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Abstract. We show that any triple Massey product with respect to prime 2 contains 0 whenever it
is defined over any field. This extends the theorem of M. J. Hopkins and K. G. Wickelgren, from
global fields to any fields. This is the first time when the vanishing of any n-Massey product for
some prime p has been established for all fields. This leads to a strong restriction on the shape of
relations in the maximal pro-2 quotients of absolute Galois groups, which has been out of reach until
now. We also develop an extension of Serre’s transgression method to detect triple commutators in
relations of pro-p-groups, where we do not require that all cup products vanish. We prove that
all n-Massey products, n ≥ 3, vanish for general Demushkin groups. We formulate and provide
evidence for two conjectures related to the structure of absolute Galois groups of fields. In each
case when these conjectures can be verified, they have some interesting concrete Galois-theoretic
consequences. They are also related to the Bloch–Kato conjecture.
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1. Introduction

A major problem in Galois theory is the characterization of profinite groups which are
realizable as absolute Galois groups of fields. This is a difficult problem, and in general
little is known. In our paper we provide a definite contribution valid for all fields.

In 1967 A. Weil [Wei] describing Artin’s first result in the theory of real fields says
“Even now, this is an altogether isolated result of great depth, whose significance for the
future is not to be assessed lightly.” In the classical papers [AS1, AS2] published in 1927,
E. Artin and O. Schreier went on with developing a theory of real fields and showed in
particular that the only non-trivial finite subgroups of absolute Galois groups are cyclic
groups of order 2. In [Be], E. Becker developed some parts of Artin–Schreier theory by
replacing separable closures of fields by maximal p-extensions of fields. Here and below,
p is a prime number. The notions of projective profinite fields and pseudo algebraically
closed (PAC) fields are now basic notions in Galois theory. (See [FJ, Chapter 11] and also
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the definition after Conjecture 1.6 and the beginning of Section 4 below.) In [Ax] it was
proved that if a field F is PAC then its absolute Galois group is projective. However the
actual name PAC was introduced only later by G. Frey [Frey] following a suggestion of
M. Jarden. A nice proof due to D. Haran is presented in [FJ, Theorem 11.6.2]. In fact
A. Lubotzky and L. van den Dries [LvdD] proved that for any given projective group G
there exists a PAC field whose absolute Galois group is isomorphic to G. See also [FJ,
Corollary 23.1.2]. Further, Y. L. Ershov [Er] showed that if finitely many profinite groups
are absolute Galois groups, so is their free product. (See also I. Efrat and D. Haran’s
related result in [EH] concerning pro-p-groups as absolute Galois groups.)

The results above concerning projective groups and free products were generalized in
a far-reaching way to “profinite groups that are relatively projective with respect to appro-
priate subsets of closed subgroups” in [Koe2] and [HJP]. In the remarkable 2001 paper
[Koe1], J. Koenigsmann provided a classification of solvable absolute Galois groups. In
[MS1] it was shown that orderings of fields can be detected already by much smaller Ga-
lois 2-extensions than maximal 2-extensions. In 1996, using Villegas’ [Vi] results Mináč
and Spira [MS2] provided a structural result on the quotient of absolute Galois groups
by the third 2-descending series. These results were extended to analogous results for p-
descending series and p-Zassenhaus series in [EM1, EM2]. These are a few fundamental
results on the structure of absolute Galois groups of general fields.

In a recent spectacular development, the Bloch–Kato conjecture was proved by
M. Rost and V. Voevodsky (see [Voe]). These are very strong restrictions on the struc-
ture of absolute Galois groups but these results do not give directly structural results on
absolute Galois groups. In [MS2, EM1, EM2], the previous results by A. Merkurjev and
A. Suslin [MeSu] on the Bloch–Kato conjecture in degree 2 were used. It is a challeng-
ing important problem both for the structure of absolute Galois groups as well as for a
better understanding of the Bloch–Kato conjecture, to provide a direct precise transla-
tion of the Bloch–Kato conjecture into the group-theoretical properties of absolute Galois
groups. Building on the work of a number of mathematicians [Dwy, DGMS, Ef2, GLMS,
EM1, EM2, HW, MS2, MeSu, Vi, Voe] we formulate here two other fundamental and
strong conjectures which we call the “Vanishing n-Massey Conjecture” and the “Kernel
n-Unipotent Conjecture”.

The main objective of this paper is to prove the Vanishing 3-Massey Conjecture for
prime 2 for all fields and to derive strong consequences for the structure of relations in
absolute Galois groups of all fields or their maximal pro-2 quotients. Let us first recall
briefly the notion of triple Massey products (see Section 2 for more details). Let C• be a
differential graded algebra with differential ∂ : C• → C•+1 and homology H •. Suppose
that a, b, c ∈ H 1 such that ab = bc = 0. We can choose A,B,C in C1 representing
a, b, c respectively. Since ab = 0, there is Eab such that ∂Eab = AB, similarly there
is Ebc such that ∂Ebc = BC. Note that ∂(EabC + AEbc) = 0, hence EabC + AEbc
represents an element of H 2. The set of all EabC + AEbc obtained in this manner is
defined to be the triple Massey product 〈a, b, c〉 ⊂ H 2. We say that the triple Massey
product vanishes if it contains 0.

Now let F be a field of characteristic 6= 2 and let G = GF (2) be the maximal pro-2
quotient of the absolute Galois groupGF of F . Let C• = (C•(G,F2), ∂) denote the differ-
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ential graded algebra of F2-inhomogeneous cochains in the continuous group cohomol-
ogy ofG (see the first paragraph in Section 3 for more details). For any a ∈ F ∗ = F \{0},
let χa denote the corresponding character via the Kummer map F ∗→ H 1(G,F2). In the
work of M. J. Hopkins and K. G. Wickelgren [HW], the following result was proved.

Theorem 1.1 ([HW, Theorem 1.2]). Let F be a global field of characteristic 6= 2 and
a, b, c ∈ F ∗. Then the triple Massey product 〈χa, χb, χc〉 contains 0 whenever it is de-
fined.

In our paper we show that triple Massey products with respect to prime 2 vanish over any
field F . It follows from Example 4.1 and from Witt’s Theorem (see [Wi], [Ko2, Theorem
9.1]) that n-fold Massey products vanish with respect to 2 if char(F ) = 2. So we can
assume that the characteristic of F is not 2.

Theorem 1.2. Let F be an arbitrary field of characteristic 6= 2 and a, b, c ∈ F ∗. Then
the triple Massey product 〈χa, χb, χc〉 contains 0 whenever it is defined.

This has remarkable consequences for the structures of absolute Galois groups GF and
their maximal pro-2 quotients GF (2). We state our results for finitely generated pro-2-
groups but our methods can also be used in the case of infinitely generated pro-2-groups
with several relations. In Section 7 we also consider pro-p-groups for p possibly not
equal to 2. The reason for our restriction in the remainder of the paper to consider p = 2
is that we do not yet have complete results for triple Massey products for p > 2. This is
work in progress (see [GMTT]). The results on the shape of relations of finitely generated
pro-2-groups of the form GF (2) for some field F are fundamental results extending the
classical results of S. P. Demushkin, K. Iwasawa, U. Jannsen, H. Koch, J. Labute, J.-P.
Serre, I. Shafarevich and K. Wingberg (see e.g. [De1, De2, I, JaWi, Ko1, Ko2, La, Se1,
Sha]). Thus we provide strong restrictions on the structure of groups GF (2).

Before stating the results we illustrate them with an example. Examining the classi-
fication of Demushkin groups by Labute [La] one sees that GF (p) always has a presen-
tation where the generating relation is a product of commutators between generators and
p-powers of generators. (If GF (p) for a local field is not a Demushkin group, then it
is free pro-p.) Already in [CEM, Section 9], it was shown that G := S/〈[[x1, x2], x3]〉,
where S is a free pro-2-group on generators x1, . . . , xn, n ≥ 3, cannot be the absolute
Galois group of any field. (In this paper, for r ∈ S, we denote by 〈r〉 the closed normal
subgroup of S generated by r .) One can also deduce, for example, thatG as above cannot
be isomorphic to GF (2) for any field F . However, relations where simple commutators
are combined with triple ones like r = [x4, x5][[x2, x3], x1] are much harder to exclude,
and until this work one has not been able to show that G = S/〈r〉, S a free pro-2-group
on n generators x1, . . . , xn with n ≥ 5, is not isomorphic toGF (2) for any field F . In Ex-
amples 7.2 and 7.3, we deal with this group in a detailed way, and in particular we show
that G 6' GF (2) for any field F . Theorems 1.3 and 1.4 below are a vast generalization of
this example.

That some conditions are necessary can be seen from the following example. Consider
a free pro-2-group S on generators x1, x2, x3 and

G = S/〈r〉, r = [x1, x3].
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Now consider three new generators, y1 = x1x
−1
2 , y2 = x2, y3 = x3 of S. Then

r = [y1y2, y3] = [y1, y3] · [[y1, y3], y2] · [y2, y3]

= [y1, y3] · [y2, y3] · [[y1, y3], y2] · r
′,

where r ′ is an element in the 4th term S(4) in the 2-Zassenhaus filtration of S defined in
Section 3 after the proof of Lemma 3.7. Observe now first that the group

G1 = S1/〈[x1, x3]〉,

where S1 is a free pro-2-group on generators x1, x3, is realizable as GF1(2) over the field
C((X1))((X2)) of iterated power series (see [Wa, Corollary 3.9(2)]). Also G2 := S2, the
free pro-2-group on x2, is realizable as GF2(2) where F2 = C((X2)). By [JW, Theorem
3.6], we see that their free product in the category of pro-2-groups,

G = G1 ∗G2,

is also realizable as GF (2) for some field F . Hence

G = S/〈[y1, y3] · [y2, y3] · [[y1, y3], y2] · r
′
〉,

where S is a free pro-2-group on generators y1, y2, y3, is of the form GF (2). Hence we
see that some conditions as in our Theorems 1.3 and 1.4 are necessary to guarantee the
truth of these theorems. Therefore these conditions look like natural conditions. It is clear
that they are very strong conditions and they extend some results on the shape of relations
of GF (2) from local fields to all fields.

In the theorems below we use the following notation. Let (I,<) be a well-ordered
set. Let S be a free pro-2-group on a set of generators xi, i ∈ I (see [NSW, Definition
3.5.14]). Let S(i), i = 1, 2, . . . , be the 2-Zassenhaus filtration of S (see Section 3 for
definition). Then any element r in S(2) may be uniquely written as

r =
∏
i∈I

x
2ai
i

∏
i<j

[xi, xj ]
bij

∏
i<j, k≤j

[[xi, xj ], xk]
cijk r ′, (1)

where ai, bij , cijk ∈ {0, 1} and r ′ ∈ S(4). For convenience we call (1) the canonical
decomposition of r modulo S(4) (with respect to the basis (xi)) and we also set uij = bij
if i < j , and uij = bji if j < i.

Theorem 1.3. Let R be a set of elements in S(2). Assume that there exists an element r
in R and distinct indices i, j, k with i, k < j such that:

(i) in the canonical decomposition (1) of r modulo S(4), ak = aj = uij = ukj = uki =
ukl = uj l = 0 for all l 6= i, j, k, and cijk 6= 0; and

(ii) for every s ∈ R different from r , the factors [xk, xi], [xi, xk] and [xi, xj ] do not occur
in the canonical decomposition of s modulo S(4).

Then G = S/〈R〉 is not realizable as GF (2) for any field F .
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Theorem 1.4. Let R be a set of elements in S(2). Assume that there exists an element r
in R and indices i < j such that:

(i) in the canonical decomposition (1) of r modulo S(4), ai = aj = uij = uil = uj l = 0
for all l 6= i, j and cij i 6= 0 (respectively, cijj 6= 0); and

(ii) for every s ∈ R different from r , the factors [xi, xj ] and x2
i (respectively, [xi, xj ]

and x2
j ) do not occur in the canonical decomposition of s modulo S(4).

Then G = S/〈R〉 is not realizable as GF (2) for any field F .

Theorem 1.3 (respectively Theorem 1.4) follows immediately from Theorem 1.2 and The-
orem 7.8 (respectively Theorem 7.12).

Remarks 1.5. 1) Notice that any pro-2-group which is realizable asGF for some field F ,
is also realizable as GF (2). Hence the above two theorems also provide pro-2-groups
which cannot be realizable as the absolute Galois group of any field F .

2) One can also use Theorems 1.3 and 1.4 to obtain profinite groups which are not re-
alizable as the absolute Galois group of any field F . For simplicity we consider only
the following example. Let S be a free profinite group on five generators x1, . . . , x5
and let r = [x4, x5][[x2, x3], x1]. Then G := S/〈r〉 cannot be realizable as GF for
any field F . In fact, one can check that the pro-2 quotient G(2) of G has a presenta-
tion G(2) = S′/〈r ′〉, where S′ is a free pro-2-group on five generators y1, . . . , y5 and
r ′ = [y4, y5][[y2, y3], y1]. By Theorem 1.3, G(2) cannot be of the form GF (2) for any
field F . Therefore G is not realizable as GF .

Motivated by the theorems above, we formulate the Vanishing n-Massey Conjecture for
n ≥ 3. See Definition 3.3 for the definition of the vanishing n-fold Massey product prop-
erty.

Conjecture 1.6. Let p be a prime number and n ≥ 3 an integer. Let F be a field which
contains a primitive pth root of unity if char(F ) 6= p. Then the absolute Galois groupGF
of F has the vanishing n-fold Massey product property with respect to Fp.

A family of fields which satisfy the Vanishing n-Massey Conjecture for any n ≥ 3 (and
any p) are PAC fields. (Recall that a field F is called PAC if each non-empty variety
defined over F has an F -rational point; see [FJ, Chapter 11, p. 192].) This follows from
the result, mentioned earlier in the Introduction, that the absolute Galois groups of PAC
fields are projective, and from Example 4.2.

In this paper, Theorem 1.2, more precisely Theorem 6.2, shows that Conjecture 1.6
holds true for n = 3, p = 2 and for any field F . In [MTE], we show that the conjecture is
true for any n ≥ 3, p > 2 and for any p-rigid field F . In [MT1], the conjecture is verified
for n = 3, p > 2 and F an algebraic number field. Note also that Theorem 4.3 shows that
the conjecture is true for any n ≥ 3, any prime number p and any local field F . Further
results related to Conjecture 1.6 are Propositions 4.5 and 4.6 as well as additional results
in [MTE]. In Section 8, we also formulate a related conjecture, the Kernel n-Unipotent
Conjecture (Conjecture 8.3).

As will be explained in Section 8, the Kernel n-Unipotent Conjecture evolved over
a number of years through work contained in [Vi], [MS2], [GLMS], [EM1], [EM2]
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and [Ef2]. This conjecture has significant value because it describes specific pro-p-groups
which are images of unipotent representations of absolute Galois groups as building
blocks of quotients of absolute Galois groups by various terms in their p-Zassenhaus
filtrations.

The Vanishing n-Massey Conjecture can be used to construct these building blocks
from much smaller p-groups inductively. (See Theorem 3.1, due to B. Dwyer, and our
use of it in Section 6.) Thus these two conjectures together provide us with valuable tools
for telling us which Galois p-groups we should be able to construct automatically from
smaller Galois groups, and how we can proceed to build entire maximal p-extensions of
any field. Our paper contributes to the developments of new directions in studies of Galois
p-extensions of fields. It complements methods in current research in abelian birational
geometry ([BT1], [BT2] and [Pop]).

In retrospect we now understand the initial Artin–Schreier results from this new point
of view, and we better appreciate A. Weil’s intuition about the significance of these results
for future developments in Galois theory (see Remark 4.8).

It seems that our use of triple Massey products for detecting higher commutators is
the first time when the rather restrictive assumption that all cup products have to vanish
was removed (see e.g. [Ef2, Gä, Mor, Vo1, Vo2]). In fact this suggests that there is a com-
prehensive extension of the theory described in [Vo2, Appendix] where the assumption on
the relations ofG contained in a large enough weight of the free group mapping onG can
be considerably weakened ifG = GF (p) for some prime p. (HereGF (p) is the maximal
pro-p quotient of the absolute Galois group GF .) Work on this theory is in progress (see
[GMTT]).

In the following discussion, we refer to [DGMS] for definitions of formality of dif-
ferential graded algebras and the motivation for studying formality, as well as connec-
tions with Massey products. (For the notion of differential graded algebras abbreviated as
DGAs, see Section 2.) Let C• := C•(SpecF,Z/2) = C•(GF ,Z/2) be the DGA of inho-
mogeneous continuous cochains of GF with coefficients in Z/2. In [HW], the following
extremely interesting question was posed.

Question 1.7 ([HW, Question 1.3]). Is C•(SpecF,Z/2) formal?

It is known that if C•(SpecF,Z/2) is formal, then all higher Massey products vanish.
Therefore the vanishing property of Massey products makes the question above a natural
one.

The structure of our paper is as follows. In Sections 2 and 3, basic facts on Massey
products are reviewed. Some examples on groups satisfying the vanishing Massey product
property are discussed in Section 4. In Section 5 we provide the first proof of Theorem 1.2
using splitting varieties [HW]. In Section 6 we present the second proof of Theorem 1.2
using Galois theory and some results of [GLMS]. In Section 7 we apply our results to
show some strong restrictions on the shape of relations of GF (2) for a field F . In the
last section we point out certain notions related to our results and possibly interesting
directions for further research.
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2. Review of Massey products

In this section and the next one, we review some basic facts about Massey products; we
use [Dwy], [Ef2], [HW] and [Wic1] as main sources. For other references on Massey
products, see e.g. [Fe, Kra, May, Mor, Vo1].

Let A be a unital commutative ring. Recall that a differential graded algebra (DGA)
over A is a graded A-algebra

C• =
⊕
k≥0

Ck = C0
⊕ C1

⊕ C2
⊕ · · ·

with a product ∪ and a differential ∂ : C•→ C•+1 such that

• ∂ is a derivation, i.e.,

∂(a ∪ b) = ∂a ∪ b + (−1)ka ∪ ∂b (a ∈ Ck);

• ∂2
= 0.

Then as usual the cohomology is H • := ker ∂/im ∂ . We shall assume that a1, . . . , an are
elements in H 1.

Definition 2.1. A collection M = (aij ), 1 ≤ i < j ≤ n + 1, (i, j) 6= (1, n + 1), of
elements of C1 is called a defining system for the n-fold Massey product 〈a1, . . . , an〉 if
the following conditions are fulfilled:

• ai,i+1 represents ai ;
• ∂aij =

∑j−1
l=i+1 ail ∪ alj for i + 1 < j .

Then
∑n
k=2 a1k ∪ ak,n+1 is a 2-cocycle. Its cohomology class in H 2 is called the value of

the product relative to the defining system M , and is denoted by 〈a1, . . . , an〉M .
The product 〈a1, . . . , an〉 itself is the subset of H 2 consisting of all elements which

can be written in the form 〈a1, . . . , an〉M for some defining system M . The product
〈a1, . . . , an〉 is uniquely defined if it contains only one element.

When n = 3 we will speak about a triple Massey product.
For n ≥ 2 we say that C• has the vanishing n-fold Massey product property if every

defined Massey product 〈a1, . . . , an〉, where a1, . . . , an ∈ C1, necessarily contains 0.

Remark 2.2. Let a1, . . . , an ∈ H
1. Suppose that M = (aij ), 1 ≤ i < j ≤ n + 1 and

(i, j) 6= (1, n+ 1), is a defining system for 〈a1, . . . , an〉. It is straightforward to see that

〈a1, . . . , an〉M + a1 ∪H
1
+H 1

∪ an ⊂ 〈a1, . . . , an〉.

And if n = 3 then

〈a1, a2, a3〉M + a1 ∪H
1
+H 1

∪ a3 = 〈a1, a2, a3〉.

In particular, 〈a1, a2, a3〉 is uniquely defined if and only if a1 ∪H
1
= H 1

∪ a3 = 0.
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3. Massey products and unipotent representations

Let G be a profinite group and let A be a finite commutative ring considered as a triv-
ial discrete G-module. The complex C• = (C•(G,A), ∂) of inhomogeneous continuous
cochains of G with coefficients in A is a DGA with the cup product [NSW, Ch. I, §2
and Proposition 1.4.1]. (Technically [NSW, Proposition 1.4.1] deals with homogeneous
continuous cochains. However, it is straightforward to see, using this proposition and the
relationship between homogeneous and inhomogeneous continuous cochains in [NSW,
Ch. I, §2], that this proposition is also true for inhomogeneous continuous cochains.) We
writeH i(G,A) for the corresponding cohomology groups. As observed by Dwyer [Dwy]
in the discrete context (see also [Ef2, §8] in the profinite case), defining systems for this
DGA can be interpreted in terms of upper-triangular unipotent representations of G, as
follows.

Let n ≥ 3 be an integer. Let Un+1(A) be the group of all upper-triangular unipotent
(n + 1) × (n + 1)-matrices with entries in A. Let Zn+1(A) be the subgroup of all such
matrices with all off-diagonal entries being 0 except at position (1, n+ 1). This group is
the center of Un+1(A). We may identify Un+1(A)/Zn+1(A) with the group Ūn+1(A) of
all upper-triangular unipotent (n + 1) × (n + 1)-matrices with entries over A with the
(1, n+ 1)-entry omitted, i.e. replaced by a blank space.

For a representation ρ : G → Un+1(A) and 1 ≤ i < j ≤ n + 1 let ρij : G → A be
the composition of ρ with the projection from Un+1(A) to its (i, j)-coordinate. We use
similar notation for representations ρ̄ : G → Ūn+1(A). Note that ρi,i+1 (resp., ρ̄i,i+1) is
a group homomorphism.

Theorem 3.1 ([Dwy, Theorem 2.4]). Let α1, . . . , αn ∈ H
1(G,A). There is a one-one

correspondence M ↔ ρ̄M between defining systems M for 〈α1, . . . , αn〉 and group ho-
momorphisms ρ̄M : G→ Ūn+1(A) with (ρ̄M)i,i+1 = −αi for 1 ≤ i ≤ n.

Moreover 〈α1, . . . , αn〉M = 0 in H 2(G,A) if and only if the dotted arrow exists in
the commutative diagram

G

ρ̄M
��xx

0 // A // Un+1(A) // Ūn+1(A) // 1

Explicitly, for a defining system M = (aij ) for 〈α1, . . . , αn〉, ρ̄M : G → Ūn+1(A) is
given by letting (ρ̄M)ij = −aij .

Remark 3.2. Let G(p) be the maximal pro-p quotient of G. Then the natural map

π∗ : H 1(G(p),Fp)→ H 1(G,Fp),

induced from the quotient map π : G → G(p), is an isomorphism. Let α1, . . . , αn ∈

H 1(G(p),Fp). Then the following are equivalent:

• 〈α1, . . . , αn〉 is defined and contains 0 in H 2(G(p),Fp).
• 〈π∗(α1), . . . , π

∗(αn)〉 is defined and contains 0 in H 2(G,Fp).
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This follows from Theorem 3.1 and from the fact that Un+1(Fp) and Ūn+1(Fp) are (finite)
p-groups.

Definition 3.3. Let the notation be as above. We say that G has the vanishing n-fold
Massey product property (with respect to A) if the DGA C•(G,A) has the vanishing
n-fold Massey product property.

Corollary 3.4. Let n ≥ 3 be an integer. The following conditions are equivalent:

(i) G has the vanishing n-fold Massey product property with respect to A.
(ii) For every representation ρ̄ : G → Ūn+1(A), there is a representation ρ : G →

Un+1(A) such that ρi,i+1 = ρ̄i,i+1 for i = 1, . . . , n.

Corollary 3.5. Let n ≥ 3 be an integer. Let G(p) be the maximal pro-p quotient of G
and assume that A = Fp. Then the following conditions are equivalent:

(i) G has the vanishing n-fold Massey product property with respect to Fp.
(ii) G(p) has the vanishing n-fold Massey product property with respect to Fp.

Proposition 3.6 ([Dwy, p. 182, Remark], see also [Ef2, Proposition 8.3]). Let ρ̄M :
G → Ūn+1(A) correspond to a defining system M = (cij ) for 〈α1, . . . , αn〉 as in Theo-
rem 3.1. Then the central extension associated with 〈α1, . . . , αn〉M is the pullback

0→ A→ Un+1(A)×Ūn+1(A)
G→ G→ 1

via ρ̄M : G→ Ūn+1(A) of the extension

0→ A→ Un+1(A)→ Ūn+1(A)→ 1.

Now assume that G = S/R is the quotient of some profinite group S by some normal
subgroup R. Then we have the transgression map [NSW, Chapter I, Proposition 1.6.6]

trg : H 1(R,A)G→ H 2(G,A).

Let ρ̄ : G → Ūn+1(A) be a representation of G and let 〈−ρ̄12, . . . ,−ρ̄n,n+1〉ρ̄ be the
n-fold Massey product value relative to the defining system corresponding to ρ̄. Suppose
that ρ : S → Un+1(A) is a lift of ρ̄, i.e., ρ is a homomorphism such that the diagram

S

ρ

��

// G

ρ̄
��

// 1

Un+1(A) // Ūn+1(A) // 1

commutes. We can define (see [Sh, p. 8]) 3(ρ) ∈ H 1(R,A)G by

3(ρ)(τ ) = −ρ1,n+1(τ )

for τ ∈ R. Then by the same argument as in [Sh, Lemma 2.3] and by Proposition 3.6, we
obtain the following result. We include a proof for the convenience of the reader.
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Lemma 3.7. We have trg(3(ρ)) = 〈−ρ̄12, . . . ,−ρ̄n,n+1〉ρ̄ .

Proof. We consider the diagram

1 // R //

−3(ρ)

��

S //

��

G // 1

0 // A // E //

��

G // 1

0 // A // Un+1(A)×Ūn+1(A)
G //

��

G //

ρ̄

��

1

0 // A // Un+1(A) // Ūn+1(A) // 1

and we read the diagram from top to bottom. Here the second exact sequence is the
pushout of the first exact sequence via 3(ρ) : R → A. Then its equivalence class as an
element in H 2(G,A) is trg(3(ρ)).

On the other hand, by Proposition 3.6 the equivalence class of the third central ex-
tension in H 2(G,A) is 〈−ρ̄12, . . . ,−ρ̄n,n+1〉ρ̄ . In order to prove the lemma, we only
need to prove that there exists a dashed arrow E 99K Un+1(A) ×Ūn+1(A)

G making the
above diagram commute. But this follows from the universal properties of the pullback
Un+1(A)×Ūn+1(A)

G and the pushout E . ut

Now let A = Fp, with p a prime number. As shown for example in [Ef2, Gä, Mor,
Vo1], Massey products in C•(G,Fp) are also intimately related to the p-Zassenhaus fil-
tration G(n), n = 1, 2, . . . , of G. Recall that this filtration is defined inductively by

G(1) = G, G(n) = G
p

(dn/pe)

∏
i+j=n

[G(i),G(j)],

where dn/pe is the least integer which is greater than or equal to n/p.

Lemma 3.8. Let G be a profinite group.

1. Every (continuous) homomorphism ρ : G→ Un+1(Fp) is trivial on G(n+1).
2. Every (continuous) homomorphism ρ : G→ Ūn+1(Fp) is trivial on G(n+1).

Proof. These follow from the fact that Un+1(Fp)(n+1) = 1. ut

Lemma 3.9. The profinite group G has the vanishing n-fold Massey product property
with respect to Fp if and only if G/G(n+1) has this property.

Proof. This follows from Corollary 3.4 and Lemma 3.8. ut

Proposition 3.10. Let N,N ′ be closed normal subgroups of a free pro-p-group S such
that NS(n+1) = N ′S(n+1). Then G = S/N has the vanishing n-fold Massey product
property with respect to Fp if and only if G′ = S/N ′ has this property.
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Proof. Because surjective homomorphisms take nth p-Zassenhaus filtrations onto nth
p-Zassenhaus filtrations, using our assumption we have

G/G(n+1) ∼= S/NS(n+1) = S/N
′S(n+1) ∼= G

′/G′(n+1).

Therefore our result follows from Lemma 3.9. ut

4. First examples

Example 4.1. IfG is a free pro-p-group, then it has the n-fold Massey product vanishing
property for every n ≥ 2 because H 2(G,Fp) = 0. Alternatively, this follows from the
universal property of G and condition (ii) of Corollary 3.4.

Recall that a profinite groupG is projective (in the category of profinite groups) if for any
finite groups A and B, and for any surjective morphisms ρ : G → A and α : B → A,
there exists a homomorphism γ : G→ B such that ρ = γ ◦ α (see [FJ, p. 207]).

Example 4.2. Let G be a projective group. Then it has the n-fold Massey product van-
ishing property for every n ≥ 3 and for every p. This follows directly from the definition
of projective groups and condition (ii) of Corollary 3.4.

A pro-p-group G is said to be a Demushkin group if

• dimFp H
1(G,Fp) <∞,

• dimFp H
2(G,Fp) = 1,

• the cup product H 1(G,Fp) × H 1(G,Fp) → H 2(G,Fp) is a non-degenerate bilinear
form.

Theorem 4.3. Let n ≥ 3 be an integer and p a prime number. Then every pro-p De-
mushkin group has the vanishing n-fold Massey product property with respect to Fp.

The following proof is adapted from that of [HW, Lemma 3.5].

Proof. Let G be a pro-p Demushkin group. Let χ1, . . . , χn ∈ H
1(G,Fp). Assume that

〈χ1, . . . , χn〉 is defined. If χ1 = 0 then by [Fe, Lemma 6.2.4], which is valid in the
profinite case as well, 〈χ1, . . . , χn〉 contains 0. So we may assume that χ1 6= 0. In this
case, to show that 〈χ1, . . . , χn〉 contains 0, we only need to show that

χ1 ∪ (−) : H
1(G,Fp)→ H 2(G,Fp)

is surjective, by Remark 2.2. From the definition of Demushkin groups, one has

H 2(G,Fp) ' Fp.

So it is enough to show that the map χ1 ∪ (−) is non-zero. But this follows from the
non-degeneracy of the cup product H 1(G,Fp)×H 1(G,Fp)→ H 2(G,Fp). ut
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Remark 4.4. If F is a finite field extension of Qp containing a primitive pth root of
unity, thenGF (p) is a pro-p Demushkin group. In [Sha], Shafarevich showed that if F is
as above, but contains no primitive pth root of unity, then GF (p) is a free pro-p-group.

Demushkin groups along with free pro-p-groups, abelian torsion free pro-p-groups,
and cyclic groups of order 2 play a dominant role in the current investigation of finitely
generated subgroups of maximal pro-p quotients GF (p) of absolute Galois groups. The
elementary conjecture predicts that the groups above are all “building blocks” for GF (p)
(see [Ef1, Mar, LLMS, JW]).

Proposition 4.5. Let G1,G2 be two pro-p-groups. Then the free pro-p-product G1 ∗G2
has the vanishing n-fold Massey product property with respect to Fp if and only if both
G1 and G2 have this property.

Proof. Assume that G1,G2 have the vanishing n-fold Massey product property. Let
ρ̄ : G1 ∗ G2 → Ūn+1(Fp) be any homomorphism. By Corollary 3.4, we need to find
a homomorphism ρ : G1 ∗G2 → Un+1(Fp) such that ρj,j+1 = ρ̄j,j+1, j = 1, . . . , n.

For each i = 1, 2 let κi : Gi → G1 ∗G2 be the natural monomorphism, and set ρ̄i =
ρ̄◦κi . SinceGi has the vanishing n-fold Massey product property, there is a representation
ρi : Gi → Un+1(Fp) such that (ρi)j,j+1 = (ρ̄i)j,j+1 for j = 1, . . . , n. The universal
property of free products yields a unique homomorphism ρ : G1 ∗G2 → Un+1(Fp) such
that ρ ◦ κi = ρi , i = 1, 2. For i = 1, 2 and j = 1, . . . , n we have

ρj,j+1 ◦ κi = (ρ ◦ κi)j,j+1 = (ρi)j,j+1 = (ρ̄i)j,j+1 = (ρ̄ ◦ κi)j,j+1 = ρ̄j,j+1 ◦ κi,

so ρj,j+1 = ρ̄j,j+1, as desired.
Conversely, assume that G1 ∗ G2 has the vanishing n-fold Massey product property.

Let ρ̄1 : G1 → Ūn+1(Fp) be any representation of G1. Let ρ̄2 : G2 → Ūn+1(Fp) be
the trivial homomorphism. Then by the universal property of free products, there exists a
homomorphism ρ̄ : G1 ∗G2 → Ūn+1(Fp) such that ρ̄1 = ρ̄ ◦ κ1. Since G1 ∗G2 has the
vanishing n-fold Massey product property, there exists a homomorphism ρ : G1 ∗G2 →

Un+1(Fp) such that ρi,i+1 = ρ̄i,i+1 for i = 1, . . . , n. Let ρ1 : G1 → Un+1(Fp) be the
composite ρ ◦ κ1. Then for i = 1, . . . , n, we have

(ρ1)i,i+1 = (ρ ◦ κ1)i,i+1 = ρi,i+1 ◦ κ1 = ρ̄i,i+1 ◦ κ1 = (ρ̄ ◦ κ1)i,i+1 = (ρ̄1)i,i+1.

Hence by Corollary 3.4, G1 has the vanishing n-fold Massey product property.
Similarly, G2 has the vanishing n-fold Massey product property. ut

Let p > 2 be an odd prime andG a pro-p-group. Let χ ∈ H 1(G,Fp). In [Kra, Section 3],
Kraines defined a restricted n-fold Massey product 〈χ〉n. If a restricted n-fold Massey
product 〈χ〉n is defined then so is the n-fold Massey product 〈χ, . . . , χ〉, and the latter
contains the former. Kraines showed that 〈χ〉n = 0 for n = 2, . . . , p − 1 and 〈χ〉p is
defined [Kra, Theorem 15]. In fact 〈χ〉p = −β(χ), where β : H 1(G,Fp)→ H 2(G,Fp)
is the Bockstein homomorphism, i.e., the connecting homomorphism induced by the exact
sequence

0→ Z/p→ Z/p2
→ Z/p→ 0.

Using Kraines’ results mentioned above, we obtain the following result.
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Proposition 4.6. Let n be an integer with 2 < n ≤ p. Let F be any field containing a
primitive pth root of unity if char(F ) 6= p. Let G be the absolute Galois group GF of F
or its maximal pro-p quotient GF (p). Then for any χ ∈ H 1(G,Fp), the n-fold Massey
product 〈χ, . . . , χ〉 is defined and contains 0.

Proof. It is enough to consider the case G = GF (p) by Remark 3.2. Also if charF = p
then sinceGF (p) is a free pro-p-group, we have〈χ, . . . , χ〉 = 0. So we may assume that
charF 6= p; let us fix a primitive pth root of unity ξ . Then χ = χa for some a ∈ F ∗,
where χa ∈ H 1(GF ,Fp) = H 1(GF (p),Fp) is the character associated to a via the
Kummer map F ∗→ H 1(GF ,Fp) = H 1(GF (p),Fp).

If n < p then by [Kra, Theorem 15], 〈χa, . . . , χa〉 contains 0 = 〈χa〉n.
Now we consider the case n = p. Then 〈χa〉p = −β(χa). By [EM1, proof of Propo-

sition 3.2], β(χa) = χa ∪ χξ (ξ ∈ F ∗ is a fixed primitive pth root of unity). Hence by
Remark 2.2, one has

0 = 〈χa〉p + χa ∪ χξ ∈ 〈χa, . . . , χa〉,

as claimed. ut

Example 4.7. Let p be an odd prime number and G = Z/pZ. Let χ ∈ H 1(G,Fp) be
the identity map. Then the p-fold Massey product 〈χ, . . . , χ〉 is defined but does not
contain 0. Indeed, suppose it does; then there exists a representation ρ : G→ Up+1(Fp)
such that ρi,i+1 = χ for i = 1, . . . , p. Let B := ρ(1̄) ∈ Up+1(Fp). Then all entries of B
at positions (i, i + 1), i = 1, . . . , p, are 1. Hence Bp 6= 1, contradicting the fact that B is
the image of an element of order p.

Remark 4.8. Proposition 4.6 and Example 4.7 immediately provide an explanation to a
part of the well-known Artin–Schreier theorem [AS1, AS2] (respectively, Becker’s theo-
rem [Be]) which says that the absolute Galois group GF (respectively, its maximal pro-p
quotient GF (p)) of any field F cannot have an element of odd prime order. (Note also
that if GF ' Z/pZ then F contains a primitive pth root of unity.)

In [MTE], using Galois automatic realization of given groups, we shall prove a more
general result than Proposition 4.6 in which the condition n ≤ p can be omitted, provided
that if p = 2 then −1 is a square in F . One can then use this generalized result to show
the full Artin–Schreier theorem (respectively, Becker’s theorem) (see [MTE]).

5. Splitting variety and the vanishing property

Let F be a field of characteristic 6= 2. LetG = GF (2) be the maximal pro-2 Galois group
of F . Let a, b, c ∈ F ∗ and χa, χb, χc ∈ H 1(G,F2) be the characters corresponding to
a, b, c via the Kummer map F ∗ → H 1(G,F2). Let Xa,b,c be the variety in Gm × A4

defined by the equation

bX2
= (Y 2

1 − aY
2
2 + cY

2
3 − acY

2
4 )

2
− 4c(Y1Y3 − aY2Y4)

2.
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First proof of Theorem 1.2. If a (or b, or c) is in (F ∗)2 then the corresponding charac-
ter χa (or χb, or χc) is the trivial character, and hence the Massey product 〈χa, χb, χc〉
contains 0 by [Fe, Lemma 6.2.4]. So we may assume that a, b and c are not in (F ∗)2.
The following well-known fact will be used frequently: χa ∪ χb = 0 if and only if b is
in NF(√a)/F (F (

√
a)∗) (see e.g. [HW, Introduction, p. 4], [Se2, Chapter XIV, Proposi-

tions 4–5], or [Sri, Lemma 8.4]). There are two cases to consider.

Case 1: a/c is in (F ∗)2. Then χa = χc and hence 〈χa, χb, χc〉 = 〈χa, χb, χa〉 and
we can assume a = c. Since 〈χa, χb, χa〉 is defined, χa ∪ χb = 0. Hence b ∈
NF(
√
a)/F (F (

√
a)∗) and there exist α1, α2 ∈ F such that

b = NF(
√
a)/F (α1 + α2

√
a) = α2

1 − aα
2
2 .

If α1 6= 0 then let x = 4α1 6= 0, y1 = 2α1, y2 = y3 = α2, y4 = 0. One has

(y2
1 − ay

2
2 + ay

2
3 − a

2y2
4)

2
− 4a(y1y3 − ay2y4)

2
= (4α2

1)
2
− 4a(2α1α2)

2

= 16α2
1(α

2
1 − aα

2
2) = bx

2.

If α1 = 0 then b = −aα2
2 . Let x = 4a 6= 0, y1 = a, y2 = y3 = α2, y4 = −1. Then

(y2
1 − ay

2
2 + ay

2
3 − a

2y2
4)

2
− 4a(y1y3 − ay2y4)

2
= 0− 4a(2aα2)

2
= bx2.

Case 2: a/c is not in (F ∗)2. Since 〈χa, χb, χc〉 is defined, χa ∪ χb = 0 = χb ∪ χc.
Hence b ∈ NF(

√
a)/F (F (

√
a)∗) and b ∈ NF(

√
c)/F (F (

√
c)∗). Thus, there exist

α1, α2, γ1, γ2 ∈ F such that

b = NF(
√
a)/F (α1 + α2

√
a) = α2

1 − aα
2
2

= NF(
√
c)/F (γ1 + γ2

√
c) = γ 2

1 − cγ
2
2 .

Hence cγ 2
2 − aα

2
2 = γ 2

1 − α
2
1 6= 0 because a/c and b are not in (F ∗)2. Therefore

α1 + γ1 6= 0.
Let

x = 2(α1 + γ1), y1 = α1 + γ1, y2 = α2, y3 = γ2, y4 = 0.

Then

(y2
1 − ay

2
2 + cy

2
3 − acy

2
4)

2
− 4c(y1y3 − ay2y4)

2

= [(α1 + γ1)
2
− aα2

2 + cγ
2
2 ]

2
− 4c[(α1 + γ1)γ2]

2

= [(α1 + γ1)
2
+ γ 2

1 − α
2
1]

2
− 4c(α1 + γ1)

2γ 2
2

= 4(α1 + γ1)
2γ 2

1 − 4c(α1 + γ1)
2γ 2

2

= 4(α1 + γ1)
2(γ 2

1 − cγ
2
2 ) = 4(α1 + γ1)

2b = bx2.

Therefore the variety Xa,b,c contains an F -rational point, namely (x, y1, y2, y3, y4).
Hence 〈χa, χb, χc〉 contains 0 by [HW, Corollary 2.7]. ut
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6. Field theory and the vanishing property

In this section we present another proof of Theorem 1.2 using Galois theory and [GLMS].
Notation: For a, b in a field F of characteristic 6= 2, (a, b)F is the quaternion algebra

generated by i and j such that i2 = a, j2
= b and ij = −ji. For x, y in a group,

[x, y] = x−1y−1xy.

Second proof of Theorem 1.2. As in the first proof, we may assume that a, b and c are
not in (F ∗)2.

Assume that 〈χb, χa, χc〉 is defined; we will show that it contains 0. (Note that the
order in the triple Massey product here is different from the one in the first proof, because
we want to be consistent with the notation of [GLMS].)

Case 1: a ≡ b ≡ c mod (F ∗)2. Then 〈χb, χa, χc〉 = 〈χb, χb, χb〉. Since (b, b)F = 0,
b is a norm of F(

√
b)/F , i.e., b = NF(

√
b)/F (β) for some β ∈ F(

√
b). Let L = F(

√
β).

Then L/F is a Galois extension which is cyclic of order 4. Its Galois group is generated
by σb ∈ Gal(L/F), where σb(

√
β) =

√
b/
√
β.

One can define a homomorphism ϕ : Gal(L/F)→ U4(F2) by letting

σb 7→ B :=


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
Let ρ be the composite homomorphism GalF → Gal(L/F)

ϕ
→ U4(F2). Then one can

check that
ρi,i+1 = χb ∀i = 1, 2, 3.

(Note that σb|F(
√
b)/F maps

√
b to −

√
b and here we are identifying F2 = {−1, 1} =

{0, 1}.) Hence by Theorem 3.1, 〈χb, χb, χb〉 contains 0.

Case 2: a ≡ b mod (F ∗)2 and a 6≡ c mod (F ∗)2. This case can be treated in a similar
way to Case 3 below.

Case 3: a 6≡ b mod (F ∗)2 and c ≡ a mod (F ∗)2. Then 〈χb, χa, χc〉 = 〈χb, χa, χa〉.
Since (a, a)F = (a, b)F = 0 in the Brauer group Br(F ), by construction in [GLMS, Sec-
tion 3] we have a Galois extensionL/F which contains F(

√
a,
√
b)with Galois groupG1

described below. Also there exist σa, σb ∈ Gal(L/F) such that

σa(
√
a) = −

√
a, σa(

√
b) =

√
b, σb(

√
a) =

√
a, σa(

√
b) = −

√
b.

Let G1 be the group generated by two symbols x, y subject to the relations: x4
= y2

=

1 = (x, y)2 = (x, y, x)2 and (x, y, x) commutes with x and y. Then it is shown in
[GLMS] that σa, σb generate Gal(L/F), and Gal(L/F) is isomorphic to G1 by letting
σa 7→ x and σb 7→ y.

Let

u :=


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , v :=


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Then u4
= v2

= [u, v]2 = 1 and [[u, v], u] is central and of order 2 in U4(F2). Hence one
can define a homomorphism ϕ : Gal(L/F)→ U4(F2) by letting σa 7→ u, σb 7→ v. (The
homomorphism ϕ is in fact injective so it induces an isomorphism between Gal(L/F) and
the subgroup generated by u, v. This follows from Z(G1) = Z/2Z, which is the smallest
non-trivial normal subgroup of G1 and [[u, v], u] 6= 1.)

Let ρ be the composite GalF → Gal(L/F)
ϕ
→ U4(F2). Then one can check that

ρ12 = χb and ρ23 = ρ34 = χa .

Hence by Theorem 3.1, 〈χb, χa, χa〉 contains 0.

Case 4: a 6≡ b mod (F ∗)2 and c ≡ b mod (F ∗)2. Then χb = χc and hence 〈χb, χa, χc〉
= 〈χb, χa, χb〉. By assumption, we have (a, b)F = 0. Hence b = NF(√a)/F (β) for some
β ∈ F(

√
a). Let L = F(

√
a,
√
b,
√
β). We define σa, σb ∈ Gal(L/F) as follows:

σa :
√
a 7→ −

√
a;
√
b 7→

√
b;

√
β 7→ −

√
b/

√
β;

σb :
√
a 7→

√
a;
√
b 7→ −

√
b;

√
β 7→

√
β.

Then the subgroup of Gal(L/F) generated by σa, σb is isomorphic to the dihedral
group D4 of order 8 = [L : F ]. Hence Gal(L/F) is isomorphic to D4 and generated
by σa, σb. One can define a homomorphism ϕ : Gal(L/F)→ U4(F2) by letting

σa 7→ u :=


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , σb 7→ v :=


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
Let ρ be the composite GalF → Gal(L/F)

ϕ
→ U4(F2). Then one can check that

ρ23 = χa and ρ12 = ρ34 = χb.

Hence by Theorem 3.1, 〈χb, χa, χb〉 contains 0.

Case 5: a 6≡ b mod (F ∗)2 and c ≡ ab mod (F ∗)2. Then 〈χb, χa, χc〉 = 〈χb, χa, χab〉.
By assumption, we have (a, b)F = (a, ab)F = 0. Hence (a, b)F = (a, a)F = 0. As in
Case 3, we can construct a Galois extension L/F with Galois group isomorphic to G1.
Let

A :=


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , B :=


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
Then A4

= B2
= [A,B]2 and [[A,B], A] is central and of order 2 in U4(F2). Hence one

can define a homomorphism ϕ : Gal(L/F)→ U4(F2) by letting σa 7→ A, σb 7→ B. Here
σa, σb are as in Case 3. (The homomorphism ϕ is in fact injective so that it induces an
isomorphism between Gal(L/F) and the subgroup generated by A,B. This follows from
Z(G1) = Z/2Z and [[A,B], A] 6= 1.)
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Let ρ : GalF → Gal(L/F)
ϕ
→ U4(F2). Then one can check that

ρ12 = χb, ρ23 = χa, ρ34 = χab.

Hence by Theorem 3.1, 〈χb, χa, χab〉 contains 0.

Case 6: a, b, c are F2-independent in F ∗/F ∗2. Because 〈χb, χa, χc〉 is defined, (b, a)F
= (a, c)F = 0. As in [GLMS], we have the following construction. There exist
β ∈ F(

√
b) and γ ∈ F(

√
c) such that NF(

√
b)/F (β) = NF(

√
c)/F (γ ) = a. Let

E = F(
√
b,
√
c). Then [Wad, Lemma 2.14] implies that there exist δ ∈ E and d ∈ F such

that NE/F(
√
b)(δ) = βd and NE/F(√c)(δ) = γ d . Let E′ = E(

√
a), K = E′(

√
βd,
√
γ d)

and L = K(
√
δ). It is shown in [GLMS, proof of Proposition 4.6] that there exist

σa, σb, σc ∈ Gal(L/F) such that σa fixes
√
b,
√
c and σa(

√
a) = −

√
a, and similarly

for σb, σc. Furthermore, σa, σb, σc generate Gal(L/F).
Let

X :=


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , Y :=


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Z :=


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
By direct computation one has

(1) X2
= Y 2

= Z2
= 1, [X, Y ]2 = [X,Z]2 = [Y,Z] = 1,

(2) [Y, [X,Z]] = [Z, [X, Y ]] is in the center and of order dividing 2.

Hence there is a natural homomorphism ϕ from Gal(L/F) ' G2 to U4(F2) (G2 is
defined in [GLMS, Definition 4.4] as the group generated by x, y, z satisfying (1)–(2)
above). As X, Y,Z generates U4(F2), ϕ is surjective and hence an isomorphism because
|Gal(L/F)| = |U4(F2)| = 64. Also from [GLMS, proof of Proposition 4.7] one deduces
that ϕ maps σa to X, σb to Y , and σc to Z.

Let ρ : GalF → Gal(L/F)
ϕ
' U4(F2). Then one can check that

ρ12 = χb, ρ23 = χa, ρ34 = χc.

(Note that χa is the composite GalF → Gal(L/F)→ Gal(F (
√
a)/F ) ' F2, where the

last map sends σa|F(√a/F ) to 1, and similarly for χb, χc. Since all the maps ρ, χa, χb, χc
factor through Gal(L/F), it is enough to check on σa, σb, σc.)

Hence by Theorem 3.1, 〈χb, χa, χc〉 contains 0. ut

Remark 6.1. Because the Galois extensions L/F with Galois group isomorphic to
U4(F2) play a fundamental role in the theory of triple Massey products, and for their
use in Galois theory, we shall describe the structure of these extensions. For further re-
lated results see [GLMS] where U4(F2) is denoted G2. Let X, Y,Z be matrices defined
as in Case 6 of the previous proof. Then observe that

U4(F2) = {X
αY βZγ [X, Y ]λ[X,Z]µ[[X, Y ], Z]ν | α, β, γ, λ, µ, ν = 0 or 1}

= W o V,
where V is isomorphic to the Klein 4-group V4 ' V = 〈Y,Z〉 and W ' F2[V ].
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Now let L/F be a U4(F2)-Galois extension. Let E be the fixed field of L under W .
Then E/F is a V4-extension, so E = F(

√
b,
√
c) for some b, c ∈ F ∗ where b, c are

linearly independent mod (F ∗)2.
Since W is a 2-elementary group, we have Gal(L/E) = W , and by Kummer theory

one has L = E(
√
M), where M ⊂ E∗/(E∗)2 is dual to W . Then M is isomorphic

to F2[V ].
Let [δ] ∈ E∗/(E∗)2 be a generator of M . We define σb, σb ∈ Gal(E/F) as follows:

σb(
√
b) = −

√
b, σb(

√
c) =
√
c and σc(

√
b) =

√
b, σc(

√
c) = −

√
c. Then

σb(δ)δ = NE/F(
√
c)(δ), σc(δ)δ = NE/F(

√
b)(δ),

and we set

a := σb(σc(δ))σc(δ)σb(δ)δ = NE/F (δ).

Now since M is 4-dimensional, we have a 6∈ (E∗)2. Thus we have shown that each
U4(F2)-Galois extension L/F is a normal closure of E(

√
δ)/F where

1. E/F is a V4-extension;
2. δ ∈ E∗ and NE/F (δ) 6∈ (E∗)2.

One can see that the converse also holds: if L/F is a normal closure of E(
√
δ)/F where

E/F and δ satisfy conditions 1–2 above, then L/F is a U4(F2)-Galois extension.

Theorem 6.2. Let G be the absolute Galois group GF of a field F or its maximal 2-
extension quotient GF (2). Then G has the vanishing triple Massey product property with
respect to F2.

Proof. It is enough to consider the case G = GF (2) by Corollary 3.5.
If F is of characteristic 2, then G is free and hence it has the vanishing triple Massey

product property.
If F is of characteristic 6= 2, then G has the vanishing triple Massey product property

by Theorem 1.2. ut

Remark 6.3. After an ealier version of this paper was posted on arXiv:math, I. Efrat and
E. Matzri [EMa] found yet another interesting approach which they used to find another
proof of Theorem 1.2, and they also found another proof of the main theorem of [MT1].

7. Groups without the triple vanishing property

In this section, we construct pro-p-groups G which do not have the vanishing triple
Massey product property. In particular, when p = 2, they are not realizable as GF (2)
for any field F .

First we verify the following computational fact.
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Lemma 7.1. Let ai, bi, ci ∈ Fp, i = 1, 2, 3, and set

A =


1 1 a1 b1
0 1 0 c1
0 0 1 0
0 0 0 1

 , B =


1 0 a2 b2
0 1 1 c2
0 0 1 0
0 0 0 1

 , C =


1 0 a3 b3
0 1 0 c3
0 0 1 1
0 0 0 1

 .
Then

[[B,C], A] =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 .
Proof. A direct computation shows that A−1, B−1, C−1 are

1 −1 −a1 c1 − b1
0 1 0 −c1
0 0 1 0
0 0 0 1

 ,


1 0 −a2 −b2
0 1 −1 −c2
0 0 1 0
0 0 0 1

 ,


1 0 −a3 a3 − b3
0 1 0 −c3
0 0 1 −1
0 0 0 1

 ,
respectively. Therefore

[B,C] =


1 0 0 a2
0 1 0 1
0 0 1 0
0 0 0 1

 , [B,C]−1
=


1 0 0 −a2
0 1 0 −1
0 0 1 0
0 0 0 1

 ,
and the assertion follows. ut

Example 7.2. Let S be a free pro-p-group on generators x1, . . . , x5. Define r =

[x4, x5][[x2, x3], x1], and let 〈r〉 be the closed normal subgroup of S generated by r . Note
that it is contained in the Frattini subgroup S(2) of S. We show that G = S/〈r〉 does not
have the vanishing triple Massey product property. To this end let

A =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , C =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
Let Ā, B̄, C̄ be the images ofA,B,C, respectively, in Ū4(Fp). We define a representation
ρ̄ : S → Ū4(Fp) by letting

ρ̄(x1) = Ā, ρ̄(x2) = B̄, ρ̄(x3) = C̄, ρ̄(x4) = 1, ρ̄(x5) = 1.

By Lemma 7.1, ρ̄(r) = [[B̄, C̄], Ā] = 1, so ρ̄ induces a representation ρ̄ : G→ Ū4(Fp).
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Now suppose that ρ : S → U4(Fp) is a representation such that ρi,i+1 = ρ̄i,i+1 for
i = 1, 2, 3. By Corollary 3.4, we need to show that ρ(r) 6= 1. We may write

ρ(x1) =


1 1 a1 b1
0 1 0 c1
0 0 1 0
0 0 0 1

 , ρ(x2) =


1 0 a2 b2
0 1 1 c2
0 0 1 0
0 0 0 1

 , ρ(x3) =


1 0 a3 b3
0 1 0 c3
0 0 1 1
0 0 0 1

 ,

ρ(x4) =


1 0 a4 b4
0 1 0 c4
0 0 1 0
0 0 0 1

 , ρ(x5) =


1 0 a5 b5
0 1 0 c5
0 0 1 0
0 0 0 1


for some ai, bi, ci ∈ Fp, i = 1, 2, 3, 4, 5. We note that ρ(x4) and ρ(x5) commute, so by
Lemma 7.1, ρ(r) = [[ρ(x2), ρ(x3)], ρ(x1)] 6= 1, as claimed. ut

Example 7.3. Let G be as in the previous example with p = 2. Then by Theorem 1.2
(or more precisely, Theorem 6.2), G is not realizable as GF (2) for any field F . For this
statement, using [GLMS] we will provide another proof, which avoids Theorem 1.2 and
the Massey product formalism technique.

Assume that G = GF (2) for some field F . Note that G is not a free pro-2-group,
so F is of characteristic different from 2. We denote by σi the image of xi in G.
Let χ1, . . . , χ5 ∈ H 1(S,F2) = H 1(G,F2) be the characters dual to x1, . . . , x5. Let
[a1], . . . , [a5] ∈ F

∗/(F ∗)2 be elements corresponding to χ1, . . . , χ5 via Kummer theory.
This means χ1(

√
ai) =

√
ai for i 6= 1 and χ1(

√
a1) = −

√
a1, etc.

By [NSW, Propositions 3.9.12-3.9.13], we have

a2 ∪ a3 = a3 ∪ a1 = 0.

Consider a field L/F attached to the triple a2, a3, a1 (see [GLMS, Proposition 4.6]). Let
σai be constructed as in [GLMS, proof of Proposition 4.6] with a, b, c there replaced
by a3, a1, a2, respectively. Then [[σa2 , σa3 ], σa1 ] is a non-trivial element in Z(Gal(L/F))
' Z/2. For each i, σi and σai act in the same way onK = F(

√
a1,
√
a2,
√
a3). Therefore

σi |L/F = σaiγi for γi in 8(Gal(L/F)), the Frattini subgroup of Gal(L/F).
In the proof of the claim below we use basic commutator identities together with basic

identities valid in Gal(L/F).

Claim. [[σ2, σ3], σ1]|L/F = [[σa2 , σa3 ], σa1 ].

In fact,

[σ2|L/F , σ3|L/F ] = [σa2γ2, σa3γ3] = [σa2 , σa3 ][σa2 , γ3][γ2, σa3 ] = [σa2 , σa3 ]c,

where c := [σa2 , γ3][γ2, σa3 ], which is in the center of Gal(L/F). Hence

[[σ2, σ3], σ1]|L/F = [[σ2|L/F , σ3|L/F ], σ1|L/F ] = [[σa2 , σa3 ]c, σa1γ1]

= [[σa2 , σa3 ], σa1γ1] = [[σa2 , σa3 ], σa1 ].

Therefore, [[σ2, σ3], σ1]|L/F is a non-trivial element in Z(Gal(L/F)) ' Z/2.
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Also observe that [σ4, σ5]|L/F is trivial because σ4 and σ5 act trivially on K =
F(
√
a,
√
b,
√
c) and Gal(L/K) is abelian. Hence our relation [σ4, σ5][[σ2, σ3], σ1] = 1

restricts non-trivially on L/F . Thus we obtain a contradiction showing that G 6' GF (2)
for any field F . ut

Remark 7.4. As noted in [CEM, EM2], one can use [CEM, Proposition 9.1] (or [EM2,
Corollary 6.3]) to show that various pro-2-groups occur as GF (2) for no field F of char-
acteristic 6= 2. For the convenience of the reader, we recall this result for pro-2-groups
below.

Proposition 7.5 ([CEM, Proposition 9.1], [EM2, Corollary 6.3]). Let G1,G2 be pro-2-
groups such that G1/(G1)(3) ' G2/(G2)(3) and H ∗(G1,F2) 6' H ∗(G2,F2). Then at
most one of G1,G2 can be isomorphic to the maximal pro-2 Galois group GF (2) of a
field F of characteristic 6= 2.

To show that a pro-2-group G1 cannot be isomorphic to GF (2) for a field F of character-
istic 6= 2, we choose a group G2 such that the two conditions in the above corollary are
satisfied and G2 does occur as GL(2) for some field L of characteristic 6= 2, and we are
done.

Now we consider the pro-2-group G =: G1 defined as in the previous example, i.e.,
G is the quotient of the free pro-2-group S on generators x1, . . . , x5 by the relation r =
[x4, x5][[x2, x3], x1]. Then one might wonder whether we can use Proposition 7.5 to show
that G = G1 is not realizable as GF (2) for some field F of characteristic 6= 2. One
very natural candidate for G2 is the quotient of the free pro-2-group S by the relation
r2 = [x4, x5]. Then G1/(G1)(3) ' G2/(G2)(3) and G2 is the free product of the free
pro-2-group on three generators x1, x2, x3 with the group Z2 × Z2. And it is known (see
[JW, Theorem 3.6]) that G2 is isomorphic to GF (2) for some field F of characteristic
6= 2. However, H ∗(G1,F2) ' H

∗(G2,F2). In fact, let

H 1(G1,F2) = U1 ⊕ V1, H 1(G2,F2) = U2 ⊕ V2,

where for each i = 1, 2, Ui is spanned by the images of χ1, χ2, χ3, χ4 in H 1(Gi,F2),
and Vi is spanned by the image of χ5 in H 1(Gi,F2). Then using the usual transgression-
relation pairing we see that:

• The cup product Ui ⊗ Ui → H 2(Gi,F2) is trivial.
• The cup product Ui ⊗ Vi → H 2(Gi,F2) is surjective, because χ4 ∪ χ5 6= 0 and

dimH 2(Gi,F2) = 1.

Hence Gi are mild groups (see for example [Fo, Gä, LM]). In particular, cdG1 = cdG2
= 2 and H ∗(G1,F2) = H

∗(G2,F2). Therefore we cannot easily apply Proposition 7.5
to this example.

Our discussion above shows that our techniques provide genuinely new cases of pro-
2-groups which cannot occur as GF (2) over some field F . Theorems 7.8 and 7.12 below
exhibit large families of pro-2-groups which are not of the form GF (2).

It is easy to provide examples as above with more relations. For example letG = S/R,
where S is a free pro-2-group on generators x1, . . . , x7 and R is its normal subgroup
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generated by r1 = [x4, x5][[x2, x3], x1] and r2 = [x6, x7]. Then the proof above showing
that G 6' GF (2) for any field F is valid word-for-word with the very exception that we
choose in our possible example of F an F2-basis [a1], . . . , [a7] orthogonal to χ1, . . . , χ7
instead of the original basis [a1], . . . , [a5]. ut

Let G be a pro-p-group. Let

1→ R→ S → G→ 1

be a minimal presentation ofG, i.e., S a free pro-p-group andR ⊂ S(2). Then the inflation
map

inf : H 1(G,Fp)→ H 1(S,Fp)

is an isomorphism by which we identify the two groups. Since S is free, we have
H 2(S,Fp) = 0 and from the 5-term exact sequence we obtain the transgression map

trg : H 1(R,Fp)G→ H 2(G,Fp),

which is an isomorphism. Therefore any element r ∈ R gives rise to a map

trr : H 2(G,Fp)→ Fp,

which is defined by α 7→ trg−1(α)(r) and is called the trace map with respect to r .
Let (xi)i∈I be a basis of S, where I is a well-ordered set. Let χi , i ∈ I , be the dual

basis to xi , i ∈ I , of H 1(S,Fp) = H 1(G,Fp), i.e., χi(xj ) = δij .
Let r be any element in S(2). Then r may be uniquely written as

r =



∏
i∈I

x
2ai
i

∏
i<j

[xi, xj ]
bij

∏
i<j, k≤j

[[xi, xj ], xk]]
cijk · r ′ if p = 2,∏

i<j

[xi, xj ]
bij

∏
i∈I

x
3ai
i

∏
i<j, k≤j

[[xi, xj ], xk]]
cijk · r ′ if p = 3,∏

i<j

[xi, xj ]
bij

∏
i<j, k≤j

[[xi, xj ], xk]]
cijk · r ′ if p 6= 2, 3,

(∗)

where ai, bij , cijk ∈ {0, 1, . . . , p − 1} and r ′ ∈ S(4) [Vo1, Propositions 1.3.2 and 1.3.3].
For convenience we call (∗) the canonical decomposition of r modulo S(4) (with respect
to the basis (xi)) and we also set uij = bij if i < j , and uij = bji if j < i.

Lemma 7.6. Let the notation be as above. Assume that R = 〈r〉 and that the triple
Massey product 〈−χk,−χi,−χj 〉 is defined for some distinct i, j, k with i < j and k < j .
Then there exists α ∈ 〈−χk,−χi,−χj 〉, which can be given explicitly, such that

trr(α) = cijk.
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Proof. Since 〈−χk,−χi,−χj 〉 is defined, χk ∪ χi = χi ∪ χj = 0. Hence by [Vo1,
Proposition 1.3.2] (see also [NSW, Proposition 3.9.13]), we have uki = uij = 0.

Let

A =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , C =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
Then Ap = Bp = Cp = [A,C] = 1.

We define a representation ρ : S → U4(Fp) by letting

xk 7→ A, xi 7→ B, xj 7→ C, xl 7→ 1, ∀l 6= i, j, k.

Then
ρ(r) = [A,C]ukj [[B,C], A]cijk · [[A,C], B]ckji = [[B,C], A]cijk .

Hence ρ(r) = 1 in Ū4(Fp). Thus ρ induces a group homomorphism ρ̄ : G → Ū4(Fp).
Then ρ is a lift of ρ̄ in the sense discussed before Lemma 3.7. By checking on the gener-
ators we see that

ρ̄12 = χk, ρ̄23 = χi, ρ̄34 = χj .

Let α ∈ 〈−χk,−χi,−χj 〉 be the Massey product value relative to the defining system
corresponding to ρ̄ and let f ∈ H 1(R,Fp)G be defined by

f (τ) = −ρ14(τ ) for τ ∈ R.

By Lemma 3.7, we have trg(f ) = α. Hence

trr(α) = f (r) = −ρ14(r) = cijk,

as desired. ut

Proposition 7.7. Suppose that in (∗) there exist distinct i, j, k such that i, k < j and
uij = ukj = uki = ukl = uj l = 0 for all l 6= i, j, k. If p = 2 assume further that
ak = aj = 0. Let G = S/〈r〉 and χ1, . . . , χn be the Fp-basis of H 1(S,Fp) = H 1(G,Fp)
dual to x1, . . . , xn. Then 〈−χk,−χi,−χj 〉 is uniquely defined and

trr(〈−χk,−χi,−χj 〉) = cijk.

In particular, if further cijk 6= 0 then 〈−χk,−χi,−χj 〉 does not vanish.

Proof. By [Vo1, Proposition 1.3.2] (see also [NSW, Proposition 3.9.13]) and by assump-
tion, we have

trr(χk ∪ χl) =


±ukl = 0 if l 6= k,
0 if l = k, p 6= 2,
ak = 0 if l = k, p = 2.
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Hence χk∪χl = 0 for all l = 1, . . . , n. Thus χk∪H 1(G,Fp) = 0. SimilarlyH 1(G,Fp)∪
χj = 0. Therefore 〈−χk,−χi,−χj 〉 is uniquely defined. By Lemma 7.6,

trr(〈−χk,−χi,−χj 〉) = cijk,

as desired. ut

The following theorem generalizes Example 7.2.

Theorem 7.8. Let R be a set of elements in S(2). Assume that there exists an element r
in R and distinct indices i, j, k with i, k < j such that:

1. in the canonical decomposition (∗) of r modulo S(4), uij = ukj = uki = ukl = uj l = 0
for all l 6= i, j, k, and cijk 6= 0, and if p = 2 assume further that ak = aj = 0; and

2. for every s ∈ R different from r , the factors [xk, xi], [xi, xk] and [xi, xj ] do not occur
in the canonical decomposition of s modulo S(4).

Then G = S/〈R〉 does not have the vanishing triple Massey product property.

Proof. Let G′ = G/〈r〉 and let f be the canonical map G′ = S/〈r〉 → G = S/〈R〉.
We shall identify the three groups H 1(S,Fp), H 1(G,Fp) and H 1(G′,Fp) via inflation
maps. We also use 〈·, ·, ·〉G (respectively, 〈·, ·, ·〉G′ ) to denote Massey products in the
cohomology groups of G (respectively, G′).

By [Vo1, Proposition 1.3.2] (see also [NSW, Proposition 3.9.13]) and by assumption,

trs(χk ∪ χi) = trs(χi ∪ χj ) = 0 for all s ∈ R.

Hence χk ∪ χi = χi ∪ χj = 0 and 〈−χk,−χi,−χj 〉G is defined.
By the naturality property of Massey products (see e.g. [Kra, p. 433], [Mor, Property

2.1.2]), one has
f ∗(〈−χk,−χi,−χj 〉G) ⊆ 〈−χk,−χi,−χj 〉G′ .

By Proposition 7.7 applied toG′, we see that 〈−χk,−χi,−χj 〉G′ does not vanish. There-
fore 〈−χk,−χi,−χj 〉G does not vanish either, and we are done. ut

Lemma 7.9. Let

u :=


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , v :=


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


be matrices in U4(Fp). Then

[[u, v], u] =


1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , [[u, v], v] = 1, vp = 1.

Furthermore, if p ≥ 3 then up = 1.
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Lemma 7.10. Let the notation be as in Lemma 7.6. Assume that R = 〈r〉.

1. Assume that 〈−χj ,−χi,−χi〉 is defined for some i < j . Then there exists an α ∈
〈−χj ,−χi,−χi〉 such that trr(α) = cij i .

2. Assume that 〈−χi,−χj ,−χj 〉 is defined for some i < j . Then there exists an α ∈
〈−χi,−χj ,−χj 〉 such that trr(α) = cijj .

Proof. We only prove item 1 since item 2 can be proved similarly. Since 〈−χj ,−χi,−χi〉
is defined, χi ∪ χj = 0 = χi ∪ χj . Hence by [Vo1, Proposition 1.3.2] (see also [NSW,
Proposition 3.9.13]), uij = 0 and if p = 2 then ai = 0.

Let u, v be the matrices of Lemma 7.9. We define a representation ρ̄ : S → Ū4(Fp)
by letting

xi 7→ u, xj 7→ v̄, xl 7→ 1, ∀l 6= i, j.

Then
ρ(r) = [[u, v], u]cij i [[u, v], v]cijj = [[u, v], u]cij i .

Hence ρ(r) = 1 in Ū4(Fp). Thus ρ induces a group homomorphism ρ̄ : G → Ū4(Fp).
Then ρ is a lift of ρ̄ in the sense discussed before Lemma 3.7. By checking on the gener-
ators we see that

ρ̄12 = χj , ρ̄23 = χi, ρ̄34 = χi .

Let α ∈ 〈−χj ,−χi,−χi〉 be the Massey product value relative to the defining system
corresponding to ρ̄ and let f ∈ H 1(R,Fp)G be defined by

f (τ) = −ρ14(τ ) for τ ∈ R.

By Lemma 3.7, we have trg(f ) = α. Hence

trr(α) = f (r) = −ρ14(r) = cij i,

as desired. ut

Proposition 7.11. Suppose that in (∗) there exist i < j such that uij = 0 = uil = uj l
for all l 6= i, j . If p = 2 assume further that ai = aj = 0. Let G = S/〈r〉 and χ1, . . . , χn
be the Fp-basis of H 1(S,Fp) = H 1(G,Fp) dual to x1, . . . , xn. Then 〈−χj ,−χi,−χi〉
and 〈−χi,−χj ,−χj 〉 are uniquely defined and

trr(〈−χj ,−χi,−χi〉) = cij i, trr(〈−χi,−χj ,−χj 〉) = cijj .

In particular, if further cij i 6= 0 (respectively, cijj 6= 0) then 〈−χj ,−χi,−χi〉 (respec-
tively, 〈−χi,−χj ,−χj 〉) does not vanish.

Proof. Under our assumption the triple Massey products 〈−χj ,−χi,−χi〉 and
〈−χi,−χj ,−χj 〉 are uniquely defined. Then by Lemma 7.10,

trr(〈−χj ,−χi,−χi〉) = cij i, trr(〈−χi,−χj ,−χj 〉) = cijj ,

as desired. ut
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Theorem 7.12. Let R be a set of elements in S(2). Assume that there exists an element r
in R and indices i, j with i < j such that:

1. in (∗), uij = uil = uj l = 0 for all l 6= i, j and cij i 6= 0 (respectively, cijj 6= 0) and if
p = 2 assume further that ai = aj = 0; and

2. for every s ∈ R different from r , the factor [xi, xj ] does not occur in the canonical
decomposition of s modulo S(4), and if p = 2 further x2

i (respectively, x2
j ) does not

occur in the canonical decomposition of s modulo S(4).

Then G = S/〈R〉 does not have the vanishing triple Massey product property.

Proof. Let G′ = G/〈r〉 and let f be the canonical map G′ = S/〈r〉 → G = S/〈R〉.
We shall identify the three groups H 1(S,Fp), H 1(G,Fp) and H 1(G′,Fp) via inflation
maps. We also use 〈·, ·, ·〉G (respectively, 〈·, ·, ·〉G′ ) to denote Massey products in the
cohomology groups of G (respectively, G′).

We only treat the case cij i 6= 0. The other case is treated similarly.
By [Vo1, Proposition 1.3.2] (see also [NSW, Proposition 3.9.13]) and by assumption,

trs(χj ∪ χi) = trs(χi ∪ χi) = 0 for all s ∈ R.

Hence χj ∪ χi = χi ∪ χi = 0 and 〈−χj ,−χi,−χi〉G is defined.
By the naturality property of Massey products (see e.g. [Kra, p. 433], [Mor, Property

2.1.2]), one has
f ∗(〈−χj ,−χi,−χi〉G) ⊆ 〈−χj ,−χi,−χi〉G′ .

By Proposition 7.11 applied G′, we see that 〈−χj ,−χi,−χi〉G′ does not vanish. There-
fore 〈−χj ,−χi,−χi〉G does not vanish either, and we are done. ut

8. Further directions

Let p be a prime number. Let F be a field of characteristic 6= p which contains a primitive
pth root of unity. Let G = GF (p) be the maximal pro-p quotient of the absolute Galois
group GF of F . Denote by G(i), i = 1, 2, . . . , the p-Zassenhaus filtration of G. Let F(i)
be the fixed field F(p)G(i) of the group G(i), where F(p) is the maximal p-extension
of F .

When p = 2, F(3) is the compositum of all C2, C4,D4-extensions K/F inside F(2).
This fact was proved by Villegas [Vi] and [MS2, Corollary 2.18] (see also [EM1, Corol-
lary 11.3] for a more general result). Inspired by this beautiful fact, and the second proof
of Theorem 1.2, we would like to propose the following conjecture.

Let Cn be the cyclic group of order n, D4 the dihedral group of order 8, and let
G1 and G2 be groups defined as in [GLMS] (see Cases 3 and 5 of the second proof of
Theorem 1.2 for the definition). Explicitly, G2 ' U4(F2) and G1 ' the subgroup of
U4(F2) consisting of the upper-triangular unipotent 4× 4-matrices (aij ) with a23 = a34.

Conjecture 8.1. Let the notation be as above with p = 2. Then F(4) is the compositum
of C2, C4, D4,G1,G2-extensions K/F inside F(2).

We define the field Fω as the compositum of C2, C4,D4,G1,G2-extensions K/F in-
side F(2). Then Fω ⊂ F(4) and the conjecture says that in fact Fω = F(4).
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Definition 8.2. Let G be a pro-p-group and let n ≥ 1 be an integer. We say that G has
the kernel n-unipotent property if

G(n) =
⋂

ker(ρ : G→ Un(Fp)),

where ρ runs over the set of all representations (continuous homomorphisms) G →
Un(Fp).

It is easy to see that for n = 1, 2, every pro-p-groupG has the kernel n-unipotent property.
It was shown that for G = GF (p), where F is a field containing a primitive pth root of
unity, G has the kernel 3-unipotent property. (See [MS2, Vi, EM1] for the case p = 2
and [EM2, Example 9.5(1)] for the case p > 2.) For any fixed integer n ≥ 3, in [MTE]
we also give an example of a torsion free pro-p-group G such that G does not have the
kernel n-unipotent property.

The following conjecture is a generalization of the above conjecture.

Conjecture 8.3 (Kernel n-Unipotent Conjecture). Let F be a field containing a primi-
tive pth root of unity and let G = GF (p). Let n ≥ 3 be an integer. Then G has the kernel
n-unipotent property.

In a subsequent paper [MT2], we show that every pro-p Demushkin group has the kernel
4-unipotent property. In [MTE], we also show that pro-p Demushkin groups of rank 2
have the kernel n-unipotent property for all n ≥ 4. It is shown in [Ef2, Theorem A] that
every free pro-p-group has the kernel n-property for all n ≥ 3. (In [MTE] we provide an
alternative direct short proof.)

The results of this paper are also relevant in determining strong automatic realizations
of canonical quotients of absolute Galois groups (see [MST]).

Finally, it is very interesting to extend the main theorems in this paper also to the case
p > 2 (see [GMTT]).

Acknowledgments. We are grateful to Ido Efrat for his interest, encouragement, detailed notes, and
suggesting various improvements which we have used. We thank Michael Hopkins and Kirsten
Wickelgren for interesting discussions and correspondence, as well as their encouraging welcome
of our results. We thank Murray Schacher and Suresh Venapally for their correspondence, and for
information that they also obtained some of our results of Section 5. We also thank Julien Blondeau,
Sunil Chebolu, Brian Conrad, Jochen Gärtner, Detlev Hoffmann, John Labute, Jeffrey Lagarias,
Christian Maire, Claudio Quadrelli, Andrew Schultz, Romyar Sharifi, Nguyễn Quốc Thắng, Adam
Topaz, Zack Wolske and Lei Zhang for their interest, encouragement and interesting discussions.
We are also grateful to the referees for their comments and valuable suggestions which we used to
improve our exposition. Last but not least, we would like to thank Leslie Hallock for her careful
corrections of our use of the English language in this paper.

The first author is supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC) grant R0370A01. The second author is supported in part by the National
Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2014.34.

References

[AS1] Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper. Abh. Math. Sem. Univ.
Hamburg 5, 85–99 (1927). Reprinted in: Artin’s Collected Papers (eds. S. Lang and
J. Tate), Springer, New York, 258–272 (1965) JFM 52.0120.05 MR 3069467

http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=52.0120.05&format=complete
http://www.ams.org/mathscinet-getitem?mr=3069467


282 Ján Mináč, Nguyễn Duy Tân

[AS2] Artin, E., Schreier, O.: Eine Kennzeichnung der reell abgeschlossenen Körper. Abh.
Math. Sem. Univ. Hamburg 5, 225–231 (1927). Reprinted in: Artin’s Collected Papers
(eds. S. Lang and J. Tate), Springer, New York, 289–295 (1965) JFM 53.0144.01
MR 3069477

[Ax] Ax, J.: The elementary theory of finite fields. Ann. of Math. 88, 239–271 (1968)
Zbl 0195.05701 MR 0229613

[Be] Becker, E.: Euklidische Körper und euklidische Hüllen von Körpern. J. Reine Angew.
Math. 268/269, 41–52 (1974) Zbl 0289.12103 MR 0354625

[BT1] Bogomolov, F., Tschinkel, Y.: Introduction to birational anabelian geometry. In: Current
Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ. 59, Cambridge Univ.
Press, Cambridge, 17–63 (2012) Zbl 1290.14017 MR 2931864

[BT2] Bogomolov, F., Tschinkel, Y.: Galois theory and projective geometry. Comm. Pure Appl.
Math. 66, 1335–1359 (2013) Zbl 1311.11105 MR 3078692
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284 Ján Mináč, Nguyễn Duy Tân
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