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Abstract. This work extends Perron’s method for the porous medium equation in the slow diffu-
sion case. The main result shows that nonnegative continuous boundary functions are resolutive in
a general cylindrical domain.
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1. Introduction

The porous medium equation

∂u

∂t
−1um = 0

is an important prototype of a nonlinear parabolic equation and it is by now well un-
derstood. See the monographs [7], [13] and [16] for more on this topic. However, lit-
tle is known about the boundary behaviour of solutions in irregular domains and with
general boundary values, except for the case m = 1, when we have the classical heat
equation, see [14]. We shall consider this challenging question. Our main objective is
to apply the method, introduced for harmonic functions by Perron [10], to this fasci-
nating nonlinear equation. We focus on the slow diffusion case m > 1 in cylindrical
domains. For simplicity, we only consider nonnegative and bounded boundary functions,
in which case the solutions are nonnegative and bounded as well, by the comparison prin-
ciple. However, it is of utmost importance to allow solutions to attain the value zero,
so that moving boundaries, such as those exhibited by the Barenblatt solution, are not
excluded.
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We consider the boundary value problem
∂u

∂t
−1um = 0 in �T ,

u = g on ∂�× [0, T ),
u(x, 0) = g(x, 0),

in a bounded open space-time cylinder�T = �×(0, T ) in RN+1. The precise definitions
of the solution and the boundary conditions will be given later. For a given boundary value
function g, Perron’s method produces two functions: the upper solutionH g and the lower
solution H g with H g ≤ H g . Our first main result is that the upper and lower Perron
solutions are indeed weak solutions of the porous medium equation. However, the upper
and lower solutions may still take the wrong boundary values. The construction can be
performed not only for space-time cylinders but also for more general domains in RN+1.

A central question in this theory is to determine when the upper and lower solutions
are the same function. A classical result in this direction is Wiener’s resolutivity theorem
for harmonic functions: if the boundary value function is continuous, the upper and lower
Perron solutions coincide (see [15]). Our second main result extends this to the porous
medium equation. More precisely, nonnegative continuous boundary functions are resolu-
tive for the porous medium equation in general cylindrical domains in the slow diffusion
casem > 1. No regularity assumptions on the base of the space-time cylinder are needed.
As far as we know, the corresponding result for more general domains in RN+1 remains
open.

Perron’s method requires a parabolic comparison principle so that the upper and lower
Perron solutions can be defined consistently. Our first step is to establish a comparison
principle in general space-time cylinders. To prove the resolutivity theorem we first reduce
the situation to smooth boundary values by approximation. The key step in the proof for
smooth boundary values is constructing super- and subsolutions which are sufficiently
regular in the time direction. For this purpose we use a penalized problem related to
the obstacle problem for the porous medium equation (see [3]). Delicate approximation
results and energy estimates play a pivotal role in the argument. We hope that these results
will have other applications as well. It is likely that our results and methods also apply to
more general equations of the type

∂u

∂t
−1A(u) = 0

(see [7] and [13]).

2. Weak solutions and weak supersolutions

In this section, we discuss a notion on which the construction of Perron solutions will be
based. First, we introduce some notation.

Let � be an open bounded subset of RN , and let 0 < t1 < t2 < T . We denote space-
time cylinders by �T = � × (0, T ) and Ut1,t2 = U × (t1, t2), where U ⊂ � is an open
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set. We call a cylinder Ut1,t2 regular if the boundary of the base set U is smooth. The
parabolic boundary of a space-time cylinder Ut1,t2 is the set

∂pUt1,t2 = (U × {t1}) ∪ (∂U × [t1, t2]),

i.e. only the initial and lateral boundaries are taken into account.
We use the notation H 1(�) for the Sobolev space consisting of all functions u in

L2(�) whose weak gradient exists and also belongs to L2(�). The Sobolev space with
zero boundary values, H 1

0 (�), is the completion of C∞0 (�) in H 1(�). The parabolic
Sobolev space L2(0, T ;H 1(�)) consists of all measurable functions u : �T→[−∞,∞]
such that x 7→ u(x, t) belongs to H 1(�) for almost all t ∈ (0, T ), and∫∫

�T

(|u|2 + |∇u|2) dx dt <∞.

The definition of the space L2(0, T ;H 1
0 (�)) is similar. We write u ∈ L2

loc(0, T ;H
1
loc(�))

if u belongs to the parabolic Sobolev space for all Ut1,t2 b �T . The symbol b means that
a set is compactly contained in a bigger set.

Definition 2.1. Assume that m > 1. A nonnegative function u : �T → R is a weak
solution of the porous medium equation

∂u

∂t
−1um = 0 (2.2)

in �T if um ∈ L2
loc(0, T ;H

1
loc(�)) and∫∫
�T

(
−u

∂ϕ

∂t
+∇um · ∇ϕ

)
dx dt = 0 (2.3)

for all smooth test functions ϕ compactly supported in�T . We define weak supersolutions
by requiring that the integral in (2.3) is nonnegative for nonnegative test functions ϕ.

Throughout this work we assume that m > 1. It is an interesting question whether corre-
sponding results can be proved also when m < 1. Our results and methods also apply to
solutions with a changing sign, but we have chosen to consider only nonnegative solutions
for simplicity. However, it is important to allow solutions to attain the value zero.

Weak solutions are locally Hölder continuous after a possible redefinition on a set of
(N+1)-dimensional measure zero (see [6, 8, 16] or [13, Chapter 7]). Thus, without loss of
generality, we may assume that solutions are continuous. Moreover, weak supersolutions
are lower semicontinuous after a redefinition on a set of (N + 1)-dimensional measure
zero (see [1]).

Besides a local notion of weak solutions, we need a concept of weak solutions to the
initial-boundary value problem

∂u

∂t
−1um = 0 in �T ,

u = g on ∂�× [0, T ),
u(x, 0) = g(x, 0),
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where g is a positive, continuous function defined on �T with gm ∈ L2(0, T ;H 1(�)).
The lateral boundary condition is interpreted in the Sobolev sense, meaning that um− gm

∈ L2(0, T ;H 1
0 (�)). The initial condition is incorporated into the weak formulation by

requiring that ∫∫
�T

(
−u

∂ϕ

∂t
+∇um · ∇ϕ

)
dx dt =

∫
�

g(x, 0)ϕ(x, 0) dx (2.4)

for smooth test functions ϕ vanishing at time T and with compact support in space. With
this definition, solutions to the initial-boundary value problem are unique. This follows
by an application of Oleı̆nik’s test function (see the proof of Lemma 3.2 below). It is
straightforward to check that the initial values are attained in this sense if and only if

lim
t→0

∫
�

u(x, t)η(x) dx =

∫
�

g(x, 0)η(x) dx (2.5)

for all η ∈ C∞0 (�).

3. Viscosity supersolutions

We will employ the notion of viscosity supersolutions to (2.2), following [9]. The term
“viscosity” is used here just as a label. In the case m = 1 this definition gives super-
temperatures (see [14]). For the more common definition of viscosity solutions using
pointwise touching test functions, we refer to [4] and [5]. It is an interesting question
whether the two definitions give the same class of functions.

Definition 3.1. A function u : �T → [0,∞] is a viscosity supersolution if
(1) u is lower semicontinuous,
(2) u is finite in a dense subset of �T , and
(3) the following comparison principle holds: Let Ut1,t2 b �, and let h be a solution to

(2.2) which is continuous in Ut1,t2 . If h ≤ u on ∂pUt1,t2 , then h ≤ u in Ut1,t2 .
The definition of viscosity subsolutions is similar; they are upper semicontinuous, and the
inequalities in the comparison principle are reversed.

Observe that these functions are defined at every point. A similar definition was intro-
duced by F. Riesz [11] for the Laplacian. The fundamental example of a viscosity super-
solution in the sense of Definition 3.1 is the Barenblatt solution [2, 17], which is given by
the formula

Bm(x, t) =

t
−λ

(
C −

λ(m− 1)
2mn

|x|2

t2λ/n

)1/(m−1)

+

, t > 0,

0, t ≤ 0,

where
λ =

n

n(m− 1)+ 2
.

The constant C is usually chosen so that∫
�

Bm(x, t) dx = 1
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for all t > 0. The function Bm is a viscosity supersolution, but not a weak supersolu-
tion. This is due to the lack of integrability of the gradient. For other examples, see [13].
However, bounded viscosity supersolutions are weak supersolutions. In particular, their
mth power belongs to L2

loc(0, T ;H
1
loc(�)). Weak supersolutions are viscosity supersolu-

tions, provided that they are lower semicontinuous (see [1] and [9]). In the present work,
it is enough for the reader to consider lower semicontinuous weak supersolutions that are
defined at each point in their domain.

Some properties are immediate consequences of the definition. The pointwise mini-
mum of a finite number of viscosity supersolutions is a viscosity supersolution. In partic-
ular, the truncations min{u, k}, k = 1, 2, . . . , of a viscosity supersolution u are viscosity
supersolutions. The fact that an increasing limit of viscosity supersolutions is a viscosity
supersolution, provided that the limit is finite in a dense subset, also follows directly from
the definition.

Our main interest is in Perron solutions with continuous boundary values in irregular
domains. In this context, the situation does not change if one only considers bounded
viscosity super- and subsolutions, and we shall do so from now on.

We begin with the definition of the Poisson modification of a viscosity supersolution.
Let u be a bounded viscosity supersolution and Ut1,t2 b �T be a regular space-time
cylinder. We define

P(u,Ut1,t2) =

{
u in �T \ Ut1,t2 ,
h in Ut1,t2 ,

where h is the solution in Ut1,t2 with boundary values u. The function h is constructed
as follows: by semicontinuity, we find an increasing sequence (ϕk) of smooth functions
converging to u pointwise in Ut1,t2 as k → ∞. Let hk be the solution with values ϕk on
the parabolic boundary of Ut1,t2 . Then hk ≤ u and the sequence (hk) is increasing by the
comparison principle. It follows that h = limhk is a solution in Ut1,t2 . Further, it is easy
to verify that P(u,Ut1,t2) is a viscosity supersolution in �T (see [9, pp. 157–158]).

We need an auxiliary result to bypass the fact that we cannot add constants to solu-
tions.

Lemma 3.2. Assume that g ∈ C(�T ) is such that gm ∈ L2(0, T ;H 1(�)) and 0 ≤
g ≤ M . Define

gε = (g
m
+ εm)1/m,

where 0 ≤ ε ≤ 1. Let u and uε be the unique weak solutions in the sense of (2.4) to the
initial-boundary value problems

∂u

∂t
−1um = 0 in �T ,

um − gm ∈ L2(0, T ;H 1
0 (�)),

u(x, 0) = g(x, 0),


∂uε

∂t
−1umε = 0 in �T ,

umε − g
m
ε ∈ L

2(0, T ;H 1
0 (�)),

uε(x, 0) = gε(x, 0),

respectively. Then∫∫
�T

(uε − u)(u
m
ε − u

m) dx dt ≤ εm|�T |(M + 1)+ ε|�T |(M + 1)m.
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Proof. We use the so-called Oleı̆nik test function. The function umε − u
m
− εm has zero

boundary values on the lateral boundary in Sobolev’s sense. Thus

η(x, t) =

{∫ T
t
(umε − u

m
− εm) ds, 0 < t < T,

0, t ≥ T ,

is an admissible test function for the equations satisfied by u and uε. This gives∫∫
�T

(
−u

∂η

∂t
+∇um · ∇η

)
dx dt =

∫
�

u(x, 0)η(x, 0) dx,∫∫
�T

(
−uε

∂η

∂t
+∇umε · ∇η

)
dx dt =

∫
�

uε(x, 0)η(x, 0) dx.

Since

ηt = −(u
m
ε − u

m)+ εm and ∇η =

∫ T

t

∇(umε − u
m) ds,

we obtain∫∫
�T

(
(uε − u)(u

m
ε − u

m
− εm)+∇(umε − u

m) ·

∫ T

t

∇(umε − u
m) ds

)
dx dt

=

∫
�

(gε(x, 0)− g(x, 0))
(∫ T

0
(umε − u

m
− εm) ds

)
dx

by subtracting the equations. Integration with respect to t shows that the triple integral
equals

1
2

∫
�

(∫ T

0
(∇umε −∇u

m) ds

)2

dx,

which is a positive quantity. Thus we get the estimate∫∫
�T

(u− uε)(u
m
− umε ) dx dt

≤ εm
∫∫

�T

(uε − u) dx dt +

∫
�

(gε(x, 0)− g(x, 0))
(∫ T

0
(umε − u

m) ds

)
dx

− εmT

∫
�

(gε(x, 0)− g(x, 0)) dx.

The last term on the right-hand side is negative, since gε ≥ g, and we simply discard it.
Furthermore, by the definition of gε, we have

gε − g = (g
m
+ εm)1/m − g ≤ ε

and, by the maximum principle, we conclude that u ≤ M and uε ≤ M + 1. The required
estimate follows, since

uε − u ≤ M + 1 and umε − u
m
≤ (M + 1)m. ut
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We conclude with a comparison principle between viscosity sub- and supersolutions. The
essential feature here is that the base� of the space-time cylinder�T may be an arbitrary
bounded open set. For the comparison principle in regular cylinders, see [7, pp. 10–12] or
[13, pp. 132–134].

Theorem 3.3 (Comparison principle). Let u be a bounded viscosity subsolution and v a
bounded viscosity supersolution such that

lim sup
z→z0

u(z) ≤ lim inf
z→z0

v(z) (3.4)

for all z0 ∈ ∂p�T . Then u ≤ v in �T .

Proof. Let εj = 1/j , j = 1, 2, . . . . By (3.4), we can find regular cylinders Qj = Uj ×
(tj , T ), with Uj b �, such that

um ≤ vm + εmj in �T \Qj .

Let wj be the weak solution in Qj with boundary values given by v on ∂pQj , and let w̃j
be the weak solution with boundary values (vm + εmj )

1/m on ∂pQj in the sense of (2.4).
Define

hj =

{
v in �T \Qj ,
wj in Qj ,

h̃j =

{
(vm + εmj )

1/m in �T \Qj ,
w̃j in Qj .

Recall that Qj is a regular cylinder. An application of the comparison principle on Qj
shows that

hj ≤ v and u ≤ h̃j in �T .

Now

0 ≤ (u− v)+(um − vm)+ ≤

{
(̃hj − hj )(̃h

m
j − h

m
j ) in Qj ,

εmj (u− v)+ in �T \Qj .

We integrate this estimate, apply Lemma 3.2 and let j →∞ to get∫∫
�T

(u− v)+(u
m
− vm)+ dx dt = 0.

The claim follows. ut

4. Perron solutions

The following definition of Perron solutions is based on the comparison principle.
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Definition 4.1. Let g : ∂p�T → R be given. The upper class Ug consists of the viscosity
supersolutions v which are locally bounded from below and satisfy

lim inf
z→ξ

v(z) ≥ g(ξ)

for all ξ ∈ ∂p�T . The upper Perron solution is defined as

H g(z) = inf
v∈Ug

v(z).

The lower class Lg consists of all viscosity subsolutions u that are locally bounded from
above and satisfy

lim sup
z→ξ

u(z) ≤ g(ξ)

for all ξ ∈ ∂p�T . The lower Perron solution is

H g(z) = sup
u∈Lg

u(z).

If there exists a function h ∈ C(�T ) solving the boundary value problem in the classical
sense, then

h = H g = H g.

To see this, simply note that the function h belongs to both the upper class and the lower
class. As we will see, both H g and H g are local weak solutions to the equation.

A central issue in this theory is the question when H g = H g . If this happens, the
boundary function is called resolutive and we denote the common function by Hg . An
immediate consequence of the comparison principle (Theorem 3.3) is that if u ∈ Lg and
v ∈ Ug , then u ≤ v. Thus

H g ≤ H g (4.2)

for bounded boundary functions g. Our main result (Theorem 5.1) shows that continuous
functions are resolutive. It should be noticed that even when the solutions coincide, they
may attain wrong boundary values. If the boundary function g is smooth enough, then
the weak solutions defined in (2.4) and the Perron solutions coincide (Theorem 5.8). The
main purpose of the definition above is to allow the boundary function g to be general. In
particular, it is not assumed that gm ∈ L2(0, T ;H 1(�)).

So far, the domain was a space-time cylinder �T . The definition of upper and lower
Perron solutions given above makes sense in an arbitrary bounded open set ϒ in RN+1.
Further, Lemma 4.3 and Theorem 4.6 below continue to hold, since their proofs are purely
local. However, a comparison principle with the boundary values taken over the whole
topological boundary of ϒ is not known for the porous medium equation. In particular,
we do not know whether (4.2) remains true in this generality.

Before addressing the resolutivity question in the next section, we establish some
basic properties of the lower and upper Perron solutions.

Lemma 4.3. If g is bounded, then H g and H g are continuous in �T .
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Proof. We prove the claim for H g , the other case being similar. Take cylinders Ut1,t2 b
Vσ1,σ2 b �T and points z1, z2 ∈ Ut1,t2 . Given a positive number ε, we will show that

H g(z1)−H g(z2) < 2ε

provided that Ut1,t2 is sufficiently small. We can find functions v1
i and v2

i from the upper
class such that

lim
i→∞

v1
i (z1) = H g(z1) and lim

i→∞
v2
i (z2) = H g(z2).

Then also vi = min{v1
i , v

2
i } is in the upper class, and we have

lim
i→∞

vi(z1) = H g(z1) and lim
i→∞

vi(z2) = H g(z2).

Let
wi = P(vi, Vσ1,σ2) ∈ Ug.

Then H g ≤ wi ≤ vi , and we have

vi(z1) < H g(z1)+ ε and vi(z2) < H g(z2)+ ε

for sufficiently large i. From the above facts and the local Hölder continuity of wi , it
follows that

H g(z1)−H g(z2) ≤wi(z1)− wi(z2)+ ε ≤ osc
Ut1,t2

wi + ε ≤ 2ε

by choosing Ut1,t2 in a suitable way. Observe that the boundedness of g implies that the
modulus of continuity of wi is independent of i. By exchanging the roles of z1 and z2, we
have

|H g(z1)−H g(z2)| ≤ 2ε,

which completes the proof. ut

To prove that Perron solutions are indeed weak solutions to the porous medium equation,
we need some auxiliary results. The first of them is a Caccioppoli estimate. The proof can
be found in [9, Lemma 2.15].

Lemma 4.4. Let u be a weak supersolution in �T such that um ∈ L2(0, T ;W 1,2(�))

and 0 ≤ u ≤ M . Then∫∫
�T

η2
|∇um|2 dx dt ≤ 16M2mT

∫
�

|∇η|2 dx + 6Mm+1
∫
�

η2 dx

for all nonnegative functions η ∈ C∞0 (�).

The preceding lemma implies a convergence result in a straightforward manner (see for
example [9, proof of Theorem 3.2]).

Proposition 4.5. Let 0 ≤ uj ≤ M , j = 1, 2, . . . , be weak solutions that converge
pointwise almost everywhere to a function u. Then u is also a weak solution.
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Theorem 4.6. If g is bounded, then H g and H g are local weak solutions in �T .

Proof. We give the proof for H g , the case of H g being again symmetrical. Let qn, n =
1, 2, . . . , be an enumeration of the points in�T with rational coordinates. The first aim is
to construct functions in the upper class converging toH g at the points qn. To accomplish
this, let vni ∈ Ug be such that

H g(qn) ≤ v
n
i (qn) < H g(qn)+ 1/i, i = 1, 2, . . . ,

and define

wi = min{v1
1, v

1
2, . . . , v

1
i , v

2
1, v

2
2, . . . , v

2
i , . . . , v

i
1, v

i
2, . . . , v

i
i }.

Then wi ∈ Ug , w1 ≥ w2 ≥ · · · , and

H(qn) ≤ wi(qn) ≤ v
n
i (qn)

for i ≥ n. It follows that
lim
i→∞

wi(qn) = H(qn)

at each point qn. Let Ut1,t2 b �T be an arbitrary regular cylinder and denote

Wi = P(wi, Ut1,t2).

Then H g ≤ Wi ≤ wi , the sequence (Wi) is decreasing, and its limit W is a solution in
Ut1,t2 by Proposition 4.5. At every point qn we have

W(qn) = lim
i→∞

Wi(qn) = H(qn).

Both W and H g are continuous in Ut1,t2 , and they coincide on a dense subset; hence they
must coincide everywhere. SinceW is a solution inUt1,t2 , so isH g . The property of being
a solution is local, so the proof is complete. ut

5. Resolutivity

The following theorem is our main result. It states that continuous functions are resolutive.

Theorem 5.1 (Resolutivity). If g : ∂p�T → R is continuous, then H g = H g .

To prove the resolutivity theorem, by approximation we first reduce the situation to
smooth boundary values. For smooth boundary values, we need to construct functions
belonging to the upper class Ug that are sufficiently smooth in time and attain the correct
boundary and initial values in the weak sense. We do this by solving a penalized equation.
For this purpose, assume the function g is continuously differentiable in�T and such that
gm ∈ C2(�T ). Then

9 =
∂g

∂t
−1gm

is bounded. We will use the positive part 9+ = max{9, 0} below. Choose δ > 0, and let
ζδ : R → R be a Lipschitz function such that 0 ≤ ζδ(s) ≤ 1, ζδ(s) = 1 for all s ≥ 0,
ζδ(s) = 0 for all x ≤ −δ, and |ζ ′δ(s)| ≤ 2/δ. We have the following existence result
(see [3]).
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Proposition 5.2. Let g be continuously differentiable in�T and such that gm ∈ C2(�T ).
Then there exists a bounded weak solution u with um ∈ L2(0, T ;H 1(�)) to the boundary
value problem 

∂u

∂t
−1um = ζδ(g

m
− um)9+ in �T ,

um − gm ∈ L2(0, T ;H 1
0 (�)),

u(x, 0) = g(x, 0),

satisfying u ≥ g in �T .

Remark 5.3. In the proof of Theorem 5.1 below, we need to choose approximations of
a given continuous function g so that the smoothness assumptions of Proposition 5.2
hold. This is accomplished by approximating a suitable smaller power gα , α ≤ 1, of the
function rather than the function g itself. Indeed, we may express the derivatives of the
powers one and m in terms of the derivatives of the power α. Some simple calculations
show that the choice α = min{1, m/2} will do.

Remark 5.4. Due to our assumption that the boundary values are positive, the roles of
upper and lower solutions in the proof of Theorem 5.1 are not quite symmetric. For sub-
solutions, we need a version of Proposition 5.2 where the solutions can change sign. See
pp. 97–100 in [13] for the needed modifications to the arguments in [3].

We need an energy estimate for the time derivative of a solution to the above equation.
For similar results, see [12, Proposition 13] and [13, Section 3.2.5].

Theorem 5.5. Assume that f ∈ L∞(�T ). Let u be a bounded weak solution to the
boundary value problem 

∂u

∂t
−1um = f in �T ,

um − gm ∈ L2(0, T ;H 1
0 (�)),

u(x, 0) = g(x, 0).

Then ∂u(m+1)/2/∂t ∈ L2(�T ) with the estimate∫∫
�T

∣∣∣∣∂u(m+1)/2

∂t

∣∣∣∣2 dx dt + ∫
�

|∇(um − gm)|2(x, T ) dx

≤ c

(∫
�

|(gm)t (x, T )u(x, T )− (g
m)t (x, 0)g(x, 0)| dx

+

∫∫
�T

(
|u|2 + um−1(|f |2 + |1gm|2)

)
dx dt

+

∫∫
�T

(
|(gm)t |

2
+ |1gm|2 + |(gm)t t |

2
+ |f |2

)
dx dt

)
.

Furthermore, ∂uq/∂t ∈ L2(�T ) for any q ≥ (m+ 1)/2.
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Proof. First we assume that u is smooth in �T . This assumption may be removed
by a standard approximation argument (see [13, proof of Theorem 5.5] and [16, Sec-
tion 1.3.2]). Denote w = u(m+1)/2. Then∣∣∣∣∂w∂t

∣∣∣∣2 = (m+ 1)2

4
um−1
|ut |

2

=
(m+ 1)2

4m
(um)tut =

(m+ 1)2

4m

(
(um − gm)tut + (g

m)tut
)

=
(m+ 1)2

4m

(
(um − gm)t (1u

m
−1gm)

+ (gm)tut +1g
m(um − gm)t + f (u

m
− gm)t

)
.

We focus on the first term after the last equality. To this end, we note that

1
2
d

dt

∫
�

|∇um − gm|2 dx =

∫
�

∇(um − gm) · ∇(um − gm)t dx

=−

∫
�

1(um − gm)(um − gm)t dx,

since um−gm has zero boundary values on the lateral boundary. Thus an integration gives∫∫
�T

∣∣∣∣∂w∂t
∣∣∣∣2 dx dt = − (m+ 1)2

8m

∫ T

0

d

dt

∫
�

|∇(um − gm)|2 dx dt

+
(m+ 1)2

4m

∫∫
�T

(
(gm)tut + (u

m
− gm)t1g

m
+ f (um − gm)t

)
dx dt

= −
(m+ 1)2

8m

∫
�

|∇(um − gm)|2 dx

∣∣∣∣T
0

+
(m+ 1)2

4m

(∫∫
�T

−(gm)t tu dx dt +

∫
�

(gm)tu dx

∣∣∣∣T
0

)
+
(m+ 1)2

4m

∫∫
�T

(
(um)t1g

m
− (gm)t1g

m
− f (gm)t + (u

m)tf
)
dx dt.

To proceed, we compute
∂um

∂t
= um−(m+1)/2 ∂w

∂t
,

and apply Young’s inequality to the two terms containing the time derivative of um to get∫∫
�T

|(um)t1g
m
| dx dt ≤ ε

∫∫
�T

∣∣∣∣∂w∂t
∣∣∣∣2 dx dt + cε ∫∫

�T

um−1
|1gm|2 dx dt,∫∫

�T

|(um)tf | dx dt ≤ ε

∫∫
�T

∣∣∣∣∂w∂t
∣∣∣∣2 dx dt + cε ∫∫

�T

um−1
|f |2 dx dt.
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We insert these inequalities into the estimate above, choose a sufficiently small ε, and
absorb terms to get∫∫

�T

∣∣∣∣∂w∂t
∣∣∣∣2 dx dt + ∫

�

|∇(um − gm)|2(x, T ) dx

≤ c

(∫
�

|∇(um − gm)|2(x, 0) dx +
∫∫

�T

|(gt t )
mu| dx dt

+

∫
�

|(gm)t (x, T )u(x, T )− (g
m)t (x, 0)u(x, 0)| dx

+

∫∫
�T

um−1
|1gm|2 dx dt +

∫∫
�T

|(gm)t1g
m
| dx dt

+

∫∫
�T

|f (gm)t | dx dt +

∫∫
�T

um−1
|f |2 dx dt

)
.

We recall that um = gm at the initial time, so the required estimate follows from an
application of Cauchy’s inequality. ut

Lemma 5.6. Let g satisfy the smoothness assumptions of Proposition 5.2, and let v be
the solution to the boundary value problem of Proposition 5.2. Let u = P(v,Dt1,T ) be
the Poisson modification of v with respect to a regular space-time cylinder Dt1,T with
D b � and 0 < t1 < T . Then∫∫

Dt1,T

|∇um|2 dx dt + sup
t1<t<T

∫
D

um+1(x, t) dx

≤ c

(∫∫
Dt1,T

(
|∇vm|2 + |v|2 +

∣∣∣∣∂vm∂t
∣∣∣∣2) dx dt sup

t1<t<T

∫
D

vm+1(x, t) dx

)
.

Proof. The formal computations below are justified rigorously by a standard application
of a suitable mollification in the time direction. Since u is a solution inDt1,T with bound-
ary values given by vm, we may use um − vm as a test function to obtain∫∫

Dt1,T

(
∂u

∂t
(um − vm)+∇um · ∇(um − vm)

)
dx dt = 0. (5.7)

The next goal is to eliminate the time derivative of u. We use the fact that (um+1)t =

(m+ 1)utum and integrate by parts in the other term to get∫∫
Dt1,T

∂u

∂t
(um − vm) dx dt

=
1

m+ 1

(∫
D

um+1(x, T ) dx −

∫
D

um+1(x, t1) dx

)
+

∫∫
Dt1,T

u
∂vm

∂t
dx dt −

∫
D

u(x, T )vm(x, T ) dx +

∫
D

u(x, t1)v
m(x, t1) dx.
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This leads to the estimate

0 ≤
∫∫

Dt1,T

|∇um|2 dx dt +
1

m+ 1

∫
D

um+1(x, T ) dx

≤
1

m+ 1

∫
D

vm+1(x, t1) dx +

∫
D

vm+1(x, T ) dx −

∫∫
Dt1,T

u
∂vm

∂t
dx dt

+

∫∫
Dt1,T

∇um · ∇vm dx dt,

since u ≤ v. By Young’s inequality, we obtain∫∫
Dt1,T

∇um · ∇vm dx dt ≤ ε

∫∫
Dt1,T

|∇um|2 dx dt + cε

∫∫
Dt1,T

|∇vm|2 dx dt.

We insert this into the previous estimate, and absorb terms. We arrive at∫
Dt1,T

|∇um|2 dx dt +
1

m+ 1

∫
D

um+1(x, T ) dx

≤ c

(∫
D

vm+1(x, t1) dx +

∫
D

vm+1(x, T ) dx +

∫∫
Dt1,T

|v|

∣∣∣∣∂vm∂t
∣∣∣∣ dx dt

+

∫∫
Dt1,T

|∇vm|2 dx dt

)
.

The proof is then completed by estimating the term with vm+1(x, T ) by a supremum over
time, and by replacing T by t1 < τ < T such that∫

D

vm+1(x, τ ) dx ≥ sup
t1<t<T

1
2

∫
D

vm+1(x, t) dx,

and applying Young’s inequality. ut

Proof of Theorem 5.1. By extension, we may assume that g is defined in the whole
of RN+1. We first show that it suffices to prove that for smooth boundary values g, both
the upper and lower Perron solutions agree with the unique weak solution with bound-
ary and initial values g in the sense of (2.4). Set εj = 1/j , j = 1, 2, . . . . There exist
functions ϕj satisfying the smoothness assumptions of Proposition 5.2 (see Remark 5.3),
converging uniformly to g and such that

ϕmj ≤ g
m
≤ ϕmj + ε

m
j .

Assuming the above conclusion for smooth functions, we get

Hϕj ≤ H g ≤ H g ≤ H(ϕmj +ε
m
j )

1/m .

Since
|Hϕj −H(ϕmj +ε

m
j )

1/m | → 0

as j →∞ by Lemma 3.2, it follows that H g = H g almost everywhere. The conclusion
that H g = H g everywhere follows by continuity of the Perron solutions.
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Let us then assume that g is smooth, and let h be the unique weak solution with initial
and boundary values given by g, i.e. hm − gm ∈ L2(0, T ;H 1

0 (�)) and (2.4) holds. We
need to show that h ≥ H g; the problem is that we do not know whether h belongs to the
upper class or not. To deal with this, let v be the solution of the penalized boundary value
problem of Proposition 5.2. Then also

vm − gm ∈ L2(0, T ;H 1
0 (�)).

Exhaust �T by an increasing sequence of regular cylinders Qj = Uj × (tj , T ), and let
wj = P(v,Qj ), j = 1, 2, . . . . Then wj ∈ Ug , the sequence (wj ) is decreasing, and
H g ≤ wj . The limit function

w = lim
j→∞

wj

is a solution in �T , and
w ≥ H g

since w is a pointwise limit of functions in the upper class. It remains to show that w
has the boundary and initial values given by g, since then by the uniqueness of weak
solutions, we have

h = w ≥ H g.

To check the lateral boundary values, note that the sequence (wmj − g
m) is bounded

in L2(0, T ;H 1
0 (�)) by Lemma 5.6. It follows that

wm − gm ∈ L2(0, T ;H 1
0 (�)),

since L2(0, T ;H 1
0 (�)) is a closed subspace of L2(0, T ;H 1(�)) and weak limits must

agree with pointwise limits.
We use the criterion (2.5) to show that the initial values of the limit function w are

given by the function g(x, 0). Let η ∈ C∞0 (�). Choose a time instant 0 < t < T and j
large enough so that tj < t and the support of η is contained in Uj . We have∣∣∣∣∫
�

(w(x, t)− g(x, 0))η(x) dx
∣∣∣∣ ≤ ∣∣∣∣∫

�

(w(x, t)− wj (x, t))η(x) dx

∣∣∣∣
+

∣∣∣∣∫
�

(wj (x, t)− wj (x, tj ))η(x) dx

∣∣∣∣+ ∣∣∣∣∫
�

(v(x, tj )− g(x, 0))η(x) dx
∣∣∣∣

by adding and subtracting suitable terms, using the triangle inequality and the fact that
wj (x, tj ) = v(x, tj ) on the support of η. The first and third terms on the right tend to zero
as j → ∞. To deal with the second term, we formally test the equation satisfied by wj
with ϕ = ηχ(tj ,t), where χ(tj ,t) is the characteristic function of the interval (tj , t). This
can be justified by an approximation argument. We get∣∣∣∣∫

�

(wj (x, t)− wj (x, tj ))η dx

∣∣∣∣ = ∣∣∣∣∫∫
Uj×(tj ,t)

∇wmj · ∇η dx dt

∣∣∣∣.
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We estimate the right-hand side by Hölder’s inequality to get∣∣∣∣∫∫
Uj×(tj ,t)

∇wmj · ∇η dx dt

∣∣∣∣ ≤ |�|1/2|t − tj |1/2‖∇wmj ‖L2(�T )
‖∇η‖L∞(�),

where we have also used the fact that |Uj × (tj , t)| ≤ |�| |t − tj |. Since the norm of ∇wmj
can be controlled independently of j by applying Lemma 5.6, we may use this estimate
for the second term to get∣∣∣∣∫

�

(w(x, t)− g(x, 0))η(x) dx
∣∣∣∣ ≤ ct‖∇η‖L∞(�)

after letting j → ∞. Since η was arbitrary, letting t → 0 shows that (2.5) holds for the
function w, as desired.

By a similar argument using the variant of Proposition 5.2 described in Remark 5.4,
we see that h ≤ H g , so that

h ≤ H g ≤ H g ≤ h,

which completes the proof. ut

The second part of the previous proof gives the following uniqueness result.

Theorem 5.8. Let g satisfy the smoothness assumptions of Proposition 5.2 and let u be
the weak solution to the boundary value problem in the sense of (2.4). Then u = Hg .
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MR 2338118

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1321.35085&format=complete
http://www.ams.org/mathscinet-getitem?mr=3348790
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0047.19204&format=complete
http://www.ams.org/mathscinet-getitem?mr=0052948
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1331.35206&format=complete
http://www.ams.org/mathscinet-getitem?mr=3394386
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1084.35033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2151235
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0929.35072&format=complete
http://www.ams.org/mathscinet-getitem?mr=1662747
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0547.35057&format=complete
http://www.ams.org/mathscinet-getitem?mr=0741215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1205.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2338118


Perron’s method for the porous medium equation 2969
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