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Abstract. We answer Totik’s question on weighted Bernstein inequalities by showing that

‖T ′n‖Lp(ω) ≤ C(p, ω)n‖Tn‖Lp(ω), 0 < p ≤ ∞,

for all trigonometric polynomials Tn and certain nondoubling weights ω. Moreover, we find neces-
sary conditions on ω for Bernstein’s inequality to hold. We also prove weighted Markov, Remez,
and Nikolskii inequalities for trigonometric and algebraic polynomials.
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1. Introduction

The famous Bernstein inequality for trigonometric polynomials Tn of degree at most n,

‖T ′n‖Lp(T) ≤ Cn‖Tn‖Lp(T), (1.1)
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plays an important role in modern analysis. Here, ‖ · ‖Lp(T) is the Lp-(quasi)norm,

‖f ‖Lp(T) =

(∫
T
|f (t)|p dt

)1/p

, 0 < p <∞,

with the usual modification for p = ∞. Bernstein proved (1.1) for p = ∞; the case
p<∞ was settled by Zygmund [Zy]. The best constant C is equal to 1 for any p∈(0,∞]
(see [Ri, Zy, Ar]).

For algebraic polynomials Pn of degree at most n, the Bernstein inequality is given
by

|P ′n(x)| ≤
n

√
1− x2

‖Pn‖C[−1,1], x ∈ (−1, 1),

where ‖ · ‖C[−1,1] denotes the supremum norm on [−1, 1]. Its Lp-version is

‖

√
1− x2 P ′n(x)‖Lp[−1,1] ≤ C(p)n‖Pn‖Lp[−1,1], 0 < p ≤ ∞. (1.2)

Another important inequality for the derivative of algebraic polynomials is the following
Markov inequality:

‖P ′n‖Lp[−1,1] ≤ C(p)n
2
‖Pn‖Lp[−1,1], 0 < p ≤ ∞. (1.3)

Both Bernstein and Markov inequalities for trigonometric and algebraic polynomials
respectively were extended to the case of smaller intervals (Privalov, Jackson, and Bary;
see with [Ba]) and several intervals (see the recent paper by Totik [To1]).

In this paper we study weighted analogues of Bernstein’s inequality,

‖T ′n‖Lp(ω) ≤ C(p, ω)n‖Tn‖Lp(ω), (1.4)

where ω is a weight function, i.e., a nonnegative integrable function on T. Here
and in what follows, ‖Tn‖Lp(ω) = (

∫
T |Tn|

pω)1/p if p < ∞, and ‖Tn‖L∞(ω) =
ess supt∈T |Tn(t)ω(t)|.

First, we note that Muckenhoupt’s Ap condition on weights ensures that (1.4) holds
for 1 < p < ∞. This follows from the fact that the Marcinkiewicz multiplier theorem
and Littlewood–Paley decomposition hold in Lp(ω) with ω ∈ Ap. In [MT], Mastroianni
and Totik proved a much stronger result: (1.4) holds for any weight ω satisfying the
doubling condition and for 1 ≤ p <∞. Later, a similar result was shown for 0 < p < 1
(see [Er3]).

We recall that a periodic weight function ω satisfies the doubling condition if

W(2I ) ≤ LW(I) (1.5)

for all intervals I , where L is a constant independent of I , 2I is the interval twice the
length of I and with the midpoint coinciding with that of I , and

W(I) =

∫
I

ω(t) dt.
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Also recall that a weight ω satisfies the A∞ condition if for every α > 0 there is β > 0
such that

W(E) ≥ βW(I)

for any interval I and any measurable set E ⊂ I with |E| ≥ α|I |. It is known [St,
Ch. V] that any A∞ weight satisfies the doubling condition. Here and in what follows,
|E| denotes the Lebesgue measure of the set E.

For the supremum norm, in addition to the natural assumption that ω is bounded, one
needs the A∗ condition: there exists a constant L such that for all intervals I ⊂ [−π, π]
and t ∈ I we have

ω(t) ≤
L

|I |
W(I).

This condition is stronger than the A∞ condition and it is sufficient for (1.4) to hold when
p = ∞.

In [To2], Totik posed the following question: under which condition on a general (not
necessarily doubling) weight ω does the Bernstein inequality (1.4) hold for any trigono-
metric polynomial Tn of degree at most n? In this paper we aim to answer this question.
We deal with the weight functions from the class �, defined below.

Definition. Let
ω(t) = exp(−F(g(t))), t ∈ T,

where g : T→ [−A,A], A > 0, is an analytic function with

|g(n)(t)| ≤ Dnn!, t ∈ T, n = 1, 2, . . . , (1.6)

such that each zero of g is of multiplicity one. Let also F : [−A,A] \ {0} → (0,∞) be
an even function, C∞ on (0, A], such that

(F1) F(x)→∞ as x → 0+;
(F2) F is decreasing on (0, A];
(F3) |F (n)(x)| ≤ BnnnF(x)/xn for all x ∈ (0, A] and n = 1, 2, . . .;
(F4) there exist A1, A2 > 0 such that

A2 ≤
|F ′(x)|x

F(x)
≤ A1, x ∈ (0, A].

Then we write ω ∈ �.

It is worth mentioning that all our results hold for weights ω(t) = exp(−F(g(t))), where
F satisfies (F1)–(F4) only for x ∈ (0, ε) for some 0 < ε < A and

|F (n)(x)| ≤ BnnnF(x), x ∈ [ε,A], n = 1, 2, . . . .

A typical example of the function g is sin t or cos t . Note that ω ∈ � is nondoubling
if and only if g has at least one zero on T. In what follows this will be assumed to be the
case. Below we give some examples of functions F satisfying properties (F1)–(F4). We
define them for x > 0.
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Examples. 1. Let

F(x) = x−α, x−α|log x|ξ1 , x−α|log x|ξ1 · · · |logk x|
ξk , x−α exp |log x|ξ ,

where α > 0, ξj ∈ R, ξ ∈ (0, 1), and logj x = logj−1 |log x|. Note that any such function
F is of regular variation of index −α, i.e., for all r > 0,

lim
x→0+

F(rx)

F (x)
= r−α, (1.7)

or equivalently

F(x) =
1
xα
η(x),

where η is a slowly varying function, i.e., limx→0+ η(rx)/η(x) = 1.
2. Note that there are functions satisfying (F1)–(F4) which are not regularly varying.

For example, the function

F(x) = exp{− log x(2+ sin(log3 x))}

is such that

lim sup
x→0+

F(x)x3
= 1 and lim inf

x→0+
F(x)x = 1,

i.e., (1.7) does not hold. To show that F satisfies (F3) one can use Faà di Bruno’s formula.

The main results of the paper are the following Theorems 1.1–1.3.

Theorem 1.1. For 0 < p ≤ ∞ and ω = ω1 . . . ωs such that ωi ∈ �, i = 1, . . . , s, the
Bernstein inequality

‖T ′n‖Lp(ωu) ≤ Cn‖Tn‖Lp(ωu) (1.8)

holds for any trigonometric polynomial Tn of degree at most n with C = C(ω, u, p)

whenever u is doubling if p <∞, and u satisfies the A∗ condition if p = ∞.

For example, inequality (1.8) holds for the following weight:

ω(t) = exp(−1/sin2 t − 1/cos4 t).

To prove Bernstein’s inequality (1.8) in the case when ω = ω1 ∈ �, i.e., s = 1, we
use approximation properties of ω. To verify (1.8) with the product of weights each of
which is from the class �, we need a new technique based on introduction of weighted
classes for which Bernstein and Remez inequalities hold. In particular, ωi ∈ � and u as
in Theorem 1.1 belong to these classes. This technique is developed in Sections 5 and 6.

A necessary condition for Bernstein’s inequality to hold is given by the following
result.
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Theorem 1.2. Let ω ∈ C(T) be a weight function with ω ↘ on (−ε, 0), ω(0) = 0, ω ↗
on (0, ε), and

lim sup
t→0

logω(rt)
logω(t)

= ∞ for some r ∈ (0, 1). (1.9)

Then for each 0 < p ≤ ∞ there exist a sequence of positive integers Kn → ∞ as
n → ∞ and a sequence of trigonometric polynomials QKn of degree at most Kn such
that

lim
n→∞

‖Q′Kn‖Lp(ω)

Kn‖QKn‖Lp(ω)
= ∞.

Theorems 1.1 and 1.2 provide a sharp condition on the growth properties of a weight ω
near the origin. Specifically, if a weight ω with ω ↘ on (−ε, 0), ω(0) = 0, ω ↗ on (0, ε)
is such that Bernstein’s inequality (1.4) holds, then necessarily, for all r ∈ (0, 1),

lim sup
t→0

logω(rt)
logω(t)

= L <∞. (1.10)

On the other hand, any ω ∈ � satisfies (1.10). Moreover, for each r ∈ (0, 1) and L > 1,
the weight ω(t) = exp(−|sin t |−α) fulfills (1.10) with α = − logr L. Thus ω ∈ � and by
Theorem 1.1 Bernstein’s inequality (1.4) holds for this weight.

If in (1.9) the limit (not only the limit superior) exists, then a stronger result is true:

Theorem 1.3. Let ω ∈ C(T) be a weight function with w ↘ on (−ε, 0), ω(0) = 0, ω ↗
on (0, ε), and

lim
t→0

logω(rt)
logω(t)

= ∞ for each r ∈ (0, 1).

Then for each 0 < p ≤ ∞ there exists a sequence of trigonometric polynomials Qn of
degree at most n such that

lim
n→∞

‖Q′n‖Lp(ω)

n‖Qn‖Lp(ω)
= ∞.

The paper is organized as follows. In Section 2 we discuss growth properties of weights
from the class�. Section 3 presents the order of trigonometric approximation of functions
from � as well as of their derivatives. In Section 4 we give the proof of Bernstein’s
inequality with �-weights in L1. We will use it as a model case to prove the general
Bernstein inequality (1.8) in Section 6.

In Section 5 we establish weighted Remez inequalities for trigonometric and algebraic
polynomials. Section 6 gives the proof of the general Bernstein inequality for p ∈ (0,∞].
Theorem 1.1 is a corollary of that result. In Section 7 we study weighted Bernstein and
Markov inequalities for algebraic polynomials on [−1, 1]. Section 8 provides weighted
Nikolskii inequalities for trigonometric and algebraic polynomials.

Finally, in Section 9 we prove a necessary condition for Bernstein’s inequality (1.4)
to hold. Namely, we verify Theorems 1.2 and 1.3 as well as a result on the sharpness of
Theorem 1.2.
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Concerning algebraic polynomials on [−1, 1], it is important to mention that for
weights from the class W the Markov inequalities were obtained by Lubinsky and Saff
(cf. [LS] and the book [LL]; see discussion in Section 7). A typical example of weights
from the class W is ωα(x) = exp(−(1 − x2)α), α > 0. We note that using [LS] one can
also derive the weighted Bernstein inequality

‖

√
1− x2 P ′n(x)ωα(x)‖L∞[−1,1] ≤ C(α)n‖Pn(x)ωα(x)‖L∞[−1,1]

(see Remark 7.1). We also note that Bernstein’s inequalities for algebraic polynomials
were recently proved in [MN, No] for the weight ω = ωαu, where u is doubling. In
Section 7 we deal with a more general class of weights. Our proof for the algebraic case
is based on Bernstein’s inequality for trigonometric polynomials from Section 6.

By C,Ci (c, ci , respectively) we will denote positive large (small, respectively) con-
stants that may be different on different occasions. Also, below we will write C(ω) for
C(A,A1, A2, B,D), whereA,A1, A2, B,D are from the definition of the class�. More-
over, for positive sequences {an} and {bn}, an � bn means that c ≤ an/bn ≤ C.

2. Growth properties of �-functions

Let F : [−A,A]\{0} → (0,∞) be an even function, C∞ on (0, A], satisfying (F1)–(F4).

Definition. For each a ≥ F(A) we denote by x0(a) the unique positive solution of the
equation

F(x) = a.

Definition. For each a ≥ F(A)/A we denote by x1(a) the unique positive solution of

F(x) = ax.

Note that both sequences {x0(n)}n∈N and {x1(n)}n∈N are decreasing.

Lemma 2.1. There exist positive constants C = C(A,A1, A2) and c = c(A,A1, A2)

such that
cx−A2 < F(x) < Cx−A1 , x ∈ (0, A].

Proof. By property (F4) we have

|F ′(x)| = −F ′(x) ≥ A2
F(x)

x
, x ∈ (0, A].

Therefore,

logF(x)− logF(A) =
∫ A

x

−(logF(t))′ dt ≥
∫ A

x

A2

t
dt = A2(logA− log x),

which yields
F(x) ≥ F(A)AA2x−A2 .
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Similarly, the inequality

|F ′(x)| ≤ A1
F(x)

x
, x ∈ (0, A],

implies
F(x) ≤ F(A)AA1x−A1 . ut

Lemma 2.2. For each R > 0 there exist positive constants C = C(R,A1, A2) and
c = c(R,A1, A2) such that

cx0(Rn) < x0(n) < Cx0(Rn) for all n large enough.

Proof. Let us prove the lemma for R ≥ 1; for R < 1 the proof is similar. Since F is
decreasing on (0, A], we can take c = 1. So, it is enough to show that x0(n) < Cx0(Rn).
By definition of x0(n) and (F4) we have

(R − 1)n = |F(x0(n))− F(x0(Rn))| =

∫ x0(n)

x0(Rn)
−F ′(t) dt

≥ A2

∫ x0(n)

x0(Rn)
F(t)

dt

t
≥ A2n(log x0(n)− log x0(Rn)).

Thus, one may choose C = exp((R − 1)/A2). ut

Lemma 2.3. There exists a positive constant α = α(A,A1, A2) such that

nx1(n) ≥ n
α for all n large enough.

Proof. Since F(x1(n)) = nx1(n), the lemma follows immediately from Lemma 2.1. ut

By monotonicity of F we have x1(2n) < x1(n), and hence 2nx1(2n) = F(x1(2n)) >
F(x1(n)) = nx1(n). In other words, x1(2n) < x1(n) < 2x1(2n). However, the following
stronger statement holds.

Lemma 2.4. There exists a positive constant ε = ε(A,A1, A2) < 1 such that

(1+ ε)x1(2n) < x1(n) < (2− ε)x1(2n) for all n large enough.

Proof. Note that both x0(n) and x1(n) are decreasing to zero. By definition of x1(n) and
(F4) we have

2nx1(2n)− nx1(n) = F(x1(2n))− F(x1(n)) =

∫ x1(n)

x1(2n)
−F ′(t) dt

≤ A1

∫ x1(n)

x1(2n)

F(t)

t
dt ≤ A1(x1(n)− x1(2n))

F (x1(2n))
x1(2n)

= 2nA1(x1(n)− x1(2n)).

Hence,
(2+ 2A1)x1(2n) ≤ x1(n)(2A1 + 1). (2.1)
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Similarly,

2nx1(2n)− nx1(n) ≥ A2

∫ x1(n)

x1(2n)

F(t)

t
dt

≥ A2(x1(n)− x1(2n))
F (x1(n))

x1(n)
= nA2(x1(n)− x1(2n)),

which gives
(1+ A2)x1(n) ≤ (2+ A2)x1(2n). (2.2)

Finally, by (2.1) and (2.2) we can take

ε =
1
2

min
{

1
1+ 2A1

,
A2

1+ A2

}
. ut

Corollary 2.1. For each C > 0 there exists K = K(C,A,A1, A2) such that

Cx1(n) < Kx1(Kn) for all n large enough. (2.3)

Proof. By Lemma 2.4 (the right-hand estimate) there exists a positive constant δ =
δ(A,A1, A2) such that 2x1(2n) > (1+δ)x1(n). Take an integerm such that (1+δ)m > C.
Then

2mx1(2mn) > (1+ δ)mx1(n) > Cx1(n),

which is (2.3) with K = 2m. ut

Note that Kx1(Kn) increases with K , since

Knx1(Kn) = F(x1(Kn)) > F(x1(K
∗n)) = K∗nx1(K

∗n) for K > K∗.

Similarly, using Lemma 2.4 (the left-hand estimate), we get

Corollary 2.2. For each L > 0 there exists Q = Q(L,A,A1, A2) such that

x1(Qn) < x1(n)/L for all n large enough. (2.4)

Corollary 2.3. For each K > 0 there exists L = L(K,A,A1, A2) such that

F(x1(n)/L) > Kx1(n)n for all n large enough. (2.5)

Proof. First, by (2.3) there existsL = L(K,A,A1, A2) such thatLnx1(Ln) > Knx1(n).

Second, on account of monotonicity of F ,

x1(n)/L ≤ x1(Ln), L ≥ 1.

Therefore,
F(x1(n)/L) ≥ F(x1(Ln)) = Lnx1(Ln) > Knx1(n). ut
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3. Approximation of �-functions

The aim of this section is to obtain the order of approximation of functions from the class
� by trigonometric polynomials.

3.1. Estimates for the Fourier coefficients of ω ∈ �

We use the classical estimate for the n-th Fourier coefficient of ω :

|ω̂n| =

∣∣∣∣ 1
π

∫
T
ω(t) cos nt dt

∣∣∣∣ ≤ 2 inf
k≥0

‖ω(k)‖C(T)
nk

, n ≥ 1. (3.1)

Below we obtain a uniform upper bound of the n-th derivative of the function ω ∈ �,
where ω(t) = H(g(t)),H(x) = exp(−F(x)). To this end, we use Faà di Bruno’s formula

(
u(v(x))

)(k)
=

∑
∗ k!

m1! . . . mk!
u(m1+...+mk)(v(x))

(
v′(x)

1!

)m1

. . .

(
v(k)(x)

k!

)mk
. (3.2)

Here and below,
∑
∗ indicates summation over all nonnegative integers m1, . . . , mk such

that m1 + 2m2 + · · · + kmk = k. We start with the following technical lemma.

Lemma 3.1. For each k ∈ N,∑
∗ k!

m1! . . . mk!(k −m1 − · · · −mk)!
=

1
2

(
2k
k

)
. (3.3)

Proof. Denote the left-hand side of (3.3) by Sk . One can see that Sk is the coefficient
of xk in the polynomial

(1+ x + x2
+ · · · + xk)k,

and hence it is equal to the coefficient of xk in the Taylor series expansion of the function

f (x) =
1

(1− x)k
.

Therefore,

Sk =
f (k)(0)
k!

=
1
2

(
2k
k

)
. ut

Now we are ready to estimate the maximum norm of the k-th derivative of the functionH .

Lemma 3.2. Let H(x) = exp(−F(x)), where F satisfies (F1)–(F4). Then H ∈

C∞[−A,A], and there exists C = C(A,B,A1, A2) > 0 such that for all k > F(A),

H (k)(x) ≤

(
Ck

x0(k)

)k
, x ∈ [−A,A].

Proof. Let x ∈ (0, A]. By (3.2),

H (k)(x) =
∑
∗ k!

m1! . . . mk!
(−1)m1+···+mk exp(−F(x))

(
F ′(x)

1!

)m1

. . .

(
F (k)(x)

k!

)mk
.
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By (F3) we have
|F (s)(x)|

s!
≤ Cs

F(x)

xs
, 1 ≤ s ≤ k.

Hence,

|H (k)(x)| ≤ Ck
∑
∗ k!

m1! . . . mk!

H(x)(F (x))m1+···+mk

xk

= Ck
∑
∗ k!

m1! . . . mk!
Gm,k(x), (3.4)

where m = m1 + · · · +mk and

Gm,k(x) :=
H(x)(F (x))m

xk
, x ∈ (0, A].

To estimate the maximum of Gm,k(x) for x ∈ (0, A), we write

G′m,k(x) =
H(x)(F (x))m−1

xk

(
−F ′(x)F (x)+mF ′(x)−

k

x
F (x)

)
.

Therefore, if F(x) < k/A1, then G′m,k(x) < 0. Indeed, by (F4), we get

−F ′(x)F (x)+mF ′(x)−
k

x
F (x) < F(x)

(
−F ′(x)−

k

x

)
< F(x)

(
A1F(x)

x
−
k

x

)
< 0.

Similarly, if F(x) > max{2, 2/A2}k, then G′m,k(x) > 0. In this case F(x) > 2k ≥ 2m,
and therefore

−F ′(x)F (x)+mF ′(x)−
k

x
F (x) ≥ −

F ′(x)F (x)

2
−
k

x
F (x) =

F(x)

2

(
−F ′(x)−

2k
x

)
≥
F(x)

2

(
A2F(x)

x
−

2k
x

)
> 0.

Using the fact that each Gm,k is a continuously differentiable function on (0, A], we see
that max0<x≤AGm,k(x) exists for all 1 ≤ m ≤ k and is attained at a point x∗ such that

k/A1 ≤ F(x
∗) ≤ max{2, 2/A2}k. (3.5)

Now, Lemma 2.1 implies that

Gm,k(x)→ 0 as x → 0+.

Thus, (3.4) yields H (k)(0) = 0 for all k ∈ N, and hence H ∈ C∞[−A,A]. Set R =
max{2, 2/A2}. Since F is decreasing, by (3.5) we get

Gm,k(x) ≤ exp(−F(A))
(Rk)m

xk0 (Rk)
≤
Ckkm

xk0 (k)
, k > F(A).
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Here the last inequality follows from Lemma 2.2. Combining the last display with (3.4)
we obtain

|H (k)(x)| ≤
Ckk!

xk0 (k)

∑
∗ km1+···+mk

m1! . . . mk!
.

Finally, taking into account that kk−m ≥ (k −m)! for 1 ≤ m ≤ k, by (3.3) we get

|H (k)(x)| ≤
Ckk!

xk0 (k)

∑
∗ k!

m1! . . . mk!(k −m1 − · · · −mk)!
≤
Ckk!

xk0 (k)

≤

(
Ck

x0(k)

)k
, x ∈ (0, A].

For x ∈ [−A, 0) the same inequality holds because F , and hence H , is even. ut

We are now in a position to give a uniform estimate of ω(k), where ω ∈ �.

Lemma 3.3. Let ω ∈ �. Then there exists C = C(ω) > 0 such that for all k large
enough,

ω(k)(t) ≤
Ckkk

xk0 (k)
, t ∈ T.

Proof. Take k ≥ F(A) so that x0(k) is well defined. Since g is an analytic function on T,
and H ∈ C∞[−A,A], we have ω ∈ C∞(T). By Faà di Bruno’s formula, for each k ∈ N,

|ω(k)(t)| = |(H(g(t)))(k)| =
∑
∗ k!

m1! . . . mk!
H (m)(g(t))

(
g′(t)

1!

)m1

. . .

(
g(k)(t)

k!

)mk
,

where m = m1 + · · · + mk . We rewrite the last sum as
∑
m<F(A)+

∑
m≥F(A). Since

H (m)(x) ≤ C(ω) for any m < F(A), we have∑
m<F(A)

≤ C(ω)Dk
∑

m<F(A)

k!

m1! . . . mk!
≤ Ckk!

∑
m<F(A)

1
m1! . . . mk!

. (3.6)

To estimate
∑
m≥F(A), we can use

H (m)(x) ≤

(
Cm

x0(m)

)m
, m ≥ F(A), (3.7)

provided by Lemma 3.2, and (1.6) to get∑
m≥F(A)

≤ Dk
∑
∗ k!

m1! . . . mk!

(
Cm

x0(m)

)m
.

Combining this with (3.6), we get

|ω(k)(t)| ≤
Ckk!

xk0 (k)

∑
∗ mm

m1! . . . mk!
, t ∈ T.
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Noting that for any integers 1 ≤ m ≤ k,

mm ≤
kk

(k −m)!
≤

Ckk!

(k −m)!
,

by (3.3) we have

|ω(k)(t)| ≤
Ckk!

xk0 (k)

∑
∗ k!

m1! . . . mk!(k −m1 − · · · −mk)!
≤
Ckk!

xk0 (k)
, t ∈ T. ut

The next result provides a nearly optimal k in estimate (3.1) for the n-th Fourier coefficient
of ω ∈ �.

Lemma 3.4. Let F be a function satisfying (F1)–(F4). Then for each C > e and n large
enough there exists an integer k = k(C, n, F ) such that

Ckkk

nkxk0 (k)
≤ exp

(
−

1
C2 nx1(n)+ 1

)
.

Proof. Let k be the minimal integer such that

Ck

nx0(k)
>

1
e
. (3.8)

Suppose k < nx1(n)/C
2. Then

Ck

nx0(k)
<

1
C

nx1(n)

nx0
( 1
C2 nx1(n)

) < 1
C

x1(n)

x0(nx1(n))
=

1
C
<

1
e
,

where we have used the definitions of x0(n) and x1(n). This contradicts (3.8). Thus, k ≥
nx1(n)/C

2. Therefore, since nx1(n)→∞ as n→∞, we have k ≥ 2 for n large enough.
Finally, again applying (3.8) we get(

C(k − 1)
nx0(k − 1)

)k−1

≤

(
1
e

) 1
C2 nx1(n)−1

,

and the claim easily follows. ut

We will also need the following technical result.

Lemma 3.5. For each ω ∈ � and c > 0 we have
∞∑
v=n

exp(−cvx1(v)) ≤ exp
(
−
c

2
nx1(n)

)
for all n large enough, i.e., for n ≥ n0(ω, c).

Proof. Indeed, since the sequence nx1(n) is increasing to infinity,

∞∑
v=n

exp(−cvx1(v)) =

∞∑
s=0

2s+1n−1∑
k=2sn

exp(−ckx1(k)) ≤

∞∑
s=0

n2s exp(−c2snx1(2sn)).
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By Lemma 2.4 there exists ε = ε(A,A1, A2) such that 2x1(2n) ≥ (1+ ε)x1(n) for all n
large enough. Then

∞∑
v=n

exp(−cvx1(v)) ≤

∞∑
s=0

n2s exp
(
−c(1+ ε)snx1(n)

)
=:

∞∑
s=0

hs .

It is easy to check that, for s ≥ 0 and n ≥ n0(ω, c),

hs+1/hs ≤ 2 exp(−cεnx1(n)) ≤ 1/2.

Thus, Lemma 2.3 gives

∞∑
v=n

exp(−cvx1(v)) ≤ 2h0 = 2n exp(−cnx1(n))

≤ exp
(
−
c

2
nx1(n)

)
, n ≥ n0(ω, c). ut

3.2. Remez inequality for trigonometric polynomials

We will need the following Remez inequality answering how large ‖Tn‖L∞(T) can be if

|{t ∈ T : |Tn(t)| > 1}| ≤ ε < 1.

Lemma 3.6 ([Er1], [Er2]). For any Lebesgue measurable set B⊂T such that |B|<π/2
we have

‖Tn‖L∞(T) ≤ exp(4n|B|)‖Tn‖L∞(T\B). (3.9)

If 0 < p <∞ and |B| < 1/4 we have

‖Tn‖Lp(T) ≤
(
1+ exp(4n|B|p)

)
‖Tn‖Lp(T\B). (3.10)

3.3. Two approximation theorems for �-weights

We are now ready to prove the following result on simultaneous trigonometric approxi-
mation of functions from the class � and of their derivatives.

Theorem 3.1. For each ω ∈ � there exists a positive constant c = c(ω) such that

‖ω − ωn‖C(T) ≤ exp(−cnx1(n)), (3.11)
‖ω′ − ω′n‖C(T) ≤ exp(−cnx1(n)), (3.12)

for n large enough, where ωn is the n-th partial sum of the Fourier series of ω.

Proof. Integration by parts and Lemma 3.3 imply that, for some C > 0,

|ω̂n| ≤ 2
‖ω(k)‖C(T)

nk
≤

Ckk!

xk0 (k)n
k
.
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Hence, by Lemma 3.4, there exists c = c(ω) such that, for n ≥ n0(ω),

|ω̂n| ≤ exp(−cnx1(n)).

Let ωn be the n-th partial sum of the Fourier series of ω, i.e.,

ωn(t) =
ω̂0

2
+

n∑
k=1

ω̂k cos kt.

Since ω ∈ C∞(T), for each t ∈ T we have

ωn(t)→ ω(t) and ω′n(t)→ ω′(t) as n→∞.

Therefore, taking into account Lemma 3.5, for each t ∈ T we have

|ω(t)− ωn(t)| ≤

∞∑
v=n+1

|ω̂v| ≤

∞∑
v=n+1

exp(−cvx1(v)) ≤ exp
(
−
c

2
nx1(n)

)
,

|ω′(t)− ω′n(t)| ≤

∞∑
v=n+1

v|ω̂v| ≤

∞∑
v=n+1

exp
(
−
c

2
vx1(v)

)
≤ exp

(
−
c

4
nx1(n)

)
. ut

Let g be an analytic function as in the definition of �, i.e., satisfying (1.6) and such that
each zero of g is of multiplicity one. Let {a1, . . . , am} be the set of all zeros of g on T.
For each ε > 0 denote

Bε := {t ∈ T : |g(t)| < ε}.

Let us show that the measure of Bε is at most linear in ε.

Lemma 3.7. For every ε > 0 we have

|Bε | ≤ C(g)ε.

Proof. Since all zeros of g have multiplicity one, we have

|g(t)| = |(t − a1) . . . (t − am)h(t)|,

where mint∈T |h(t)| = b(g) =: b > 0. Set

S :=

(
3

min1≤i<j≤m |ai − aj |

)m−1

.

For given ε > 0, let t0 ∈ T be such that

|t0 − ai | > Sε/b for all i ∈ 1, m.

Since the inequality

|t0 − aj | ≤
min1≤i<j≤m |ai − aj |

3
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may hold at most for one j ∈ 1, m we have

|g(t0)| ≥
Sε

b

(
min1≤i<j≤m |ai − aj |

3

)m−1

b = ε.

Hence, t0 6∈ Bε . Therefore, for each t ∈ Bε , there exists j ∈ 1, m such that

|t − aj | ≤ Sε/b.

Thus, |Bε | ≤ (2mS/b)ε. ut

Now we are in a position to prove the following approximation theorem.

Theorem 3.2. For each ω ∈ � there exists an integer K = K(ω) such that for each
trigonometric polynomial Tn we have

1
2

∫
T
|Tn(t)ωKn(t)| dt ≤

∫
T
|Tn(t)|ω(t) dt ≤ 2

∫
T
|Tn(t)ωKn(t)| dt, (3.13)

where ωn is the n-th partial Fourier sum of ω.

Proof. It is enough to verify (3.13) for sufficiently large n. Using Theorem 3.1 we get∫
T
|Tn(t)| |ω(t)− ωKn(t)| dt ≤ exp(−cKnx1(Kn))

∫
T
|Tn(t)| dt.

We define
Bx1(n) = {t ∈ T : |g(t)| < x1(n)}.

Then Lemma 3.7 implies that |Bx1(n)| ≤ Cx1(n), where C depends only on ω. By the
Remez inequality we get∫

T
|Tn(t)||ω(t)− ωKn(t)| dt ≤ exp(−cKnx1(Kn)) exp(4n|Bx1(n)|)

∫
T\Bx1(n)

|Tn(t)| dt

≤ exp(−cKnx1(Kn)+ Cnx1(n))

∫
T\Bx1(n)

|Tn(t)| dt.

Note that for each t ∈ T \ Bx1(n),

ω(t) = exp(−F(g(t))) ≥ exp(−F(x1(n))) = exp(−nx1(n)). (3.14)

Therefore,∫
T
|Tn(t)| |ω(t)− ωKn(t)| dt

≤ exp
(
−cKnx1(Kn)+ Cnx1(n)+ nx1(n)

) ∫
T\Bx1(n)

|Tn(t)|ω(t) dt.

Now, by Corollary 2.1 we can choose an integer K large enough such that∫
T
|Tn(t)| |ω(t)− ωKn(t)| dt ≤

1
2

∫
T\Bx1(n)

|Tn(t)|ω(t) dt ≤
1
2

∫
T
|Tn(t)|ω(t) dt.

This immediately implies the statement of the theorem. ut
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4. Weighted Bernstein inequalities in L1

In this section we prove the Bernstein inequality in L1(ω), where ω ∈ �.

Theorem 4.1. Let ω ∈ �. Then for each trigonometric polynomial Tn of degree at
most n, ∫

T
|T ′n(t)|ω(t) dt ≤ C(ω)n

∫
T
|Tn(t)|ω(t) dt. (4.1)

Proof. Since ∫
T
|T ′n(t)|ω(t) dt ≤ C(ω, n)

∫
T
|Tn(t)|ω(t) dt (4.2)

for any continuous weight ω, it is enough to prove (4.1) for n large enough. The proof is
in three steps.

Step 1. By Theorem 3.2 there exists an integer K = K(ω) large enough such that the
Kn-partial Fourier sum ωKn satisfies∫
T
|T ′n(t)|ω(t) dt ≤ 2

∫
T
|T ′n(t)ωKn(t)| dt

≤ 2
∫
T
|(Tn(t)ωKn(t))

′
| dt + 2

∫
T
|Tn(t)ω

′

Kn(t)| dt =: I1 + I2. (4.3)

Then by the classical Bernstein inequality and Theorem 3.2 we have

I1 ≤ CKn

∫
T
|Tn(t)ωKn(t)| dt ≤ C(ω)n

∫
T
|Tn(t)|ω(t) dt.

Further,

I2 ≤ 2
∫
T
|Tn(t)| |ω

′(t)| dt + 2
∫
T
|Tn(t)| |ω

′(t)− ω′Kn(t)| dt =: I21 + I22.

Step 2. To estimate I21, define

Bn,M := {t ∈ T : g(t) 6= 0 and |F ′(g(t))g′(t)| ≥ Mn}.

Note that, for any t ∈ Bn,M , it follows from (F4) that

A1
F(g(t))

|g(t)|
‖g′‖C(T) ≥ Mn,

and therefore
F(g(t))

|g(t)|
≥ M2n, where M2 =

M

A1D
. (4.4)

Using Corollary 2.2 we find that for each L > 0 there exists Q = Q(L,ω) > 1 such that

F(x1(n)/L) ≤ F(x1(Qn)) = Qnx1(Qn) < Qnx1(n)

for n large enough. Hence, for all x ∈ [x1(n)/L,A],

F(x) ≤ F(x1(n)/L) < Qnx1(n) ≤ xQLn. (4.5)
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Therefore, if

M2 =
M

A1D
> QL, (4.6)

then (4.4) and (4.5) imply

|g(t)| < x1(n)/L, t ∈ Bn,M .

Now, for each K ∈ N, taking L = L(K,ω) as in Corollary 2.3 we get

F(g(t)) ≥ F(x1(n)/L) ≥ Kx1(n)n. (4.7)

Moreover, by Lemma 2.1,

F(g(t))/|g(t)| ≤ C(ω)(F (g(t)))1+1/A2 , t ∈ Bn,M .

Let us estimate |ω′(t)| from above for t ∈ Bn,M . In view of (F1) and (F4),

|ω′(t)| = ω(t)|F ′(g(t))g′(t)| ≤ A1Dω(t)F (g(t))/|g(t)|

≤ C(ω) exp(−F(g(t)))(F (g(t)))1+1/A2

≤ C(ω) exp(−F(g(t))/2), t ∈ Bn,M , (4.8)

where in the last estimate we have used (4.7) and the fact that nx1(n)→∞ as n→∞.
Hence, (4.7) and (4.8) imply

|ω′(t)| ≤ C(ω) exp(−Kx1(n)n/2), t ∈ Bn,M . (4.9)

Step 3. Now we are ready to estimate I21. We have

I21 = 2
∫
Bn,M

|Tn(t)| |ω
′(t)| dt + 2

∫
T\Bn,M

|Tn(t)| |ω
′(t)| dt =: I211 + I212.

Let us estimate I211. Thanks to (4.9), we obtain

I211 = 2
∫
Bn,M

|Tn(t)| |ω
′(t)| dt ≤ C(ω) exp(−Kx1(n)n/2)

∫
Bn,M

|Tn(t)| dt

≤ C(ω) exp(−Kx1(n)n/2)
∫
T
|Tn(t)| dt.

Now, as in the proof of Theorem 3.2, we consider

Bx1(n) = {t ∈ T : |g(t)| < x1(n)}.

By the Remez inequality and Lemma 3.7 we get

I211 ≤ C(ω) exp(−Kx1(n)n/2) exp(4n|Bx1(n)|)

∫
T\Bx1(n)

|Tn(t)| dt

≤ C(ω) exp
(
−Kx1(n)n/2+ C(ω)nx1(n)

) ∫
T\Bx1(n)

|Tn(t)|ω(t) dt

≤ C(ω)

∫
T
|Tn(t)|ω(t) dt (4.10)
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for K ∈ N large enough. On the other hand, it follows from the definition of Bn,M that

I212 = 2
∫
T\Bn,M

|Tn(t)| |ω
′(t)| dt ≤ 2Mn

∫
T
|Tn(t)|ω(t) dt.

Thus,

I21 ≤ C(ω)n

∫
T
|Tn(t)|ω(t) dt.

Regarding I22, we first note that Theorem 3.1 yields

I22 ≤ exp(−c(ω)Knx1(Kn))

∫
T
|Tn(t)| dt.

Similarly to the case of I211, we use Remez’s inequality for the set Bx1(n) and Lemma 3.7
to deduce that

I22 ≤ C(ω)

∫
T
|Tn(t)|ω(t) dt (4.11)

for K ∈ N large enough.
Let us explain how we choose the constants K,L,Q, and M . First, K ∈ N is taken

large enough such that (4.3), (4.10), and (4.11) hold. Further we choose L = L(K,ω)

as in Corollary 2.3, Q = Q(L,ω) as in Corollary 2.2, and finally M > QLA1D so
that (4.6) holds. ut

5. Weighted Remez inequalities

For an arbitrary measurable set E, denote ‖Tn‖Lp(ω,E) = (
∫
E
|Tn|

pω)1/p if p <∞, and
‖Tn‖L∞(ω,E) = ess supt∈E |Tn(t)ω(t)|. We write ‖Tn‖Lp(ω) for ‖Tn‖Lp(ω,T).

The following classes play an important role in our further study.

Definition. We say that a weight u satisfies the R(p) condition, 0 < p ≤ ∞, and write
u ∈ R(p), if for any trigonometric polynomial Tn the weighted Remez inequality holds,
that is, there exists C = C(p, u) > 0 such that

‖Tn‖Lp(u,T) ≤ exp(Cn|E|)‖Tn‖Lp(u,T\E) (5.1)

for all measurable sets E with |E| ≤ 1.

Definition. We say that a weight u satisfies the Rint(p) condition, 0 < p ≤ ∞, and
write u ∈ Rint(p), if for any trigonometric polynomial Tn the restricted weighted Remez
inequality holds, that is, there exists C = C(p, u) > 0 such that

‖Tn‖Lp(u,T) ≤ exp(Cn|E|)‖Tn‖Lp(u,T\E) (5.2)

for all sets E which are a finite union of intervals of length ≥ 1/n and such that |E| ≤ 1.

Remark 5.1. First, it is clear that R(p) ⊂ Rint(p). Note also that any doubling weight
u satisfies the Rint(p) condition if 0 < p < ∞ (see [MT, Th. 5.3] and [Er1, Th. 7.2]),
and any u ∈ A∗ satisfies the Rint(∞) condition (see [MT, (6.10)]).
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Remark 5.2. One can similarly define the class Rint(p, d) of weights u such that for
any Tn and every set E with |E| ≤ 1 that is a finite union of intervals of length ≥ d/n
we have ‖Tn‖Lp(u,T) ≤ exp(Cn|E|)‖Tn‖Lp(u,T\E) for some constant C = C(p, u, d).
However, it turns out that Rint(p, d) = Rint(p), and therefore we can use d = 1.

We will need the following approximation inequalities for the weight ω1/p that are similar
to Theorems 3.1 and 3.2.

Lemma 5.1. Let ω = exp(−F(g(t))) ∈ � and v = ω1/p for p ∈ (0,∞). Let vn be the
n-th partial Fourier sum of v.

(A) We have

‖vp − |vn|
p
‖C(T) ≤ exp(−c(p, ω)nx1(n)), (5.3)

‖v′ − v′n‖C(T) ≤ exp(−c(p, ω)nx1(n)), (5.4)

for n large enough, where x1(n) is the unique positive solution of the equation
F(x1(n)) = nx1(n).

(B) For any u ∈ Rint(p), there exists K = K(ω, u, p) such that

1
2

∫
T
|Tn(t)|

p
|vKn(t)|

pu(t) dt ≤

∫
T
|Tn(t)|

pω(t)u(t) dt

≤ 2
∫
T
|Tn(t)|

p
|vKn(t)|

pu(t) dt. (5.5)

(C) For any u ∈ Rint(∞), there exists K = K(ω, u) such that

1
2‖TnωKnu‖L∞(T) ≤ ‖Tnωu‖L∞(T) ≤ 2‖TnωKnu‖L∞(T), (5.6)

where ωn is the n-th partial Fourier sum of ω.

Proof. We may assume that n is large enough. For any ω = exp(−F(g(·))) ∈ � and any
p ∈ (0,∞) we have, by definition of the class �,

v(t) = ω1/p(t) = exp(−H(g(t))) ∈ �, t ∈ T,

where H(x) = F(x)/p satisfies (F1)–(F4). Moreover, by Corollary 2.3,

xω1 (n) � x
v
1 (n),

where xω1 (n) is the unique positive solution of the equation F(xω1 (n)) = nxω1 (n), and
xv1 (n) is the unique positive solution of H(xv1 (n)) = nx

v
1 (n).

To verify (5.3) and (5.4), we use Theorem 3.1 and the inequality∣∣vp(t)− |vKn(t)|p∣∣ ≤ C(p, ω)|v(t)− vKn(t)|min{1,p}, 0 < p <∞, t ∈ T. (5.7)

For 0 < p < 1, the latter follows from the inequality |ap − bp| ≤ C(p)|a − b|p, where
a, b ≥ 0. For p > 1, we get (5.7) using the fact that if a > b > 0 then ap − bp =
pξp−1(a − b) for some ξ ∈ (b, a). Thus, the proof of (A) is complete.

To show (B) and (C), we follow the proof of Theorem 3.2 using (5.3) and the following
remark.
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Remark 5.3. In the proofs of Theorems 3.1 and 3.2, we use the Remez inequalities only
for the set Bx1(n) = {t ∈ T : |g(t)| < x1(n)}. Analyzing the proof of Lemma 3.7, we
note that there exists B̂x1(n) ⊂ T such that Bx1(n) ⊆ B̂x1(n), |B̂x1(n)| ≤ Cx1(n), and B̂x1(n)

is a union of m intervals of length > 1/n, where m is the number of zeros of g on T.
Therefore, in the proofs of Theorems 3.1 and 3.2 we can apply the Remez inequality
for B̂x1(n).

In this section we prove the following general Remez inequality in Lp.

Theorem 5.1. Let 0 < p ≤ ∞, ω ∈ �, and u ∈ R(p). Then for each trigonometric
polynomial Tn we have

‖Tn‖Lp(ωu) ≤ exp(Cn|E|)‖Tn‖Lp(ωu,T\E), (5.8)

where C = C(ω, u, p) and E is a measurable set with 0 < |E| ≤ 1.

Since any A∞ weight u satisfies the R(p) condition for any 0 < p < ∞ (see [MT,
Th. 5.2] and [Er1, Th. 7.2]), and any A∗ weight u satisfies the R(∞) condition (see [MT,
(6.10)]), Theorem 5.1 immediately implies the following result.

Corollary 5.1. For 0 < p < ∞, the Remez inequality (5.8) holds for any measurable
set E with |E| ≤ 1 whenever ω ∈ � and u ∈ A∞, and for p = ∞ whenever ω ∈ � and
u ∈ A∗. Moreover, applying Theorem 5.1 several times we obtain inequality (5.8) for the
weight ω = ω1 . . . ωs , where ωi ∈ �, i = 1, . . . , s.

Conditions on the weight u in Corollary 5.1 can be relaxed when E is a finite union of
intervals. First, we give an analogue of Theorem 5.1 in this case.

Theorem 5.2. Let 0 < p ≤ ∞, ω ∈ �, and u ∈ Rint(p). Then for each trigonometric
polynomial Tn we have

‖Tn‖Lp(ωu) ≤ exp(Cn|E|)‖Tn‖Lp(ωu,T\E), (5.9)

where C = C(ω, u, p) and E is a finite union of intervals of length ≥ 1/n each.

In particular, this and [MT, Th. 5.3] give a refinement of Corollary 5.1 for such sets E.

Corollary 5.2. For 0 < p < ∞ the Remez inequality (5.9) holds whenever ω ∈ �,
u is doubling, and E is a union of intervals of length ≥ 1/n each. Moreover, applying
Theorem 5.2 several times we obtain inequality (5.9) for the weight ω = ω1 . . . ωs , where
ωi ∈ �, i = 1, . . . , s.

Proof of Theorem 5.1. It is sufficient to show (5.8) for n large enough. Let first p ∈
(0,∞). It follows from Lemma 5.1 that for v = ω1/p

∈ � we have∥∥vp − |vn|p∥∥C(T) ≤ exp
(
−c(p, ω)nx1(n)

)
, (5.10)

where vn is the n-th partial Fourier sum of the function v. Moreover, by (5.5),∫
T
|Tn|

pvpu �

∫
T
|Tn|

p
|vKn|

pu (5.11)
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for K = K(ω, u, p) large enough. Let us also recall that

B = Bx1(n) = {t ∈ T : |g(t)| ≤ x1(n)}.

Case 1: |B| ≤ |E|. Using (5.11) and (5.1) for u ∈ R(p), we obtain∫
T
|Tn|

pωu ≤ exp
(
C(p, u)Kn(|E| + |B|)

) ∫
T\(E∪B)

|Tn|
p
|vKn|

pu

≤ exp(C(p, u)Kn|E|)
∫
T\(E∪B)

|Tn|
p
|vKn|

pu.

The latter can be estimated by I1 + I2, where

I1 := exp(C(p, u)Kn|E|)
∫
T\(E∪B)

|Tn|
pvpu,

I2 := exp(C(p, u)Kn|E|)
∫
T\(E∪B)

|Tn|
p
∣∣vp − |vKn|p∣∣u.

Corollary 2.1 implies that, for any c > 0, there exists K = K(c, ω) such that x1(n) <

cKx1(Kn), and therefore exp(−cKnx1(Kn)) ≤ exp(−nx1(n)). Then, by (5.10) for c =
c(p, ω),∣∣vp − |vKn|p∣∣ ≤ exp(−cKnx1(Kn)) ≤ exp(−nx1(n)) ≤ ω(t), t ∈ T \ B,

where the last inequality follows from (3.14). Thus,

I1 + I2 ≤ 2I1 ≤ 2 exp(C(p, ω, u)n|E|)
∫
T\E
|Tn|

pωu.

Case 2: |B| > |E|. Similarly to Case 1, using (5.1), we get∫
T
|Tn|

pωu ≤ I1 + I2,

where

I1 := exp(C(p, u)Kn|E|)
∫
T\E
|Tn|

pvpu,

I2 := exp(C(p, u)Kn|E|)
∫
T\E
|Tn|

p
∣∣vp − |vKn|p∣∣u.

By (5.10),

I2 ≤ exp(C(p, u)Kn|E|) exp
(
−c(p, ω)Knx1(Kn)

) ∫
T
|Tn|

pu.

Applying again the Remez inequality (5.1), we obtain

I2 ≤ exp(C(p, u)Kn|E|) exp
(
−c(p, ω)Knx1(Kn)

)
exp

(
C(p, u)n(|B| + |E|)

)
×

∫
T\(E∪B)

|Tn|
pu.
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Since ω(t) ≥ exp(−nx1(n)), t ∈ T \ B, we get

I2 ≤ exp(C(p, u)Kn|E|) exp
(
−c(p, ω)Knx1(Kn)

)
exp(C(p, u)n|B|) exp(nx1(n))

×

∫
T\(E∪B)

|Tn|
pωu.

Taking into account that |B| ≤ C(ω)x1(n), we deduce that

exp
(
C(p, u)Kn|E|−c(p, ω)Knx1(Kn)+C(p, u)n|B|+nx1(n)

)
≤ exp(C(p, u)Kn|E|)

for K = K(ω, u, p) large enough. Thus,

I2 ≤ exp(C(p, u)Kn|E|)
∫
T\E
|Tn|

pωu.

Collecting the estimates for I1 and I2, we arrive at∫
T
|Tn|

pωu ≤ exp(C(p, ω, u)n|E|)
∫
T\E
|Tn|

pωu, p ∈ (0,∞),

which is the required inequality.
The proof in the case p = ∞ follows the same lines and is left to the reader. ut

The proof of Theorem 5.2 is similar to the proof of Theorem 5.1 thanks to Remark 5.3.
We now give the following important corollary of the Remez inequalities for product

weights.

Corollary 5.3. Let ω = ω1 . . . ωs , where ωi ∈ �, i = 1, . . . , s. Let also 0 < p ≤ ∞ and
u ∈ Rint(p). Then∫

T
|Tn|

pωu �

∫
T
|Tn|

p
|v
(1)
Kn|

p
· · · |v

(s)
Kn|

pu, 0 < p <∞,

where v(i)n is the n-th partial Fourier sum of ω1/p
i , i = 1, . . . , s, and K = K(ω, u, p) is

large enough.
Moreover,

‖Tnωu‖L∞(T) � ‖Tnv
(1)
Kn · · · v

(s)
Knu‖L∞(T)

where v(i)n is the n-th partial Fourier sum of ωi , i = 1, . . . , s, and K = K(ω, u) is large
enough.

To prove this, we use induction, Lemma 5.1(B), and the following result provided by
Theorem 5.2: if ωi ∈ � and u ∈ Rint(p), then ω1 . . . ωlu ∈ Rint(p) for any integer
1 ≤ l ≤ s − 1 (for p <∞ see also Corollary 5.2).
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We finish this section by proving the following Remez inequality for algebraic poly-
nomials Pn.

Corollary 5.4. Let 0 < p < ∞ and ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i = 1, . . . , s.
Then

‖Pn‖Lp(ωu,[−1,1]) ≤ exp(C(p, ω, u)n
√
|E|)‖Pn‖Lp(ωu,[−1,1]\E) (5.12)

for all measurable sets E with |E| ≤ 1/4 and any weight u ∈ A∞. For p = ∞, (5.12)
holds for u ∈ A∗.

Proof. To prove (5.12), we use the change of variables x = cos t , Corollary 5.1, and the
following two facts:

u ∈ A∞ on [−1, 1] if and only if u(cos t)|sin t | ∈ A∞ on T (5.13)

(see [MT, p. 63]), and

u ∈ A∗ on [−1, 1] if and only if u(cos t) ∈ A∗ on T (5.14)

(see [MT, p. 68]).
To conclude the proof, we remark that for the map 8(t) = cos t and any measurable

set E ⊂ [−1, 1] with |E| ≤ 1/4, we have |8−1(E)| ≤ 2
√
|E| ≤ 1. ut

An analogue of Theorem 5.2 for algebraic polynomials can be established similarly.

6. Weighted Bernstein inequalities in Lp

The goal of this section is to establish the weighted Bernstein inequality in Lp for product
weights generalizing Theorem 4.1. The proof combines the approximation technique that
was used in Theorem 4.1 and the Remez inequalities from Section 5.

Definition. We say that a weight u satisfies the B(p) condition, 0 < p ≤ ∞, and write
u ∈ B(p), if for any trigonometric polynomial Tn of degree at most n the weighted
Bernstein inequality holds, that is,

‖T ′n‖Lp(u) ≤ C(p, u)n‖Tn‖Lp(u). (6.1)

Theorem 6.1. Let 0 < p ≤ ∞, ω ∈ �, and u ∈ B(p) ∩Rint(p). Then for any trigono-
metric polynomial Tn of degree at most n we have

‖T ′n‖Lp(ωu) ≤ Cn‖Tn‖Lp(ωu), (6.2)

where C = C(ω, u, p).

Proof. It is enough to prove (6.2) for n large enough. We start with the case 0 < p <∞.
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First, by (5.5) we have, for some K = K(ω, u, p),∫
T
|T ′n|

pωu ≤ 2
∫
T
|T ′n|

p
|vKn|

pu ≤ 21+p
(∫

T
|(TnvKn)

′
|
pu+

∫
T
|Tnv

′

Kn|
pu

)
.

Since u ∈ B(p), we get∫
T
|(TnvKn)

′
|
pu ≤ C(ω, u, p)np

∫
T
|TnvKn|

pu ≤ C(ω, u, p)np
∫
T
|Tn|

pωu.

Also, ∫
T
|Tnv

′

Kn|
pu ≤ 2p

(∫
T
|Tnv

′
|
pu+

∫
T
|Tn|

p
|v′ − v′Kn|

pu

)
.

To conclude the proof, we follow the estimation of I21 and I22 in the proof of Theorem
4.1 taking into account (5.4). Note that in view of Remark 5.3 it suffices to assume that
u ∈ Rint(p).

Finally, we arrive at∫
T
|T ′n|

pωu ≤ C(ω, u, p)np
∫
T
|Tn|

pωu.

The proof for p = ∞ is similar, using Theorem 3.1 and the inequality
1
2‖TnωKnu‖L∞(T) ≤ ‖Tnωu‖L∞(T) ≤ 2‖TnωKnu‖L∞(T), (6.3)

for K large enough provided by Lemma 5.1(C). First,

‖T ′nωu‖L∞(T) ≤ C
(
‖(TnωKn)

′u‖L∞(T) + ‖Tnω
′

Knu‖L∞(T)
)

≤ C
(
n‖TnωKnu‖L∞(T) + ‖Tnω

′

Knu‖L∞(T)
)
,

where C = C(ω, u, p). In view of (6.3), n‖TnωKnu‖L∞(T) ≤ 2n‖Tnωu‖L∞(T). To esti-
mate the second term, we write

‖Tnω
′

Knu‖L∞(T) ≤
(

ess sup
t∈Bn,M

+ ess sup
t∈T\Bn,M

)
|Tn(t)ω

′

Kn(t)u(t)|

and use Remez’s inequality with u ∈ Rint(p) and Theorem 3.1 to get ‖Tnω′Knu‖L∞(T) ≤
Cn‖Tnωu‖L∞(T). ut

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. First, any doubling weight u satisfies Bernstein’s inequality (6.1)
for 0 < p <∞ (see [MT, Th. 4.1] and [Er1, Th. 3.1]). Concerning the restricted Remez
inequality, (5.2) holds for any doubling weight u (see [Er1, Th. 7.2]), and therefore u ∈
B(p) ∩Rint(p), 0 < p < ∞. Then, by Corollary 5.2, ω1 . . . ωs−1u ∈ Rint(p). Thus, if
0 < p <∞, the statement of Theorem 1.1 follows from Theorem 6.1 by induction.

Let now p = ∞ and u ∈ A∗. Bernstein’s inequality (6.1) is proved in [MT, (6.7)],
and Remez’s inequality in [MT, (6.10)]. Therefore, u ∈ A∗ implies u ∈ B(∞)∩Rint(∞).
Similarly to the case p < ∞, Theorem 1.1 immediately follows from Corollary 5.1 and
Theorem 6.1. ut
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7. Weighted Bernstein and Markov inequalities for algebraic polynomials

In this section, we deal with weights ω and u : [−1, 1] → [0,∞). The weight u is either
doubling or satisfies the A∗ condition on [−1, 1]; both notions are defined similarly to
those on T (see, e.g., [MT, p. 62]). First, we obtain a weighted Bernstein inequality for
algebraic polynomials on [−1, 1].

Theorem 7.1. Let 0 < p < ∞ and ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i = 1, . . . , s,
and let u be a doubling weight. Then∫ 1

−1
ϕp(x)|P ′n(x)|

pω(x)u(x) dx

≤ C(p, ω, u)np
∫ 1

−1
|Pn(x)|

pω(x)u(x) dx, ϕ(x) =
√

1− x2. (7.1)

Proof. This follows immediately from Theorem 1.1, the change of variables x = cos t ,
and the fact that u is doubling on [−1, 1] if and only if u(cos t)|sin t | is doubling on T
(see [MT, p. 63]). ut

A counterpart for p = ∞ reads as follows.

Theorem 7.2. Let ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i = 1, . . . , s, and let u ∈ A∗.
Then

‖ϕP ′nωu‖L∞[−1,1] ≤ C(ω, u)n‖Pnωu‖L∞[−1,1]. (7.2)

The proof is similar to the proof of Theorem 7.1, using (5.14).
Let us now discuss Markov’s inequality for algebraic polynomials.

Theorem 7.3. Let 0 < p < ∞ and ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i = 1, . . . , s,
and let u be a doubling weight. Then∫ 1

−1
|P ′n(x)|

pω(x)u(x) dx ≤ C(p, ω, u)n2p
∫ 1

−1
|Pn(x)|

pω(x)u(x) dx. (7.3)

Proof. First, the Bernstein inequality (7.1) yields

Cn2p
∫ 1

−1
|Pn(x)|

pω(x)u(x) dx ≥ np
∫ 1

−1
ϕp(x)|P ′n(x)|

pω(x)u(x) dx.

Therefore, it is enough to show that

Cnp
∫ 1

−1
ϕp(x)|P ′n(x)|

pω(x)u(x) dx ≥

∫ 1

−1
|P ′n(x)|

pω(x)u(x) dx,

or, taking an even trigonometric polynomial Tn(t) = P ′n(cos t),

Cnp
∫
T
|Tn(t) sin t |pω(cos t)u(cos t)|sin t | dt ≥

∫
T
|Tn(t)|

pω(cos t)u(cos t)|sin t | dt,
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or equivalently

Cnp
∫
T
|Tn(t) sin t |pω̄(t)ū(t) dt ≥

∫
T
|Tn(t)|

pω̄(t)ū(t) dt, (7.4)

where ω̄(t)= ω̄1(t) . . . ω̄s(t), ω̄i =ωi(cos t) ∈ �, i= 1, . . . , s, and ū(t)=u(cos t)|sin t |
is doubling on T.

Now, (7.4) follows from Corollary 5.2 for E = [−1/n, 1/n] ∪ [π − 1/n, π + 1/n]:∫
T
|Tn(t)|

pω̄(t)ū(t) dt ≤ C

∫
T\E
|Tn(t)|

pω̄(t)ū(t) dt

≤ Cnp
∫
T\E
|Tn(t) sin t |pω̄(t)ū(t) dt. ut

Markov’s inequality for p = ∞ is written as follows.

Theorem 7.4. Let ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i = 1, . . . , s, and let u be an A∗

weight on [−1, 1]. Then

‖P ′nωu‖L∞[−1,1] ≤ C(ω, u)n
2
‖Pnωu‖L∞[−1,1].

The proof repeats the argument of the proof of Theorem 7.3, using the inequality

‖Tn(t)ω̄(t)ũ(t)‖L∞(T) ≤ Cn‖Tn(t)ω̄(t)ũ(t) sin t‖L∞(T), (7.5)

where ω̄(t) = ω̄1(t) . . . ω̄s(t), ω̄i = ωi(cos t) ∈ �, i = 1, . . . , s, and ũ(t) = u(cos t) is
an A∗ weight on T. Inequality (7.5) follows from Corollary 5.1.

Let us remark that the non-weighted version of (7.4)–(7.5),

‖Tn(t)‖Lp(T) ≤ C(p)n‖Tn(t) sin t‖Lp(T), 0 < p ≤ ∞,

was proved in [Be2, Ba].

Remark 7.1. Note that for some weights the Bernstein inequality (7.2) for algebraic
polynomials can be derived from known results. First, let us recall the definition of the
Mhaskar–Rakhmanov–Saff number, which is a crucial concept to analyze weighted in-
equalities. Suppose that ω(x) = exp(Q(x)), where Q : (−1, 1) → R is even and dif-
ferentiable on (0, 1). Also suppose that xQ′(x) is positive and increasing in (0, 1) with
limits zero and infinity at 0 and 1, respectively, and∫ 1

0

xQ′(x)
√

1− x2
dx = ∞.

Then the n-th Mhaskar–Rakhmanov–Saff number, an = an(Q), is defined to be the root
of

n =
2
π

∫ 1

0

anxQ
′(anx)

√
1− x2

dx, n ≥ 1.
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The importance of this number lies in the Mhaskar–Saff identity

‖Pnω‖C[−1,1] = ‖Pnω‖C[−an,an], n ≥ 1,

and asymptotically as n → ∞, an is the smallest such number (see [MS1, MS2]). In
particular, for the weight

ωα(x) = exp(−(1− x2)α), α > 0, (7.6)

we have
1− an � n−1/(α+1/2), n→∞. (7.7)

For this weight, Lubinsky and Saff proved the following inequalities [LS, p. 531]:∣∣P ′n(x)ωα(x)√1− |x|/an
∣∣ ≤ C(α)n‖Pnωα‖C[−1,1], |x| < an, (7.8)

‖P ′nωα‖C[−1,1] ≤ C(α)n
2α+2
2α+1 ‖Pnωα‖C[−1,1]. (7.9)

In fact, similar results hold for a wide class of functions, which we denote by W . By
definition, ω = exp(−Q) ∈W if

(i) Q is even and continuously differentiable in (−1, 1), while Q′′ is continuous in
(0, 1);

(ii) Q′ ≥ 0 and Q′′ ≥ 0 in (0, 1);
(iii)

∫ 1
0 (xQ

′(x)/
√

1− x2) dx = ∞;
(iv) for T (x) = 1 + xQ′′(x)/Q′(x), x ∈ (0, 1), one has: T is increasing in (0, 1),

T (0+) > 1, and T (x) = O(Q′(x)) as x ∈ 1−.

Let us show that both (7.8) and (7.9) imply (7.2) for ωα given by (7.6) and u(x) ≡ 1.
Indeed, let x ∈ (0, 1). If 1 − C2n−1/(α+1/2)

≤ x for some positive C = C(α), then
n(2α+2)/(2α+1)

≤ 2Cn/
√

1− x2, and (7.9) implies

|P ′n(x)ϕ(x)ωα(x)| ≤ Cn‖Pnωα‖C[−1,1] (7.10)

for such x. If x ≤ (C2
− 1)/(C2/an − 1), then

√
1− x2 ≤ 2C

√
1− |x|/an and (7.8)

implies (7.10) for such x. Further, (7.7) shows that an > 1 − Bn−1/(α+1/2) for some
B = B(α) > 0. Then, taking C2

= 2B + 2, we obtain

1− C2n−1/(α+1/2) < (C2
− 1)/(C2/an − 1)

for sufficiently large n. Finally,

‖P ′nϕωα‖C[−1,1] ≤ Cn‖Pnωα‖C[−1,1].

We also mention that in the recent papers [MN, No] the authors obtained weighted Bern-
stein, Nikolskii, and Remez inequalities for algebraic polynomials for the weights ω(x) =
exp(−(1− x2)α)u(x), α > 0, where u is doubling on [−1, 1].
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8. Weighted Nikolskii inequalities

Nikolskii’s inequality for trigonometric polynomials, that is,

‖Tn‖Lq (T) ≤ Cn
1/p−1/q

‖Tn‖Lp(T), p < q,

plays an important role in approximation theory and functional analysis, in particular, in
the proofs of embedding theorems for function spaces (see, e.g., [DW]). It is known that
if u is an A∞ weight, then for any 0 < p ≤ q < ∞ there is a constant C = C(u, p, q)
such that (∫

T
|Tn|

qu

)1/q

≤ Cn1/p−1/q
(∫

T
|Tn|

pup/q
)1/p

(8.1)

(see [MT, Th. 5.5] and [Er3, Th. 8.1]). Moreover, if u ∈ A∗, then for any 1 ≤ p < ∞
there is a constant C = C(u, p) such that

‖Tnu‖L∞(T) ≤ Cn
1/p
(∫

T
|Tn|

pup
)1/p

(8.2)

(see [MT, (6.9)]). Note that (8.2) holds for 0 < p < 1 as well, provided u ∈ A∗. Indeed,
we first apply (8.2) with p = 1 to get

‖Tn‖L∞(u) ≤ Cn‖Tn‖L1(u). (8.3)

Then, since u ∈ A∗ yields u ∈ A∞, we use (8.1) with 0 < p < 1 and q = 1:

‖Tn‖L1(u) ≤ Cn
1/p−1

‖Tn‖Lp(up). (8.4)

We prove the following weighted Nikolskii inequalities for trigonometric polynomi-
als.

Theorem 8.1. Let 0 < p ≤ q ≤ ∞ and ω = ω1 . . . ωs , where ωi ∈ �, i = 1, . . . , s, and
let u ∈ Rint(q).

(A) Suppose q < ∞, up/q ∈ Rint(p), and (8.1) holds for each trigonometric polyno-
mial Tn. Then

‖Tn‖Lq (ωu) ≤ Cn
1/p−1/q

‖Tn‖Lp((ωu)p/q ), (8.5)

where C = C(ω, u, p, q).
(B) Suppose p < q = ∞, up ∈ Rint(p), and (8.2) holds for each trigonometric polyno-

mial Tn. Then
‖Tn‖L∞(ωu) ≤ Cn

1/p
‖Tn‖Lp((ωu)p), (8.6)

where C = C(ω, u, p).

In particular, this implies

Corollary 8.1. Let ω = ω1 . . . ωs , where ωi ∈ �, i = 1, . . . , s. Then inequality (8.5)
holds provided u ∈ A∞ and 0 < p ≤ q < ∞, and (8.6) holds provided u ∈ A∗ and
0 < p <∞.
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Proof of Theorem 8.1. First, by definition of �, any weight ωi ∈ �, 1 ≤ i ≤ s − 1,
is such that ωp/qi ∈ � for any 0 < p, q < ∞. Then, by Corollary 5.2, ω1 . . . ωs−1u ∈

Rint(q) and (ω1 . . . ωs−1u)
p/q
∈ Rint(p). Thus, it is enough to prove (8.5) and (8.6) for

ω = ωs ∈ �.
(A) By (5.5) we have∫

T
|Tn|

qωu �

∫
T
|Tn|

q
|vKn|

qu, u ∈ Rint(q), (8.7)

where vn is the n-th partial Fourier sum of ω1/q and K = K(ω, u) is large enough.
Moreover, applying again (5.5) for the weight ωp/q , where 0 < p ≤ q <∞, we have∫

T
|Tn|

pωp/qup/q �

∫
T
|Tn|

p
|vKn|

pup/q (8.8)

for K = K(ω, u, p, q) large enough, provided that up/q ∈ Rint(p). Now we apply (8.1)
to get (8.5).

(B) The case q = ∞ is similar since ω1 . . . ωs−1u ∈ Rint(∞) and (ω1 . . . ωs−1u)
p

∈ Rint(p). ut

Proof of Corollary 8.1. To show (8.5) for 0 < p < q <∞ and (8.6) for 1 ≤ p <∞, we
use results from [MT], [Er3], and the following two facts:

(i) up/q ∈ A∞ whenever u ∈ A∞ and 0 < p < q <∞ (see [St, Ch. V]), and
(ii) up ∈ A∗ ⊂ A∞ whenever u ∈ A∗ and p > 1; this follows from Jensen’s inequality.

To prove (8.6) for 0 < p < 1, we first apply (8.6) with p = 1 and then (8.5) with
0 < p < 1 and q = 1 as in (8.3) and (8.4). ut

We finish this section by proving Nikolskii inequalities for algebraic polynomials.

Corollary 8.2. Let 0 < p ≤ q ≤ ∞ and ω = ω1 . . . ωs , where ωi(cos t) ∈ �, i =
1, . . . , s. Then for each algebraic polynomial Pn we have

‖Pn‖Lq ([−1,1],ωu) ≤ C(p, q, ω, u)n
2/p−2/q

‖Pn‖Lp([−1,1],(ωu)p/q ), 0 < p ≤ q <∞,

(8.9)
provided u ∈ A∞, and

‖Pn‖L∞([−1,1],ωu) ≤ C(p, q, ω, u)n
2/p
‖Pn‖Lp([−1,1],(ωu)p), 0 < p <∞, (8.10)

provided u ∈ A∗.

Proof. First, let 0 < p ≤ q < ∞. We give a straightforward proof applying the Remez
inequalities for algebraic polynomials given by Corollary 5.4. Define

E :=

{
x ∈ [−1, 1] : n2

∫ 1

−1
|Pn|

qωu ≤ |Pn(x)|
qω(x)u(x)

}
.
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Then, since |E| ≤ n−2, inequality (5.12) yields

‖Pn‖
q

Lq ([−1,1],ωu) ≤ C(q, ω, u)

∫
[−1,1]\E

|Pn|
qωu

≤ C(q, ω, u)
∥∥|Pn|qωu∥∥(q−p)/qL∞([−1,1]\E)

∫
[−1,1]\E

|Pn|
p(ωu)p/q

≤ C(q, ω, u)n2(q−p)/q
(∫ 1

−1
|Pn|

qωu

)(q−p)/q ∫ 1

−1
|Pn|

p(ωu)p/q ,

which gives (8.9).
Let now 0 < p < ∞ and u ∈ A∗. Let v(i)n (cos t) be the n-th partial Fourier sum of

ωi(cos t) ∈ �, i = 1, . . . , s. Then, by Corollary 5.3, changing variables gives

‖Pnωu‖L∞[−1,1] � ‖Pnv
(1)
Kn · · · v

(s)
Knu‖L∞[−1,1]

provided that u(cos t)|sin t | is an A∗ weight on T. The latter holds by (5.14).
Moreover, since up ∈ A∗ ⊂ A∞, p > 1, Corollary 5.3 implies that∫ 1

−1
|Pn|

p(ωu)p �

∫ 1

−1
|Pn|

p
|v
(1)
Kn|

p
· · · |v

(s)
Kn|

pup.

Then (8.10) for 1 ≤ p <∞ follows from

‖Pn‖L∞(u) ≤ C(p, u)n
2/p
‖Pn‖Lp(up), u ∈ A∗, 1 ≤ p <∞

(see [MT, (7.31)]). The case 0 < p < 1 can be treated as in the proof of Corollary 8.1. ut

9. Necessary conditions for a weighted Bernstein inequality

We will use the following properties of the Chebyshev polynomials Tn defined by
Tn(cos t) = cos nt :

|Tn(x)| ≤ 1, |x| ≤ 1; (9.1)
Tn(x) is increasing on (1,∞); (9.2)

Tn(x) = 1
2

(
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

)
for all x ∈ R \ (−1, 1). (9.3)

The last identity readily implies that

Tn(1+ 1/n2) ≤ C1, n ∈ N, (9.4)

T ′n(x)
Tn(x)

≥
1
4

n
√
x2 − 1

, x > 1+ 1/n2, n ∈ N. (9.5)

To prove the main theorems of this section we need two auxiliary results.
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Lemma 9.1. Let ξ be a negative increasing continuous function on (0, ε), for some
ε > 0, such that ξ(0+) = −∞ and, for each r ∈ (0, 1),

ξ(rx)/ξ(x)→∞ as x → 0+. (9.6)

Then for each positive sequence hn such that hn → 0 as n → ∞ there exists a positive
sequence βn→ 0 as n→∞ such that, for each r ∈ (0, 1),

inf
x∈(0,hn)

ξ(rx)

ξ(x)
βn→∞ as n→∞.

Proof. Fix a positive sequence hn → 0. By (9.6), there exists an increasing sequence of
positive integers n(k) such that for each n > n(k),

inf
x∈(0,hn)

ξ((1− 1/k)x)
ξ(x)

> k2. (9.7)

Set βn = 1/k for n ∈ [n(k)+ 1, n(k + 1)]. Fix r ∈ (0, 1). Consider a positive integer K
such that 1− 1/K > r and hn < ε for n > n(K). Applying monotonicity of ξ and (9.7),
we get

inf
x∈(0,hn)

ξ(rx)

ξ(x)
βn > inf

x∈(0,hn)

ξ((1− 1/K)x)
ξ(x)

1
K
> K, n ∈ [n(K)+ 1, n(K + 1)].

This establishes the statement of the lemma. ut

The proof of the next lemma is a trivial corollary of the mean value theorem.

Lemma 9.2. Let ξ be an increasing continuous function on (0, ε), for some ε > 0, such
that ξ(0+) = −∞. Then, for each M large enough, the equation

ξ(x) = −Mx

has a unique solution y(M) ∈ (0, ε), which is continuous in M and decreasing to 0 as
M →∞.

Now we give the following extension of Theorem 1.3.

Theorem 9.1. Let ω ∈ C(T) be a weight function satisfying the following conditions:

ω(t0) = 0 for some t0 ∈ T, (9.8)
ω is increasing on (t0, t0 + ε) and decreasing on (t0 − ε, t0) for some ε > 0, (9.9)

lim
t→t0

logω(t0 + r(t − t0))
logω(t)

= ∞ for each r ∈ (0, 1). (9.10)

Then for each 0 < p ≤ ∞ there exists a sequence of trigonometric polynomials Qn of
degree at most n such that

lim
n→∞

‖Q′n‖Lp(ω)

n‖Qn‖Lp(ω)
= ∞.
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Remark 9.1. (i) Note that if ω is a continuous nondoubling weight then ω(t0) = 0 for
some t0 ∈ T, i.e., condition (9.8) holds. Without loss of generality we assume below that
t0 = 0 and ‖ω‖C(T) ≤ 1.

(ii) Condition (9.9) has been assumed to simplify the proof. The principal condition
is (9.10), which implies that ω goes to 0 fast enough as t → 0. Condition (9.10) can be
equivalently written as follows: for each r ∈ (0, 1),

lim
t→0

logω(rt)
logω(t)

exists, possibly∞,

and, for some r∗ ∈ (0, 1),

lim
t→0

logω(r∗t)
logω(t)

= ∞.

Example 9.1. A typical example of a weight satisfying the conditions of Theorem 9.1 is

ω∗α(t) = exp(−F(g(t))), where F(x) = exp(|x|−α), α > 0,

and g : T→ [−1, 1] is an analytic function, g(0) = 0. Although ω∗α ∈ C
∞(T), the result

of Theorem 1.1 is not true for this kind of function.

Proof of Theorem 9.1. Our proof is in five steps. First, we will prove the theorem for
p = ∞ (Steps 1–4).

Step 1. Recall that t0 = 0 and ‖ω‖C(T) ≤ 1. We choose Qn as follows:

Qn(t) := Tn(1+ a2
n − sin2 t),

where an → 0 is a positive sequence depending on ω to be chosen later. For each n ∈ N,
we denote by bn any point on T such that

‖Qnω‖C(T) = |Qn(bn)ω(bn)|.

Without loss of generality we may assume that bn ∈ (0, π). Suppose that the sequence
{an} is such that

lim
n→∞

Qn(bn)ω(bn) = ∞, (9.11)

bn = an(1+ o(1)) as n→∞. (9.12)

Then (9.4) and (9.11) imply

1+ a2
n − sin2 bn > 1+ 1/n2 for n large enough. (9.13)

Hence,

‖Q′nω‖C(T)
n‖Qnω‖C(T)

≥
|Q′n(bn)ω(bn)|

nQn(bn)ω(bn)
=

T ′n(1+ a2
n − sin2 bn)|sin 2bn|

nTn(1+ a2
n − sin2 bn)

≥
|sin 2bn|

4
√
(1+ a2

n − sin2 bn)2 − 1
,
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where in the last inequality we have used (9.5). Finally, taking into account (9.12), we
obtain

lim
n→∞

‖Q′nω‖C(T)
n‖Qnω‖C(T)

= ∞,

which is the statement of the theorem in the case p = ∞.

Step 2. Let us now focus on the search of the sequence an which satisfies (9.11)
and (9.12). Note that if we take sequences an→ 0 and λn→ 1 such that

Tn(1+ a2
n − sin2(λnan))ω(λnan)→∞ as n→∞, (9.14)

and, for each r ∈ (0, 1),

Tn(1+ a2
n)ω(ran)→ 0 as n→∞, (9.15)

then an satisfies (9.11) and (9.12). Indeed, condition (9.14) immediately implies (9.11),
so (9.13) holds as well, and hence

lim sup
n→∞

bn/an ≤ 1.

If
lim inf
n→∞

bn/an < r < 1,

then, applying (9.2) and (9.9), we have

Qn(bn)ω(bn) ≤ Tn(1+ a2
n)ω(ran)

for infinitely many n ∈ N. This inequality together with (9.15) contradicts (9.11). So,

lim inf
n→∞

bn/an ≥ 1, and therefore lim
n→∞

bn/an = 1,

which is (9.12).

Step 3. Set ξ := logω. Taking the logarithm on both sides of (9.14) and (9.15), and
applying (9.3), we find that if {an} and {λn} satisfy, as n→∞,

n log
(
1+ a2

n − sin2(λnan)+

√
(1+ a2

n − sin2(λnan))2 − 1
)
+ ξ(λnan)→∞,

and, for each r ∈ (0, 1),

n log
(
1+ a2

n +

√
(1+ a2

n)
2 − 1

)
+ ξ(ran)→−∞,

then {an} and {λn} satisfy (9.14) and (9.15) as well. Finally, since log(1 + t +√
(1+ t)2 − 1) ∼

√
2t as t → 0, it is enough to choose an→ 0 and λn→ 1− such that

nλnan

√
1− λ2

n + ξ(λnan)→∞, (9.16)
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and, for each r ∈ (0, 1),
2nan + ξ(ran)→−∞. (9.17)

Step 4. Now we are in a position to choose {an} and {λn}. For n large enough, let hn be
the unique solution of the equation

ξ(x) = −n1/2x,

provided by Lemma 9.2. It follows from Lemma 9.1 that there exists a sequence {λn}
which goes to 1 slowly enough such that√

1− λ2
n > n−1/3

and, for each r ∈ (0, 1),

inf
t∈(0,2hn)

ξ(rt)

ξ(t)

√
1− λ2

n→∞ as n→∞.

Moreover, for each r ∈ (0, 1) and r1 ∈ (r, 1), we have

inf
t∈(0,hn/λn)

ξ(rt)

ξ(λnt)

√
1− λ2

n = inf
t∈(0,hn)

ξ(rt/λn)

ξ(t)

√
1− λ2

n ≥ inf
t∈(0,hn/λn)

ξ(rt/λn)

ξ(t)

√
1− λ2

n

≥ inf
t∈(0,hn/λn)

ξ(r1t)

ξ(t)

√
1− λ2

n→∞ as n→∞. (9.18)

Set an := zn/λn, where zn is the unique solution of the equation

ξ(z) = − 1
2nz

√
1− λ2

n, (9.19)

provided by Lemma 9.2. Then Lemma 9.2 implies that zn → 0, and hence an → 0.
Therefore,

nλnan

√
1− λ2

n + ξ(λnan) = −ξ(λnan)→∞,

i.e., (9.16) holds.
On the other hand, Lemma 9.2 together with the condition 1

2n
√

1− λ2
n > n1/2 for n

large enough implies that zn = anλn < hn. Thus, (9.18) yields

lim
n→∞

ξ(ran)

ξ(λnan)

√
1− λ2

n = ∞.

Moreover, (9.19) implies ξ(λnan) = − 1
2nλnan

√
1− λ2

n. Hence,

lim
n→∞

ξ(ran)

nλnan/2
= −∞,

which gives (9.17).
Thus, the sequence {an} satisfies (9.16) and (9.17), and therefore (9.11) and (9.12),

which concludes the proof of Theorem 9.1 in the case p = ∞.
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Step 5. The proof for 0 < p <∞ follows the same lines. We again choose

Qn(t) := Tn(1+ a2
n − sin2 t),

where an = an(ω, p)→ 0 is a positive sequence to be chosen later. Similarly to Steps 1
and 2, it is enough to find a sequence {an} such that an→ 0 and, for each r ∈ (0, 1),

|Tn(1+ a2
n)|

pω(ran)→ 0,
∫
T
|Tn(1+ a2

n − sin2 t)|pω(t) dt →∞.

The latter holds if for some sequence {λn} with λn→ 1− one has

∫ λnan

(2λn−1)an
|Tn(1+ a2

n − sin2 t)|pω(t) dt

≥ |Tn(1+ a2
n − sin2(λnan))|

pω((2λn − 1)an)(1− λn)an→∞.

Similarly to Step 3 (cf. (9.16) and (9.17)) it is enough to choose sequences {λn} and {an}
such that

pnλnan

√
1− λ2

n + log(1− λn)+ log an + ξ((2λn − 1)an)→∞ (9.20)

and, for each r ∈ (0, 1),
2pnan + ξ(ran)→−∞. (9.21)

Similarly to Step 4 one can choose sequences {λn} and {an} satisfying

ξ((2λn − 1)an) = −pnλnan(1− λ2
n) (9.22)

and (9.21). Finally, (9.22) together with limn→∞ ω(an)/an = 0 implies (9.20). ut

The next theorem (cf. Theorem 1.2) provides a necessary condition for the weighted Bern-
stein inequality to hold.

Theorem 9.2. Let ω ∈ C(T) be a weight function satisfying (9.8), (9.9), and

lim sup
t→t0

logω(t0 + r(t − t0))
logω(t)

= ∞ for each r ∈ (0, 1). (9.23)

Then for each 0 < p ≤ ∞ there exists a sequence of positive integers Kn → ∞ as
n → ∞ and a sequence of trigonometric polynomials QKn of degree at most Kn such
that

lim
n→∞

‖Q′Kn‖Lp(ω)

Kn‖QKn‖Lp(ω)
= ∞.

Remark 9.2. If (9.23) holds for some r ∈ (0, 1), then it holds for any r ∈ (0, 1).
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Proof of Theorem 9.2. Without loss of generality we assume t0 = 0 and ‖ω‖C(T) ≤ 1.
We will prove the theorem only for p = ∞; the case 0 < p <∞ is similar (see the proof
of Theorem 9.1, Step 5). Define

QKn(t) := TKn(1+ a2
n − sin2 t),

with Kn and an → 0 to be chosen later. Set ξ := logω. Now following step by step the
proof of Theorem 9.1 up to (9.16) and (9.17), one can see that it is enough to choose
an→ 0, an increasing sequence of integers Kn, and λn→ 1− such that

Knλnan

√
1− λ2

n + ξ(λnan)→∞ (9.24)

and, for each r ∈ (0, 1),

2Knan + ξ(ran)→−∞. (9.25)

Since

lim sup
t→0

ξ(rt)

ξ(t)
= ∞ for each r ∈ (0, 1),

there exists a decreasing positive sequence cn such that cn→ 0 and

ξ((1− 1/n)cn)
ξ(cn)

> n2. (9.26)

Set

λn := 1− 1/n, an := cn/λn, Kn := 2
[
−ξ(cn)

λnan
√

1− λ2
n

]
.

Since limt→0 ξ(t) = −∞, we have Kn→∞, and hence (9.24) holds.
To complete the proof, take an arbitrary r ∈ (0, 1). Since r < λ2

n for n large enough,
by monotonicity of ξ we have

2Knan + ξ(ran) < 2Knan + ξ((1− 1/n)cn).

Thus, by (9.26),

2Knan + ξ(ran) < 2Knan + n2ξ(cn) ≤
−4ξ(cn)

λn
√

1− λ2
n

+ n2ξ(cn)→−∞.

This proves (9.25). ut

The next theorem shows an essential difference between Theorems 9.1 and 9.2 in the
case when the weight satisfies (9.23) but not (9.10). In this case Bernstein’s inequality
may hold for some subsequence of integers Kn but not for all n ∈ N. For simplicity we
consider only the case p = ∞ and t0 = 0.
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Theorem 9.3. There exists an even weight function ω ∈ C∞(T) satisfying (9.8) and (9.9)
and

lim sup
t→0

logω(rt)
logω(t)

= ∞ for each r ∈ (0, 1), (9.27)

such that for some increasing sequence of positive integers Kn the Bernstein inequality

‖T ′Knω‖C(T) ≤ CKn‖TKnω‖C(T)

holds for any trigonometric polynomial TKn of degree at most Kn.

Proof. Let

W(x) =

∫ πx
0 exp(−1/sin2 t) dt∫ π
0 exp(−1/sin2 t) dt

, x ∈ [0, 1].

Define an even weight ω as follows:

ω(t) :=


1 if t ∈ [α1, π],
dn if t ∈ [αn, αn−1/2], n ≥ 2,
dn+1 + (dn − dn+1)W(2t/αn − 1) if t ∈ [αn/2, αn], n ≥ 1,
0 if t = 0,

where dn := exp(− exp(n2)) and αn := d2
n . By construction, ω ∈ C∞(T). Since

lim
n→∞

logω(αn/2)
logω(αn)

= ∞,

ω satisfies (9.27).
For each n ∈ N, we also define an even weight ωn by

ωn(t) :=

{
ω(t) if t ∈ [αn, π],
dn if t ∈ [0, αn].

Set

Kn :=

[
1

100αn

]
. (9.28)

Take a polynomial TKn of degree at most Kn. Since ωn(t) ≥ ω(t), t ∈ T, we have
‖TKnω‖C(T) ≤ ‖TKnωn‖C(T).

On the other hand,
‖TKnωn‖C(T) ≤ 2‖TKnω‖C(T). (9.29)

Indeed, let t0 ∈ T be a point where |TKnωn| attains its maximum. If |t0| ≥ αn, then (9.29)
is obvious. If |t0| < αn, then using Remez’s inequality and (9.28) we get

‖TKnωn‖C(T) = dn‖TKn‖C(T) ≤ dn exp(8αnKn) max
t∈T\[−αn,αn]

|TKn(t)|

< 2 max
t∈T\[−αn,αn]

|TKn(t)ω(t)| ≤ 2‖TKnω‖C(T). (9.30)
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Note that by definition of ωn we have

|ω′n(t)| ≤ C max
1≤k≤n−1

dk

αk
≤ C

dn−1

αn−1
, t ∈ T. (9.31)

Therefore, since dn ≤ |ωn(t)|,

|ω′n(t)| ≤ C
dn−1

dnαn−1
|ωn(t)|, t ∈ T. (9.32)

Moreover,

|ω′′n(t)| ≤ C max
1≤k≤n−1

dk

α2
k

≤ C
dn−1

α2
n−1

, t ∈ T. (9.33)

Since ωn ∈ C∞(T), by Jackson’s theorem there exists a trigonometric polyno-
mial QKn of degree at most Kn such that

‖ωn −QKn‖C(T) ≤ C
‖ω′n‖C(T)
Kn

and ‖ω′n −Q
′

Kn
‖C(T) ≤ C

‖ω′′n‖C(T)
Kn

.

By [DL, Theorem 2.7, p. 207], QKn can be taken as the best approximant of ωn in C(T).
Thus, (9.31) and (9.33) yield

‖ωn −QKn‖C(T) ≤ C
dn−1αn

αn−1
≤
dn

2
, (9.34)

‖ω′n −Q
′

Kn
‖C(T) ≤ C

dn−1αn

α2
n−1

≤ Kndn, (9.35)

for n large enough. Now by (9.34) we get

‖T ′Knω‖C(T) ≤ ‖T
′

Kn
ωn‖C(T) ≤ ‖T

′

Kn
QKn‖C(T) + ‖T

′

Kn
‖C(T)‖ωn −QKn‖C(T)

≤ ‖T ′KnQKn‖C(T) +
1
2dn‖T

′

Kn
‖C(T) ≤ ‖T

′

Kn
QKn‖C(T) +

1
2‖T

′

Kn
ωn‖C(T).

Therefore,
‖T ′Knω‖C(T) ≤ ‖T

′

Kn
ωn‖C(T) ≤ 2‖T ′KnQn‖C(T).

Similarly applying the inequality

‖T ′Knωn‖C(T) ≥ ‖T
′

Kn
QKn‖C(T) − ‖T

′

Kn
‖C(T)‖ωn −QKn‖C(T),

we get
‖TKnQKn‖C(T) ≤ 2‖TKnωn‖C(T). (9.36)

Thus,

‖T ′Knω‖C(T) ≤ 2‖T ′KnQKn‖C(T) ≤ 2‖(TKnQKn)
′
‖C(T) + 2‖TKnQ

′

Kn
‖C(T) =: I1 + I2.

By Bernstein’s inequality for polynomials and (9.34) we have

I1 ≤ CKn‖TKnQKn‖C(T) ≤ 4CKn‖TKnω‖C(T).
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Regarding I2, we first note that

I2 ≤ 2‖TKnω
′
n‖C(T) + 2‖TKn‖C(T)‖ω

′
n −Q

′

Kn
‖C(T) =: I21 + I22.

By (9.32) and (9.30) we get

I21 ≤ C
dn−1

dnαn−1
‖TKnωn‖C(T) < CKn‖TKnω‖C(T).

Moreover, (9.35) and (9.30) imply

I22 ≤ 2Kndn‖TKn‖C(T) ≤ 2Kn‖TKnωn‖C(T) ≤ 4Kn‖TKnω‖C(T)

for n large enough. Hence, for any n ∈ N,

‖T ′Knω‖C(T) ≤ CKn‖TKnω‖C(T). ut
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