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Abstract. It is proved that in Gödel’s constructible universe, for every infinite successor cardinal κ ,
there exist graphs G and H of size and chromatic number κ , for which the product graph G ×H is
countably chromatic.

In particular, this provides an affirmative answer to a question of Hajnal from 1985.
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1. Introduction

A graph G is a pair (G,E), where E ⊆ [G]2 := {{x, y} | x, y ∈ G & x 6= y}. The
chromatic number of G, denoted Chr(G), is the least (finite or infinite) cardinal κ such that
G is the union of κ many E-independent sets. Equivalently, Chr(G) is the least cardinal κ
for which there exists an E-chromatic κ-coloring ofG, that is, a coloring χ : G→ κ that
satisfies χ(x) 6= χ(y) whenever xEy.

Given graphs G0 = (G0, E0) and G1 = (G1, E1), the product graph G0×G1 is defined
as (G0 ×G1, E0 ∗ E1), where

G0 ×G1 := {(g0, g1) | g0 ∈ G0, g1 ∈ G1},

E0 ∗ E1 := {{(g0, g1), (g
′

0, g
′

1)} | (g0, g
′

0) ∈ E0 and (g1, g
′

1) ∈ E1}.

Clearly, a chromatic κ-coloring of one of the two graphs induces a chromatic κ-coloring
of their product, and hence Chr(G0 × G1) ≤ min{Chr(G0),Chr(G1)}. It is then natural to
ask whether this inequality is best possible, and the following answer was conjectured by
Hedetniemi fifty years ago:

Hedetniemi’s Conjecture ([Hed66]). For all finite graphs G0 and G1,

Chr(G0 × G1) = min{Chr(G0),Chr(G1)}.

In [BEL76], Burr, Erdős and Lovász rediscovered Hedetniemi’s conjecture through the
perspective of Ramsey-type graphs, and in his survey paper [Tar08], Tardif made explicit
a well-known Ramsey-type consequence of Hedetniemi’s conjecture:
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The Weak Hedetniemi Conjecture ([Tar08]). For every positive integer k, there exists
a positive integer ϕ(k) such that if Chr(G0) = Chr(G1) = ϕ(k), then Chr(G0 × G1) ≥ k.

The weak conjecture goes back to [PR81], but nonetheless it is still standing.
As sometimes happens, infinitary versions of problems in graph theory lead to prob-

lems in set theory of independent interest (see [Sou08] for a recent treatment). Hedet-
niemi’s conjecture is a wonderful example of such a problem—indeed, in [JT95], the
finitary version appeared as Problem 11.1, and the infinitary version appeared as Prob-
lem 16.13.

This paper is dedicated to the solution of the infinitary counterparts. In [Haj85], Hajnal
proved that for every infinite cardinal κ , there exist graphs G0,G1 of chromatic number κ+

such that Chr(G0 × G1) = κ . In [JJ74], [Tod81], [ASS87], [Dav90], [AS93] more struc-
tural counterexamples were constructed in the form of pairs of nonspecial κ+-Aronszajn
trees whose product is special. All of these show that a one-cardinal gap is possible, but
does not refute the weak conjecture:

Infinite Weak Hedetniemi Conjecture. For every infinite cardinal κ , there exists a car-
dinal ϕ(κ) such that if Chr(G0) = Chr(G1) = ϕ(κ), then Chr(G0 × G1) ≥ κ .

Note that since it is possible to get the consistency of ϕ(κ) > 2κ , the nontrivial context
to examine the infinite weak conjecture (and its instances) is that of GCH. In his original
paper [Haj85], Hajnal asked about the consistency of GCH together with an infinite gap
(and this was echoed in [JT95]), but as of now, the best known result in this vein is
Soukup’s model [Sou88] of GCH with a counterexample of gap 2.

Let us point out a central obstruction towards getting the consistency of GCH with
larger gaps. Hajnal discovered (the proof may be found in [Haj04]) that if G0,G1 is a pair
of graphs of size and chromatic number λ whose product has chromatic number κ , then
G0 and G1 are (κ, λ)-chromatic. That is, Gi has chromatic number λ, but all of its smaller
subgraphs have chromatic number ≤ κ . Thus, in simple words, if G0,G1 were to witness
the failure of an instance of the weak conjecture, then G0,G1 are in particular witnesses
to the incompactness of infinite chromatic numbers.

The question of the very existence of incompactness graphs is a difficult set-theoretic
question that goes back to a paper by Erdős and Hajnal [EH66], which, incidently, is from
the same year of Hedetniemi’s paper [Hed66]. Moreover, unlike the non-GCH context,
answers in the context of GCH are quite rare, as we shall now describe.

A model of ZFC+GCH in which there exists an (ℵ0,ℵ2)-chromatic graph of size ℵ2
was obtained by Baumgartner [Bau84] via a very complicated notion of forcing, and, in-
deed, Soukup’s model [Sou88] of GCH with ϕ(ℵ0) > ℵ2 is a further sophistication of
Baumgartner’s attack. Unfortunately, Baumgartner’s approach does not seem to gener-
alize to yield a model of an (ℵ0,ℵ3)-chromatic graph of size ℵ3. In fact, at the time of
writing his chapter for the Handbook of Combinatorics, Hajnal thought that the problem
of getting the consistency of GCH together with an (ℵ0,ℵ3)-chromatic graph of size ℵ3
“seems to be hopelessly difficult at present” (see page 2093 of [GGL95]).

So, if GCH is consistent with ϕ(ℵ0) > ℵ3, then this will require an alternative con-
struction.
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An alternative construction of incompactness graphs was finally given by Shelah
[She90], and up to recently, this has been the only known method for getting the con-
sistency of GCH together with (ℵ0, λ)-chromatic graphs of size λ, for arbitrarily large λ.
But, as Hajnal mentioned in a more recent paper [Haj04], there was no success in gener-
alizing Shelah’s result (from incompactness to Hedetniemi).

Recently, the author [Rin15a] found yet another construction of incompactness
graphs—a construction which is inspired by the concept of Ostaszewski square from
[Rin14]. He denoted these graphs by G(

−→
C ) and identified the features of G and

−→
C that

make G(
−→
C ) into (ℵ0, λ

+)-chromatic graphs. Even more recently, answering a question
of Magidor, he proved that, for an appropriate choice of

−→
C , these highly chromatic graphs

can be made countably chromatic in a certain “nice” forcing extension [Rin17]. In this
paper, these new findings are combined with the basic idea of Hajnal’s 1985 construction
to obtain the desired pair of graphs, arbitrarily high:

Main Theorem. If λ is an uncountable cardinal, and ♦λ holds, then there exist graphs
G0,G1 of size λ+ such that:

• Chr(G0) = Chr(G1) = λ
+;

• Chr(G0 × G1) = ℵ0.

Remark 1.1. It is a curious fact that while the graphs G0,G1 are derived directly
from ♦λ, their analysis relies heavily on passing to forcing extensions of the universe. In
fact, we do not know of a forcing-free proof.

Recalling that Gödel’s constructible universe is a model of ZFC+GCH in which the
principle ♦λ holds for every uncountable cardinal λ, we get:

Corollary 1. In Gödel’s constructible universe, GCH holds and all instances of the Infi-
nite Weak Hedetniemi Conjecture fail. Indeed, for any infinite cardinals λ ≥ κ , there exist
graphs G0,G1 with Chr(G0 × G1) = κ such that Chr(G0) = Chr(G1) > λ.

Recalling that counterexamples to instances of the weak conjecture are in particular in-
compactness graphs, a straightforward generalization of the de Bruin–Erdős theorem
[dBE51] then entails:

Corollary 2. If there exist class many strongly-compact cardinals, then the Infinite Weak
Hedetniemi Conjecture holds.

Altogether, this establishes the independence of the Infinite Weak Hedetniemi Conjecture
from ZFC+GCH.

In addition, Corollary 1 settles the (unnumbered) Problem from [Haj85], Problem
16.13 from [JT95], Problem 40 from [Haj04], and Problem 2.4 from [Sou08].

Organization of this paper. In Section 2 we prove the main result of this paper, and its
subsequent corollaries. In Section 3, we also settle the generalized problem concerning
the product of n+ 1 graphs (0 < n < ω).
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2. Proof of the Main Theorem

Suppose that λ is an uncountable cardinal, and ♦λ holds. By ♦λ and a standard parti-
tioning argument [Dev78], [Rin14], let us fix a sequence 〈(Dα, Xα) | α < λ+〉 along with
a function h : λ+→ λ+ such that:

1. for every limit α < λ+, Dα is a club in α of order-type ≤ λ;
2. if β ∈ acc(Dα), then Dβ = Dα ∩ β, Xβ = Xα ∩ β and h(β) = h(α);1

3. for every X ⊆ λ+, a club E ⊆ λ+ and ς < λ+, there exists a limit α < λ+ with
otp(Dα) = λ such that h(α) = ς , Xα = X ∩ α and acc(Dα) ⊆ E.

Clearly, 〈Xα | α ∈ Gi〉 is a ♦(Gi)-sequence, where Gi := {α < λ+ | h(α) = i

& otp(Dα) = λ}. Since G0 and G1 are nonreflecting and pairwise-disjoint stationary
sets, it is then natural to use G0(

−→
D) and G1(

−→
D) as the building blocks of our graphs.2

Loosely speaking, one of the features that we would need is the ability to kill (via forcing)
the guessing feature of 〈Xα | α ∈ G0〉, while preserving the features of 〈Xα | α ∈ G1〉,
and vice versa. For this, we shall borrow an idea from [She77, proof of Theorem 2.4],
where a model of ♦(ω1 \ S)+¬♦(S) was obtained for the first time.3

Fix a large enough regular cardinal θ � λ together with a well-ordering Eθ of Hθ .
Fix a bijection ψ : (<λ

+

ω)× (<λ
+

(λ+12))↔ λ+.
For every limit α < λ+ with sup(acc(Dα)) < α, let dα be a cofinal subset of α of

order-type ω, consisting of successor ordinals. For α < λ+ with sup(acc(Dα)) = α, let
dα := acc(Dα).

Fix a limit ordinal α < λ+. We would like to determine a function gα ∈ ≤α(λ+12).
For this, let {αi | i < otp(dα)} be the increasing enumeration of dα . Recursively define a
sequence 〈(pαi , f

α
i ) | i < otp(dα)〉 as follows:

I Let f0 := ∅ and p0 := ∅.
I If i < otp(dα) and 〈(pαj , f

α
j ) | j ≤ i〉 is defined, let

Pαi := {p ∈
<αi+1ω | ψ(p, f ) ∈Xα ∩ αi+1, p ⊇ pi, f ⊇ fi, dom(p) > dom(f )= αi},

Fα
i :=

{
f ∈ αi (λ+12)

∣∣∣ ψ(p, f ) ∈Xα ∩ αi+1, p =min
Eθ

Pαi , f ⊇ fi
}
,

and set

(pαi+1, f
α
i+1) :=

{
(minEθ

Pαi ,minEθ
Fα
i ), Pαi 6= ∅,

(∅,∅), otherwise.

I If i < otp(dα) is a limit ordinal, and 〈(pαj , f
α
j ) | j < i〉 is defined, let pαi :=⋃

j<i p
α
j and f αi :=

⋃
j<i f

α
j .

1 Here, acc(A) := {α ∈ sup(A) | sup(A ∩ α) = α > 0}.
2 The graph G(

−→
D) was introduced in [Rin15a], and it was proven there that if

−→
D is a

�λ-sequence, and G is a nonreflecting subset of λ+, then G(
−→
D) is (ℵ0, κ)-chromatic for some

cardinal κ .
3 The proof is not given in [She77], rather, it is given as the proof of Theorem 2.4 from [She80].

Personally, I learned that proof from Juris Steprāns.
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This completes the construction of 〈(pαi , f
α
i ) | i < otp(dα)〉. Define

gα :=
⋃
{f αi | i < otp(dα),∀j < i (Pαj 6= ∅)},

Aiα := {β < dom(gα) | gα(β)(i) = 1, h(β) = h(α)} for all i < λ,

Kα := {β < dom(gα) | gα(β)(λ) = 1}.

For every i < otp(dα), set α′i := min((Kα ∪ {αi+1}) \ αi + 1), and α′′i := min((Aiα ∪
{αi+1}) \ α

′

i). Finally, set

Cα :=

{
dα \ dom(gα), dom(gα) < α,

acc(dα) ∪ {α′′i | i < otp(dα), αi < α′′i < αi+1}, otherwise.

It can be shown that 〈Cα | α < λ+〉 is a relativized Ostaszewski square sequence [Rin14],
but here we shall only need the following.

Lemma 2.1. For every limit α < λ+:

(1) Cα is a club in α of order-type ≤ λ;
(2) if β ∈ acc(Cα), then Cβ = Cα ∩ β;
(3) if otp(Cα) = λ, then h(β) = h(α) for all β ∈ Cα .

Proof. Fix a limit ordinal α < λ+.
(1) If dom(gα) < α, then Cα = dα \ dom(gα) is a club in α of order-type ≤

otp(dα) ≤ λ. Note that acc(Cα) ⊆ acc(dα).
If dom(gα) = α, then since αi < α′′i ≤ αi+1 for all i < otp(dα), we have acc(Cα) ⊆

acc(dα) and otp(Cα) ≤ otp(dα). In particular, Cα is a club in α of order-type ≤ λ.
(2) Fix β ∈ acc(Cα). From β ∈ acc(Cα) ⊆ acc(dα), we have otp(dα) > ω and dα =

acc(Dα). In particular, β ∈ acc(Dα), Xβ = Xα ∩ β, Dβ = Dα ∩ β, and dβ = acc(Dβ).
Consequently, the sequence 〈(pβi ,P

β
i , f

β
i ,F

β
i ) | i < otp(dβ)〉 is an initial segment of

the sequence 〈(pαi ,P
α
i , f

α
i ,F

α
i ) | i < otp(dα)〉, and gβ = gα�β.

If dom(gα) < α, then since β ∈ acc(Cα) = acc(dα \ dom(gα)), we get gα = gβ and
Cβ = dβ \ dom(gβ) = dα ∩ β \ dom(gα) = Cα ∩ β.

If dom(gα) = α, then as gβ = gα�β, we get {β ′′i | i < otp(dβ)} = {α′′i | i <
otp(dα)} ∩ β, and Cβ = Cα ∩ β.

(3) Clearly, if otp(Cα) = λ, then dα = acc(Dα). So h(β) = h(α) for all β ∈ acc(Cα).
Now, if β ∈ Cα \ acc(dα), then there exists some i < otp(dα) such that β = α′′i ∈ A

i
α

⊆ h−1
{α}. So h(β) = h(α). ut

For i < 2, set

Si := {α < λ+ | h(α) = i}, Gi := {α ∈ Si | otp(Cα) = λ},

Ei := {{α, δ} ∈ [Gi]
2
| α ∈ Cδ, min(Cα) > sup(Cδ ∩ α)}.

Finally, for i < 2, let

Vi := {χ : β → ω | β ∈ Gi, χ is E(1−i)-chromatic},

Fi := {{χ, χ
′
} ∈ [Vi]

2
| {dom(χ), dom(χ ′)} ∈ Ei, χ ⊆ χ ′}.
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Lemma 2.2. Chr(V0 × V1, F0 ∗ F1) ≤ ℵ0.

Proof. This is where Hajnal’s idea [Haj85] comes into play. Define c : V0 × V1 → ω as
follows. Given (χ, η) ∈ V0 × V1, as G0 ∩G1 = ∅, we have dom(χ) 6= dom(η); thus, let

c(χ, η) :=

{
2 · χ(dom(η)), dom(χ) > dom(η),
2 · η(dom(χ))+ 1, dom(η) > dom(χ).

Towards a contradiction, suppose that {(χ, η), (χ ′, η′)} ∈ F0 ∗ F1, while c(χ, η) =
c(χ ′, η′) =: n.

If n is even, we let χ∗ := χ ∪ χ ′. Since (χ, χ ′) ∈ F0, we know that χ∗ is
E1-chromatic. Since n is even, we have dom(η), dom(η′) ∈ χ∗. So χ∗(dom(η)) = n/2 =
χ∗(dom(η′)). But then the fact that χ∗ is E1-chromatic entails that {dom(η), dom(η′)}
6∈ E1, contradicting the hypothesis that {η, η′} ∈ F1.

If n is odd, we let η∗ := η∪η′. As (η, η′) ∈ F1, η∗ isE0-chromatic. Since n is odd, we
have η∗(dom(χ)) = (n− 1)/2 = η∗(dom(χ ′)). But then the fact that η∗ is E0-chromatic
entails that {dom(χ), dom(χ ′)} 6∈ E0, contradicting the hypothesis that {χ, χ ′} ∈ F0. ut

Definition 2.3. For i < 2 and a limit δ < λ+, write

Ciδ := {α ∈ Cδ ∩Gi | min(Cα) > sup(Cδ ∩ α)}.

Definition 2.4. For i < 2 and γ < λ+, we say that a coloring χ : γ → ω is i-suitable if:

• χ [Ciδ] is finite for all δ ≤ γ ;
• χ(α) 6= χ(δ) for all α < δ ≤ γ with {α, δ} ∈ Ei .

Lemma 2.5. For every i < 2, β < γ < λ+ with β 6∈ Gi , and an i-suitable coloring
χ : β → ω, there exists an i-suitable coloring χ ′ : γ → ω extending χ .

Proof. By virtually the same proof of Claim 3.1.3 from [Rin15a], building on Lemma
2.1(2) above. ut

Lemma 2.6. For i < 2, the notion of forcing

Qi := ({χ : β → ω | β ∈ λ+ \Gi, χ is i-suitable},⊆)

is (≤λ)-distributive.

Proof. For concreteness, we work with Q1.
Suppose that 〈�i | i < λ〉 is a given sequence of dense open subsets of Q1, p0 is

an arbitrary condition, and let us show that there exists p ∈
⋂
i<λ�i extending p0. Let

〈Nα | α < λ+〉 be an increasing and continuous sequence of elementary submodels of
(H(θ),∈,≤θ ), each of size λ, such that 〈Dδ | δ < λ+〉,Q1, 〈�i | i < λ〉, p0 ∈ N0, and
〈Nβ | β ≤ α〉 ∈ Nα+1 for all α < λ+.

Set E := {δ < λ+ | Nδ ∩ λ
+
= δ}. By the choice of 〈(Dα, Xα) | α < λ+〉, let us pick

some α < λ+ with otp(Dα) = λ such that h(α) = 0 and acc(Dα) ⊆ E.
Let {αi | i≤λ} denote the increasing enumeration of acc(Dα)∪{α}. WriteMi :=Nαi .

Notice that for all i < λ, since 〈Nβ | β ≤ αi〉 ∈ Nαi+1 ⊆ Mi+1 and 〈Dδ | δ < λ+〉



Hedetniemi’s conjecture for uncountable graphs 291

∈ Mi+1, we have 〈Mj | j ≤ i〉 ∈ Mi+1. Also notice that for all i ≤ λ, we have h(αi) = 0
and Mi ∩ λ

+
= αi ∈ S0. In particular, αi ∈ λ+ \G1.

We shall recursively define an increasing sequence 〈pi | i < λ〉 of conditions that will
satisfy the following for all i < λ:

• pi+1 ∈ �i ;
• 〈pj | j ≤ i〉 ∈ Mi+1;
• dom(pi) = αi whenever i > 0.

By recursion on i < λ:

I p0 was already given to us, and indeed p0 ∈ M1.
I Suppose that i < λ, and 〈pj | j ≤ i〉 has already been defined, and is an element

of Mi+1. In particular, pi ∈ Mi+1. We claim that the set 9i := {q ∈ �i | q ⊇ pi,

dom(q) = αi+1} is nonempty. To see this, notice that since pi, �i ∈ Mi+1, elementarity
of Mi+1 yields some p ∈ �i ∩ Mi+1 extending pi . Then, from Mi+1 ∩ λ

+
= αi+1,

we have dom(p) < αi+1, and then by Lemma 2.5, we infer the existence of a 1-suitable
coloring q extending p with dom(q) = αi+1. As αi+1 ∈ S0, q is a legitimate condition,
and since �i is open, we deduce that q is in �i , testifying that 9i is nonempty.

Thus, we let pi+1 be the ≤θ -least element of 9i . Since 9i is defined from parameters
within Mi+2, and by the canonical choice of pi+1, we have pi+1 ∈ Mi+2. Altogether,
〈pj | j ≤ i + 1〉 ∈ Mi+2.
I Suppose that i < λ is a nonzero limit ordinal, and 〈pj | j < i〉 has already been

defined by our canonical process. Set pi :=
⋃
j<i pj . Then dom(pi) = αi , and since pi

is the limit of an increasing chain of 1-suitable colorings, pi is E1-chromatic, and pi[C1
β ]

is finite for every β < αi . Thus, to see that pi is 1-suitable, we are left with verifying
that pi[C1

αi
] is finite. As h(αi) = 0, Lemma 2.1(2)&(3) shows that h(β) 6= 1 for all

β ∈ Cα ⊇ Cαi , so C1
αi
= ∅, which entails that pi[C1

αi
] is finite indeed. Thus, pi is a

legitimate condition.
By the canonical process, and the fact that 〈Mj | j ≤ i〉 ∈ Mi+1, we have 〈pj | j < i〉

∈ Mi+1, and hence pi =
⋃
j<i pj ∈ Mi+1. So 〈pj | j ≤ i〉 ∈ Mi+1.

This completes the construction.
Set p :=

⋃
i<λ pi . Then p is E1-chromatic, and p[C1

β ] is finite for every β < α. As
dom(p) = α and C1

α is empty, we find that p is a legitimate condition. Consequently, p
is an element of

⋂
i<λ�i that extends p0. ut

It is clear that |Vi | ≤ 2λ = λ+ for i < 2, so it remains to establish the following.

Lemma 2.7. Chr(Vi, Fi) = λ+ for every i < 2.

Proof. For concreteness, we prove that Chr(V0, F0) = λ
+.

Towards a contradiction, suppose that c : V0 → λ is F0-chromatic. Let G be
Q1-generic over V , and work in V [G].

Set χ∗ :=
⋃

G. Since G is directed, for every α, δ ∈ dom(χ∗) there exists χ ∈ G
such that {α, δ} ⊆ dom(χ), and hence χ∗(α) 6= χ∗(δ) whenever α, δ ∈ E1. By Lem-
ma 2.5, we also know that dom(χ∗) ≥ γ for all γ < λ+. Altogether, χ∗ : λ+ → ω
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is an E1-chromatic coloring, and so are its initial segments. In particular, we may derive
a coloring c∗ : G0 → λ by letting c∗(β) := c(χ∗�β) for all β ∈ G0. Since c is F0-
chromatic, we infer that c∗ is E0-chromatic. That is, c∗ witnesses that Chr(G0, E0) ≤ λ.

For all i < λ, set Hi := {α ∈ G0 | c
∗(α) = i} and Mi := {min(Cα) | α ∈ Hi}.

Define a function hi : λ+→ λ+ by letting, for all τ < λ+,

hi(τ ) :=

{
min{α ∈ Hi | min(Cα) > τ }, sup(Mi) = λ

+,

sup(Mi), otherwise.

Then, for all i < λ, set

Ai :=

{
rng(hi), sup(Mi) = λ

+,

λ+, sup(Mi) < λ+,

and
K := {β < λ+ | ∀i < λ, hi[β] ⊆ β}.

Finally, define a function g : λ+ → λ+12 by letting g(α)(i) = 1 iff (i < λ and
α ∈ Ai) or (i = λ and α ∈ K). Note that by Lemma 2.6, any initial segment of g belongs
to the ground model.

Work back in V . Let p0 ∈ Q1 be such that

p0  ġ : λ̌
+
→

λ̌+12, and c∗ is E0-chromatic.

By possibly extending p0, we may moreover assume that p0 forces that {α < λ+ |

g(α)(i) = 1} is unbounded in λ+ for all i ≤ λ, and knows about the interaction of g
with c∗.

As any initial segment of g belongs to V , it makes sense to consider the set

Z := {(p, f ) ∈ Q1 ×
<λ+(λ+12) | p0 ⊆ p Q1 ġ� dom(f ) = f̌ }.

Let 〈Nα | α < λ+〉 be an increasing and continuous sequence of elementary submod-
els of (H(θ),∈,≤θ ), each of size λ, such that 〈Dδ | δ < λ+〉,Q1, ψ, ġ, p0 ∈ N0, and
〈Nβ | β ≤ α〉 ∈ Nα+1 for all α < λ+.

Set E := {δ < λ+ | Nδ ∩ λ
+
= δ}. By the choice of 〈(Dα, Xα) | α < λ+〉, let us pick

some α < λ+ with otp(Dα) = λ such that h(α) = 0, Xα = ψ[Z] ∩α, and acc(Dα) ⊆ E.
Let {αi | i≤λ} denote the increasing enumeration of acc(Dα)∪{α}. WriteMi :=Nαi .

Notice that for all i < λ, we have 〈Mj | j ≤ i〉 ∈ Mi+1. Also, we have h(αi) = 0 and
Mi ∩ λ

+
= αi ∈ S0 for all i ≤ λ.

We shall recursively define a sequence 〈(pi, fi) | i < λ〉 of pairs that will satisfy the
following for all i < λ:

• pi+1  ġ�α̌i = f̌i+1;
• αi ≤ dom(pi) < αi+1;
• 〈pj | j ≤ i〉 is an increasing sequence of conditions that belongs to Mi+1.
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By recursion on i < λ:

I p0 was already given to us, and indeed p0 ∈ M1. Set f0 := ∅.
I Suppose that i < λ, and 〈pj | j ≤ i〉 has already been defined, and is an element

of Mi+1. In particular, pi ∈ Mi+1. By Lemmas 2.5 and 2.6, the set 9i := {q ∈ Q1 |

q ⊇ pi, αi < dom(q) < αi+1, q decides ġ�αi} is nonempty. Thus, we let pi+1 be the
≤θ -least element of 9i , and let fi+1 be such that pi+1  ġ�α̌i = f̌i+1.

As 9i is defined from parameters within Mi+2, and by the canonical choice of pi+1,
we have pi+1 ∈ Mi+2. Altogether, 〈pj | j ≤ i + 1〉 ∈ Mi+2.
I Suppose that i < λ is a nonzero limit ordinal, and 〈(pj , fj ) | j < i〉 has already

been defined by our canonical process. Set pi :=
⋃
j<i pj and fi :=

⋃
j<i pj . Then

dom(pi) = αi , and since pi is the limit of an increasing chain of 1-suitable colorings, pi
is chromatic, and pi[C1

β ] is finite for every β < αi . Thus, to see that pi is 1-suitable, it
remains to verify that pi[C1

αi
] is finite. As h(αi) = 0, Lemma 2.1 shows that h(β) 6= 1

for all β ∈ Cαi , so pi[C1
αi
] = ∅ is finite indeed, and pi is a legitimate condition.

By the canonical process, and as 〈Mj | j ≤ i〉 ∈ Mi+1, we have 〈pj | j < i〉 ∈ Mi+1,
and hence pi =

⋃
j<i pj ∈ Mi+1. So 〈pj | j ≤ i〉 ∈ Mi+1.

This completes the construction. Set p :=
⋃
i<λ pi . Then p is a legitimate condition.

Clearly, {(pi, fi) | i < λ} ⊆ Z. Note that for all i < λ, as Q1, pi, ġ, αi, ψ ∈ Mi+1,
we have ψ(pi, fi) ∈ Mi+1. That is, ψ(pi, fi) ∈ ψ(Z) ∩ αi+1 = Xα ∩ αi+1. It follows
that 〈(pi, fi) | 0 < i < λ〉 = 〈(pαi , f

α
i ) | 0 < i < λ〉!

So, p  ġ�α̌ = ǧα . Consequently, p forces that Ai ∩ α = Aiα for all i < λ, and
K ∩ α = Kα . Also, since p0 forces that {α < λ+ | g(α)(i) = 1} is unbounded in λ+ for
all i ≤ λ, we find that sup(Kα ∩ αi) = sup(Aiα ∩ αi) = αi and αi < α′′i < αi+1 for all
i < λ. In particular, {α′′i | i < λ} ⊆ Cα , and p  min(Cα) = α′′0 ≥ min(K). Let p∗ be
an extension of p that decides c∗(α), say p∗  c∗(α) = ǐ, and decides hi�α.

Then p∗ forces that sup(Mi) = λ
+, because otherwise

sup(Mi) < min(K) ≤ min(Cα),

contradicting the fact that i = c∗(α) entails sup(Mi) ≥ min(Cα).
The upcoming considerations are all forced by p∗. We have αi < α′i ≤ α

′′

i < αi+1
with α′i ∈ K and α′′i ∈ Ai∩Cα . Since α′′i ∈ Ai and sup(Mi) = λ

+, we have α′′i ∈ rng(hi).
Fix τ < α such that hi(τ ) = α′′i . Then min(Cα′′i ) > τ . As hi[α′i] ⊆ α

′

i ≤ α
′′

i = hi(τ ), we
have τ ≥ α′i , and hence min(Cα′′i ) > τ ≥ α′i > sup(Cα∩α′′i ). It follows that {α′′i , α} ∈ E0.
Recalling that α′′i ∈ rng(hi) ⊆ Hi , we conclude that c∗(α′′i ) = i = c

∗(α). So p∗ forces
that c∗ is not an E0-chromatic coloring, contradicting the fact that p∗ extends p0. ut

Remark 2.1. Péter Komjáth pointed out that the above construction shows that ♦λ yields
a sequence 〈Gi | i < λ+〉 of graphs, each of size and chromatic number λ+, such that
Chr(Gi × Gj ) = ℵ0 for all i < j < λ+.
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Proof of Corollary 1

If λ = ℵ0, then κ = ℵ0, and Hajnal’s example [Haj85] apply.4 Otherwise, since ♦λ
holds in Gödel’s constructible universe (see [ASS87]), let us invoke the main result of
this paper and pick subsets E0, E1 of [λ+]2 with Chr(λ+, E0) = Chr(λ+, E1) = λ

+ and
Chr(λ+×λ+, E0 ∗E1) ≤ ℵ0 as witnessed by c : λ+×λ+→ ω. Set F0 := E0∪[κ]

2 and
F1 := E1∪[κ]

2. Clearly, Chr(λ+, F0) = Chr(λ+, F1) = λ
+, and Chr(λ+×λ+, F0∗F1) ≥

Chr(κ, [κ]2) = κ . Finally, fix an injection d : κ×2→ κ \ω, and define c′ : λ+×λ+→ κ

by letting

c′(α, β) :=


d(α, 0), α < κ,

d(β, 1), β < κ ≤ α,

c(α, β), otherwise.

Then c′ is F0 ∗ F1-chromatic, and hence Chr(λ+ × λ+, F0 ∗ F1) = κ .

Proof of Corollary 2

De Bruijn and Erdős [dBE51] proved that if G is a graph, k < ω, and every subgraph of
G of size < ω has chromatic number ≤ k, then Chr(G) ≤ k. The statement remains true
after replacing ω in the above statement with a strongly-compact cardinal θ .

Hajnal [Haj04] proved that if G0,G1 are graphs of infinite chromatic number, then
every subgraph of G0 of size < Chr(G1) has chromatic number ≤ Chr(G0 × G1).

Thus, for a cardinal κ , let ϕ(κ) be the least strongly-compact cardinal θ ≥ κ . Towards
a contradiction, suppose that G0,G1 are graphs, each of chromatic number ≥ θ , while
Chr(G0 × G1) = κ ′ < κ . Then, by Hajnal’s finding, every subgraph of G0 of size < θ

would have chromatic number ≤ Chr(G0×G1) = κ
′. But then the generalized de Bruijn–

Erdős theorem entails that Chr(G) ≤ κ ′ < θ . This is a contradiction.

3. A generalization

The main result of this paper generalizes as follows.

Theorem B. Suppose that λ ≥ κ are infinite cardinals. If λ > ℵ0, suppose in addition
that ♦λ holds. Then for every positive integer n, there exist graphs 〈Gi | i < n + 1〉 of
size λ+ such that:

• Chr(×i∈I
Gi) = λ+ for every I ∈ [n+ 1]n;

• Chr(×i<n+1 Gi) = κ .

Proof. We focus on the case λ > ℵ0 = κ . All the ideas needed to modify the construction
of [Haj85] to establish the case λ = ℵ0 will appear in the proof.

4 In fact, a minor modification to the proof of the main theorem allows one to derive the case
λ = ℵ0 as well.
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Let 〈(Dα, Xα) | α < λ+〉, h : λ+ → λ+, and 〈Cα | α < λ+〉 be as in the proof from
the previous section. For all i < ω, set

Si := {α < λ+ | h(α) = i}, Gi := {α ∈ Si | otp(Cα) = λ},

Ei := {{α, δ} ∈ [Gi]
2
| α ∈ Cδ,min(Cα) > sup(Cδ ∩ α)},

Ciδ := {α ∈ Cδ ∩Gi | min(Cα) > sup(Cδ ∩ α)} for all δ < λ+.

For i < ω and γ < λ+, we say that a coloring χ : γ → ω is i-suitable if:

• χ [Ciδ] is finite for all δ ≤ γ ;
• χ(α) 6= χ(δ) for all α < δ ≤ γ with {α, δ} ∈ Ei .

As in the previous section, for every i < ω and β < γ < λ+ with β 6∈ Gi , and an i-
suitable coloring χ : β → ω, there exists an i-suitable coloring χ ′ : γ → ω extending χ .

Set Qi := ({χ : β → ω | β ∈ λ+ \Gi, χ is i-suitable},⊆). Then a straightforward
variation of the proof of Lemma 2.6 shows that the product forcing×i∈I

Qi is (≤λ)-
distributive for every I ∈ [ω]<ω. Moreover, for I ∈ [ω]<ω, as 〈Gi | i ∈ I 〉 are pairwise
disjoint, the product forcing×i∈I

Qi is isomorphic to

QI :=
({
χ : β → ω

∣∣∣ β < λ+ &
∧
i∈I

(β 6∈ Gi & χ is i-suitable)
}
,⊆
)
.

Finally, fix a positive integer n < ω, and for all i < n+ 1, set

Vi :=
{
χ : β → ω

∣∣∣ β ∈⊎{Gj | j < n+ 1, j 6= i}, χ is Ei-chromatic
}
,

Fi :=
{
{χ, χ ′} ∈ [Vi]

2
∣∣∣ {dom(χ), dom(χ ′)} ∈

⊎
j<n+1

Ej , χ ⊆ χ
′

}
,

Vi := (Vi, Fi).

Lemma 3.1. Chr(V0 × · · · × Vn) ≤ ℵ0.

Proof. Define c : V0 × · · · × Vn→ [ω
3
]
<ω by

c(χ0, . . . , χn) := {(χi(dom(χj )), i, j) | i, j < n+ 1, dom(χj ) ∈ Gi ∩ dom(χi)}.

Note that, by definition of Vi , h(dom(χi)) 6= i for all i ≤ n. Let us also point out that
c(χ0, . . . , χn) is nonempty. For this, define a sequence 〈ai | i < n+1〉 by letting a0 := χ0,
and aj+1 := χh(dom(aj )) for all j < n.

If there exists some j < n such that dom(aj ) < dom(aj+1), then clearly(
aj+1(dom(aj )), h(dom(aj+1)), h(dom(aj ))

)
∈ c(χ0, . . . , χn),

and we are done. Otherwise, we have dom(a0) > dom(a1) > · · · > dom(an), so set
an+1 := χh(dom(an)). Let i < n be such that an+1 = ai . Then dom(an+1) = dom(ai) >
dom(an), and hence(

an+1(dom(an)), h(dom(an+1)), h(dom(an))
)
∈ c(χ0, . . . , χn).
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Finally, suppose towards a contradiction that {(χ0, . . . , χn), (χ
′

0, . . . , χ
′
n)} ∈ F0∗· · ·∗Fn,

while c(χ0, . . . , χn) = c(χ
′

0, . . . , χ
′
n). Pick (m, i, j) ∈ c(χ0, . . . , χn). By (χi, χ ′i ) ∈ Fi ,

we know that χ∗ := χi ∪ χ ′i is Ei-chromatic. So, as χ∗(dom(χj )) = m = χ∗(dom(χ ′j )),
we see that {dom(χj ), dom(χ ′j )} 6∈ Ei , contradicting the fact that {χj , χ ′j } ∈ Fj and
h(dom(χj )) = i = h(dom(χ ′j )). ut

Lemma 3.2. Chr(×i∈I
Vi) = λ+ for every I ∈ [n+ 1]n.

Proof. Fix I ∈ [n+ 1]n. Let k < n+ 1 be such that n+ 1 = (I ] {k}).
Towards a contradiction, suppose that c :×i∈I

Vi → λ is ∗i∈IFi-chromatic. Let
G be QI -generic over V , and work in V [G]. Set χ∗ :=

⋃
G. Then χ∗ : λ+ → ω is

Ei-chromatic for all i ∈ I . Notice that for all i ∈ I and β ∈ Gk , as i 6= k, we have
χ∗�β ∈ Vi . Thus, we may derive a coloring c∗ : Gk → λ by letting, for all β ∈ Gk ,

c∗(β) := c
(∏
i∈I

χ∗�β
)
.

Since c is ∗i∈IFi-chromatic, we find that c∗ is Ek-chromatic. That is, c∗ witnesses that
Chr(Gk, Ek) ≤ λ.

For concreteness, let us assume that k = 0. DefineHi,Mi, hi, Ai,K, g as in the proof
of Lemma 2.7. Work back in V . Let p0 ∈ QI be such that

p0  ġ : λ̌
+
→

λ̌+12, and c∗ is E0-chromatic.

By possibly extending p0, we may moreover assume that p0 forces that {α < λ+ |

g(α)(i) = 1} is unbounded in λ+ for all i ≤ λ, and knows about the interaction of g
with c∗.

As any initial segment of g belongs to V , we shall consider the set

Z := {(p, f ) ∈ QI × <λ+(λ+12) | p0 ⊆ p QI ġ� dom(f ) = f̌ }.

Let 〈Nα | α < λ+〉 be an increasing and continuous sequence of elementary submod-
els of (H(θ),∈,≤θ ), each of size λ, such that 〈Dδ | δ < λ+〉,QI , ψ, ġ, p0 ∈ N0 and
〈Nβ | β ≤ α〉 ∈ Nα+1 for all α < λ+.

Pick some α < λ+ with otp(Dα) = λ such that h(α) = 0, Xα = ψ[Z] ∩ α, and
acc(Dα) ⊆ E := {δ < λ+ | Nδ ∩ λ

+
= δ}.

Let {αi | i ≤ λ} denote the increasing enumeration of acc(Dα) ∪ {α}. We have
h(αi) = 0 and Mi ∩ λ

+
= αi ∈ S0 for all i ≤ λ. Write Mi := Nαi .

Recursively and Eθ -canonically define a continuous sequence 〈(pi, fi) | i < λ〉 of
pairs that will satisfy the following for all i < λ:

• pi+1  ġ�α̌i = f̌i+1;
• αi ≤ dom(pi) < αi+1;
• 〈pj | j ≤ i〉 is an increasing sequence of conditions that belongs to Mi+1.
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This process is feasible thanks to the fact that Cjαi is empty for every limit i < λ and every
j ∈ I .5 Then 〈(pi, fi) | 0 < i < λ〉 = 〈(pαi , f

α
i ) | 0 < i < λ〉, and p :=

⋃
i<λ pi is a

legitimate condition. Let p∗ be an extension of p that decides c∗(α), say p∗  c∗(α) = ǐ,
and decides hi�α. Then p∗  {α′′i , α} ∈ E0 & α′′i ∈ rng(hi) ⊆ Hi . So p∗ forces that c∗ is
not an E0-chromatic coloring, contradicting the fact that p∗ extends p0. ut

This completes the proof of Theorem B. ut
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Added in proof. The main result of [Rin15b] implies the following generalization of Corollary 1:
In any set-forcing extension of Gödel’s constructible universe, all instances of the Infinite Weak
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