .

Remark 5.23. T has IP: Let ϕ(x, y) = (x 6= y). Then C[ϕ](y; x1, x2, x3) has IP.

Corollary 5.24. For any set A, a type p(x̄) ∈ S(M) does not fork over A if and only if p
is finitely satisfiable in A. In particular, by Fact 3.8, fT (κ, λ) ≤ 22κ .
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Proof. Suppose p(x̄) is a global type that is not finitely satisfiable in A. By quantifier
elimination, there is a quantifier free formula ϕ(x̄; ȳ) and ā ∈ M such that ϕ(x̄, ā) ∈ p,
and this formula is not satisfiable in A. If ā ∩ A 6= ∅, and xi = a ∈ p for some a ∈
ā ∩ A, replace xi by a in ϕ, and change the partition of the variables so that we get
ϕ(z̄, ā) ∧ z̄ ∩ (ā ∩ A) = ∅ ∈ p. By Claim 5.19, this formula forks over A, and we are
done. ut

Proposition 5.25. We have fT (κ, λ) = 2min{2κ ,λ}.

Proof. By the proof of Proposition 3.6 and Remark 5.23. ut

5.4. Example of (8)

In this section we are going to construct an example of a theory T with fT (κ, λ) = λ.
The idea is to start with the random graph and circularize it in order to ensure that any
non-forking type p ∈ Snf(N,M) can be R-connected to at most one point of N .

Definition 5.26. Suppose L is a relational language which includes a binary relation
symbol R. For a quantifier free L-formula ψ(x̄; ȳ) and atomic formulas θ0(x̄; ȳ0),
θ1(x̄, ȳ1), where lg(x̄) > 0, and both x̄ and ȳi occur in them, define the formula

ϕ
θ0,θ1
ψ (x̄; ȳ′) = ϕ

θ0,θ1
ψ (x̄; ȳ, ȳ0, ȳ1, z0, z1, z2)

= θ0(x̄, ȳ0) ∧ θ1(x̄, ȳ1)

∧ψ(x̄, ȳ)

∧

∧
i<j<3

R(zi, zj ) ∧
∧

i<3, y∈ȳȳ0ȳ1
ȳ0 6=ȳ1

R(zi, y).

So z0, z1, z2 form a triangle and are connected to all other parameters. The reason for this
will be made clearer in the proof of Claim 5.28.

Definition 5.27. For a countable first-order relational language L containing a binary
relation symbol R, let F(L) be the set of all formulas of the form ϕ

θ0,θ1
ψ from L as above.

LetL0 = {R}whereR is a binary relation symbol. Let T0 say thatR is a graph (symmetric
and non-reflexive). Let T = �T0,L0,F .

Claim 5.28. Let b ∈ M . Let pb(z) be a non-algebraic type overM in one variable saying
that R(z, a) just when a = b. Then pb isolates a complete type over M .

Proof. We will show:

(1) pb�L0 is complete.
(2) If L ⊇ L0 is some subset of Lω and for all atomic formulas θ(z) ∈ L\L0 over M ,

pb(z) |= ¬θ(z), then for all ϕ ∈ L used in the circularization (as in Definition 5.26)
and atomic formulas θ(z, ȳ) ∈ L[ϕ]\L and c̄ ∈ M lg(ȳ), pb(z) |= ¬θ(z, c̄).

From (1) and (2) it follows by induction that pb is complete.
(1) is immediate.
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(2): Suppose θ(z, ȳ) is an atomic formula in L[ϕ]\L. Then it is of the form C[ϕ](. . .)

where ϕ = ϕ
θ0,θ1
ψ (x̄; ȳ′) for some ψ(x̄; ȳ) and θi(x̄; ȳi) from L. Suppose z appears in

θ(z, ȳ) among the index variables. Then by the choice of ϕ, θ(z, c̄) implies that z is R-
connected to at least two different elements fromM , and this contradicts the choice of pb
(this is why we added the extra parameters forming an R-triangle in Definition 5.26). So
assume that z appears only in the main variables.

Case 1: One of θ0, θ1 is not from L0, say θ0. Since C[ϕ](ȳ′, x̄1, x̄2, x̄3) |=
∧
ϕ(x̄i, ȳ

′),
and pb(z) |= ¬θ0(. . . z . . .) by induction (this notation means: substituting some
variables of θ0 with z, and putting parameters from M elsewhere), pb(z) |=
¬θ(z, c̄).

Case 2: Both θ0, θ1∈L0. Suppose c̄∈M lg(ȳ′) and show that pb(z) |=¬C[ϕ](c̄; . . . z . . .).
There are two possibilities for θi : R(z, y) and z = y. If C[ϕ](c̄; . . . z . . .) holds,
then we would infer that either R(z, c0) ∧ R(z, c1) for some c0 6= c1 ∈ M , or
some equation x = s′ for s′ ∈ M is in pb (here we use the fact that both x and ȳi
occur in θ0, θ1)—a contradiction. ut

Claim 5.29. fT (κ, λ) ≥ λ.

Proof. Let M ≺ N |= T , |M| = κ , |N | = λ. For each b ∈ M , let pb be the type defined
in the previous claim. Then pb extends naturally to a global type qb (i.e. the type over
M that is R-connected only to b). This type does not divide over M (in fact, it does not
divide over ∅), by Claim 5.20 and the proof of Claim 5.28 (all atomic formulas in Ln have
exactly the same truth value for n > 0). ut

Claim 5.30. f nT (κ, λ) = λ for all n and all λ ≥ 22κ .

Proof. Suppose f nT (κ, λ) > λ. Let M ≺ N |= T where |M| = κ , |N | = λ and
|Snf
n (N,M)| > λ.

Let {pi(x̄) | i < λ+} ⊆ Snf
n (N,M) be pairwise distinct. By possibly replacing x̄

with a subtuple and throwing away some i’s, we may assume that for all i < λ+, pi |=
x̄∩M = ∅. Since λ ≥ 22κ , we may assume that for all i < λ+, pi is not finitely satisfiable
in M .

Then an easy computation shows that there must be some i < λ+ such that pi
contains two positive occurrences of atomic formulas θ0(x̄, ā0) and θ1(x̄, ā1) for some
ā0 6= ā1 ∈ N . Let p = pi . There is some quantifier free formula ψ(x̄, c̄) ∈ p such
that ψ is not realized in M . Let ā be the tuple of parameters 〈c̄, ā0, ā1〉 and let d0, d1, d2
∈ N be an R-triangle such that R(di, a) for all a ∈ ā. Finally, let ā′ = ād ∩M . Then
ϕ
θ0,θ1
ψ (x̄; c̄, ā0, ā1, d) ∧ x̄ ∩ ā

′
= ∅ ∈ p forks over M by Claim 5.19. ut

5.5. Example of (9)

In this subsection we prove the following:

Proposition 5.31. For any theory T , there is a theory T∗ such that fT∗(κ, λ)=fT (κ, λ)
ℵ0

for all λ ≥ κ .
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Let T be a theory in the language L and assume that T eliminates quantifiers. For each
n < ω, let Ln be a copy of L such that Ln ∩Lm = ∅ for n < m, and Ln = {Rn | R ∈ L}.
Let 〈Mn | n < ω〉 be a sequence of models of T . We define a structureM in the language
{Pn(x),Q(x), fn : Q→ Pn | n < ω} ∪

⋃
Ln:

(1) M =
⊔
n<ωMn t

∏
n<ωMn (t means disjoint union).

(2) PMn = Mn, QM
=
∏
n<ωMn.

(3) If R(x̄) ∈ L(T ) then for every n < ω, RMn ⊆ (P
M
n )

lg(x̄) and PMn is the structure Mn.
(4) fMn : Q

M
→ PMn , fMn (η) = η(n)—the projection onto the n-th coordinate.

Let T∗ = Th(M).

Remark 5.32. The following properties are easy to check by back-and-forth:

(1) Doing the same construction with respect to any sequence 〈Mn | n < ω〉 of models
of T gives the same T∗.

(2) Moreover, if we have Mn � Nn for all n and do the construction, then M � N .
(3) T∗ eliminates quantifiers.

Now let M � N |= T with |M| = κ, |N | = λ.

Lemma 5.33. Given p(x) ∈ S1(N) such that Q(x) ∈ p, for each n < ω let pn(y) =
{ϕ(y) | ϕ ∈ Ln, ϕ(fn(x)) ∈ p}.

(1) p(x) is equivalent to
⋃
n<ω pn(fn(x)).

(2) For each n < ω, let qn(y) be a complete Ln-type over PNn . Then the type
(
⋃
n<ω qn(fn(x))) ∪ {Q(x)} is consistent and complete.

(3) Pn is stably embedded and the induced structure on Pn is just the Ln-structure.
Moreover, for any n < ω and L∗-formula ϕ(x̄, ȳ1, ȳ2, z̄) there is some Ln-formula
ψ(x̄, ȳ1, z̄

′) such that for any c̄1 ∈ Pn, c̄2 ∈
⋃
m6=n Pm and d̄ ∈ Q, we have

{ā ∈ Pn | |= ϕ(ā, c̄1, c̄2, d̄)} =
⋃
{ā ∈ Pn | |= ψ(ā, c̄1, fn(d̄))}.

(4) p(x) forks over M if and only if for some n < ω, pn(y)�Ln forks over PMn (in the
sense of T ).

Proof. (1), (2) and (3) follow by quantifier elimination, and (4) follows from (1)–(3). ut

Proof of Proposition 5.31. We may assume that T eliminates quantifiers (by taking its
Morleyzation). Consider T∗ as above, and let us compute fT∗(κ, λ). Let M � N |= T∗.

Let Sn = {p ∈ Snf(N,M) | Pn(x) ∈ p}. From Lemma 5.33, it follows that |Sn| =
|Snf,Ln(PNn , P

M
n )|.

Let SQ = {p ∈ Snf(N,M) | Q(x) ∈ p}. From Lemma 5.33, it follows that |SQ| =∏
n<ω |S

nf,Ln(PNn , P
M
n )|.

Let S¬ = {p ∈ Snf(N,M) | ¬Q(x), ∀n < ω(¬Pn(x))}. Since there is no structure
on elements outside of all the Pn and Q, we have |S¬| ≤ |M|.

Note that Snf(N,M) =
⋃
n<ω Sn∪SQ∪S¬. From this and Remark 5.32(2), it follows

that fT ∗(κ, λ) = fT (κ, λ)ℵ0 . ut

Remark 5.34. This analysis easily generalizes to show that f nT∗(κ, λ) = f
n
T (κ, λ)

ℵ0 .
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5.6. Examples of (12) and (14)

Here we construct an example of a theory T with fT (κ, λ) = ded λ. The idea is that we
start with an ordered random graph, and we circularize in order to ensure that for any
p ∈ Snf(N,M) there is some cut of N such that R(x, a) is in p if any only if a is in
the cut.

Notation 5.35. Here the language L contains an order relation < which induces the nat-
ural lexicographic order on tuples, so abusing notation, we may write ȳ < z̄.

In this section, we say that two atomic formulas θ1(x̄; ȳ1) and θ2(x̄; ȳ2) are different
when the relation symbol is different (rather than just the variables are different).

Also, when we say “atomic formula” in the definition below, we mean that it does not
use the order relation <.

Definition 5.36. Suppose L is a relational language which includes a binary relation
symbol R, a unary predicate P and an order relation <.

For a quantifier free L-formula ψ(x̄; ȳ) and two different atomic formulas θ0(x̄; ȳ0),
θ1(x̄, ȳ1), where lg(x̄) > 0, and both x̄ and ȳi occur in them, define the formula

ϕ
θ0,θ1
ψ (x̄; ȳ′) = ϕ

θ0,θ1
ψ (x̄; ȳ, ȳ0, ȳ1, z0, z1)

= θ0(x̄, ȳ0) ∧ θ1(x̄, ȳ1)

∧ψ(x̄, ȳ)

∧ z0 < z1 ∧ P(z0) ∧ P(z1)

∧

∧
y∈ȳȳ0ȳ1, i<2

(y 6= zi) ∧ R(y, z1) ∧ ¬R(y, z0).

For an L-formula ψ(x̄; ȳ) and an atomic formula θ(x̄; ȳ0) (in which ȳ0 appears) ,
define the formula

ϕθψ (x̄; ȳ
′) = ϕθψ (x̄; ȳ, ȳ0, ȳ1, z0, z1)

= ¬θ(x̄, ȳ0) ∧ θ(x̄, ȳ1)

∧ψ(x̄, ȳ)

∧ z0 < z1 ∧ P(z0) ∧ P(z1)

∧

∧
y∈ȳȳ0ȳ1, i<2

ȳ0<ȳ1

(y 6= zi) ∧ R(y, z1) ∧ ¬R(y, z0).

Definition 5.37. For a countable first-order relational language L containing a binary
relation symbol R, let F(L) be the set of all formulas from L of the form ϕ

θ0,θ1
ψ or ϕθψ as

above. Let L0 = {R,<} where R and < are binary relation symbols. Let T0 say that R is
a graph and that < is a linear order. Let T = �T0,L0,F .

Suppose M |= T .

Claim 5.38. Let I be initial segments in M . Let pI (x) be a non-algebraic type over M
saying that x > M , ¬P(x) and R(x, a) just when a ∈ I . Then pI isolates a complete
type over M .
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Proof. In fact, pI �L0 is complete, and for all atomic formulas θ(x) /∈ L0 over M , we
have pI |= ¬θ(x). The proof is very similar to the proof of Claim 5.28. ut

Claim 5.39. fT (κ, λ) ≥ ded λ.

Proof. Let M ≺ N |= T , |M| = κ , |N | = λ. For each cut I in N , let pI be the type
defined in the previous claim. Then pI extends naturally to a global type qI (i.e. the type
over M defined by pI ′ where I ′ = {c ∈ M | ∃a ∈ I (c < a)}). This type does not divide
overM (in fact, it does not divide over ∅) by Claim 5.20, and by the proof of the previous
claim (all atomic formulas have exactly the same truth value in Ln for n > 0). ut

Claim 5.40. f nT (κ, λ) = ded λ for all n and all λ ≥ 22κ .

Proof. Suppose f nT (κ, λ) > ded λ. Let M ≺ N |= T where |M| = κ , |N | = λ.
Let {pi(x̄) | i < (ded λ)+} ⊆ Snf(N,M) be a set of pairwise distinct types. As in the

proof of Claim 5.30, we may assume that pi |= x̄ ∩M = ∅ for all i, and pi is not finitely
satisfiable in N . Also we may assume that pi�{<} is constant.

Then, by the choice of ϕθ0,θ1
ψ , for every i < (ded λ)+ there is at most one atomic

formula of the form θ(x̄; ȳ) such that there is some positive instance θ(x̄, ā) ∈ pi . [If not,
suppose θ0(x̄, ā0) ∧ θ1(x̄, ā1) ∈ p. There is some quantifier free formula ψ(x̄, c̄) ∈ pi
such that ψ is not realized in M . Let ā be the tuple of parameters 〈c̄, ā0, ā1〉 and let
d0, d1, d2 ∈ N be an R-triangle such that R(d, b) for all b ∈ ā. Finally, let ā′ = ād ∩M .
Then ϕθ0,θ1

ψ (x̄; c̄, ā0, ā1, d) ∧ x̄ ∩ ā
′
= ∅ ∈ p forks over M by Claim 5.19.]

Similarly, by the choice of ϕθψ , this formula induces a cut I = {ā | θ(x̄, ā) ∈ pi} .
This formula and the cut it induces determine the type. But this is a contradiction to

the definition of ded. ut

Corollary 5.41. There is a theory T∗ such that fT∗(λ, κ) = (ded λ)ℵ0 .

Proof. By Proposition 5.31. ut

5.7. Example of (16)

As a pleasant surprise to the reader who managed to get this far, the example is just the
theory of the random graph (it is NTP2 and has IP, see Proposition 4.5).

5.8. Example of f 1
T (κ, λ) ≤ 22κ but f 2

T (κ, λ) = 2λ

Again we use circularizations, but instead of considering all formulas, we consider only
formulas with one variable.

Definition 5.42. Let L0 = {=} and T0 be empty. Let F(L) be the set of all quanti-
fier free partitioned formulas from L of the form ϕ(x; ȳ) where x is a singleton. Let
T = �T0,L0,F .

Let A ⊆ M |= T . By Claim 5.19 and as in the proof of Proposition 5.25, we get

Corollary 5.43. If p(x) ∈ S1(M) then p does not fork over A if and only if it is finitely
satisfiable in A. So f 1

T (κ, λ) ≤ 22κ for all κ ≤ λ.
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On the other hand, if we consider types in two variables, then there is no reason for them
to fork.

Claim 5.44. f 2
T (κ, λ) ≥ 2λ.

Proof. Suppose |M| = λ, so M = {ai | i < λ}, and A ⊆ M of size κ . Let q(z) ∈ S1(M)

be any 1-type which is finitely satisfiable in A but not algebraic over A. For S ⊆ λ, let
pS(x, y) be a partial type over M such that:

(1) pS�x = q(x), pS�y = q(y).
(2) R(x, y, ai) ∈ pS if and only if i ∈ S.

First, pS is indeed a type. The proof is by induction, i.e. one proves that pS�L0 is a type
(which is clear), and that if L is some subset of Lω such that pS�L is a type, and ϕ(x; ȳ)
is some partitioned L-formula with lg(x) = 1, then also pS�L[ϕ] is a type, which follows
from Claim 5.11.

Let N ⊇ M be an |A|+-saturated model and q ′ ⊇ q be a global type which is finitely
satisfiable in A. Fix c |= q ′|N and d |= q ′|Nc.

We want to construct a completion rS(x, y) ∈ S2(N) containing pS which does not
divide over A. We start by rS�x = q ′|N (x), rS�y = q ′N (y) and rS�L0 is any completion
of pS�L0. For each atomic formula θ(x, y, t̄) over N of the form C[ϕ](t̄ ,−,−,−) (so
t̄ ∈ N ) such that ϕ(x, t) ∈ q ′(x) define θ(x, y) ∈ rS if and only if θ(c, d) holds. This is
a type (by induction again, by Claim 5.11(3), but follow the proof a bit more carefully,
and choose the amalgamation of the circular orders corresponding to t̄ according to the
choice of c, d). Let rS by any completion.

Finally, rS does not divide over A by Claim 5.16 (by induction and by the choice
of c, d). ut

6. On ded κ < (ded κ)ℵ0

6.1. On ded λ

Definition 6.1. Let ded λ be the supremum of the set

{|I | | I is a linear order with a dense subset of size ≤ λ}.

Fact 6.2. It is well known that λ < ded λ ≤ (ded λ)ℵ0 ≤ 2λ. If ded λ = 2λ, then ded λ =
(ded λ)ℵ0 = 2λ. This is true for λ = ℵ0, or more generally for any λ such that λ = λ<λ.
So in particular this holds for any λ under GCH.

In addition, if ded λ is not attained (i.e. it is a supremum rather than a maximum),
then cof(ded λ) > λ. See also Corollary 6.12.

Definition 6.3. Given a linear order I and two regular cardinals θ, µ, we say that S is a
(θ, µ)-cut when it has cofinality θ from the left and cofinality µ from the right.

By a tree we mean a partial order (T ,<) such that for every a ∈ T , T<a = {x ∈ T |
x < a} is well ordered. By a branch in T we mean a maximally linearly ordered subset
of T . Its length is its order type.
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For two cardinals λ and µ, let

λ〈µ〉tr = sup{κ | there is some tree T with λ nodes and κ branches of length µ}.

Remark 6.4. Note that λ〈µ〉tr ≤ λµ and if λ = λ<µ then λ〈µ〉tr = λµ (consider the tree
λ<µ ordered lexicographically).

Proposition 6.5. The following cardinalities are the same:

(1) ded λ.
(2) sup{κ | there is a linear order I of size λ with κ cuts}.
(3) sup{κ | ∃ a regular µ and a linear order I of size ≤ λ with κ (µ,µ)-cuts}.
(4) sup{κ | ∃ a regular µ and a tree T with κ branches of length µ and |T | ≤ λ}.
(5) sup{κ | ∃ a limit ordinal δ and a tree T with κ branches of length δ and |T | ≤ λ}.
(6) sup{λ〈µ〉tr | µ ≤ λ is regular}.

Proof. (1)=(2), (4)=(6): obvious.
(2)=(3): By [KSTT05, Theorem 3.9], given a linear order I and two regular cardinals

θ 6= µ, the number of (θ, µ)-cuts in I is at most |I |. Given I and a regular cardinal µ,
let Dµ(I ) be the set of (µ,µ)-cuts, and let D(I) be the set of all cuts. Suppose |I | = λ;
then |D(I)| = sup{|Dµ(I )| | µ = cof(µ) ≤ λ} whenever |D(I)| > λ. By Fact 6.2,
ded λ = sup{Dµ(I ) | µ = cof(µ) ≤ λ, |I | ≤ λ}.

(2)=(4): Follows from [Bau76, Theorem 2.1(a)].
(4)=(5): Obviously (5) ≥ (4). Suppose T is a tree as in (5). Let µ = cof(δ) and let

U = {δi | i < µ} be increasing such that δ =
⋃
i<µ δi . Let S = {a ∈ T | lev(a) ∈ U}.

Then S is a subset of T , so a tree with the induced order. For a branch B ⊆ T of length δ,
let BS = B ∩ S; then BS is a branch of S of length µ. If B1 6= B2 are branches of
length δ in T , then let a ∈ B1\B2, and let a′ > a in B1 be such that lev(a′) ∈ U . Then
a′ ∈ BS1 \ B

S
2 . ut

6.2. Consistency of ded κ < (ded κ)ℵ0

In [Kei76], the following fact is mentioned (without proof), attributed to Kunen:

Remark 6.6 (Kunen). If κℵ0 = κ then (ded κ)ℵ0 = ded κ .

Proof. Suppose I is a linear order, and J ⊆ I is dense, |J | = κ . Let U be a non-
principal ultrafilter on ω. Then the linear order Iω/U has Jω/U as a dense subset. Now1,
|Jω/U | = κℵ0 = κ and |Iω/U | = |I |ℵ0 . The remark follows from Fact 6.2. ut

Answering a question of Keisler [Kei76, Problem 2], we show:

Theorem 6.7. It is consistent with ZFC that ded κ < (ded κ)ℵ0 .

Our proof uses Easton forcing, so let us recall:

1 If A is infinite then Aω/U has size |A|ℵ0 : Let gn : An → A be bijections. Then map f ∈ Aω
to f̄ = 〈gn(f (0), . . . , f (n− 1)) | n < ω〉, so that if f 6= g then f̄ 6= ḡ from some point onwards,
and in particular modulo U .
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Theorem 6.8 (Easton). LetM be a transitive model of ZFC and assume that the Gener-
alized Continuum Hypothesis holds in M . Let F be a function (in M) whose arguments
are regular cardinals and whose values are cardinals, such that for all regular κ and λ:

(1) F(κ) > κ .
(2) F(κ) ≤ F(λ) whenever κ ≤ λ.
(3) cof(F (κ)) > κ .

Then there is a generic extension M[G] of M such that M and M[G] have the same
cardinals and cofinalities, and for every regular κ , M[G] |= 2κ = F(κ).

See [Jec03, Theorem 15.18]. Easton forcing is a class forcing but we can just work with
a set forcing, i.e. when F is a set. The following is the main claim:

Claim 6.9. SupposeM is a transitive model of ZFC that satisfies GCH, and furthermore:

• κ is a regular cardinal.
• 〈θi | i < κ〉, 〈µi | i < κ〉 are strictly increasing sequences of cardinals and θ =

supi<κ θi , µ = supi<κ µi .
• κ < θ0 and θi < µ0 for all i < κ .
• θi is regular for all i < κ .

Then, letting P be Easton forcing with F : {θi | i < κ} → card, F(θi) = µi and G a
generic for P , in M[G] we have ded θ = µ and the supremum is attained.

Remark 6.10. Note that in M[G], since 2θi = µi by Easton’s Theorem 6.8, we also get
cof(θ) = cof(µ) = κ < θ and µκ > µ.

Proof. First let us show that ded θ ≥ µ. Recall:

• Add(κ, λ) is the forcing notion that adjoins λ subsets to κ , i.e. it is the set of partial
functions p : κ × λ→ 2 such that |dom(p)| < κ .
• The Easton forcing notion P is the set of all elements in

∏
i<κ Add(θi, µi) such that

for every regular cardinal γ ≤ κ , and for each p ∈ P , the support s(p) satisfies
|s(p) ∩ γ | < γ .

If G is a generic of P , then the projection of G to i, Gi , is generic in Add(θi, µi).
For i < κ , consider the tree Ti = (2<θi )M . Since M satisfies GCH, it follows that

M[G] |= Ti | = θi . For all β < µi , we can define a function ηβ : θi → 2 by ηβ(α) =
p(α, β) for some p ∈ Gi such that (α, β) ∈ dom(p). If α < θi , then ηβ�α ∈ M

(consider the dense set D = {p ∈ Add(θi, µi) | α × {β} ⊆ dom(p)}), so for β < µi ,
ηβ defines a branch of Ti , and if β1 6= β2 then ηβ1 6= ηβ2 . By Proposition 6.5 we have
ded θi = µi = 2θi in M[G]. Since ded θ ≥ ded θi for all i < κ , we are done.

Now let us show that ded θ ≤ µ. Let I be some linear order such that |I | = θ . For any
choice of cofinalities (κ1, κ2), we look at the set Cκ1,κ2 of all (κ1, κ2)-cuts of I . Obviously
for it to be non-empty, we must have κ1, κ2 ≤ θ , so let us assume that κ1, κ2 ≤ θi for
some i (note that θ is singular, so κ1, κ2 6= θ ). We map each such cut to a pair of cofinal
sequences (from the left and from the right). Hence we obtain |Cκ1,κ2 | ≤ θ

κ1+κ2 ≤ θθi .
Since θ ≤ µ0, we get θθi ≤ µθi0 ≤ 2θ0+θi = µi < µ. The number of regular cardinals
below θ is ≤ θ , so we are done. ut
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Corollary 6.11. Suppose GCH holds in M . Choose κ = ℵ0, θi = ℵi+1 and µi = ℵω+i .
Then in the generic extension, ℵω+ω = dedℵω < (dedℵω)ℵ0 . In fact, since the Sin-
gular Cardinal Hypothesis holds under Easton forcing (see [Jec03, Exercise 15.12]),
(dedℵω)ℵ0 = ℵω+ω+1.

Corollary 6.12. It is consistent with ZFC that cof(ded λ) < λ.

Problem 6.13. Is it consistent with ZFC that ded κ < (ded κ)ℵ0 < 2κ?

We remark that our construction is not sufficient for that: in the context of Claim 6.9,
(ded θ)κ ≤ 2θ , but 2θ =

∏
i<κ 2θi ≤

∏
i<κ µi ≤ µ

κ
= (ded θ)κ .

Some further properties relating the ded κ function and cardinal arithmetic are estab-
lished in [CS16].
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