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Abstract. Inspired by recent work of Alberts, Khanin and Quastel [AKQ14a], we formulate gen-
eral conditions ensuring that a sequence of multi-linear polynomials of independent random vari-
ables (called polynomial chaos expansions) converges to a limiting random variable, given by a
Wiener chaos expansion over the d-dimensional white noise. A key ingredient in our approach
is a Lindeberg principle for polynomial chaos expansions, which extends earlier work of Mos-
sel, O’Donnell and Oleszkiewicz [MOO10]. These results provide a unified framework to study
the continuum and weak disorder scaling limits of statistical mechanics systems that are disorder
relevant, including the disordered pinning model, the (long-range) directed polymer model in di-
mension 1+ 1, and the two-dimensional random field Ising model. This gives a new perspective in
the study of disorder relevance, and leads to interesting new continuum models that deserve further
studies.
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Bicocca, via Cozzi 55, 20125 Milano, Italy; e-mail: francesco.caravenna@unimib.it
R. Sun: Department of Mathematics, National University of Singapore,
10 Lower Kent Ridge Road, 119076 Singapore; e-mail: matsr@nus.edu.sg
N. Zygouras: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK;
e-mail: N.Zygouras@warwick.ac.uk

Mathematics Subject Classification (2010): Primary 82B44; Secondary 82D60, 60K35



2 Francesco Caravenna et al.

4. Proof of the Lindeberg principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5. Proof of the convergence to Wiener chaos . . . . . . . . . . . . . . . . . . . . . . . . . 37
6. Proof for the disordered pinning model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7. Proof for the directed polymer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8. Proof for the random field Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Appendix A. The Cameron–Martin shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Appendix B. Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1. Introduction

In this paper, we consider statistical mechanics models defined on a lattice, in which
disorder acts as an external “random field”. We focus on models that are disorder relevant,
in the sense that arbitrarily weak disorder changes the qualitative properties of the model.
We will show that when the homogeneous model (without disorder) has a non-trivial
continuum limit, disorder relevance manifests itself via the convergence of the disordered
model to a disordered continuum limit if the disorder strength and lattice mesh are suitably
rescaled.

Our approach is inspired by recent work of Alberts, Khanin and Quastel [AKQ14a] on
the directed polymer model in dimension 1+1. Here we follow a different path, establish-
ing a general convergence result for polynomial chaos expansions based on a Lindeberg
principle. This extends earlier work of Mossel, O’Donnell and Oleszkiewicz [MOO10] to
optimal (second) moment assumptions, and is of independent interest.

In this section, we present somewhat informally the main ideas of our approach in a
unified framework, emphasizing the natural heuristic considerations. The precise formu-
lation of our results is given in Sections 2 and 3, which can be read independently (both
of each other and of the present one). The proofs are contained in Sections 4 to 8, while
some technical parts have been deferred to the Appendices. Throughout the paper, we
use the conventions N := {1, 2, 3, . . .} and N0 := N ∪ {0}, and we denote by Leb the
Lebesgue measure on Rd .

1.1. Continuum limits of disordered systems

Consider an open set � ⊆ Rd and define the lattice 
δ := (δZ)d ∩� for δ > 0. Suppose
that a reference probability measure Pref


δ
is given on R
δ , which describes a real-valued

field σ = (σx)x∈
δ . We focus on the case when each σx takes two possible values (typi-
cally σx ∈ {0, 1} or σx ∈ {−1, 1}).

Let ω := (ωx)x∈
δ be i.i.d. random variables (also independent of σ ) with zero mean,
unit variance, and locally finite exponential moments, which represent the disorder. Prob-
ability and expectation for ω will be denoted respectively by P and E.

Given λ > 0, h ∈ R and a P-typical realization of the disorder ω, we define the
disordered model as the following probability measure Pω
δ;λ,h for the field σ = (σx)x∈
δ :

Pω
δ;λ,h(dσ ) :=
e
∑
x∈
δ

(λωx+h)σx

Zω
δ;λ,h
Pref

δ
(dσ ), (1.1)
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where the normalizing constant, called the partition function, is defined by

Zω
δ;λ,h := Eref

δ

[
e
∑
x∈
δ

(λωx+h)σx
]
. (1.2)

The quenched free energy F(λ, h) of the model is defined as the rate of exponential
growth of Zω
δ;λ,h as � ↑ Rd for fixed δ (or equivalently1 as δ ↓ 0 for fixed �):

F(λ, h) := lim sup
�↑Rd

1
|
δ|

E
[
logZω
δ;λ,h

]
= lim sup

δ↓0

1
|
δ|

E
[
logZω
δ;λ,h

]
. (1.3)

Discontinuities in the derivatives of the free energy correspond to phase transitions. A fun-
damental question is: does arbitrary disorder (i.e., λ > 0) radically change the behavior of
the homogeneous model (i.e., λ = 0), such as the qualitative properties of the law of the
field σ and/or the smoothness of the free energy in h? When the answer is affirmative, the
model is called disorder relevant. In such cases, we will show that the disordered model
typically admits a non-trivial scaling limit as δ ↓ 0, provided λ, h → 0 at appropriate
rates.

Informally speaking, our key assumption is that the discrete field σ = (σx)x∈
δ , under
the reference law Pref


δ
and after a suitable rescaling, converges as δ ↓ 0 to a “continuum

field” σ = (σ x)x∈�, possibly distribution-valued, with law Pref
� . (Our precise assumptions

will be about the convergence of correlation functions, see (1.11).) Although the approach
we follow is very general, we describe three specific models, to be discussed extensively
in what follows.
1. The disordered pinning model (d = 1). Let τ = (τk)k≥0 be a renewal process on N

with P(τ1 = n) = n−(1+α)+o(1), with α ∈ (1/2, 1). Take � = (0, 1), δ = 1/N for
N ∈ N, and define Pref


δ
as the law of (σx := 1δτ (x))x∈
δ , where δτ = {N−1τn}n≥0

is viewed as a random subset of �. The continuum field Pref
� is (σx = 1τ (x))x∈(0,1)

where τ denotes the α-stable regenerative set (the zero level set of a Bessel(2(1− α))
process).

2. The (long-range) directed polymer model. Let (Sn)n≥0 be a random walk on Z with
i.i.d. increments, in the domain of attraction of an α-stable law, with 1 < α ≤ 2.
Take � = (0, 1) × R, δ = 1/N for N ∈ N and, abusing notation, set 
δ :=
((δZ) × (δ1/αZ)) ∩ �. The “effective dimension” for this model is therefore deff :=

1 + 1/α. Define Pref

δ

as the law of the field (σx := 1Aδ (x))x∈
δ , where Aδ :=
{(n/N, Sn/N

1/α)}n≥0 is viewed as a random subset of �. The continuum field Pref
�

is (σ x = 1A(x))x∈(0,1)×R where A = {(t, Xt )}t≥0 and (Xt )t≥0 is an α-stable Lévy
process (Brownian motion for α = 2).

3. The random field Ising model (d = 2). Take any bounded and connected set � ⊆ R2

with smooth boundary and define Pref

δ

to be the critical Ising model on 
δ with inverse

temperature β = βc = 1
2 log(1 +

√
2) and + boundary condition. The (distribution-

valued) continuum field Pref
� has been recently constructed in [CGN12a, CGN13], us-

ing breakthrough results on the scaling limit of correlation functions of the critical
two-dimensional Ising model, determined in [CHI12].

1 We assume the natural consistency condition that Pref
(c
)cδ

coincides with Pref

δ

for any c > 0.
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The restrictions on the dimensions and parameters of these models are linked precisely to
the disorder relevance issue, as will be explained later.

Since the reference law Pref

δ

has a weak limit Pref
� as δ ↓ 0, a natural question emerges:

can one obtain a limit also for the disordered model Pω
δ;λ,h, under an appropriate scaling
of the coupling constants λ, h? (We mean, of course, a non-trivial limit, which keeps track
of λ, h; otherwise, it suffices to let λ, h→ 0 very fast to recover the “free case” Pref

� .)
A natural strategy is to look at the exponential weight in (1.1). As δ ↓ 0, the discrete

disorder ω = (ωx)x∈
δ approximates the white noise W(dx), which is a sort of random
signed measure on� (see Subsection 2.1 for more details). Then one might hope to define
the candidate continuum disordered model PW


δ;λ̂,ĥ
by

dPW
�;λ̂,ĥ

dPref
�

(σ ) :=
e
∫
� σ x (λ̂W(dx)+ĥ dx)

ZW
�;λ̂,ĥ

, (1.4)

in analogy with (1.1), with ZW
�;λ̂,ĥ

defined accordingly, as in (1.2).

Unfortunately, formula (1.4) typically makes no sense for λ̂ 6= 0, because the config-
urations of the continuum field σ = (σ x)x∈� under Pref

� are too rough or “thin” for the
integral over W(dx) to be meaningful (cf. the three motivating models listed above). We
stress here that the difficulty is substantial and not just technical: for pinning and directed
polymer models, one can show [AKQ14b, CSZ14] that the scaling limit PW

�;λ̂,ĥ
of Pω
δ;λ,h

exists, but for λ̂ 6= 0 it is not absolutely continuous with respect to Pref
� . In particular, it is

hopeless to define the continuum disordered model through a Radon–Nikodym density,
as in (1.4).

1.2. General strategy and results

In this paper we focus on the disordered partition function Zω
δ;λ,h. We show that when
δ ↓ 0 and λ, h are scaled appropriately, the partition function admits a non-trivial limit in
distribution, which is explicit and universal (i.e., it does not depend on the fine details of
the model).

Switching from the random probability law Pω
δ;λ,h to the random number Zω
δ;λ,h
is of course a simplification, whose relevance may not be evident. It turns out that the
partition function contains essential information on the model. In fact, the scaling limit
of Zω
δ;λ,h, for sufficiently many domains � and “boundary conditions”, allows one to
reconstruct the full scaling limit of Pω
δ;λ,h. This task has been achieved in [AKQ14b]
for the directed polymer model based on simple random walk, and in [CSZ14] for the
disordered pinning model. We discuss the case of the long-range directed polymer model
in Remark 3.9 below.

The scaling limit ofZω
δ;λ,h can also describe the universal behavior of the free energy
F(λ, h) as λ, h → 0 (cf. Subsection 1.3). This explains the key role of the partition
function and is a strong motivation for focusing on it in the first place.

We now describe our approach. The idea is to consider the so-called “high-
temperature expansion” (|λ|, |h| � 1) of the partition function Zω
δ;λ,h. When the field
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takes two values (say σx ∈ {0, 1}, for simplicity), we can factorize and “linearize” the
exponential in (1.2):

Zω
δ;λ,h = Eref

δ

[ ∏
x∈
δ

(1+ εxσx)
]
, where εx := e

λωx+h − 1. (1.5)

Let us introduce the k-point correlation function ψ (k)
δ
(x1, . . . , xk) of the field under the

reference law, defined for k ∈ N and distinct x1, . . . , xk ∈ � by

ψ
(k)


δ
(x1, . . . , xk) := Eref


δ
[σx1 · · · σxk ], (1.6)

where we set σx := σxδ with xδ being the point in 
δ closest to x ∈ �. (We define the
correlation function on all points of� for later convenience, and set it to be zero whenever
(xi)δ = (xj )δ for some i 6= j .) A binomial expansion of the product in (1.5) then yields

Zω
δ;λ,h = 1+
|
δ |∑
k=1

1
k!

∑
(x1,...,xk)∈(
δ)k

ψ
(k)


δ
(x1, . . . , xk)

k∏
i=1

εxi , (1.7)

where the k! accounts for the fact that we sum over ordered k-uples (x1, . . . , xk). We have
rewritten the partition function as a multi-linear polynomial of the independent random
variables (εx)x∈
δ (what is called a polynomial chaos expansion), with coefficients given
by the k-point correlation function of the reference field. Note that, by Taylor expansion,

E[εx] ' h+ 1
2λ

2
=: h′, Var[εx] ' λ2. (1.8)

The crucial fact is that, for |λ|, |h| � 1, the distribution of a polynomial chaos ex-
pansion, like the right hand side of (1.7), is insensitive the marginal distribution of the
random variables (εx)x∈
δ , as long as mean and variance are kept fixed. A precise for-
mulation of this loosely stated invariance principle is given in Section 2 (Theorems 2.6
and 2.8) in the form of a Lindeberg principle. Denoting by (ω̃x)x∈
δ a family of i.i.d.
standard Gaussians, by (1.8) we can then approximate

Zω
δ;λ,h ' 1+
|
δ |∑
k=1

1
k!

∑
(x1,...,xk)∈(
δ)k

ψ
(k)


δ
(x1, . . . , xk)

k∏
i=1

(λω̃xi + h
′). (1.9)

Let us now introduce a white noise W(·) on Rd (see Subsection 2.1): setting 1 :=
(−δ/2, δ/2)d , we replace each ω̃x by δ−d/2W(x + 1). Since h′ = h′δ−dLeb(x + 1),
the inner sum in (1.9) coincides, up to boundary terms, with the following (deterministic
+ stochastic) integral:∫

· · ·

∫
�k
ψ
(k)


δ
(x1, . . . , xk)

k∏
i=1

(λδ−d/2W(dxi)+ h
′δ−d dxi). (1.10)

(We recall that ψ (k)
δ
(x1, . . . , xk) is a piecewise constant function.)
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We can now state our crucial assumption: we suppose that, for every k ∈ N, there
exist a symmetric function ψ (k)� : (R

d)k → R and an exponent γ ∈ [0,∞) such that

(δ−γ )kψ
(k)


δ
(x1, . . . , xk) −−→

δ↓0
ψ
(k)
� (x1, . . . , xk) in L2(�k). (1.11)

By (1.10), if we fix λ̂ ≥ 0, ĥ ∈ R and rescale the coupling constants as follows:

λ = λ̂δd/2−γ , h′ = ĥδd−γ (where h′ := h+ λ2/2), (1.12)

equations (1.9)–(1.10) suggest that Zω
δ;λ,h converges in distribution as δ ↓ 0 to a random
variable which admits a Wiener chaos expansion with respect to the white noise W(·):

Zω
δ;λ,h
d
−−→
δ↓0

ZW
�;λ̂,ĥ

:= 1+
∞∑
k=1

1
k!

∫
· · ·

∫
�k
ψ
(k)
� (x1, . . . , xk)

k∏
i=1

(λ̂W(dxi)+ ĥ dxi).

(1.13)

This is precisely what happens, by our main convergence results in Section 2
(Theorems 2.3 and 2.5). It is natural to call the random variable ZW

�;λ̂,ĥ
in (1.13) the

continuum partition function, because it is the scaling limit of Zω
δ;λ,h.

Remark 1.1. The L2 convergence in (1.11) typically requires γ < d/2 (cf. (1.16) be-
low), which means that the disorder coupling constants λ, h vanish as δ ↓ 0, by (1.12).
The fact that the continuum partition function ZW

�;λ̂,ĥ
in (1.13) is nevertheless a random

object (for λ̂ > 0) is a manifestation of disorder relevance. We elaborate more on this
issue in Subsection 1.3.

Let us finally take a quick look at the three motivating models. The complete results are
described in Section 3 (Theorems 3.1, 3.8 and 3.14). Note that the scaling exponents in
(1.12) are determined by the dimension d and by the exponent γ appearing in (1.11).

1. For the disordered pinning model (d = 1), one has γ = 1−α by renewal theory [D97].
Relation (1.12) (for δ = 1/N ) yields

λ = λ̂/Nα−1/2, h′ = ĥ/Nα.

Notice that h′ = (const)λ2α/(2α−1) is precisely the scaling of the critical curve [G10].
2. For the (long-range) directed polymer model (deff = 1 + 1/α), one has γ = 1/α

by Gnedenko’s local limit theorem [BGT87]. Therefore (1.12) (for δ = 1/N and d
replaced by deff) gives

λ = λ̂/N (α−1)/(2α), h′ = ĥ/N.

(The parameter h′ is actually irrelevant for this model, and one usually sets h′ ≡ 0,
i.e., h = − 1

2λ
2.) In the case α = 2, when the underlying random walk has zero mean

and finite variance, one recovers the scaling λ ≈ N−1/4 determined in [AKQ14a].
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3. For the random field Ising model (d = 2) one has γ = 1/8 [CHI12], hence by (1.12),

λ = λ̂δ7/8, h = ĥδ15/8. (1.14)

(Note that h instead of h′ appears in this relation; moreover one should look at the
normalized partition function exp(− 1

2λ
2
|
δ|)Zω
δ;λ,h. This is because σx ∈ {−1, 1}

instead of {0, 1}, hence the starting relation (1.5) requires a correction.)

1.3. Discussion and perspectives

We now collect some comments and observations and point out some further directions
of research.

1. (Disorder relevance). The main motivation of our approach is to understand the issue
of disorder relevance, i.e. whether the addition of a small amount of disorder modifies the
nature of the phase transition of the underlying homogeneous model. Remarkably, the key
condition (1.11), which determines the class of models to which our approach applies, is
consistent with the Harris criterion for disorder relevance, as we now discuss.

First we note that when γ > 0, which is the most interesting case, condition (1.11)
indicates that the reference law has polynomially decaying correlations, which signifies
that we are at the critical point of a continuous phase transition. In our context, this means
that the order parameter mh := limδ↓0 |
δ|−1E
δ;0,h[

∑
x∈
δ σx] in the homogeneous

model (λ = 0) vanishes continuously, but non-analytically, as h→ 0 (cf. (1.1) and (1.2)).
When (1.11) holds pointwise, with γ > 0, the limiting correlation function typically

diverges polynomially on diagonals, with the same exponent γ :

ψ
(k)
� (x1, . . . , xk) ≈ ‖xi − xj‖

−γ as xi → xj . (1.15)

To have finite L2 norm (which is necessary for L2 convergence in (1.11)), such a local
divergence must be locally square-integrable in Rd : this means that (d − 1)− 2γ > −1,
i.e.

γ < d/2. (1.16)

(Note that d/2− γ is precisely the scaling exponent of the coupling constant λ in (1.12).)
Relation (1.16) matches the Harris criterion for disorder relevance [H74]. This was

originally introduced in the context of the Ising model with bond disorder, but it can be
naturally rephrased for general disordered system (cf. [G10], [CCFS86]): denoting by ν
the correlation length exponent of the homogeneous system (λ = 0), it asserts that a
d-dimensional system is disorder-relevant when ν < 2/d and irrelevant when ν > 2/d
(the remaining case ν = 2/d being dubbed marginal). The exponent ν is usually defined
in terms of field correlations:

|E
δ;0,h(σxσy)− E
δ;0,h(σx)E
δ;0,h(σy)| ≈
δ↓0

e
−
|x−y|
δξ(h) with ξ(h) ≈

h↓0
h−ν . (1.17)
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Since such an exponent can be difficult to compute, it is typical to consider alternative
notions of correlation length ξ(h), linked to finite size scaling [CCFS86, CCFS89]. In our
context, it is natural to define

ξ(h)−1
:= max{δ > 0 : Z
δ;0,h > A}, (1.18)

whereA > 0 is a fixed large constant, whose precise value is immaterial. Recalling (1.12),
we can rewrite (1.13) for λ = 0 as

lim
h↓0

Z
δ;0,h = Z�;0,ĥ with δ = δ
h,ĥ
:= (h/ĥ)1/(d−γ ).

If ĥ 7→ Z
�;0,ĥ is increasing (e.g., when ψ (k)� (x1, . . . , xk) ≥ 0, by (1.13)), denoting by ĥA

the unique solution to Z
�;0,ĥ = A, under some natural regularity assumptions we have

ξ(h) ∼
h↓0

(δ
h,ĥA

)−1
=

(
ĥA

h

)1/(d−γ )

≈ h−ν, with ν =
1

d − γ
.

This shows that Harris’ condition ν < 2/d coincides with the key condition γ < d/2 of
our approach (cf. (1.16)), ensuring the square-integrability of the limiting correlations.

The correlation length (1.18) is expected to be equivalent to the classical one (1.17), in
the sense that it should have the same critical exponent (cf. [G07] for disordered pinning
models) when the phase transition is continuous, that is, when γ > 0 in (1.15). If γ = 0,
which is the signature of a discontinuous (first order) phase transition, our approach still
applies and gives the scaling limit of the disorder partition function, but there is no direct
link with disorder relevance (cf. (1.24) below and the following discussion).

In summary, our approach suggests an alternative view on disorder relevance, in
which the randomness survives in the continuum limit with vanishing coupling constants.
In fact, relation (1.13) can be seen as a rigorous finite size scaling relation [Car88] for dis-
ordered systems (the special case of non-disordered pinning models is treated in [Soh09]).

Remark 1.2. We can now explain the parameter restrictions in the motivating models:
condition (1.16) is fulfilled by the disordered pinning model (d = 1, γ = 1 − α) when
α > 1/2, by the (long-range) directed polymer model (deff = 1 + 1/α, γ = 1/α) when
α > 1, and by the critical random field Ising model (d = 2, γ = 1/8).

2. (Universality). The convergence in distribution of the discrete partition function
Zω
δ;λ,h

toward its continuum counterpart ZW
�;λ̂,ĥ

(cf. (1.13)) is an instance of univer-
sality. In fact:

• the details of the disorder distribution are irrelevant: any family (ωx)x∈
δ of i.i.d. ran-
dom variables with zero mean, finite variance and locally finite exponential moments
scales in the limit to the same continuum object, namely white noise W(·);
• also the fine details of the reference law Pref


δ
disappear in the limit: any family ψ (k)
δ

of discrete k-point correlation functions converging to the same limit (1.11) yields the
same continuum partition function ZW

�;λ̂,ĥ
in (1.13).
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At a deeper level, the continuum partition function sheds light on the discrete free
energy F(λ, h) (cf. (1.3)) in the weak disorder regime λ, h→ 0. Defining the continuum
free energy

F (λ̂, ĥ) := lim sup
�↑Rd

1
Leb(�)

E
[
logZW

�;λ̂,ĥ

]
, (1.19)

and setting λδ := δd/2−γ λ̂ and hδ := δd−γ ĥ − 1
2 (λδ)

2 (cf. (1.12)), one is led to the
following

Conjecture: lim
δ↓0

F(λδ, hδ)

δd
= F (λ̂, ĥ).2 (1.20)

The heuristics goes as follows: by (1.3) we can write (replacing lim sup by lim for sim-
plicity)

lim
δ↓0

F(λδ, hδ)

δd
= lim

δ↓0
lim
�↑Rd

1
δd

1
|
δ|

E
[
logZω
δ;λδ,hδ

]
; (1.21)

on the other hand, applying (1.13) in (1.19) (assuming uniform integrability) and noting
that Leb(�) = limδ↓0 δ

d
|
δ|, one gets

F (λ̂, ĥ) = lim
�↑Rd

lim
δ↓0

1
δd

1
|
δ|

E
[
logZω
δ;λδ,hδ

]
. (1.22)

Therefore proving (1.20) amounts to interchanging the infinite volume (� ↑ Rd ) and
continuum and weak disorder (δ ↓ 0) limits. This is in principle a delicate issue, but
we expect relation (1.20) to hold in many interesting cases, such as the three motivat-
ing models in the specified parameter range (and, more generally, when the continuum
correlations are “non-trivial”; see the next point). This is an interesting open problem.

Relation (1.20) implies that the discrete free energy F(λ, h) has a universal shape for
weak disorder λ, h → 0. This leads to sharp predictions on the asymptotic behavior of
free energy-related quantities, such as critical curves and order parameters. Consider, e.g.,
the average magnetization 〈σ0〉βc,h in the critical Ising model on Z2 with a homogeneous
external field h > 0. If relation (1.20) holds (with d = 2, λδ = λ̂δ7/8, hδ = ĥδ15/8,
cf. (1.14), and we look at the case λ̂ = 0), differentiating both sides with respect to ĥ
suggests that

lim
h↓0

〈σ0〉βc,h

h1/15 =
∂F

∂ĥ
(0, 1), (1.23)

which would sharpen the results in [CGN12b]. Analogous predictions can be formulated
for disorder pinning and directed polymer models (see Section 3). Of course, proving such
precise estimates is likely to require substantial additional work, but having a candidate
for the limiting constants, as in (1.23), can be of great help.

2 A notational remark: for the directed polymer model, the denominator in (1.20) should be δ
instead of δd , due to a different normalization of the discrete free energy (cf. Subsection 3.2); for
the random field Ising model, one should set hδ := δd−γ ĥ without the “− 1

2 (λδ)
2 correction”, as

already discussed after (1.14). These notational details are discussed in Section 3 for each model,
while here we keep a unified approach.
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Remark 1.3. Relation (1.20) (in a stronger form) has been proved in [BdH97, CG10] for
the so-called disordered copolymer model, by means of a subtle coarse-graining proce-
dure. We mention that our approach can also be applied to the copolymer model, yielding
a Wiener chaos expansion as in (1.13) for the continuum partition function.

3. (First order phase transitions). Relation (1.11) can hold with γ = 0 (i.e., the k-point
correlation function converges without rescaling) and with a “trivial” factorized limit:

ψ
(k)


δ
(x1, . . . , xk) −−→

δ↓0
ψ
(k)
� (x1, . . . , xk) =: %

k with % ∈ (0,∞). (1.24)

This is typical for a system at the critical point of a first order phase transition (i.e.,
the order parameter mh := limδ↓0 |
δ|−1E
δ;0,h[

∑
x∈
δ σx], as a function of h, has a

jump discontinuity at h = 0). Examples include the pinning model for α > 1 and the
Ising model for β > βc. Plugging (1.24) into (1.13) and performing integration (cf. [J97,
§3.2]), one gets

ZW
�;λ̂,ĥ

= exp
{
%λ̂W(�)+

(
%ĥ− 1

2 (%λ̂)
2)Leb(�)

}
. (1.25)

This explicit formula allows exact asymptotic computations on the discrete model: e.g.,
relation (1.13) yields for suitable values of ζ ∈ R (when uniform integrability holds)

E
[(
Zω
δ;λ,h

)ζ ]
−−→
δ↓0

E
[(
ZW
�;λ̂,ĥ

)ζ ]
= exp

{
%ζ
(
ĥ− 1

2%λ̂
2(1− ζ )

)
Leb(�)

}
. (1.26)

Incidentally, for disordered pinning models with α > 1, this estimate clarifies the strategy
for the sharp asymptotic behavior of the critical curve hc(λ) as λ ↓ 0, determined in
[BC+14] (even though the proof therein is carried out with different techniques).

Unfortunately, the continuum partition function (1.25) can fail to capture some key
properties of the discrete model, because it is shared by many “too different” models:
relation (1.24) requires that the field variables under the reference law Pref become uncor-
related as δ ↓ 0, but is insensitive to the correlation decay, which could be polynomial,
exponential, or even finite-range (as in the extreme case of a “trivial” reference law Pref,
under which (σx)x∈
δ are i.i.d. with Eref(σx) = %). Since the correlation decay can affect
the discrete free energy substantially, conjecture (1.20) usually fails under (1.24).

For example, for disordered pinning models with α > 1, one always has F(λ, h) ≥ 0
(there is only a polynomial cost for the underlying renewal process not to return before
time N , and the energy of such a renewal configuration is 0). On the other hand, if the re-
newal jump distribution has finite exponential moments, then there is an exponential cost
for the renewal not to return before time N , and F(λ, h) < 0 if h is sufficiently negative.
Both models satisfy (1.24) with % = 1/E[τ1] and thus their continuum partition functions
coincide, but their free energies depend on finer detail of the renewal distribution (beyond
the value of E[τ1]) and are therefore radically different, causing (1.20) to fail. The con-
tinuum free energy is F (λ̂, ĥ) = %ĥ − 1

2 (%λ̂)
2 (cf. (1.25) and (1.19)), which can attain

negative values.
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4. (Moment assumptions). In our convergence results, Theorems 3.1, 3.8 and 3.14, we
assume that the disorder variables (ωx)x∈
δ have finite exponential moments, which guar-
antees that the expectation and variance in (1.8) are well-defined. However, this assump-
tion can be relaxed to finite moments. The necessary number of moments depends on
the model and can be determined by the requirement that the typical maximum value of
the variables ωx “sampled” by the field does not exceed the reciprocal of the disorder
strength λ (so that a truncation of ωx at level λ−1 provides a good approximation).

For example, in the long-range directed polymer model, one expects that the path will
be confined (at weak disorder) to a box of size N × N1/α . If the disorder variables have
a polynomial tail P(ωx > y) ≈ y−η as y ↑ ∞, their maximum in such a box is of the

orderN
1
η

1+α
α . Since λ ≈ N−

α−1
2α for this model (cf. Theorem 3.8), one expects the validity

of the convergence result as long as N
1
η

1+α
α � N

α−1
2α , i.e. for η ≥ 2(α + 1)/(α − 1). For

α = 2, this gives η ≥ 6, which was conjectured in [AKQ14a] and recently proved in [DZ].
Similarly, for the pinning model the number of relevant variables is of order N and

λ ≈ N−(α−1/2) (cf. Theorem 3.1), leading to a conjectured value η ≥ 2/(2α− 1); for the
RFIM, the number of relevant variables is of orderN2 and λ ≈ N−7/8 (cf. Theorem 3.14),
leading to a conjectured value η ≥ 16/7.

2. From polynomial to Wiener chaos via Lindeberg

In this section, which can be read independently of the previous one, we first recall the
main properties of white noise onRd (Subsection 2.1) and define polynomial chaos expan-
sions (Subsection 2.2). We then formulate our main general theorem (Subsection 2.3), en-
suring convergence of polynomial chaos toward Wiener chaos expansions. This is based
on a Lindeberg principle (Subsection 2.4) which extends results in [MOO10] to optimal
second moment assumptions. Subsections 2.3 and 2.4 can be read independently.

The space of Lebesgue square-integrable functions f : Rd → R is denoted by
L2(Rd), and we set ‖f ‖2

L2(Rd )
=
∫
Rd f (x)

2 dx. For more details on the white noise,
we refer to [J97, PT10].

2.1. White noise in a nutshell

By white noise on Rd we mean a Gaussian process W = (W(f ))f∈L2(Rd ) with E[W(f )]
= 0 and Cov(W(f ),W(g)) =

∫
Rd f (x)g(x) dx, defined on some probability space

(�W ,A,P). Since the specified covariance is a symmetric and positive definite function,
such a process exists (and is unique in law).

If A1, A2, . . . are disjoint Borel sets with finite Lebesgue measure, it follows that the
random variables (W(Ai) := W(1Ai ))i=1,2,... are independent N (0,Leb(Ai)) and the
relation W(

⋃
i≥1Ai) =

∑
i≥1W(Ai) holds a.s. Consequently, it is suggestive to use the

notation ∫
Rd
f (x)W(dx) := W(f ), (2.1)
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even thoughW(·) is a.s. not a signed measure on Rd . For d = 1,W(f ) coincides with the
usual Wiener integral

∫
f (t) dWt with respect to the Brownian motion Wt := W(1[0,t]).

One can define a multi-dimensional stochastic integral W⊗k(f ), for k ∈ N and suit-
able f : (Rd)k → R, as follows. For “special indicator functions” f = 1A1×...×Ak

built over disjoint bounded Borel sets A1, . . . , Ak ⊆ Rd , one sets W⊗k(f ) :=
W(1A1) · · ·W(1Ak ). This definition is extended, by linearity, to the space Sk of “spe-
cial simple functions”, i.e. finite linear combinations of special indicator functions. Since
a permutation of the arguments of f leaves W⊗k(f ) invariant, it is sufficient to consider
symmetric functions f , which we do henceforth. One then observes that E[W⊗k(f )] = 0
and the crucial Itô isometry is satisfied:3

Cov(W⊗k(f ),W⊗l(g)) = k!1{k=l}

∫
(Rd )k

f (x1, . . . , xk)g(x1, . . . , xk) dx1 · · · dxk.

(2.2)

Since Sk is dense in L2((Rd)k), one can finally extend the definition of W⊗k(f ) to every
symmetric f ∈ L2((Rd)k) in such a way that (2.2) still holds. As in (2.1), we will write∫

· · ·

∫
(Rd )k

f (x1, . . . , xk)W(dx1) · · ·W(dxk) := W
⊗k(f ). (2.3)

We also set W⊗0(c) := c for c ∈ L2((Rd)0) := R.
Note that W⊗k(f ) is a random variable defined on (�W ,A,P), with zero mean (for

k ≥ 1) and finite variance, which is measurable with respect to the σ -algebra σ(W)
generated by the white noise W . (One can show that W⊗k(f ) is non-Gaussian for k > 1
and f 6≡ 0.) Remarkably, every square-integrable random variable X defined on �W ,
which is measurable with respect to σ(W), can be written as the L2 convergent series

X =

∞∑
k=0

1
k!
W⊗k(fk), (2.4)

called a Wiener chaos expansion, for a unique choice of symmetric functions fk ∈
L2((Rd)k) satisfying

∑
∞

k=0
1
k!
‖fk‖

2
L2(Rd )

< ∞, by (2.2). In other terms, the multiple

stochastic integrals W⊗k(f ) span the whole Hilbert space L2(�W , σ (W),P).

2.2. Polynomial chaos

Let T be a finite or countable index set (e.g., T = {1, . . . , N}, T = N, T = Zd ). We set

Pfin(T) := {I ⊆ T : |I | <∞}.

Any function ψ : Pfin(T) → R determines a (formal if |T| = ∞) multi-linear polyno-
mial 9:

9(x) =
∑

I∈Pfin(T)

ψ(I)xI , where xI :=
∏
i∈I

xi with x∅ := 1. (2.5)

We say that ψ : Pfin(T)→ R is the kernel of 9.

3 For the isometry (2.2) it is essential to “avoid diagonals”: this is the reason for taking special
indicator functions, corresponding to products of disjoint Borel sets.
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Let now ζ := (ζi)i∈T be a family of independent (but not necessarily identically
distributed) random variables. We say that a random variable X admits a polynomial
chaos expansion with respect to ζ if it can be expressed as X = 9(ζ) = 9((ζi)i∈T)

for some multi-linear polynomial 9. Of course, when |T| = ∞ some care is needed: by
X = 9(ζ) we mean that for any sequence3N ⊂ T with |3N | <∞ and3N ↑ T one has

X = lim
N→∞

∑
I⊆3N

ψ(I)ζ I in probability. (2.6)

Remark 2.1. When Var(ζi) 6= 0 for all i ∈ T, we can assume that all the variances are
equal with no loss of generality: it suffices to redefine ψ(I)→ ψ(I)(

∏
i∈I Var(ζi))−1/2.

Remark 2.2. When the independent random variables ζ := (ζi)i∈T have zero mean and
the same variance σ 2, an easy sufficient condition for (2.6), with L2 convergence, is∑

I∈Pfin(T)

(σ 2)|I |ψ(I)2 <∞, (2.7)

because E[ζ I ζ J ] = 0 for I 6= J . For variables with non-zero mean µ := (µi)i∈T (always
with the same variance σ 2), sharp conditions for L2 convergence in (2.6) involve µ and
the kernel ψ jointly. As we show below, practical sufficient “factorized” conditions are∑

i∈T

µ2
i <∞, ∃ε > 0 :

∑
I∈Pfin(T)

(1+ ε)|I |(σ 2)|I |ψ(I)2 <∞. (2.8)

2.3. Convergence of polynomial chaos to Wiener chaos

Consider for δ ∈ (0, 1) an index set Tδ ⊂ Rd and a family of polynomial chaos expan-
sions (9δ(ζδ))δ∈(0,1), defined from kernels ψδ : Pfin(Tδ) → R and from independent
random variables ζδ := (ζδ,x)x∈Tδ . If Tδ converges to the continuum Rd as δ ↓ 0 (e.g.,
Tδ := (δZ)d ), then after suitable scaling, the random variables (ζδ,x)x∈Tδ approximate
the white noise W(dx) on Rd . If the kernel ψδ , suitably rescaled, converges as δ ↓ 0 to a
continuum kernel ψ0 : Pfin(Rd)→ R, it is plausible that the polynomial chaos expansion
9δ(ζδ) approximates a Wiener chaos expansion 90 (cf. (2.3)–(2.4)) with kernel ψ0. This
is precisely what we are going to show.

First we introduce some notation. Each random variable ζx indexed by a point x in an
index set T ⊂ Rd will be associated with a cell in Rd containing x, and functions defined
on Tk will be extended to functions defined on (Rd)k .

• Let B(Rd) denote the Borel subsets of Rd . Given a locally finite set T ⊂ Rd , we call
C : T→ B(Rd) a tessellation of Rd indexed by T if (C(x))x∈T form a disjoint partition
of Rd such that x ∈ C(x) for each x ∈ T. We call C(x) the cell associated with x ∈ T.
In most cases, (C(x))x∈T will be the cells of a cubic lattice. However, there are natural
examples where this is not the case, such as the directed polymer model defined from
a simple symmetric random walk, or the Ising model defined on non-cubic lattices.
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• Once a tessellation C is fixed, any function f : T → R is automatically extended to
f : Rd → R by setting f (y) := f (x) for all y ∈ C(x), for each x ∈ T. Note that for
such extensions, ‖f ‖2

L2(Rd )
=
∑
x∈T f (x)

2Leb(C(x)).
• Analogously, for any ψ : Pfin(T) → R, we first extend it to ψ :

⋃
∞

k=0 T
k
→ R by

settingψ(x1, . . . , xk) := ψ({x1, . . . , xk}) if the xi are distinct, andψ(x1, . . . , xk) := 0
otherwise. We then extend it to ψ :

⋃
∞

k=0(R
d)k → R by assigning value ψ(x1, . . . , xk)

to all points in C(x1)× · · · × C(xk), for each k ∈ N and x1, . . . , xk ∈ T.
• Given ψ : Pfin(Rd) → R, its extension to ψ :

⋃
∞

k=0(R
d)k → R is defined similarly

(no cells involved). It will be clear from the context which version of ψ is being used.
• Finally, given a measurable function ψ :

⋃
∞

k=0(R
d)k → R, we denote by ‖ψ‖L2((Rd )k)

the L2 norm of the restriction of ψ to (Rd)k , i.e.

‖ψ‖2
L2((Rd )k) =

∫
· · ·

∫
(Rd )k

ψ(x1, . . . , xk)
2 dx1 · · · dxk.

We are now ready to state our main convergence result, proved in Section 5.

Theorem 2.3 (Convergence of polynomial chaos to Wiener chaos, L2 case). Assume
that for δ ∈ (0, 1) the following ingredients are given:

• Let Tδ be a locally finite subset of Rd .
• Let ζδ := (ζδ,x)x∈Tδ be independent random variables in L2 with the same variance,

E[ζδ,x] = µδ(x) and Var(ζδ,x) = σ 2
δ ,

such that ((ζδ,x − E[ζδ,x])2)δ∈(0,1), x∈Tδ are uniformly integrable.
• Let 9δ(z) be a formal multi-linear polynomial with kernel ψδ : Pfin(Tδ) → R (cf.

(2.5)).
• Let Cδ be a tessellation of Rd indexed by Tδ , where every cell Cδ(x) has the same

volume vδ := Leb(Cδ(x)).

Assume that vδ → 0 as δ ↓ 0, and that the following conditions are satisfied:

(i) There exist σ 0 ∈ (0,∞) and µ0 ∈ L
2(Rd) such that

lim
δ↓0

σδ = σ 0, lim
δ↓0
‖µ̄δ−µ0‖L2(Rd ) = 0, where µ̄δ(x) := v

−1/2
δ µδ(x). (2.9)

(ii) There exists ψ0 : Pfin(Rd) → R, with ‖ψ0‖L2((Rd )k) < ∞ for every k ∈ N0 such
that

lim
δ↓0
‖ψ̄δ − ψ0‖

2
L2((Rd )k) = 0, where ψ̄δ(I ) := v

−|I |/2
δ ψδ(I ). (2.10)

(iii) For some ε > 0 (or even ε = 0 if µδ(x) ≡ 0)

lim
`→∞

lim sup
δ↓0

∑
I∈Pfin(Tδ), |I |>`

(1+ ε)|I |(σ 2
δ )
|I |ψδ(I )

2
= 0. (2.11)

Then the polynomial chaos expansion9δ(ζδ) is well-defined and converges in distribution
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as δ ↓ 0 to a random variable 90 with an explicit Wiener chaos expansion:

9δ(ζδ)
d
−−→
δ↓0

90 :=

∞∑
k=0

1
k!

∫
· · ·

∫
(Rd )k

ψ0(y1, . . . , yk)

k∏
i=1

(σ 0W(dyi)+ µ0(yi) dyi),

(2.12)
where W(·) denotes a white noise on Rd .

The series in (2.12) converges inL2, and E[9δ(ζδ)2] → E[92
0]. Consequently, for any

coupling of9δ(ζδ) and90 such that9δ(ζδ)→ 90 a.s., one has E[|9δ(ζδ)−90|
2
] → 0.

The convergence (2.12) extends to the joint distribution of a finite collection of poly-
nomial chaos expansions (9i,δ(ζδ))1≤i≤M provided (9i,δ)δ∈(0,1) satisfies (ii)–(iii) above
for each i.

Remark 2.4. Let us be more precise about the random variable 90 in (2.12). Setting
ν(x) := µ0(x)/σ 0, we can rewrite it as

90 =

∞∑
k=0

1
k!

∫
· · ·

∫
(Rd )k

ψ0(y1, . . . , yk)σ
k
0

k∏
i=1

(W(dyi)+ ν(yi) dyi), (2.13)

which can be viewed as a “Wiener chaos expansion with respect to the biased white noise
Wν(dx) := W(dx)+ ν(x)dx”. The rigorous definition of such an expansion goes as fol-
lows. For every fixed k ∈ N, the integral over (Rd)k in (2.13) can be defined by expanding
the product and integrating out the “deterministic coordinates” (those corresponding to
ν(yi)dyi), obtaining a finite sum of well-defined (lower-dimensional) ordinary stochas-
tic integrals, as in (2.3). After regrouping terms, the series in (2.13) becomes an ordi-
nary Wiener chaos expansion, as in (2.4). In analogy with the polynomial case (2.8), we
show in Section 5 that the L2 convergence of the series is ensured by the conditions that
µ0 ∈ L

2(Rd) and that

∃ε > 0 :
∞∑
k=0

1
k!
(1+ ε)k(σ 2

0)
k
‖ψ0‖

2
L2((Rd )k) <∞, (2.14)

which follow from assumptions (i)–(iii) of Theorem 2.3.

2.3.1. Beyond the L2 case. There is a useful alternative interpretation of (2.12)–(2.13).
If (�W ,A,P) is the probability space on which the white noise W = (W(f ))f∈L2(Rd ) is
defined, for every ν ∈ L2(Rd) we introduce a new probability Pν on �W by

dPν
dP
:= eW(ν)−

1
2E[W(ν)

2
]
= e

∫
Rd ν(x)W(dx)−

1
2
∫
Rd ν(x)

2 dx . (2.15)

It turns out that the “biased stochastic integrals” in (2.13) have the same joint distribution
as the ordinary stochastic integrals (with ν replaced by 0) under the probability Pν , by the
Cameron–Martin theorem (cf. Appendix A). As a consequence, the random variable 90
in (2.12) enjoys the following equality in distribution, with ν(x) := µ0(x)/σ 0:

90
d
=

∞∑
k=0

1
k!

∫
· · ·

∫
(Rd )k

ψ0(y1, . . . , yk)σ
k
0W(dy1) · · ·W(dyk) under Pν (2.16)

provided the series (either in (2.12) or (2.16), equivalently) converges in probability.
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Let us now assume the weaker version of relation (2.14) for ε = 0 holds, i.e.

∞∑
k=0

1
k!
(σ 2

0)
k
‖ψ0‖L2((Rd )k) <∞. (2.17)

Under this condition, the series in (2.16) converges inL2 under the original probability P,
by the Itô isometry (2.2). Since the Radon–Nikodym density (2.15) has finite moments
of all orders, it follows by (2.16) and an application of the Hölder inequality (see (5.11)
for the details) that the series in (2.12) defining 90 converges in Lp for every p ∈ (0, 2)
when (2.17) holds (even though it might not converge in L2 if (2.14) fails).

As a consequence, by performing an Lp analysis for p < 2, we can weaken condi-
tion (iii) in Theorem 2.3, setting ε = 0 in (2.11), under mild restrictions on the disorder
distribution (due to the implementation of a change of measure as in (2.16) for polynomial
chaos).

Theorem 2.5 (Convergence of polynomial chaos to Wiener chaos, L2− case). Let the
assumptions of Theorem 2.3 hold, with condition (iii) weakened by setting ε = 0 in (2.11).
Assume further that limδ↓0 ‖µδ‖∞ = 0, and that either of the following two conditions is
satisfied:

(a) inf
δ∈(0,1), x∈Tδ

min{P(ζδ,x > 0),P(ζδ,x < 0),Var(ζδ,x | ζδ,x > 0),

Var(ζδ,x | ζδ,x < 0)} > 0;
(b)

∀C > 0 : lim
δ↓0

∑
I∈Pfin(Tδ), |I |>‖µδ‖

−1
∞

eC‖µδ‖∞|I |(σ 2
δ )
|I |ψδ(I )

2
= 0. (2.18)

Then the polynomial chaos expansion9δ(ζδ) is well-defined and converges in distribution
as δ ↓ 0 to the random variable 90 defined by (2.12), or equivalently (2.16). For all
p ∈ (0, 2), the series therein converges in Lp, and furthermore E[|9δ|p] → E[|90|

p
].

The conclusion extends to finite collections (9i,δ(ζδ))1≤i≤M .

2.4. Lindeberg principle for polynomial chaos

The key ingredients in our proof of Theorem 2.3 are two Lindeberg principles for poly-
nomial chaos. As we discuss in Remark 2.7, they extend [MOO10, Theorem 3.18] in two
ways: firstly, we relax the finite third moment assumption of [MOO10] to an optimal con-
dition of uniform integrability of the square of the random variables; secondly, we allow
random variables with non-zero mean.

We point out that the first extension is actually not needed for our applications to
disordered systems, due to the assumption of finite exponential moments for the disorder
random variables. However, it is an extension of general interest and will be useful if
one attempts to weaken the moment assumptions on the disorder random variables, as
discussed at the end of Section 1.3. We remark that Lindeberg principles have also played
crucial roles in recent breakthrough results on random matrices [C06, TV11].
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Given a polynomial chaos expansion 9(ζ) with respect to a family ζ := (ζi)i∈T of
independent random variables (cf. Subsection 2.2), we will control how the distribution of
9(ζ) changes when we replace ζ by independent Gaussian random variables ξ := (ξi)i∈T
with the same mean and variance as ζ .

Given a multi-linear polynomial 9(x) = 9((xi)i∈T) as in (2.5), with kernel ψ , we
set

C9 :=
∑

I∈Pfin(T), I 6=∅

ψ(I)2, (2.19)

and define the influence of the i-th variable xi on 9 by

Infi[9] :=
∑

I∈Pfin(T), I3i

ψ(I)2. (2.20)

Note that if ζ = (ζi)i∈T are independent random variables with zero mean and unit
variance,

C9 = Var[9(ζ)], Infi[9] = E
[
Var[9(ζ) | (ζj )j∈T\{i}]

]
,

which is just the influence of the random variable ζj on9(ζ) introduced in [MOO10] (for
more on the notion of influence, see e.g. [KKL88, BK92] and the references in [MOO10]).
We also define the degree ` truncations 9≤` and 9>` of the multi-linear polynomial 9
by

9≤`(x) :=
∑

I∈Pfin(T), |I |≤`

ψ(I)xI , 9>`(x) :=
∑

I∈Pfin(T), |I |>`

ψ(I)xI , (2.21)

whose kernels will be denoted by ψ≤`(I ) = ψ(I)1{|I |≤`} and ψ>`(I ) = ψ(I)1{|I |>`}.

We are now ready to state and comment on our Lindeberg principles, which will be
proved in Section 4.

Theorem 2.6 (Lindeberg principle, zero mean case). Let ζ = (ζi)i∈T and ξ = (ξi)i∈T
be families of independent random variables with zero mean and unit variance. Let 9(x)
be a multi-linear polynomial as in (2.5) with C9 =

∑
I∈Pfin(T) ψ(I)

2 < ∞. Then the
polynomial chaos expansions 9(ζ), 9(ξ) are well-defined L2 random variables. For
M ∈ [0,∞] defining the maximal truncated moments

m>M2 := sup
X∈

⋃
i∈T{ζi ,ξi }

E[X21|X|>M ], m
≤M
3 := sup

X∈
⋃
i∈T{ζi ,ξi }

E[|X|31|X|≤M ]. (2.22)

Then for every f : R→ R of class C 3 with

Cf := max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞} <∞, (2.23)

every ` ∈ N, and every M ∈ (0,∞] large enough such that m>M2 ≤ 1/4, one has

|E[f (9(ζ ))] − E[f (9(ξ))]| ≤ Cf

{
2
√
C9>` + C9≤`16`2m>M2

+ C9≤`70`+1(m
≤M
3 )`

√
max
i∈T

Infi[9≤`]
}
, (2.24)

where C·, Infi[·] and 9≤`, 9>` are defined in (2.19)–(2.21).
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Intuitively, this theorem shows that9(ζ) and9(ξ) are close in distribution when the right
hand side of (2.24) is small. Despite their technical appearance, each of the three terms
inside the brackets can be easily controlled:

• The first term is controlled by C9>` =
∑
|I |>` ψ(I)

2, which is small for ` large.
• The second term is controlled by m>M2 , which is small for M large if the random

variables (ζi)i∈T and (ξi)i∈T have uniformly integrable squares (e.g., if they are i.i.d.).
• The third term is controlled by the maximal influence maxi∈T Infi[9≤`], which is small

if the multi-linear polynomial 9≤` is sufficiently “spread out”.

In particular, we shall see that the conditions of Theorem 2.3 allow us to exploit (2.24).

Remark 2.7. When the polynomial 9 = 9≤` has degree ` and the random variables
ζi , ξi have third absolute moments bounded by m3 < ∞, relation (2.24) for M = ∞
reduces to

|E[f (9(ζ ))] − E[f (9(ξ))]| ≤ CfC970`+1(m3)
` max
i∈T

√
Infi[9].

This is the key estimate proved by Mossel, O’Donnell and Oleszkiewicz [MOO10, Theo-
rem 3.18 under hypothesisH2], with the prefactor 70`+1 instead of 30`. Our Theorem 2.6
thus provides an extension of [MOO10, Theorem 3.18] to finite second-moment assump-
tions.

Some of the results in [MOO10] are formulated in the more general setting of multi-
linear polynomials over orthornormal ensembles. Although we stick for simplicity to the
case of independent random variables, our approach can also be adapted to deal with
orthonormal ensembles. In fact, we follow the same line of proof of [MOO10], which is
based on Lindeberg’s original approach, with two refinements: a sharper approximation
of the remainder in Taylor’s expansion and a fine truncation on the random variables (cf.
Section 4 for details).

As a corollary to Theorem 2.6, we can treat the case where we add non-zero mean to the
random variables (ζi)i∈T and (ξi)i∈T. The following result is also proved in Section 4.

Theorem 2.8 (Lindeberg principle, non-zero mean case). Let ζ = (ζi)i∈T and ξ =
(ξi)i∈T be as in Theorem 2.6, and define the maximal truncated moments m>M2 , m≤M3
by (2.22). Let µ := (µi)i∈T be a family of real numbers with

cµ :=
∑
i∈T

µ2
i <∞, (2.25)

and define theµ-biased families ζ̃ := ζ+µ = (ζi+µi)i∈T and ξ̃ := ξ+µ = (ξi+µi)i∈T.
Let 9(x) be a multi-linear polynomial as in (2.5). Setting for ε > 0,

9(ε)(x) =
∑

I∈Pfin(T)

(1+ ε)|I |/2ψ(I)xI , (2.26)

assume that C9(ε) =
∑
I∈Pfin(T)(1 + ε)

|I |ψ(I)2 < ∞ for some ε > 0. Then the polyno-
mial chaos expansions 9(̃ζ ) and 9(̃ξ) are well-defined L2 random variables.
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For every f : R → R of class C 3 with Cf < ∞ (cf. (2.23)), every ` ∈ N and every
M ∈ [0,∞] large enough such that m>M2 ≤ 1/4, one has

|E[f (9(̃ζ ))] − E[f (9(̃ξ))]| ≤ e2cµ/εCf

{
2
√
C9(ε),>` + C9(ε),≤`16`2m>M2

+ C9(ε),≤`70`+1(m
≤M
3 )`

√
max
i∈T

Infi[9(ε),≤`]
}
, (2.27)

where C·, Infi[·] are defined in (2.19), (2.20) and9(ε),>`,9(ε),≤` are defined as in (2.21).

3. Scaling limits of disordered systems

In this section, which can be read independently of Sections 1 and 2, we consider
three much-studied statistical mechanics models: the disordered pinning model (Subsec-
tion 3.1), the (long-range) directed polymer model in dimension 1 + 1 (Subsection 3.2),
and the two-dimensional random field Ising model (Subsection 3.3). For each model, we
show that the partition function has a non-trivial limit in distribution, in the continuum
and weak disorder regime, given by an explicit Wiener chaos expansion with respect to
the white noise on Rd (see Subsection 2.1 for some reminders). The proofs, given in Sec-
tions 6–8, are based on the general convergence results of Section 2 (cf. Theorem 2.3).

For each model, the disorder will be given by a countable family of i.i.d. random
variables ωi with zero mean, finite variance and locally finite exponential moments:

E[ωi] = 0, Var(ωi) = 1, ∃t0 > 0 : 3(t) := logE[etωi ] <∞ for |t | < t0. (3.1)

Our approach actually works in the much more general setting when the disorder is given
by a triangular array of independent (but not necessarily identically distributed) random
variables, in the spirit of Theorem 2.3, but we stick to the i.i.d. case for the sake of sim-
plicity.

3.1. Disordered pinning model

Consider a discrete renewal process τ := {τn}n≥0, that is, τ0 = 0 and the increments
{τn−τn−1}n≥1 are i.i.d. N-valued random variables. We assume that τ is non-terminating,
that is, P(τ1 <∞) = 1, and that

P(τ1 = n) = L(n)/n
1+α, ∀n ∈ N, (3.2)

where α ∈ [0,∞) and L : (0,∞)→ (0,∞) is a slowly varying function [BGT87]. One
could also consider the periodic case, when (3.2) holds for n ∈ pN and P(τ1 = n) = 0 if
n 6∈ pN, for some period p ∈ N. For simplicity, we focus on the aperiodic case p = 1.

Let ω = (ωn)n∈N0 be a sequence of i.i.d. random variables, independent of τ , satisfy-
ing (3.1). The disordered pinning model is the random probability law PωN,β,h on subsets
on N0, indexed by ω and by N ∈ N, β ≥ 0 and h ∈ R, defined by

dPωN,β,h(τ ) :=
1

ZωN,β,h
e
∑N
n=1(βωn−3(β)+h)1{n∈τ }dP(τ ),
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where we recall that3(β) := logE[eβω1 ], and the partition function ZωN,β,h is defined by

ZωN,β,h := E
[
e
∑N
n=1(βωn−3(β)+h)1{n∈τ }

]
. (3.3)

We also consider the conditioned partition function

Z
ω,c
N,β,h := E

[
e
∑N
n=1(βωn−3(β)+h)1{n∈τ }

∣∣ N ∈ τ ]. (3.4)

The disordered pinning model exhibits an interesting localization/delocalization phase
transition. This can be quantified via the (quenched) free energy, which is defined as

F(β, h) := lim
N→∞

1
N

logZωN,β,h = lim
N→∞

1
N
E
[
logZωN,β,h

]
P(dω)-a.s. (3.5)

By restricting the partition function to configurations such that τ ∩[1, N] = ∅, it is easily
seen that F(β, h) ≥ 0. The localized and delocalized regimes (L,D respectively) can be
defined as

L := {(β, h) : F(β, h) > 0}, D := {(β, h) : F(β, h) = 0}.

We refer to [G10] for more information on the structure of the phase transition, and in
particular for quantitative estimates on the critical curve

hc(β) := sup{h ∈ R : F(β, h) = 0} = inf{h ∈ R : F(β, h) > 0}. (3.6)

We can now state our main result on the disordered pinning model, to be proved in
Section 6. To lighten notation, we write ZωNt,β,h to mean Zω

bNtc,β,h.

Theorem 3.1 (Scaling limit of disordered pinning models). Let the aperiodic renewal
process τ either satisfy (3.2) for some α ∈ (1/2, 1), or have finite mean E[τ1] < ∞

(which happens in particular when (3.2) holds with α > 1). For N ∈ N, β̂ > 0 and
ĥ ∈ R, set

βN =


β̂
L(N)

Nα−1/2 if 1/2 < α < 1,

β̂
1
√
N

if E[τ1] <∞,

hN =


ĥ
L(N)

Nα
if 1/2 < α < 1,

ĥ
1
N

if E[τ1] <∞.

(3.7)

Then, for every t ≥ 0, the conditioned partition function Zω,cNt,βN ,hN
of the disordered

pinning model converges in distribution as N →∞ to the random variable ZW,c
t,β̂,ĥ

given
by

Z
W,c

t,β̂,ĥ
:= 1+

∞∑
k=1

1
k!

∫
· · ·

∫
[0,t]k

ψct (t1, . . . , tk)

k∏
i=1

(β̂ W(dti)+ ĥ dti), (3.8)
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where W(·) denotes white noise on R and ψct (t1, . . . , tk) is a symmetric function, defined
for 0 < t1 < · · · < tk < t by

ψct (t1, . . . , tk) =


Ckαt

1−α

t1−α1 (t2 − t1)1−α · · · (tk − tk−1)1−α(t − tk)1−α
if 1/2 < α < 1,

1
E[τ1]k

if E[τ1] <∞,

(3.9)
where Cα := α sin(πα)/π . The series in (3.8) converges in L2, and one has the con-
vergence of the corresponding second moments: E[(Zω,cNt,βN ,hN

)2] → E[(ZW,c
t,β̂,ĥ

)2] as
N →∞.

An analogous statement holds for the free (unconditioned) partition function
ZωNt,βN ,hN

, where the limiting random variable ZW
t,β̂,ĥ

is defined as in (3.8), with kernel

ψ(t1, . . . , tk) :=


Ckα

t1−α1 (t2 − t1)1−α · · · (tk − tk−1)1−α
if 1/2 < α < 1,

1
E[τ1]k

if E[τ1] <∞.

(3.10)

When E[τ1] < ∞, for both the free and conditioned case, the continuum partition
function has an explicit distribution: for every t ≥ 0

Z
W,c

t,β̂,ĥ

d
= ZW

t,β̂,ĥ

d
= exp

{
β̂

E[τ1]
Wt +

(
ĥ

E[τ1]
−

β̂2

2E[τ1]2

)
t

}
, (3.11)

where W = (Wt )t≥0 denotes a standard Brownian motion.

Remark 3.2. The stochastic integrals in (3.8) can be rewritten more directly as follows:
denoting by W = (Wt )t≥0 a standard Brownian motion, we have

ZW
t,β̂,ĥ
:= 1+

∞∑
k=1

∫
· · ·

∫
0<t1<···<tk<t

ψ t (t1, . . . , tk)

k∏
i=1

(β̂ dWti + ĥ dti), (3.12)

where the integrals can be viewed as ordinary Ito integrals: it suffices to first integrate
over (β̂dWt1 + ĥdt1) for t1 ∈ (0, t2), then over (β̂dWt2 + ĥdt2) for t2 ∈ (0, t3), etc.

Remark 3.3. Theorem 3.1 extends readily to the convergence of the joint distribution
of a finite collection of partition functions (conditioned or free). Analogously, the two
parameter family of partition functions

Z
ω,c
βN ,hN

(Ns,Nt) := E
[
e
∑Nt−1
n=Ns+1(βωn−3(β)+h)1{n∈τ }

∣∣ Ns,Nt ∈ τ ] for 0 < s < t,

(3.13)
converges in finite-dimensional distributions to a 2-parameter process (ZW,c

β̂,ĥ
(s, t))0<s<t .

In [CSZ14] we upgrade this result to a convergence in distribution in the space of con-
tinuous functions, equipped with the uniform topology. This allows us to construct the
continuum limit of the disordered pinning measure PωN,β,h.
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Remark 3.4. It is natural to call the random variable ZW
t,β̂,ĥ

in Theorem 3.1 the contin-
uum partition function and to define the corresponding continuum free energy

F (α)(β̂, ĥ) = lim
t→∞

1
t
E
[
logZW

t,β̂,ĥ

]
, (3.14)

where E denotes expectation with respect to the white noise W , provided the limit exists.
For 1/2 < α < 1, we expect that the continuum and discrete free energies are related via

F (α)(β̂, ĥ) = lim
δ↓0

F(δα−1/2L(1/δ)β̂, δαL(1/δ)ĥ)
δ

. (3.15)

This would follow if one could interchange the limits in the formal computation

F (α)(β̂, ĥ) = lim
t→∞

1
t

logZW
t,β̂,ĥ

d
= lim
t→∞

1
t

lim
N→∞

logZωtN,βN ,hN , (3.16)

where βN , hN scale as in (3.7). Such an interchange of limits has been made possible
in the related copolymer model, cf. [BdH97, CG10]. Proving (3.15) is a very interesting
open problem. Even the existence of the continuum free energy in (3.14)—possibly also
in the P-a.s. sense, as for the discrete case (3.5)—is a non-trivial issue.

Relation (3.15) is appealing because of its implication of universality: it states that the
discrete free energy F(β, h) has a universal shape in the weak disorder regime β, h→ 0,
given by the continuum free energy, which depends only on the parameter α and not on
finer details of the renewal distribution. Inverting the relation β = δα−1/2L(1/δ), one can
rewrite (3.15) for β̂ = 1 as

F (α)(1, ĥ) = lim
β↓0

F(β, L̃(1/β)β2α/(2α−1)ĥ)

L̂(1/β)β2/(2α−1)
, (3.17)

where L̃(·) and L̂(·) are suitable slowly varying functions determined by L(·).
Indeed, given a slowly varying function φ and γ > 0, we define the slowly varying functions

φ̄γ and φ∗ by

φ̄γ (x) :=
1

φ(x1/γ )
, φ∗(xφ(x)) ∼

1
φ(x)

as x →∞,

where the existence of φ∗ is guaranteed by [BGT87, Theorem 1.5.13]. Then as β ↓ 0,

δα−1/2L(1/δ) = β ⇒
1

δα−1/2 L̄α−1/2

(
1

δα−1/2

)
∼

1
β
⇒ L

(
1
δ

)
∼ (L̄α−1/2)

∗

(
1
β

)
,

hence from δα−1/2L(1/δ) = β we deduce that δ ∼ β2/(2α−1)L̂(1/β) and δαL(1/δ) ∼
β2α/(2α−1)L̃(1/β), where

L̂(x) := [(L̄α−1/2)
∗(x)]−2/(2α−1), L̃(x) := [(L̄α−1/2)

∗(x)]−1/(2α−1). (3.18)

Plugging this into (3.15) (with β̂ = 1), we get (3.17).

Define the critical curve of the continuum free energy in analogy with (3.6), i.e.

h(α)c (β̂) := sup{ĥ ∈ R : F (α)(β̂, ĥ) = 0} = inf{ĥ ∈ R : F (α)(β̂, ĥ) > 0}.

Relation (3.17) leads us to the following



Polynomial chaos and scaling limits of disordered systems 23

Conjecture 3.5. For any disordered pinning model satisfying (3.2) with α ∈ (1/2, 1), the
critical curve hc(β) has the following universal asymptotic behavior (with L̃(·) defined
by (3.18)):

lim
β↓0

hc(β)

L̃(1/β)β2α/(2α−1)
= h(α)c (1).

Further support to this conjecture is provided by the fact that (non-matching) upper and
lower bounds for hc(β) of the order L̃(1/β)β2α/(2α−1) were proved in [A08, AZ09].

Remark 3.6. The case when (3.2) holds with α = 1 and E[τ1] = ∞, i.e.
∑
n∈N L(n)/n

= ∞, can also be included in Theorem 3.1 (we have omitted it for notational lightness),
by setting

βN = β̂
`(N)
√
N
, hN = ĥ

`(N)

N
, where `(N) :=

N∑
n=1

L(n)

n

is a slowly varying function, and with ψct (t1, . . . , tk) = ψ(t1, . . . , tk) ≡ 1. This is easily
checked from the proof in Section 6, because P(n ∈ τ) ∼ 1/`(n) [BGT87, Theorem
8.7.5].

On the other hand, the case α = 1/2 appears to be fundamentally different, because
the continuum kernels ψct , ψ are no longer L2 integrable, and therefore the stochastic
integrals are not properly defined. When α = 1/2 and

∑
n∈N 1/(nL(n)2) = ∞—in

particular, when L(n) ∼ const as n → ∞, as for the simple random walk on Z—we
expect that a non-trivial continuum limit should exist. This appears to be a challenging
open problem.

3.2. Directed polymer model

Consider a random walk S = (Sn)n∈N0 on Z with law P. Let ω = (ω(n, x))n∈N,x∈Z be
a family of i.i.d. random variables, independent of S, with zero mean, unit variance and
locally finite exponential moments (cf. (3.1)). The (1+ 1)-dimensional directed polymer
model is the random probability law PωN,β for the walk S defined for N ∈ N and β ≥ 0
by

dPωN,β(S) :=
1

ZωN,β
e
∑N
n=1(βω(n,Sn)−3(β)) dP(S), (3.19)

where we recall that3(β) := logE[eβωn,x ] and the partition function ZωN,β is defined by

ZωN,β = E
[
eβ

∑N
n=1 ω(n,Sn)

]
e−3(β)N . (3.20)

For y ∈ Z, we also define the constrained point-to-point partition function ZωN,β(y) and
the conditioned point-to-point partition function Zω,cN,β(y), setting

ZωN,β(y) = E
[
eβ

∑N
n=1 ω(n,Sn)1{SN=y}

]
e−3(β)N ,

Z
ω,c
N,β(y) = E

[
eβ

∑N
n=1 ω(n,Sn)

∣∣ SN = y]e−3(β)N . (3.21)

Plainly, ZωN,β =
∑
y∈Z Z

ω
N,β(y) =

∑
y∈Z Z

ω,c
N,β(y)P(SN = y).
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When (Sn)n≥1 is the simple symmetric random walk on Z, we have the much-studied
directed polymer in random medium. First introduced in the physics literature in [HH85],
this model has received particular attention due to its connection to the Kardar–Parisi–
Zhang (KPZ) equation and its universality class (see [CSY04], [C12] for a review). In
particular, the point-to-point partition function can be thought of as an approximation of
the solution of the stochastic heat equation (SHE), whose logarithm is the so-called Hopf–
Cole solution of the KPZ equation. This was made rigorous in [AKQ14a], by showing that
when β = βN is scaled as N−1/4 (the so-called intermediate disorder regime) and y is
scaled as N−1/2, the point-to-point partition function ZωNt,β(y) converges in distribution
to a continuum process, which solves the SHE.

Our approach allows us to extend the results in [AKQ14a]. Not only can we deal
with general zero mean, finite variance random walks, which are the natural “universality
class” of the simple symmetric random walk on Z; we can also consider random walks
attracted to stable laws with index α ∈ (1, 2), exploring new universality classes. When
allowing “big jumps”, it is natural to call PωN,β the long-range directed polymer model.

Let us now state precisely our assumptions on the random walk.

Assumption 3.7. Let S = (Sn)n≥0 be a random walk on Z, with S0 = 0 and with i.i.d.
increments (Sn − Sn−1)n≥1, such that for some α ∈ (1, 2] the following holds:

• (Case α = 2): E[S1] = 0 and σ 2
:= Var(S1) <∞;

• (Case 1 < α < 2): E[S1] = 0 and there exist γ ∈ [−1, 1] and C ∈ (0,∞) such that

P(S1 > n) ∼
(
C

1+γ
2

) 1
nα
, P(S1 < −n) ∼

(
C

1−γ
2

) 1
nα
, as n→∞. (3.22)

This means that the random walk S is in the domain of normal attraction of a stable law
of index α ∈ (1, 2] and (for α < 2) skewness parameter γ . (The adjective “normal”
refers to the absence of slowly varying functions.) In other words, Sn/n1/α converges in
distribution as n→∞ to a random variable Y , which has law N (0, σ 2) if α = 2, while
for 1 < α < 2,

E[eitY ] = e−cαC|t |
α(1−iγ (sign t) tan πα

2 ) for a suitable cα > 0. (3.23)

We remark that Y satisfies the same conditions as S1 in Assumption 3.7 and has an ab-
solutely continuous law, with a bounded and continuous density g(·). For t > 0 we set

gt (x) :=
1
t1/α

g

(
x

t1/α

)
. (3.24)

We stress that g(·) depends only on the parameters (α, σ 2) or (α, γ, C) in Assumption 3.7.
The period of a random walk S on Z is the largest p ∈ N such that P(S1 ∈ pZ+r) = 1

for some r ∈ {0, . . . , p − 1}. For instance, the simple symmetric random walk on Z has
period p = 2, because P(S1 ∈ 2Z+ 1) = 1. To lighten notation, given (s, y) ∈ R+ × R,
we write Zω,cs,β (y) to mean Zω,cs̃,β (ỹ), where s̃ := bsc and ỹ := max{z ∈ pZ+ rs̃ : z ≤ y}.

We are ready to state our main result for this model, to be proved in Section 7.
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Theorem 3.8 (Scaling limits of directed polymer models). Let S be a random walk on Z
satisfying Assumption 3.7 for some α ∈ (1, 2]. For N ∈ N and β̂ > 0, set

βN := β̂/N
(α−1)/(2α).

For every t ≥ 0 and x ∈ R, the conditioned point-to-point partition function
Z
ω,c
Nt,βN

(N1/αx) converges in distribution as N → ∞ to the random variable ZW,c
t,β̂
(x)

given by

Z
W,c

t,β̂
(x) := 1+

∞∑
k=1

β̂k

k!

∫
· · ·

∫
([0,t]×R)k

ψct,x((t1, x1), . . . , (tk, xk))

k∏
i=1

W(dti dxi), (3.25)

where W(·) denotes a space-time white noise (i.e., white noise on R2) and the symmetric
function ψct,x((t1, x1), . . . , (tk, xk)) is defined for 0 < t1 < · · · < tk < t by

ψct,x((t1, x1), . . . , (tk, xk)) :=
( k∏
i=1

√
p gti−ti−1(xi − xi−1)

)gt−tk (x − xk)
gt (x)

, (3.26)

where x0 := 0 and p ∈ N is the period of the random walk. The series in (3.25) converges
in L2 and furthermore E[(Zω,cNt,βN

(N1/αx))2] → E[(ZW,c
t,β̂
(x))2] as N →∞.

An analogous statement holds for the free partition function ZωNt,βN , where the limit-
ing random variable ZW

t,β̂
is defined as in (3.25), with kernel

ψ t ((t1, x1), . . . , (tk, xk)) :=

k∏
i=1

√
p gti−ti−1(xi − xi−1).

Remark 3.9. Theorem 3.8 extends to the convergence of the joint distribution of a finite
collection of partition functions (conditioned or free). In particular, the four-parameter
family Zω,cNs,Nt,βN

(N1/αx,N1/αy), defined for (s, x) and (t, y) in R+ × R by

Z
ω,c
Ns,Nt;βN

(N1/αx,N1/αy) := E
[
e
∑Nt−1
n=Ns+1(βω(n,Sn)−3(β))

∣∣ SNs =N1/αx, SNt =N
1/αy

]
,

converges in finite-dimensional distributions to a four-parameter family of continuum
conditioned partition functions {ZW,c

s,t;β̂
(x, y)}(s,x),(t,y)∈R+×R.

Similar to the case α = 2 studied in [AKQ14b], we expect that this convergence
can be upgraded to a convergence in distribution in the space of continuous functions,
equipped with the uniform topology. We can then use these partition functions to de-
fine a continuum long-range directed polymer model (which corresponds intuitively to
an “α-stable Lévy process in a white noise random medium”), by specifying its finite-
dimensional distributions as done in [AKQ14b] for the Brownian case α = 2.
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Remark 3.10. The free energy of the (discrete) directed polymer model is defined by

F(β) := lim
N→∞

1
N
E
[
logZωN,β

]
,

where we expect that the limit exists (also P-a.s. and in L1(dP)), as in the usual setting.
It is natural to define the free energy of the continuum model analogously, i.e.

F (β̂) := lim
t→∞

1
t
E
[
logZW

t,β̂

]
,

assuming of course that the limit exists. We stress that F (·) is a universal quantity,
which depends only on the parameters (α, σ 2) or (α, γ, C) in Assumption 3.7 (further-
more, the parameters σ 2, C enter as simple scale factors). We also note that F (β̂) =
F (1)β̂(α−1)/(2α), by an easy scaling argument. In analogy with Remark 3.4, we are led to
the following

Conjecture 3.11. For any directed polymer model satisfying Assumption 3.7, the free
energy F(β) has the following universal asymptotic behavior for weak disorder:

lim
β↓0

F(β)

β2α/(α−1) = lim
δ↓0

F(δ(α−1)/(2α))

δ
= F (1).

When α = 2 we would then get F(β) ∼ F (1)β4, which is supported by the (non-
matching) upper and lower bounds on F(β) obtained in [L10].

Remark 3.12. For 1 < α < 2, the function gt (·) in (3.24) is the marginal density of the
α-stable Lévy process (Xt )t∈R+ whose infinitesimal generator is given by a multiple of

1α/2,γ f (x) :=

∫
∞

−∞

(
f (x + y)− f (x)− yf ′(x)

)( 1+ γ
|y|1+α

1{y>0} +
1− γ
|y|1+α

1{y<0}

)
dy.

(3.27)
In the symmetric case γ = 0, this reduces to the much studied fractional Laplacian

1α/2f (x) :=

∫
∞

−∞

(
f (x + y)− f (x)− yf ′(x)

) 1
|y|1+α

dy. (3.28)

Let us stick for simplicity to the symmetric case γ = 0. It is natural to call ZW,c
t,β̂
(x) in

(3.25) the continuum conditioned point-to-point partition function. Introducing the con-
tinuum constrained point-to-point partition function by

ZW
t,β̂
(x) := Z

W,c

t,β̂
(x)gt (x),

one can check that the process u(t, x) = ZW
t,β̂
(x) has a version that is continuous in (t, x)

and, up to a scaling factor, it is a mild solution to the one-dimensional stochastic PDE{
∂tu = 1

α/2u+
√
p β̂Ẇu,

u(0, ·) = δ0(·),
(3.29)
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which we can call the stochastic fractional heat equation (SFHE), generalizing the usual
SHE (which corresponds to α = 2). Uniqueness of mild solutions for the SFHE follows
from standard techniques (see discussions in [CJKS14] and references therein).

Let us also consider the processA
α,β̂
(·) := logZW

1,β̂
(·). When α = 2, this is the cross-

over process studied in [ACQ11, SS10], which owes its name to the fact that its one-point
marginals interpolate between the Gaussian distribution (in the limit β̂ → 0) and the
Tracy–Widom GUE distribution (in the limit β̂ → ∞). When α < 2, it is easy to see
that A

α,β̂
(·) is again asymptotically Gaussian for β̂ → 0 (the contribution from the first

stochastic integral in its Wiener chaos expansion is dominant over the iterated integrals,
which are multiplied by higher powers of β̂). However, it is far from obvious whether
A
α,β̂
(·) converges to some asymptotic process Aα,∞(·) as β̂ → ∞ and whether such a

process describes some universality class for long-range random polymers, last passage
percolation and growth models, generalizing the the so-called Airy process obtained for
α = 2. Besides a very recent work on the limit shapes of long-range first-passage perco-
lation model [CD13], long-range polymer type models do not appear to have been studied
systematically before.

3.3. Random field Ising model

Given a bounded 
 ⊆ Z2, we set

∂
 := {x ∈ Z2
\ 
 : ‖x − y‖ = 1 for some y ∈ 
}.

For a fixed parameter β ≥ 0, representing the “inverse temperature”, the Ising model on

 with + boundary condition (and zero external field) is the probability measure P+
 on
the set of spin configurations {±1}
, where each σ := (σx)x∈
 ∈ {±1}
 has probability

P+
(σ ) :=
1
Z+


exp
{
β

∑
x∼y∈
∪∂


σxσy

} ∏
x∈∂


1{σx=+1}. (3.30)

Here x ∼ y denotes an unordered nearest-neighbor pair in Z2, and Z+
 is the normalizing
constant. The value of β will soon be fixed, which is why we do not indicate it in P+
 .

Remark 3.13. It is well-known that as 
 ↑ Z2, the sequence of probability measures P+

has a unique infinite volume limit P+

Z2 , which of course depends on β, such that

E+
Z2(σ0) > 0 if and only if β > βc :=

1
2 log(1+

√
2).

By an obvious symmetry, for β > βc there also exists an infinite volume Gibbs meas-
ure P−

Z2 satisfying E−
Z2(σ0) < 0. Given the coexistence of multiple infinite volume Gibbs

measures, the Ising model is said to have a first order phase transition for β > βc. The
same result holds in higher dimensions, with different values of βc.

A question that attracted significant interest was whether this picture will be altered by
the addition of a small random external field. After long debates, this question was settled
by Bricmont and Kupiainen [BK88], who showed that the first order phase transition
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persists for the random field Ising model in dimensions d ≥ 3 at low temperatures (i.e.,
for large β), and by Aizenman and Wehr [AW90] who showed the absence of first order
phase transition in dimension 2 at any temperature. See [B06, Chap. 7] for an overview.

Henceforth we fix β = βc :=
1
2 log(1 +

√
2), so that P+
 denotes the two-dimensional

critical Ising model. Let ω := (ωx)x∈Z2 be a family of i.i.d. random variables satisfying
(3.1), representing the disorder. Given λ := (λx)x∈Z2 ≥ 0 and h := (hx)x∈Z2 ∈ R,
representing the disorder strength and bias respectively, the random field Ising model
(RFIM) is the probability measure P+,ω
,λ,h on {±1}
 with

P+,ω
,λ,h(σ ) =
1

Z
+,ω

,λ,h

exp
{∑
x∈


(λxωx + hx)σx

}
P+
(σ ), (3.31)

where the normalizing constant, called the partition function, is given by

Z
+,ω

,λ,h = E+


[
exp

{∑
x∈


(λxωx + hx)σx

}]
. (3.32)

Note that we allow the disorder strength λ and bias h to vary from site to site. Also observe
that choosing P+
 as a “reference law” means that Z+,ω
,λ,h = 1 for λ, h ≡ 0 (with β = βc).

Fix now a bounded open set � ⊆ R2 with piecewise smooth boundary, and define the
rescaled lattice 
δ := � ∩ (δZ)2, for δ > 0. We are going to obtain a non-trivial limit in
distribution for the partition function Z+,ω
δ,λ,h

, in the continuum and weak disorder regime
δ, λ, h→ 0. We build on recent results of Chelkak, Hongler and Izyurov [CHI12, Theo-
rem 1.3] on the continuum limit of the spin correlations under P+
δ (the two-dimensional
critical Ising model with + boundary condition): for all n ∈ N and distinct x1, . . . , xn ∈ �,

lim
δ↓0

δ−n/8E+
δ [σx1 · · · σxn ] = Cnφ+�(x1, . . . , xn), (3.33)

where φ+� :
⋃
n∈N�

n
→ R is a symmetric function and C := 25/48e−

3
2 ζ
′(−1), with ζ ′

denoting the derivative of Riemann’s zeta function.4 (For simplicity, in (3.33) we have set
σx := σxδ , where xδ denotes the point in 
δ closest to x ∈ �.)

We can complement (3.33) with a uniform bound (see Lemma 8.1 below): there exists
C ∈ (0,∞) such that for all n ∈ N, x1, . . . , xn ∈ � and δ ∈ (0, 1),

0 ≤ δ−n/8E+
δ [σx1 · · · σxn ] ≤

n∏
i=1

C

d(xi, ∂� ∪ {x1, . . . , xn} \ {xi})1/8
, (3.34)

where d(x,A) := infy∈A ‖x−y‖ and the RHS is shown to be in L2 in Lemma 8.3 below.
Therefore the convergence (3.33) also holds in L2(�), and ‖φ+�‖L2(�n) < ∞ for every
n ∈ N.

We can now state our main result for the RFIM, to be proved in Section 8.

4 In [CHI12], the mesh size of 
δ is
√

2 δ instead of δ, which accounts for the difference between
our formula for C and that in [CHI12, (1.3)]. Exact formulas for φ+�(x1, . . . , xn) are available for
n = 1, 2 when � is the upper half-plane H [CHI12, (1.4)]. The general case φ+� can be obtained
from φ+H via a conformal map.



Polynomial chaos and scaling limits of disordered systems 29

Theorem 3.14 (Scaling limits of RFIM). Let� ⊆ R2 be bounded and simply connected
open set with piecewise smooth boundary, and define 
δ := � ∩ (δZ)2 for δ > 0.

Let ω := (ωx)x∈Z2 be i.i.d. random variables satisfying (3.1) and define ωδ =
(ωδ,x)x∈
δ byωδ,x := ωx/δ . Given continuous functions λ̂ : �→ (0,∞) and ĥ : �→ R,
define

λδ,x := λ̂(x)δ
7/8, hδ,x := ĥ(x)δ

15/8, (3.35)

and set λδ = (λδ,x)x∈
δ , hδ = (hδ,x)x∈
δ . Then the rescaled partition function

e
−

1
2 ‖λ̂‖

2
L2(�)

δ−1/4

Z
+,ωδ

δ,λδ,hδ

(3.36)

converges in distribution as δ ↓ 0 to a random variable Z+,W
�,λ̂,ĥ

with Wiener chaos expan-
sion

Z
+,W

�,λ̂,ĥ
= 1+

∞∑
n=1

Cn

n!

∫
· · ·

∫
�n
φ+�(x1, . . . , xn)

n∏
i=1

[λ̂(xi)W(dxi)+ĥ(xi) dxi], (3.37)

where W(·) denotes a white noise on R2 and φ+�(·), C are as in (3.33).

Remark 3.15. We require the continuity of λ̂ and ĥ and the strict positivity of λ̂ for
technical simplicity: these conditions can be relaxed with a more careful analysis.

We call the random variable Z+,W
�,λ̂,ĥ

in (3.37) the continuum RFIM partition function.

The fact that the continuum correlation function φ+� is conformally covariant, proved in
[CHI12, Theorem 1.3], allows one to deduce the conformal covariance of Z+,W

�,λ̂,ĥ
.

Corollary 3.16 (Conformal covariance). Let �, �̃ ⊆ R2 be bounded and simply con-
nected open sets with piecewise smooth boundaries, and let ϕ : �̃ → � be conformal.
Let λ̂ : �→ (0,∞) and ĥ : �→ R be continuous functions. Then

Z
+,W

�,λ̂,ĥ

d
= Z

+,W

�̃,̃λ,̃h
,

where we set λ̃(z) := |ϕ′(z)|7/8λ̂(ϕ(z)) and h̃(z) := |ϕ′(z)|15/8ĥ(ϕ(z)) for all z ∈ �̃.

Remark 3.17. Recently, Camia, Garban and Newman [CGN12a, CGN13] showed that
for a deterministic external field, more precisely λδ,x ≡ 0 and hδ,x ≡ ĥδ15/8 for fixed
ĥ ∈ R, the Ising measure P+
δ,λδ,hδ converges as δ ↓ 0 (in a suitable sense) to a limiting

distribution-valued process 8∞,ĥ� . Theorem 3.14 can be regarded as a first step towards
the extension of this convergence to the case of a random external field, where Z+,W

�,λ̂,ĥ

plays the role of the partition function of a continuum Ising model with random exter-
nal field (λ̂(x)W(dx) + ĥ(x)dx) and + boundary condition. The next step towards the
construction of such a continuum model would be to identify the joint distribution of
the partition functions (Zb,W

0,λ̂,ĥ
)0,b (note that they are random variables which are func-

tions of the disorder W ) for a large enough family of subdomains 0 ⊆ � and “boundary
conditions” b.
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Remark 3.18. Consider the case when the disorder strength and bias are constant, i.e.
λx ≡ λ ≥ 0 and hx ≡ h ∈ R. The free energy F(λ, h) of the critical random field Ising
model can be defined as follows: setting � := (−1/2, 1/2)2 and 3N := (N�) ∩ Z2

=

{d−N/2e, . . . , bN/2c}2, we define

F(λ, h) := lim
N→∞

1
N2|�|

E
[
logZ+,ω3N ,λ,h

]
= lim

δ↓0

δ2

|�|
E
[
logZ+,ω
δ,λ,h

]
, (3.38)

where the limit exists by standard superadditivity arguments and is independent of the
choice of �. Note that F(0, 0) = 0, that is F(λ, h) represents the excess free energy with
respect to the critical Ising model (cf. (3.32)).

It is natural to define a continuum free energy F (λ̂, ĥ) for λ̂ ≥ 0, ĥ ∈ R by

F (λ̂, ĥ) := lim
�↑R2

1
Leb(�)

E
[
logZ+,W

�,λ̂,ĥ

]
,

provided the limit exists (at least along sufficiently nice domains � ↑ R2), where E de-
notes expectation with respect to the white noiseW(·). In analogy with Remark 3.4, The-
orem 3.14 suggests the following conjecture on the universal behavior of the free energy
F(λ, h) in the weak disorder regime λ, h→ 0.

Conjecture 3.19. The following asymptotic relation holds:

lim
δ↓0

F(λ̂δ7/8, ĥδ15/8)

δ2 = F (λ̂, ĥ), ∀λ̂ ≥ 0, ĥ ∈ R. (3.39)

One can go one step further: differentiating both sides of (3.39) with respect to ĥ and
setting δ = h8/15, for ĥ = 1 one would obtain

lim
h→0

〈σ0〉λ̂h7/15,h

h1/15 =
∂F

∂ĥ
(λ̂, 1), (3.40)

where 〈σ0〉λ,h :=
∂F
∂h
(λ, h) = limN→∞ E

[
E+,ω3N ,λ,h

[σ0]
]

represents the average magneti-
zation in the infinite-volume random field critical Ising model (cf. (3.38) and (3.31)). Re-
lation (3.40) is supported by (non-matching) upper and lower bounds of the order h1/15

for 〈σ0〉λ,h in the non-disordered case λ = 0, recently proved by Camia, Garban and
Newman [CGN12b].

In light of Theorem 3.14, and the fact that for the two-dimensional Ising model below the
critical temperature a disordered external field smoothens the phase transition [AW90], it
is natural to conjecture that a similar smoothing effect occurs at the critical temperature:

Conjecture 3.20. For any fixed λ > 0, the average magnetization in the infinite-volume
random field critical Ising model on Z2 satisfies

〈σ0〉λ,h ∼ Ch
γ as h ↓ 0 for some γ >

1
15
. (3.41)
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4. Proof of the Lindeberg principle

In this section, we prove Theorems 2.6 and 2.8 on the Lindeberg principle for polyno-
mial chaos expansions. We first deduce Theorem 2.8 from Theorem 2.6, starting with the
following lemma which controls how a multi-linear polynomial 9(x) = 9((xi)i∈T) is
affected by a shift x 7→ x + µ, where µ := (µi)i∈T.

Lemma 4.1 (Effect of adding a mean). Let 9(x) = 9((xi)i∈T) be a multi-linear poly-
nomial as in (2.5), with kernel ψ , and let µ := (µi)i∈T be a family of real numbers. Then
9̃(x) := 9(x + µ) is a multi-linear polynomial, i.e. 9̃(x) =

∑
J∈Pfin(T) ψ̃(J )x

J , with
kernel

ψ̃(J ) =
∑

I∈Pfin(T), I⊇J

ψ(I)µI\J . (4.1)

For ε > 0, let9(ε)(x) be defined as in (2.26), and recall the definitions of C9 from (2.19)
and Infj [9] from (2.20). Then, setting cµ :=

∑
i∈T µ

2
i , for any ε > 0 we have

C9̃ ≤ e
cµ/εC9(ε) , Infj [9̃] ≤ ecµ/εInfj [9(ε)]. (4.2)

Proof. Note that (4.1) follows from the expansion

9̃(x) = 9(x + µ) =
∑
I

ψ(I)(x + µ)I =
∑
I

ψ(I)
∑
J⊆I

µI\J xJ

=

∑
J

(∑
I⊇J

ψ(I)µI\J
)
xJ .

For any ε > 0, we can apply Cauchy–Schwarz to write

ψ̃(J )2 ≤
(∑
I⊇J

(ε−1µ2)I\J
)(∑

I⊇J

ε|I\J |ψ(I)2
)

= (1+ ε−1µ2)T\J
(∑
I⊇J

ε|I\J |ψ(I)2
)
, (4.3)

and note that

(1+ ε−1µ2)T\J ≤ (1+ ε−1µ2)T ≤ ecµ/ε.

Therefore

C9̃ :=
∑
J

ψ̃(J )2 ≤ ecµ/ε
∑
I

(∑
J⊆I

ε|I\J |
)
ψ(I)2

= ecµ/ε
∑
I

(1+ ε)|I |ψ(I)2 =: ecµ/εC9(ε) ,

proving the first relation in (4.2). The second relation is obtained similarly:

Infj [9̃] :=
∑
J3j

ψ̃(J )2 ≤ ecµ/ε
∑
I3j

( ∑
J, j∈J⊆I

ε|I\J |
)
ψ(I)2

≤ ecµ/ε
∑
I3j

(1+ ε)|I |ψ(I)2 =: ecµ/εInfj [9(ε)]. (4.4)

This concludes the proof of the lemma. ut
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Proof of Theorem 2.8. Since 9(̃ζ ) = 9(ζ + µ) =: 9̃(ζ ), by Lemma 4.1 the conditions
cµ <∞ and C9(ε) <∞ ensure that C9̃ <∞. The polynomial chaos expansion 9(̃ζ ) is
then a well-defined L2 random variable, by Remark 2.2, and the same holds for 9(̃ξ).

To prove (2.27), we are first going to truncate 9 to degree `, i.e. we consider 9≤`

and 9>`, defined in (2.21). Note that

|E[f (9(̃ζ ))− f (9≤`(̃ζ ))]| ≤ ‖f ′‖∞E[|9(̃ζ )−9
≤`(̃ζ )|]

≤ ‖f ′‖∞E[|9
>`(̃ζ )|2]1/2, (4.5)

and the same bound holds when ζ̃ is replaced by ξ̃ , therefore

|E[f (9(̃ζ ))] − E[f (9(̃ξ))]| ≤ 2‖f ′‖∞E[|9>`(̃ζ )|2]1/2

+ |E[f (9≤`(̃ζ ))] − E[f (9≤`(̃ξ ))]|, (4.6)

where we use the fact that, since ζ and ξ are independent with zero mean,

E[|9>`(ζ )|2] = E[|9>`(ξ)|2] =
∑
|I |>`

ψ(I)2 = C9>` .

To bound the first term in (4.6), we write 9̃>`(x) := 9>`(x + µ), which has ker-
nel ψ̃>` (note that first we truncate the kernel and then we shift x 7→ x +µ). Since ζ are
independent with zero mean and variance one, by Lemma 4.1 we have

E[|9>`(̃ζ )|2] = E[|9̃>`(ζ )|2] =
∑
J

ψ̃>`(J )2 =: C9̃>` ≤ e
cµ/εC9(ε),>` .

Substituting this bound into (4.6) then leads to the first term in (2.27).
To bound the second term in (4.6), we write 9̃≤`(x) := 9≤`(x + µ), and then apply

Theorem 2.6 to obtain

|E[f (9≤`(̃ζ ))] − E[f (9≤`(̃ξ ))]| = |E[f (9̃≤`(ζ ))] − E[f (9̃≤`(ξ))]|

≤ CfC9̃≤`
(

16`2m>M2 + 70`+1(m
≤M
3 )` max

i∈T

√
Infi[9̃≤`]

)
.

Applying the bounds in Lemma 4.1 to 9≤` then gives the remaining terms in (2.27),
where we have combined and upper bounded factors of ecµ/ε. ut

Proof of Theorem 2.6. We note that it is sufficient to prove the theorem in the case
|T| < ∞, because the general case follows by considering finite 3N ↑ T. For notational
simplicity, we assume that T = [N ] := {1, . . . , N}.

Step 1. We first truncate 9 to a degree ` polynomial 9≤`. By the same calculations as
in (4.5) and (4.6), we have

|E[f (9(ζ ))] − E[f (9(ξ))]| ≤ 2‖f ′‖∞E[|9>`(ζ )|2]1/2

+ |E[f (9≤`(ζ ))] − E[f (9≤`(ξ))]|. (4.7)

This leads to the first term on the right hand side of (2.24).
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Step 2. For a fixed f ∈ C3
b(R), we denote

f (9≤`(x)) =: g(x1, . . . , xN ).

For a vector x ∈ RN and y ∈ R, we also set

hxj (y) := g(x1, . . . , xj−1, y, xj+1, . . . , xN ).

Using this notation, we can write

f (9≤`(ζ ))− f (9≤`(ξ))

=

N∑
j=1

(
g(ζ1, . . . , ζj , ξj+1, . . . , ξN )− g(ζ1, . . . , ζj−1, ξj , . . . , ξN )

)
=

N∑
j=1

(hX
j

j (ζj )− h
Xj

j (ξj )), (4.8)

where we have used the notation

Xj := (X
j

1 , . . . , X
j
N ) := (ζ1, . . . , ζj , ξj+1, . . . , ξN ). (4.9)

Next, we will be Taylor expanding each term in (4.8). For this we note that for y ∈ R,

hxj (y) = h
x
j (0)+ y

dhxj

dy
(0)+

y2

2

d2hxj

dy2 (0)+ R
x
j (y),

where the remainder term has the form

Rxj (y) =
1
2

∫ y

0

d3hxj

dy3 (t)(y − t)
2 dt =

1
2

d2hxj

dy2 (0)y
2
+

∫ y

0

d2hxj

dy2 (t)(y − t) dt,

from which it follows that

|Rxj (y)| ≤ min
{
|y|3

6

∥∥∥∥d3hxj

dy3

∥∥∥∥
∞

, y2
∥∥∥∥d2hxj

dy2

∥∥∥∥
∞

}
. (4.10)

Inserting the Taylor expansion into (4.8) we obtain

f (9≤`(ζ ))− f (9≤`(ξ)) =

N∑
j=1

{
hX

j

j (0)+ ζj
dhX

j

j

dy
(0)+

ζ 2
j

2

d2hX
j

j

dy2 (0)+ RX
j

j (ζj )

− hX
j

j (0)− ξj
dhX

j

j

dy
(0)−

ξ2
j

2

d2hX
j

j

dy2 (0)− RX
j

j (ξj )

}
.
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Since ζi and ξi both have zero mean and unit variance, taking expectation, we get

|E[f (9≤`(ζ ))] − E[f (9≤`(ξ))]| =
∣∣∣ N∑
j=1

E[RX
j

j (ζj )− R
Xj

j (ξj )]

∣∣∣
≤

N∑
j=1

[
|RX

j

j (ζj )|] +

N∑
j=1

E[|RX
j

j (ξj )|]. (4.11)

Since the estimates for both sums are identical, we will focus on the first one.

Step 3. The derivatives of hxj (·) are easily computed:

dmhxj

dym
(y)

= f (m)
(
9≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

)(∂9≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

∂y

)m
= f (m)

(
9≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

)( ∑
I3j, |I |≤`

ψ(I)xI\{j}
)m
.

Then, setting Cf = max{‖f ′‖∞, ‖f (2)‖∞, ‖f (3)‖∞}, we can apply (4.10) to bound

N∑
j=1

E[|RX
j

j (ζj )|] ≤ Cf

N∑
j=1

E[ϕ(Lj (X
j ))], (4.12)

where Xj was introduced in (4.9), and we define

ϕ(x) := min{|x|3/6, |x|2}, Lj (x) :=
∑

I3j, |I |≤`

ψ(I)xI . (4.13)

Notice that Lj (x) includes the variable xj in the product as a result of absorbing the
powers of y in (4.10). Also note that ϕ(x) = ϕ(|x|) and

ϕ(a + b) ≤ ϕ(2 max{|a|, |b|}) ≤ ϕ(2|a|)+ ϕ(2|b|) ≤ 4|a|2 + 4
3 |b|

3.

Writing Lj (Xj ) = (Lj (Xj )−Lj (Xj−))+Lj (Xj−), where Xj− := (Xj−1 , . . . , X
j−
N ) is

a suitably truncated version of Xj , we then obtain

E
[
ϕ(Lj (X

j ))
]
≤ 4E

[
(Lj (X

j )− Lj (X
j−))2

]
+

4
3E
[
|Lj (X

j−)|3
]
. (4.14)

The two terms on the right hand side will give rise respectively to the two terms on the
right hand side of (2.24).

Step 4. We now describe the truncation procedure. This new ingredient, with respect
to [MOO10], is tailored to control random variables with finite second moments and
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uniformly integrable squares. Fix M ∈ (0,∞). We want to decompose any real-valued
random variable Y with zero mean and finite variance in the following way:

Y = Y− + Y+, (4.15)

where Y−, Y+ are functions of Y and possibly of some extra randomness, such that

E[Y−] = E[Y+] = 0, Y−Y+ = 0,

|Y−| ≤ |Y |1{|Y |≤M}, E[(Y+)2] ≤ 2E[Y 21{|Y |>M}].
(4.16)

If E[Y1{−M≤Y≤M}] = 0 we are done: just choose Y− := Y1{−M≤Y≤M} and Y+ :=
Y − Y−. If, on the other hand, E[Y1{−M≤Y≤M}] > 0 (the strictly negative case is analo-
gous), we set

T := sup{T ∈ [0,M] : E[Y1{−M≤Y≤T }] ≤ 0} ∈ [0,M].

Note that E[Y1
{−M≤Y≤T }] ≥ 0, because T 7→ E[Y1{−M≤Y≤T }] is right-continuous. If

E[Y1
{−M≤Y≤T }] = 0, and we define Y− := Y1

{−M≤Y≤T } and Y+ := Y − Y−, then
all the properties in (4.16) are clearly satisfied, except the last one that will be checked
below. Finally, we consider the case E[Y1

{−M≤Y≤T }] > 0 (then necessarily T > 0).
Since E[Y1

{−M≤Y<T }] ≤ 0 by definition of T , we must have P(Y = T ) > 0. Then take
a random variable U uniformly distributed in (0, 1) and independent of Y , and define

Y− := Y (1
{−M≤Y<T } + 1

{Y=T ,U≤%}), where % :=
−E[Y1

{−M≤Y<T }]

TP(Y = T )
∈ (0, 1).

Set Y+ := Y − Y−. Then all the properties (4.16) but the last one are clearly satisfied.
For the last property, we write

E[(Y+)2] = E[(Y+)21{|Y |>M}] + E[(Y+)21{|Y |≤M}]

= E[Y 21{|Y |>M}] + E[(Y+)21{|Y |≤M}],

because Y+ = Y on the event {|Y | > M}. For the second term, since 0 ≤ Y+ ≤ M on
the event {|Y | ≤ M}, we can write (Y+)2 ≤ MY+ (no absolute value needed). Since
Y− = Y−1{|Y |≤M} has zero mean by (4.16), we obtain

E[(Y+)21{|Y |≤M}] ≤ ME[Y+1{|Y |≤M}] = ME[(Y+ + Y−)1{|Y |≤M}]

= ME[Y1{|Y |≤M}] = M(−E[Y1{|Y |>M}]) ≤ E[Y 21{|Y |>M}],

where we have used the fact that E[Y ] = 0 by assumption, and Markov’s inequality. The
last relation in (4.16) is proved.

Step 5. We apply the decomposition (4.15) to the random variables (Xji )i∈[N ], defined
in (4.9), where the extra randomness used in the construction is taken independently for
each variable; then we write

X
j
i = X

j−
i +X

j+
i ,
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and the properties in (4.16) are satisfied. Note that by (4.13) we can write

Lj (X
j )− Lj (X

j−) =
∑

I3j,|I |≤`

ψ(I)
∑

0⊆I,|0|≥1

(Xj+)0(Xj−)I\0.

Since the random variables Xj−1 , X
j+

1 , X
j−

2 , X
j+

2 , . . . are orthogonal in L2 by construc-
tion, setting σ 2

±,i := E[(Xj±i )2] and observing that σ 2
−,i + σ

2
+,i = Var(Xji ) = 1 we

obtain

E
[(
Lj (X

j )− Lj (X
j−))2] =

∑
I3j,|I |≤`

ψ(I)2
∑

0⊆I, |0|≥1

(σ 2
+)
0(σ 2
−)
I\0

=

∑
I3j, |I |≤`

ψ(I)2(1− (σ 2
−)
I ) ≤

∑
I3j, |I |≤`

ψ(I)2
(
1− (1− σ 2

+)
|I |
)
,

where

σ 2
+ := max

i=1,...,N
σ 2
+,i = max

i=1,...,N
E[(Xj+i )2] ≤ 2 max

i=1,...,N
E[(Xji )

21
{|X

j
i |>M}

] ≤ 2m>M2 ,

having used (4.16) and the definition of m>M2 in (2.22) (recall (4.9)). Since 1− (1− p)n

≤ np, we obtain

N∑
j=1

E[(Lj (X
j )− Lj (X

j−))2] ≤ 2m>M2

N∑
j=1

( ∑
I3j, |I |≤`

|I |ψ(I)2
)

≤ 2m>M2 `2
∑
|I |≤`

ψ(I)2.

Tracing back through (4.7), (4.11), (4.12) and (4.14), we note that this gives the first term
on the right hand side of (2.24).

Step 6. We finally consider the contribution of the second term in (4.14). We apply the
hypercontractivity results in [MOO10]: by Propositions 3.16 and 3.12 therein, denoting
by ‖Y‖q := E[|Y |q ]1/q the usual Lq norm, for every q > 2 we have

‖Lj (X
j−)‖q ≤ (Bq)

`
‖Lj (X

j−)‖2, (4.17)

where

Bq := 2
√
q − 1 max

i∈[N ]

‖X
j−
i ‖q

‖X
j−
i ‖2

.

Let us set Y := Xji for short and choose q = 3. Since |Y−| ≤ M , by (4.16) we have

‖Y−‖3 ≤ E[|Y |31{|Y |≤M}]
1/3
≤ (m

≤M
3 )1/3,

where we recall (4.9) and the definition of m≤M3 from (2.22). On the other hand, again
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by (4.16),

‖Y−‖22 = ‖Y‖
2
2 − ‖Y

+
‖

2
2 = E[Y 2

] − E[(Y+)2] ≥ E[Y 2
] − 2E[Y 21{|Y |>M}]

= 1− 2E
[
(X

j
i )

21
{|X

j
i |>M}

]
≥ 1− 2m>M2 ,

hence

B3 ≤ 2
√

2
(m
≤M
3 )1/3√

1− 2m>M2

≤ 4(m≤M3 )1/3

provided m(2)>M ≤ 1/4, as in the assumptions of Theorem 2.6. Therefore, (4.17) for q = 3
yields

E[|Lj (X
j−)|3] ≤ 64`(m≤M3 )`E[Lj (X

j−)2]3/2.

Note that, since E[(Xj−i )2] ≤ E[(Xji )
2
] = 1, we have

E[Lj (X
j−)2] =

∑
I3j, |I |≤`

ψ(I)2
∏
i∈I

E[(Xj−i )2] ≤
∑

I3j, |I |≤`

ψ(I)2 = Infj [9≤`].

Therefore
N∑
j=1

E[|Lj (X
j−)|3] ≤ 64`(m≤M3 )`

(
max
i∈[N ]

√
Infi[9≤`]

) N∑
j=1

∑
I3j, |I |≤`

ψ(I)2

≤ `64`(m≤M3 )`
(

max
i∈[N ]

√
Infi[9≤`]

) ∑
|I |≤`

ψ(I)2.

(4.18)

This gives the third term on the right hand side of (2.24) (because 8
3`64` ≤ 70`+1), which

completes the proof. ut

5. Proof of the convergence to Wiener chaos

In this section, we prove Theorems 2.3 and 2.5 on the convergence of polynomial chaos
expansions to Wiener chaos expansions.

Proof of Theorem 2.3. Let W(·) be the d-dimensional white noise used to define the
Wiener chaos expansion for 90 in Theorem 2.3. Given the tessellation Cδ indexed by Tδ ,
where the cell Cδ(x) has the same volume vδ for each x ∈ Tδ , we define

ξδ,x := µδ(x)+ v
−1/2
δ

∫
Cδ(x)

σδW(dy) = v
−1/2
δ

∫
Cδ(x)

(σδW(dy)+ µ̄δ(y) dy), (5.1)

where we recall that µ̄δ := v
−1/2
δ µδ by (2.9). Note that ξδ := (ξδ,x)x∈T is a family

of independent Gaussian random variables with the same mean and variance as ζδ =
(ζδ,x)x∈Tδ .

We recall that our goal is to show that 9δ(ζδ) → 90 in distribution. The strategy
is first to focus on 9δ(ξδ) instead of 9δ(ζδ): we can write 9δ(ξδ) as a Wiener chaos
expansion with respect to W(·), like 90, and show that E[|9δ(ξδ)−90|

2
] → 0 as δ ↓ 0;

then we use the Lindeberg principle, Theorem 2.8, to replace 9δ(ξδ) by 9δ(ζδ).
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Step 1. We first show that for each degree k ∈ N0,

lim
δ↓0

E[|9(k)δ (ξδ)−9
(k)
0 |

2
] = 0, (5.2)

where 9(k)δ is a polynomial with kernel

ψ
(k)
δ (I ) := ψδ(I )1{|I |=k},

and similarly 9(k)0 is defined as 90 in (2.12), except the kernel ψ0 therein is replaced
by ψ (k)0 (I ) := ψ0(I )1{|I |=k} (that is, we take the k-th term in the sum). Recalling from
(2.10) that

ψ̄δ(I ) := v
−|I |/2
δ ψδ(I ),

and extending ψ̄δ to a function defined on Rk , as discussed before Theorem 2.3, we can
write

9
(k)
δ (ξδ) =

∑
I∈Pfin(Tδ), |I |=k

ψδ(I )ξ
I
δ

=
1
k!

∫
· · ·

∫
(Rd )k

ψ̄δ(y1, . . . , yk)

k∏
i=1

(σδW(dyi)+ µ̄δ(yi) dyi) =

1
k!

∑
I⊂[k]:={1,...,k}

∫
(Rd )k−|I |

(∫
(Rd )|I |

σ
k−|I |
δ ψ̄δ(y1, . . . , yk)

∏
i∈I

µ̄δ(yi) dyi

) ∏
j∈[k]\I

W(dyj ).

A similar expansion holds for 9(k)0 with ψ̄δ , µ̄δ , σδ replaced respectively by ψ0, µ0, σ 0.
Comparing the two expansions term by term for each I ⊂ [k], we obtain, by the triangle
inequality and the Ito isometry (2.2),

E[|9(k)δ (ξδ)−9
(k)
0 |

2
]
1/2

≤
1
k!

∑
I⊂[k]

(∫
(Rd )k−|I |

{∫
(Rd )|I |

(
σ
k−|I |
δ ψ̄δ

∏
i∈I

µ̄δ(yi)− σ
k−|I |
0 ψ0

∏
i∈I

µ0(yi)
)∏
i∈I

dyi

}2

·

∏
j∈[k]\I

dyj

)1/2

. (5.3)

To see that each term above tends to 0 as δ ↓ 0, assume without loss of generality that
either I = ∅ or I = [n] for some 1 ≤ n ≤ k. We then write in a telescopic sum

σ k−nδ ψ̄δ

n∏
i=1

µ̄δ(yi)− σ
k−n
0 ψ0

n∏
i=1

µ0(yi)

= 10

n∏
i=1

µ̄δ(yi)+ σ
k−n
0 ψ011

n∏
i=2

µ̄δ(yi)+ · · · + σ
k−n
0 ψ0

n−1∏
i=1

µ0(yi)1n, (5.4)

where 10 := σ k−nδ ψ̄δ − σ
k−n
0 ψ0 and 1i := µ̄δ(yi) − µ0(yi) for i = 1, . . . , n. The

contribution of each term from (5.4) to the integrals in (5.3) can be bounded by applying
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Cauchy–Schwarz to the inner integral, in such a way that the ψ term is separated from the
product of theµ’s. It is then easily seen that all terms tend to 0 as δ ↓ 0 by the assumptions
in Theorem 2.3 that µ̄δ → µ0 and ψ̄δ → ψ0 in L2, together with σδ → σ 0 ∈ (0,∞).
This implies (5.2).

Step 2. We next give a uniform L2 bound on the tail of the series for9δ(ζδ) and90. More
precisely, for any ` < N , let 9(`,N)δ :=

∑
`<k<N 9

(k)
δ and 9(`,N)0 :=

∑
`<k<N 9

(k)
0 .

Write 9>`δ and 9>`0 for the case N = ∞. We will show that

lim
`→∞

lim sup
δ↓0

E[|9>`δ (ζδ)|
2
] = 0, and 90 =

∞∑
k=0

9
(k)
0 converges in L2. (5.5)

Together with (5.2) and the fact that E[9(`,N)δ (ξδ)
2
] = E[9(`,N)δ (ζδ)

2
] for all 0 ≤ ` <

N ≤ ∞, it follows that

E[9δ(ζδ)
2
] = E[9δ(ξδ)

2
] → E[92

0] as δ ↓ 0,

which is one of the claims in Theorem 2.3.
If we denote ξδ,x = µδ(x)+ ξ̃δ,x and let 9̃(`,N)δ (x) := 9

(`,N)
δ (x+µδ), then for ε > 0

as specified in Theorem 2.3(iii) we can apply Lemma 4.1 (actually a modification of it,
where we take into account that the random variables do not have normalized variance)
to obtain

E[|9(`,N)δ (ξδ)|
2
] = E[|9̃(`,N)δ (̃ξδ)|

2
]

≤ e

1
εσ2
δ

∑
x∈Tδ

µδ(x)
2 ∑
I∈Pfin(Tδ)
`<|I |<N

(1+ ε)|I |(σ 2
δ )
|I |ψδ(I )

2. (5.6)

A similar relation to (5.6) holds with ζδ replacing ξδ . Since
∑
x∈Tδ µδ(x)

2
= ‖µ̄δ‖

2
L2(Rd )

(recall the extension of f : Tδ → R to f : Rd → R as specified before Theorem 2.3),
the assumptions in Theorem 2.3(i)&(iii) immediately imply the first limit in (5.5) if we
let N ↑ ∞ in (5.6). It also shows that9δ(ξδ) =

∑
∞

k=09
(k)
δ (ξδ), as well as9δ(ζδ), are L2

convergent series.
By (5.2), we can let δ ↓ 0 in (5.6) to obtain

E[|9(`,N)0 |
2
] = lim

δ↓0
E[|9(`,N)δ (ξδ)|

2
]

≤ e

1
εσ2

0
‖µ0‖

2
L2(Rd ) lim sup

δ↓0

∑
I∈Pfin(Tδ)
|I |>`

(1+ ε)|I |(σ 2
δ )
|I |ψδ(I )

2.

By assumptions (i) and (iii) of Theorem 2.3, this implies that 90 =
∑
∞

k=09
(k)
0 is an L2

convergent series, proving the second relation in (5.5).
We also observe that if µδ(x) ≡ 0 there is no need to apply Lemma 4.1: relation

(5.6) holds without the exponential prefactor and with ε = 0, because ξδ(x), x ∈ Tδ are
random variables with zero mean and finite variance σδ (cf. Remark 5.5).
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Step 3. We now use the Lindeberg principle, Theorem 2.8, to show that for each ` ∈ N0,
9
≤`
δ (ζδ) :=

∑`
k=09

(k)
δ (ζδ) has the same limiting distribution as 9≤`δ (ξδ) as δ ↓ 0.

Together with the L2 convergence of 9≤`δ (ξδ) to 9≤`0 :=
∑`
k=09

(k)
0 proved in Step 1

(cf. (5.2)), as well as the uniform L2 bound on 9>`δ (ζδ) and 9>`0 shown in Step 2 (cf.
(5.5)), this implies that 9δ(ζδ) converges in distribution to 90 as δ ↓ 0.

It suffices to show that for all f ∈ C 3 withCf :=max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞}<∞,

lim
δ↓0
|E[f (9≤`δ (ζδ))− f (9

≤`
δ (ξδ))]| = 0. (5.7)

With ε as specified in Theorem 2.3(iii), we can apply Theorem 2.8 (actually a slight
modification of it, taking into account the non-normalized variance σδ of the variables
used here): the absolute value on the left hand side of (5.7) is bounded by

e

2
εσ2
δ

‖µ̄δ‖
2
L2(Rd )

Cf Ĉ9(ε),≤`δ

(
16`2m

>M
2

σ 2
δ

+ 70`+1
(
m
≤M
3

σ 3
δ

)`
max
i∈Tδ

√
Înfi[9

(ε),≤`
δ ]

)
, (5.8)

where

Ĉ
9
(ε),≤`
δ

:=

∑
|I |≤`

(1+ ε)|I |(σ 2
δ )
|I |ψδ(I )

2
=

∑̀
k=0

(1+ ε)k
1
k!
‖σδψ̄δ‖

2
L2((Rd )k)

Înfi[9
(ε),≤`
δ ] :=

∑
I3i, |I |≤`

(1+ ε)|I |(σ 2
δ )
|I |ψδ(I )

2

=

∑̀
k=1

(1+ ε)k

(k − 1)!
(σ 2
δ )
k
∥∥ψ̄δ1{x1∈Cδ(i)}

∥∥2
L2((Rd )k),

and we recall that Cδ(i) ⊂ Rd is the cell indexed by i ∈ Tδ in the tessellation Cδ . We are
left with showing that (5.8) vanishes as δ ↓ 0. Note that

• Ĉ
9
(ε),≤`
δ

is uniformly bounded by Theorem 2.3(ii)–(iii);

• ‖µ̄δ‖
2
L2(Rd )

→ ‖µ0‖
2
L2(Rd )

and σδ → σ 0 > 0 by Theorem 2.3(i);

• m
≤M
3 ≤ M3 and m>M2 can be made arbitrarily small by choosing M large, by the

definition (2.22) (to be applied to the centered variables ζδ,x−E[ζδ,x]) and the fact that
((ζδ,x − E[ζδ,x])2)δ∈(0,1),x∈Tδ are uniformly integrable by assumption.

It only remains to verify that Înfi[9
(ε),≤`
δ ] vanishes as δ ↓ 0, uniformly in i ∈ Tδ . Since

Înfi[9
(ε),≤`
δ ] ≤ 2

∑̀
k=1

(1+ ε)k

(k − 1)!
(σ 2
δ )
k
(
‖ψ̄δ − ψ0‖

2
L2((Rd )k) + ‖ψ01{x1∈Cδ(i)}‖

2
L2((Rd )k)

)
,

one has
∥∥ψ̄δ − ψ0

∥∥2
L2((Rd )k) → 0 by Theorem 2.3(ii), and ‖ψ01{x1∈C(i)}‖

2
L2((Rd )k)

→ 0
uniformly in i ∈ Tδ because Leb(Cδ(i)) = vδ ↓ 0 uniformly in i ∈ Tδ . This completes
Step 3 and establishes the convergence of 9δ(ζδ) to 90 in distribution.
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Step 4. Lastly, to show that the convergence of 9δ(ζδ) to 90 in distribution ex-
tends to the joint distribution of a finite collection of polynomial chaos expansions
(9i,δ(ζδ))1≤i≤M , we note that by the Cramér–Wold device, it suffices to show the con-
vergence of

∑M
i=1 ci9i,δ(ζδ) to

∑M
i=1 ci9i,0 for any c1, . . . , cm ∈ R. This follows from

what we have proved so far, since
∑M
i=1 ci9i,δ(x) is also a polynomial that satisfies all

the required conditions. ut

Proof of Theorem 2.5. Instead of performing an L2 estimate on the tail series 9>`δ (ζδ) as
in Step 2 in the proof of Theorem 2.3, we shall give an Lp estimate for any p ∈ (0, 2).
More precisely, we replace relation (5.5) by the following one: for any p ∈ (0, 2),

90 =

∞∑
k=0

9
(k)
0 converges in Lp, and lim

`→∞
lim sup
δ↓0

E[|9>`δ (ζδ)|
p
] = 0, (5.9)

and we show that this holds under either condition (a) or (b) in Theorem 2.5. The rest of
the proof of Theorem 2.3 then carries over without change.

The key to proving (5.9) is a change of measure argument. For ` < N , let 9(`,N)0 and
9
(`,N)
δ be defined as in Step 2 in the proof of Theorem 2.3. Note that 9(`,N)0 is a finite

sum of stochastic integrals with respect to the biased white noise σ 0W(dx) + µ0(x)dx.
By the discussion in Subsection 2.3.1, cf. (2.15), the joint distribution of these stochastic
integrals is absolutely continuous with respect to the unbiased case µ0(x) ≡ 0, with
Radon–Nikodym derivative

f(W) := exp
{

1
σ 0

∫
µ0(y)W(dy)−

1
2σ 2

0

∫
µ0(y)

2 dy

}
. (5.10)

Therefore, using 9(`,N)0,µ0≡0 to denote 9(`,N)0 with µ0(x) ≡ 0, for any p ∈ (0, 2) we have

E[|9(`,N)0 |
p
] = E[f(W)|9(`,N)0,µ0≡0|

p
] ≤ E

[
f(W)

2
2−p
] 2−p

2 E[|9(`,N)0,µ0≡0|
2
]
p/2

= e
p

2(2−p) ‖µ0/σ 0‖
2
L2(Rd )E[|9(`,N)0,µ0≡0|

2
]
p/2, (5.11)

by Hölder’s inequality. By Theorem 2.3, when µδ = µ0 ≡ 0 it is enough to assume that
condition (iii) therein holds with ε = 0 to guarantee that 90,µ0≡0 =

∑
∞

k=09
(k)
0,µ0≡0 is

an L2 convergent series. Therefore 90 =
∑
∞

k=09
(k)
0 is convergent in Lp, by (5.11).

To control E[|9>`δ (ζδ)|
p
] via a change of measure for ζδ is more subtle, since

(ζδ,i)i∈Tδ are not assumed to have finite exponential moments. We will instead perform
an exponential change of measure on a bounded subset of the support of ζδ,i . Since by
assumption ‖µδ‖∞ → 0 and ((ζδ,i − µδ)2)i∈Tδ are uniformly integrable, also (ζ 2

δ,i)i∈Tδ
are uniformly integrable. We can then apply Lemma B.1 of Appendix B: there exist in-
dependent random variables ζ̃δ,i , whose law is absolutely continuous with respect to the
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law of ζδ,i , with density fδ,i(x), which satisfy (B.1)–(B.3). We can then write

E[|9(`,N)δ (ζδ)|
p
] = E

[∏
i∈Tδ

fδ,i(ζδ,i)
p/2
|9

(`,N)
δ (ζδ)|

p
∏
i∈Tδ

fδ,i(ζδ,i)
−p/2

]
≤ E

[∏
i∈Tδ

fδ,i(ζδ,i)|9
(`,N)
δ (ζδ)|

2
]p/2

E
[∏
i∈Tδ

fδ,i(ζδ,i)
−

p
2−p
] 2−p

2

= E[|9(`,N)δ (̃ζδ)|
2
]
p/2

∏
i∈Tδ

E
[
fδ,i(ζδ,i)

−
p

2−p
] 2−p

2 . (5.12)

Applying (B.1), we have∏
i∈Tδ

E
[
fδ,i(ζδ,i)

−
p

2−p
] 2−p

2 ≤ e
Cp

2−p
2
∑
i∈Tδ

µδ(i)
2
= e

Cp
2−p

2 ‖µ̄δ‖
2
L2(Rd ) ,

which is uniformly bounded for δ close to 0 (recall that µ̄δ → µ0 in L2). To bound the
first factor in (5.12), we use the fact that (̃ζδ,i)i∈Tδ are independent with zero mean to
obtain

E[|9(`,N)δ (̃ζδ)|
2
] =

∑
`<|I |<N

(∏
i∈I

E[̃ζ 2
δ,i]

)
ψδ(I )

2
≤

∑
`<|I |<N

e
C′
∑
i∈Tδ

µδ(i)
2
(σ 2
δ )
|I |ψδ(I )

2,

(5.13)

where in the inequality we have applied (B.3), provided ζ satisfies condition (a) in Theo-
rem 2.5. Combined with the assumption in Theorem 2.5 that (2.11) holds with ε = 0, and
tracing back to (5.12), we then obtain the desired Lp bound on 9>`δ (ζδ) in (5.9).

If we assume instead that condition (b) in Theorem 2.5 holds, then we can modify the
calculation in (5.13) by applying the bound E[̃ζ 2

δ,i] ≤ σ
2
δ (1+ Cµδ(i)), stated in (B.1), to

obtain
E[|9(`,N)δ (̃ζδ)|

2
] ≤

∑
`<|I |<N

eC‖µδ‖∞|I |(σ 2
δ )
|I |ψδ(I )

2. (5.14)

Theorem 2.5(b) and condition (2.11) with ε = 0 then give the desired bound in (5.9). ut

6. Proof for the disordered pinning model

In this section we prove Theorem 3.1. We recall that τ = (τk)k≥0 is an aperiodic renewal
process such that either E[τ1] < ∞, or relation (3.2) holds for some α ∈ (1/2, 1). Note
that

u(n) := P(n ∈ τ) ∼


1

E[τ1]
if E[τ1] <∞,

Cα

L(n)n1−α if 1/2 < α < 1 (where Cα := α sin(πα)/π),

(6.1)
where the first asymptotic relation is the classical renewal theorem, while the second one
is due to Doney [D97, Thm. B] (see also [G07, §A.5]). We also recall that ω = (ωn)n∈N,
representing the disorder, is an i.i.d. sequence of random variables satisfying (3.1).
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Proof of Theorem 3.1. It suffices to rewrite the partition function as a polynomial chaos
expansion and then to check that all the conditions of Theorem 2.3 are satisfied. We
only consider the conditioned partition function Zω,cNt,βN ,hN

, as the proof for the free one
follows the same lines. We also set t = 1, to lighten notation.

Step 1. Consider the lattice TN := 1
N
N for N ∈ N. Note that in Section 2 we used the

notation Tδ (where δ would equal 1/N ): here we prefer TN , as it indicates the size of the
polymer. Consequently, all the quantities in this section will be indexed byN instead of δ.
For each t ∈ TN we define the cell CN (t) := (t − 1/N, t], which has volume vN = 1/N .

Step 2. We now rewrite the conditioned partition function Zω,cN,β,h (cf. (3.4)), as a poly-
nomial chaos expansion. This was already done in (1.5)–(1.7), in terms of the random
variables εi = eβωi−3(β)+h − 1. It is actually convenient to rescale the εi so that their
variance is of order one, in order to apply Theorem 2.3. Since Var(εi) ∼ β2 as β ↓ 0,
recalling (3.7) we set

aN =


1
√
N

if E[τ1] <∞,

L(N)

Nα−1/2 if 1
2 < α < 1,

(6.2)

so that βN = β̂aN , and we define the random variables ζN = (ζN,t )t∈TN by

ζN,t :=
1
aN
(eβNωNt−3(βN )+hN − 1). (6.3)

In this way, arguing as in (1.5)–(1.7), we can write

Z
ω,c
N,βN ,hN

= 9N (ζN ) := 1+
N∑
k=1

1
k!

∑
(t1,...,tk)∈(TN )k

ψcN (t1, . . . , tk)

k∏
i=1

ζN,ti , (6.4)

where the kernel ψcN (t1, . . . , tk) is a symmetric function, which vanishes when ti = tj for
some i 6= j or when some ti 6∈ (0, 1], and for 0 =: t0 < t1 < · · · < tk ≤ 1 is defined by

ψcN (t1, . . . , tk) := a
k
NP({Nt1, . . . , Ntk} ⊆ τ | N ∈ τ)

=
u(N(1− tk))

u(N)

k∏
i=1

aNu(N(ti − ti−1)) (6.5)

(recall (6.1)). We extend ψcN (t1, . . . , tk) from (TN )k to Rk in the usual way, as a piecewise
constant function on products of cells. The same is done for (s, t) 7→ u(N(t − s)).

Step 3. We now verify that the conditions of Theorem 2.3 are satisfied. By our assump-
tions (3.1) on the disorder, for every fixed N ∈ N the random variables (ζN,t )t∈TN are
i.i.d. with mean and variance given by

µN := E(ζN,t ) =
1
σN
(ehN − 1) ∼

ĥ
√
N
,

σ 2
N := Var(ζN,t ) =

1
a2
N

(e3(2βN )−23(βN ) − 1)e2hN ∼
β2
N

a2
N

→ β̂2, as N →∞.

(6.6)
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Since vN = 1/N , condition (i) of Theorem 2.3 is satisfied with σ 0 = β̂ and µ0(t) =

ĥ1(0,1](t). (More precisely, redefining ζN,t as (ζN,t −E[ζN,t ]) when t 6∈ (0, 1]—which is
harmless, since such values of t do not contribute to (6.4)—one has µN (t) = µN1(0,1](t)
→ µ0(t) in L2(R).)

To prove that the random variables ((ζN,t−µN )2)N∈N, t∈TN are uniformly integrable,
we show that the moments E[(ζN,t −µN )4] are uniformly bounded. Since3(β) = O(β)
as β ↓ 0, by (3.1), for every k ∈ N we can estimate

E[(eβω−3(β) − 1)2k]

≤ 22ke−2k3(β)E[(eβω − 1)2k] + 22k(1− e−3(β))2k

= 22ke−2k3(β)E

[(∫ β

0
ωetωdt

)2k]
+ 22k(1− e−3(β))2k

≤ 22ke−2k3(β)β2k
∫ β

0
E[ω2ke2ktω

]
dt

β
+ 22k(1− e−3(β))2k = O(β2k). (6.7)

Recalling that βN = β̂aN and hN = o(1), we obtain the desired bound:

E[(ζN,t − µN )
4
] ≤

e4hN

a4
N

O(β4
N ) = O(1).

Let us check condition (ii) of Theorem 2.3. The renewal estimates in (6.1) imply that,
for fixed 0 < s < t ,

lim
N→∞

√
N aNu(N(t − s)) =


1

E[τ1]
if E[τ1] <∞,

Cα

(t − s)1−α
if 1/2 < α < 1.

(6.8)

Recalling the definitions (6.5), (3.9) of the discrete and continuum kernels ψcN , ψct (for
t = 1), as well as the fact that vN = 1/N , it follows that for every fixed k ∈ N the
convergence

v
−k/2
N ψcN (t1, . . . , tk) −−−−→

N→∞
ψc1(t1, . . . , tk) (6.9)

holds pointwise, for distinct points t1, . . . , tk . To obtain the required L2 convergence, it
suffices to exhibit an L2 domination. The case E[τ1] < ∞ is easy: by (6.1) there exists
A ∈ (0,∞) such that 1/A ≤ u(n) ≤ A for every n ∈ N, and since v−1/2

N aN = 1 it
follows that

v
−k/2
N ψcN (t1, . . . , tk) ≤ A

k+21(0,1]k (t1, . . . , tk). (6.10)

We now focus on the case 1/2 < α < 1. By Karamata’s representation theorem for slowly
varying functions [BGT87, Theorem 1.3.1], we can writeL(n) = c(n) exp(

∫ n
1
ε(u)
u
du) for

some functions c(x) → c > 0 and ε(x) → 0 as x → ∞. It follows that for any η > 0
there exists a constant A′ = A′η ∈ (0,∞) such that

1
A′

(
n

m

)−η
≤
L(n)

L(m)
≤ A′

(
n

m

)η
, ∀n,m ∈ N with m ≤ n.
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Recalling (6.1) and (6.2), for possibly a larger constant A ∈ (0,∞) we have
Cα

A(t − s)1−α−η
≤
√
N aNu(N(t − s)) ≤

ACα

(t − s)1−α+η
, (6.11)

which plugged into (6.5) implies that for 0 < t1 < · · · < tk ≤ 1,

v
−k/2
N ψcN (t1, . . . , tk) ≤

Ak+2Ckα

t1−α
′

1 · · · (tk − tk−1)1−α
′
(1− tk)1−α

′
, (6.12)

where we set α′ := α−η for short. If we choose η > 0 sufficiently small, so that α′ > 1/2
(recall that α > 1/2), we have obtained the required L2 domination.

We finally check condition (iii) of Theorem 2.3, that is, relation (2.11). Since σ 2
N is

bounded (cf. (6.6)), we let B ∈ (0,∞) denote a constant such that (1 + ε)σ 2
N ≤ B, so

that ∑
I⊆TN , |I |>`

(1+ ε)|I |(σ 2
N )
|I |ψcN (I )

2
≤

∑
k>`

Bk
∑

(t1,...,tk )∈(TN )
k

0<t1<···<tk≤1

ψcN (t1, . . . , tk)
2. (6.13)

If E[τ1] <∞, applying (6.10) and recalling that vN = 1/N we see that this expression is
bounded by ∑

k>`

BkA2(k+2)(vN )
kN

k

k!
=

∑
k>`

A2(k+2)Bk

k!
,

which is arbitrarily small for ` large, proving (2.11). If α ∈ (1/2, 1) we apply (6.12): set-
ting χ := 2(1− α′) < 1 for short and bounding sums by integrals, we estimate (6.13) by∑

k>`

BkA2(k+2)C2k
α

∫
· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
χ

1 · · · (tk − tk−1)χ (1− tk)χ

≤

∑
k>`

BkA2(k+2)C2k
α c1e

−c2k log k,

where for the last inequality we have applied Lemma B.3 below (we recall that χ < 1).
Again, the sum can be made arbitrarily small by choosing ` large, proving (2.11).

Step 4. Lastly, we prove formula (3.11) when E[τ1] < ∞. Since ψct (t1, . . . , tk) =( 1
E[τ1]

)k in this case, formula (3.8) for ĥ = 0 yields

Z
W,c

t,β̂,0
= 1+

∞∑
k=1

1
k!

(
β̂k

E[τ1]

)k ∫
· · ·

∫
[0,t]k

W(dt1) · · ·W(dtk)

= e
β̂

E[τ1]
W([0,t])− 1

2 (
β̂

E[τ1]
)2t
, (6.14)

where the second equality follows by [J97, Theorem 3.33 and Example 7.12]. This shows
that (3.11) holds for ĥ = 0, because W([0, t]) ∼ N (0, t). In the general case, we in-
troduce the tilted law P̃ defined by dP̃/dP = exp{(ĥ/β̂)W([0, t])− 1

2 (ĥ/β̂)
2t} and note

that ZW,c
t,β̂,ĥ

under P has the same law as ZW,c
t,β̂,0

under P̃ (cf. (2.15) and (2.16)). Since

W([0, t]) ∼ N ((ĥ/β̂)t, t) under P̃, formula (3.11) is proved also when ĥ 6= 0. ut
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7. Proof for the directed polymer model

In this section we prove Theorem 3.8. We recall that S = (Sn)n≥0 is a random walk on Z
satisfying Assumption 3.7. We denote by p ∈ N the period of the random walk, so that
P(S1 ∈ pZ+ r) = 1 for some r ∈ {0, . . . , p − 1}. Introducing the lattice

T := {(n, k) ∈ Z2
: k ∈ pZ+ rn}, (7.1)

we have P(S = (Sn)n≥0 ∈ T) = 1. Defining

qn(k) := P(Sn = k), ∀n ≥ 0, k ∈ Z, (7.2)

Gnedenko’s local limit theorem [BGT87, Theorem 8.4.1] yields

sup
k∈Z, (n,k)∈T

|n1/αqn(k)− pg(k/n
1/α)| −−−→

n→∞
0, (7.3)

where g(·) denotes the density of the stable law to which S is attracted. We also recall
that ω = (ω(n, k))n∈N, k∈Z is an i.i.d. sequence of random variables satisfying (3.1).

Proof of Theorem 3.8. As in the proof of Theorem 3.1, the strategy is to rewrite the
partition function as a polynomial chaos expansion and then to apply Theorem 2.3. We
focus on the conditioned point-to-point partition function Zω,cNt,βN

(N1/αx), as the free one
follows the same lines. For notational simplicity, we set t = 1.

Step 1. We introduce for N ∈ N the rescaled lattice

TN := {(N
−1n,N−1/αk) : (n, k) ∈ T} ⊆ R2

(cf. (7.1)). Note that we use N instead of δ := 1/N as a subscript, as it indicates the
“length” of the polymer. For each (t, x) ∈ TN , we define the cell CN ((t, x)) := (t −

1/N, t] × (x − p/N1/α, x], which has volume vN = pN−(1+1/α).

Step 2. We rewrite the conditioned partition function Zω,cN,βN
(N1/αx), defined in (3.21),

as a polynomial chaos expansion, using the random variables ζN = (ζN (s, y))(s,y)∈TN
given by

ζN (s, y) := N
(α−1)/(2α)(eβNω(Ns,N

1/αy)−3(βN ) − 1), (7.4)

where the prefactor has been chosen so that Var(ζN (s, y)) = O(1) (see below). Arguing
as in (1.5)–(1.7), we can write

Z
ω,c
N,βN

(N1/αx) = 9N (ζN ) := 1+
N∑
k=1

1
k!

∑
(z1,...,zk)∈(TN )k

ψcN,(1,x)(z1, . . . , zk)

k∏
i=1

ζN (zi),

where ψcN,(1,x) is a symmetric function of (z1, . . . , zk) ∈ (TN )k , which vanishes when
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zi = zj for some i 6= j and when some zi 6∈ (0, 1] ×R, and for distinct z1 = (t1, x1), . . . ,
zk = (tk, xk), say with 0 < t1 < · · · < tk ≤ 1, it is defined by (recall (7.2))

ψcN,(1,x)((t1, x1), . . . , (tk, xk)) :=
P(SNt1 = N

1/αx1, . . . , SNtk = N
1/αxk | SN = x)

(N (α−1)/(2α))k

=
qN(1−tk)(N

1/α(x − xk))

qN (N1/αx)

k∏
i=1

(
N−(α−1)/(2α)qN(ti−ti−1)(N

1/α(xi − xi−1))
)
, (7.5)

where (t0, x0) := (0, 0). The kernel ψcN,(1,x)(z1, . . . , zk) is extended from (TN )k to (R2)k

in the usual way, as a piecewise constant function which is constant on every product of
cells. The function ((s, x), (t, y)) 7→ qN(t−s)(N

1/α(y − x)) is extended in the same way.

Step 3. We now check the assumptions of Theorem 2.3. Recalling (3.1) and the fact that
βN = β̂N−(α−1)/(2α) (cf. Theorem 3.8), for every fixed N ∈ N the random variables
(ζN (z))z∈TN are i.i.d. with zero mean µN (z) ≡ 0 and variance given by

σ 2
N = Var(ζN (z)) = N (α−1)/αe3(2βN )−23(βN ) ∼ N (α−1)/αβ2

N −−−−→
N→∞

β̂2. (7.6)

Condition (i) of Theorem 2.3 is thus satisfied with µ0(z) ≡ 0 and σ 0 = β̂. The uniform
integrability of (ζN (z)2)N∈N, z∈TN is easily checked as for the pinning model (cf. (6.7)).

Let us check condition (ii). Recalling the definition (3.24) of the function gt (·), we
observe that by (7.3), for fixed 0 < s < t and x, y ∈ R,

lim
N→∞

N1/αqN(t−s)(N
1/α(y − x)) = pgt−s(y − x).

Recalling the definition (3.26) of the continuum kernel ψct,x (for t = 1), since vN =
pN−1−1/α , it follows by (7.5) that for every k ∈ N one has the pointwise convergence

lim
N→∞

v
−k/2
N ψcN,(1,x)((t1, x1), . . . , (tk, xk)) = ψ

c
1,x((t1, x1), . . . , (tk, xk)). (7.7)

We need to show that this convergence also holds inL2. Since the density g(·) is bounded,
relation (7.3) implies that for some constant A ∈ (0,∞),

qn(k) ≤ An
−1/α, ∀n ∈ N0, k ∈ Z. (7.8)

For fixed x ∈ R, one has qN (N1/αx) ≥
p
2 g(x)/N

1/α for large N , again by (7.3), hence
the prefactor in (7.5) is upper bounded as

qN(1−tk)(N
1/α(x − xk))

qN (N1/αx)
≤

Cx

(1− tk)1/α
, where Cx :=

2A
pg(x)

.
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Applying (7.8) to each term in the product in (7.5) and recalling that vN = pN−1−1/α ,
for 0 < t1 < · · · < tk ≤ 1 we get

[v
−k/2
N ψcN,(1,x)((t1, x1), . . . , (tk, xk))]

2
≤

Cx

(1− tk)1/α
qN(1−tk)(N

1/α(x − xk))

qN (N1/αx)

×

k∏
i=1

(v
−1/2
N N−(α−1)/(2α))2

(
A

N1/α(ti − ti−1)1/α

)
qN(ti−ti−1)(N

1/α(xi − xi−1))

= C′k,x(N
1/α)k

P(SNt1 = N
1/αx1, . . . , SNtk = N

1/αxk | SN = N
1/αx)

t
1/α
1 (t2 − t1)1/α · · · (tk − tk−1)1/α(1− tk)1/α

, (7.9)

where we set C′k,x := A
kp−kCx . A further application of (7.8) also yields

[v
−k/2
N ψcN,(1,x)((t1, x1), . . . , (tk, xk))]

2
≤

AkC′k,x

t
2/α
1 (t2 − t1)2/α · · · (tk − tk−1)2/α(1− tk)2/α

.

(7.10)

We now decompose the domain {0 < t1 < · · · < tk < 1} × Rk as D1 ∪D2 ∪D3, where

D1 :=

k⋂
i=1

{ti − ti−1 > η, |xi | < M} ∩ {1− tk > η},

D2 :=

k⋃
i=1

{ti − ti−1 ≤ η} ∪ {1− tk ≤ η}, D3 :=

k⋃
i=1

{|xi | ≥ M},

for fixed η,M ∈ (0,∞). Inequality (7.10) shows that the rescaled kernel v−k/2N ψcN,(1,x)(·)

is uniformly bounded on the (bounded) set D1, hence the convergence (7.7) holds in L2

on D1. If we show that the integrals of [v−k/2N ψcN,(1,x)(·)]
2 and of [ψc1,x(·)]

2 over the sets
D2 and D3 can be made arbitrarily small for suitable η,M , we are done. Since ψ1,x ∈

L2([0, 1]k × Rk), by (3.24) there is nothing to prove for ψc1,x(·) and we may focus on
ψcN,(1,x)(·). By (7.9),∫
D2

|v
−k/2
N ψcN,(1,x)(·)|

2

=

∑
(t1,x1),...,(tk,xk)∈(TN )k

vkN [v
−k/2
N ψcN,(1,x)((t1, x1), . . . , (tk, xk))]

2

≤ C′k,xp
k 1
Nk

∑
(t1,...,tk)∈

1
N
N

0<t1<···<tk≤1
ti−ti−1≤η for some i

1

t
1/α
1 · · · (tk − tk−1)1/α(1− tk)1/α

,

≤ C′k,xp
k

∫
· · ·

∫
0<t1<···<tk<1

ti−ti−1≤η for some i

dt1 · · · dtk

t
1/α
1 · · · (tk − tk−1)1/α(1− tk)1/α

, (7.11)
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which vanishes as η ↓ 0 (recall that α > 1). Analogously, using again (7.9), we get∫
D3

|v
−k/2
N ψcN,(1,x)(·)|

2
≤ C′k,xp

k

( ∫
· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
1/α
1 · · · (tk − tk−1)1/α(1− tk)1/α

)

× P
(

max
0≤n≤N

|Sn| ≥ N
1/αM

∣∣∣ SN = N1/αx
)
. (7.12)

As N → ∞, the last probability converges to P(sup0≤t≤1 |Xt | ≥ M|X1 = x), where
X = (Xt )t≥0 is the stable Lévy process to which the random walk is attracted [Lig68],
hence it can be made as small as one wishes, uniformly in N ∈ N, by choosing M large.
This completes the verification of condition (ii) in Theorem 2.3.

Finally, we check (iii). Since σ 2
N is bounded (cf. (7.6)), we have (1 + ε)σ 2

N ≤ B for
some B ∈ (0,∞) (we can even set ε = 0, because µN ≡ 0 in this case). Applying (7.11)
for η = 1, i.e. with no restriction on ti− ti−1 (equivalently, (7.12) withM = 0), we obtain∑
I⊂TN , |I |>`

(1+ ε)|I |(σ 2
N )
|I |ψcN,(1,x)(I )

2
≤

∑
k>`

Bk
1
k!

∑
(z1,...,zk)∈(TN )k

ψcN,(1,x)(z1, . . . , zk)
2

=

∑
k>`

Bk
1
k!
‖v
−k/2
N ψcN,(1,x)‖

2
L2((R2)k)

≤

∑
k>`

B̃kx

∫
· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
1/α
1 · · · (tk − tk−1)1/α(1− tk)1/α

≤

∑
k>`

B̃kxc1e
−c2k log k,

where, recalling that C′k,x = A
kp−kCx , we have set B̃x := BA

√
pmax{1, Cx}2, which

is a finite constant for every fixed x ∈ R, and we have applied Lemma B.3 for the last
inequality. This shows that (2.11) holds, hence condition (iii) in Theorem 2.3 is verified.

ut

8. Proof for the random field Ising model

In this section we prove Theorem 3.14 and Corollary 3.16. We recall that the disordered
partition function Z+,ωδ
δ,λδ,hδ

is defined as in (3.32), where 
δ := �∩ (δZ)2 (with � ⊆ R2

being a fixed bounded, simply connected open set with piecewise smooth boundary) and
where:

• P+
δ (with expectation E+
δ ) denotes the critical Ising model on Z2, defined as in (3.30);
• ωδ = (ωδ,x)x∈
δ is an i.i.d. family of random variables satisfying (3.1);
• λδ = (λδ,x)x∈
δ , hδ = (hδ,x)x∈
δ are defined by

λδ,x := λ̂(x)δ
7/8, hδ,x := ĥ(x)δ

15/8 (8.1)

(cf. (3.35)), where λ̂ : �→ (0,∞) and ĥ : �→ R are fixed continuous functions.

The heart of our proof are pointwise and L2 estimates for the critical Ising correlation
functions, in particular near the diagonals (see Lemmas 8.1–8.3 below). Complementary
L1 estimates have recently been established in [CGN12a, Prop. 3.9].
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Proof of Theorem 3.14. We are going to apply Theorem 2.3 with vδ = δ2, rewriting the
partition function in terms of a polynomial chaos expansion.

Step 1. By (3.32), we can write

Z
+,ωδ

δ,λδ,hδ

= E+
δ

[ ∏
x∈
δ

(cosh(ξδ,x)+ σx sinh(ξδ,x))
]
, where

ξδ,x := λδ,xωδ,x + hδ,x .

(8.2)

Recall the notation αI :=
∏
x∈I αx . A binomial expansion of the product yields

e
−

1
2 ‖λ̂‖

2
L2(�)

δ−1/4

Z
+,ωδ

δ,λδ,hδ

= e
−

1
2 ‖λ̂‖

2
L2(�)

δ−1/4 ∑
I⊆
δ

cosh(ξδ,·)
δ\IE+
δ [σ
I
· ] sinh(ξδ,·)I

= e
−

1
2 ‖λ̂‖

2
L2(�)

δ−1/4

cosh(ξδ,·)
δ
∑
I⊆
δ

E+
δ [σ
I
· ] tanh(ξδ,·)I . (8.3)

We first show that the prefactor before the sum converges to 1 in probability as δ ↓ 0.
Recalling the definition (8.2) of ξδ,x and the fact that ωδ,x have zero mean, unit vari-

ance and locally finite exponential moments (cf. (3.1)), a Taylor expansion yields

E[log cosh(ξδ,x)] =
λ2
δ,x

2
+O(h2

δ,x + λ
4
δ,x) =

λ̂(x)2

2
δ7/4
+O(δ7/2), (8.4)

where the term O(δ7/2) is uniform over x ∈ 
δ , by the continuity of λ̂, ĥ. Therefore, as
δ ↓ 0, ∑

x∈
δ

E[log cosh(ξδ,x)] = 1
2‖λ̂‖

2
L2(�)

δ−1/4
+ o(1), (8.5)

and the prefactor in (8.3) can be rewritten as

exp
{∑
x∈
δ

(
log cosh(ξδ,x)− E[log cosh(ξδ,x)]

)}
(1+ o(1)).

The sum is over |
δ| = O(δ−2) i.i.d. centered random variables, hence it converges to
zero in probability provided Var[log cosh(ξδ,x)] = o(δ2). This is checked by a Taylor
expansion:

Var(log cosh(ξδ,x)) ≤ E[(log cosh(ξδ,x))2] = O(λ4
δ,x) = O(δ

7/2) = o(δ2).

Step 2. It remains to verify that the sum in (8.3) converges to the desired Wiener chaos
expansion, namely (3.37). Defining the family ζδ = (ζδ,x)x∈
δ by

ζδ,x :=
tanh(ξδ,x)

Var(tanh(ξδ,x))1/2
,

the sum in (8.3) can be written as a polynomial chaos expansion 9δ(ζδ) :=∑
I⊆
δ ψδ(I )ζ

I
δ,·, where

ψδ(I ) := Var(tanh(ξδ,·))|I |/2E+
δ [σI ], I ⊆ 
δ. (8.6)

We are thus left with checking that the conditions in Theorem 2.3 are satisfied.
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By a Taylor expansion, as δ ↓ 0 one has

E[tanh(ξδ,x)] = hδ,x +O(h3
δ,x + λ

3
δ,x) = ĥ(x)δ

15/8
+O(δ21/8),

E[tanh(ξδ,x)2] = λ2
δ,x +O(h

2
δ,x + λ

4
δ,x) = λ̂(x)

2δ7/4
+O(δ7/2),

(8.7)

where the O(·) terms are uniform in x, by the continuity of λ̂, ĥ. Therefore, uniformly
in x,

µδ(x) := E[ζδ,x] =
ĥ(x)

λ̂(x)
δ + o(δ), σ 2

δ := Var[ζδ,x] = 1.

Recalling that vδ = δ2 and λ̂ : � → (0,∞) is continuous (hence uniformly bounded
away from zero), condition (i) of Theorem 2.3 is satisfied with σ 0 = 1 and µ0(x) :=

ĥ(x)/λ̂(x).
The uniform integrability of ((ζδ,x−µδ(x))2)δ∈(0,1), x∈
δ holds because the moments

E[(ζδ,x−µδ(x))4] are uniformly bounded, as for the disordered pinning model (cf. (6.7)).

Step 3. It remains to check conditions (ii) and (iii) of Theorem 2.3. By (8.7),

Var(tanh(ξδ,x)) = λ̂(x)2δ7/4
+O(δ7/2),

hence for fixed I = {x1, . . . , xn} ⊆ �, by (8.6),

ψδ(I ) = λ̂(·)
|I |δ7|I |/8E+
δ [σ

I
· ] = λ̂(x1) · · · λ̂(xn)δ

7n/8E+
δ [σx1 · · · σxn ].

As vδ = δ2, relation (3.33), recently proved by Chelkak, Hongler and Izyurov [CHI12],
shows immediately that for every n ∈ N and distinct x1, . . . , xn ∈ �,

lim
δ↓0

v
−n/2
δ ψδ({x1, . . . , xn}) = λ̂(x1) · · · λ̂(xn)Cnφ+�(x1, . . . , xn)

=: ψ0({x1, . . . , xn}). (8.8)

(Incidentally, since σ 0 = 1 and µ0(x) := ĥ(x)/λ̂(x), the Wiener chaos expansion (2.12)
of Theorem 2.3 matches the expansion (3.37) of Theorem 3.14.)

To extend the pointwise convergence (8.8) to L2 convergence, we need uniform
bounds on ψδ(I ). By Lemma 8.1 below, we have the following bound uniformly in
δ ∈ (0, 1):

v
−|I |/2
δ ψδ(I ) ≤ (C‖λ̂‖∞)

|I |
|I |∏
i=1

1
d(xi, ∂� ∪ I \ {xi})1/8

=: (C‖λ̂‖∞)
|I |f�(x1, . . . , x|I |), (8.9)

where by Lemma 8.3 below, given |I | = n for any n ∈ N,

1
n!
‖f�‖

2
L2(�n)

≤ Cn(n!)−3/4. (8.10)

Combined with (8.8), this shows that conditions (ii) and (iii) of Theorem 2.3 are satisfied,
which completes the proof of Theorem 3.14. ut

We next state and prove the lemmas needed to establish (8.9) and (8.10).
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Lemma 8.1. Let �, 
δ for δ > 0, and E+
δ be as introduced at the beginning of this
section. Then there exists C = C(�) ∈ (0,∞) such that for any I = {x1, . . . , xn} ⊆ �

with |I | = n,

0 ≤ E+
δ [σx1 · · · σxn ] ≤ C
nδn/8

n∏
i=1

1
d(xi, ∂� ∪ I \ {xi})1/8

, (8.11)

where for any x ∈ � we define σx := σxδ with xδ being the point in 
δ closest to x, and
we set d(x,A) := infy∈A ‖x − y‖.

Proof. If B(x; r) denotes the ball of radius r centered at x, and B(x; r)δ := B(x; r) ∩

(δZ)2, then (3.33) with� = B(0; 1), n = 1 and x1 = 0 implies that for someC ∈ (0,∞),

E+B(0;1)δ [σ0] ≤ Cδ
1/8 for all δ ∈ (0, 1). (8.12)

Then, for any x ∈ �, by imposing + boundary condition on the ball B(x; r) with radius
r := d(x, ∂�) and applying the FKG inequality [G06, Chapter 2], we obtain

E+
δ [σx] ≤ E+B(x;r)δ [σx] = E+B(0;r)δ [σ0] = E+B(0;1)δ/r [σ0] ≤ C
δ1/8

r1/8 =
Cδ1/8

d(x, ∂�)1/8
,

(8.13)
where in the last inequality we applied (8.12).

Inequality (8.11) follows by applying (8.13) and Lemma 8.2 below, choosing

i therein to be �i ∩ (δZ)2, where �i is the ball centered at xi with radius
1
4d(xi, ∂� ∪ I \ {xi}). ut

Lemma 8.2. Let x1, . . . , xn ∈ 
 ⊆ Z2 and suppose xi ∈ 
i ⊆ 
 with 
i ∩ (
j ∪ ∂
j )
= ∅ for all i 6= j . Then

0 ≤ E+
[σx1 · · · σxn ] ≤

n∏
i=1

E+
i [σi]. (8.14)

Proof. Relation (8.14) is a consequence of the Griffiths–Kelly–Sherman (GKS) inequal-
ities (see e.g. [E06, Chapter V.3]). We recall that P+
 denotes the Ising measure on {±1}�

with inverse temperature β ∈ (0,∞) and zero external field (cf. (3.30)). (The fact that
β = βc is immaterial for this proof, and we could even include a positive external
field in P+
 .) Given h = (hx)x∈
, let Pfree


,h denote the Ising measure with external (site-
dependent) field h, i.e.

Pfree

,h(σ ) =

1

Zfree

,β,h

exp
{ ∑
x∼y∈


βσxσy +
∑
x∈


hxσx

}
.

Since P+
 = Pfree

,h+ with the choice h+x := β|{y ∈ ∂3 : y ∼ x}|, we may focus on Pfree


,h.
Let I := {x1, . . . , xn} and σI := σx1 · · · σxn . If h ≥ 0 (that is, hx ≥ 0 for all x ∈ 
),

then
Efree

,h[σI ] ≥ 0,



Polynomial chaos and scaling limits of disordered systems 53

by the first GKS inequality, proving the first bound in (8.14). Always for h ≥ 0,

∂Efree

,h[σI ]

∂hy
= Efree


,h[σIσy] − Efree

,h[σI ]E

free

,h[σy] ≥ 0, ∀y ∈ 
,

by the second GKS inequality. Therefore Efree

,h[σI ] is increasing in hy for every y ∈ 
.

If we start with h = h+ and increase hy to ∞ for each y ∈
⋃n
i=1 ∂
i , the resulting

Ising measure is equivalent to imposing + boundary condition on
⋃n
i=1 ∂
i . Under this

limiting measure, the distribution of the spin configurations on the disjoint subdomains
(
i)1≤i≤n factorizes, leading to the second bound in (8.14). ut

Lemma 8.3. For any n ∈ N and distinct x1, . . . , xn ∈ �, set I := {x1, . . . , xn} and
define

f�(x1, . . . , xn) :=

n∏
i=1

1
d(xi, ∂� ∪ I \ {xi})1/8

. (8.15)

Then there exists C = C(�) <∞ such that for all n ∈ N,

‖f�‖
2
L2(�n)

≤ Cn(n!)1/4. (8.16)

Proof. To prove (8.16), it suffices to show that for all n ∈ N,

‖f�‖
2
L2(�n)

≤ Cn1/4
‖f�‖

2
L2(�n−1)

, (8.17)

where ‖f�‖2L2(�0)
:= 1.

Note that in

‖f�‖
2
L2(�n)

=

∫
· · ·

∫
�n

n∏
i=1

1
d(xi, ∂� ∪ I \ {xi})1/4

dx1 · · · dxn, (8.18)

we can divide the domain of integration � for xn into disjoint open sets �0, . . . , �n−1
(modulo a set of measure 0), such that

xn ∈ �0 if and only if d(xn, ∂� ∪ I \ {xn}) = d(xn, ∂�),

xn ∈ �i if and only if d(xn, ∂� ∪ I \ {xn}) = d(xn, xi), 1 ≤ i ≤ n− 1.
(8.19)

We next bound f�(x1, . . . , xn) in terms of f�(x1, . . . , xn−1). First consider the case
xn ∈ �0. For each 1 ≤ i ≤ n− 1, either

d(xi, ∂� ∪ I \ {xi}) = d(xi, ∂� ∪ I
′
\ {xi}), (8.20)

where I ′ := {x1, . . . , xn−1}, or

d(xi, ∂� ∪ I \ {xi}) = d(xi, xn). (8.21)

In the latter case, by the triangle inequality and the assumption xn ∈ �0, we find that

d(xi, ∂�) ≤ d(xi, xn)+ d(xn, ∂�) ≤ 2d(xi, xn), (8.22)
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and hence

1
d(xi, ∂� ∪ I \ {xi})

=
1

d(xi, xn)
≤

2
d(xi, ∂�)

≤
2

d(xi, ∂� ∪ I ′ \ {xi})
. (8.23)

If N0 denotes the number of points among {x1, . . . , xn−1} such that (8.21) holds, then

f�(x1, . . . , xn)
2
≤ 2N0/4f�(x1, . . . , xn−1)

2 1
d(xn, ∂�)1/4

. (8.24)

We claim that N0 ≤ 6, which would then imply∫
· · ·

∫
�n−1×�0

f�(x1, . . . , xn)
2 dx1 · · · dxn ≤ 23/2

‖f�‖
2
L2(�n−1)

∫
�

dxn

d(xn, ∂�)1/4
, (8.25)

where the last integral is bounded by some constant C3(�) < ∞, because � is assumed
to be a bounded simply connected domain with a piecewise smooth boundary.

To verify the claim that N0 ≤ 6, assume without loss of generality that x1, . . . , xk are
the points which satisfy (8.21). In particular, d(xi, xn) ≤ d(xi, xj ) for all 1 ≤ i 6= j ≤ k.
We may shift the origin to xn and assume without loss of generality that xi ∈ R2 has
polar coordinates (ri, ϑi), and the directional vectors eiϑ1 , . . . , eiϑk are ordered counter
clockwise on the unit circle. For any two adjacent eiϑj and eiϑj+1 on the unit circle, in
order to satisfy

max{d(xj , 0), d(xj+1, 0)} ≤ d(xj , xj+1),

it is necessary that the angle between eiϑj and eiϑj+1 be at least π/3. It then follows that
there can be at most six such points.

We now consider the case xn ∈ �i for 1 ≤ i ≤ n− 1 (recall (8.19)). Without loss of
generality, assume that xn ∈ �1. By the same reasoning as above, for each 1 ≤ i ≤ n−1,
either (8.20) or (8.21) holds; in the latter case we can replace (8.22) by

d(xi, x1) ≤ d(xi, xn)+ d(xn, x1) ≤ 2d(xi, xn),

because xn ∈ �1. Thus for i ≥ 2 (8.23) still holds if we replace d(xi, ∂�) by d(xi, x1)

therein. The case i = 1 needs to be dealt with separately: for this we simply bound

1
d(x1, ∂� ∪ I \ {x1})1/4

≤
1

d(x1, ∂� ∪ I ′ \ {x1})1/4
+

1
d(x1, xn)1/4

=
1

d(x1, ∂� ∪ I ′ \ {x1})1/4

(
1+

d(x1, ∂� ∪ I
′
\ {x1})

1/4

d(x1, xn)1/4

)
.

We thus obtain the following analogue of (8.24) (with N0 ≤ 6) when xn ∈ �1:

f�(x1, . . . , xn)
2

≤ 23/2f�(x1, . . . , xn−1)
2
{(

1+
d(x1, ∂� ∪ I

′
\ {x1})

1/4

d(x1, xn)1/4

)
1

d(xn, x1)1/4

}
.
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Bounding the term in brackets by C4(�)/d(x1, xn)
1/2 for some C4(�) < ∞ (recall that

� is a bounded set), we obtain∫
· · ·

∫
�n−1×�1

f�(x1, . . . , xn)
2 dx1 · · · dxn

≤ 23/2C4(�)

∫
· · ·

∫
�n−1×�1

f�(x1, . . . , xn−1)
2

d(xn, x1)1/2
dx1 · · · dxn

≤ C5(�)|�1|
3/4
‖f�‖

2
L2(�n−1)

(8.26)

for some C5(�) < ∞, where we have applied the Hardy–Littlewood rearrangement in-
equality (see e.g. [LL01, Theorem 3.4]) to bound∫

�1

dxn

d(xn, x1)1/2
≤

∫
�∗1

dxn

d(xn, 0)1/2
=

∫ r∗

0

2πr
r1/2 dr =

4
3
π1/4
|�1|

3/4,

where �∗1 is the ball centered at the origin with the same area |�∗1| = πr
2
∗ as �1.

Combining (8.25) and (8.26), and the analogue for xn ∈ �i with 2 ≤ i ≤ n − 1, we
obtain

‖f�‖
2
L2(�n)

≤ C6(�)(1+ |�1|
3/4
+ · · · + |�n−1|

3/4)‖f�‖
2
L2(�n−1)

≤ C6(�)

(
1+ (n− 1)

(
|�1| + · · · + |�n−1|

n− 1

)3/4)
‖f�‖

2
L2(�n−1)

≤ C2(�)n
1/4
‖f�‖

2
L2(�n−1)

, (8.27)

where we have applied Jensen’s inequality to the function g(x) = x3/4. This establishes
(8.17) and concludes the proof of Theorem 3.14. ut

Proof of Corollary 3.16. Let ϕ′(·) denote the complex derivative of the conformal map
ϕ : �̃→ �. Since |ϕ′(z)|2 equals the Jacobian determinant of ϕ, for all f, g ∈ L2(�) we
have ∫

�

f (x)g(x) dx =

∫
�̃

f (ϕ(z))g(ϕ(z))|ϕ′(z)|2 dz, (8.28)

by the change of variables formula. As a consequence, if W(·) denotes a white noise on
R2, the processes (

∫
�
f (x)W(dx))f∈L2(�) and (

∫
�̃
f (ϕ(z))|ϕ′(z)|W(dz))f∈L2(�) have

the same distribution: they are both centered Gaussian processes with the same covari-
ance (8.28). This extends to an equality in distribution for multiple integrals (recall Sub-
section 2.1):∫

· · ·

∫
�n
f (x1, . . . , xn)

n∏
i=1

W(dxi)

d
=

∫
· · ·

∫
�̃n
f (ϕ(z1), . . . , ϕ(zn))

n∏
i=1

[|ϕ′(zi)|W(dzi)],
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jointly for n ∈ N and symmetric f ∈ L2(�n). Informally, we have W(dϕ(z)) d
=

|ϕ′(z)|W(dz), which is the stochastic analogue of dϕ(z) = |ϕ′(z)|2dz. Recalling (3.37),
it follows that

Z
+,W

�,λ̂,ĥ

d
= 1+

∞∑
n=1

Cn

n!

∫
· · ·

∫
�̃n
φ+�(ϕ(z1), . . . , ϕ(zn))

n∏
i=1

[λ̂(ϕ(zi))|ϕ
′(zi)|W(dzi)

+ ĥ(ϕ(zi))|ϕ
′(zi)|

2dzi]. (8.29)

By [CHI12, Theorem 1.3], the function φ+� is conformally covariant with

φ+�(ϕ(z1), . . . , ϕ(zn)) = φ
+

�̃
(z1, . . . , zn)

n∏
i=1

|ϕ′(zi)|
−1/8, (8.30)

hence Z+,W
�,λ̂,ĥ

d
= Z

+,W

�̃,̃λ,̃h
with λ̃(z) := |ϕ′(z)|7/8λ̂(ϕ(z)) and h̃(z) := |ϕ′(z)|15/8ĥ(ϕ(z)).

ut

Appendix A. The Cameron–Martin shift

Recalling Subsection 2.1, let W = (W(f ))f∈L2(Rd ) be a white noise on Rd defined on
the probability space (�W ,A,P). We denote by L0

:= L0(�W , σ (W),P) the space of
(equivalence classes of) a.s. finite random variables that are measurable with respect to
the σ -algebra generated byW , equipped with the topology of convergence in probability.
Note that all the multi-dimensional stochastic integrals W⊗k(f ) belong to L0.

Let us now fix ν ∈ L2(Rd), representing the bias. Given k ∈ N and a symmetric
square-integrable function f : (Rd)k → R, the “biased stochastic integral”

W⊗kν (f ) =

∫
· · ·

∫
(Rd )k

f (x1, . . . , xk)

k∏
i=1

(W(dxi)+ ν(xi) dxi) (A.1)

was defined in Remark 2.4 by expanding the product and integrating out the determin-
istic variables corresponding to ν(xi)dxi , thus reducing to a sum of lower-dimensional
ordinary (unbiased) stochastic integrals. In particular, for k = 1 we can write Wν(f ) =

W⊗1
ν (f ) as

Wν(f ) := W(f )+

∫
Rd
f (x)ν(x) dx = W(f )+E[W(f )ξ ] with ξ := W(ν), (A.2)

by the Itô isometry (2.2).
Thus Wν(f ) = %ξ (W(f )), where we define the map %ξ (X) := X + E[Xξ ] for every

one-dimensional stochastic integral X. By [J97, Theorem 14.1], such a map admits a
unique extension %ξ : L0

→ L0, called the Cameron–Martin shift, which is continuous,
linear and satisfies

%ξ (1) = 1, %ξ (XY) = %ξ (X)%ξ (Y ) ∀X, Y ∈ L
0. (A.3)

As a consequence, the multi-dimensional biased stochastic integrals (A.1) correspond to

W⊗kν (f ) = %ξ (W
⊗k(f )). (A.4)
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This is easily checked for “special simple functions” f (recall Subsection 2.1) using
(A.2)–(A.3), and is extended to general symmetric f ∈ L2((Rd)k) using the continu-
ity of %ξ .

For any X ∈ L0, the random variable %ξ (X) has the same distribution as X under the
probability Pν defined in (2.15), by [J97, Theorem 14.1(iii)–(iv)]. In particular, choosing
forX the series in (2.13) whenever it converges in probability, one obtains relation (2.16).

Appendix B. Technical lemmas

The following lemma is used in the proof of Theorem 2.5.

Lemma B.1 (Exponential tilting). Let (ζδ,i)δ∈(0,1), i∈Tδ be a family of independent ran-
dom variables in L2 with mean µδ(i) and variance σ 2

δ , with σδ → σ 0 ∈ (0,∞) and
‖µδ‖∞ := supi∈Tδ |µδ(i)| → 0 as δ ↓ 0. Assume further that (ζ 2

δ,i)δ∈(0,1), i∈Tδ are uni-
formly integrable. Then one can construct independent random variables (̃ζδ,i)δ∈(0,1), i∈Tδ
such that

P(̃ζδ,i ∈ dx) = fδ,i(x)P(ζδ,i ∈ dx),

and there exist δ0, C ∈ (0,∞) and Cp ∈ (0,∞) for every p ∈ R such that

E[̃ζδ,i] = 0, E[̃ζ 2
δ,i] ≤ σ

2
δ (1+ C|µδ(i)|), E[fδ,i(ζδ,i)

p
] ≤ 1+ Cpµδ(i)2, (B.1)

for all δ ∈ (0, δ0) and i ∈ Tδ . Furthermore, if

inf
δ∈(0,1), i∈Tδ

min
{
P(ζδ,i > 0),P(ζδ,i < 0),Var(ζδ,i | ζδ,i > 0),Var(ζδ,i | ζδ,i < 0)

}
> 0,

(B.2)
then there exists C′ ∈ (0,∞) such that the following improved bound holds:

E[̃ζ 2
δ,i] ≤ σ

2
δ (1+ C

′µδ(i)
2). (B.3)

The proof of Lemma B.1 is an easy corollary of the following general result, which con-
cerns exponential tilting of a single random variable in order to shift its mean to zero
(since the random variables are not assumed to have finite exponential moments, the tilt-
ing is performed on a bounded subset). The assumptions in Lemma B.1 guarantee that
conditions (B.5) and (B.9) are fulfilled, and the constants in (2.15), (B.7), (B.10) are uni-
formly bounded.

Theorem B.2. Let X be a square-integrable random variable and let A > 0 be such that

E[X21{|X|>A}] ≤ 1
4E[X

2
]. (B.4)

Assume that E[X] is sufficiently small, more precisely,

|E[X]| ≤ ε :=
E[X2
]
2

144A3 . (B.5)
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Then one can define a random variable X̃ such that P(X̃ ∈ dx) = f (x)P(X ∈ dx),
satisfying

E[f (X)p] ≤ 1+ CpE[X]2 ∀p ∈ R with Cp :=
4e|p|

Aε
, (B.6)

E[X̃] = 0, E[X̃2
] ≤ E[X2

] + C|E[X]| with C :=
A3/2
√
ε
. (B.7)

If E[X] ≥ 0, and A is chosen such that

E[X21{X>A}] ≤ 1
4E[X

21{X≥0}], (B.8)

(replace X by −X if E[X] ≤ 0), and further assume that

|E[X | X ≥ 0]| ≤ ε′ :=
E[X2

| X ≥ 0]2

144A3 , (B.9)

then we can define X̃ such that (B.6) holds with ε replaced by ε′, while (B.7) is improved
to

E[X̃] = 0, E[X̃2
] ≤ E[X2

] + C′E[X]2 with C′ :=
A

2P(X ≥ 0)ε′
. (B.10)

Proof. Without loss of generality, we assume that E[X] ≥ 0 (otherwise consider −X).

Step 1 (Strategy). We will fix I ⊆ R, which is either [−A,A] (assuming (B.4)–(B.5)),
or [0, A] (assuming (B.8)–(B.9)), and we define random variables Y , Z with laws

P(Y ∈ ·) := P(X ∈ · | X ∈ I ), P(Z ∈ ·) := P(X ∈ · | X 6∈ I ). (B.11)

Taking independent copies of X, Y,Z, we have the following equality in distribution:

X
dist
= 1{X∈I }Y + 1{X 6∈I }Z (note that |Y | ≤ A). (B.12)

We then exponentially tilt Y , defining for λ ∈ R a random variable Yλ with law

P(Yλ ∈ dx) := e
λx−F(λ)P(Y ∈ dx), where F(λ) := logE[eλY ]. (B.13)

As we will show at the end of the proof, we can choose λ = λ̃ ∈ R such that

E[Ỹλ] = −
P(X 6∈ I )

P(X ∈ I )
E[Z]. (B.14)

If we define X̃ replacing Y by Ỹλ in the definition (B.12), that is,

X̃ := 1{X∈I }Ỹλ + 1{X 6∈I }Z, (B.15)

then E[X̃] = 0 by construction. Moreover P(X̃ ∈ dx) = f (x)P(X ∈ dx) with density

f (x) = ẽλx−F (̃λ)1{x∈I } + 1{x∈R\I } = 1+ (ẽλx−F (̃λ) − 1)1{x∈I }. (B.16)
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The rest of the proof is devoted to estimating E[X̃2
] and E[f (X)p]. We are going to

use the following bounds on λ̃, which will be proved at the very end:

I := [−A,A], assuming (B.4)–(B.5): |̃λ| ≤
|E[X]|

2A3/2√ε
; (B.17)

I := [0, A], assuming (B.8)–(B.9): |̃λ| ≤
|E[X]|

√
6A3/2

√
ε′
√
P(X ∈ I )P(X ≥ 0)

;

(B.18)

In either case: |̃λ| ≤
1

27A
. (B.19)

Step 2 (Bounds on E[X̃2
]). Denote G(λ) := E[Y 2

λ ] = E[Y 2eλY ]/E[eλY ]. Recalling
(B.15) and (B.12), we can write

E[X̃2
] = E[X2

] + P(X ∈ I )(E[Y 2
λ̃
] − E[Y 2

])

= E[X2
] + P(X ∈ I )

∫ λ̃

0
G′(λ) dλ. (B.20)

Since G′(λ) = E[(Yλ)3] − E[(Yλ)2]E[Yλ] and |Yλ| ≤ A, we have |G′(λ)| ≤ 2A3, and
hence

E[X̃2
] ≤ E[X2

] + 2A3P(X ∈ I )|̃λ|. (B.21)

Applying (B.17), we obtain precisely the second bound in (B.7).
To prove (B.10), assume (B.8)–(B.9) and set I := [0, A]. By (B.12)–(B.14),

E[Ỹλ] = E[Y ] −
E[X]

P(X ∈ I )
, (B.22)

and hence E[Ỹλ] ≤ E[Y ]. Since E[Yλ] = F ′(λ) is increasing in λ (because F ′′(λ) =
Var[Yλ] ≥ 0), it follows that λ̃ ≤ 0. We then refine (B.20) as follows:

E[X̃2
] = E[X2

] + P(X ∈ I )̃λG′(0)+ P(X ∈ I )
∫ λ̃

0

(∫ λ

0
G′′(s) ds

)
dλ. (B.23)

Note that G′(0) = E[Y 3
] − E[Y 2

]E[Y ] ≥ 0, because Y ∈ [0, A] and hence Y 2 and Y are
positively correlated. Therefore the second term in (B.23) is bounded by 0. Also note that

G′′(λ) = E[(Yλ)
4
] − 2E[(Yλ)3]E[Yλ] + 2E[(Yλ)2]E[Yλ]2 − E[(Yλ)

2
]
2,

and hence |G′′(λ)| ≤ 6A4. Substituting into (B.23) then yields

E[X̃2
] ≤ E[X2

] + 3A4P(X ∈ I )̃λ2. (B.24)

Applying (B.18), we obtain precisely (B.10).
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Step 3 (Bounds on E[f (X)p]). Recall f from (B.16) and F(λ) from (B.13). Since
F(0) = 0 and |F ′(λ)| = |E[Yλ]| ≤ A (cf. (B.13)), we have |F (̃λ)| ≤ A|̃λ| and hence
|̃λx − F (̃λ)| ≤ 2A|̃λ| for every x ∈ I ⊆ [−A,A]. Applying (B.19), we obtain

e−2/27
≤ f (x) ≤ e2/27, ∀x ∈ R. (B.25)

For any p ∈ R, Taylor expansion gives yp ≤ 1 + p(y − 1) + C′p(y − 1)2 for all y ∈
[e−2/27, e2/27

] with

C′p := max
y∈[e−2/27,e2/27]

|p(p − 1)yp−2
| = |p(p − 1)|e

2
27 |p−2|

≤ 2e|p|. (B.26)

Therefore

f (x)p ≤ 1+ p(f (x)− 1)+ C′p(f (x)− 1)2

= 1+ (p − 2C′p)(f (x)− 1)+ C′p(e
2̃λx−2F (̃λ)

− 1)1{x∈I }.

Since f is a probability density, recalling the definition of F from (B.13), we obtain

E[f (X)p] ≤ 1+ C′pP(X ∈ I )(e
F(2̃λ)−2F (̃λ)

− 1). (B.27)

Since |F ′′(λ)| = |E[Y 2
λ ] − E[Yλ]2| ≤ 2A2, the Mean Value Theorem and (B.19) yield

0 ≤ F(2̃λ)−2F (̃λ) = (F (2̃λ)−F (̃λ))−(F (̃λ)−F(0)) ≤ 4A2̃λ2
≤

4
272 ≤ 1, (B.28)

where the first inequality holds by convexity of F (note that F ′′(λ) = Var[Yλ] ≥ 0).
Consider first the case I = [−A,A], assuming (B.4)–(B.5): since ex − 1 ≤ 2x for

0 ≤ x ≤ 1, applying (B.28), (B.17) and (B.26) we obtain

E[f (X)p] ≤ 1+ 2C′p(F (2̃λ)− 2F (̃λ)) ≤ 1+ C′p8A2̃λ2
≤ 1+

4e|p|

Aε
E[X]2, (B.29)

proving (B.6).
The case I = [0, A], assuming (B.8)–(B.9), is similar: we keep the term P(X ∈ I ) in

(B.27) when writing (B.29), so that applying (B.18) gives

E[f (X)p] ≤ 1+ C′pP(X ∈ I )8A
2̃λ2
≤ 1+

16e|p|

6Aε′
E[X]2 ≤ 1+

4e|p|

Aε′
E[X]2,

which coincides with (B.6), where ε is replaced by ε′.

Step 4 (Bounds on λ̃). We finally show that one can choose λ = λ̃ so that (B.14) holds
and the bounds (B.17)–(B.19) are satisfied.

Since F ′(λ) = E[Yλ] (cf. (B.13)), we can rewrite (B.14) (cf. (B.22)), as

F ′(̃λ)− F ′(0) = x̃, where x̃ := −
E[X]

P(X ∈ I )
. (B.30)



Polynomial chaos and scaling limits of disordered systems 61

Since F ′′′(λ) = E[Y 3
λ ]−3E[Yλ]E[Y 2

λ ]+2E[Yλ]3 and |Yλ| ≤ A, we have |F ′′′(λ)| ≤ 6A3.
Therefore

F ′′(λ) ≥ F ′′(0)− 6A3
|λ| ≥

F ′′(0)
2

for |λ| ≤ c :=
F ′′(0)
12A3 =

Var(Y )
12A3 .

In particular, equation (B.30) has exactly one solution λ̃ ∈ [−c, c] provided

|̃x| ≤
F ′′(0)

2
c, that is, |E[X]| ≤

P(X ∈ I )Var(Y )2

24A3 , (B.31)

in which case λ̃ satisfies

|̃λ| ≤
|̃x|

1
2F
′′(0)
=

2|E[X]|
P(X ∈ I )Var(Y )

. (B.32)

It only remains to check that condition (B.31) is indeed satisfied, under either assumptions
(B.4)–(B.5) or (B.8)–(B.9), and to show that (B.32) yields the bounds (B.17)–(B.19). For
this we need to estimate P(X ∈ I ) and Var(Y ).

In order to avoid repetitions, let P∗ denote the original law P when we assume (B.4)–
(B.5) or the conditional law P(·|X ≥ 0) when we assume (B.8)–(B.9). In either case
I = [−A,A] or I = [0, A] we can write P(Y ∈ ·) := P(X ∈ · | X ∈ I ) = P∗(X ∈ · |
|X| ≤ A), therefore

Var(Y ) = Var∗(X | |X| ≤ A). (B.33)

Note that assumptions (B.4)–(B.5) and (B.8)–(B.9) can be written as follows:

E∗[X21{|X|>A}] ≤ 1
4E
∗
[X2
], |E∗(X)| ≤

E∗[X2
]
2

144A3 . (B.34)

Since E∗[X21{|X|≤A}] ≤ A2P∗(|X| ≤ A), it follows that

A2
≥

3
4

E∗[X2
]

P∗(|X| ≤ A)
≥

3
4
E∗[X2

]. (B.35)

We thus get

P∗(|X| ≤ A) = 1−P∗(|X| > A) ≥ 1−
E∗[X21{|X|>A}]

A2 ≥ 1−
E∗[X2

]

4A2 ≥
2
3
, (B.36)

|E∗[X1{|X|>A}]| ≤
E∗[X21{|X|>A}]

A
≤

E∗[X2
]

4A
≤

√
E∗[X2]

2
√

3
.

Together with (B.34) and (B.35), this gives

|E∗[X1{|X|≤A}]| ≤ |E
∗
[X]| + |E∗[X1{|X|>A}]| ≤

(
(4/3)3/2

144
+

1

2
√

3

)√
E∗[X2]

≤
1
3

√
E∗[X2],
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which yields

|E∗[X | |X| ≤ A]| = |E
∗
[X1{|X|≤A}]|
P∗(|X|≤A) ≤

1
2

√
E∗[X2].

Applying one more time (B.34) we get

E∗[X2
| |X| ≤ A] =

|E∗[X21{|X|≤A}]|

P∗(|X| ≤ A)
≥

3
4E
∗
[X2
],

which finally yields (cf. (B.33))

Var(Y ) = E∗[X2
| |X| ≤ A] − E∗[X | |X| ≤ A]2 ≥ 1

2E
∗
[X2
]. (B.37)

By (B.5) and (B.9), and applying (B.37) and (B.36), we obtain

|E∗[X]| ≤
E∗[X2

]
2

144A3 ≤
Var(Y )2

36A3 ≤
P∗(|X| ≤ A)Var(Y )2

24A3 . (B.38)

Consider first the case I = [−A,A], assuming (B.4)–(B.5): since P∗(|X| ≤ A) =

P(X ∈ I ), inequality (B.38) coincides precisely with the condition (B.31) to be checked.
Next we consider the case I = [0, A], assuming (B.8)–(B.9), where we recall that P∗(·) =
P(·|X ≥ 0). By assumption E[X] ≥ 0, we have |E[X]| ≤ |E[X1{X≥0}]| = P(X ≥
0)|E∗[X]|. Since we can write P∗(|X| ≤ A) = P(X ∈ I )/P(X ≥ 0), (B.38) again yields
(B.31).

To conclude, for t I = [−A,A], applying (B.36) and (B.37) to (B.32) and recalling the
definition of ε in (B.5) gives (B.17). For I = [0, A], the bound (B.18) follows similarly,
recalling the definition of ε′ in (B.9) and observing that P(X ∈ I ) ≥ 2

3P(X ≥ 0) by
(B.36). Finally, to obtain (B.19) from (B.17)–(B.18), apply (B.35) and the assumptions
(B.4), (B.8). ut

Finally, we prove the following bound on iterated integrals.

Lemma B.3. Let χ ∈ [0, 1). Then there exist c1, c2 > 0 such that for all k ∈ N,∫
· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
χ

1 · · · (tk − tk−1)χ
≤ c1e

−c2k log k, (B.39)

∫
· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
χ

1 · · · (tk − tk−1)χ (1− tk)χ
≤ c1e

−c2k log k. (B.40)

Proof. It is enough to prove (B.40), since the integral therein bounds (B.39). Recognizing
the density of the Dirichlet distribution (with parameters k + 1 and 1 − χ ) allows us to
evaluate ∫

· · ·

∫
0<t1<···<tk<1

dt1 · · · dtk

t
χ

1 · · · (tk − tk−1)χ (1− tk)χ
=

0(1− χ)k+1

0((k + 1)(1− χ))
,

and (B.40) follows by standard properties of the gamma function 0(·). ut
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