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Abstract. We describe the structure of the top tautological group in the cohomology of the moduli
space of smooth genus g curves with n marked points.
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1. Introduction

In this paper we study the cohomology groups of the moduli space of smooth genus g
curves with n marked points. This moduli space is denoted by Mg,n. The space Mg,0
will be denoted by Mg .

The cohomology of Mg,n has a distinguished subring of tautological classes

R∗(Mg,n) ⊂ H
even(Mg,n;Q)

studied extensively since Mumford’s seminal article [Mum83].
A great step towards understanding the tautological ring of Mg was done by C. Faber

[Fab99]. He formulated three conjectures that give a complete description of R∗(Mg).
These conjectures are called the socle conjecture, the top intersection conjecture and the
perfect pairing conjecture. The socle conjecture was proved in [Loo95], and there are
several proofs of the top intersection conjecture (see [GP98, LX09, BS11]). The perfect
pairing conjecture is true up to genus 23, but the accumulating evidence suggests it may
be wrong for g ≥ 24.

The socle conjecture says that R>g−2(Mg) = 0 and Rg−2(Mg) = Q. We will recall
the other two conjectures in Section 1.2.

Analogous statements can be formulated about the tautological ring of Mg,1. The
socle property in this case says that R>g−1(Mg,1) = 0 and Rg−1(Mg,1) = Q [Loo95].

A. Buryak (corresponding author): Department of Mathematics, ETH Zürich,
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The top intersection property for Mg,1 can be easily derived from the original top inter-
section statement for Mg . The perfect pairing conjecture in this case is also open.

In this paper we formulate and prove a socle and intersection property for Mg,n. In
particular, the generalized socle property says that R>g−1(Mg,n) = 0 and Rg−1(Mg,n)

= Qn. The vanishing part was actually proved in [Ion02].
Let us say a few words about the idea of our proof. One can choose different spanning

families in the tautological groups. On the one hand, the tautological groups of Mg,n are
spanned by monomials in ψ-classes and κ-classes. On the other hand, the tautological
groups of Mg,n are spanned by double ramification cycles. A technique for working with
these cycles was developed, e.g., in [Ion02, Sha03, SZ08, BSSZ12]. In [Ion02] it was
used to prove the vanishing R>g−1(Mg,n) = 0, and in [Sha03] to study the intersection
theory of the moduli space of curves. This technique was also applied in [BS11] in order
to give a simple proof of Faber’s top intersection conjecture.

In this paper we develop the theory of double ramification cycles and use it for the
proof of generalized socle and top intersection properties.

1.1. Tautological ring

In this section we briefly recall basic definitions related to the tautological ring of the
moduli space of curves. We refer to [Vak08, Zvo12] for a more detailed introduction to
this subject.

Let Mg,n be the moduli space of stable genus g curves with n marked points. The
class ψi ∈ H 2(Mg,n;Q) is defined as the first Chern class of the line bundle over Mg,n

formed by the cotangent lines at the i-th marked point. Let π :Mg,n+1 →Mg,n be the
map that forgets the last marked point. The class κk ∈ H 2k(Mg,n;Q) is defined by

κk := π∗(ψ
k+1
n+1).

It is convenient to define multi-index kappa classes. Let m ≥ 1 and consider the
map π :Mg,n+m →Mg,n that forgets the last m marked points. Let k1, . . . , km be non-
negative integers. Define the class κk1,...,km ∈ H

2
∑m
i=1 ki (Mg,n;Q) by

κk1,...,km := π∗(ψ
k1+1
n+1 ψ

k2+1
n+2 . . . ψ

km+1
n+m ).

Multi-index κ-classes can be expressed as polynomials in κ-classes with one index. Con-
versely, any polynomial in one index κ-classes can be written as a linear combination of
multi-index κ-classes.

The tautological ring R∗(Mg,n) is defined as the subring of H ∗(Mg,n;Q) generated
by the classes κj and ψi . The group Ri(Mg,n) is defined by Ri(Mg,n) := R

∗(Mg,n) ∩

H 2i(Mg,n;Q).

1.2. Faber’s conjectures

Here we recall Faber’s conjectures from [Fab99] about the structure of the tautological
ring R∗(Mg). Let g ≥ 2.

• (Socle) R>g−2(Mg) = 0 and Rg−2(Mg) = Q.
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• (Top intersection) Suppose that k1 + · · · + km = g − 2 and ki ≥ 0. Then we have the
following equality in Rg−2(Mg):

κk1,...,km =
(2g − 3+m)!(2g − 3)!!
(2g − 2)!

∏m
i=1(2ki + 1)!!

κg−2.

• (Perfect pairing) For any 0 ≤ i ≤ g − 2, the cup product defines a pairing

Ri(Mg)× R
g−2−i(Mg)→ Rg−2(Mg) = Q.

This pairing is non-degenerate.

It is easy to see that Faber’s conjectures, if true, completely determine the structure of the
tautological ring R∗(Mg).

1.3. Generalized Faber conjectures

In this section we formulate analogous properties of the tautological ring R∗(Mg,n).
Assume that g ≥ 2 and n ≥ 1.

• (Generalized socle) R>g−1(Mg,n) = 0 and Rg−1(Mg,n) = Qn. The classes ψg−1
i ,

i = 1, . . . , n, form a basis in Rg−1(Mg,n).
• (Generalized top intersection) Suppose that d1 + · · · + dn + k1 + . . . + km = g − 1

and di, kj ≥ 0. Then we have the following equality in Rg−1(Mg,n):

n∏
i=1

ψ
di
i · κk1,...,km =

(2g − 1)!!∏n
i=1(2di + 1)!!

∏m
j=1(2kj + 1)!!

(2g − 3+ n+m)!
(2g − 2+ n)!

×

n∑
i=1

(2g − 2+ n)di +
∑
kj

g − 1
ψ
g−1
i .

• (Generalized perfect pairing) The ring R∗(Mg,n) is level of type n. In other words,
a polynomial in ψ1, . . . , ψn, κ1, . . . , κg−1 vanishes if and only if its products with all
classes of complementary dimension vanish in Rg−1(Mg,n).

Similarly to Faber’s conjectures, these properties, if true, completely determine the struc-
ture of the ring R∗(Mg,n).

In this paper we prove the generalized socle and top intersection properties. As for
the perfect pairing property, it is true in many cases that can be checked on computer, but
recent evidence leads to serious doubts that it is valid in general. The main result of this
paper is the following theorem.

Theorem 1.1. The generalized socle and top intersection properties are true.
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1.4. Organization of the paper

In Section 2 we prove the generalized top intersection property, assuming that the gener-
alized socle conjecture is true. We also show that dimRg−1(Mg,n) ≥ n (the easy part of
the socle property). The rest of the paper is devoted to the hard part of the socle property,
that is, the inequality dimRg−1(Mg,n) ≤ n.

In Section 3 we formulate three main ingredients of the proof of the generalized socle
property: Lemma 3.1, Proposition 3.2 and Proposition 3.3. We show how the socle prop-
erty follows from them. These statements will be proved in the subsequent sections, and
the proof of the last proposition is the hardest one.

In Section 4 we introduce the main tool for proving these statements: double ramifi-
cation cycles.

Section 5 contains several linear algebra lemmas that simplify the proofs of Proposi-
tions 3.2 and 3.3.

In Section 6 we prove Lemma 3.1, Proposition 3.2 and Proposition 3.3.

2. Generalized top intersection

In this section we show that the classes ψg−1
i are linearly independent in Rg−1(Mg,n),

and thus dimRg−1(Mg,n) ≥ n. Then we prove the generalized top intersection property
assuming that dimRg−1(Mg,n) = n. This equality will be proved in the subsequent
sections.

Proposition 2.1. The classes αs := λgλg−1ψ1 · · · ψ̂s · · ·ψn (where the hat means omis-
sion) vanish on the boundary of Mg,n.

Proof. It is well-known (see [Fab97, Lemma 1]) that λgλg−1 vanishes on Mg,n \Mrt
g,n,

where Mrt
g,n is the space of stable curves with one genus g component and possibly

several “rational tails” composed of genus 0 components. Thus, it remains to show that
the classes αs also vanish on Mrt

g,n\Mg,n. Every boundary divisor in Mrt
g,n is isomorphic

to a product Mrt
g,n1+1 ×M0,n2+1, where n1 + n2 = n. Among the ψ-classes that make

part of αs , at least n2−1 are sitting on the second factor. Since the dimension of M0,n2+1
equals n2 − 2, we see that the class αs vanishes on our boundary divisor for dimensional
reasons. ut

Let π :Mrt
g,N →Mg be the forgetful map. Let l1, . . . , lN be non-negative integers such

that l1 + . . .+ lN = g − 2. Recall that Faber’s top intersection conjecture says that

π∗(ψ
l1+1
1 . . . ψ

lN+1
N ) =

(2g − 3+N)!(2g − 3)!!

(2g − 2)!
∏N
i=1(2li + 1)!!

κg−2. (2.1)

The following small generalization of this formula will be useful for us. Define
(−1)!! := 1.
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Lemma 2.2. Let l1, . . . , lN be integers such that l1 + · · · + lN = g − 2. Suppose that at
most one of l1, . . . , lN is equal to−1 and the others are non-negative. Then formula (2.1)
holds.

Proof. If all li’s are non-negative, then (2.1) is exactly Faber’s top intersection conjecture.
Suppose one of li’s is equal to −1. We proceed by induction on N . If N = 1, then

l1 = g− 2 ≥ 0, so the formula is true. Suppose N ≥ 2. Without loss of generality we can
assume that l1 = −1. Using the string equation and the induction assumption, we get

π∗(ψ
l2+1
2 . . . ψ

lN+1
N ) =

N∑
i=2

(2g − 4+N)!(2g − 3)!!
(2g − 2)!(2li − 1)!!

∏
2≤j≤N
j 6=i

(2lj + 1)!!
κg−2

=
(2g − 3+N)!(2g − 3)!!

(2g − 2)!
∏N
i=1(2li + 1)!!

κg−2. ut

Let d1, . . . , dn and k1, . . . , km be non-negative integers. Assume that
∑
di +

∑
ki =

g − 1. These integers will be fixed for the rest of the section. Denote

C :=
(2g − 3+ n+m)!(2g − 3)!!

(2g − 2)!
∏n
i=1(2di + 1)!!

∏m
j=1(2kj + 1)!!

.

Lemma 2.3. Let π :Mrt
g,n→Mg be the forgetful map. Then in Rg−2(Mg) we have

π∗(ψ
d1+1
1 · · ·ψdss · · ·ψ

dn+1
n κk1,...,km) = C · (2ds + 1) · κg−2.

Proof. Let π ′ :Mrt
g,n+m→Mg be the forgetful map. We have

π∗(ψ
d1+1
1 · · ·ψdss · · ·ψ

dn+1
n κk1,...,km) = π

′
∗(ψ

d1+1
1 · · ·ψdss · · ·ψ

dn+1
n ψ

k1+1
n+1 · · ·ψ

km+1
n+m )

Lemma 2.2
= C · (2ds + 1) · κg−2. ut

Denote by Ag the non-zero intersection number

Ag :=

∫
Mg

κg−2λgλg−1 =
(−1)g−1B2g(g − 1)!

2g(2g)!
,

where B2g is the Bernoulli number (see [Fab97, Lemma 2]).

Corollary 2.4. We have
∫
Mg,n

∏n
i=1 ψ

di
i κk1,...,km · αs = C · (2ds + 1) · Ag .

Proof. Compute the integral by first projecting on Mg and use Lemma 2.3. ut

Proposition 2.5. The n× n matrix Mis :=
∫
Mg,n

ψ
g−1
i αs is non-degenerate.

Proof. Denote by U the n × n matrix given by Uis = 1 for all i, s. It has exactly two
eigenvalues: 0 and n. Therefore U + a Id is non-degenerate whenever a 6= 0,−n.
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According to the corollary, we have Mii = C · Ag · (2g − 1) and Mis = C · Ag
for i 6= s. Thus,

M = C · Ag · (U + (2g − 2) Id),

so it is non-degenerate. ut

Proposition 2.6. The classes

n∏
i=1

ψ
di
i κk1,...,km and C

(2g − 1)!
(2g − 2+ n)!

n∑
i=1

(2g − 2+ n)di +
∑
kj

g − 1
ψ
g−1
i

have the same intersection number with every αs .

Proof. Apply Corollary 2.4 and divide both intersection numbers by the common fac-
tor CAg . We obtain the following equality that needs to be checked:

2ds+1 ?
=

2g − 1
(2g − 2+ n)!

n∑
i=1

[
(2g − 2+ n)di +

∑
kj

g − 1
·
(2g − 3+ n)!

2g − 1
(1+ (2g−2)δis)

]

=
1

(2g − 2+ n)(g − 1)

n∑
i=1

(
(2g − 2+ n)di +

∑
kj

)
(1+ (2g − 2)δis)

=
1

(2g − 2+ n)(g − 1)

[
(2g − 2+ n)

(∑
di +

∑
kj

)
+ (2g − 2+ n)(2g − 2)ds

]
=

1
g − 1

[(g − 1)+ (2g − 2)ds] = 2ds + 1.

Thus, the equality is indeed true. ut

Let us sum up the results of our computations. We have found n classes αs , 1 ≤ s ≤ n,
of degree 2g + n − 2 that vanish on the boundary of Mg,n, and thus can be used as
linear forms on the group Rg−1(Mg,n). We have proved that the intersection matrix of
the classes ψg−1

i and αs is non-degenerate, and therefore dimRg−1(Mg,n) ≥ n. Finally,
we have computed the intersection numbers of all tautological classes in Rg−1(Mg,n)

with the classes αs . Assuming that (ψg−1
i ) is a basis of Rg−1(Mg,n), this allows us to

decompose any class in this basis, thus proving the generalized top intersection property.

3. Generalized socle property: three statements

In this section we formulate three statements and show how to use them to prove the
generalized socle property. We will prove these statements in the next sections.

3.1. Three statements

Denote by πk : Mg,n → Mg,n−1 the map that forgets the k-th marked point. Let
ik,l :Mg,n→Mg,n be the map that interchanges the k-th and the l-th marked points.
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Let Sjk,l(Mg,n) be the subspace of Rj (Mg,n) defined by

S
j
k,l(Mg,n) := {α ∈ R

j (Mg,n) | i
∗

k,lα = α}.

Lemma 3.1. Let n ≥ 2 and 1 ≤ k < l ≤ n. Then

S
g−1
k,l (Mg,n) ⊂ π

∗

k (R
g−1(Mg,n−1))+ π

∗

l (R
g−1(Mg,n−1)).

Proposition 3.2. For any n ≥ 1, we have

Rg−1(Mg,n) = π
∗

1 (R
g−1(Mg,n−1))+ ψ1π

∗

1 (R
g−2(Mg,n−1)).

Proposition 3.3. For any n ≥ 1, we have

Rg−2(Mg,n) = π
∗

1 (R
g−2(Mg,n−1))+ ψ1π

∗

1 (R
g−3(Mg,n−1))+

∑
1≤k<l≤n

S
g−2
k,l (Mg,n).

3.2. Proof of the generalized socle conjecture

In Section 2 we have proved dimRg−1(Mg,n) ≥ n. It remains to prove the opposite
inequality.

Let pi : Mg,n → Mg,1 be the map that forgets all marked points except the i-th.
Since dimRg−1(Mg,1) = 1 [Loo95], it is sufficient to prove that, for any n ≥ 1, the
group Rg−1(Mg,n) is spanned by the pull-backs p∗i (R

g−1(Mg,1)), where 1 ≤ i ≤ n.
Equivalently, we have to prove that

Rg−1(Mg,n) =

n∑
i=1

π∗i (R
g−1(Mg,n−1)) (3.1)

for any n ≥ 2.
From Propositions 3.2 and 3.3 it follows that

Rg−1(Mg,n) = π
∗

1 (R
g−1(Mg,n−1))+ ψ1(π2 ◦ π1)

∗(Rg−2(Mg,n−2))

+ ψ1ψ2(π2 ◦ π1)
∗(Rg−3(Mg,n−2))+ ψ1π

∗

1

( ∑
2≤k<l≤n

S
g−2
k,l (Mg,n−1)

)
.

Obviously, we have

ψ1(π2 ◦ π1)
∗(Rg−2(Mg,n−2)) ⊂ π

∗

2 (R
g−1(Mg,n−1)),

ψ1ψ2(π2 ◦ π1)
∗(Rg−3(Mg,n−2)) ⊂ S

g−1
1,2 (Mg,n),

ψ1π
∗

1 (S
g−2
k,l (Mg,n−1)) ⊂ S

g−1
k,l (Mg,n), where 2 ≤ k < l ≤ n.

Applying Lemma 3.1 to the last two formulas, we get (3.1).
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4. Double ramification cycles

Here we give the definition of a particular type of double ramification cycles that we need,
and formulate the main formulas that we will use.

In Section 4.1 we define double ramification cycles. In Section 4.2 we prove the main
formulas for them. In Section 4.3 we formulate Hain’s result. In Section 4.4 we explain
how double ramification cycles span the tautological groups of Mg,n.

4.1. Definition of double ramification cycles

Let a1, . . . , an, n ≥ 1, be integers satisfying
∑
ai = 0. Suppose that not all of them are

zero. Denote by n+ the number of positive integers among the ai’s. They form a partition
µ = (µ1, . . . , µn+). Similarly, denote by n− the number of negative integers among the
ai’s. After a change of sign they form another partition ν = (ν1, . . . , νn−). Both µ and ν
are partitions of the same integer

d :=
1
2

n∑
i=1

|ai |.

Finally, let n0 be the number of vanishing ai’s.
Let Mg,n0(µ, ν) be the moduli space of “rubber” stable maps to CP1 relative to 0

and∞ (see e.g. [GJV11, OP06]). The partitions µ and ν correspond to ramification pro-
files over 0 and∞. Denote by ρ the forgetful map Mg,n0(µ, ν)→Mg,n.

The double ramification cycle without forgotten points is defined by

DRg
( n∏
i=1

mai

)
:= ρ∗([Mg,n0(µ, ν)]

virt),

where [Mg,n0(µ, ν)]
virt is the virtual fundamental class in the homology of Mg,n0(µ, ν)

(see e.g. [GJV11]).
General double ramification cycles are defined as follows. Let k ≥ 0 and a1, . . . , an,

b1, . . . , bk be integers, not all zero, with
∑n
i=1 ai +

∑k
j=1 bj = 0. Let π : Mg,n+k

→Mg,n be the map that forgets the last k marked points. Then

DRg
( n∏
i=1

mai

k∏
j=1

m̃bj

)
:= π∗

(
DRg

( n∏
i=1

mai

k∏
j=1

mbj

))
.

In this notation the i-th marked point corresponds to the ramification of order ai , so the
order of the symbols mai is important. On the other hand, the order of the symbols m̃bj
is irrelevant. Sometimes we will place them in different positions in the bracket. For
example, DRg(mam̃b) and DRg(m̃bma) are, by definition, the same class.

The Poincaré dual of DRg(
∏n
i=1mai

∏k
j=1 m̃bj ) in the cohomology of Mg,n will be

denoted by the same symbol. We have (see e.g. [GJV11])

DRg
( n∏
i=1

mai

k∏
j=1

m̃bj

){
= 0 if k ≥ g + 1,
∈ H 2(g−k)(Mg,n;Q) if k ≤ g.
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In [FP05] it is proved that double ramification cycles belong to the tautological ring
of Mg,n. Below we often use the restrictions of the classes DRg(

∏n
i=1mai

∏k
j=1 m̃bj )

to the open moduli space Mg,n. Abusing notation we denote the restrictions by the same
symbol.

4.2. Main formulas for double ramification cycles

Here we list the main properties of double ramification cycles.

Lemma 4.1. We have

DRg
( n∏
i=1

mai

k∏
i=1

m̃bi

)
= DRg

( n∏
i=1

m−ai

k∏
i=1

m̃−bi

)
. (4.1)

Proof. The proof is obvious from the definition of double ramification cycles. ut

Lemma 4.2. Let a1, . . . , an, n ≥ 1, and b1, . . . , bk , 1 ≤ k ≤ g+ 1, be non-zero integers
such that

∑n
i=1 ai+

∑k
j=1 bj = 0. Then we have the following equality inRg−k+1(Mg,n):

ψ1 · DRg
( n∏
i=1

mai

k∏
j=1

m̃bj

)
= −

∑
1≤i<j≤k

bi + bj

ra1
DRg

( n∏
l=1

mal m̃bi+bj

∏
l 6=i,j

m̃bl

)

−

n∑
i=2

k∑
j=1

ai + bj

ra1
DRg

( n∏
l=1

mal+δl,ibj

∏
l 6=j

m̃bl

)

+

k∑
j=1

−a1 + (r − 1)bj
ra1

DRg
(
ma1+bj

n∏
i=2

mai

∏
l 6=j

m̃bl

)
, (4.2)

where r := 2g − 2+ n+ k.

Proof. First, observe that for k = 1 we have a trivial identity, because Rg(Mg,n) = 0.
For k = g + 1 the left-hand side of the equation is zero, while the vanishing of the
right-hand side follows from the substitution

DRg
( n∏
i=1

mai

g∏
j=1

m̃bj

)
= g!

g∏
j=1

b2
j .

The proof in the general case is based on [BSSZ12, Theorem 4]. Indeed, by defini-
tion, DRg(

∏n
i=1mai

∏k
j=1 m̃bj ) is the restriction to Mg,n ⊂Mg,n of the push-forward of

DRg(
∏n
i=1mai

∏k
j=1mbj ) defined in the tautological ring of Mg,n+k . To prove the iden-

tity we will use the projection formula. Namely, we lift ψ1 to Mg,n+k , intersect it there
with DRg(

∏n
i=1mai

∏k
j=1mbj ) using [BSSZ12, Theorem 4], and then push forward this

intersection to Mg,n and restrict the result to Mg,n.
The class π∗ψ1 for π :Mg,n+k →Mg,n is equal to ψ1 −D, where D is the class of

the divisor on which the points labeled by a1 and bi , i ∈ I ⊂ {1, . . . , k}, lie on a rational
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tail. The choice of I 6= ∅ here corresponds to a choice of an irreducible component of D.
For dimensional reasons, the only non-trivial contribution under the push-forward is given
by the irreducible components of −D that correspond to |I | = 1, that is, the point a1 lie
on a rational tail with exactly one point bi , i = 1, . . . , k. The push-forward π∗ of this
intersection is equal to the class

−

k∑
j=1

DRg
(
ma1+bj

n∏
i=2

mai

∏
l 6=j

m̃bl

)
. (4.3)

(See e.g. the local computation of multiplicity in [SZ08, Lemma 3.3]. Here we have a
different global geometry of the space, but the local multiplicity is computed in exactly
the same way.)

Now we use the formula for ψ1 ·DRg(
∏n
i=1mai

∏k
j=1mbj ) in [BSSZ12, Theorem 4].

We have there a sum over all possible degenerations of the DR-cycle into two DR-cycles,

DRg1

(∏
i∈I

mai

∏
j∈J

mbj

p∏
l=1

m−ck

)
� DRg2

(∏
i∈I ′

mai

∏
j∈J ′

mbj

p∏
l=1

mck

)
,

where g1 + g2 + p − 1 = g, I t I ′ = {1, . . . , n}, and J t J ′ = {1, . . . , k}, with
some combinatorially defined coefficients. Here the symbol � indicates the gluing of
the points −ck and ck to a node, k = 1, . . . , p, and for the full definition we refer to
[BSSZ12, Section 2.1]. Now we claim that the only degenerations of the DR-cycle that
do not vanish under the restriction of the push-forward π∗ to the open moduli space Mg,n

can be described in the following way:

1. We have p = 1.
2. Either g1 = 0 or g2 = 0.
3. The genus zero component has only three special points, where one point ism±c1 , and

the other two are either a pair mai , mbj , or a pair mbi , mbj .

Indeed, if p > 1, or g1, g2 ≥ 1, or the genus 0 component contains at least two points
ai, aj , then the push-forward of this class lies on the boundary of Mg,n. So, we have the
genus zero component with at most one point ai . Then this component should contain
precisely two points from the list a1, . . . , an, b1, . . . , bk for dimensional reasons. This
way we come to the description above.

Thus, we have three essentially different cases: the two marked points on the genus 0
component can be either mbi , mbj , or mai , mbj , i 6= 1, or ma1 , mbj . In the first case, the
class (including the coefficient) that we get is

−
bi + bj

ra1
DRg

( n∏
l=1

mal m̃bi+bj

∏
l 6=i,j

m̃bl

)
.

The sum of these classes is exactly the first summand on the right-hand side of (4.2). In
the second case, after the push-forward and restriction to the open part, we obtain

−
ai + bj

ra1
DRg

( n∏
l=1

mal+δl,ibj

∏
l 6=j

m̃bl

)
,
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and these classes add up to the second summand of (4.2). In the last case, we have the
class

(r − 1)(a1 + bj )

ra1
DRg

(
ma1+bj

n∏
i=2

mai

∏
l 6=j

m̃bl

)
. (4.4)

Recall that we already got a contribution of the same class with a different coefficient
in (4.3). The sum of the classes (4.4) and the corresponding summand in (4.3) is equal to

−a1 + (r − 1)bj
ra1

DRg
(
ma1+bj

n∏
i=2

mai

∏
l 6=j

m̃bl

)
.

The sum of these terms is precisely the third summand in (4.2). ut

Lemma 4.3. Let a1, . . . , an, n ≥ 0, and b1, . . . , bk , 1 ≤ k ≤ g, be non-zero integers such
that

∑n
i=1 ai +

∑k
j=1 bj = 0. Then we have the following relation in Rg−k+1(Mg,n+1):

k∑
i=1

biDRg
(
mbi

∏
j 6=i

m̃bj

n∏
l=1

mal

)
∈ π∗1 (R

g−k+1(Mg,n)). (4.5)

Proof. Several proofs of this lemma are possible. In the case k = 1, the lemma is
obvious, since the class (4.5) is zero. If we assume that n ≥ 1, then we can ar-
gue in the following way. We consider the class ψ2 (the ψ-class at the point labeled
by a1) multiplied by π∗1 DRg(

∏k
j=1 m̃bj

∏n
i=1mai ). On the open part it is equal to

π∗1ψ2 ·π
∗

1 DRg(
∏k
j=1 m̃bj

∏n
i=1mai ), so it is a pull-back. On the other hand, we can com-

pute this class using [BSSZ12, Theorem 5] (we should assign multiplicity zero to x1),
and, via the same argument as in the proof of Lemma 4.2, we see that the only terms
that contribute to the restriction of the class obtained to the open moduli space are the
class (4.5) and further classes in π∗1 (R

g−k+1(Mg,n)). The general argument is very close
to the one in [Ion02, Proposition 2.8].

Consider the space Mg,1(µ, ν) of rubber maps to CP1 with one marked point x1.
We assume that the collection of multiplicities {µ1, . . . , µm+ ,−ν1, . . . ,−νm−} is equal
to {a1, . . . , an, b1, . . . , bk}, up to order. The branching morphism σ takes Mg,1(µ, ν)

to LMr+1/Sr , the quotient of the Losev–Manin moduli space [LM00] by the action
of the symmetric group that permutes the branch points of the rubber maps. We refer
to [BSSZ12, Section 2.2] for a full discussion of this branching morphism in this setting.

We consider the following divisors in LMr+1. Let p1, . . . , pr be the branch points and
let q be the image of x1. We consider the Sr -symmetrization of the divisor D0,p1|q,∞ −

D0,q|p1,∞, where Da,b|c,d denotes the divisor of two-component curves, where the pairs
a, b and c, d lie on different components. Denote this symmetrized divisor by D. The
class of D0,p1|q,∞ − D0,q|p1,∞ is zero, therefore the class σ ∗D of the pull-back of the
symmetrization of this divisor to Mg,1(µ, ν) is also zero.

We consider the maps ρ :Mg,1(µ, ν)→Mg,n+k+1 and π :Mg,n+k+1 →Mg,n+1.
Our goal now is to compute the restriction of the class π∗ρ∗σ ∗D to the open moduli space
Mg,n+1. We claim that this class is equal to the sum of the class in (4.5) and a class in
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π∗1 (R
g−k+1(Mg,n)). Since, on the other hand, we know that π∗ρ∗σ ∗D = 0, this proves

the lemma.
So let us compute π∗ρ∗σ ∗D. We can do it for each component separately along the

lines of the analogous computation in [BSSZ12, Lemma 2.4]. Using the same argument
as in the proof of Lemma 4.2, we obtain a non-trivial contribution only from the divisors

DRg1

(∏
i∈I

mai

∏
j∈J

mbj

p∏
l=1

m−cl

)
� DRg2

(∏
i∈I ′

mai

∏
j∈J ′

mbj

p∏
l=1

mcl

)
of two possible types. One type is exactly the divisors described in Lemma 4.2, that is,
p = 1, one component is of genus 0, it contains exactly two marked points that are labeled
either by ai, bj or bi, bj , and the marked point x1 lies on the other component. The last
condition is for dimensional reasons. Since there are no restrictions on the position of x1,
all classes of this type project to π∗1 (R

g−k+1(Mg,n)).
Let us describe the other possible type. We still have p = 1 and one of the components

is of genus 0 (otherwise, the restriction to the open moduli space would be trivial), and
on the component of genus 0 we have only two marked points (for dimensional reasons),
but now these two marked points will be x1 and bi . This class projects to the i-th term
in (4.5), and its coefficient, according to [BSSZ12, Lemma 2.4], is precisely bi . This
completes the proof of the lemma. ut

4.3. Hain’s formula

Consider the moduli space Mrt
g,n of stable curves with rational tails. In this section we

work in the cohomology of Mrt
g,n. Let ψ†

i = p
∗

i ψi , where pi :Mrt
g,n→Mrt

g,1 is the map
that forgets all marked points except the i-th. Let J be any subset of {1, . . . , n} such that
|J | ≥ 2. Denote byDJ the divisor in Mrt

g,n that is formed by stable curves with a rational
component that contains exactly the marked points numbered by J .

The following formula was discovered by Hain [Hain11]:

DRg
( n∏
i=1

mai

)
=

1
g!

( n∑
i=1

a2
i ψ

†
i

2
−

∑
J⊂{1,...,n}
|J |≥2

( ∑
i,j∈J, i<j

aiaj

)
DJ

)g
. (4.6)

To be precise, in [Hain11] this formula was proved for a version of double ramification
cycles that is constructed using the universal Jacobian over the moduli space of curves.
Luckily, in [CMW11] it is proved that this version coincides with ours when we restrict
both to Mrt

g,n.
From (4.6) it follows that, as a cohomology class in H 2g(Mrt

g,n;Q), the class

DRg
(
m−

∑n
i=2 ai

n∏
i=2

mai

)
is a homogeneous polynomial of degree 2g in the variables a2, . . . , an. Let us prove the
following simple lemma.
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Lemma 4.4. As a cohomology class in H 2g−2(Mrt
g,n;Q), the class

DRg
(
m−

∑n
i=2 ai

n−1∏
i=2

mai m̃an

)
is a homogeneous polynomial of degree 2g in the variables a2, . . . , an. Moreover, this
polynomial is divisible by an.
Proof. Let a1 := −

∑n
i=2 ai . We have DRg(

∏n−1
i=1 mai m̃an) = π∗(DRg(

∏n
i=1mai )),

where π : Mrt
g,n → Mrt

g,n−1 is the morphism that forgets the last marked point. Thus,
the first statement is clear.

It is easy to see that( n∑
i=1

a2
i ψ

†
i

2
−

∑
J⊂{1,...,n}
|J |≥2

( ∑
i,j∈J, i<j

aiaj

)
DJ

)∣∣∣∣
an=0

= π∗n

(n−1∑
i=1

a2
i ψ

†
i

2
−

∑
J⊂{1,...,n−1}
|J |≥2

( ∑
i,j∈J, i<j

aiaj

)
DJ

)
.

Therefore, if we set an = 0 on the right-hand side of (4.6) and push it forward to Mrt
g,n−1,

we get zero. Hence, the second statement of the lemma is also proved. ut

4.4. DR-cycles and the tautological ring of Mg,n

Lemma 4.5. Let n ≥ 1 and 1 ≤ k ≤ g. The group Rg−k(Mg,n) is spanned by the double
ramification cycles of the form

DRg
(n−1∏
i=1

maim−d

k∏
j=1

m̃bj

)
, (4.7)

where a1, . . . , an−1, b1, . . . , bk and d are positive integers such that a1 + · · · + an−1 +

b1 + · · · + bk = d .
Proof. This lemma is a version of [Ion02, Corollary 2.5] adapted to our situation: we are
using the DR-cycles defined by “rubber” stable relative maps rather than the admissible
coverings, we want to have the DR-cycles with exactly one negative multiplicity, and we
consider the restriction of the DR-cycles to the open part of the moduli space.

We want to show that the push-forward of any monomial of ψ-classes on Mg,n+l to
the space Mg,n, and further restricted to its open part, can be expressed in terms of the
DR-cycles (4.7).

We represent the degree zero class g!
∏g

i=1 b
2
i on Mg,n+l as a DR-cycle

DRg
(n+l∏
i=1

mai

g∏
j=1

m̃bj

)
,

where an is the unique negative index. Obviously, we can choose the multiplicities
in this way. Then we lift the monomial of ψ-classes to the moduli space Mg,n+l+g
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(as we did in the proof of Lemma 4.2 above) and intersect it there with the DR-cycle
DRg(

∏n+l
i=1mai

∏g

j=1mbj ) using [BSSZ12, Theorem 4]. Then we apply the push-forward
to Mg,n and restrict the result to Mg,n.

Let us discuss the structure of the class we obtain. First of all, since we are interested
only in the non-degenerate restrictions to the open moduli space, one of the components
in the degeneration formula

DRg1

(∏
i∈I

mai

∏
j∈J

mbj

p∏
l=1

m−ck

)
� DRg2

(∏
i∈I ′

mai

∏
j∈J ′

mbj

p∏
l=1

mck

)
must be of genus g. This implies, exactly as in the proofs of Lemmas 4.2 and 4.3, that
p = 0 and the other component has genus 0. This means that on the component of genus g
we again have the structure of a DR-cycle with exactly one negative index. So, if we
are interested only in the terms that can be non-trivially restricted to the open part of the
moduli space, then this property of a DR-cycle is preserved throughout the computation of
the monomial of ψ-classes. It is also preserved under the push-forward that forgets some
of the marked points. This implies that the expression we obtain for the push-forward of
a monomial of ψ-classes is a linear combination of DR-cycles with one negative index.
It is also easy to see that the only negative index in these cycles corresponds to the n-th
marked point. This is precisely the statement of the lemma. ut

5. Technical lemmas

Here we collect several linear algebra lemmas that we will use in Section 6.

Lemma 5.1. Let V be a vector space and x1, . . . , xp−2 ∈ V , where p ≥ 3. Suppose that
for any positive integers λ1, λ2, λ3 such that λ1 + λ2 + λ3 = p we have

xλ1 + xλ2 + xλ3 = 0.

Then there exists a vector α ∈ V such that xi = (i/p − 1/3)α for all i.

Proof. If p = 3 the lemma is obvious. Suppose p ≥ 4. We have

xi + xp−1−i = −x1 for i = 1, . . . , p − 2.

On the other hand,

xi + xp−2−i = −x2 for i = 1, . . . , p − 3.

Subtracting the second equation from the first, we obtain

xp−1−i − xp−2−i = x2 − x1 for i = 1, . . . , p − 3.

Hence, xi = x1 + (i − 1)(x2 − x1). Inserting this in 2x1 + xp−2 = 0, we get x1 =

−(p − 3)(x2 − x1)/3. Therefore, xi = (i − p/3)(x2 − x1). ut
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Lemma 5.2. Let V be a vector space and let vi,j ∈ V for all i, j ≥ 1. Define

zi,j := −vi,j − vj,i .

Suppose that

∑
{i,j,k}={1,2,3}

i<j

(vak,ai+aj + zai ,aj ) = 0 if a1, a2, a3 ≥ 1,

za1,a2 − zc1,c2 −

∑
ai>cj

vcj ,ai−cj +
∑
ci>aj

vaj ,ci−aj = 0 if a1 + a2 = c1 + c2.

(5.1)

Then there exist α2, α3, . . . ∈ V such that

vi,j =

(
i

i + j
−

1
3

)
αi+j +

(
1
3
−
i + j

i

)
αi +

1
3
αj . (5.2)

Here, by definition, α1 := 0.

Proof. Obviously, α2 = 6v1,1. Suppose d ≥ 3 and we have found vectors α2, . . . , αd−1
such that (5.2) holds for i + j ≤ d − 1. Let us construct αd such that (5.2) holds for
i + j = d . For i + j = d , define

ṽi,j := vi,j −

(
1
3
−
d

i

)
αi −

1
3
αj , z̃i,j := −ṽi,j − ṽj,i .

It is easy to check that (5.1) implies
∑

{i,j,k}={1,2,3}
i<j

ṽak,ai+aj = 0 if a1 + a2 + a3 = d,

z̃a1,a2 − z̃c1,c2 = 0 if a1 + a2 = c1 + c2 = d.

If d = 3, then we can take α3 = 3̃v2,1. Suppose d ≥ 4. By Lemma 5.1, there exists a
vector αd such that ṽi,d−i = (i/d−1/3)αd for i ≤ d−2. Since z̃1,d−1 = z̃2,d−2, we also
have ṽd−1,1 = ((d − 1)/d − 1/3)αd . ut

Lemma 5.3. Let V be a vector space and d ≥ 3. Suppose that vectors vi,j,k ∈ V , where
i + j + k = d and i, j, k ≥ 1, satisfy∑

{i,j,k}={1,2,3}
i<j

vbk,bi+bj ,a = 0 if b1 + b2 + b3 + a = d and a, bi ≥ 1, (5.3)

kvi,j,k + jvi,k,j = 0. (5.4)

If d = 3, 4, then vi,j,k = 0. If d ≥ 5, then there exists a vector α ∈ V such that

vi,j,k =

(
i

d − 1
−

1
3

)(
δk,1 −

1
k
δj,1

)
α.
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Proof. The cases d = 3, 4, 5 can be easily checked by a direct computation.
Suppose that d ≥ 6. By Lemma 5.1, there exist α3, . . . , αd−1 ∈ V such that

vi,j,k =

(
i

i + j
−

1
3

)
αi+j for j ≥ 2.

Let us prove that

αd−k = 0 for 2 ≤ k ≤ (d − 1)/2. (5.5)

From (5.4) it follows that vi,j,k = 0 if j = k. Therefore, if 2 ≤ k ≤ (d − 1)/2, then(
d−2k
d−k
−

1
3

)
αd−k = 0. If d 6= 5

2k, then αd−k = 0. Suppose that d = 5
2k. We have

vk/2+1,k−1,k = −
k−1
k
vk/2+1,k,k−1 = 0. On the other hand, we obtain vk/2+1,k−1,k =( k/2+1

d−k
−

1
3

)
αd−k . The coefficient of αd−k here is not zero, therefore αd−k = 0. Thus,

(5.5) is proved.
We see that vi,j,k = 0 if j ≥ 2 and 2 ≤ k ≤ (d − 1)/2. If we apply (5.4), we find that

vi,j,k = 0 if k ≥ 2 and 2 ≤ j ≤ (d − 1)/2, thus vi,j,k = 0 if j ≥ 2 or k ≥ 2.
If 2≤j≤d − 2, then vd−j−1,j,1=

( d−j−1
d−1 −

1
3

)
αd−1 and vd−j−1,1,j =−

1
j
vd−j−1,1,j

=−
1
j

( d−j−1
d−1 −

1
3

)
αd−1. Also, vd−2,1,1 = 0. This completes the proof. ut

6. Proofs of Lemma 3.1 and Propositions 3.2 and 3.3

6.1. Proof of Lemma 3.1

Without loss of generality, we can assume that k = 1 and l = 2. It is sufficient to prove

α + i∗1,2α ∈ π
∗

1 (R
g−1(Mg,n−1))+ π

∗

2 (R
g−1(Mg,n−1)) (6.1)

for any α ∈ Rg−1(Mg,n). By Lemma 4.5, we can assume that α = DRg(
∏n
i=1mai m̃b).

From Lemma 4.3 it follows that

DRg
(
ma1m̃bma2

n∏
i=3

mai

)
+
b

a1
DRg

(
mbm̃a1ma2

n∏
i=3

mai

)
∈ π∗1 (R

g−1(Mg,n−1)),

b

a1
DRg

(
mbma2m̃a1

n∏
i=3

mai

)
+
b

a2
DRg

(
mbma1m̃a2

n∏
i=3

mai

)
∈ π∗2 (R

g−1(Mg,n−1)),

b

a2
DRg

(
mbm̃a2ma1

n∏
i=3

mai

)
+ DRg

(
ma2m̃bma1

n∏
i=3

mai

)
∈ π∗1 (R

g−1(Mg,n−1)).

If we sum the first and third rows and subtract the second row, we get

DRg
(
ma1ma2m̃b

n∏
i=3

mai

)
+ DRg

(
ma2ma1m̃b

n∏
i=3

mai

)
∈ π∗1 (R

g−1(Mg,n−1))+ π
∗

2 (R
g−1(Mg,n−1)),

as desired.
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6.2. Proof of Proposition 3.2

Suppose n = 1. We know that Rg−1(Mg,1) = Q, Rg−2(Mg) = Q and Rg−2(Mg) is
spanned by κg−2 (see [Loo95]). Therefore, it is sufficient to prove that ψ1π

∗

1 (κg−2) 6= 0.
But this is true because (π1)∗(ψ1π

∗

1 (κg−2)) = (2g − 2)κg−2.
Suppose that n ≥ 2. We denote by K the subspace of Rg−1(Mg,n) defined by

K := π∗1 (R
g−1(Mg,n−1))+ ψ1π

∗

1 (R
g−2(Mg,n−1)).

By Lemma 4.5, it is sufficient to prove that

DRg
(
m̃b

n−1∏
i=1

maim−d

)
∈ K, (6.2)

where a1, . . . , an−1, b, d are positive integers such that a1+ · · · + an−1+ b = d. We use
double induction on d and d̃ := b + a1. If d̃ = 2, then b = a1 = 1, and from Lemma 4.3
it immediately follows that

DRg
(
m̃1m1

n∏
i=2

manm−d

)
∈ π∗1 (R

g−1(Mg,n−1)). (6.3)

Suppose that d̃ ≥ 3. Consider positive integers b1, b2, b3 such that b1 + b2 + b3 = d̃ .
By Lemma 4.3, we have

3∑
i=1

biDRg
(
mbi

∏
j 6=i

m̃bj

n−1∏
l=2

malm−d

)
∈ π∗1 (R

g−2(Mg,n−1)).

Let us multiply both sides of this formula by ψ1. Using Lemmas 4.2 and 4.3 and the
induction assumption we get

3∑
i=1

d̃ + (r − 3)bi
r

DRg
(
m̃d̃−bimbi

n−1∏
j=2

majm−d

)
∈ K, (6.4)

where r = 2g + n.
Let us fix a2, . . . , an and analyze relation (6.4). Let

ui := DRg
(
m̃d̃−imi

n−1∏
j=2

majm−d

)
for i = 1, . . . , d̃ − 1.

For any two classes α, β ∈ Rg−1(Mg,n), we will write α modK
= β if α − β ∈ K .
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From (6.4) and Lemma 5.1 it follows that there exists α ∈ Rg−1(Mg,n) such that

d̃ + (r − 3)i
r

ui
modK
=

(
i

d̃
−

1
3

)
α for i = 1, . . . , d̃ − 2. (6.5)

By Lemma 4.3, we have

iui + (d̃ − i)ud̃−i ∈ π
∗

1 (R
g−1(Mg,n−1)) for i = 1, . . . , d̃ − 1. (6.6)

Let us prove that (6.5) and (6.6) imply that ui ∈ K for i = 1, . . . , d̃ − 1. This will
complete the proof of the proposition.

Suppose d̃ = 3. Then from (6.5) it follows that u1 ∈ K , and (6.6) yields u2 ∈ K .
Suppose d̃ ≥ 4. From (6.5) and (6.6) we see that it is sufficient to prove that α ∈ K .

Let 2 ≤ i ≤ d̃ − 2. From (6.5) it follows that

iui + (d̃ − i)ud̃−i
modK
=

(
i − d̃

2

)2(3− r
3

)
+

d̃2(r−1)
12(

d̃ + (r − 3)i
)(
d̃ + (r − 3)(d̃ − i)

) rα. (6.7)

If d̃ = 4 or d̃ = 5, then, for i = 2, the numerator in (6.7) is non-zero. Thus, α ∈ K .
Suppose d̃ ≥ 6. It is clear that the numerator cannot be zero for two different i ≥ d̃/2.
Hence, α ∈ K , as claimed.

6.3. Proof of Proposition 3.3: main relation

In this section we construct a relation between double ramification cycles that is the main
ingredient in the proof of Proposition 3.3.

In Section 6.3.1 we construct a basic relation using the same idea as in the proof of
Proposition 3.2. The problem is that this relation is too complicated to work with. In Sec-
tion 6.3.2 we introduce new variables that are linear combinations of double ramification
cycles. This change of variables allows us to simplify the basic relation considerably. This
is done in Section 6.3.3.

6.3.1. Basic relation. We denote by K the subspace of Rg−2(Mg,n) defined by

K = π∗1 (R
g−2(Mg,n−1))+ ψ1π

∗

1 (R
g−3(Mg,n−1))+

∑
1≤i<j≤n

S
g−2
i,j (Mg,n).

Let us fix a triple ((b1, b2, b3), b4, (a1, . . . , an−1)), where (b1, b2, b3) is an unordered
triple of non-zero integers, b4 is a non-zero integer, (a1, . . . , an−1) is sequence of non-
zero integers and

∑
bi +

∑
aj = 0. By Lemma 4.3, we have

4∑
i=1

biDRg
(
mbi

∏
j 6=i

m̃bj

n−1∏
p=1

map

)
∈ π∗1 (R

g−3(Mg,n−1)). (6.8)
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Let us multiply both sides of (6.8) by ψ1. Using Lemmas 4.2 and 4.3 we get

∑
{i,j,k}={1,2,3}

i<j

bi + bj

r

(
r − 2+

bi + bj

b4

)
DRg

(
m̃b4m̃bkmbi+bj

n−1∏
l=1

mal

)

−

∑
{i,j,k}={1,2,3}

i<j

bi + bj

r

(
1−

bk

b4

)
DRg

(
m̃b4m̃bi+bjmbk

n−1∏
l=1

mal

)

−

n−1∑
l=1

∑
{i,j,k}={1,2,3}

bi + al

r

(
1−

bj

b4

)
DRg

(
m̃b4m̃bkmbj

n−1∏
p=1

map+δp,lbi

)

+

n−1∑
l=1

∑
{i,j,k}={1,2,3}

i<j

bj − bi

r
DRg

(
m̃b4+al m̃bkmbi

n−1∏
p=1

map+δp,l(bj−al)

)

−

∑
{i,j,k}={1,2,3}

b4 + bk + (r − 2)bi
r

DRg
(
m̃b4+bk m̃bjmbi

n−1∏
l=1

mal

)
∈ K, (6.9)

where r = 2g + n+ 1. This relation will be called the basic relation.

6.3.2. New variables. Let f1, . . . , fn+1 be arbitrary integers, not all zero. We introduce
a cycle Zg(

∏n+1
i=1 mfi ) ∈ R

g−2(Mg,n) as follows:

Zg

(n+1∏
i=1

mfi

)
:=

f1 − (r − n− 2)f2

r
DRg

(
m̃−dm̃f1mf2

n+1∏
l=3

mfl

)
+
f2 − (r − n− 2)f1

r
DRg

(
m̃−dm̃f2mf1

n+1∏
l=3

mfl

)
+
f2 − f1

r

n+1∑
l=3

DRg
(
m̃−dm̃flmf2

n+1∏
p=3

mfp+δp,l(f1−fp)

)
,

where r := 2g + n + 1 and d :=
∑n+1
i=1 fi . Suppose that d 6= 0. Define a cycle

Vg(
∏n+1
i=1 mfi ) ∈ R

g−2(Mg,n) by

Vg

(n+1∏
i=1

mfi

)
:=

f2

r

[(
r − n− 2+

f1

d

)
DRg

(
m̃−dm̃f1

n+1∏
l=2

mfl

)
−

(
1+

f1

d

) n+1∑
l=2

DRg
(
m̃−dm̃fl

n+1∏
p=2

mfp+δp,l(f1−fp)

)]
.

Note that Zg is a linear combination of double ramification cycles of the same degree.
Thus, the degree of Zg is well defined. The same is true for Vg .
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From the definition it immediately follows that

Vg

(n+1∏
i=1

mfi

)
= 0 if f2 = 0. (6.10)

Lemma 4.4 implies that

Zg

(n+1∏
i=1

mfi

)
= 0 if

∑
fi = 0. (6.11)

It is not hard to show that

Vg

(
mf1mf2

n+1∏
i=3

mfi

)
+ Vg

(
mf2mf1

n+1∏
i=3

mfi

)
modK
= −Zg

(n+1∏
i=1

mfi

)
.

Using Lemma 4.3 we can easily derive the following relations:

fiVg

(n+1∏
i=1

mfi

)
+ f2Vg

(
mf1mfi

n+1∏
k=3

mfk+δi,k (2−k)

)
∈ K if 3 ≤ i ≤ n+ 1; (6.12)

Vg

(n+1∏
i=1

mfi

)
+ Vg

(
mf1mf2

n+1∏
k=3

mfk+δi,k (j−k)+δj,k (i−k)

)
∈ K if 3 ≤ i < j ≤ n+ 1;

(6.13)

Vg

(n+1∏
i=1

mfi

)
modK
= Vg

(
m−d

n+1∏
i=2

mfi

)
if f1 6= 0; (6.14)

Vg

(n+1∏
i=1

mfi

)
modK
= Zg

(
mf1m−d

n+1∏
i=3

mfi

)
. (6.15)

Also from (4.1) it follows that

Vg

(n+1∏
i=1

mfi

)
= −Vg

(n+1∏
i=1

m−fi

)
. (6.16)

Lemma 6.1. The space Rg−2(Mg,n)/K is spanned by the cycles Vg(
∏n+1
i=1 mfi ) with

positive fi’s.

Proof. Lemmas 4.3 and 4.5 imply thatRg−2(Mg,n)/K is spanned by double ramification
cycles of the form

DRg
(
m̃−dm̃b

n∏
i=1

mai

)
,

where a1, . . . , an and b are positive integers and d = b +
∑
ai . For 1 ≤ k ≤ n+ 1, let

αk := DRg
(
m̃−dm̃fk

n+1∏
p=2

mfp+δp,k(f1−fp)

)
, βk := Vg

(n+1∏
i=k

mfi

k−1∏
j=1

mfj

)
.
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From the definition of Vg it is easy to compute that βi
modK
=

∑n+1
j=1 gi,jαj , where

gi,j =

{
(−1)(i−1)n+1+δj,1 fi+1

r

(
r − n− 2+ fi

d

)
if i = j,

(−1)(i−1)n+1+δj,1 fi+1
r

(
1+ fi

d

)
if i 6= j .

Here, by definition, fn+2 := f1. We see that it is sufficient to prove that the matrix
G := (gi,j ) is non-degenerate. Consider the matrix G̃ := (g̃i,j ) defined by

g̃i,j =

{
r − n− 2+ fi/d if i = j,
1+ fi/d if i 6= j .

Denote by D the diagonal matrix with diagonal entries (−1)(i−1)n+1fi+1/r . It is clear
that the matrices G and G̃ are related by

G = D · G̃ · diag(−1, 1, 1, . . . , 1).

Therefore, it is sufficient to prove that G̃ is non-degenerate. It is easy to compute that
det G̃ = (r − n− 3)n(r − 1) 6= 0, so the lemma is proved. ut

6.3.3. Main relation. Let us consider the same triple ((b1, b2, b3), b4, (a1, . . . , an−1)),
as in Section 6.3.1. Choose an arbitrary 1 ≤ p ≤ n− 1 and consider four basic relations
corresponding to the following triples:

((b1, b2, b3), b4, (a1, . . . , an−1)),

((b1, b2, ap), b4, (a1, . . . , ap−1, b3, ap+1, . . . , an−1)),

((b1, ap, b3), b4, (a1, . . . , ap−1, b2, ap+1, . . . , an−1)),

((ap, b2, a3), b4, (a1, . . . , ap−1, b1, ap+1, . . . , an−1)).

Let us sum these relations with the coefficients 1 − ap/b4, 1 − b3/b4, 1 − b2/b4 and
1− b1/b4 respectively. We get

∑
{i,j,k,l}={1,2,3,4}

i<j

[
(ci + cj )

(
1−

ck

b4

)
DRg

(
m̃b4m̃clmci+cj

n−1∏
q=1

maq+δq,p(ck−aq )

)

+ (cj − ci)DRg
(
m̃b4+cl m̃ckmci

n−1∏
q=1

maq+δq,p(cj−aq )

)]
∈ K, (6.17)

where ci = bi for 1 ≤ i ≤ 3, and c4 = ap. Consider the sum of relations (6.17) for
p = 1, . . . , n− 1. If we subtract this sum, divided by r , from (6.9), we get

∑
{i,j,k}={1,2,3}

i<j

[
Vg

(
mbkmbi+bj

n−1∏
l=1

mal

)
+ Zg

(
mbimbj

n−1∏
l=1

mal

)]
∈ K. (6.18)

This relation will be called the main relation.
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Remark 6.2. In the subsequent sections we want to work with relations between the
cycles Vg(

∏n+1
i=1 mfi ) and Zg(

∏n+1
i=1 mfi ), where fi 6= 0 and

∑
fi 6= 0. At first glance,

relation (6.18) contains other cycles as well, because in the first summand the multiplic-
ity bi + bj may be to zero, and in the second summand the sum of the multiplicities
bi + bj +

∑
al = −b4 − bk may be zero. Happily, these extra terms vanish due to prop-

erties (6.10) and (6.11).

Remark 6.3. In the case n ≥ 2 our proof of Proposition 3.3 is based only on the main
relation (6.18) and relations (6.12)–(6.16). The case n = 1 is exceptional, because we
also have to use Lemma 4.4.

6.3.4. Proof of Proposition 3.3: the case n = 1. Let vi,j := Vg(mimj ) and zi,j :=
Zg(mimj ). By Lemma 6.1, it is sufficient to prove that vi,j ∈ K for i, j ≥ 1.

First of all let us write relations (6.14)–(6.16) in this case:

vi,j
modK
= v−(i+j),j , vi,j

modK
= zi,−(i+j), vi,j

modK
= −v−i,−j . (6.19)

Let a1, a2, a3 be positive integers and d = a1+a2+a3. Let us write (6.18) for b1 = a1,
b2 = a2, b3 = a3 and b4 = −d:

3∑
i=1

vai ,d−ai +
∑
i<j

zai ,aj ∈ K. (6.20)

Let a1, a2 and c1, c2 be positive integers such that a1 + a2 = c1 + c2. Let us write
relation (6.18) for b1 = a1, b2 = a2, b3 = −c1 and b4 = −c2. We get a linear com-
bination of cycles zi,j and vk,l , where the indices i, j, k, l may be negative. If we apply
relations (6.19) in order to make all indices positive, we get

za1,a2 − zc1,c2 −

∑
ai>cj

vcj ,ai−cj +
∑
ci>aj

vaj ,ci−aj ∈ K. (6.21)

From Lemma 5.2 it follows that, for any d ≥ 2, there is a class αd ∈ Rg−2(Mg,1) such
that

vi,j
modK
=

(
i

i + j
−

1
3

)
αi+j +

(
1
3
−
i + j

i

)
αi +

1
3
αj . (6.22)

Here, by definition, α1 := 0.
From (4.6) it follows that vai,aj = a2g+1vi,j . Hence, vd,d = d2g+1v1,1. Using (6.22)

we obtain

α2d
modK
= 8αd + d2g+1α2. (6.23)

We have v2d−2,2 = 22g+1vd−1,1. Using (6.22) we get(
d − 1
d
−

1
3

)
α2d +

(
1
3
−

d

d − 1

)
α2d−2 +

α2

3

modK
= 22g+1

((
d − 1
d
−

1
3

)
αd +

(
1
3
−

d

d − 1

)
αd−1

)
.
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If we combine this equation with (6.23), we get(
d − 1
d
−

1
3

)
(8− 22g+1)αd +

(
1
3
−

d

d − 1

)
(8− 22g+1)αd−1

+

((
d − 1
d
−

1
3

)
d2g+1

+

(
1
3
−

d

d − 1

)
(d − 1)2g+1

+
1
3

)
α2 ∈ K. (6.24)

Relation (6.24) allows one to compute all αd , for d ≥ 3, in terms of α2. It is not hard
to check that this recursion has the following solution:

αd
modK
=

d3
− d2g+1

23 − 22g+1 α2.

Therefore,

vi,j
modK
=

[(
i

i + j
−

1
3

)
(i + j)2g+1

+

(
1
3
−
i + j

i

)
i2g+1

+
j2g+1

3

]
α2. (6.25)

From Lemma 4.4 it follows that the class DRg(m̃am̃bm−a−b) is a homogeneous poly-
nomial of degree 2g in the variables a and b. Moreover, this polynomial is divisible by ab.
Hence,

lim
a→∞

1
a2g DRg(m̃am̃1m−a−1) = 0. (6.26)

It is easy to compute that

(r − 1)(r − 4)
r − 3

DRg(m̃im̃jm−i−j )
modK
=

r

r − 3
ivi,j + jvj,i

ij
+

r

i + j
(vi,j + vj,i).

If we substitute here the expression (6.25) for vi,j , we get

lim
a→∞

1
a2g DRg(m̃am̃1m−a−1)

modK
=

r

(r − 1)(r − 4)
4g − 4

3
α2.

From (6.26) it now follows that α2 ∈ K . This completes the proof of the proposition in
the case n = 1.

6.3.5. Proof of Proposition 3.3: the case n = 2. Let vi,j,k := Vg(mimkmk) and zi,j,k :=
Zg(mimkmk). By Lemma 6.1, it is sufficient to prove that vi,j,k ∈ K for i, j, k ≥ 1. The
problem here is that relations (6.18), which involve only those terms, are not enough. So
we also have to consider the classes vi,j,k with negative indices.

In this section we consider the cycles vi,j,k and zi,j,k as elements of Rg−2(Mg,n)/K .
So, instead of writing vi,j,k

modK
= 0, we will simply write vi,j,k = 0.

Let us write relations (6.12), (6.14), (6.15) and (6.16) in this case:

kvi,j,k + jvi,k,j = 0, (6.27)
vi,j,k = v−(i+j+k),j,k, (6.28)
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vi,j,k = zi,−(i+j+k),k, (6.29)
vi,j,k = −v−i,−j,−k. (6.30)

From these relations it follows that any class va,b,c, where a, b, c 6= 0 and a+ b+ c 6= 0,
can be expressed in terms of vi,j,k with i, j, k ≥ 1 or vi,j,−k with i, j, k ≥ 1 and k < i+j .
Therefore, we have to prove that

vi,j,k = 0 whenever i, j, k ≥ 1, (6.31)
vi,j,−k = 0 whenever i, j, k ≥ 1 and k < i + j . (6.32)

We use by induction on the degree d. In (6.31) the degree of vi,j,k is i + j + k and
in (6.32) the degree of vi,j,−k is i + j . The smallest possible degree is 2 and v1,1,−1 is

the only class of degree 2. We have v1,1,−1
(6.27)
= v1,−1,1

(6.28)
= v−1,−1,1

(6.30)
= −v1,1,−1. Thus,

v1,1,−1 = 0.
Suppose that d ≥ 3. In the main relation (6.18) the numbers bi and aj may be positive

or negative. In Section 6.3.6 we write explicitly the relations that we have, depending
on the numbers of positive bi’s and aj ’s. Using the induction assumption we ignore the
terms of smaller degree. Then in Section 6.3.7 we prove (6.31) and in Section 6.3.8 we
prove (6.32).

6.3.6. Relations. Let c1, c2, c3, a be positive integers such that c1 + c2 + c3 + a = d.
Then, if we set b1 = c1, b2 = c2, b3 = c3, b4 = −d and a1 = a in (6.18), we get∑

{i,j,k}={1,2,3}
i<j

vck,ci+cj ,a = 0. (6.33)

Let c1, c2, c3, c4, a be positive integers such that c1 + c2 + a = c3 + c4 = d . Setting
b1 = c1, b2 = c2, b3 = −c3, b4 = −c4 and a1 = a in (6.18), we get

v−c3,c1+c2,a + zc1,c2,a = 0.

Applying relations (6.29) and (6.30), we get

zc1,c2,a − zc3,c4,−a = 0. (6.34)

Let c1, c2, c3, c4, a be positive integers such that c1 + c2 + c3 = a+ c4 = d . Then, if
we set b1 = c1, b2 = c2, b3 = c3, b4 = −c4 and a1 = −a in (6.18), we get∑

{i,j,k}={1,2,3}
i<j

vck,ci+cj ,−a = 0. (6.35)

6.3.7. Proof of (6.31). Since we have relations (6.27) and (6.33), we can apply Lem-
ma 5.3. By that lemma, the cases d = 3, 4 are done. Suppose d ≥ 5. Then there exists a
class α ∈ Rg−2(Mg,n)/K such that

vi,j,k =

(
i

d − 1
−

1
3

)(
δk,1 −

1
k
δj,1

)
α.
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By (6.34), we have zd−2,1,1 = zd−3,2,1. Therefore,

0 = zd−2,1,1 − zd−3,2,1 = −

(
1

d − 1
−

1
3

)
α +

α

3
=

(
−

1
d − 1

+
2
3

)
α.

Since the coefficient − 1
d−1 +

2
3 is not equal to zero, we have α = 0. This completes the

proof of (6.31).

6.3.8. Proof of (6.32). We have

vi,j,−k
(6.28)
= v−(d−k),j,−k

(6.27)
=

j

k
v−(d−k),−k,j

(6.30)
= −

j

k
vd−k,k,−j . (6.36)

As a consequence,

vi,j,−j = 0. (6.37)

Suppose that d = 3. Then we have only four classes v1,2,−1, v1,2,−2, v2,1,−1 and
v2,1,−2. By (6.37), v1,2,−2 = v2,1,−1 = 0. By (6.36), v2,1,−2 = −

1
2v1,2,−1. Finally,

by (6.35), v1,2,−1 = 0.
Suppose that d ≥ 4. From relations (6.35) and Lemma 5.1 it follows that, for any

1 ≤ k ≤ d − 1, there exists a class αk ∈ Rg−2(Mg,n)/K such that

vi,j,−k =

(
i

d
−

1
3

)
αk if 2 ≤ j ≤ d − 1.

On the other hand, from (6.34) and (6.31) it follows that zi,j,−k = 0 if k ≤ d − 2. If
i, j ≥ 2, then zi,j,−k = −αk/3. Thus, αk = 0 if 1 ≤ k ≤ d − 2. Therefore vi,j,−k = 0
if j ≥ 2 and k ≤ d − 2. Since vd−1,1,−k = −zd−1,1,−k − v1,d−1,−k , we conclude
that vi,j,−k = 0 if k ≤ d − 2.

It remains to prove that vi,j,−(d−1) = 0. Applying (6.36), we get vi,j,−(d−1) = 0 if
j ≤ d − 2. Finally, by (6.37), v1,d−1,−(d−1) = 0. This completes the proof of Proposi-
tion 3.3 in the case n = 2.

6.3.9. Proof of Proposition 3.3: the case n ≥ 3. From Lemma 6.1 it follows that it is
sufficient to prove that Vg(

∏n+1
i=1 mai ) ∈ K if ai ≥ 1.

We proceed by induction on the degree d =
∑n+1
i=1 ai . The smallest possible degree

is n+ 1; then Vg(
∏n+1
i=1 m1) ∈ K , because of (6.12).

Suppose that d ≥ n+ 2. From relations (6.18), (6.12) and Lemma 5.3 it follows that
Vg(

∏n+1
i=1 mai ) ∈ K if a2 ≥ 2 and a3 ≥ 2. Applying (6.12) and (6.13), we find that

Vg(
∏n+1
i=1 mai ) ∈ K if there exist n+ 1 ≥ j > i ≥ 2 such that ai, aj ≥ 2. Suppose there

exists at most one i ≥ 2 such that ai ≥ 2. Since n ≥ 3, there exist n + 1 ≥ j > k ≥ 2
such that aj = ak = 1. If we again apply (6.12) or (6.13), we get Vg(

∏n+1
i=1 mai ) ∈ K .

This completes the proof of Proposition 3.3 in the case n ≥ 3.
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