J. Eur. Math. Soc. 19, 285-298

DOI 10.4171/JEMS/666

Assaf Rinot

Hedetniemi's conjecture for uncountable graphs

Received February 2, 2014 and in revised form February 17, 2014

Abstract. It is proved that in Gödel's constructible universe, for every infinite successor cardinal κ , there exist graphs \mathcal{G} and \mathcal{H} of size and chromatic number κ , for which the product graph $\mathcal{G} \times \mathcal{H}$ is countably chromatic.

In particular, this provides an affirmative answer to a question of Hajnal from 1985.

Keywords. Hedetniemi's conjecture, product graph, almost countably chromatic, incompactness, constructible universe, Ostaszewski square

1. Introduction

A graph \mathcal{G} is a pair (G, E), where $E \subseteq [G]^2 := \{\{x, y\} \mid x, y \in G \& x \neq y\}$. The *chromatic number* of \mathcal{G} , denoted $\operatorname{Chr}(\mathcal{G})$, is the least (finite or infinite) cardinal κ such that G is the union of κ many E-independent sets. Equivalently, $\operatorname{Chr}(\mathcal{G})$ is the least cardinal κ for which there exists an E-chromatic κ -coloring of G, that is, a coloring $\chi : G \to \kappa$ that satisfies $\chi(x) \neq \chi(y)$ whenever xEy.

Given graphs $\mathcal{G}_0 = (G_0, E_0)$ and $\mathcal{G}_1 = (G_1, E_1)$, the product graph $\mathcal{G}_0 \times \mathcal{G}_1$ is defined as $(G_0 \times G_1, E_0 * E_1)$, where

 $G_0 \times G_1 := \{ (g_0, g_1) \mid g_0 \in G_0, g_1 \in G_1 \}, \\ E_0 * E_1 := \{ \{ (g_0, g_1), (g'_0, g'_1) \} \mid (g_0, g'_0) \in E_0 \text{ and } (g_1, g'_1) \in E_1 \}.$

Clearly, a chromatic κ -coloring of one of the two graphs induces a chromatic κ -coloring of their product, and hence $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) \leq \min{\operatorname{Chr}(\mathcal{G}_0), \operatorname{Chr}(\mathcal{G}_1)}$. It is then natural to ask whether this inequality is best possible, and the following answer was conjectured by Hedetniemi fifty years ago:

Hedetniemi's Conjecture ([Hed66]). For all finite graphs \mathcal{G}_0 and \mathcal{G}_1 ,

 $Chr(\mathcal{G}_0 \times \mathcal{G}_1) = \min\{Chr(\mathcal{G}_0), Chr(\mathcal{G}_1)\}.$

In [BEL76], Burr, Erdős and Lovász rediscovered Hedetniemi's conjecture through the perspective of *Ramsey-type graphs*, and in his survey paper [Tar08], Tardif made explicit a well-known Ramsey-type consequence of Hedetniemi's conjecture:

Mathematics Subject Classification (2010): Primary 03E75, 05C63; Secondary 03E35, 05C15

A. Rinot: Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel; e-mail: rinotas@math.biu.ac.il

The Weak Hedetniemi Conjecture ([Tar08]). For every positive integer k, there exists a positive integer $\varphi(k)$ such that if $\operatorname{Chr}(\mathcal{G}_0) = \operatorname{Chr}(\mathcal{G}_1) = \varphi(k)$, then $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) \ge k$.

The weak conjecture goes back to [PR81], but nonetheless it is still standing.

As sometimes happens, infinitary versions of problems in graph theory lead to problems in set theory of independent interest (see [Sou08] for a recent treatment). Hedetniemi's conjecture is a wonderful example of such a problem—indeed, in [JT95], the finitary version appeared as Problem 11.1, and the infinitary version appeared as Problem 16.13.

This paper is dedicated to the solution of the infinitary counterparts. In [Haj85], Hajnal proved that for every infinite cardinal κ , there exist graphs \mathcal{G}_0 , \mathcal{G}_1 of chromatic number κ^+ such that Chr($\mathcal{G}_0 \times \mathcal{G}_1$) = κ . In [JJ74], [Tod81], [ASS87], [Dav90], [AS93] more structural counterexamples were constructed in the form of pairs of nonspecial κ^+ -Aronszajn trees whose product is special. All of these show that a one-cardinal gap is possible, but does not refute the weak conjecture:

Infinite Weak Hedetniemi Conjecture. For every infinite cardinal κ , there exists a cardinal $\varphi(\kappa)$ such that if $\operatorname{Chr}(\mathcal{G}_0) = \operatorname{Chr}(\mathcal{G}_1) = \varphi(\kappa)$, then $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) \ge \kappa$.

Note that since it is possible to get the consistency of $\varphi(\kappa) > 2^{\kappa}$, the nontrivial context to examine the infinite weak conjecture (and its instances) is that of GCH. In his original paper [Haj85], Hajnal asked about the consistency of GCH together with an infinite gap (and this was echoed in [JT95]), but as of now, the best known result in this vein is Soukup's model [Sou88] of GCH with a counterexample of gap 2.

Let us point out a central obstruction towards getting the consistency of GCH with larger gaps. Hajnal discovered (the proof may be found in [Haj04]) that if \mathcal{G}_0 , \mathcal{G}_1 is a pair of graphs of size and chromatic number λ whose product has chromatic number κ , then \mathcal{G}_0 and \mathcal{G}_1 are (κ, λ) -chromatic. That is, \mathcal{G}_i has chromatic number λ , but all of its smaller subgraphs have chromatic number $\leq \kappa$. Thus, in simple words, if \mathcal{G}_0 , \mathcal{G}_1 were to witness the failure of an instance of the weak conjecture, then \mathcal{G}_0 , \mathcal{G}_1 are in particular witnesses to the incompactness of infinite chromatic numbers.

The question of the very existence of incompactness graphs is a difficult set-theoretic question that goes back to a paper by Erdős and Hajnal [EH66], which, incidently, is from the same year of Hedetniemi's paper [Hed66]. Moreover, unlike the non-GCH context, answers in the context of GCH are quite rare, as we shall now describe.

A model of ZFC + GCH in which there exists an (\aleph_0, \aleph_2) -chromatic graph of size \aleph_2 was obtained by Baumgartner [Bau84] via a very complicated notion of forcing, and, indeed, Soukup's model [Sou88] of GCH with $\varphi(\aleph_0) > \aleph_2$ is a further sophistication of Baumgartner's attack. Unfortunately, Baumgartner's approach does not seem to generalize to yield a model of an (\aleph_0, \aleph_3) -chromatic graph of size \aleph_3 . In fact, at the time of writing his chapter for the *Handbook of Combinatorics*, Hajnal thought that the problem of getting the consistency of GCH together with an (\aleph_0, \aleph_3) -chromatic graph of size \aleph_3 "seems to be hopelessly difficult at present" (see page 2093 of [GGL95]).

So, if GCH is consistent with $\varphi(\aleph_0) > \aleph_3$, then this will require an alternative construction.

An alternative construction of incompactness graphs was finally given by Shelah [She90], and up to recently, this has been the only known method for getting the consistency of GCH together with (\aleph_0, λ) -chromatic graphs of size λ , for arbitrarily large λ . But, as Hajnal mentioned in a more recent paper [Haj04], there was no success in generalizing Shelah's result (from incompactness to Hedetniemi).

Recently, the author [Rin15a] found yet another construction of incompactness graphs—a construction which is inspired by the concept of *Ostaszewski square* from [Rin14]. He denoted these graphs by $G(\vec{C})$ and identified the features of G and \vec{C} that make $G(\vec{C})$ into (\aleph_0, λ^+) -chromatic graphs. Even more recently, answering a question of Magidor, he proved that, for an appropriate choice of \vec{C} , these highly chromatic graphs can be made countably chromatic in a certain "nice" forcing extension [Rin17]. In this paper, these new findings are combined with the basic idea of Hajnal's 1985 construction to obtain the desired pair of graphs, arbitrarily high:

Main Theorem. If λ is an uncountable cardinal, and \bigotimes_{λ} holds, then there exist graphs $\mathcal{G}_0, \mathcal{G}_1$ of size λ^+ such that:

- $\operatorname{Chr}(\mathcal{G}_0) = \operatorname{Chr}(\mathcal{G}_1) = \lambda^+;$
- $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) = \aleph_0.$

Remark 1.1. It is a curious fact that while the graphs \mathcal{G}_0 , \mathcal{G}_1 are derived directly from \bigotimes_{λ} , their analysis relies heavily on passing to forcing extensions of the universe. In fact, we do not know of a forcing-free proof.

Recalling that Gödel's constructible universe is a model of ZFC + GCH in which the principle \bigotimes_{λ} holds for every uncountable cardinal λ , we get:

Corollary 1. In Gödel's constructible universe, GCH holds and all instances of the Infinite Weak Hedetniemi Conjecture fail. Indeed, for any infinite cardinals $\lambda \ge \kappa$, there exist graphs $\mathcal{G}_0, \mathcal{G}_1$ with $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) = \kappa$ such that $\operatorname{Chr}(\mathcal{G}_0) = \operatorname{Chr}(\mathcal{G}_1) > \lambda$.

Recalling that counterexamples to instances of the weak conjecture are in particular incompactness graphs, a straightforward generalization of the de Bruin–Erdős theorem [dBE51] then entails:

Corollary 2. If there exist class many strongly-compact cardinals, then the Infinite Weak Hedetniemi Conjecture holds.

Altogether, this establishes the independence of the Infinite Weak Hedetniemi Conjecture from ZFC + GCH.

In addition, Corollary 1 settles the (unnumbered) Problem from [Haj85], Problem 16.13 from [JT95], Problem 40 from [Haj04], and Problem 2.4 from [Sou08].

Organization of this paper. In Section 2 we prove the main result of this paper, and its subsequent corollaries. In Section 3, we also settle the generalized problem concerning the product of n + 1 graphs ($0 < n < \omega$).

2. Proof of the Main Theorem

Suppose that λ is an uncountable cardinal, and \bigotimes_{λ} holds. By \bigotimes_{λ} and a standard partitioning argument [Dev78], [Rin14], let us fix a sequence $\langle (D_{\alpha}, X_{\alpha}) | \alpha < \lambda^{+} \rangle$ along with a function $h : \lambda^{+} \to \lambda^{+}$ such that:

- 1. for every limit $\alpha < \lambda^+$, D_{α} is a club in α of order-type $\leq \lambda$;
- 2. if $\beta \in \operatorname{acc}(D_{\alpha})$, then $D_{\beta} = D_{\alpha} \cap \beta$, $X_{\beta} = X_{\alpha} \cap \beta$ and $h(\beta) = h(\alpha)$;¹
- 3. for every $X \subseteq \lambda^+$, a club $E \subseteq \lambda^+$ and $\varsigma < \lambda^+$, there exists a limit $\alpha < \lambda^+$ with $otp(D_{\alpha}) = \lambda$ such that $h(\alpha) = \varsigma$, $X_{\alpha} = X \cap \alpha$ and $acc(D_{\alpha}) \subseteq E$.

Clearly, $\langle X_{\alpha} \mid \alpha \in G_i \rangle$ is a $\Diamond(G_i)$ -sequence, where $G_i := \{\alpha < \lambda^+ \mid h(\alpha) = i \& \operatorname{otp}(D_{\alpha}) = \lambda\}$. Since G_0 and G_1 are nonreflecting and pairwise-disjoint stationary sets, it is then natural to use $G_0(\overrightarrow{D})$ and $G_1(\overrightarrow{D})$ as the building blocks of our graphs.² Loosely speaking, one of the features that we would need is the ability to kill (via forcing) the guessing feature of $\langle X_{\alpha} \mid \alpha \in G_0 \rangle$, while preserving the features of $\langle X_{\alpha} \mid \alpha \in G_1 \rangle$, and vice versa. For this, we shall borrow an idea from [She77, proof of Theorem 2.4], where a model of $\Diamond(\omega_1 \setminus S) + \neg \Diamond(S)$ was obtained for the first time.³

Fix a large enough regular cardinal $\theta \gg \lambda$ together with a well-ordering \leq_{θ} of \mathcal{H}_{θ} . Fix a bijection $\psi : ({}^{<\lambda^+}\omega) \times ({}^{<\lambda^+}({}^{\lambda+1}2)) \leftrightarrow \lambda^+$.

For every limit $\alpha < \lambda^+$ with $\sup(\operatorname{acc}(D_\alpha)) < \alpha$, let d_α be a cofinal subset of α of order-type ω , consisting of successor ordinals. For $\alpha < \lambda^+$ with $\sup(\operatorname{acc}(D_\alpha)) = \alpha$, let $d_\alpha := \operatorname{acc}(D_\alpha)$.

Fix a limit ordinal $\alpha < \lambda^+$. We would like to determine a function $g_\alpha \in {}^{\leq \alpha}(\lambda^{+1}2)$. For this, let $\{\alpha_i \mid i < \operatorname{otp}(d_\alpha)\}$ be the increasing enumeration of d_α . Recursively define a sequence $\langle (p_i^\alpha, f_i^\alpha) \mid i < \operatorname{otp}(d_\alpha) \rangle$ as follows:

- Let $f_0 := \emptyset$ and $p_0 := \emptyset$.
- ► If $i < \operatorname{otp}(d_{\alpha})$ and $\langle (p_j^{\alpha}, f_j^{\alpha}) \mid j \leq i \rangle$ is defined, let

$$\mathcal{P}_{i}^{\alpha} := \{ p \in {}^{<\alpha_{i+1}}\omega \mid \psi(p, f) \in X_{\alpha} \cap \alpha_{i+1}, \ p \supseteq p_{i}, \ f \supseteq f_{i}, \ \operatorname{dom}(p) > \operatorname{dom}(f) = \alpha_{i} \},$$
$$\mathcal{F}_{i}^{\alpha} := \left\{ f \in {}^{\alpha_{i}}({}^{\lambda+1}2) \mid \psi(p, f) \in X_{\alpha} \cap \alpha_{i+1}, \ p = \min_{\leq \theta} \mathcal{P}_{i}^{\alpha}, \ f \supseteq f_{i} \right\},$$

and set

$$(p_{i+1}^{\alpha}, f_{i+1}^{\alpha}) := \begin{cases} (\min_{\leq_{\theta}} \mathcal{P}_{i}^{\alpha}, \min_{\leq_{\theta}} \mathcal{F}_{i}^{\alpha}), & \mathcal{P}_{i}^{\alpha} \neq \emptyset, \\ (\emptyset, \emptyset), & \text{otherwise} \end{cases}$$

► If $i < \operatorname{otp}(d_{\alpha})$ is a limit ordinal, and $\langle (p_j^{\alpha}, f_j^{\alpha}) \mid j < i \rangle$ is defined, let $p_i^{\alpha} := \bigcup_{j < i} p_j^{\alpha}$ and $f_i^{\alpha} := \bigcup_{j < i} f_j^{\alpha}$.

¹ Here, $\operatorname{acc}(A) := \{ \alpha \in \sup(A) \mid \sup(A \cap \alpha) = \alpha > 0 \}.$

² The graph $G(\vec{D})$ was introduced in [Rin15a], and it was proven there that if \vec{D} is a \Box_{λ} -sequence, and *G* is a nonreflecting subset of λ^+ , then $G(\vec{D})$ is (\aleph_0, κ) -chromatic for some cardinal κ .

³ The proof is not given in [She77], rather, it is given as the proof of Theorem 2.4 from [She80]. Personally, I learned that proof from Juris Steprāns.

This completes the construction of $\langle (p_i^{\alpha}, f_i^{\alpha}) | i < \operatorname{otp}(d_{\alpha}) \rangle$. Define

$$g_{\alpha} := \bigcup \{ f_i^{\alpha} \mid i < \operatorname{otp}(d_{\alpha}), \forall j < i \ (\mathcal{P}_j^{\alpha} \neq \emptyset) \},\$$

$$A_{\alpha}^i := \{ \beta < \operatorname{dom}(g_{\alpha}) \mid g_{\alpha}(\beta)(i) = 1, \ h(\beta) = h(\alpha) \} \text{ for all } i < \lambda,\$$

$$K_{\alpha} := \{ \beta < \operatorname{dom}(g_{\alpha}) \mid g_{\alpha}(\beta)(\lambda) = 1 \}.$$

For every $i < \operatorname{otp}(d_{\alpha})$, set $\alpha'_i := \min((K_{\alpha} \cup \{\alpha_{i+1}\}) \setminus \alpha_i + 1)$, and $\alpha''_i := \min((A^i_{\alpha} \cup \{\alpha_{i+1}\}) \setminus \alpha'_i)$. Finally, set

$$C_{\alpha} := \begin{cases} d_{\alpha} \setminus \operatorname{dom}(g_{\alpha}), & \operatorname{dom}(g_{\alpha}) < \alpha, \\ \operatorname{acc}(d_{\alpha}) \cup \{\alpha_i'' \mid i < \operatorname{otp}(d_{\alpha}), \alpha_i < \alpha_i'' < \alpha_{i+1}\}, & \operatorname{otherwise.} \end{cases}$$

It can be shown that $\langle C_{\alpha} | \alpha < \lambda^+ \rangle$ is a relativized Ostaszewski square sequence [Rin14], but here we shall only need the following.

Lemma 2.1. For every limit $\alpha < \lambda^+$:

(1) C_{α} is a club in α of order-type $\leq \lambda$;

(2) if $\beta \in \operatorname{acc}(C_{\alpha})$, then $C_{\beta} = C_{\alpha} \cap \beta$;

(3) *if* $otp(C_{\alpha}) = \lambda$, then $h(\beta) = h(\alpha)$ for all $\beta \in C_{\alpha}$.

Proof. Fix a limit ordinal $\alpha < \lambda^+$.

(1) If dom $(g_{\alpha}) < \alpha$, then $C_{\alpha} = d_{\alpha} \setminus \text{dom}(g_{\alpha})$ is a club in α of order-type $\leq \text{otp}(d_{\alpha}) \leq \lambda$. Note that $\text{acc}(C_{\alpha}) \subseteq \text{acc}(d_{\alpha})$.

If dom $(g_{\alpha}) = \alpha$, then since $\alpha_i < \alpha_i'' \le \alpha_{i+1}$ for all $i < \operatorname{otp}(d_{\alpha})$, we have $\operatorname{acc}(C_{\alpha}) \subseteq \operatorname{acc}(d_{\alpha})$ and $\operatorname{otp}(C_{\alpha}) \le \operatorname{otp}(d_{\alpha})$. In particular, C_{α} is a club in α of order-type $\le \lambda$.

(2) Fix $\beta \in \operatorname{acc}(C_{\alpha})$. From $\beta \in \operatorname{acc}(C_{\alpha}) \subseteq \operatorname{acc}(d_{\alpha})$, we have $\operatorname{otp}(d_{\alpha}) > \omega$ and $d_{\alpha} = \operatorname{acc}(D_{\alpha})$. In particular, $\beta \in \operatorname{acc}(D_{\alpha})$, $X_{\beta} = X_{\alpha} \cap \beta$, $D_{\beta} = D_{\alpha} \cap \beta$, and $d_{\beta} = \operatorname{acc}(D_{\beta})$. Consequently, the sequence $\langle (p_i^{\beta}, \mathcal{P}_i^{\beta}, f_i^{\beta}, \mathcal{F}_i^{\beta}) | i < \operatorname{otp}(d_{\beta}) \rangle$ is an initial segment of the sequence $\langle (p_i^{\alpha}, \mathcal{P}_i^{\alpha}, \mathcal{F}_i^{\alpha}) | i < \operatorname{otp}(d_{\alpha}) \rangle$, and $g_{\beta} = g_{\alpha} | \beta$.

If dom $(g_{\alpha}) < \alpha$, then since $\beta \in \operatorname{acc}(C_{\alpha}) = \operatorname{acc}(d_{\alpha} \setminus \operatorname{dom}(g_{\alpha}))$, we get $g_{\alpha} = g_{\beta}$ and $C_{\beta} = d_{\beta} \setminus \operatorname{dom}(g_{\beta}) = d_{\alpha} \cap \beta \setminus \operatorname{dom}(g_{\alpha}) = C_{\alpha} \cap \beta$.

If dom $(g_{\alpha}) = \alpha$, then as $g_{\beta} = g_{\alpha} \upharpoonright \beta$, we get $\{\beta_i'' \mid i < \operatorname{otp}(d_{\beta})\} = \{\alpha_i'' \mid i < \operatorname{otp}(d_{\alpha})\} \cap \beta$, and $C_{\beta} = C_{\alpha} \cap \beta$.

(3) Clearly, if $otp(C_{\alpha}) = \lambda$, then $d_{\alpha} = acc(D_{\alpha})$. So $h(\beta) = h(\alpha)$ for all $\beta \in acc(C_{\alpha})$. Now, if $\beta \in C_{\alpha} \setminus acc(d_{\alpha})$, then there exists some $i < otp(d_{\alpha})$ such that $\beta = \alpha_i'' \in A_{\alpha}^i \subseteq h^{-1}\{\alpha\}$. So $h(\beta) = h(\alpha)$.

For i < 2, set

$$S_i := \{ \alpha < \lambda^+ \mid h(\alpha) = i \}, \quad G_i := \{ \alpha \in S_i \mid \operatorname{otp}(C_\alpha) = \lambda \},$$
$$E_i := \{ \{ \alpha, \delta \} \in [G_i]^2 \mid \alpha \in C_\delta, \min(C_\alpha) > \sup(C_\delta \cap \alpha) \}.$$

Finally, for i < 2, let

$$V_i := \{\chi : \beta \to \omega \mid \beta \in G_i, \chi \text{ is } E_{(1-i)}\text{-chromatic}\},\$$

$$F_i := \{\{\chi, \chi'\} \in [V_i]^2 \mid \{\operatorname{dom}(\chi), \operatorname{dom}(\chi')\} \in E_i, \chi \subseteq \chi'\}.$$

Lemma 2.2. $Chr(V_0 \times V_1, F_0 * F_1) \le \aleph_0.$

Proof. This is where Hajnal's idea [Haj85] comes into play. Define $c : V_0 \times V_1 \to \omega$ as follows. Given $(\chi, \eta) \in V_0 \times V_1$, as $G_0 \cap G_1 = \emptyset$, we have dom $(\chi) \neq \text{dom}(\eta)$; thus, let

$$c(\chi, \eta) := \begin{cases} 2 \cdot \chi(\operatorname{dom}(\eta)), & \operatorname{dom}(\chi) > \operatorname{dom}(\eta), \\ 2 \cdot \eta(\operatorname{dom}(\chi)) + 1, & \operatorname{dom}(\eta) > \operatorname{dom}(\chi). \end{cases}$$

Towards a contradiction, suppose that $\{(\chi, \eta), (\chi', \eta')\} \in F_0 * F_1$, while $c(\chi, \eta) = c(\chi', \eta') =: n$.

If *n* is even, we let $\chi^* := \chi \cup \chi'$. Since $(\chi, \chi') \in F_0$, we know that χ^* is E_1 -chromatic. Since *n* is even, we have dom(η), dom(η') $\in \chi^*$. So $\chi^*(\text{dom}(\eta)) = n/2 = \chi^*(\text{dom}(\eta'))$. But then the fact that χ^* is E_1 -chromatic entails that $\{\text{dom}(\eta), \text{dom}(\eta')\} \notin E_1$, contradicting the hypothesis that $\{\eta, \eta'\} \in F_1$.

If *n* is odd, we let $\eta^* := \eta \cup \eta'$. As $(\eta, \eta') \in F_1$, η^* is E_0 -chromatic. Since *n* is odd, we have $\eta^*(\operatorname{dom}(\chi)) = (n-1)/2 = \eta^*(\operatorname{dom}(\chi'))$. But then the fact that η^* is E_0 -chromatic entails that $\{\operatorname{dom}(\chi), \operatorname{dom}(\chi')\} \notin E_0$, contradicting the hypothesis that $\{\chi, \chi'\} \in F_0$. \Box

Definition 2.3. For i < 2 and a limit $\delta < \lambda^+$, write

$$C_{\delta}^{i} := \{ \alpha \in C_{\delta} \cap G_{i} \mid \min(C_{\alpha}) > \sup(C_{\delta} \cap \alpha) \}.$$

Definition 2.4. For i < 2 and $\gamma < \lambda^+$, we say that a coloring $\chi : \gamma \to \omega$ is *i*-suitable if:

- $\chi[C_{\delta}^{i}]$ is finite for all $\delta \leq \gamma$;
- $\chi(\alpha) \neq \chi(\delta)$ for all $\alpha < \delta \leq \gamma$ with $\{\alpha, \delta\} \in E_i$.

Lemma 2.5. For every i < 2, $\beta < \gamma < \lambda^+$ with $\beta \notin G_i$, and an *i*-suitable coloring $\chi : \beta \to \omega$, there exists an *i*-suitable coloring $\chi' : \gamma \to \omega$ extending χ .

Proof. By virtually the same proof of Claim 3.1.3 from [Rin15a], building on Lemma 2.1(2) above. \Box

Lemma 2.6. For i < 2, the notion of forcing

$$\mathbb{Q}_i := (\{\chi : \beta \to \omega \mid \beta \in \lambda^+ \setminus G_i, \chi \text{ is } i \text{-suitable}\}, \subseteq)$$

is $(\leq \lambda)$ *-distributive.*

Proof. For concreteness, we work with \mathbb{Q}_1 .

Suppose that $\langle \Omega_i \mid i < \lambda \rangle$ is a given sequence of dense open subsets of \mathbb{Q}_1 , p_0 is an arbitrary condition, and let us show that there exists $p \in \bigcap_{i < \lambda} \Omega_i$ extending p_0 . Let $\langle N_{\alpha} \mid \alpha < \lambda^+ \rangle$ be an increasing and continuous sequence of elementary submodels of $(\mathcal{H}(\theta), \in, \leq_{\theta})$, each of size λ , such that $\langle D_{\delta} \mid \delta < \lambda^+ \rangle$, \mathbb{Q}_1 , $\langle \Omega_i \mid i < \lambda \rangle$, $p_0 \in N_0$, and $\langle N_{\beta} \mid \beta \leq \alpha \rangle \in N_{\alpha+1}$ for all $\alpha < \lambda^+$.

Set $E := \{\delta < \lambda^+ \mid N_\delta \cap \lambda^+ = \delta\}$. By the choice of $\langle (D_\alpha, X_\alpha) \mid \alpha < \lambda^+ \rangle$, let us pick some $\alpha < \lambda^+$ with $\operatorname{otp}(D_\alpha) = \lambda$ such that $h(\alpha) = 0$ and $\operatorname{acc}(D_\alpha) \subseteq E$.

Let $\{\alpha_i \mid i \leq \lambda\}$ denote the increasing enumeration of $\operatorname{acc}(D_{\alpha}) \cup \{\alpha\}$. Write $M_i := N_{\alpha_i}$. Notice that for all $i < \lambda$, since $\langle N_{\beta} \mid \beta \leq \alpha_i \rangle \in N_{\alpha_i+1} \subseteq M_{i+1}$ and $\langle D_{\delta} \mid \delta < \lambda^+ \rangle$ $\in M_{i+1}$, we have $\langle M_j \mid j \leq i \rangle \in M_{i+1}$. Also notice that for all $i \leq \lambda$, we have $h(\alpha_i) = 0$ and $M_i \cap \lambda^+ = \alpha_i \in S_0$. In particular, $\alpha_i \in \lambda^+ \setminus G_1$.

We shall recursively define an increasing sequence $\langle p_i | i < \lambda \rangle$ of conditions that will satisfy the following for all $i < \lambda$:

- $p_{i+1} \in \Omega_i$;
- $\langle p_j \mid j \leq i \rangle \in M_{i+1};$
- dom $(p_i) = \alpha_i$ whenever i > 0.

By recursion on $i < \lambda$:

▶ p_0 was already given to us, and indeed $p_0 \in M_1$.

Suppose that $i < \lambda$, and $\langle p_j | j \le i \rangle$ has already been defined, and is an element of M_{i+1} . In particular, $p_i \in M_{i+1}$. We claim that the set $\Psi_i := \{q \in \Omega_i | q \supseteq p_i, dom(q) = \alpha_{i+1}\}$ is nonempty. To see this, notice that since $p_i, \Omega_i \in M_{i+1}$, elementarity of M_{i+1} yields some $p \in \Omega_i \cap M_{i+1}$ extending p_i . Then, from $M_{i+1} \cap \lambda^+ = \alpha_{i+1}$, we have dom $(p) < \alpha_{i+1}$, and then by Lemma 2.5, we infer the existence of a 1-suitable coloring q extending p with dom $(q) = \alpha_{i+1}$. As $\alpha_{i+1} \in S_0$, q is a legitimate condition, and since Ω_i is open, we deduce that q is in Ω_i , testifying that Ψ_i is nonempty.

Thus, we let p_{i+1} be the \leq_{θ} -least element of Ψ_i . Since Ψ_i is defined from parameters within M_{i+2} , and by the canonical choice of p_{i+1} , we have $p_{i+1} \in M_{i+2}$. Altogether, $\langle p_i | j \leq i+1 \rangle \in M_{i+2}$.

Suppose that $i < \lambda$ is a nonzero limit ordinal, and $\langle p_j | j < i \rangle$ has already been defined by our canonical process. Set $p_i := \bigcup_{j < i} p_j$. Then dom $(p_i) = \alpha_i$, and since p_i is the limit of an increasing chain of 1-suitable colorings, p_i is E_1 -chromatic, and $p_i[C_{\beta}^1]$ is finite for every $\beta < \alpha_i$. Thus, to see that p_i is 1-suitable, we are left with verifying that $p_i[C_{\alpha_i}^1]$ is finite. As $h(\alpha_i) = 0$, Lemma 2.1(2)&(3) shows that $h(\beta) \neq 1$ for all $\beta \in C_{\alpha} \supseteq C_{\alpha_i}$, so $C_{\alpha_i}^1 = \emptyset$, which entails that $p_i[C_{\alpha_i}^1]$ is finite indeed. Thus, p_i is a legitimate condition.

By the canonical process, and the fact that $\langle M_j | j \leq i \rangle \in M_{i+1}$, we have $\langle p_j | j < i \rangle \in M_{i+1}$, and hence $p_i = \bigcup_{j < i} p_j \in M_{i+1}$. So $\langle p_j | j \leq i \rangle \in M_{i+1}$.

This completes the construction.

Set $p := \bigcup_{i < \lambda} p_i$. Then p is E_1 -chromatic, and $p[C_{\beta}^1]$ is finite for every $\beta < \alpha$. As $dom(p) = \alpha$ and C_{α}^1 is empty, we find that p is a legitimate condition. Consequently, p is an element of $\bigcap_{i < \lambda} \Omega_i$ that extends p_0 .

It is clear that $|V_i| \le 2^{\lambda} = \lambda^+$ for i < 2, so it remains to establish the following.

Lemma 2.7. Chr(V_i , F_i) = λ^+ for every i < 2.

Proof. For concreteness, we prove that $Chr(V_0, F_0) = \lambda^+$.

Towards a contradiction, suppose that $c : V_0 \to \lambda$ is F_0 -chromatic. Let \mathbb{G} be \mathbb{Q}_1 -generic over V, and work in $V[\mathbb{G}]$.

Set $\chi^* := \bigcup \mathbb{G}$. Since \mathbb{G} is directed, for every $\alpha, \delta \in \operatorname{dom}(\chi^*)$ there exists $\chi \in \mathbb{G}$ such that $\{\alpha, \delta\} \subseteq \operatorname{dom}(\chi)$, and hence $\chi^*(\alpha) \neq \chi^*(\delta)$ whenever $\alpha, \delta \in E_1$. By Lemma 2.5, we also know that $\operatorname{dom}(\chi^*) \geq \gamma$ for all $\gamma < \lambda^+$. Altogether, $\chi^* : \lambda^+ \to \omega$

is an E_1 -chromatic coloring, and so are its initial segments. In particular, we may derive a coloring $c^* : G_0 \to \lambda$ by letting $c^*(\beta) := c(\chi^* | \beta)$ for all $\beta \in G_0$. Since c is F_0 chromatic, we infer that c^* is E_0 -chromatic. That is, c^* witnesses that $Chr(G_0, E_0) \leq \lambda$.

For all $i < \lambda$, set $H_i := \{\alpha \in G_0 \mid c^*(\alpha) = i\}$ and $M_i := \{\min(C_\alpha) \mid \alpha \in H_i\}$. Define a function $h_i : \lambda^+ \to \lambda^+$ by letting, for all $\tau < \lambda^+$,

$$h_i(\tau) := \begin{cases} \min\{\alpha \in H_i \mid \min(C_\alpha) > \tau\}, & \sup(M_i) = \lambda^+\\ \sup(M_i), & \text{otherwise.} \end{cases}$$

Then, for all $i < \lambda$, set

and

$$K := \{\beta < \lambda^+ \mid \forall i < \lambda, h_i[\beta] \subseteq \beta\}.$$

 $A_i := \begin{cases} \operatorname{rng}(h_i), & \operatorname{sup}(M_i) = \lambda^+, \\ \lambda^+, & \operatorname{sup}(M_i) < \lambda^+, \end{cases}$

Finally, define a function $g : \lambda^+ \to \lambda^{+1}2$ by letting $g(\alpha)(i) = 1$ iff $(i < \lambda$ and $\alpha \in A_i$) or $(i = \lambda$ and $\alpha \in K$). Note that by Lemma 2.6, any initial segment of g belongs to the ground model.

Work back in V. Let $p_0 \in \mathbb{Q}_1$ be such that

$$p_0 \Vdash \dot{g} : \check{\lambda}^+ \to {}^{\check{\lambda}+1}2$$
, and c^* is E_0 -chromatic.

By possibly extending p_0 , we may moreover assume that p_0 forces that $\{\alpha < \lambda^+ \mid g(\alpha)(i) = 1\}$ is unbounded in λ^+ for all $i \leq \lambda$, and knows about the interaction of g with c^* .

As any initial segment of g belongs to V, it makes sense to consider the set

$$Z := \{ (p, f) \in \mathbb{Q}_1 \times {}^{<\lambda^+}({}^{\lambda+1}2) \mid p_0 \subseteq p \Vdash_{\mathbb{Q}_1} \dot{g} \upharpoonright \operatorname{dom}(f) = \check{f} \}.$$

Let $\langle N_{\alpha} \mid \alpha < \lambda^{+} \rangle$ be an increasing and continuous sequence of elementary submodels of $(\mathcal{H}(\theta), \in, \leq_{\theta})$, each of size λ , such that $\langle D_{\delta} \mid \delta < \lambda^{+} \rangle$, $\mathbb{Q}_{1}, \psi, \dot{g}, p_{0} \in N_{0}$, and $\langle N_{\beta} \mid \beta \leq \alpha \rangle \in N_{\alpha+1}$ for all $\alpha < \lambda^{+}$.

Set $E := \{\delta < \lambda^+ \mid N_\delta \cap \lambda^+ = \delta\}$. By the choice of $\langle (D_\alpha, X_\alpha) \mid \alpha < \lambda^+ \rangle$, let us pick some $\alpha < \lambda^+$ with $\operatorname{otp}(D_\alpha) = \lambda$ such that $h(\alpha) = 0, X_\alpha = \psi[Z] \cap \alpha$, and $\operatorname{acc}(D_\alpha) \subseteq E$.

Let $\{\alpha_i \mid i \leq \lambda\}$ denote the increasing enumeration of $\operatorname{acc}(D_{\alpha}) \cup \{\alpha\}$. Write $M_i := N_{\alpha_i}$. Notice that for all $i < \lambda$, we have $\langle M_j \mid j \leq i \rangle \in M_{i+1}$. Also, we have $h(\alpha_i) = 0$ and $M_i \cap \lambda^+ = \alpha_i \in S_0$ for all $i \leq \lambda$.

We shall recursively define a sequence $\langle (p_i, f_i) | i < \lambda \rangle$ of pairs that will satisfy the following for all $i < \lambda$:

- $p_{i+1} \Vdash \dot{g} \upharpoonright \check{\alpha}_i = \check{f}_{i+1};$
- $\alpha_i \leq \operatorname{dom}(p_i) < \alpha_{i+1};$
- $\langle p_j | j \leq i \rangle$ is an increasing sequence of conditions that belongs to M_{i+1} .

By recursion on $i < \lambda$:

▶ p_0 was already given to us, and indeed $p_0 \in M_1$. Set $f_0 := \emptyset$.

Suppose that $i < \lambda$, and $\langle p_j | j \le i \rangle$ has already been defined, and is an element of M_{i+1} . In particular, $p_i \in M_{i+1}$. By Lemmas 2.5 and 2.6, the set $\Psi_i := \{q \in \mathbb{Q}_1 | q \supseteq p_i, \alpha_i < \operatorname{dom}(q) < \alpha_{i+1}, q \text{ decides } \dot{g} \restriction \alpha_i\}$ is nonempty. Thus, we let p_{i+1} be the \le_{θ} -least element of Ψ_i , and let f_{i+1} be such that $p_{i+1} \Vdash \dot{g} \restriction \check{\alpha}_i = \check{f}_{i+1}$.

As Ψ_i is defined from parameters within M_{i+2} , and by the canonical choice of p_{i+1} , we have $p_{i+1} \in M_{i+2}$. Altogether, $\langle p_j | j \leq i+1 \rangle \in M_{i+2}$.

Suppose that $i < \lambda$ is a nonzero limit ordinal, and $\langle (p_j, f_j) | j < i \rangle$ has already been defined by our canonical process. Set $p_i := \bigcup_{j < i} p_j$ and $f_i := \bigcup_{j < i} p_j$. Then dom $(p_i) = \alpha_i$, and since p_i is the limit of an increasing chain of 1-suitable colorings, p_i is chromatic, and $p_i[C^1_\beta]$ is finite for every $\beta < \alpha_i$. Thus, to see that p_i is 1-suitable, it remains to verify that $p_i[C^1_{\alpha_i}]$ is finite. As $h(\alpha_i) = 0$, Lemma 2.1 shows that $h(\beta) \neq 1$ for all $\beta \in C_{\alpha_i}$, so $p_i[C^1_{\alpha_i}] = \emptyset$ is finite indeed, and p_i is a legitimate condition.

By the canonical process, and as $\langle M_j | j \leq i \rangle \in M_{i+1}$, we have $\langle p_j | j < i \rangle \in M_{i+1}$, and hence $p_i = \bigcup_{j < i} p_j \in M_{i+1}$. So $\langle p_j | j \leq i \rangle \in M_{i+1}$.

This completes the construction. Set $p := \bigcup_{i < \lambda} p_i$. Then p is a legitimate condition. Clearly, $\{(p_i, f_i) \mid i < \lambda\} \subseteq Z$. Note that for all $i < \lambda$, as $\mathbb{Q}_1, p_i, \dot{g}, \alpha_i, \psi \in M_{i+1}$, we have $\psi(p_i, f_i) \in M_{i+1}$. That is, $\psi(p_i, f_i) \in \psi(Z) \cap \alpha_{i+1} = X_{\alpha} \cap \alpha_{i+1}$. It follows that $\langle (p_i, f_i) \mid 0 < i < \lambda \rangle = \langle (p_i^{\alpha}, f_i^{\alpha}) \mid 0 < i < \lambda \rangle$!

So, $p \Vdash \dot{g} \upharpoonright \check{\alpha} = \check{g}_{\alpha}$. Consequently, p forces that $A_i \cap \alpha = A_{\alpha}^i$ for all $i < \lambda$, and $K \cap \alpha = K_{\alpha}$. Also, since p_0 forces that $\{\alpha < \lambda^+ \mid g(\alpha)(i) = 1\}$ is unbounded in λ^+ for all $i \le \lambda$, we find that $\sup(K_{\alpha} \cap \alpha_i) = \sup(A_{\alpha}^i \cap \alpha_i) = \alpha_i$ and $\alpha_i < \alpha_i'' < \alpha_{i+1}$ for all $i < \lambda$. In particular, $\{\alpha_i'' \mid i < \lambda\} \subseteq C_{\alpha}$, and $p \Vdash \min(C_{\alpha}) = \alpha_0'' \ge \min(K)$. Let p^* be an extension of p that decides $c^*(\alpha)$, say $p^* \Vdash c^*(\alpha) = \check{i}$, and decides $h_i \upharpoonright \alpha$.

Then p^* forces that $\sup(M_i) = \lambda^+$, because otherwise

$$\sup(M_i) < \min(K) \le \min(C_\alpha),$$

contradicting the fact that $i = c^*(\alpha)$ entails $\sup(M_i) \ge \min(C_\alpha)$.

The upcoming considerations are all forced by p^* . We have $\alpha_i < \alpha'_i \le \alpha''_i < \alpha_{i+1}$ with $\alpha'_i \in K$ and $\alpha''_i \in A_i \cap C_\alpha$. Since $\alpha''_i \in A_i$ and $\sup(M_i) = \lambda^+$, we have $\alpha''_i \in \operatorname{rng}(h_i)$. Fix $\tau < \alpha$ such that $h_i(\tau) = \alpha''_i$. Then $\min(C_{\alpha''_i}) > \tau$. As $h_i[\alpha'_i] \subseteq \alpha'_i \le \alpha''_i = h_i(\tau)$, we have $\tau \ge \alpha'_i$, and hence $\min(C_{\alpha''_i}) > \tau \ge \alpha'_i > \sup(C_\alpha \cap \alpha''_i)$. It follows that $\{\alpha''_i, \alpha\} \in E_0$. Recalling that $\alpha''_i \in \operatorname{rng}(h_i) \subseteq H_i$, we conclude that $c^*(\alpha''_i) = i = c^*(\alpha)$. So p^* forces that c^* is not an E_0 -chromatic coloring, contradicting the fact that p^* extends p_0 .

Remark 2.1. Péter Komjáth pointed out that the above construction shows that \bigotimes_{λ} yields a sequence $\langle \mathcal{G}_i | i < \lambda^+ \rangle$ of graphs, each of size and chromatic number λ^+ , such that $\operatorname{Chr}(\mathcal{G}_i \times \mathcal{G}_i) = \aleph_0$ for all $i < j < \lambda^+$.

Proof of Corollary 1

If $\lambda = \aleph_0$, then $\kappa = \aleph_0$, and Hajnal's example [Haj85] apply.⁴ Otherwise, since \bigotimes_{λ} holds in Gödel's constructible universe (see [ASS87]), let us invoke the main result of this paper and pick subsets E_0 , E_1 of $[\lambda^+]^2$ with $\operatorname{Chr}(\lambda^+, E_0) = \operatorname{Chr}(\lambda^+, E_1) = \lambda^+$ and $\operatorname{Chr}(\lambda^+ \times \lambda^+, E_0 * E_1) \leq \aleph_0$ as witnessed by $c : \lambda^+ \times \lambda^+ \to \omega$. Set $F_0 := E_0 \cup [\kappa]^2$ and $F_1 := E_1 \cup [\kappa]^2$. Clearly, $\operatorname{Chr}(\lambda^+, F_0) = \operatorname{Chr}(\lambda^+, F_1) = \lambda^+$, and $\operatorname{Chr}(\lambda^+ \times \lambda^+, F_0 * F_1) \geq \operatorname{Chr}(\kappa, [\kappa]^2) = \kappa$. Finally, fix an injection $d : \kappa \times 2 \to \kappa \setminus \omega$, and define $c' : \lambda^+ \times \lambda^+ \to \kappa$ by letting

$$c'(\alpha, \beta) := \begin{cases} d(\alpha, 0), & \alpha < \kappa, \\ d(\beta, 1), & \beta < \kappa \le \alpha, \\ c(\alpha, \beta), & \text{otherwise.} \end{cases}$$

Then *c'* is $F_0 * F_1$ -chromatic, and hence $Chr(\lambda^+ \times \lambda^+, F_0 * F_1) = \kappa$.

Proof of Corollary 2

De Bruijn and Erdős [dBE51] proved that if \mathcal{G} is a graph, $k < \omega$, and every subgraph of \mathcal{G} of size $< \omega$ has chromatic number $\leq k$, then $Chr(\mathcal{G}) \leq k$. The statement remains true after replacing ω in the above statement with a strongly-compact cardinal θ .

Hajnal [Haj04] proved that if $\mathcal{G}_0, \mathcal{G}_1$ are graphs of infinite chromatic number, then every subgraph of \mathcal{G}_0 of size $< \operatorname{Chr}(\mathcal{G}_1)$ has chromatic number $\leq \operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1)$.

Thus, for a cardinal κ , let $\varphi(\kappa)$ be the least strongly-compact cardinal $\theta \ge \kappa$. Towards a contradiction, suppose that $\mathcal{G}_0, \mathcal{G}_1$ are graphs, each of chromatic number $\ge \theta$, while $\operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) = \kappa' < \kappa$. Then, by Hajnal's finding, every subgraph of \mathcal{G}_0 of size $< \theta$ would have chromatic number $\le \operatorname{Chr}(\mathcal{G}_0 \times \mathcal{G}_1) = \kappa'$. But then the generalized de Bruijn– Erdős theorem entails that $\operatorname{Chr}(\mathcal{G}) \le \kappa' < \theta$. This is a contradiction.

3. A generalization

The main result of this paper generalizes as follows.

Theorem B. Suppose that $\lambda \geq \kappa$ are infinite cardinals. If $\lambda > \aleph_0$, suppose in addition that \bigotimes_{λ} holds. Then for every positive integer *n*, there exist graphs $\langle \mathcal{G}_i | i < n + 1 \rangle$ of size λ^+ such that:

- $\operatorname{Chr}(X_{i \in I} \mathcal{G}_i) = \lambda^+$ for every $I \in [n+1]^n$;
- $\operatorname{Chr}(X_{i < n+1} \mathcal{G}_i) = \kappa.$

Proof. We focus on the case $\lambda > \aleph_0 = \kappa$. All the ideas needed to modify the construction of [Haj85] to establish the case $\lambda = \aleph_0$ will appear in the proof.

⁴ In fact, a minor modification to the proof of the main theorem allows one to derive the case $\lambda = \aleph_0$ as well.

Let $\langle (D_{\alpha}, X_{\alpha}) | \alpha < \lambda^{+} \rangle$, $h : \lambda^{+} \to \lambda^{+}$, and $\langle C_{\alpha} | \alpha < \lambda^{+} \rangle$ be as in the proof from the previous section. For all $i < \omega$, set

$$S_i := \{ \alpha < \lambda^+ \mid h(\alpha) = i \}, \quad G_i := \{ \alpha \in S_i \mid \operatorname{otp}(C_\alpha) = \lambda \},$$

$$E_i := \{ \{ \alpha, \delta \} \in [G_i]^2 \mid \alpha \in C_\delta, \min(C_\alpha) > \sup(C_\delta \cap \alpha) \},$$

$$C_\delta^i := \{ \alpha \in C_\delta \cap G_i \mid \min(C_\alpha) > \sup(C_\delta \cap \alpha) \} \text{ for all } \delta < \lambda^+.$$

For $i < \omega$ and $\gamma < \lambda^+$, we say that a coloring $\chi : \gamma \to \omega$ is *i*-suitable if:

- $\chi[C_{\delta}^{i}]$ is finite for all $\delta \leq \gamma$;
- $\chi(\alpha) \neq \chi(\delta)$ for all $\alpha < \delta \leq \gamma$ with $\{\alpha, \delta\} \in E_i$.

As in the previous section, for every $i < \omega$ and $\beta < \gamma < \lambda^+$ with $\beta \notin G_i$, and an *i*-suitable coloring $\chi : \beta \to \omega$, there exists an *i*-suitable coloring $\chi' : \gamma \to \omega$ extending χ .

Set $\mathbb{Q}_i := (\{\chi : \beta \to \omega \mid \beta \in \lambda^+ \setminus G_i, \chi \text{ is } i\text{-suitable}\}, \subseteq)$. Then a straightforward variation of the proof of Lemma 2.6 shows that the product forcing $X_{i \in I} \mathbb{Q}_i$ is $(\leq \lambda)$ -distributive for every $I \in [\omega]^{<\omega}$. Moreover, for $I \in [\omega]^{<\omega}$, as $\langle G_i \mid i \in I \rangle$ are pairwise disjoint, the product forcing $X_{i \in I} \mathbb{Q}_i$ is isomorphic to

$$\mathbb{Q}_I := \left(\left\{ \chi : \beta \to \omega \mid \beta < \lambda^+ \& \bigwedge_{i \in I} (\beta \notin G_i \& \chi \text{ is } i \text{-suitable}) \right\}, \subseteq \right).$$

Finally, fix a positive integer $n < \omega$, and for all i < n + 1, set

$$V_{i} := \left\{ \chi : \beta \to \omega \mid \beta \in \biguplus \{G_{j} \mid j < n+1, \ j \neq i\}, \ \chi \text{ is } E_{i}\text{-chromatic} \right\},$$
$$F_{i} := \left\{ \{\chi, \chi'\} \in [V_{i}]^{2} \mid \{\operatorname{dom}(\chi), \operatorname{dom}(\chi')\} \in \biguplus_{j < n+1} E_{j}, \ \chi \subseteq \chi' \right\},$$
$$\mathcal{V}_{i} := (V_{i}, F_{i}).$$

Lemma 3.1. $\operatorname{Chr}(\mathcal{V}_0 \times \cdots \times \mathcal{V}_n) \leq \aleph_0.$

Proof. Define $c: V_0 \times \cdots \times V_n \to [\omega^3]^{<\omega}$ by

$$c(\chi_0,\ldots,\chi_n) := \{(\chi_i(\operatorname{dom}(\chi_j)), i, j) \mid i, j < n+1, \operatorname{dom}(\chi_j) \in G_i \cap \operatorname{dom}(\chi_i)\}.$$

Note that, by definition of V_i , $h(\operatorname{dom}(\chi_i)) \neq i$ for all $i \leq n$. Let us also point out that $c(\chi_0, \ldots, \chi_n)$ is nonempty. For this, define a sequence $\langle a_i \mid i < n+1 \rangle$ by letting $a_0 := \chi_0$, and $a_{j+1} := \chi_{h(\operatorname{dom}(a_j))}$ for all j < n.

If there exists some j < n such that $dom(a_j) < dom(a_{j+1})$, then clearly

$$(a_{i+1}(\operatorname{dom}(a_i)), h(\operatorname{dom}(a_{i+1})), h(\operatorname{dom}(a_i))) \in c(\chi_0, \dots, \chi_n),$$

and we are done. Otherwise, we have $dom(a_0) > dom(a_1) > \cdots > dom(a_n)$, so set $a_{n+1} := \chi_{h(dom(a_n))}$. Let i < n be such that $a_{n+1} = a_i$. Then $dom(a_{n+1}) = dom(a_i) > dom(a_n)$, and hence

$$\left(a_{n+1}(\operatorname{dom}(a_n)), h(\operatorname{dom}(a_{n+1})), h(\operatorname{dom}(a_n))\right) \in c(\chi_0, \ldots, \chi_n).$$

Finally, suppose towards a contradiction that $\{(\chi_0, \ldots, \chi_n), (\chi'_0, \ldots, \chi'_n)\} \in F_0 * \cdots * F_n$, while $c(\chi_0, \ldots, \chi_n) = c(\chi'_0, \ldots, \chi'_n)$. Pick $(m, i, j) \in c(\chi_0, \ldots, \chi_n)$. By $(\chi_i, \chi'_i) \in F_i$, we know that $\chi^* := \chi_i \cup \chi'_i$ is E_i -chromatic. So, as $\chi^*(\operatorname{dom}(\chi_j)) = m = \chi^*(\operatorname{dom}(\chi'_j))$, we see that $\{\operatorname{dom}(\chi_j), \operatorname{dom}(\chi'_j)\} \notin E_i$, contradicting the fact that $\{\chi_j, \chi'_j\} \in F_j$ and $h(\operatorname{dom}(\chi_j)) = i = h(\operatorname{dom}(\chi'_i))$.

Lemma 3.2. Chr($X_{i \in I} \mathcal{V}_i$) = λ^+ for every $I \in [n+1]^n$.

Proof. Fix $I \in [n+1]^n$. Let k < n+1 be such that $n+1 = (I \uplus \{k\})$.

Towards a contradiction, suppose that $c : X_{i \in I} V_i \to \lambda$ is $*_{i \in I} F_i$ -chromatic. Let \mathbb{G} be \mathbb{Q}_I -generic over V, and work in $V[\mathbb{G}]$. Set $\chi^* := \bigcup \mathbb{G}$. Then $\chi^* : \lambda^+ \to \omega$ is E_i -chromatic for all $i \in I$. Notice that for all $i \in I$ and $\beta \in G_k$, as $i \neq k$, we have $\chi^* \upharpoonright \beta \in V_i$. Thus, we may derive a coloring $c^* : G_k \to \lambda$ by letting, for all $\beta \in G_k$,

$$c^*(\beta) := c \Big(\prod_{i \in I} \chi^* |\beta\Big).$$

Since *c* is $*_{i \in I} F_i$ -chromatic, we find that c^* is E_k -chromatic. That is, c^* witnesses that $Chr(G_k, E_k) \leq \lambda$.

For concreteness, let us assume that k = 0. Define H_i , M_i , h_i , A_i , K, g as in the proof of Lemma 2.7. Work back in V. Let $p_0 \in \mathbb{Q}_I$ be such that

$$p_0 \Vdash \dot{g} : \dot{\lambda}^+ \to {}^{\lambda+1}2$$
, and c^* is E_0 -chromatic

By possibly extending p_0 , we may moreover assume that p_0 forces that $\{\alpha < \lambda^+ \mid g(\alpha)(i) = 1\}$ is unbounded in λ^+ for all $i \leq \lambda$, and knows about the interaction of g with c^* .

As any initial segment of g belongs to V, we shall consider the set

$$Z := \{ (p, f) \in \mathbb{Q}_I \times {}^{<\lambda^+}({}^{\lambda+1}2) \mid p_0 \subseteq p \Vdash_{\mathbb{Q}_I} \dot{g} \upharpoonright \operatorname{dom}(f) = \check{f} \}.$$

Let $\langle N_{\alpha} \mid \alpha < \lambda^+ \rangle$ be an increasing and continuous sequence of elementary submodels of $(\mathcal{H}(\theta), \in, \leq_{\theta})$, each of size λ , such that $\langle D_{\delta} \mid \delta < \lambda^+ \rangle$, $\mathbb{Q}_I, \psi, \dot{g}, p_0 \in N_0$ and $\langle N_{\beta} \mid \beta \leq \alpha \rangle \in N_{\alpha+1}$ for all $\alpha < \lambda^+$.

Pick some $\alpha < \lambda^+$ with $\operatorname{otp}(D_{\alpha}) = \lambda$ such that $h(\alpha) = 0$, $X_{\alpha} = \psi[Z] \cap \alpha$, and $\operatorname{acc}(D_{\alpha}) \subseteq E := \{\delta < \lambda^+ \mid N_{\delta} \cap \lambda^+ = \delta\}.$

Let $\{\alpha_i \mid i \leq \lambda\}$ denote the increasing enumeration of $\operatorname{acc}(D_{\alpha}) \cup \{\alpha\}$. We have $h(\alpha_i) = 0$ and $M_i \cap \lambda^+ = \alpha_i \in S_0$ for all $i \leq \lambda$. Write $M_i := N_{\alpha_i}$.

Recursively and \leq_{θ} -canonically define a continuous sequence $\langle (p_i, f_i) | i < \lambda \rangle$ of pairs that will satisfy the following for all $i < \lambda$:

- $p_{i+1} \Vdash \dot{g} \upharpoonright \check{\alpha}_i = \dot{f}_{i+1};$
- $\alpha_i \leq \operatorname{dom}(p_i) < \alpha_{i+1};$
- $\langle p_j | j \leq i \rangle$ is an increasing sequence of conditions that belongs to M_{i+1} .

This process is feasible thanks to the fact that $C_{\alpha_i}^j$ is empty for every limit $i < \lambda$ and every $j \in I$.⁵ Then $\langle (p_i, f_i) | 0 < i < \lambda \rangle = \langle (p_i^{\alpha}, f_i^{\alpha}) | 0 < i < \lambda \rangle$, and $p := \bigcup_{i < \lambda} p_i$ is a legitimate condition. Let p^* be an extension of p that decides $c^*(\alpha)$, say $p^* \Vdash c^*(\alpha) = \check{i}$, and decides $h_i \upharpoonright \alpha$. Then $p^* \Vdash \{\alpha_i'', \alpha\} \in E_0 \& \alpha_i'' \in \operatorname{rng}(h_i) \subseteq H_i$. So p^* forces that c^* is not an E_0 -chromatic coloring, contradicting the fact that p^* extends p_0 .

This completes the proof of Theorem B.

Acknowledgments. Part of this work was done while I was a postdoctoral fellow at the Fields Institute and University of Toronto Mississauga, under the supervision of Ilijas Farah, Stevo Todorcevic, and William Weiss. I would like to express my deep gratitude to my supervisors and the hosting institutes.

I am grateful to Juris Steprāns for illuminating discussions on [She77], [She80], and to Menachem Magidor for asking me about the possibility of changing the chromatic number of the graphs from [Rin15a] by forcing.

Added in proof. The main result of [Rin15b] implies the following generalization of Corollary 1: In any set-forcing extension of Gödel's constructible universe, all instances of the Infinite Weak Hedetniemi Conjecture fail.

References

- [AS93] Abraham, U., Shelah, S.: A δ_2^2 well-order of the reals and incompactness of $L(Q^{MM})$. Ann. Pure Appl. Logic **59**, 1–32 (1993) Zbl 0785.03028 MR 1197203
- [ASS87] Abraham, U., Shelah, S., Solovay, R. M.: Squares with diamonds and Souslin trees with special squares. Fund. Math. **127**, 133–162 (1987) Zbl 0635.03041 MR 0882623
- [Bau84] Baumgartner, J. E.: Generic graph construction. J. Symbolic Logic **49**, 234–240 (1984) Zbl 0573.03021 MR 0736618
- [BEL76] Burr, S. A., Erdős, P., Lovász, L.: On graphs of Ramsey type. Ars Combin. 1, 167–190 (1976) Zbl 0333.05120 MR 0419285
- [Dav90] David, R.: Some results on higher Suslin trees. J. Symbolic Logic 55, 526–536 (1990) Zbl 0715.03020 MR 1056368
- [dBE51] de Bruijn, N. G., Erdős, P.: A colour problem for infinite graphs and a problem in the theory of relations. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indag. Math. 13, 369–373 (1951) Zbl 0044.38203 MR 0046630
- [Dev78] Devlin, K. J.: A note on the combinatorial principles $\diamond(E)$. Proc. Amer. Math. Soc. **72**, 163–165 (1978) Zbl 0393.03036 MR 0491194
- [EH66] Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar. 17, 61–99 (1966) Zbl 0151.33701 MR 0387103
- [GGL95] Graham, R. L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics. Vols. 1, 2. Elsevier, Amsterdam (1995) Zbl 0833.05001 MR 1373655
- [Haj85] Hajnal, A.: The chromatic number of the product of two ℵ₁-chromatic graphs can be countable. Combinatorica 5, 137–139 (1985) Zbl 0575.05029 MR 0815579
- [Haj04] Hajnal, A.: On the chromatic number of graphs and set systems. In: PIMS Distinguished Chair Lectures, University of Calgary, 1–25 (2004)

⁵ Recall that $h(\alpha_i) \neq j$ for all $j \in I$ and $i \leq \lambda$.

- [Hed66] Hedetniemi, T.: Homomorphisms of graphs and automata. Ph.D. Thesis, Univ. of Michigan (1966) MR 2615860
- [JJ74] Jensen, R. B., Johnsbräten, H.: A new construction of a non-constructible Δ_3^1 subset of ω . Fund. Math. **81**, 279–290 (1974) Zbl 0289.02048 MR 0419229
- [JT95] Jensen, T. R., Toft, B.: Graph Coloring Problems. Wiley, New York (1995) Zb1 0855.05054 MR 1304254
- [PR81] Poljak, S., Rödl, V.: On the arc-chromatic number of a digraph. J. Combin. Theory Ser. B 31, 190–198 (1981) Zbl 0472.05024 MR 0630982
- [Rin14] Rinot, A.: The Ostaszewski square, and homogeneous Souslin trees. Israel J. Math. 199, 975–1012 (2014) Zbl 1300.03024 MR 3219566
- [Rin15a] Rinot, A.: Chromatic numbers of graphs—large gaps. Combinatorica 35, 215–233 (2015) Zbl 06626070 MR 3347468
- [Rin15b] Rinot, A.: Putting a diamond inside the square. Bull. London Math. Soc. 47, 436–442 (2015) Zbl 06446106 MR 3354439
- [Rin17] Rinot, A.: Same graph, different universe. Arch. Math. Logic, to appear (2017)
- [She77] Shelah, S.: Whitehead groups may be not free, even assuming CH. I. Israel J. Math. **28**, 193–204 (1977) Zbl 0369.02035 MR 0469757
- [She80] Shelah, S.: Whitehead groups may not be free, even assuming CH. II. Israel J. Math. **35**, 257–285 (1980) Zbl 0467.03049 MR 0594332
- [She90] Shelah, S.: Incompactness for chromatic numbers of graphs. In: A Tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 361–371 (1990) Zbl 0727.05025 MR 1117029
- [Sou88] Soukup, L.: On chromatic number of product of graphs. Comment. Math. Univ. Carolin. **29**, 1–12 (1988) Zbl 0643.03036 MR 0937544
- [Sou08] Soukup, L.: Infinite combinatorics: from finite to infinite. In: Horizons of Combinatorics, Bolyai Soc. Math. Stud. 17, Springer, Berlin, 189–213 (2008) Zbl 1178.05027 MR 2432534
- [Tar08] Tardif, C.: Hedetniemi's conjecture, 40 years later. Graph Theory Notes N. Y. 54, 46–57 (2008) MR 2445666
- [Tod81] Todorčević, S.: Stationary sets, trees and continuums. Publ. Inst. Math. (Beograd) (N.S.) 29, 249–262 (1981) Zbl 0519.06002 MR 0657114