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Abstract. We give conclusive answers to some questions about definability in analytic languages
that arose shortly after the work by Denef and van den Dries [DD] on p-adic subanalytic sets,
and we continue the study of non-archimedean fields with analytic structure of [LR3], [CLR1] and
[CL]. We show that the language LK consisting of the language of valued fields together with all
strictly convergent power series over a complete, rank one valued field K can be expanded, in a
definitional way, to a larger language corresponding to an analytic structure (with separated power
series) from [CL], hence inheriting all properties from loc. cit., including geometric properties for
the definable sets like certain forms of quantifier elimination. Our expansion comes from adding
specific, existentially definable functions, which are solutions of certain henselian systems of equa-
tions. Moreover, we show that, even when K is algebraically closed, one does not have quantifier
elimination in LK itself, and hence passing to expansions is unavoidable in general. We pursue
this study in the wider generality of extending non-separated power series rings to separated ones,
and give new examples, in particular of the analytic structure over Z[[t]] that can be interpreted
and understood now in all complete valued fields. In a separate direction, we show in rather large
generality that Weierstrass Preparation implies Weierstrass Division.

Keywords. Henselian valued fields, Tate algebras, strictly convergent power series, subanalytic
sets, quantifier elimination, analytic structure, separated power series, non-archimedean geometry,
Weierstrass Preparation and Division, Artin approximation, Weierstrass systems

1. Introduction

We study a new notion of strictly convergent analytic structure (consisting of strictly
convergent power series), linked to the notion of separated analytic structure of [CL]
(consisting of power series with two kinds of variables, cf. Remark 1.0.1). We use this
study to answer some natural questions that arose shortly after the work by Denef and
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van den Dries on p-adic subanalytic sets [DD]. In a separate direction, we show in a
rather large generality that Weierstrass Preparation implies Weierstrass Division, which
is the converse of the usual implication.

To explain these questions and their context, we first fix some notation. Let K be
a complete, rank one valued field (not necessarily algebraically closed). Let K◦ be the
valuation ring of K with maximal ideal K◦◦. For m ≥ 0, set Am := K◦〈ξ〉 = Tm(K)◦,
the ring of strictly convergent power series over K◦ in the variables ξ = (ξ1, . . . , ξm),
where a power series

∑
i∈Nm aiξ

i is called strictly convergent if its coefficients ai go to

zero as |i| → ∞, where we write ξ i for
∏m
j=1 ξ

ij
j . In any complete, rank one valued field

F ⊃ K , any power series f =
∑
i aiξ

i
∈ Am gives rise to a function from (F ◦)m to F

by evaluating the series. More generally, for L any valued field (not necessarily complete,
nor necessarily of rank one), a system σ = (σm)m≥0 of ring homomorphisms

σm : Am→ F((L◦)m, L◦),

with F((L◦)m, L◦) the ring of L◦-valued functions on (L◦)m, satisfying

(1) σ0(K
◦◦) ⊂ L◦◦,

(2) σm(ξi) = the i-th coordinate function on (K◦)m for i = 1, . . . , m, and
(3) σm+1 extends σm with the natural inclusions Am ↪→ Am+1 and (L◦)m ↪→ (L◦)m+1

:

ξ 7→ (ξ, 0) inducing F((L◦)m, L◦) ↪→ F((L◦)m+1, L◦)

is called an analytic {Am}m-structure on L.
Let LK be the valued field language (including the field inverse extended by zero

on zero and the division symbol | satisfied by a pair (x, y) if and only if y/x lies in
the valuation ring), together with a function symbol for each series in

⋃
mAm. For any

valued field L that is equipped with an analytic {Am}m∈N-structure (σm)m, the field L can
be turned into an LK -model with the valued field structure for the valued field language
and, for each function symbol f corresponding to a series f0 in Am, the interpretation
of f is given by σm(f0) on (L◦)m extended by zero to a function on Lm. An important
part of this paper is the study of LK -definable sets in henselian valued fields with analytic
{Am}m∈N-structure, although this is in fact just one of the examples that we give for our
more general concept of strictly convergent analytic structure, introduced in Section 3.6.
We have chosen in much of this paper to put the full field inverse in the language, instead
of restricted division, as in some previous papers. The two approaches are equivalent (see
Remark 3.2.12).

In several contexts (for example on p-adic fields), the definable sets are already well
understood, but the general case has remained rather mysterious for a long time. In [DD],
Denef and van den Dries obtained a natural quantifier elimination result for LQp -definable
subsets of Qnp, based on the semialgebraic quantifier elimination result for semialgebraic
sets by A. Macintyre. Precisely, joining the language of Macintyre with the language LQp
one obtains quantifier elimination for Qp. The existence of quantifier elimination in the
language of valued fields for algebraically closed valued fields (of any characteristic) led
to the question of whether a similar transition could be made from the semialgebraic sets
to the subanalytic ones, that is, for LK -definable subsets of Kn when the complete, rank
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one valued field K is algebraically closed. The problem is subtle. An elaborate attempt
to prove quantifier elimination in the language LK via a “flattening theorem” ultimately
failed—see [LR5] for an account of this history and for a counterexample to that strategy.
In Section 4 of this paper we show, among other things, that such a direct analogue to the
p-adic case is false: a complete, rank one, algebraically closed valued field K does not
have quantifier elimination in the language LK . Some additional existentially definable
separated functions are needed for quantifier elimination.

Recall that, by [LR2], there is a definitional expansion L[LR2]

K of LK such that Kalg
has quantifier elimination in L[LR2]

K . The expansion L[LR2]

K is obtained from LK by adding
function symbols for certain functions, LK -existentially definable on Kalg that give the
“Weierstrass data” for regular power series. In this paper we extend this positive result of
[LR2] in several directions.

Generally, for not necessarily algebraically closed K and a henselian valued field L
with analytic {Am}m-structure as above, we can still control the geometry of the LK -
definable sets, in the sense that we give a definitional expansion L′K of LK that corre-
sponds to a separated analytic structure as defined in [CL]. In particular, if L is assumed
to have characteristic zero (and arbitrary residual characteristic), then in a Denef–Pas style
expansion L′′K of L′K (or just an expansion with RVN -sorts, see below), as in [CL], one
still gets elimination of valued field quantifiers in the language L′′K . The expansion L′K is
obtained from LK by adding existentially definable functions, which are solutions of cer-
tain henselian systems of equations. The proof that Weierstrass Preparation and Division
hold is reminiscent of the proof of Artin Approximation.

The simpler nature of the p-adic situation is not unique. Indeed, the case that K
and L are discretely valued, complete and of characteristic zero, and when σ0 maps a
uniformizer of K◦ to a uniformizer of L◦ is already well understood and is treated by
[CLR1, Theorem 4.2] and [CL, Example 4.4(1)]. The general study of LK -definable sets
is more subtle and is captured by Theorem 3.4.1.

Another direction in which we extend the results from [LR2] is by starting from rings
other than the Am above, for example, instead of Am we can take the ring Bm of strictly
convergent power series over Z[[t]] in the variables ξ = (ξ1, . . . , ξm), where a power
series is called strictly convergent if its coefficients t-adically go to zero; an analytic
{Bm}-structure (σm)m on a valued field L is axiomatized as above, where (1) now reads
σ0(tZ[[t]]) ⊂ L◦◦. Also such analytic {Bm}-structures are related to the ones of [CL] by
definitional expansions (see Section 3.5).

More generally, we define a concept of strictly convergent analytic structure in Sec-
tion 3.6, which is a general concept for systems of (non-separated) power series that can
be extended, by adding certain power series, to a separated analytic Weierstrass system
as in [CL], and the above systems {Am} and {Bm} turn out to be examples by Theorems
3.4.1 and 3.5.1. The (separated) power series that one adds to the non-separated ones are
solutions to certain systems of henselian analytic equations, and correspond naturally to
functions whose graph is existentially definable (see Section 3.2).

Remark 1.0.1 (Separated versus non-separated power series). In the present context of
rings of power series and the analytic interpretations they give on henselian valued fields,
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often there are one or two different kinds of variables, which play different roles. When
two different kinds of variables occur, we speak of separated power series, usually de-
noting one kind of variables by ξi and the other kind by ρj with indices i, j . When only
one kind of variables occurs, one may speak of non-separated power series, or of strictly
convergent power series. For a separated power series f in ξ and ρ, in an interpretation in
a henselian valued field L, the variables ξ will run over L◦, while the variables ρ will run
over L◦◦ (namely, the ξi over the valuation ring and the ρj over the maximal ideal). In this
paper, the starting point will be power series in one kind of variables, ξ -variables, and,
gradually, separated power series will appear, in ξ and ρ. Indeed, the solutions of certain
systems of equations may have power series solutions whose natural domain of conver-
gence will be products of the valuation rings with the maximal ideals of the valued fields
under consideration (see Section 3.2). Finally, note that “strictly convergent” in this paper
often means non-separated, and does not designate convergence in the classical sense.

Previous attempts to understand LK -definable sets include a quantifier elimination for al-
gebraically closed valued fields in a (much) smaller language including only overconver-
gent power series by Schoutens [S1]–[S3], with a correction by F. Martin [Mar1], [Mar2]
and in a much larger language by the second author. This larger language of [LL1] con-
sisted of rings of separated power series. The study of definable sets was continued in e.g.
[LL2], [LR1], [LR2], [Ce1]–[Ce5], [BMS], [Ri]. Dimension theory for sets definable in
the larger (separated) language was developed in [LR6] and a more complete dimension
theory has been developed in Martin’s thesis [Mar1]. A desire for uniformity and for an-
alytic Ax–Kochen principles as in [vdD] (to change the residue field characteristic) led
to the notion of a henselian field with analytic A-structure, developed in [vdD], [DHM],
[LR3], [CLR1], [CL]. In [CL] we gave a general theory of henselian valued fields with
separated analytic structure, including a cell decomposition for definable sets and elim-
ination of valued field quantifiers for such fields of characteristic zero. Those results in
particular apply to the separated analytic structures discussed in this paper.

The development in [CL] was carried out in a quite general context—the ring A over
which the Weierstrass system was defined was allowed to be quite general. The most
subtle part of the development was in connection with the strong noetherian property
(SNP). We showed in [CL] that an SNP strong enough for our purposes followed from
a very weak form of the SNP by Weierstrass Division. Indeed, the weak form is easily
true in the basic examples. This development put Weierstrass Division (or Weierstrass
Preparation—see Section 2 below) at the center of the theory. In the Appendix to this
paper we further elucidate the SNP and discuss the relationship among various forms of
the SNP.

In [CL] we also gave a cursory treatment of fields with strictly convergent analytic
structure. We considered only two cases: (1) the field is discretely valued and there is a
designated uniformizing parameter, in which case no “separated” power series are needed;
and (2) the strictly convergent analytic structure is the strictly convergent part of a sep-
arated analytic structure. (See Remark A.1.13 for more details.) The natural question of
when a strictly convergent analytic structure on a henselian field could be extended to a
separated analytic structure in a canonical way by adjoining only existentially definable
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functions was left unaddressed. This is the question we deal with in Section 3. As men-
tioned above, the results of Section 4 show that such an expansion is necessary in order
to obtain quantifier elimination results.

We begin our paper by showing that Weierstrass Preparation implies Weierstrass Di-
vision in a rather large generality. This is the converse of the generally known implication.

2. Weierstrass Preparation implies Weierstrass Division

In many contexts, it is well-known that the Weierstrass Division Theorem implies the
Weierstrass Preparation Theorem. In this section, we show that the converse implication
holds too, under very mild conditions. Perhaps this observation has been made elsewhere,
but we have not seen it before.

2.1. The strictly convergent case

Let A be a commutative ring and let I ⊂ A be an ideal with I 6= A.
We consider a family {Am} of rings for m ≥ 0 with A0 = A, and for 1 ≤ m ≤ m′,

A[ξ1, . . . , ξm] ⊂ Am ⊂ Am′ ⊂ A[[ξ1, . . . , ξm′ ]].

For f =
∑
aµξ

µ
∈ Am, let f̃ :=

∑
ãµξ

µ
∈ Ãm, where ˜ : A → A/I is the residue

map, and Ãm := {f̃ : f ∈ Am} ⊂ Ã[[ξ ]]. We assume the rings Am are closed under
permutation of the variables and satisfy

(∗) For all m and m′ with 0 ≤ m ≤ m′ and with ξ = (ξ1, . . . , ξm) and ξ ′′ =
(ξm+1, . . . , ξm′), and for all f in Am′ , say f =

∑
µ∈Nm f µ(ξ)(ξ

′′)µ, the f µ are
in Am.

(∗∗) Ãm = Ã[ξ ].

The notion of “regularity” in a given degree d ≥ 0 is the following.

Definition 2.1.1 (Strictly convergent regular). Let d ≥ 0 and m ≥ 0 be integers. A
power series f ∈ Am, say f =

∑
i∈Nm aiξ

i , is called regular in ξm of degree d when the
power series f̃ ∈ Ã[ξ ] is a monic polynomial in ξm of degree d in Ãm−1[ξm].

Proposition 2.1.2. If the family of rings {Am} satisfies the Weierstrass Preparation Theo-
rem, then the family also satisfies the corresponding Weierstrass Division Theorem. More
precisely, suppose that:

(WP) For all d,m ≥ 0 and all f ∈ Am regular in ξm of degree d (Definition 2.1.1), there
exist unique unit u ∈ Am and ri ∈ Am−1 such that f = u · (ξdm +

∑d−1
i=0 riξ

i
m).

Then:

(WD) For all d,m ≥ 0, all f ∈ Am regular in ξm of degree d, and all g ∈ Am, there
exist unique q ∈ Am and r1, . . . , rd−1 ∈ Am−1 such that

g = q · f + rd−1ξ
d−1
m + · · · + r0.

Proof. Below. ut
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Note that since the rings Am are closed under permutation of the variables, from Weier-
strass Preparation for f regular in ξm, Weierstrass Preparation for f regular in other ξi
follows.

2.2. The separated case

Let B be a commutative ring and let I ⊂ B be an ideal with I 6= B. We consider a family
{Bm,n} of rings for m, n ≥ 0 with B0,0 = B, and for m ≤ m′ and n ≤ n′,

B[ξ1, . . . , ξm, ρ1, . . . , ρn] ⊂ Bm,n ⊂ Bm′,n′ ⊂ B[[ξ1, . . . , ξm′ , ρ1, . . . , ρn′ ]].

We define the residue map˜modulo I as above. In particular, B̃ = B/I . We assume that
the rings Bm,n are closed under permutation of the ξi and under permutation of the ρj ,
and satisfy the following very mild conditions:

(∗) For all m and m′ with 0 ≤ m ≤ m′ and with ξ = (ξ1, . . . , ξm) and ξ ′′ =
(ξm+1, . . . , ξm′), and all n and n′ with 0 ≤ n ≤ n′ and with ρ = (ρ1, . . . , ρn)

and ρ′′ = (ρn+1, . . . , ρn′), and for all f in Bm′,n′ , say

f =
∑

µ,ν∈Nm′−m+n′−n
f µν(ξ, ρ)(ξ

′′)µ(ρ′′)ν,

the f µ,ν are in Bm,n.
(∗∗) B̃[ξ, ρ] ⊂ B̃m,n ⊂ B̃[ξ ][[ρ]].

Definition 2.2.1 (Separated regular). (i) f is called regular in ξm of degree d when in
B̃[ξ ], f̃ mod (ρ1, . . . , ρn) is a monic polynomial in ξm of degree d.

(ii) f is called regular in ρn of degree d when, in B̃[ξ ][[ρ]],

f̃ ≡ ρdn mod (ρ1, . . . , ρn−1, ρ
d+1
n ).

Proposition 2.2.2. If the family {Bm,n} of rings satisfies the Weierstrass Preparation The-
orems in both kinds of variables, then the family also satisfies the corresponding Weier-
strass Division Theorems in both kinds of variables. More precisely, suppose that:

(WP) For all non-negative integersm, n, d , and all f ∈ Bm,n which are regular of degree
d in ξm, resp. in ρn, there exist unique unit u ∈ Bm,n and ri ∈ Bm−1,n such that
f = u · (ξdm+

∑d−1
i=0 riξ

i
m), resp. there exist unique unit u ∈ Bm,n and ri ∈ Bm,n−1

such that f = u · (ρdn +
∑d−1
i=0 riρ

i
n).

Then:

(WD) For all non-negative integers m, n, d , all f ∈ Bm,n which are regular of degree
d in ξm, resp. in ρn, and for all g ∈ Bm,n, there are unique q ∈ Bm,n and
r1, . . . , rd−1 ∈ Bm−1,n such that

g = q · f + rd−1ξ
d−1
m + · · · + r1ξm + r0,

resp. there are unique q ∈ Bm,n and r1, . . . , rd−1 ∈ Bm,n−1 such that

g = q · f + rd−1ρ
d−1
n + · · · + r1ρn + r0.
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Note that since the rings Am,n are closed under permutation of the ξ variables and the ρ
variables, from Weierstrass Preparation for f regular in ξm or ρn, Weierstrass Preparation
for f regular in the other ξi or ρj follows.

The polynomial case of A a field (and I = {0}) is included in Definition 2.1.1. Also
included in Definition 2.1.1 and Proposition 2.1.2 are the rings of strictly convergent and
overconvergent power series. Included in Definition 2.2.1 and Proposition 2.2.2 are the
rings of separated power series. Also included in this case (with m = 0) are the classical
cases of formal power series over a field or complete valuation ring, algebraic power se-
ries over a field or a complete valuation ring, or germs of convergent power series over
for example R or C. (Note that the proof of Proposition 2.1.2 in the case m = 0 stays
valid—in that case—i.e. Weierstrass Division in B0,n follows from Weierstrass Prepara-
tion in B0,n+1). In each of these examples it is well-known that Weierstrass Preparation
is an easy consequence of Weierstrass Division, i.e. if the rings satisfy Weierstrass Divi-
sion they also satisfy Weierstrass Preparation. The above propositions treat the converse
implication.

Proof of Proposition 2.2.2. Let f (ξ, ρ) ∈ Bm,n be regular in ξm of degree s. By Weier-
strass Preparation we may write

f (ξ, ρ) = U(ξ, ρ) · [ξ sm + as−1(ξ
′, ρ)ξ s−1

m + · · · + a0(ξ
′, ρ)]

= U(ξ, ρ) · P(ξ, ρ),

say, where ξ ′ = (ξ1, . . . , ξm−1) and ai ∈ Bm−1,n for all i. Let g ∈ Bm,n. Then

P(ξ, ρ)+ ρn+1g(ξ, ρ) ∈ Bm,n+1

is also regular in ξm of degree s. Hence, by Weierstrass Preparation (in Bm,n+1),

P(ξ, ρ)+ ρn+1g(ξ, ρ) = U(ξ, ρ, ρn+1) · P(ξ, ρ, ρn+1)

where P(ξ, ρ, ρn+1) is a (Weierstrass) polynomial of degree s in ξm. Let

P(ξ, ρ, ρn+1) = R0(ξ, ρ)+ ρn+1R1(ξ, ρ)+ ρ
2
n+1R2(ξ, ρ)+ · · · .

Then R0(ξ, ρ) = P(ξ, ρ), U(ξ, ρ, 0) = 1 and each Ri(ξ, ρ) is a polynomial in ξm of
degree ≤ s. We can rewrite this equation as

U(ξ, ρ, ρn+1)P(ξ, ρ, ρn+1)

= P(ξ, ρ)+ ρn+1

[
∂U
∂ρn+1

∣∣∣∣
ρn+1=0

P(ξ, ρ)+ R1(ξ, ρ)

]
+ ρ2

n+1[· · · ] + · · · .

Hence, equating the coefficients of ρn+1, we see that

g(ξ, ρ) = Q(ξ, ρ) · P(ξ, ρ)+ R1(ξ, ρ),

where Q(ξ, ρ) = ∂U
∂ρn+1

∣∣
ρn+1=0. Hence we have obtained the Weierstrass data for the

division of g by P from that corresponding to Weierstrass Preparation for P + ρn+1g.
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Then g(ξ, ρ) = Q(ξ, ρ)U(ξ, ρ)−1
·U(ξ, ρ)P (ξ, ρ)+R1(ξ, ρ), and since f = UP , this

gives the Weierstrass data for the division of g by f .
The case that f is regular in ρn is similar. ut

Proof of Proposition 2.1.2. In the case of Proposition 2.1.2 where we only have one sort
of variable we can proceed as follows. In the special case that A is the valuation ring of a
non-trivially valued field instead of P(ξ, ρ)+ρn+1g(ξ, ρ)we consider P(ξ)+εξm+1g(ξ)

for some ε ∈ A with 0 < |ε| < 1. This series is regular in the appropriate sense in ξm, and
we can proceed exactly as in the proof of Proposition 2.2.2. In the general case we can do
some Euclidean division of g by f to write g = q ′ · f + g′ for q ′ a polynomial in ξm and
g′ such that g̃′ is a polynomial in ξ of degree< s. Then we need only find the Weierstrass
data of the division of g′ by f , and we can do that as in the proof of Proposition 2.2.2
considering f + ξm+1g

′ which is regular in ξm of degree s. ut

3. Strictly convergent Weierstrass systems and their properties

In this section we show how to extend a strictly convergent pre-Weierstrass system to a
separated pre-Weierstrass system in a uniformly, existentially definable way, by adjoining
certain “henselian” power series. Under mild additional conditions this extension leads
to a separated Weierstrass system. In particular, that is the case for the basic examples
(Theorems 3.4.1 and 3.5.1). In Subsection 3.6 we discuss the general case. The results
generalize and extend the partial results about strictly convergent Weierstrass systems
given in [CL] (see Remark A.1.13).

3.1. Definitions

By a valued field we mean a field together with a valuation map to a (possibly trivial)
ordered abelian group (not necessarily of rank one) satisfying the usual non-archimedean
properties. We denote the valuation ring of a valued field F by F ◦, the maximal ideal of
F ◦ by F ◦◦ and the residue field F ◦/F ◦◦ by F̃ . By a henselian field we mean a valued field
for which Hensel’s Lemma holds on F ◦. For a henselian field F we let Falg denote the
algebraic closure of F ; the valuation on F has a unique extension to a valuation on Falg.
Unless otherwise stated we write ξ = (ξ1, . . . , ξm) when m is clear from the context.

Let A be a commutative ring with unit, and let I be an ideal of A with I 6= A. Let
Ã := A/I and write :̃ A→ Ã for the projection map. We also write ˜ for the residue
map A[[ξ ]] → Ã[[ξ ]] which sends

∑
µ aµξ

µ to
∑
µ ãµξ

µ, and (Am)̃ for the image
of Am under this map when Am ⊂ A[[ξ ]].

Definition 3.1.1 (Strictly convergent regular). A power series f ∈ A[[ξ ]] is called reg-
ular in ξm of degree d when f̃ ∈ Ã[[ξ ]] is a monic polynomial in ξm of degree d.

Definition 3.1.2 (System). A collection A = {Am}m∈N of A-algebras Am satisfying, for
all m ≥ 0:

(i) A0 = A,

(ii) Am is a subalgebra of A[[ξ1, . . . , ξm]] which is closed under permutation of the
variables,



Strictly convergent analytic structures 115

(iii) Am[ξm+1] ⊂ Am+1,
(iv) (Am)̃ is the polynomial ring Ã[ξ1, . . . , ξm],

is called a system, or an (A, I)-system, if we want to emphasize the dependence on A
and I .

Definition 3.1.3 (Analytic structure). Let A = {Am} be a system as in Definition 3.1.2,
and letK be a valued field. A strictly convergent analytic A-structure onK is a collection
σ = {σm}m∈N such that, for each m ≥ 0, σm is a homomorphism from Am to the ring of
K◦-valued functions on (K◦)m satisfying:

(1) I ⊂ σ−1
0 (K◦◦),

(2) σm(ξi) = the i-th coordinate function on (K◦)m, i = 1, . . . , m, and
(3) σm+1 extends σm where we identify in the obvious way functions on (K◦)m with

functions on (K◦)m+1 that do not depend on the last coordinate.

Definition 3.1.4 (Pre-Weierstrass system). A system A = {Am}m∈N of A-algebras Am
satisfying, for all m ≤ m′:

(v) if f ∈ Am′ , say f =
∑
µ f µ(ξ)(ξ

′′)µ, then the f µ are in Am, where ξ ′′ =
(ξm+1, . . . , ξm′) and ξ = (ξ1, . . . , ξm),

(vi) (Weierstrass Preparation) if f ∈ Am is regular in ξm of degree d , then there
exist unique unit u ∈ Am and ri ∈ Am−1 such that f = u · (ξdm+

∑d−1
i=0 riξ

i
m),

(viiWNP) (Weak noetherian property) if f =
∑
µ aµξ

µ
∈ Am there is a finite set J ⊂

Nm, and for each µ ∈ J a power series gµ ∈ Am with g̃µ = 0 such that

f =
∑
µ∈J

aµξ
µ(1+ gµ),

(viii) the ideal {a ∈ A : σ0(a) = 0 for all analytic structures σ = (σm)} equals the
zero ideal,

is called a strictly convergent pre-Weierstrass system, or an (A, I)-strictly convergent pre-
Weierstrass system, if we want to emphasize the dependence on A and I .

Let us fix, until Subsection 3.4, a strictly convergent pre-Weierstrass system {Am}m.
Later on, a stronger form of (viiWNP) will play a role.

Remark 3.1.5. (a) By the results of Section 2, from (vi) we also see that Weierstrass
Division holds in the Am:

If f ∈ Am is regular in ξm of degree d, and g ∈ Am, there are unique q ∈ Am and
r1, . . . , rd−1 ∈ Am−1 such that g = q · f + rd−1ξ

d−1
m + · · · + r0. Furthermore, if g̃ = 0

then q̃ = r̃0 = · · · = r̃d−1 = 0.

(b) It follows from Weierstrass Preparation that if f ∈ Am satisfies f̃ = 1 (i.e. f is
regular of degree 0) then f is a unit.

(c) From (viiWNP), it follows for f ∈ Am with f̃ = 0 that f ∈ I ·Am. The above con-
ditions (i)–(vi) do not impose much structure on “small” power series (e.g. those in I ·Am),
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as they do not provide a mechanism for dividing by a biggest coefficient and bringing such
a power series to the “top” level where conditions (iv) and (vi) apply. Condition (viiWNP)
(and even more so, Definition A.1.6 below) imposes structure on “small” power series in
the Am and provides such a mechanism.

Lemma-Definition 3.1.6. Let A be a pre-Weierstrass system and let K be a henselian
field with analytic A-structure σ . Let m ≥ 0 be an integer. We associate with f ∈ Am the
power series

Sσ (f ) :=
∑
µ

σ(aµ)ξ
µ in K◦[[ξ ]].

Then the map S is an A-algebra homomorphism. Moreover, if Sσ (f ) = 0 then f σ = 0.
Hence, the homomorphism σm factors through Aσm, the image of S. On Aσm we can define
the Gauss norm as follows, with f =

∑
µ aµξ

µ and where J is as in (viiWNP):

‖Sσ (f )‖ := max{|σ(aµ)| : µ ∈ J }.

Proof. That Sσ (f ) = 0 implies f σ = 0 follows immediately from condition (viiWNP).
The rest is clear. ut

Remark 3.1.7. (a) If the valuation on K is non-trivial, then one also has the converse
implication that f σ = 0 implies Sσ (f ) = 0. This also follows from condition (viiWNP).

(b) Weierstrass Division for the rings Am implies that composition of tuples of power
series inAm corresponds again to power series inAm, as explained in [CL, Remark 4.5.2].

3.2. Extension by henselian functions

We sometimes wish to consider some of the variables to be of the first kind (namely to
indicate that their natural domain is the valuation ring), and some of the second kind
(namely to indicate that their intended domain is the maximal ideal)—cf. Remark 1.0.1.
We will use ρ = (ρ1, . . . , ρn) to denote variables of the second kind, and keep ξ =
(ξ1, . . . , ξm) for variables of the first kind. Variables of the second kind typically arise
in making a power series regular, or guaranteeing that the existence of a solution to an
equation, or system of equations, is implied by Hensel’s Lemma.

We will sometimes write Am,n for Am+n to indicate that the last n variables will
be considered to be of the second kind and run over the maximal ideal; this change in
notation will be convenient to gradually introduce genuinely new rings of separated power
series.

This is crucial in our use of the henselian functions h6 defined below. These h6
are solutions of henselian systems (also defined below), and correspond to unique power
series over A, which may be new, that is, not lie in any of the Am.

For example, the power series 1 + y − ρ1 · y
2 is regular of degree 1 in y (Definition

2.2.1(i) or Definition 3.3.2(i)), and the equation 1+y−ρ1 ·y
2
= 0 defines y = y(ρ) as a

henselian function of (indeed, as a henselian power series in) ρ1 since ρ1 is considered to
run over the maximal ideal, but the equation 1+ y − ξ1 · y

2 only defines y as a henselian
function of ξ1 when |ξ1| < 1, and does not define y as a power series in ξ1; indeed not
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even as a function of ξ1 when |ξ1| = 1. We will later enrich the Am by adding power
series like y(ρ), and get a richer system, genuinely in the two kinds of variables.

Basic henselian functions are defined in Definition 3.2.10. A more general kind of
henselian witnessing functions than the basic one will be defined using systems of equa-
tions of the following form.

Definition 3.2.1 (Systems of henselian equations). Let η = (η1, . . . , ηM) and λ =
(λ1, . . . , λN ). A system, 6, of henselian equations for (η, λ) over (ξ, ρ) is a system of
the form

0 = ηi − b0,i(ξ, ρ)− b1,i(ξ, ρ, η, λ), i = 1, . . . ,M,
0 = λj − c0,j (ξ, ρ)− c1,j (ξ, ρ, η, λ), j = 1, . . . , N,

(3.1)

where
b0,i ∈ A[ξ, ρ], b1,i ∈ (I, ρ, λ)Am+M,n+N ,

c0,j ∈ (ρ)A[ξ, ρ], c1,j ∈ (I, ρ, λ
2)Am+M,n+N .

(3.2)

Here λ2 is shorthand for {λiλj : i, j = 1, . . . , N}. By the ideal I6 of the system 6 is
meant the ideal of Am+M,n+N generated by the right hand sides of the equations in 6.
When 6 is a set of polynomial equations in (ξ, ρ, η, λ) we call 6 a polynomial henselian
system. We will often write a henselian system in the equivalent form:

ηi = b0,i(ξ, ρ)+ b1,i(ξ, ρ, η, λ), i = 1, . . . ,M,
λj = c0,j (ξ, ρ)+ c1,j (ξ, ρ, η, λ), j = 1, . . . , N.

(3.3)

Definition 3.2.2. Let g be in Am+n+s for some integer s and consider power series hi in
Am[[ρ1, . . . , ρn]] for i = 1, . . . , s. Then we call h = (hi)si=1 a power series solution of
the equation g = 0 when for each integer k > 0 there exists a tuple pk of polynomials
in the variables ρ of degree < k with coefficients in Am such that h ≡ pk mod (ρ)k and
g(ξ, ρ, pk(ξ, ρ)) vanishes modulo (ρ)k , where the composition is as in Remark 3.1.7(b).
We write g(ξ, ρ, h(ξ, ρ)) = 0 to denote that h is a power series solution for g.

The next lemma shows that any system 6 of henselian equations has a unique power
series solution in Am[[ρ]].

Lemma 3.2.3. Let 6 be a system of henselian equations as in Definition 3.2.1. Then
6 has a unique power series solution, namely, there exist unique power series hi in
Am[[ρ1, . . . , ρn]] for i = 1, . . . ,M + N such that g(ξ, ρ, h(ξ, ρ)) = 0 for each g in
I6 with h = (hi)i . We denote the tuple (hi)i by h6 .

Proof. We prove this by induction on n, with notation from 3.2.1. For the induction step,
assume n > 0. We proceed exactly as in the proof of Lemma 3.3.3 below. Let k > 0
and write ηi =

∑k
`=0 ηi`ρ

`
n and λj =

∑k
`=0 λj`ρ

`
n (where the ηi`, λj` are new vari-

ables). Substitute this into the system 6 and do Weierstrass Division by ρkn to obtain a
henselian system that, by induction, determines the ηi` and λj` as power series in ξ and
ρ1, . . . , ρn−1. See the proof of Lemma 3.3.3 for details. Since k is arbitrary, this deter-
mines η and λ as power series.



118 Raf Cluckers, Leonard Lipshitz

We must still treat the case n = 0, m arbitrary. In this case the ηi, λj are defined by a
system 6 of the form

ηi = b0,i + b1,i(η, λ), i = 1, . . . , m+M,
λj = c0,j + c1,j (η, λ), j = 1, . . . , N,

(3.4)

where
b0,i ∈ Am, b1,i ∈ (I, λ)Am+M,N ,

c0,j ∈ IAm, c1,j ∈ (I, λ
2)Am+M,N .

(3.5)

If we allow the c0,j to be in Am+M with c̃0,j = 0, may assume that the c1,j all have 0 as
constant (i.e. λ-free) term, and, after an Am+M -linear change of variables among the λj
with Jacobian a unit in Am+M , we may assume that the c1,j have no linear terms in λ.
Below we will see that the equations

λj = c0,j + c1,j (η, λ), j = 1, . . . , N, (3.6)

with c0,j ∈ Am+M , c̃0,j = 0 and c1,j ∈ (λ2)Am+M,N , have a unique solution with
λj = λj (η) ∈ Am+M and λ̃j (η) = 0. Substituting into the equations

ηi = b0,i + b1,i(η, λ(η)) i = 1, . . . , m+M,

yields a system of equations for the ηi , all regular of degree 1, which we can solve suc-
cessively by (strictly convergent) Weierstrass Preparation and Division, to get the solution
with the ηi in Am. Substituting into the solution for the λj determines these as elements
of I · Am.

Finally, it remains to show that the equations (3.6) with c0,j ∈ Am+M satisfying
c̃0,j = 0 and c1,j ∈ (λ

2)Am+M,N have a unique solution in Am+M with λ̃ = 0. In (3.6)
we make the substitution

λj =
∑
`

c0,`Uj,`

where the Uj,` are new variables. This yields the equations∑
`

c0,`Uj,` = c0,j +
∑
α,β

c0,αc0,βU0,αU0,βGjαβ(η, U)

for j = 1, . . . , N . In place of the first equation (i.e. j = 1) consider the system of
equations

c0,1U1,1 = c0,j + c0,jH1,1(U),

c0,2U1,2 = c0,2H1,2(U),

· · ·

c0,NU1,N = c0,NH1,N (U),

(3.7)
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where in c0,1H1,1 we have collected all the terms of
∑
α,β c0,αc0,βU0,αU0,βGjαβ(η, U)

that have a factor c0,1U0,1, in c0,2H1,2 all the remaining terms that have a factor c0,2U0,2,
and so on. Write down the analogous systems for j = 2, . . . , N . Now consider the system

U1,1 = 1+H1,1(U),

U1,2 = H1,2(U),

· · ·

U1,N = H1,N (U),

(3.8)

and the analogous equations for j = 2, . . . , N . In this system all the Hα,β ∈ Am+M+N2

satisfy H̃α,β = 0, and hence the system can be solved for theUα,β (as elements ofAm+M )
by successive (strictly convergent) Weierstrass Preparation and Division. This proves the
existence of a solution λ(η) ∈ ANm+M to (3.6). For uniqueness substitute λj = λj +

µj , j = 1, . . . , N , in (3.6), where the µj are new variables. We must show that the
resulting equations (in the µj ), which are of the form

µj =
∑
α

dαµα +
∑
α,β

eα,βµαµβ (3.9)

where the dα are in (λ)Am+M,N and the eα,β are in Am+M,N , have only the zero solution.
By (viiWNP) and (viii) (this is the only place where we use (viii)) it is sufficient to prove
this in Aσm+M,N for each analytic structure σ . But in Aσm+M we have a Gauss norm by
3.1.6 and it is easy to see that a non-zero solution to these equations is impossible. Indeed,
suppose that we had a non-zero solution µ(η). Look at the j th equation where µj (η) has
biggest Gauss norm. The Gauss norm of the right hand side would be smaller than that of
the left hand side. This completes the proof of the lemma. ut

Definition 3.2.4. Let h be the power series solution of a system6 of henselian equations
as in Lemma 3.2.3 and let g be any power series in Am+M,n+N . Write g as g0+ g1 where
g0 is in A[ξ, ρ] and g1 in (I, ρ, λ)Am+M,n+N . Consider the system 6′ for (η, ηM+1, λ)

over (ξ, ρ) consisting of 6 and of the additional equation

0 = ηM+1 − g0 − g1.

Then the M + 1-th entry hM+1 of the unique power series solution h6′ = (hi)
M+1+N
i=1

of 6′ is called the composition of g with the power series tuple (ξ, ρ, h6) and is denoted
by g(ξ, ρ, h6(ξ, ρ)).

The proof of Lemma 3.2.3 actually establishes the following version of the implicit func-
tion theorem in the power series rings Am,n = Am+n.

Lemma 3.2.5. Let A be a strictly convergent pre-Weierstrass system.

(i) Suppose that F1(ξ, η), . . . , FN (ξ, η) ∈ Am+M and that y1, . . . , yN ∈ Am satisfy
Fi(ξ, y)̃ = 0 and J (ξ, y) is a unit in Am, where J =

∣∣( ∂Fi
∂ηj

)
i,j=1,...,N

∣∣. Then there is

a unique y ∈ ANm such that F(ξ, y) = 0 and ỹ = ỹ.
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(ii) Suppose that F1(ξ, ρ, η, λ), . . . , FN (ξ, ρ, η, λ) ∈ Am+M,n+N and that polynomi-
als y1, . . . , yM+N ∈ Am,n satisfy Fi(ξ, ρ, y)̃ ≡ 0 mod (ρ) and J (ξ, ρ, y)̃ ≡
1 mod (ρ), where

J =

∣∣∣∣( ∂Fi

∂ηj∂λk

)
j=1,...,M, k=1,...,N

i=1,...,M+N

∣∣∣∣.
Then there is a unique y ∈ Am[[ρ]]M+N such that ỹ ≡ ỹ mod (ρ) and F(ξ, y) = 0,
where the latter means that y is a solution in the sense of Lemma 3.2.3. In fact (by
Proposition 3.2.7 below) there is a polynomial henselian system 6′ and a power
series G ∈ AM+Nm+n+M+N such that y(ξ, ρ) = G(ξ, ρ, h6′).

Definition 3.2.6. By Lemma 3.2.3 and Definition 3.2.4 we can define the following sub-
algebras of A[[ξ, ρ]]:

AHm,n := {g(ξ, ρ, h6(ξ, ρ)) : g ∈ Am+M,n+N , 6 a henselian system},

AH
′

m,n := {g(ξ, ρ, h6(ξ, ρ)) : g ∈ Am+M,n+N , 6 a polynomial henselian system}.

Set AH
:= {AHm,n}m,n.

Proposition 3.2.7. Let A be a strictly convergent pre-Weierstrass system. Then
AHm,n = A

H ′

m,n. Indeed, every element f ofAHm,n is of the form f (ξ, ρ) = g(ξ, ρ, h6(ξ, ρ))
where g ∈ Am′,n′ for some m′, n′ ∈ N, and h6 is the solution to a polynomial henselian
system.

Proof. Let
ηi = b0,i(ξ, ρ)+ b1,i(ξ, ρ, η, λ), i = 1, . . . ,M,
λj = c0,j (ξ, ρ)+ c1,j (ξ, ρ, η, λ), j = 1, . . . , N,

be a henselian system. We will obtain the solution as the composition of functions in A
and the solution to a polynomial henselian system. We can find polynomials b1,i, c1,j

such that all the coefficients of b1,i − b1,i, c1,j − c1,j are in I · A, i.e. (b1,i − b1,i )̃ =

(c1,j − c1,j )̃ = 0, or equivalently, using condition (viiWNP), b1,i − b1,i, c1,j − c1,j ∈

I · Am+M+n+N . Let y = (y1, . . . , yM , z1, . . . , zN ) be the solution to the polynomial
henselian system

ηi = b0,i(ξ, ρ)+ b1,i(ξ, ρ, η, λ), i = 1, . . . ,M,
λj = c0,j (ξ, ρ)+ c1,j (ξ, ρ, η, λ), j = 1, . . . , N,

so the yi, zj are terms of LD,H
′

A (see Definition 3.2.11 below). Make the change of vari-
ables η = y + ζ and λ = z + ζ ′. Proceed exactly as in the last stage of the proof of
Lemma 3.2.3 (i.e. use Lemma 3.2.5), writing ζi =

∑
α εαUi,α and ζ ′j =

∑
α εαU

′

j,α to
obtain a system of equations for the Ui,α, U ′j,α that can be solved by (strictly convergent)
Weierstrass Division. ut

Lemma-Definition 3.2.8 (Henselian functions). Let σ be an analytic A-structure on a
henselian valued fieldK . For any henselian system6 and any ξ ∈ (K◦)m and ρ∈(K◦◦)n,
there exist unique values η ∈ (K◦)M and λ ∈ (K◦◦)N such that f σ (ξ, ρ, η, λ) = 0 for all
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f ∈ I6; we denote this tuple (η, λ) by kσ6(ξ, ρ). Moreover, the graph of the function kσ6
on (K◦)m× (K◦◦)N is quantifier-free definable in LA by a formula which is independent
of σ .

Proof. For a polynomial system 6 this is clear by the usual form of Hensel’s Lemma for
systems of polynomial equations with Jacobian of norm 1—see Lemma 3.2.13(i) below.
For a general 6 the lemma now follows from the observation that the argument of Propo-
sition 3.2.7 applies also in any field with analytic A-structure, and hence applies also to
the kσ6 . ut

Remark 3.2.9. For a henselian system 6 we have defined h6 as a power series and k6
as a (new) function symbol (or term) whose interpretation kσ6 in a field with analytic A-
structure is defined in Lemma-Definition 3.2.8. Later we will extend strictly convergent
analytic structures σ to separated analytic structures by defining hσ6 = kσ6 . This will
require an additional assumption (“goodness”) on A (Definition 3.3.5).

The following henselian witnessing functions are much more basic than the ones associ-
ated to a system of equations in 3.2.8. Nevertheless, as we will see in Lemma 3.2.13(ii),
they can in fact replace h6 .

Definition 3.2.10 (Basic henselian functions). ForK a henselian field, hn : Kn+1
→ K

is the function that associates to (a0, . . . , an, b) ∈ K
◦ the unique zero, c, of the poly-

nomial p(x) := anx
n
+ an−1x

n−1
+ · · · + a0 that satisfies |c − b| < 1 if |p(b)| < 1

and |p′(b)| = 1. (Let hn output 0 in all other cases.) The graphs of these functions are
obviously quantifier-free definable in L.

Definition 3.2.11 (Languages). For L a language containing the language of valued
fields L := (+, ·,−1 , 0, 1, |), let LD be L with the field inverse replaced by the binary
function symbol D for restricted division (or two such symbols in the separated case).
Further, let LA be L with constants for the elements of A adjoined, let LA be L with
function symbols for the elements of

⋃
mAm adjoined, and let Lh be L with function

symbols for the basic henselian functions hn adjoined. Recall that | is a binary symbol
on a valued ring (or valued field) such that x | y holds if and only if x is non-zero and
the valuation of x is less than or equal to the valuation of y. When we use a language
including the field inverse, the intended interpretations are valued fields F , and when we
replace the field inverse by restricted division, the intended interpretations are valuation
rings F ◦.

In the next remark we comment on the different kinds of division, and how the results
relate.

Remark 3.2.12. In some papers (e.g. [LL2], [LR2], [LR3], and also in Theorems 4.1
and 4.2 below) we have worked in the languages LDA(K) and LDAsep(K)

, in which we omit
the function for field inverse and include symbols for restricted division, and in others
(e.g. [CL]) we have worked in the language LA(K) of the Introduction, in which we have
a symbol for field inverse. We remark that K◦alg has quantifier elimination in the lan-
guage LDA(K) (or LDAH (K)

or LDAsep(K)
) if and only if Kalg has quantifier elimination in
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the language LA(K) (or LAH (K) or LAsep(K)). We can cover (Kalg)
n by polydiscs of the

form {x :
∧
i(|xi | �i 1)} where the �i are in {≤,≥}, and we can map such a polydisc

to (K◦alg)
n by xi 7→ xi if �i is ≤ and xi 7→ (xi)

−1 if �i is ≥. For F any of A(K),
AH (K) or Asep(K), it is clear that any LDF -quantifier-free definable subset of (K◦alg)

n

is LF -quantifier-free definable. For the converse we can easily show by induction on the
number, k, of occurrences of symbols from

⋃
Am,n in the formula, that an LF -quantifier-

free definable subset of (K◦alg)
n is indeed LDF -quantifier-free definable. (By the same in-

duction one can show that if an LF -term on a quantifier-free LDF -definable subset X
of (K◦alg)

n is always ≤ 1 in size, then it is equivalent to an LDF -term. Actually it is suffi-
cient to just establish this piecewise on a quantifier-free LDF -definable cover of X, but see
the proof of Lemma 3.2.13 for combining terms defined piecewise into one term.)

Statement (ii) of the following proposition may seem surprising but comes in part from
the fact that piecewise definitions of terms on certain pieces can be combined into a single
term.

Lemma 3.2.13. (i) IfK is a henselian field, thenK◦ satisfies the Implicit Function The-
orem: Given a system Pi(y1, . . . , yn) = 0, i = 1, . . . , n, of n polynomial equations
in n unknowns over K◦, and y = (y1, . . . , yn) ∈ (K

◦)n such that the Pi(y) are in
K◦◦ and the Jacobian

∣∣( ∂Pi
∂yj

)
i,j=1,...,n

∣∣(y) at the point y is a unit, there is a unique
ỹ ∈ (K◦)n with y − ỹ ∈ (K◦◦)n satisfying P(ỹ) = 0.

(ii) Let τ be a term of LDAH . There is a term τ ′ of LD,hA such that for every field K with
analytic A-structure, say via σ , we have τσ = τ ′σ .

(iii) Let τ be a term of LAH . There is a term τ ′ of LhA such that for every field K with
analytic A-structure, say via σ , we have τσ = τ ′σ .

Proof. (i) See [Kuh1, Theorem 24] or [Kuh2, Theorem 9.13].
(ii) By Lemma 3.2.7 and Lemma-Definition 3.2.8, we need only prove this for

terms k6 defined by polynomial henselian systems 6. Let 6 be given. It follows from
3.2.8 by a standard compactness argument that there are finitely many terms τi(ξ, ρ)
of LD,hA such that in each henselian fieldK with analytic A-structure and for any (ξ, ρ) ∈
(K◦)m × (K◦◦)n at least one of the τi satisfies 6 at (ξ, ρ), that is, τi(ξ, ρ) = kσ6(ξ, ρ).
Let ϕi(ξ, ρ) be the quantifier-free formula that says that τi(ξ, ρ) satisfies 6 and for
j < i, τj (ξ, ρ) does not satisfy 6. Observe, by induction on formulas, that for every
quantifier-free LD,hA -formula ϕ there is an LD,hA -term χϕ that gives the characteristic func-
tion of ϕ. (The characteristic function of x 6= 0 is D(x, x) and the characteristic function
of 0 6= |x| ≤ |y| is D(D(x, y),D(x, y)).) Now take τ ′ :=

∑
χϕi · τi .

(iii) The proof is similar to (ii). ut

3.3. Weierstrass Preparation for {AHm,n}

In this section we will show that the AHm,n satisfy separated Weierstrass Preparation (and
thus Division).
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Our first main result of this paper can be stated as follows with terminology from [CL]
which is recalled in the Appendix to this paper. The proof of the theorem boils down to
the Weierstrass Preparation statement provided by Proposition 3.3.3 below.

Theorem 3.3.1. Let A be a strictly convergent (A, I)-pre-Weierstrass system (Definition
3.1.4). Then AH

:= {AHm,n} is an (A, I)-separated pre-Weierstrass system.

Proof. We need to verify the properties (1) up to (6) from Definition A.1.1. Each of
properties (1)–(4) is either immediate or easy. To prove (6) it is sufficient, by the results
of Section 2, to prove Weierstrass Preparation, which we do in Proposition 3.3.3. Property
(5) is an immediate consequence of Weierstrass Division in the form of (6). ut

Let us recall the definition of regularity in the case of separated power series.

Definition 3.3.2 (Separated regular). With the above notation where A is a ring and
I ⊂ A is a proper ideal, let f ∈ A[[ξ1, . . . , ξm, ρ1, . . . , ρn]], and let J be the ideal

J :=
{∑
µ,ν

aµ,νξ
µρν ∈ A[[ξ, ρ]] : aµ,ν ∈ I

}
of A[[ξ, ρ]].

(i) f is called regular in ξm of degree d when f is congruent in A[[ξ, ρ]] to a monic
polynomial in ξm of degree d modulo the ideal B1 ⊂ A[[ξ, ρ]] where

B1 := J + (ρ)A[[ξ, ρ]].

(ii) f is called regular in ρn of degree d when f is congruent in A[[ξ, ρ]] to ρdn modulo
the ideal B2 ⊂ A[[ξ, ρ]] where

B2 := J + (ρ1, . . . , ρn−1, ρ
d+1
n )A[[ξ, ρ]].

Proposition 3.3.3. (i) Let f (ξ, ρ) ∈ AHm,n be regular in ξm of degree s. Let ξ ′ =
(ξ1, . . . , ξm−1). There are unique f0, . . . , fs−1 ∈ A

H
m−1,n and unit U ∈ AHm,n such

that
f = U ·

(
ξ sm + fs−1(ξ

′, ρ)ξ sm + · · · + f1(ξ
′, ρ)ξm + f0(ξ

′, ρ)
)
.

(ii) Let f (ξ, ρ) ∈ AHm,n be regular in ρn of degree s. Let ρ′ = (ρ1, . . . , ρn−1). There are
unique f0, . . . , fs−1 ∈ (I, ρ1, . . . , ρn−1)A

H
m,n−1 and unit U ∈ AHm,n such that

f = U ·
(
ρsn + fs−1(ξ, ρ

′)ρsn + · · · + f1(ξ, ρ
′)ρn + f0(ξ, ρ

′)
)
.

Proof. We prove (i); the proof of (ii) is similar. Let f (ξ, ρ) ∈ AHm,n be regular in ξm of
degree s. By Proposition 3.2.7, we may write

f = F0(ξ, ρ)+ F1(ξ, ρ, g1, . . . , gM , h1, . . . , hN ) (3.10)

where F0 ∈ A[ξ, ρ], F1(ξ, ρ, η, λ) ∈ (I, ρ, λ)Am+M,n+N , and the gi, hj are defined by
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a henselian system 6(η, λ):

ηi = b0,i(ξ, ρ)+ b1,i(ξ, ρ, η, λ), i = 1, . . . ,M,
λj = c0,j (ξ, ρ)+ c1,j (ξ, ρ, η, λ), j = 1, . . . , N,

(3.11)

where

b0,i ∈ A[ξ, ρ], b1,i ∈ (I, ρ, λ)Am+M,n+N ,

c0,j ∈ (ρ)A[ξ, ρ], c1,j ∈ (I, ρ, λ
2)Am+M,n+N .

Let ξ ′ = (ξ1, . . . , ξm−1).
We follow the outline of the proof of [Ar]. Let a0, . . . , as−1 be new variables and let

a := ξ sm + as−1ξ
s−1
m + · · · + a0.

Let g∗i,k, h
∗

j,k be new variables, i = 1, . . . ,M , j = 1, . . . , N , k = 0, . . . , s − 1, and let

g∗i :=

s−1∑
k=0

g∗i,kξ
j
m and h∗j :=

s−1∑
k=0

h∗j,kξ
j
m.

We seek a henselian system that will determine a0, . . . , as−1 as the Weierstrass data
of f , and the g∗i,k (respectively h∗j,k) as the Weierstrass data of the remainder on dividing gi
(respectively hj ) by f .

In (3.10), setting f = 0 and replacing the gi by g∗i and the hj by h∗j (i.e. working
modulo a) we get

0 = F0 + F1(ξ
′, ρ, g∗1 , . . . , g

∗

M , h
∗

1, . . . , h
∗

N ). (3.12)

By strictly convergent Weierstrass Division by a, which is (strictly convergent) regular
in ξm of degree s, we get equations

0 =
s−1∑
k=0

Hk(ξ
′, ρ, {ak}, {g

∗

ik}, {h
∗

jk})ξ
j
m, (3.13)

where we have written {ak} to denote the variables a0, . . . , as−1, and so on. From the fact
that f (and hence also F0 = F0(ξ, ρ)) is regular of degree s in ξm, and that modulo a
we have ξ sm = −as−1ξ

s−1
m − · · · − a0, we see directly, equating the coefficients of ξ im

for i = 0, . . . , s − 1 to 0, that (3.13) can be rewritten as a henselian system determining
a0, . . . , as−1 in terms of the other variables ξ ′, ρ, {g∗ik}, {h

∗

jk}.
Let 6(η, λ) be the henselian system determining the gi and hj . Divide the equations

6(ξ, ρ, g∗1 , . . . , g
∗

M , h
∗

1, . . . , h
∗

N ) (i.e. the system obtained from 6(η, λ) by replacing ηi
by
∑
k g
∗

ikξ
k
m and λj by

∑
k h
∗

jkξ
k
m) by a to get a system of the form

g∗i =

s−1∑
k=0

Gik(ξ
′, ρ, {ak}, {g

∗

ik}, {h
∗

jk})ξ
k
m, i = 1, . . . ,M,

h∗j =

s−1∑
k=0

Hjk(ξ
′, ρ, {ak}, {g

∗

ik}, {h
∗

jk})ξ
k
m, j = 1, . . . , N.

(3.14)



Strictly convergent analytic structures 125

Equating the coefficients of like powers of ξm yields a henselian system 6∗ of the form

g∗ik = Gik(ξ
′, ρ, {ak}, {g

∗

ik}, {h
∗

jk}), i = 1, . . . ,M,

h∗jk = Hjk(ξ
′, ρ, {ak}, {g

∗

ik}, {h
∗

jk}), j = 1, . . . , N.
(3.15)

Equations (3.15) and the above described henselian system for a0, . . . , as−1 to-
gether form the required henselian system for the gik and hjk , the Weierstrass data of f
and the remainders on dividing the gi and hj by f . Lemma 3.2.5(ii) shows that these
two henselian systems can be combined in one system determining all the variables
a0, . . . , as−1, g

∗

ik and h∗jk .
Finally, we must show that U ∈ AHm,n. Let 2i,2′j be new variables, and write

η0 := 20 · a,

ηi := 2i · a +
∑
k

g∗ikξ
k
m,

λj := 2
′

j · a +
∑
k

h∗jkξ
k
m.

Making this substitution in (3.10) and (3.11), doing Weierstrass Division by a and using
(3.15) and (3.16) yields equations of the form

a ·20 = a ·G0(ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

a ·2i = a ·Gi(ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

a ·2′j = a ·G
′

j (ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

where 2∗ = (2i,2′j ). The required system of henselian equations for 20 and 2∗ over
the other variables is then

20 = G0(ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

2i = Gi(ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

2′j = G
′

j (ξ, ρ, {2
∗
}, {ak}, {g

∗

ik}, {h
∗

jk}),

and we can again use Lemma 3.2.5(ii) to combine the systems. ut

Remark 3.3.4. It follows from Weierstrass Division that if f ∈ AHm,n and f (ξ ′, 0, ρ) = 0
then there is a g ∈ AHm,n such that f = ξm · g (and similarly with respect to the other
variables).

With a suitable definition of “regular”, the analogue of Proposition 3.3.3 holds for the
terms k6 . (Of course uniqueness holds only at the level of kσ6 .)

In order to be able to extend any A-structure on any fieldK to an AH -structure onK ,
we introduce the following condition of goodness.

Definition 3.3.5. Let A be a strictly convergent pre-Weierstrass system. We call A a good
pre-Weierstrass system if for every system 6 of henselian equations, if F ∈ Am+M,n+N
and F ◦ h6 = 0 (as a power series) then F ∈ I6 · (Am+M,n+N )1+(I,ρ,λ).
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Lemma 3.3.6. Let A be a good strictly convergent pre-Weierstrass system, and let σ
be an analytic A-structure on a henselian valued field K . Then there exists a unique
separated AH -structure σH on K which extends σ (and which will often be also denoted
by σ). More precisely, if a series f ∈ AHm,n is a composition f = g(ξ, ρ, h6(ξ, ρ)) as in
Definition 3.2.4, then σH (f ) is the function from (K◦)m+M × (K◦◦)n+N to K given by

F σ ◦ kσ6,

with notation from Lemma-Definition 3.2.8.

Proof. Lemma-Definition 3.2.8 and Definition 3.3.5 guarantee that the separated AH -
structure σH on K is well defined, that is, if g ◦ h6 = 0 then there is a unit u ∈
Am+M,n+N 1+(I,ρ,λ) such that u · g ∈ I6 and hence gσ ◦ kσ6 = 0. ut

The following result will be useful in Sections 3.4 and 3.5.

Proposition 3.3.7 (Criterion). Assume that a strictly convergent pre-Weierstrass system
A = {Am} has the property that there is a separated Weierstrass system B = {Bm,n} such
that for all (m, n) we have Am,n ⊂ Bm,n and Bm,n is faithfully flat over (Am,n)1+(ρ)Am+n .
Then

(i) A is a good pre-Weierstrass system, and
(ii) AH is a separated Weierstrass system.

Proof. (i) From [Mat, Theorem 7.5] it follows that I6 · (Am,n)1+(ρ)Am,n =

(I6 · Bm+M,n+N ) ∩ (Am,n)1+(ρ)Am,n . Hence if F ◦ h6 = 0 in Bm,n then F ∈

I6 · (Am,n)1+(ρ)Am,n .
For (ii) observe that property (vii)′ of Definition A.2.1 (from which property (vii)

follows) can be expressed as a linear equation over AHm,n which has a solution in Bm,n.
We can capture the condition gµν ∈ B◦m,n by writing gµν =

∑
i cigµνi +

∑
j ρjg

′

µνj for
suitable ci ∈ I and gµνi, g′µνj ∈ Bm,n. Let f = F ◦ h6 and f µν = Fµν ◦ h6µν with
F,Fµν ∈ Ap,q for suitable p, q. Let 6′ be the conjunction of the henselian systems 6
and the 6µν . Then the linear equation

F =
∑

(µ,ν)∈J

Fµν(ξ
′′)µ(ρ′′)ν

(
1+

∑
i

cigµνi +
∑
j

ρjg
′

µνj

)
mod (I6′) (3.16)

has coefficients from Ap,q and has a solution in Bp,q , for suitable (p, q), and hence in
(Ap,q)1+(ρ∗)Ap,q . Substituting h6′ for the appropriate variables gives us (vii)′. ut

Lemma 3.2.8 yields the following corollary.

Corollary 3.3.8. Let A be a good pre-Weierstrass system and let f ∈
⋃
m,nA

H
m,n. Let σ

be an analytic A-structure on a henselian valued field K . Write σ for the AH -structure
on K given by Lemma 3.3.6. The graph of f σ is existentially LA-definable. Moreover,
the existential formula defining the graph of f σ can be taken to be independent of the
analytic structure σ .
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Now we come to two other main results in the following two subsections, which
cover and extend a number of examples considered in previous papers [vdD], [LR2],
[LR3], [CLR1], [CL]. In Subsection 3.6, we introduce a new general concept of analytic
structures and provide some further examples, complementing Theorems 3.4.1 and 3.5.1.
In Section 4 we show that the extension of A to AH is necessary for quantifier elimination.

3.4. The case of K a complete field and Am = Tm(K)◦

In this subsection we discuss the “classical” example. Let K be a complete, rank one
valued field (not necessarily algebraically closed) and let Am := K◦〈ξ〉 = Tm(K)◦, the
ring of strictly convergent power series over K◦ and let A := {Am}. This is certainly a
pre-Weierstrass system. Any complete, rank one field F ⊃ K has analytic A-structure.
In this case, A = K◦ and I = K◦◦.

Theorem 3.4.1. With the above notation, A is a good pre-Weierstrass system and AH
:=

{AHm,n} is a separated Weierstrass system.

Proof. The proof is immediate from Proposition 3.3.7, by taking Bm,n = Sm,n(K)
◦,

and using [R, Lemma 3.1] which establishes that Sm,n(K)◦ is faithfully flat over
(T ◦m+n)1+(ρ)T ◦m+n . ut

In [LR2] we showed that for K rank one and complete there is a separated Weierstrass
system E extending A all of whose additional functions are uniformly existentially de-
finable in every algebraically closed field with analytic A-structure. We did not make
explicit what the additional functions are, nor did the uniform definitions work in non-
algebraically closed fields with analytic A-structure.

In this section we do not assume thatK is algebraically closed, nor do we restrict con-
sideration to algebraically closed fields with analytic A-structure. In this larger generality
we obtain quantifier elimination in the forms of Theorems 3.4.2 and 3.4.4, and we make
explicit what the additional existentially definable functions are, namely they are defined
by terms of LAH (or even LhA), on all fields with analytic A-structure, and the graphs
of the functions h6 are indeed quantifier-free definable in all such fields. We also give a
result that links definable functions to terms in Theorem 3.4.5. (The corresponding results
in a more abstract framework are bundled in Theorem 3.6.2 below.) Similar results hold
with LD in place of L (see Remark 3.2.12).

In the following result, LAH is the valued field language L with function symbols for
the elements of the AHm,n adjoined for all m and n.

Theorem 3.4.2. Let L be any algebraically closed valued field with strictly convergent
analytic A-structure. ThenL allows quantifier elimination in both LAH and LhA (and thus
quantifier simplification, i.e. every formula is equivalent to an existential formula, in LA).
Moreover, the theory of algebraically closed valued fields with strictly convergent analytic
A-structure eliminates quantifiers in both the languages LAH and LhA (both considered
as the intended definitional expansions of LA).

Proof. Follows from Theorem 3.4.1, Lemma 3.2.13(iii), and [CL, Theorem 4.5.15]
for AH , amended by Remark A.1.8. ut
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Theorem 3.4.3. (i) (characteristic 0) Let x = (x1, . . . , xn) be several variables and y
one variable. Suppose that a formula ϕ(x, y) ∈ LA defines y as a function of x in all
algebraically closed fields of characteristic 0 with analytic A-structure. Then there
is a term τ of LhA such that L |= ϕ(x, y) ↔ y = τ(x) for all algebraically closed
valued fields L of characteristic 0 with analytic A-structure.

(ii) (characteristic p 6= 0) In characteristic p > 0 let L′A be the language LA with the
p-th root function (·)1/p adjoined. In characteristic p the analogous result to (i) holds
with L′hA in place of LhA. Namely, for any LA-definable function f for the theory T
of algebraically closed valued fields of characteristic p with analytic A-structure,
defined on a Cartesian power of the valued field, there exists an L′hA-term t such that
T proves that t and f are the same function.

Proof. Follows from Proposition A.1.11 and Lemma 3.2.13(iii). ut

Similarly, but invoking [CL, Theorem 6.3.7] instead of [CL, Theorem 4.5.15], we find a
more general but more involved quantifier elimination result, using leading terms sorts.
Let LHen,A (resp. LHen,AH ) be as in [CL, Section 6.2], namely the multi-sorted language
which has the field language and function symbols for all f inAm and allm (resp. inAHm,n
for all m, n) on the valued field sort, the maps rvN for each integer N > 0 and the full
induced structure on the sorts RVN . Recall that on a valued fieldL, RVN (L) is the quotient
of multiplicative semigroups L/(1+ nL◦◦), and rvN : L→ RVN (L) the projection.

Theorem 3.4.4. The theory of characteristic zero henselian valued fields with strictly
convergent analytic A-structure eliminates the valued field quantifiers in both the lan-
guages LHen,AH and LhHen,A (both considered as the intended definitional expansions
of LHen,A).

We can also formulate the following result on the term structure of definable functions.
To this end, let L∗Hen,A (resp. L∗Hen,AH ) be the language LHen,A (resp. LHen,AH ) together
with all the functions hm,n as in [CL, Definition 6.1.7]. Note that these functions hm,n are
multi-sorted variants of the basic henselian functions hn of Definition 3.2.10.

Theorem 3.4.5 (Term structure). The theory of characteristic zero henselian valued
fields with strictly convergent analytic A-structure has the following property, uniformly
in its models K . Let X ⊂ Kn be definable and let f : X → K be an LHen,A-definable
function. Then there exist an LHen,A-definable function g : X → RVN (K)N for some
N > 0 and an L∗Hen,A-term t such that

f (x) = t (x, g(x)) for all x ∈ X. (3.17)

Proof. By Theorem [CL, 6.3.8], we can find g and a term t in L∗Hen,AH such that (3.17)
holds. By compactness and using characteristic functions as at the end of the proof of
Lemma 3.2.13, we see that such g and t can be taken independently of the choice of the
modelK . By Lemma 3.2.13(iii), we can take t to be in (L∗Hen,A)

h, using the same g. Now,
if we change g we can rephrase the hn in terms of the hm,n to conclude the proof. ut
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Remark 3.4.6. Note that the elimination of valued field quantifiers of Theorem 3.4.4 also
holds for L∗Hen,A instead of LhHen,A, by the argument at the end of the proof of Theorem
3.4.5.

Because henselian functions, reciprocals andD-functions are the unique solutions of their
defining equations, with the above notation, we have the following corollary. The result
analogous to (i) implicit in [LR2] gave only a finite-to-one projection. In [LR6] we proved
the result analogous to (ii) for LAsep -subanalytic sets.

Corollary 3.4.7. (i) Every LA-subanalytic set (i.e. a subset of Kn
alg defined by an

LA-formula) is the one-to-one projection of an LA-semianalytic set (i.e. a subset
of Kn+N

alg defined by a quantifier-free LA-formula which does not involve (·)−1).
(ii) Every LA-subanalytic set is the finite disjoint union of LA-subanalytic manifolds.

Remark 3.4.8. There are several different definitions of (rigid) semianalytic sets (cf.
[LL2], [LR1], [Mar1]). The above definition is perhaps the most restrictive, and best
called “globally affinoid (or strictly convergent) semianalytic”.

3.5. The case when A is a noetherian ring, complete in its I -adic topology

We now treat the case that A is a noetherian ring which is complete in its I -adic topology
(i.e. A = Â = lim

←−n
A/In, so A is also I -adically separated). This case complements the

study of [CLR1].
For example, one could take A = Z[[t]] and

Am = Z[[t]]〈ξ1, . . . , ξm〉 = Z[[t]][ξ1, . . . , ξm] ,̂

the t-adic completion of Z[[t]][ξ1, . . . , ξm]. Then A := {Am} is a strictly convergent
pre-Weierstrass system. The fields Qp,Cp for p prime, and all ultraproducts of these
fields, have analytic A-structure via the natural maps t 7→ p. The fields Fp((t)) for p
prime, and all ultraproducts of these fields, have analytic A-structure via the natural maps
p 7→ 0. We could consider all of these to be fields with analytic structure satisfying the
side conditions that for all p either p = 0 or |p| = 1 or p is prime, and that t is prime.
This situation is discussed in Appendix A.4.

There are many more ways that a henselian field can have analytic A-structure. For
example, the field C((t1/∞)) of Puiseux series has analytic A-structure via t 7→ t . As
another example, let C∗p be a non-principal ultrapower of Cp and consider the mapping σ
that sends t to [p, p1/2, p1/3, . . . ], so in C∗p the element σ(t) is an “infinitesimal” power
of p. This σ gives an analytic A-structure on C∗p. Alternatively, one could map t to a finite
but irrational power of p.

Theorem 3.5.1 below explains, via [CL], aspects of the geometry and model theory of
definable sets in all these analytic structures uniformly.

Note that Theorem 3.4.1 above is not covered by Theorem 3.5.1, except when K is
discretely valued.
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Theorem 3.5.1. LetA be a noetherian ring, I an ideal ofA with I 6= A, and assume that
A is complete in its I -adic topology. Let Am := A[ξ1, . . . , ξm]̂be the I -adic completion
of A[ξ1, . . . , ξm]. Then A is a good pre-Weierstrass System and AH

:= {AHm,n} is a
separated Weierstrass system.

Proof. We showed in [CLR1, Lemma 2.9] that if we define

Bm,n := A〈ξ〉[[ρ]] := A[ξ1, . . . , ξm]̂[[ρ1, . . . , ρn]]

and B := {Bm,n}, then B is a separated Weierstrass system. Indeed, we showed that these
rings satisfy condition (7)′ of Definition A.2.1. Hence the result follows from Proposi-
tion 3.3.7 and the fact that Bm,n is faithfully flat over (Am,n)1+(I,ρ)Am,n . Since the (ρ)-
adic completion of (Am,n)1+(I,ρ)Am,n is Bm,n, faithful flatness follows from [Mat, Theo-
rem 8.14]. ut

We have the following quantifier elimination result, as in Section 3.4.

Theorem 3.5.2. Theorems 3.4.2–3.4.5 go through in literally the same way with A as in
this section instead of that in Section 3.4.

3.6. A general concept and examples

Motivated by Theorems 3.4.1 and 3.5.1, we introduce the following terminology, of which
these theorems in fact provide examples. See the appendix for a summary and elaboration
of some of the definitions of [CL].

Definition 3.6.1. We call a strictly convergent pre-Weierstrass system A = {Am} (Defi-
nitions 3.1.4 and 3.3.5) a strictly convergent Weierstrass system if A is good and AH is a
separated (A, I)-Weierstrass system (as defined in [CL] and also in Definitions A.1.1 and
A.1.4 in the Appendix below).

By the very nature of Theorems 3.4.1 and 3.5.1, any analytic structure A as in these
theorems is a strictly convergent Weierstrass system (as opposed to just a pre-Weierstrass
system).

Before giving further examples we outline an alternative proof for Theorem 3.4.1. Let
Am = Tm(K)

◦ and f = F ◦ h6 ∈ AHm,n ⊂ Sm,n(K). Let |c| = ‖f ‖ be the Gauss norm
of f in Sm,n(K). We allow the possibility that c = 0. Let F and h6 be defined over
the B-ring E. If |c| < 1 then F̃ ∈ Ĩ6 · K̃[ξ ][[ρ]], and hence by Krull’s Theorem [Mat,
Theorem 8.10], also F̃ ∈ Ĩ6 · K̃[ξ ][ρ]. By the usual induction on the levels of E we
eventually find c ∈ K◦ and G such that f = c · G ◦ h6 and F − c · G ∈ I6 . The case
c = 0 gives “goodness”, and the case c 6= 0 reduces proving (vii) or (vii)′ to the special
case of ‖f ‖ = 1. That case can be dealt with by induction on m + n, by breaking up f
into pieces exactly as in [CL, Remark 4.1.11(ii)].

Theorem 3.6.2. Theorems 3.4.2–3.4.5 go through in literally the same way with A any
strictly convergent Weierstrass system as in Definition 3.6.1 instead of the more concrete
structure of Section 3.4.
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Using Theorem 3.5.1, it is easy to write down many examples of strictly convergent
Weierstrass systems other than those discussed at the beginning of the previous subsec-
tions. Here are some further examples of a different kind.

(a) (cf. [CL, Section 4.4(10)]) Let K be complete, rank one and let A = {Am} where
Am = K◦〈〈ξ1, . . . , ξm〉〉, the ring of overconvergent power series in (ξ1, . . . , ξm).
Then A = {Am} is a good pre-Weierstrass system and AH

:= {AHm,n} is a sepa-
rated Weierstrass system. The proofs of these statements are similar to the proof of
Theorem 3.4.1.

(b) (cf. [CL, Section 4.4(4)]) Let F be a maximally complete field and let Am = Tm(B)
be the full ring of strictly convergent power series as defined in loc. cit. Then A =
{Am} is a good pre-Weierstrass system and AH

:= {AHm,n} is a separated Weierstrass
system. The proof is similar to the alternative proof of Theorem 3.4.1 outlined above,
except that transfinite induction on the support of E is used.

(c) (cf. [CL, Section 4.4(7)]) Let L be a field and let

Am =
⋃
i

L[[x1, . . . , xi]]〈ξ1, . . . , ξm〉

where L[[x1, . . . , xi]]〈ξ1, . . . , ξm〉 is the (x1, . . . , xi)-adic completion of the ring
L[[x1, . . . , xi]][ξ1, . . . , ξm]. Then A = {Am} is a good pre-Weierstrass system and
AH
:= {AHm,n} is a separated Weierstrass system. This is immediate from Theorem

3.5.1, since Am is the direct limit of rings covered by that theorem.

Several results for general strictly convergent Weierstrass systems now follow from [CL]
such as quantifier elimination results similar to Theorem 3.5.2, and the cell decomposition
and Jacobian property of [CL, Theorem 6.3.7].

Remark 3.6.3. We also observe that the above methods allow one to give a sharpen-
ing of the results of [CL, Section 4.6]. Let K be a rank one henselian field, and let
A(K)alg,m,n be the K-algebra of all power series in (ξ1, . . . , ξm, ρ1, . . . , ρn) that are de-
fined by polynomial henselian systems over (K◦,K◦◦). Let Aalg,str := {A(K)alg,m,0}m
and Aalg,sep := {A(K)alg,m,n}m,n. Then

Proposition 3.6.4. Aalg,str is the smallest (K◦,K◦◦)-strictly convergent Weierstrass sys-
tem and Aalg,sep is the smallest (K◦,K◦◦)-separated Weierstrass system.

4. The counterexample

The quantifier elimination of Denef and van den Dries [DD] for K = Qp in the strictly
convergent analytic language LDA (see definitions below) raised the obvious question of
whether a similar result held for Cp, the completion of the algebraic closure of Qp (or in
general for complete, rank one, algebraically closed valued fields) since there is quantifier
elimination for algebraically closed valued fields in the algebraic language. In [S1], [S2]
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Schoutens gave such a quantifier elimination in the more restrictive language with func-
tion symbols for the functions defined by overconvergent power series, and developed the
corresponding theory of strongly subanalytic sets. In [LL2] a quantifier elimination was
given in a language (LDAsep

) with function symbols for a larger class of functions—those
defined by the so called separated power series. This led to the theory of rigid subanalytic
sets which was developed further in [LR1]–[LR4], [LR6], [CLR1], [CL], and [Ce1]–
[Ce5]. An elaborate proof of quantifier elimination in the strictly convergent language,
based on a “Flattening Theorem”, was published, but the proof was not correct. (See
[LR5] for the history and a counterexample to the “Flattening Theorem”.) Theorem 4.3
shows that there is no quantifier elimination for complete, rank one, algebraically closed
fields of characteristic zero in the strictly convergent language LDA (see definition below)
with A = {Tm(K)◦}. Fortunately, this negative result does not lead to wild behavior, as
there are Theorem 3.4.1 and the quantifier elimination results of Theorem 4.2.

The results of [LR2] and, in a more explicit form, Theorem 3.4.1 of this paper show
that for K a henselian field, Kalg has quantifier simplification in the strictly convergent
language LA. We show in this section that there is no quantifier elimination in the strictly
convergent language LDA, and hence neither in the language denoted by LK in the in-
troduction. To be precise: Let K be a complete, rank one, non-trivially valued field of
characteristic 0, and let Kalg be the algebraic closure of K (we do not exclude the case
that K is itself algebraically closed). The assumption that K has characteristic 0 is not
essential, but it simplifies the arguments in a number of places. For a valued field F let
F ◦ := {x ∈ F : |x| ≤ 1} and F ◦◦ := {x ∈ F : |x| < 1}. Let Tm(K)◦ be the ring of strictly
convergent power series in m variables with coefficients from K◦, and let Sm,n(K)◦ be
the ring of separated power series inm variables of the first kind and n of the second kind
(cf. [LL2], [LR1]) with coefficients from K◦. Moreover

Am := Tm(K)
◦,

A := {Am}m∈N,
Am,n := Sm,n(K)

◦,

Asep := {Am,n}m,n∈N.

For F a collection of functions we let LF denote the language of valued fields augmented
with symbols for the functions in F , and let LDF denote LF with the field inverse replaced
by a symbol D for restricted division adjoined (or two such symbols in the separated
case).

Before proceeding we recall Remark 3.2.12 about the equivalence of the languages
with full field inverse and languages with only restricted division.

We know

Theorem 4.1 ([LL2]). K◦alg has quantifier elimination in LDAsep
.

And, as a special instance of Theorem 3.4.2, we have

Theorem 4.2. K◦alg has quantifier simplification in LA and quantifier elimination in both

LDAH and LD,hA .

The counterexample to the question described in the introduction is provided by
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Theorem 4.3. K◦alg does not have quantifier elimination in LDA. Indeed, there is a strictly
convergent subanalytic setX⊂(K◦alg)

3 (i.e. a set described by an existential LDA-formula)
that is not described by any quantifier-free LDA-formula (i.e. is not LDA-semianalytic).

The rest of this section is devoted to the proof of Theorem 4.3.
LetK∗alg be a non-principal ultrapower ofKalg, and let p∞ = {a ∈ (K∗alg)

◦
: |a| < 1/n

for all n ∈ N} be the ideal of infinitesimals in (K∗alg)
◦. Let K1 = Q((K

∗

alg)
◦/p∞) be the

field of fractions of (K∗alg)
◦/p∞. By the results of [LR3] and [CL] we know that the fields

Kalg,K∗alg andK1 all are algebraically closed valued fields with analytic A-structure, and
also analytic Asep-structure. Hence these fields are elementarily equivalent in each of the
languages LA, LDA, LD,hA , and LDAsep

. Fix p ∈ K with 0 < |p| < 1, and let

f (ζ ) :=

∞∑
n=1

pnζ n!,

so f is strictly convergent, but definitely not overconvergent. Let X ⊂ (K◦1 )
3 be defined

by the formula

(∃z)[|ρ| < 1 ∧ ξ1 + ξ2z = f (z) ∧ ρz2
− z+ 1 = 0 ∧ |z| ≤ 1] (4.1)

and for ρ ∈ K◦1 let X(ρ) := {(ρ, ξ1, ξ2) : (ρ, ξ1, ξ2) ∈ X}.
For |ρ| < 1 let z1 = z1(ρ) be the zero of ρζ 2

− ζ +1 with |z| ≤ 1, and let z2 = z2(ρ)

be the other zero (which is of size |1/ρ|). We shall show that there are ρ, ξ1, ξ2 ∈ K
◦

1
such that X is not described by a quantifier-free LDA-formula in any K-rational domain
U ⊂ (K◦1 )

3 with (ρ, ξ1, ξ2) ∈ U . This will show that X is not LDA-semianalytic. Observe
that X is an Lsep- (indeed LhA- ) analytic variety in the open disc |ρ| < 1.

Let ρ ∈ K1 satisfy 1 − 1/n < |ρ| < 1 for all n ∈ N, and define ξ1, ξ2 ∈ K
◦

1 by the
equations

ξ1 + ξ2z1(ρ) = f (z1(ρ)), ξ1 + ξ2z2(ρ) = f (z2(ρ)). (4.2)

Remark 4.4. Note that f (z2(ρ)) as an element of K1 or K∗alg is not defined by the ana-
lytic A-structure since |z2| > 1. However, f (z2(ρ)) is well defined as an element of K◦1
by the completeness of K1. Furthermore, for each n ∈ N there are ξ (n)1 = ξ

(n)
1 (ρ) and

ξ
(n)
2 = ξ

(n)
2 (ρ) ∈ (1/ρn!)K[ρ] such that if ξ (n)i := ξ

(n)
i (ρ) then |ξ i − ξ

(n)

i | < |p
n
|.

Solve equations (4.2) for ξ1, ξ2 using z1 + z2 = z1z2 = 1/ρ. Indeed, ξ1, ξ2 are just the
“Weierstrass data” evaluated at ρ on formally dividing f (ζ ) by ζ 2

− (1/ρ)ζ + 1/ρ. Let
ξi(ρ) := limn→∞ ξ

(n)
i (ρ) ∈ K◦[[1/ρ]]. Direct calculation shows that ξ1(ρ) and ξ2(ρ) are

strictly convergent power series in 1/ρ that do not converge on any annulus of the form
1− 1/n ≤ ρ ≤ 1. In other words, they converge for |1/ρ| ≤ 1 but not on any bigger disc
|1/ρ| ≤ 1+ δ, 0 < δ ∈ R.

We will need the following definitions and lemmas.
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Definition 4.5. (i) Let α = (α1, . . . , α`) ∈ K
◦

alg \K
◦◦

alg and let Wn(α) be the K-rational
domain (i.e. rational domain defined over K , see Remark 4.6(ii) below)

{
(ρ, ξ1, ξ2) : |p| ≤ |ρ

n!
| ≤ 1 ∧

∧̀
i=1

|ρ − αi | = 1 ∧ |ξ1 − ξ
(n)
1 (ρ)| ≤ |pn|

∧ |ξ2 − ξ
(n)
2 (ρ)| ≤ |pn|

}
.

Clearly (ρ, ξ1, ξ2) ∈Wn(α).
(ii) W1

n(α) is the K-rational domain{
(ρ, ξ1) : |p| ≤ |ρ

n!
| ≤ 1 ∧

∧̀
i=1

|ρ − αi | = 1 ∧ |ξ1 − ξ
(n)
1 (ρ)| ≤ |pn|

}
,

and W2
n(α) is the K-rational domain{
(ρ, ξ2) : |p| ≤ |ρ

n!
| ≤ 1 ∧

∧̀
i=1

|ρ − αi | = 1 ∧ |ξ2 − ξ
(n)
2 (ρ)| ≤ |pn|

}
.

(iii) Let n = max(n1, n2). Then Wn1,n2(α) is the K-rational domain

{
(ρ, ξ1, ξ2) : |p| ≤ |ρ

n!
| ≤ 1 ∧

∧̀
i=1

|ρ − αi | = 1

∧ |ξ1 − ξ
(n1)
1 (ρ)| ≤ |pn1 | ∧ |ξ2 − ξ

(n2)
2 (ρ)| ≤ |pn2 |

}
.

(iv) For U aK-rational domain we denote by OU the ring of (strictly convergent) analytic
functions on U (see [BGR, 7.3.2]).

Remark 4.6. (i) OU depends only on the set U and not on a particular definition of U .
Observe that if n1 ≤ n2 then

Wn1,n2(α) =
{
(ρ, ξ1, ξ2) : |p| ≤ |ρ

n!
| ≤ 1 ∧

∧̀
i=1

|ρ − αi | = 1

∧ |ξ1 − ξ
(n2)
1 (ρ)| ≤ |pn1 | ∧ |ξ2 − ξ

(n2)
2 (ρ)| ≤ |pn2 |

}
(here we have replaced |ξ1−ξ

(n1)
1 (ρ)| ≤ |pn1 | by |ξ1−ξ

(n2)
1 (ρ)| ≤ |pn1 | in the definition;

recall that n = max(n1, n2)).
(ii) We are being a bit sloppy with the definitions of the W∗(α) since we are allowing

αi ∈ Kalg. However, if the set {α1, . . . , α`} is taken to be closed under conjugation (which
it can always be), then W∗(α) can always be defined over K (see [CLR1, Section 3] or
[CL, Section 5]).

Lemma 4.7. Let U be aK-rational domain with (ρ, ξ1, ξ2) ∈ U . Then there is an n ∈ N
and α = (α1, . . . , α`) ∈ (K

◦

alg \K
◦◦

alg)
` such that (ρ, ξ1, ξ2) ∈Wn(α) ⊂ U .
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Proof. U can be defined by a finite set of inequalities of the form

ε ≤ |gi(ρ, ξ1, ξ2)| ≤ hi(ρ, ξ1, ξ2)|. (4.3)

Here 0 < ε ∈ R and gi, hi ∈ K◦[ρ, ξ1, ξ2]. Restricted to U ∩Wn(∅) for n such that
|pn| < ε2, these inequalities reduce to

ε ≤ |gi(ρ, ξ
(n)
1 (ρ), ξ

(n)
2 (ρ))| ≤ |hi(ρ, ξ

(n)
1 (ρ), ξ

(n)
2 (ρ))|. (4.4)

Since these inequalities are satisfied by ρ, we have

‖(ρn!)kgi(ρ, ξ
(n)
1 (ρ), ξ

(n)
2 (ρ))‖ ≤ ‖(ρn!)khi(ρ, ξ

(n)
1 (ρ), ξ

(n)
2 (ρ))‖

where k ∈ N is ≥ the degrees of the gi and hi , and ‖ · ‖ denotes the Gauss norm. But
then this inequality is also satisfied for all ρ with |ρ| = 1 except for ρ in a finite union
of open discs of radius 1, all defined over Kalg (or even K). Since the inequalities (4.4)
are satisfied by ρ, they are satisfied for all ρ with 1 − δ ≤ |ρ| < 1 for some 0 < δ ∈ R.
Increasing n so that also |pn| < δ and using α to exclude the open discs gives us the
required Wn(α). ut

Lemma 4.8. Let F(ρ, ξ1, ξ2) ∈ OWn(α) (the ring of analytic functions on the rational
domain Wn(α)), and assume that

X(ρ)|Wn
⊂ {(ρ, ξ1, ξ2) ∈Wn : F(ρ, ξ1, ξ2) = 0} =: VF .

Define

X(ρ) := {(ρ, ξ1, ξ2) : ξ1 + ξ2z2(ρ) = f (z2(ρ)} ⊂ (K
◦

1 )
3.

Then also X(ρ)|Wn
⊂ VF .

Proof. Since F ∈ OWn(α) and X(ρ)|Wn((α) ⊂ VF , for (ρ, ξ1, ξ2) ∈ X(ρ)|Wn(α) we have
F(ρ, ξ1, ξ2) = 0. Now for (ρ, ξ1, ξ2) ∈ X we have (ξ1 + ζ ξ2 − f (ζ ))|ζ=z1(ρ) = 0, and
on Wn(α) we have ξi = ξ

(n)
i (ρ)+ pnηi for i = 1, 2 where η1, η2 are new variables that

vary over K◦alg (or K◦1 ).
Let W+n (α) := {(ξ1, ξ2, ρ, ζ ) : (ξ1, ξ2, ρ) ∈ Wn(α) ∧ |ρζ

2
− ζ + 1| ≤ |pnρn!}. On

W+n (α) we have ξi = ξni (ρ) + p
nηi for i = 1, 2, so we may consider the variables to

be η1, η2, ζ, ρ,
p

ρn!
, 1
ρ−αi

and ρζ 2
−ζ+1

pnρn!
. By direct computation, using the fact that the ξ (n)i

are approximations to the Weierstrass data of f (ζ ) on division by ζ 2
− (1/ρ)ζ + 1, we

see that ξ1 + ζ ξ2 − f (ζ ) is regular in η1 of degree 1. Hence, on W+n (α) we have

F(ρ, ξ1, ξ2) = G(ρ, ξ2, ζ )+ (ξ1 + ζ ξ2 − f (ζ ))Q

where G,Q ∈ OW+n (α).
Now, by (formal) Weierstrass Division of G by ζ 2

− (1/ρ)ζ + 1/ρ we have

F(ρ, ξ1, ξ2) = H1(ρ, η2)+H2(ρ, η2)ζ+
(
ζ 2
−

1
ρ
ζ+ 1

ρ

)
Q1+(ξ1+ζ ξ2−f (ζ ))Q. (4.5)
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Here H1, H2 and Q1 are not strictly convergent on the domain W+n (α). However H1, H2
and Q1 are strictly convergent in η2 with coefficients functions in

K◦
[
ρ,

1
ρ
,

1
ρ − α1

, . . . ,
1

ρ − α`
, ζ,

ρζ 2
− ζ + 1
pnρn!

]̂
=: A+

where ̂ denotes completion in the norm on K◦, i.e. we can write

H1(ρ, η2) =

∞∑
j=0

h1j (ρ)η
j

2 , H2(ρ, η2) =

∞∑
j=0

h2j (ρ)η
j

2

where hij ∈ K◦
[
ρ, 1

ρ
, 1
ρ−α1

, . . . , 1
ρ−α`

]̂ and ‖hij‖ → 0 as j →∞. (Here ‖ · ‖ is the

Gauss norm on K◦
[
ρ, 1

ρ
, 1
ρ−α1

, . . . , 1
ρ−α`

]̂). Because K1 is complete, and contains no
infinitesimals, all the power series in A+ define functions on

W+n (α) ∩ {(ξ1, ξ2, ρ, ζ ) : 1− 1/k ≤ |ρ| < 1 ∀k ∈ N ∧ |ρζ 2
− ζ + 1| ≤ |pnρn!|}.

Indeed, they define functions on W++n (α) defined like W+n (α) but allowing ζ to vary over
the slightly bigger disc {ζ ∈ K1 : |ζ | ≤ 1+ 1/k ∀k ∈ N}, i.e. on

W++n (α) := {(ξ1, ξ2, ρ, ζ ) ∈ (K1)
3
×K1 : (ξ1, ξ2, ρ) ∈Wn(α)

∧ |ρζ 2
− ζ + 1| ≤ |pnρn!| ∧ (1− 1/k ≤ |ρ| < 1 ∧ |ζ | ≤ 1+ 1/k ∀k ∈ N)}.

Note that also hij (ρ) ∈ K1 and hij (ρ)→ 0 as j →∞. Hence substituting z1(ρ) for
ζ and ρ for ρ in (4.5) we obtain

H1(ρ, η2)+H2(ρ, η2)z1(ρ) = 0 for all η2 ∈ K
◦

1 ,

i.e.
∞∑
j=0

[h1j (ρ)+ h2j (ρ)z1(ρ)]η
j

2 = 0 for all η2 ∈ K
◦

1 .

Hence
h1j (ρ)+ h2j (ρ)z1(ρ) = 0 for all j .

Next we will show that hij (ρ) = 0 for i = 1, 2 and j = 0, 1, 2, . . . . Suppose
not. Then for some j we have h1j (ρ) + h2j (ρ)z1(ρ) = 0 but either h1j (ρ) 6= 0 or
h2j (ρ) 6= 0. Since |z1(ρ)| = 1 we must have both h1j (ρ) 6= 0 and h2j (ρ) 6= 0. Hence
|h1j (ρ)| = |h2j (ρ)|. From the definition of ρ we see that ‖hij (ρ)‖ − |hij (ρ)| is in-
finitesimal. Hence, multiplying by a suitable element of K \ {0} we may assume that
‖h1j (ρ)‖ = (‖h2j (ρ)‖ = 1. Let˜ denote on K◦ the residue modulo K◦◦ and on K◦1 the
residue modulo K◦1 ·K

◦◦
= {x ∈ K◦1 : |x| ≤ |y| for some y ∈ K◦◦}. Then

h̃1j (̃ρ)+ h̃2j (̃ρ)z̃1(ρ) = 0.

Since h̃1j (ρ) and h̃2j (ρ) are rational functions of ρ, we find that h̃1j (̃ρ)/h̃2j (̃ρ) is a
solution of the equation ρ̃ζ 2

− ζ + 1 = 0 in K̃(̃ρ). But this equation has no rational
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solutions ( ρ̃ is transcendental over K̃; look at the zeros and poles of the rational function).
Since ρ is transcendental over K , also hij (ρ) = 0 for i = 1, 2 and j = 0, 1, 2, . . . . Thus

F(ρ, ξ1, ξ2) =
(
ζ 2
−

1
ρ
ζ + 1

ρ

)
Q1 + (ξ1 + ζ ξ2 − f (ζ ))Q. (4.6)

This is an equation among elements of A+, and hence an equation among the functions
they define on W++n (α). Hence from (4.6), for any (ρ, ξ1, ξ2) ∈ X(ρ)|Wn(α) we have

F(ρ, ξ1, ξ2) =
(
z2

2(ρ)−
1
ρ
z2(ρ)+

1
ρ

)
Q1(ρ, η2, z2(ρ))

+ ((ξ1 + z2(ρ)ξ2 − f (z2(ρ))Q(ρ, ξ1, ξ2, z2(ρ)), (4.7)

i.e. F(ρ, ξ1, ξ2) = 0. Again, this equation is to be understood as an equation among func-
tions on W++n (α). [Since |z2(ρ)| > 1, f (z2(ρ),Q(ρ, ξ1, ξ2, z2(ρ)) andQ1(ρ, η2, z2(ρ))

are not evaluated using the analytic structure, but by using the completeness ofK1. As we
observed above, power series in A+ define functions on W++n (α). Indeed, for every m,
modulo pm+1 all the functions F, f,Q,Q1 are congruent to polynomials in the various
variables with coefficients rational functions of ρ. Hence |F(ρ, ξ1, ξ2)| < |p

m
| for every

m ∈ N. Since there are no infinitesimals inK1 we have F(ρ, ξ1, ξ2) = 0.] This completes
the proof of the lemma. ut

Remark 4.9. Here is an alternative proof of Lemma 4.8 that may be of some interest.
Let R∗ ⊃ R be the non-principal ultraproduct of R. Let R∗f := {x ∈ R∗ : ∃y ∈ R
(|x| ≤ |y|} be the finite part of R∗, and Iinf := {x ∈ R∗ : ∀n ∈ N (|y| < 1/n)} be the
ideal of infinitesimals in R∗f . Let R1 = R∗f /Iinf. Then K1 is a normed field with norm
| · |1 → R1 and K1 is complete in | · |1, i.e. if |ai |1 → 0 then

∑
i ai ∈ K1. Consider

the norm | · |2 : K1 → R defined by |x|2 := the standard part of |x|1. Denote K1 with
norm | · |2 by K2. Observe that for ai ∈ K1 we have |ai |1 → 0 if and only if |ai |2 → 0,
so K2 is also complete. Let K◦2 := {x ∈ K2 : |x|2 ≤ 1} = {x ∈ K1 : ∀n ∈ N
(|x|1 < 1 + 1/n)}. Then K◦2 ) K◦1 = {x ∈ K1 : |x|1 ≤ 1}. Both K1 and K2 are
algebraically closed valued fields with analytic A-structure, say via σ1 and σ2 respec-
tively. If g ∈ Am and x1, . . . , xm ∈ K

◦

1 then σ1(g)(x1, . . . , xm) = σ2(g)(x1, . . . , xm) and
|σ2(g)(x1, . . . , xm)|2 = the standard part of |σ1(g)(x1, . . . , xm)|1. However, if at least
one of the xi is in K◦2 \K

◦

1 then σ1(g)(x1, . . . , xm) = 0. Consider the lines

X(ρ) := {(ρ, ξ1, ξ2) : ξ1 + z1(ρ)ξ2 = f (z1(ρ))},

X(ρ) := {(ρ, ξ1, ξ2) : ξ1 + z2(ρ)ξ2 = f (z2(ρ))}.

There is a | · |2-preserving K-automorphism π of K2 that leaves ρ fixed but inter-
changes z1(ρ) and z2(ρ). Since |π(x)|2 = |x|2 we have ‖π(x)|1 − |x|1| ∈ Iinf. Sup-
pose F(ρ, ξ1, ξ2) ∈ OWn(α) is such that σ1(F )(ρ, ξ1, ξ2) vanishes on X(ρ)|Wn(α). Then
also σ2(F )(ρ, ξ1, ξ2) vanishes on X(ρ)|Wn(α), and hence σ2(F )(ρ, ξ1, ξ2) vanishes on
π(X(ρ)|Wn(α)) = X(ρ)|Wn(α). Now for (ρ, ξ1, ξ2) ∈ Wn(α) we have |ξ (n)i (ρ)|1 =

|p/ρ| ≤ |p|1/2 and |ξi − ξ
(n)
i (ρ)|1 ≤ 1. Hence also |π(ξi)|1 ≤ 1, so we conclude that

σ1(F )(ρ, ξ1, ξ2) vanishes on X(ρ)|Wn(α).
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Lemma 4.10. Let F(ρ, ξ1, ξ2) ∈ OWn(α) and suppose that F(ρ, ξ1, ξ2) = 0 and
∂F
∂ξ1
(ρ, ξ1, ξ2) 6= 0. Then there are n′, n′′ ∈ N and an α′ such that F(ρ, ξ1, ξ2) as an

element of OWn,n′′ (α
′) is regular of degree 1 in ξ1, after division by a suitable unit. Hence

there is a ξ̂1 = ξ̂1(ρ, ξ2) ∈ OW2
n′′
(α′) such that F(ρ, ξ̂1(ρ, ξ2), ξ2) = 0 as an element of

OWn′′ (α
′). The same holds with the roles of ξ1 and ξ2 interchanged.

Proof. For strictly convergent g, let g(n
′) be a polynomial that is congruent to g modulo

pn
′

, i.e. the truncation of g at size pn
′

. Since ∂F
∂ξ1
(ρ, ξ1, ξ2) 6= 0, we have

∣∣ ∂F
∂ξ1
(ρ, ξ1, ξ2)

∣∣2
> |pn

′

| for some n′. Then
∣∣ ∂F (n′)
∂ξ1

(ρ, ξ
(n′)

1 , ξ
(n′)

2 )
∣∣2 > |pn′ |. Observe that

∂F (n
′)

∂ξ1
(ρ, ξ

(n′)

1 , ξ
(n′)

2 ) ∈
1

ρn
′′!
K◦[ρ]

for some n′′. Hence for suitable n′′ ≥ n′ and α′,∣∣∣∣∂F (n′)∂ξ1
(ρ, ξ1, ξ2)

∣∣∣∣2 ≥ |pn′ |
for all (ρ, ξ1, ξ2) ∈ Wn′′(α

′). On Wn′,n′′(α
′) we can write ξ1 = ξ

(n′′)
1 (ρ) + pn

′

η1 and

ξ2 = ξ
(n′′)
2 (ρ) + pn

′′

η2, where the ηi are new variables. Indeed, on the set {ρ : |p| ≤

|ρn
′′
!
| ≤ 1} we have |ξ (n

′)
1 (ρ)−ξ

(n′′)
1 (ρ)| < |pn

′

|, so taking ξ (n
′′)

1 (ρ) as the “center” of the

disc |ξ1 − ξ
(n′)
1 | ≤ |p

n′
| instead of ξn

′

1 (ρ) does not change the rational domain or its ring
of functions (Remark 4.6). Writing F(ρ, ξ1(ρ, η1), ξ2(ρ, η2)) as a power series in η1 and
dividing by the unit

pn
′ ∂F

∂ξ1
(ρ, ξ

(n′′)
1 , ξ

(n′′)
2 + pn

′′

η2),

which is the coefficient of η1, makes F regular of degree 1 in η1. The existence of
ξ̂1(ρ, ξ2) follows by Weierstrass Preparation. ut

We now proceed with the proof that X is not LDA-semianalytic on any Wn(α).

Claim 1. X is not LA-semianalytic on any Wn(α).

Suppose it were. Then there would be an F ∈ OWn(α) such thatX(ρ)|Wn(α) ⊂ VF . Since
X(ρ)|Wn(α) is a line, we may assume that F is irreducible in OWn(α) and in OW ′n(α′)
for all n′ ≥ n and all α′. By Lemma 4.8, also X(ρ)|Wn(α) ⊂ VF . Hence the curve
VF (ρ) in Wn defined by F(ρ, ξ1, ξ2) = 0 would be singular at (ρ, ξ1, ξ2). Increas-
ing n if necessary, we may assume that (ρ, ξ1, ξ2) is the only singular point on the curve
F(ρ, ξ1, ξ2) = 0 in Wn(α). But then, since a point is a smooth 0-dimensional variety,
by [LR6] or [Ce1], for some n′ ≥ n and some α′ we would deduce that ξ1 and ξ2 are
OWn(α

′)-analytic functions of ρ. But this is not the case by Remark 4.4.
Alternatively we can see this as follows: For some suitable derivativeG of F the curve

VG(ρ, ξ1, ξ2) contains the point (ρ, ξ1, ξ2) and is smooth at that point. If VG 6⊂ VF , by
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Lemma 4.10 we can solve G = 0 for ξ1, say, as an analytic function ξ̂1(ρ, ξ2) of ρ
and ξ2, and substitute this function into F to get F(ρ, ξ̂1(ρ, ξ2), ξ2) 6≡ 0. Use the equa-
tion F(ρ, ξ̂1(ρ, ξ2), ξ2) = 0 and Lemma 4.10 to solve for ξ̂2 as an analytic function
of ρ, contradicting Remark 4.4. If VG ⊂ VF , since VG(ρ) is smooth, we know that
X(ρ)|Wn(α) 6⊂ VG, and hence VF 6= VG. Then, since G is (strictly convergent) regu-
lar in ξ1 of degree 1, by (strictly convergent) Weierstrass Division, G would divide F ,
contradicting the fact that F is irreducible.

Claim 2. X is not LDA-semianalytic.

Suppose it were. Choose an LDA-semianalytic representation on a Wn(α) of lowest possi-
ble complexity—i.e. using the smallest number of non-analytic D-functions (necessarily
≥ 1 by Claim 1) and with innermost D-functions reduced (i.e. with numerator and de-
nominator having no common factor). LetD(g, h) be an innermostD-function that is not
analytic. Then g, h ∈ OWn(α) and necessarily g(ρ, ξ1, ξ2) = h(ρ, ξ1, ξ2) = 0, and g and
h have no common factor in any OW ′n(α′). Considering the two curves Cg := {(ρ, ξ1, ξ2) :

g(ρ, ξ1, ξ2) = 0} and Ch := {(ρ, ξ1, ξ2) : h(ρ, ξ1, ξ2) = 0}, we now proceed as in
the proof of Claim 1 to show that ξ1, ξ2 are analytic functions of ρ, again contradicting
Remark 4.4. This completes the proof of Theorem 4.3.

Remark 4.11. The set X is clearly both Lsep-semianalytic and LhA-semianalytic. It is
also LA-semianalytic in a neighborhood of every point of Kalg. Indeed, it is LA-semi-
analytic on the sets described by |ρ| = 1 and |ρ| ≤ 1− δ, for every δ < 1, δ ∈ R.

Appendix A. Some comments on analytic structures from [CL]

In this appendix we recall some definitions from [CL], sometimes in a slightly modified
form, we give some complements and small amendments to [CL], notably in Definition
A.1.3, Lemma A.1.5, and Remarks A.1.8, A.1.9, A.1.12. We also give some supplemen-
tary discussion of various topics—other strong noetherian properties, extension of param-
eters, and Weierstrass systems with side conditions.

A.1.

Let us first recall the notion of separated pre-Weierstrass system of [CL] (“separated”
means that the power series involve two kinds of variables, see Remark 1.0.1).

Definition A.1.1 (Separated pre-Weierstrass system, cf. [CL, Definitions 4.1.2, 4.1.3 and
4.1.5]). Let B be a ring and I ⊂ B a proper ideal. Let Bm,n ⊂ B[[ξ, ρ]] be B-algebras.
We call B := {Bm,n}m,n∈N a (B, I )-separated pre-Weierstrass system if it satisfies the
following conditions (1)–(6) for all m, n,m′, n′. (Let m ≤ m′ and n ≤ n′ be natural num-
bers, and ξ = (ξ1, . . . , ξm), ξ ′ = (ξ1, . . . , ξm′), ξ ′′ = (ξm+1, . . . , ξm′), ρ = (ρ1, . . . , ρn),
ρ′ = (ρ1, . . . , ρn′), and ρ′′ = (ρn+1, . . . , ρn′) be variables.)
(1) B0,0 = B,

(2) Bm,n ⊂ B[[ξ, ρ]] and is closed under any permutation of the ξi or of the ρj ,
(3) Bm,n[ξ ′′, ρ′′] ⊂ Bm′,n′ ,
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(4) the image (Bm,n)̃ of Bm,n under the residue map˜ : B[[ξ, ρ]] → B̃[[ξ, ρ]] is a
subring of B̃[ξ ][[ρ]], and

(5) if f ∈ Bm′,n′ , say f =
∑
µν f µν(ξ, ρ)(ξ

′′)µ(ρ′′)ν , then the f µν are in Bm,n,
(6) The two usual Weierstrass Division Theorems hold in the Bm,n, namely, for f, g
∈ Bm,n:

(a) If f is regular in ξm of degree d (Definition 3.3.2(i)), then there exist unique
q ∈ Bm,n and r ∈ Bm−1,n[ξm] of degree at most d − 1 such that g = qf + r .

(b) If f is regular in ρn of degree d (Definition 3.3.2(ii)), then there exist unique
q ∈ Bm,n and r ∈ Bm,n−1[ρn] of degree at most d − 1 such that g = qf + r .

Since (A, I) is quite general, there may be pairs (a, b) in A whose relative size is not de-
termined by (A, I). In each field with analytic A-structure, say via σ , the relative size of
σ(a) and σ(b) is determined. We handle this situation by means of Definition A.1.2 (and
Definition A.1.4). In the case that A = K◦ and I = K◦◦ with K a valued field this com-
plication does not arise. In the case of Theorem 3.5.1 we can also avoid this complication
by using the stronger property (7′) of Definition A.2.1 in place of Definition A.1.4.

We recall the following definitions from [CL].

Definition A.1.2 (Rings of fractions). Let A = {Am,n}m,n∈N be a separated (A, I)-
pre-Weierstrass system. We inductively define the concept of an A-algebra C being a
ring of A-fractions with proper ideal C◦ and with rings Cm,n of separated power series
“over” C:

(i) The ring A is a ring of A-fractions with ideal A◦ = I and with rings of separated
power series the Am,n from the system A.

(ii) If B is a ring of A-fractions and d in B satisfies C◦ 6= C, with

C := B/dB, C◦ := B◦/dB,

then C is a ring of A-fractions with proper ideal C◦ and Cm,n := Bm,n/dBm,n.
(iii) If B is a ring of A-fractions and c, d in B satisfy C◦ 6= C with

C = B〈c/d〉 := B1,0/(dξ1 − c), C◦ := (B◦)B〈c/d〉

then C is a ring of A-fractions with proper ideal C◦ and Cm,n := Bm+1,n/(dξ1− c).
(iv) If B is a ring of A-fractions and c, d in B satisfy C◦ 6= C, with

C = B[[c/d]]s := B0,1/(dρ1 − c), C◦ := (B◦, ρ1)B0,1/(dρ1 − c),

and (B◦, ρ1) the ideal generated by B◦ and ρ1, then C is a ring of A-fractions with
proper ideal C◦ and Cm,n := Bm,n+1/(dρ1 − c).

Definition A.1.3. In Definition A.1.2 we put the word “over” in quotes because Cm,n is
not in general a ring of power series with coefficients from C. However, if f ∈ Cm,n,
the Taylor coefficients of f are well defined as elements of C by repeated Weierstrass
Division. In other words, for each (µ, ν) there is a unique cµ,ν ∈ C such that for µ < µ′

and ν < ν′, cµ,ν is the coefficient of ξµρν in f mod (ξµ
′

, ρν
′

). We can define the series
of f by S(f ) :=

∑
cµ,νξ

µρν ∈ C[[ξ, ρ]].
In all cases of Definition A.1.2 define C◦m,n := {f ∈ Cm,n : cµ,0 ∈ C

◦ for all µ}.
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Definition A.1.4. We call a separated pre-Weierstrass system B (Definition A.1.1) a sep-
arated Weierstrass system if

(7) For every ring C of B-fractions, if f ∈ Cm,n and S(f ) =
∑
µ,ν cµνξ

µρν , then there
is a finite set J ⊂ Nm+n and for each (µ, ν) ∈ J there is a gµν ∈ C◦m,n such that

f =
∑

(µ,ν)∈J

cµνξ
µρν(1+ gµν).

Lemma A.1.5. If B = Bm,n is a separated Weierstrass system, then for every ring C of
B-fractions, Cm,n is indeed a ring of power series over C.

Proof. Property (7) above guarantees that the homomorphism f 7→S(f )=
∑
cµ,νξ

µρν

is an isomorphism. ut

In the light of this lemma we will henceforth identify Cm,n with S(Cm,n).
The treatment in [CL] implicitly assumed that Cm,n is a power series ring over C. The

treatment here is better in that it omits that assumption, and the statement of the strong
noetherian property uses S(f ) to define the cµ,ν . (Definition 4.1.5(c) of [CL] should be
replaced by Definition A.1.4 above.) Once we have assumed property (7), the distinction
betweenCm,n and S(Cm,n) disappears andCm,n is indeed a power series ring, as observed
above.

Restating (7) in our context, we have:

Lemma A.1.6 (Criterion). A good strictly convergent pre-Weierstrass system A = {Am}
is a strictly convergent Weierstrass system if (and only if ) AH satisfies condition (7) of
Definition A.1.4, i.e. if

(vii) For every ring C of AH -fractions, if f ∈ Cm,n and S(f ) =
∑
µ,ν cµνξ

µρν , then
there is a finite set J ⊂ Nm+n and for each (µ, ν) ∈ J there is a gµν ∈ C◦m,n such
that

f =
∑

(µ,ν)∈J

cµνξ
µρν(1+ gµν).

Remark A.1.7. It does not follow that a field F with strictly convergent analytic A-
structure is necessarily henselian. See the example in [CL, Remark 4.5.13]. This is why
we must require that the fields with analytic A-structure be henselian.

Remark A.1.8. We amend Definition 4.5.14 and Theorem 4.5.15 of [CL]. In Definition
4.5.14 of [CL], the order relation < on the value group sort should be part of the lan-
guage LA, in order for the quantifier elimination result of Theorem 4.5.15 to make sense.

Remark A.1.9. The alternative proof of quantifier elimination, based on compactness,
that is given in Section 6 of [CL] (in the proof of Theorem 6.3.7) is not well-presented. In
order to obtain a proof along these lines, the results used ([CLR1, Lemma 3.16] and [CL,
Theorem 5.5.3]) should be made more uniform, allowing variables as well as constants
to occur in the terms. Proposition A.1.10 below is the needed uniform version of [CL,
Theorem 5.5.3].
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Proposition A.1.10. Let A be a separated Weierstrass system and let K be a valued
field with separated analytic A-structure. Let LA(K) be the language of valued
fields, 〈0, 1,+, ·, (·)−1, | · |〉, augmented with function symbols for all the elements of⋃
m,nAm,n(K). (We extend functions f ∈ Am,n(K) by zero outside (K◦alg)

m
× (K◦◦alg)

n.)
Let x be several variables and y one variable, and let τ(x, y) be a term of LA(K). There
is a finite set χα(x) of quantifier-free LA(K)-formulas such that K◦alg |=

∨
α χα (i.e. the

sets {x : χα(x)} cover (K◦alg)
n) and for each α there is a finite family of quantifier-free

formulas ϕα,i(x, y) that depend on y in a polynomial way (i.e. are boolean combina-
tions of atomic formulas of the form p(x, y) = 0 and |p(x, y)| ≤ |q(x, y)|, where the
p(x, y), q(x, y) are polynomials in y with coefficients LA(K)-terms in x) such that, writ-
ing Uα,i = Uα,i(x) for the set {y : ϕα,i(x, y)}, for each α the Uα,i(x) cover K◦alg, and for
each α and i there are rational functions Rα,i(y) with coefficients LA(K)-terms in x, and
terms Eα,i(x, y) that are strong units on Uα,i such that for x satisfying χα we have

τ(x, y)|Uα,i = Eα,i · Rα,i |Uα,i . (A.1)

[See [CL, Definition 5.1.4] for the definition of “strong unit”. Here we slightly general-
ize that definition. The size of a strong unit Eα,i(x, y) is determined by a term cα,i(x)

satisfying |Eα,i(x, y)`| = |cα,i(x)| for all y ∈ Uα,i and there is a polynomial Pα,i with
coefficients LA(K)-terms in x such that ‖Pα,i‖ = 1 and Pα,i(c−1

α,i (Eα,i)
`)̃ = 0 for all

y ∈ Uα,i(x). So cα,i and Pα,i determine the finitely many possible angular components
of Eα,i .]

Proof. Let K∗ be a |LA(K)|+-saturated LA(K)-elementary extension of Kalg. Let D(x)
be the algebra of LA(K)-terms in the variables x. Then for each x ∈ (K∗)n, we know
that K ⊂ D(x) is a field with analytic A(K)-structure, so [CL, Theorem 5.5.3] applies
and there is a finite set of annuli Ux,i defined by annulus formulas ϕx,i [CL, Definition
5.1.1] and rational functions Rx,i(y), strong units Ex,i(y) and finite exceptional sets Sx,i
satisfying

τ(x, y)|Ux,i\Sx,i = Ex,i · Rx,i |Ux,i\Sx,i . (A.2)

Observe that the exceptional sets arise from common zeros of numerators and denomina-
tors (of subterms in τ ) and at these points the term becomes simpler, so the same induction
on terms establishes the analogous representation on the exceptional sets, which are de-
fined by polynomial equations in y:

τ(x, y)|Sx,i,j = E
′

x,i,j · R
′

x,i,j |Sx,i,j , (A.3)

where Sx,i =
⋃
j Sx,i,j . Hence, in the formalism of the proposition there is no need

to consider exceptional sets separately, and we may assume that we have quantifier-free
formulas ϕi(x, y) depending on y in a polynomial way, and terms Ex,i that are strong
units, and rational functions Rx,i such that, for all i and all y ∈ Ux,i (the set defined by
ϕi(x, y)),

τ(x, y)|Ux,i = Ex,i · Rx,i |Ux,i . (A.4)
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Let E∗x,i(x, y), R
∗

x,i(x, y) be terms in D(x, y) such that E∗x,i(x, y) = Ex,i(y) and
R∗x,i(x, y) = Rx,i(y), and similarly for other terms such as the cx,i and Px,i and the
terms occurring in ϕx,i implicit in the description of A.4. Denote the resulting formula
corresponding to ϕx,i by ϕ∗x,i(x, y). Let 1x(x) be the LA(K)-formula that asserts that for
all i,

τ(x, y)|Ux,i = E
∗

x,i(x, y) · R
∗

x.i(x, y)|Ux,i , (A.5)

together with the implied background description about E∗x,i being strong units and Ux,i
being the sets defined by the formulas ϕ∗x,i(x, y). Let χx(x) be a quantifier-free LA(K)-
formula equivalent to 1x(x) in K∗alg. We know that χx(x) exists by algebraically closed
quantifier elimination (see Remark 3.2.12). Since K∗ |= χx(x), by the saturation of K∗

the formulas χx(x) cover the Stone space of LA(K)-n-types, and by the compactness of
that Stone space, finitely many of the χx(x) cover, say the χα(x) for α in some finite
subset of K∗◦alg. The proposition now follows. ut

In the case of algebraically closed fields with separated analytic structure, one can say
much more than Proposition 3.4.5 above about definable functions.

Proposition A.1.11. (i) (characteristic 0) Let A be a separated Weierstrass system and
let x = (x1, . . . , xn) be several variables and y one variable. Suppose that a for-
mula ϕ(x, y) ∈ LA defines y as a function of x in all algebraically closed fields of
characteristic 0 with analytic A-structure. Then there is a term τ of LA such that
L |= ϕ(x, y)↔ y = τ(x) for all algebraically closed valued fields L of characteris-
tic 0 with analytic A-structure.

(ii) (characteristic p 6= 0) In characteristic p let L′A be the language LA with the p-th
root function (·)1/p adjoined. The analogous result to (i) holds, with L′A in place
of LA, for all algebraically closed valued fields L of characteristic p with analytic
A-structure.

Proof. (i) We may assume that ϕ is quantifier-free. Suppose, for sake of contradiction,
that there is no such term τ . Then, since we can combine terms defined by cases into
one term, for any finite set of terms τi(x), i = 1, . . . , k, there is an x such that |=∧k
i=1 ¬ϕ(x, τi(x)). Hence there is an algebraically closed field L with analytic A-struc-

ture and x ∈ Lk such that |=L ¬ϕ(x, τ (x)) for all terms τ(x). Let 1(x) := {τ(x) :
τ an LA-term} ⊂ L. Let L′ be the field of fractions of 1(x). Then L′ ⊂ L is a field
with analytic A-structure and this structure extends uniquely to an analytic A-structure
on L′alg. Hence there is a unique y ∈ L′alg \ L such that |=L′ ϕ(x, y). But, since L′ is
perfect, there is an analytic A-structure automorphism of L′ that leaves the elements of
L fixed but moves y, contradicting the uniqueness of y. (Indeed, since A is separated,
L′ is henselian, and by [CL, Theorem 4.5.11] every field automorphism of L′ over L is
an automorphism of fields with analytic A-structure.)

(ii) Observe that every formula of L′A is equivalent to an LA-formula, and if we define
1′(x) := {τ(x) : τ an L′A-term}, and L′ as the field of fractions of 1′(x), then L′ is a
perfect subfield of L, so the same argument works. ut



144 Raf Cluckers, Leonard Lipshitz

Remark A.1.12. We amend Lemmas 6.3.12 and 6.3.14 of [CL]. In fact, with notation of
[CL, Lemma 6.3.12], its proof shows an even stronger conclusion holds: rvn(Eσ (x)) only
depends on x mod (n · K◦◦alg) when x varies over K◦alg. It is in fact this stronger form of
Lemma 6.3.12 that is used to prove [CL, Lemma 6.3.14]. We thank S. Rideau for pointing
this out to us.

Remark A.1.13. In [CL, Section 4.3] we gave a two-case definition of strictly convergent
Weierstrass system A and (henselian) field with analytic A-structure. Case (i) (denoted
(π = 1)) of that definition clearly fits into the framework of this paper as an analytic A-
structure with side conditions (namely that π be a prime element ofK◦)—see Definitions
A.4.1 and A.4.2 below. In case (ii) (denoted (π 6= 1) in [CL, Section 3.3]) we considered
all rings C of fractions coming from a separated Weierstrass system containing A. In
general, some of the elements of such a C will not be definable in the language LA. The
treatment in this paper is more natural in that all the elements and functions that arise
are existentially definable in LA (see Lemma 3.2.8), and the definition depends only on
the pre-Weierstrass system A = {Am}, not on some (unspecified) separated Weierstrass
system containing A.

A.2. A discussion of strong noetherian properties

In this subsection we discuss variants of Definitions A.1.4 and A.1.6
Conditions (7)′ and (vii)′ below easily imply conditions (7) of Definition A.1.4 and

(vii) of Definition A.1.6 and are easier to use in Theorem 3.5.1.

Definition A.2.1. Let B = {Bm,n} be a pre-Weierstrass system, let m ≤ m′, n ≤ n′,
and let ξ = (ξ1, . . . , ξm), ρ = (ρ1, . . . , ρn), ξ ′ = (ξ1, . . . , ξm′), ρ′ = (ρ1, . . . , ρn′),
ξ ′′ = (ξm+1, . . . , ξm′) and ρ′′ = (ρn+1, . . . , ρn′).

(7)′ Let
f =

∑
µ,ν

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)ν ∈ Bm′,n′

where the f µν(ξ, ρ) are in Bm,n. There is a finite set J ⊂ Nm′−m+n′−n and for each
(µ, ν) ∈ J a function gµν ∈ (Bm′,n′)◦ such that

f =
∑

(µ,ν)∈J

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)ν(1+ gµν)

as an element of Bm′,n′ .
(vii)′ Let

f =
∑
µ,ν

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)ν ∈ AHm′,n′

where the f µν(ξ, ρ) are inAHm,n. There is a finite set J ⊂ Nm′−m+n′−n and for each
(µ, ν) ∈ J a function gµν ∈ (AHm′,n′)

◦ such that

f =
∑

(µ,ν)∈J

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)ν(1+ gµν)

as an element of AH
m′,n′

.
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The following is immediate.

Lemma A.2.2. (i) If the separated pre-Weierstrass system B satisfies condition (7)′

above then B is a separated Weierstrass system.
(ii) If the good, strictly convergent pre-Weierstrass system A satisfies condition (vii)′

above then A is a strictly convergent Weierstrass system.

A weaker strong noetherian property that is still sufficient for results on quantifier elim-
ination, b-minimality and cell decomposition is (7)* below. See [CL, Section 4.2] for
definitions. This definition is [CL, Theorem 4.2.15].

Definition A.2.3. (7)* Let B = {Bm,n} be a pre-Weierstrass system, let m ≤ m′ and
n ≤ n′, let ξ = (ξ1, . . . , ξm), ρ = (ρ1, . . . , ρn), ξ ′ = (ξ1, . . . , ξm′), ρ′ =
(ρ1, . . . , ρn′), ξ ′′ = (ξm+1, . . . , ξm′) and ρ′′ = (ρn+1, . . . , ρn′), and let

f =
∑
µ,ν

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)ν ∈ Bm′,n′

where the f µν(ξ, ρ) are in Bm,n. (The f µν(ξ, ρ) are well defined by Weierstrass
Division in Bm′,n′ ). There is a finite system F of rings of B-fractions, and for
each B ′ ∈ F there is a finite, disjointly covering family of Laurent rings C over
A′m,n, and for each C there are a finite set JC and C-units uCµν ∈ C and functions
hCµν ∈ C

◦

m′−m,n′−n
for (µ, ν) ∈ JC such that

f =
∑

(µ,ν)∈JC

f µν(ξ, ρ)(ξ
′′)µ(ρ′′)νuCµν(1+ hCµν)

as an element of Cm′−m,n′−n.
(vii)* The corresponding condition for a strictly convergent pre-Weierstrass system A is

that the separated pre-Weierstrass system AH satisfies condition (7)*.

Definition A.2.4. The arguments in [CL, Section 4.2] (Lemma 4.2.14 and Theorem
4.2.15) show that the following less cumbersome condition implies condition (7)*:

(7)′′ For any
f =

∑
µ,ν

cµν(ξ)
µ(ρ)ν ∈ Bm,n

there is a system F of rings of B-fractions, and for each B ′ ∈ F there is a finite set
JB ′ and functions gµν ∈ (B ′m,n)

◦ for (µ, ν) ∈ JB ′ such that

f =
∑

(µ,ν)∈JB′

cµνξ
µρν(1+ gµν)

as an element of B ′m,n.

We do not know an example of a good pre-Weierstrass system A such that AH
:= {AHm,n}

is a separated Weierstrass system but does not satisfy condition (vii)′ of Definition A.2.1.
Indeed, we do not have examples that distinguish among the various strong noetherian
properties discussed in this section.
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A.3. Extension of parameters

Let B be a separated pre-Weierstrass system and letK be a field with analytic B-structure
via σ . As in [CL, Definition 4.5.6(i)], assume that σ0 : A → K◦ is an embedding, and
define

Bm,n(K) := {f
σ (ξ, ρ, c, d) : c ∈ (K◦)M , d ∈ (K◦◦)N and f ∈ Bm+M,n+N }.

Then Bm,n(K) is a ring of functions (K◦)m × (K◦◦)n → K . If B satisfies condition
(7)* above (for example if B is a Weierstrass system), it follows that the homomorphism
f σ 7→ S(f σ ) is an isomorphism, so we may regard Bm,n(K) as a ring of power series
over K◦. Then B(K) := {Bm,n(K)} is a Weierstrass system by [CL, Theorem 4.5.7(i)].

In [CL, Definition 4.5.6(ii)], a similar extension of parameters is given for some
strictly convergent analytic pre-Weierstrass systems, i.e. those for which both I and K◦◦

have a prime element. As a further example, complementing the ones in 3.6, we have the
following extension of [CL, Theorem 4.5.7(ii)], where we no longer impose that condition
on I or K .

Lemma A.3.1. LetK be a henselian field with analytic A-structure for a strictly conver-
gent Weierstrass system A. Then also the system A(K) obtained by extension of parame-
ters is a strictly convergent Weierstrass system.

Proof. Because K◦ is a valuation ring, no rings of fractions are needed and A(K)H =
AH (K). ut

We will give another strong noetherian property ((7)′′′ below) that has the advantage that
it is expressed in terms of the fields with analytic B-structure, rather than the somewhat
awkward concept of systems of rings of fractions. It is useful in defining the concept
of Weierstrass system with side conditions in Subsection A.4 below. Let B be a pre-
Weierstrass system. For any (henselian) field K with analytic B-structure, let

K◦B := {τ : τ a variable-free term of LDB }

and let KB be the field of fractions of K◦B.

Definition A.3.2. Let B be a pre-Weierstrass system and let B(KB) be obtained by ex-
tending parameters.

(7)′′′ If f σ ∈ Bm,n(KB) and S(f σ ) =
∑
µ,ν cµνξ

µρν with the cµν ∈ K◦B, then there is
a finite set J ⊂ Nm+n and for each (µ, ν) ∈ J there is a gσµν ∈ (Bm,n(KB))◦ such
that

f σ =
∑

(µ,ν)∈J

cµνξ
µρν(1+ gσµν). (A.6)

Remark A.3.3. (a) When B = K◦ for K a (henselian) field all the rings of fractions are
in fact just K◦, so in that case the definitions become much simpler.

(b) Condition (7)′′′ gives us for each f a (possibly different) strong noetherian prop-
erty (equation (A.6)) in each field K with analytic B-structure. A standard compactness
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argument shows that there is a finite set of representations of the form (A.6) such that for
every field K with analytic B-structure (or in the case below of Weierstrass systems with
side conditions, for every such K satisfying additional axioms T ), one of the finite set of
equations (A.6) holds in K .

A.4. Weierstrass systems with side conditions

The following small extension of the above concepts may be useful. See the discussion
preceding Theorem 3.5.1.

Definition A.4.1. A (strictly convergent, or separated) pre-Weierstrass system with side
conditions is a (good strictly convergent, or separated) pre-Weierstrass system A together
with some axioms TA in the language LA.

Definition A.4.2. A separated Weierstrass system with side conditions is a separated
pre-Weierstrass system B together with axioms TB in the language LA such that, for
each henselian field K with analytic B-structure that satisfies the axioms of TB, the
pre-Weierstrass system B(KB) obtained by extension of parameters (cf. Subsection A.3
above) satisfies the condition

(7)′′ If f =
∑
µ,ν cµνξ

µρν in Bm,n(KB) with the cµν in K◦B, then there is a finite set
J ⊂ Nm+n and for each (µ, ν) ∈ J there is a gµν ∈ (Bm,n(KB))◦ such that

f =
∑

(µ,ν)∈J

cµνξ
µρν(1+ gµν).

In this situation we refer to the analytic structure on K as an analytic structure with side
conditions. We call a good strictly convergent pre-Weierstrass system A a strictly conver-
gent Weierstrass system with side conditions if the separated pre-Weierstrass system AH

satisfies the above condition for every henselian field K with analytic A-structure that
satisfies the side conditions.

The following is immediate.

Corollary A.4.3. Let A be a strictly convergent Weierstrass system with side condi-
tions TA. There is a set of existential definitions in the language LDA which, in every
henselian field K with analytic A-structure with side conditions TA, define a separated
analytic structure on K extending the analytic A-structure. Indeed, the functions are
given by terms of LD,hA .
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