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Qualitative behaviour for flux-saturated mechanisms:
travelling waves, waiting time and smoothing effects

Received February 2, 2014 and in revised form February 21, 2014

Abstract. This paper is devoted to the analysis of qualitative properties of flux-saturated type op-
erators in dimension one. Specifically, we study regularity properties and smoothing effects, dis-
continuous interfaces, the existence of travelling wave profiles, sub- and supersolutions and waiting
time features. The aim of the paper is to better understand these phenomena through two prototypic
operators: the relativistic heat equation and the porous media flux-limited equation. As an impor-
tant consequence of our results we deduce that solutions to the one-dimensional relativistic heat
equation become smooth inside their support in the long time run.
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1. Introduction, preliminaries and main results

The aim of this paper is to investigate some qualitative properties for a couple of models
arising in flux-saturated processes. First we have

∂u

∂t
= ν

(
|u|(um)x√

1+ ν2

c2 |(u
m)x |2

)
x

, ν, c > 0, m ≥ 1, (1.1)

which combines flux-saturation effects with those of porous media flow. We will refer
to this equation as flux-limited porous medium equation (FLPME) as it was introduced
in [21] (see also [23]). Here um inside (um)x is meant to stand for |u|msign(u).

The second problem concerns the so-called relativistic heat equation (RHE) [10, 31]:

∂u

∂t
= ν

(
|u|ux√

u2 + ν2

c2 |ux |
2

)
x

, ν, c > 0. (1.2)
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Both systems can be deduced from optimal mass transportation arguments [1, 22].
They exhibit differences and similarities in their qualitative properties, which makes
them prototypes to analyze, compare and better understand the dynamics of flux-saturated
mechanisms.

Specifically, this paper deals with different smoothing effects of these flux-saturated
mechanisms as well as with finite time extinction of discontinuous interfaces of solutions
to the FLPME (while this kind of interfaces are preserved along the evolution of the
RHE). Another interesting aspect reported in this paper is a waiting time phenomena for
the FLPME. Under some circumstances the support will not spread until a sharp interface
is formed by means of a mass redistribution process taking place inside the support. Once
this happens, the support will grow at a rate that depends on the parameters of the system.
Moreover, there is a family of travelling wave solutions to FLPME that can be used to get
accurate information about the aforementioned features.

Several aspects concerning the mathematical theory of flux-saturated mechanisms
were introduced in the pioneering works [23, 27, 31]. The theory for the existence of
entropy solutions associated to flux-saturated equations has been widely developed in the
framework of bounded variation functions [2, 3, 4]. The fact that the propagation speed
of discontinuous interfaces is generically given by c has been remarked in [6, 11, 15, 24];
the precise Rankine–Hugoniot characterization of travelling jump discontinuities can be
found in [20, 21]. The problem of regularity has been previously treated in [4, 7, 18], while
diverse aspects of the waiting time phenomenon are addressed in [7, 18, 24]. Travelling
waves associated with various flux-saturated operators have been thoroughly studied in
[12, 16, 17]. Applications of these ideas to diverse contexts such as physics, astronomy
or biology can be found for instance in [15, 29, 31, 32]. See [13] for a survey of the above
topics.

The idea to analyze the regularity of solutions is to transfer the problem to an aux-
iliary dual problem by using a transformation called “the mass coordinate” of Lagrange
[30]. This dual problem has some regularity properties that are typical of uniformly ellip-
tic operators of second order. Lagrange transformations of this type are of relevance in
dealing with free boundary problems for nonlinear parabolic PDEs because the support
transforms into a known domain (see [9, 26, 30] for references). This change of variables
was applied to the RHE in [18]. We are able to extend some of the results in [18], tak-
ing advantage of the fact that jump discontinuities determine dynamic regions where the
quantity of mass is preserved. This enables us to apply local regularity arguments for each
of these regions separately and ultimately to show that there is a global smoothing effect
for (1.2) in the long time run that dissolves all singularities of the solution but those at
its interface. This program applies to (1.1) only partially, as the use of the dual formu-
lation breaks down when interfaces become continuous. In fact, as shown in Section 3,
jump discontinuities (and particularly discontinuous interfaces) disappear in finite time
for FLPME.

The paper is structured as follows. Section 2 introduces a family of dual problems that
serve as a tool to analyze regularity properties; important differences between (1.1) and
(1.2) will become clear at this point. In Section 3 we construct travelling wave solutions
to the FLPME, which we use right away to prove that jump discontinuities vanish in fi-
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nite time. This implies in particular that initially discontinuous interfaces will eventually
become continuous, as opposed to the case of the RHE. Section 4 is devoted to construct-
ing sub- and supersolutions of the FLPME which, in particular, imply that waiting time
phenomena for support growth are present in many cases. Section 5 concerns smoothing
effects for the RHE with a single singularity inside the support of the solution. This study
is then used in Section 6 to discuss regularity issues in the case of a finite number of sin-
gularities. Finally, Section 7 establishes some regularity properties for the FLPME before
interfaces become continuous.

2. The dual problem for the inverse distribution function

In this section we associate to equations (1.1) and (1.2) dual problems that will allow
us later on to study local-in-time regularity properties in the interior of the support for
both systems. As we proceed, we will compare solutions launched by compactly sup-
ported initial conditions that are strictly positive inside their support; we will realize that
there are several fundamental differences between their qualitative behaviours. The well-
posedness theory of the problems we are interested in was developed in [2, 3] (see also
[19, 21] and references therein). This theory develops the concept of entropy solutions
and shows that this is a well-suited class (in the functional context of bounded variation
and L∞ functions) in order to obtain well-posedness results. Although this is the concept
of solution we will use in order to deal with (1.1) and (1.2), we refrain from giving de-
tails on this here, inviting the interested reader to consult [2, 3, 19, 21] instead. Let us
just mention that the aforementioned theory establishes the existence of a unique entropy
solution u : (0, T ) × RN → RN of (1.1) (resp. (1.2)) for every T > 0, for any initial
datum 0 ≤ u0 ∈ L

1(RN ) ∩ L∞(RN ). The functional framework where the solution lives
is 0 ≤ u(t, ·) ∈ L1(RN ) ∩ L∞(RN ) and suitable truncations of it are bounded variation
functions. We prove that under certain conditions the regularity of the solution cannot be
worse than that of u0 and in fact it can acquire some regularity during evolution.

To proceed, we introduce a change of variables that was previously used in [18]
to study regularity properties of solutions to (1.2). Let u(t) be an entropy solution
of the Cauchy problem for (1.2) which is smooth inside its support, which we as-
sume to be connected (later on we will relax these conditions). Define (a(t), b(t)) :=
(min supp u(t),max supp u(t)). Provided that M :=

∫
R u(0) dx (note that the total mass

is preserved during evolution) we introduce ϕ(t, ·) : (0,M)→ (a(t), b(t)) defined by∫ ϕ(t,η)

a(t)

u(t, x) dx = η, η ∈ (0,M). (2.1)

Note that ϕ(t, ·) is a bijection as long as u(t) ≥ 0 has only isolated zeros inside its
support. We will use this fact freely when displaying some formulas regarding sets of
points in (a(t), b(t)), which can be seen as images of sets in (0,M). Now we let v(t, η) :=
∂ϕ
∂η
(t, η), which relates to u(t, x) by means of

v(t, η) =
1

u(t, ϕ(t, η))
. (2.2)
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Note also that
∂v

∂η
(t, η) = −v(t, η)3

∂u

∂x
(t, ϕ(t, η)). (2.3)

This function v satisfies the following equation:

vt =

(
νvη√

v4 + ν2

c2 (vη)
2

)
η

, t > 0, η ∈ (0,M). (2.4)

Moreover, as supp u(t) is connected,∫ M

0
v(t, η) dη = |supp u(t)| = b(t)− a(t). (2.5)

We know from [6] that if u0 is compactly supported in a connected set then the interfaces
move exactly at speed c. Therefore, taking into account (2.5), the corresponding boundary
conditions for (2.4) must be

νvη√
v4 + ν2

c2 (vη)
2
n = c at η ∈ ∂(0,M), (2.6)

with ∂(0,M) = {0,M} and n denoting the outer unit normal to (0,M), that is, n(0) = −1
and n(M) = 1.

The aim of this section is to construct solutions v to (2.4)–(2.6) that are regular in the
interior of their support. As long as any such v is a bounded function satisfying ess inf v
> 0 we will prove the possibility of recovering u through (2.2) as the unique entropy so-
lution of (1.2); this permits one to show that u inherits some regularity properties from v.

The same rules to pass to the dual formulation apply for any equation of the form
ut = [a(u, ux)]x . In the particular case of (1.1), we get

ϕt =
νmϕηη√

(ϕη)4+2m + ν2m2

c2 (ϕηη)2

and

vt =

(
νmvη√

v4+2m + ν2m2

c2 (vη)2

)
η

, t > 0, η ∈ (0,M). (2.7)

Relation (2.5) holds also in this case. However, the evolution of the support of u(t) may
depend strongly on its behaviour at the interface, and so do the boundary conditions for
v at ∂(0,M). One of the main goals of our analysis is to prove the existence of jumps
at the boundaries during a finite time interval for solutions to the FLPM system with
initial conditions originally compactly supported and strictly positive. In this case, by
the analysis of the Rankine–Hugoniot conditions given in [21] we know that interfaces
will move at speed c as long as they remain discontinuous (but how long will this last
is unclear; at the present stage we cannot discard that it breaks down instantaneously).
In order to show that these discontinuous solutions exist at least during some finite time
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interval we propose to study (2.7) with the following boundary conditions (after (2.5) and
our belief that interfaces will move with speed c for some time):

νmvη√
v4+2m + ν2m2

c2 (vη)2
n = c at η ∈ ∂(0,M). (2.8)

The study of the equivalence between the problems determining u and v is different for
RHE and FLPM systems. Solutions of FLPM equations touch zero in finite time, but
they still make sense afterwards as entropy solutions of the original problem. However,
to deal with the equivalence of the systems, a new concept of solution to (2.7) taking
into account the possible occurrence of asymptotes for v is needed. This is not the aim of
this paper and for our study it is enough to consider bounded functions u and v such that
u(t) ≥ κ(t) > 0 and ess inf v > 0 in [0,M].

We may now normalize the solutions to (2.4)–(2.6) and (2.7)–(2.8). Let

v̄(t, η) := v

(
νt,

ν

c
η

)
(2.9)

for the case of (2.4)–(2.6), and

v̄(t, η) := v

(
νmt,

νm

c
η

)
(2.10)

for (2.7)–(2.8). Then, irrespective of the case, v̄ satisfies the following general dual for-
mulation:

v̄t =

(
v̄η√

v̄4+2m + (v̄η)2

)
η

, t > 0, η ∈ (0,M), (2.11)

with boundary conditions

v̄η√
v̄4+2m + (v̄η)2

n = 1 at η ∈ ∂(0,M), (2.12)

wherem ≥ 1 for FLPM andm = 0 for RHE. We maintain the notationM for the rescaled
mass and we will work with the rescaled systems from now on.

In general, solutions of (2.11)–(2.12) do not fulfill the previous boundary conditions
in the classical sense. The notion of weak trace as introduced in [5] should be used to give
a meaning to (2.12), which is the meaning that should be attached to it—and also to (2.6),
(2.8)—during Section 2. We will refrain from doing so here though, since we will not
require this weak form of boundary conditions for future sections. In fact, we will be able
to show that the boundary conditions (2.12) can be given a more tractable formulation as
traces of functions of bounded variation in some particular circumstances (see Lemma 5.2
and Corollary 5.1 below); for practical purposes this will be enough, as we will always
be working in this easier setting. That being said, the first step in our analysis is to prove
a regularity result for (2.11)–(2.12):
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Theorem 2.1. Let m ≥ 0. Assume that v̄0 ∈ W
1,∞(0,M), v̄0 ≥ α1 > 0. Then there

exists some 0 < T ∗ < ∞ (depending on v̄0) and a smooth solution v̄ of (2.11) in
(0, T ∗)× (0,M) with v̄(0, η) = v̄0(η) and satisfying the boundary conditions (2.12).

Proof. The proof follows the lines of that of [18, Theorem 2.1]. Therefore we will only
give here a brief sketch of how to proceed and point out what are the main differences to
be taken into account.

The following regularized Cauchy problem is considered for any T > 0, with ε > 0:

vt =

(
vη√

v4+2m + (vη)2

)
η

+ εvηη, t ∈ (0, T ), η ∈ (0,M), (2.13)

(
vη√

v4+2m + (vη)2
+ εvη

)
n = 1− ε1/3, t ∈ (0, T ), η ∈ ∂(0,M), (2.14)

Here we use v instead of v̄ for simplicity. Set

a(z, ξ) =
ξ√

z4+2m + (ξ)2
, z ≥ 0, ξ ∈ R.

We start by showing L∞ bounds on v from above and below which are independent
of ε. First we notice that the constant function V̄ = α1 is a subsolution. Then any so-
lution v to the Cauchy problem (2.13)–(2.14) is bounded from below by α1, globally in
time. Next we look for a supersolution of (2.13)–(2.14) having the following form:

V (t, η) = B(t)−
√
ε2/3 + η(M − η).

Here B(·) is an increasing function of time to be determined. Since v0 is bounded above,
we can choose B(0) > 1 and such that V (0, η) ≥ B(0)−

√
ε2/3 +M/4 ≥ v0(η). This is

the same ansatz that was used in [18, proof of Theorem 2.1]; however, we will display the
associated computations here, as at this point only local-in-time estimates can be derived,
which is a crucial issue in what follows. It is readily seen that

(a(V, Vη))η =
1
D
+
(η −M/2)2

D3

(
V 4+2m

− 1− (2+m)V 3+2m
√
ε2/3 + η(M − η)

)
.

HereD = D(t, η) =
√
V 4+2m(ε2/3 + η(M − η))+ (η −M/2)2 is bounded from below,

since

D(t, η) ≥ D(0, η) >
√
α4+2m

1 (η(M − η))+ (η −M/2)2 > min{1, α2+m
1 }M/2.

Then it can be shown that

|(a(V, Vη))η| ≤ C2 + C1B(t)
4+2m, |(a(V, Vη))η| ≤ C3(ε), (2.15)
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where C1 and C2 are positive constants independent of ε, C3 blows up as ε → 0, and
η ∈ (0,M). On the other hand,

|εVηη| ≤ ε
ε2/3
+M/4
ε

≤ C4

for bounded values of ε. Thus, if we use the second estimate in (2.15) we easily get a
global-in-time supersolution. This provides a global L∞ bound that is not uniform in ε. If
we want to get a uniform bound we must use the first estimate in (2.15). The price to pay
is that we can only construct a local-in-time supersolution: According to that estimate,
we must have

(a(V, Vη))η + εVηη ≤ C2 + C4 + C1B(t)
4+2m

≤ B ′(t) = Vt .

Such a function B(t) exists only in a finite time interval (0, T ∗) for a certain T ∗ < ∞
(depending on m, B(0), C1 and C2). In order to conclude that the function V determined
in this way is a supersolution we have to check that (a(V, Vη) + εVη)n ≥ 1 − ε1/3 for
t ∈ (0, T ∗). This is easily seen for ε small enough, as in [18]. Then we conclude that
any solution v to the Cauchy problem (2.13)–(2.14) is bounded from above by V (t, η) for
t < T ∗.

Some integral estimates can be obtained easily as in [18]. Namely,

v(t, ·) ∈ Lp[0,M] and
∫ t

0

∫ M

0
|(vp)η| dη dt ≤ C(t, p)

for any p ∈ [1,∞] and t ∈ [0, T ∗). All estimates so far allow us to show the existence of
solutions vε for the Cauchy problem (2.13)–(2.14) thanks to standard results in the theory
of parabolic equations (see [18] for more details). The first derivatives of vε are Hölder
continuous up to the boundary and standard interior regularity results hold. In particular,
the solution is infinitely smooth in (0,M)× (0, T ). Note that here the smoothness bounds
depend on ε; nevertheless, this enables us to use Bernstein’s method to derive uniform
regularity estimates as we explain next.

For simplicity of notation, we write v instead of vε in this paragraph. Letw = |vη|2φ2

where φ(η) ≥ 0 is smooth with compact support. Then similar computations to those in
[18, proof of Theorem 2.1, Step 5] enable us to show that

wt ≤ A(t, η)wηη + B(t, η)wη + C(t, η)w + f (t, η) (2.16)

with

A(t, η) = 1
2 (aξ + ε),

B(t, η) = azξvη +
1
2az +

1
2aξξvηη,

C(t, η) = 3(2+m)2vm + 1
2ε,

f (t, η) = 7(2+m)v3+2mφ|φη| + v
2+m( 27

2 φ
2
η + φ|φηη|

)
+ εv2

η

( 1
2φ

2
ηη + 3φ2

η

)
.

The supersolution previously introduced provides us with a uniform bound for C(t, η)
in (0, T ∗) that does not depend on ε. Uniform bounds for f (t, η) independent of ε in
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(0, T ∗) × (0,M) follow as in [18]. This ensures L∞ bounds on w in (0, T ∗) which are
independent of ε thanks to the maximum principle. Local Lipschitz bounds on vη which
are uniform in ε and hold for t ∈ (0, T ∗) follow.

Thanks to all the previous estimates we obtain uniform (in ε) interior bounds for any
space and time derivative of vε (see [28, Chapter V, Theorem 3.1] for instance). These
regularity bounds allow one to pass to the limit and obtain a solution v of

vt =

(
vx√

v4+2m + (vx)2

)
x

in D′((0, T ∗)× (0,M))

(plus boundary conditions). This is done in the same fashion as in [18, proof of Theo-
rem 2.1, Step 7]. The only important difference is that uniform bounds on

aε =
vεx√

v4+2m
ε + (vεx)2

+ εvεx

independent of ε are obtained just in (0, T ∗)× (0,M), instead of (0, T )× (0,M) for any
T > 0. The boundary conditions (2.12) in weak form are recovered using the convergence
result of [5, Lemma 10]. ut

The relevance of this result lies in the fact that it allows one to construct an entropy
solution for either (1.1) or (1.2) that enjoys certain nice properties. To see how, let u0 ∈

L∞(R) with u0(x) ≥ κ > 0 for x ∈ [a, b], and u0(x) = 0 for x 6∈ [a, b]. Assume that
u0 ∈ W

1,∞([a, b]). Let v0(η) be defined in (0,M) according to (2.2). Then we let u(t, x)
be defined in [a − ct, b + ct] by (2.1)–(2.2) and (2.10) or (2.9) depending on the case,
while we set u(t, x) = 0, x 6∈ [a − t, b + t], t ∈ (0, T ∗). Notice that u(t, x) ≥ κ(t) > 0
for any x ∈ (a − t, b + t) and any t < T ∗. Under those circumstances, a straightforward
adaptation of [18, Proposition 2.5] yields the following result.

Proposition 2.1. Let m > 1 or m = 0 and let v̄ be a solution given by Theorem 2.1.
Let u be defined by (2.2)–(2.10) if m > 1 or by (2.2)–(2.9) if m = 0. Then u ∈
C([0, T ∗), L1(R)), u(0) = u0 and satisfies

(i) u(t) ∈ BV(R), u(t) ∈ W 1,1(a − ct, b + ct) a.e. in t ∈ (0, T ∗) and u(t) is smooth
inside its support.

(ii) ut = zx in D′((0, T ∗)× R), where

z(t) =
νu(t)(um)x(t)√

1+ ν2

c2 ((u
m)x(t))2

(case m > 1),

z(t) =
νu(t)ux(t)√

u(t)2 + ν2

c2 ((ux(t))
2

(case m = 0).

(iii) u(t, x) is the entropy solution of (1.1) (resp. (1.2)) with initial data u0 in (0, T ∗).
(iv) u(t) is strictly positive inside its support.
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2.1. Global statements for the relativistic heat equation

Recall that Theorem 2.1 holds only in a finite time interval (0, T ), due to the fact that we
have not been able to obtain global-in-time uniform bounds on v. This cannot be helped
in the case of (2.7)–(2.8), because if such a global bound is to exist, then u would be
strictly positive in its support for all time, and this would contradict Corollary 3.1 below.
On the contrary, we know that solutions of the relativistic heat equation which are initially
strictly positive everywhere in their support remain so during evolution. Thus, switching
back to (2.4), we are able to prove a global uniform bound on the associated solutions.

Proposition 2.2. Assume that v0 ∈ W
1,∞(0,M) and v0 ≥ α1 > 0. Given any T > 0,

there exists a smooth solution v of (2.4) in (0, T ) × (0,M) with v(0, η) = v0(η) and
satisfying the boundary conditions (2.6).

Proof. Apply Theorem 2.1 to v0, obtaining a smooth solution v1 defined on some time
interval (0, T 1). Then, we use Proposition 2.1 to deduce the estimate

‖v1(t)‖∞ ≤ 1/ inf
supp u(t)

u(t) for any t < T 1.

Thanks to [6, Proposition 2] we obtain

inf
supp u(t)

u(t) ≥ e−β1t−β2t
2

inf
supp u0

u0/2

for some constants β1, β2 > 0 (to be precise these constants get larger as |supp u0| does,
but given that T <∞ has been fixed, the measure of supp u(t) is controlled for any t < T

and we can neglect this dependence in what follows). Hence, supt∈(0,T 1) ‖v
1(t)‖∞ <∞

and v1 can be extended smoothly to a solution of (2.4) in [0, T 1
]. Let

I1 := e
−β1T

1
−β2(T

1)2 inf
supp u0

u0/2.

This allows us to use Theorem 2.1 again with v1(T 1) as initial condition, obtaining a new
solution v2 defined on some interval [T 1, T 1

+ T 2), with T 2 depending only on I1. As
before,

inf
supp u(t)

u(T 1
+ t) ≥ I1e

−β1t−β2t
2
/2

for any t ∈ (0, T 2). We can extend v2 to T 1
+T 2 with finite uniform bounds. Proceeding

as before, we set
I2 := e

−β1T
2
−β2(T

2)2I1/2.

We may repeat this at will. To prove our statement we must show that T 1
+ T 2

+ · · ·

diverges. To obtain a contradiction, let T ∗ =
∑
∞

i=1 T
i . Superposing the various solutions

vi we define a solution v in (0, T ∗). Using Proposition 2.1 we obtain a solution of defined
in (0, T ∗). Resorting again to [6, Proposition 2], we get

inf
supp u(t)

u(t) ≥ e−β1t−β2t
2

inf
supp u0

u0/2
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for any t ∈ (0, T ∗), and thus

sup
t∈(0,T ∗)

‖v(t)‖∞ <∞.

Then v can be extended smoothly to [0, T ∗]. This allows us to use Theorem 2.1 one more
time and extend the definition of v beyond T ∗, obtaining the desired contradiction. ut

Corollary 2.1. Let v̄ be a global-in-time solution given by Theorem 2.1 and Proposi-
tion 2.1 for the case m = 0. Now consider u to be defined by (2.2)–(2.9). Then u ∈
C([0, T ], L1(R)) for any T < ∞, hence u(0) = u0. Moreover, statements (i)–(iv) of
Proposition 2.1 hold in (0, T ).

In order to perform our regularity analysis in Section 5.1 below, we need to sharpen the
statement of Theorem 2.1. First we need a definition.

Definition 2.1. Let v be a (weak) solution of (2.4) with suitable boundary conditions.
Given 0 ≤ t < T , we say that x ∈ (0,M) is a singular point for v(t) if v(t, ·) is not
Lipschitz continuous at x. We write Sv(t) for the set of singular points of v(t).

Hereafter we will use m as the “spatial” variable for (2.4), in order to stress that we are
dealing only with (1.2) this time. Our improvement on Proposition 2.2 goes as follows:

Theorem 2.2. Assume that v0 ∈ BV(0,M), v0 ≥ α1 > 0. Assume also that Sv(0) is
finite and v0 ∈ W

1,∞
loc ((0,M) \ Sv(0)). Then for any T > 0 there exists a weak solution

of (2.4)–(2.6) in (0, T )× (0,M) with v(0, x) = v0(x). Moreover:

(1) Sv(t2) ⊂ Sv(t1) for any t2 > t1 ≥ 0. Thus, v(t) ∈ W 1,∞
loc ((0,M) \ Sv(0)) for every

0 < t < T .
(2) v(t) is smooth in (0,M) \ Sv(t) for every 0 < t < T (in fact, v is smooth in⋃

0<t<T ({t} × ((0,M) \ Sv(t)))).
(3) v(t) ∈ BV(0,M) for a.e. 0 < t < T .

Proof. In order to show this result we approximate the initial datum by Lipschitz func-
tions, to which we apply Proposition 2.2, up to renormalization (2.9). Let {v0,ε} ⊂

W 1,∞(0,M) be a sequence of functions satisfying (2.6) such that v0,ε ≥ α1 and
v0,ε → v0 in W 1,∞

loc ((0,M) \ Sv(0)) ∩ BV(0,M) as ε → 0. Then Proposition 2.2 en-
sures that for each ε > 0 there exists a smooth solution vε of (2.4) in (0, T )× (0,M) with
vε(0, m) = v0,ε(m) and satisfying the boundary conditions (2.8). As ε → 0 the deriva-
tives of v0,ε will blow up in the vicinity of Sv(0), but keep in mind that v0,ε is locally
Lipschitz inside (0,M) \ Sv(0) with bounds independent of ε. In the following we skip
the subscript ε except where we find useful to keep it.

Step 1: Integral bounds. To begin with, using the comparison principles in [18, proof of
Theorem 2.1, Step 1] together with Proposition 2.2, we deduce that α1 ≤ v(t,m) ≤ C,
(t, m) ∈ [0, T ] × [0,M], C > 0 being some positive constant depending only on u0
and T . Next, it is easily seen that∫ M

0
v(t,m) dm =

∫ M

0
v0(m) dm+ 2ct.
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Thus, vε ∈ L∞(0, T , Lp(0,M)) for any 1 ≤ p ≤ ∞ with bounds not depending on ε.
Now let us prove estimate (3). As in the proof of Theorem 2.1 we have∫ T

0

∫ M

0
|(vp)m| dmdt ≤ C(T , p), ∀p ∈ (1,∞), (2.17)

where the constant C(T , p) does not depend on ε. Note that∫ M

0
|(vp)m| dm =

∫ M

0
pvp−1

|vm| dm ≥

∫ M

0
pα

p−1
1 |vm| dm,

and hence we get v ∈ L1(0, T ,BV(0,M)).

Step 2: Local Lipschitz bounds and consequences. Recall that each approximation vε is
smooth inside (0,M). This allows us to perform Bernstein-type estimates. We can repeat
the computations in the proof of Theorem 2.1 that lead to (2.16) (which are even simpler
this time, as we have no extra term coming from a Laplacian regularization) to learn that

sup
t∈[0,T ]

‖w(t)‖∞ ≤ C(T , φ, ‖w(0)‖∞). (2.18)

Here w = |vm|2φ2 where φ ≥ 0 is smooth with compact support [φ1, φ2] ⊂ (0,M).
Now we observe the following: if [φ1, φ2] ∩ Sv(0) = ∅ then ‖w(0)‖∞ can be bounded
independently of ε (as we have already argued that v0,ε is locally Lipschitz inside (0,M)\
Sv(0) with bounds independent of ε). Sv(0) being a discrete set of points, consequences
are twofold:

• Svε (t2) ⊂ Svε (t1) for any t2 > t1 ≥ 0 (and in particular for t1 = 0, so that Svε (t) ⊂
Sv(0) for all t > 0).
• vε is locally Lipschitz inside (0,M) \ Sv(0) with bounds independent of ε, for each
t ∈ [0, T ]. Each vε has uniform (in ε) interior bounds for any space and time derivative
in (0, T ) × ((0,M) \ Sv(0)) (as a consequence of the Lipschitz bounds together with
[28, Chapter V, Theorem 3.1]).

Step 3: Passing to the limit as ε → 0+. We observe that the regularity bounds on vε de-
rived in the previous step allow us to pass to the limit ε → 0+, to obtain some function v.
In fact, the convergence of vε to v is locally uniform on (0, T ) × ((0,M) \ Sv(0)) and
the same holds for any derivative of the solution. Thus, v satisfies the estimates of points
(1)–(3). Moreover, as every vε satisfies the boundary conditions (2.6), so does v thanks
to [5, Lemma 10]. We may show that it satisfies (2.4) also arguing as in [18, proof of
Theorem 2.1, Step 7]. ut

Now we can pass again to the original formulation to recover the entropy solution. In
fact, we are able to show that, loosely speaking, the regularity of the solution u cannot be
worse than that of the initial datum (i.e. the number of “singularities” cannot increase).
A regularization effect also takes place, turning Lipschitz corners into smooth points.
These are consequences of the following result.
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Proposition 2.3. Let u0 ∈ BV(R) with u0(x) ≥ κ > 0 for x ∈ [a, b], and u0(x) = 0
for x 6∈ [a, b]. Assume that u0 is locally Lipschitz in its support outside a finite set
ϕ(0, Sv(0)). Then the entropy solution u of (1.2) is recovered in terms of the function v
constructed in Theorem 2.2 by virtue of (2.1)–(2.2)—extending by zero off [a(t), b(t)] :=
[a − ct, b + ct]. This solution has the following additional properties:

• u(t) ∈ W
1,∞
loc ((a(t), b(t)) \ ϕ(t, Sv(t))) for every t ∈ (0, T ).

• u(t) is smooth in (a(t), b(t)) \ ϕ(t, Sv(t)) (in fact, it is smooth in the set⋃
0<t<T ({t} × ((a(t), b(t)) \ ϕ(t, Sv(t))))).

• u(t) ∈ BV(R) for all t ∈ (0, T ). Moreover, if u0 ∈ W
1,1(0,M), then u(t) ∈ W 1,1(R)

for all t ∈ (0, T ).

Proof. We can show that formula (2.1) produces an entropy solution (hence unique)
of (1.2) in terms of the solution v of (2.4) just constructed. This can be done as in [18,
proof of Proposition 2.5]; having estimate (3) of Theorem 2.2 available is crucial in order
to do so. Smoothness properties are transferred from v to u by means of (2.1)–(2.2). Note
that according to Theorem 2.2 we would get u(t) ∈ BV(R) for a.e. t ∈ (0, T ), but this
holds in fact for every t ∈ (0, T ) thanks to the contractivity of the operator [20]. ut

Corollary 2.2. Let u0 be as in Proposition 2.3. Then the function v constructed in Theo-
rem 2.2 is such that v(t) ∈ BV(0,M) for every 0 < t < T .

There is also an important consequence of what was done so far, which sheds some light
on the nature of singular points. We state it in the form of a corollary.

Corollary 2.3. Let u0 ∈ BV(R) with u0(x) ≥ κ > 0 for x ∈ [a, b], and u0(x) = 0 for
x 6∈ [a, b]. Assume that u0 is locally Lipschitz in its support outside a finite set ϕ(0, Sv(0))
and let v0 be defined by (2.1). Pick m∗ ∈ Sv(0) and define x = x(t) := ϕ(t,m∗) ∈

(a(t), b(t)). Then∫ x(t)

a(t)

u(t) dx = m∗ and
∫ b(t)

x(t)

u(t) dx = M −m∗

for as long as the singularity at m∗ stands.

Proof. This is a direct consequence of (2.1) and point (1) of Theorem 2.2. ut

3. Travelling waves: discontinuity fronts expire in finite time

In this section we analyze some qualitative properties of solutions to (1.1) through com-
parison with a class of specific travelling wave solutions (a similar idea was used in [25]
to characterize degenerate parabolic equations having the property of finite propagation
speed). In this way we deduce that jump discontinuities are dissolved in finite time (see
Figure 1), no matter if they are inside the support or at the interface. In particular, initially
discontinuous interfaces become continuous after a finite time. Hence the dual mass dis-
tribution formulation introduced in Section 2 for (1.2) does only make sense for a finite
time interval.
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u(t, x)

x

1

0�1 1

Figure 1. Waiting time: Numerical time evolution by (1.1) for
a compactly supported initial condition with m = 4, ⌫ = c = 1

and t 2 [0, 0.5] (the smaller the height, the more advanced the
times). The time step between different profiles is 0.1. The initial
data is the characteristic function of an interval. Two observations
deserve to be made here: The regularization process in finite time
as well as the different velocities for the support growth. In fact, the
spreading rate is c until the profile develops a jump discontinuity.
Then this spreading rate decreases progressively, slowed down by
the super-solutions constructed in Proposition 3.1.

the unique possible option if we are looking for distributional positive solutions If
we consider r = (um)0q

1+ ⌫2

c2
(um)02

the planar system:

8
<
:

u0 = 1
mum�1

rq
1� ⌫2

c2
r2

r0 = �u0

u

�
�
⌫ + r

�

is equivalent to (3.1). Let us observe that by definition the sign of r and u0 coincide
and also |r| < c

⌫ . Then, by considering a graph formulation of this system, valid as
long as u is monotone, we have that

dr

du
= � 1

u

⇣�
⌫
� r
⌘

This equation exhibits constant solutions r(u) = ��
⌫ and r(u) = �

�
�
⌫ + k

u

�
for a

certain values k > 0, wich can be obtained for K = 0 and K = ⌫k respectively. The
last ones can not be distributional solutions since the Rankine–Hugoniot conditions
are not verified. ⇤

Remark 3.1. There are no traveling wave solutions for (1.2) in the absence of
reaction terms. See [14] for a study about traveling wave solutions when (1.2) is
coupled with a reaction term of FKPP type.

The existence of such a kind of solutions for this operator implies interesting
consequences on the qualitative behavior of arbitrary time dependent solutions.

Fig. 1. Finite time dissolution of a discontinuous interface: Numerical time evolution by (1.1) for
a compactly supported initial condition with m = 4, ν = c = 1 and t ∈ [0, 0.5] (the smaller
the height, the more advanced the time). The time step between different profiles is 0.1. The ini-
tial data is the characteristic function of an interval. Two observations deserve to be made here:
regularization in finite time (both in the interior and at the interfaces) as well as the different veloc-
ities for support growth. In fact, the spreading rate is c until the jump discontinuity at the interface
disappears. Then this spreading rate decreases progressively, slowed down by the supersolutions
constructed in Proposition 3.1.

Proposition 3.1. Let σ ∈ (−c, c) and ξ := x − σ t . Then the continuous function given
by u(ξ) =

(
σ(ξ0−ξ)

ν
√

1−(σ/c)2

)1/m if σ(ξ0 − ξ) ≥ 0 and u(ξ) = 0 elsewhere is a distributional

solution of travelling wave type to (1.1), for any ξ0 ∈ R.

Proof. A profile u(ξ) is a classical travelling wave solution u(t, x) = u(x − σ t) to (1.1)
if it satisfies

ν

(
u(um)′√

1+ ν2

c2 (u
m)′2

)′
+ σu′ = 0. (3.1)

This implies that

ν
u(um)′√

1+ ν2

c2 (u
m)′2
+ σu = K (3.2)

for some K ∈ R. When K = 0 we readily check that u(ξ) =
(

σ(ξ0−ξ)

ν
√

1−(σ/c)2

)1/m is a

positive solution if σ(ξ0 − ξ) ≥ 0. The matching of this positive branch with the zero
solution for σ(ξ0 − ξ) ≥ 0 constitutes a distributional solution to (1.1). ut

Remark 3.1. It can be shown that K = 0 in (3.2) is the only choice that yields non-
negative distributional solutions. If we consider r = − (um)′√

1+ ν
2

c2
(um)′2

, then the planar system


u′ = −

1
mum−1

r√
1− ν2

c2 r
2
,

r ′ =
u′

u

(
σ

ν
− r

)
,
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is equivalent to (3.1). Observe that by definition the signs of r and u′ coincide, and also
|r| < c/ν. Then, by considering a graph formulation of this system, valid as long as
u is monotone, we have dr

du
=

1
u

(
σ
ν
− r

)
. This equation has as solutions the constant

r(u) = −σ/ν and also r(u) = σ/ν−k/u for certain values k > 0, which are related to the
choicesK = 0 andK = νk respectively. The latter does not yield distributional solutions
of (1.1), since the associated function u would become negative. Hence the extension of
its positive part by zero does not comply with Rankine–Hugoniot’s conditions.

Remark 3.2. There are no travelling wave solutions for (1.2) in the absence of reaction
terms. See [16] for a study of travelling wave solutions when (1.2) is coupled with a
reaction term of FKPP type.

The existence of this kind of solutions implies interesting consequences on the qualitative
behaviour of arbitrary time dependent solutions. Note in particular that any bounded,
compactly supported solution for (1.1) can be placed under an appropriate travelling wave
for any σ ∈ (−c, c) choosing ξ0 large enough thanks to the comparison criteria proposed
in [6, 24]. Let us develop this idea in the following results.

Lemma 3.1. Let 0 ≤ u0 ∈ BV(R) be compactly supported in [a, b] and let u be the
associated entropy solution of (1.1). If d ∈ Ju0 , then the ensuing discontinuous travelling
front is dissolved in finite time.

Remark 3.3. This result does not prevent the spontaneous appearance of jump disconti-
nuities. It only states that the life span of any such jump discontinuity is finite.

Proof. To fix ideas, assume that the velocity of the discontinuity front is positive. Assume
that ‖u0‖∞ = α. Given any σ ∈ (0, c), we let v := αmν

√
1− (σ/c)2/σ + b. Then,

according to Proposition 3.1 (use ξ0 = b + αmν
√

1− (σ/c)2/σ ), the travelling wave
profile

uσ (t, x) =

(
αm +

σ
(
b − x + σ t

)
ν
√

1− (σ/c)2

)1/m

χ(−∞,v+ct)

qualifies as supersolution in the extended sense introduced in [24]; note that this is a
decreasing profile such that uσ (0, b) = α and hence uσ (0) ≥ u0. Thus, by a comparison
principle (see [24]) the support of u must be contained in the support of any of these
travelling waves for every t > 0. Apart from this, we can use the Rankine–Hugoniot
conditions [21] to deduce that if the discontinuity persists forever then the support of u
contains the interval (a, d + ct) for any t ≥ 0. The vanishing of the discontinuity follows
from the previous considerations, since σ < c and

d + ct ≤
αmν

√
1− (σ/c)2

σ
+ (b + σ t). (3.3)

In fact (3.3) determines an upper bound on the time of existence for the discontinuity
front, namely

t (σ ) := inf
0<σ<c

αmν
√

1−(σ/c)2
σ

+ b − d

c − σ
. ut
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Corollary 3.1. Let u0 be compactly supported in [a, b] and such that u0 ∈ BV(R). As-
sume that u0(x) ≥ α > 0 for every x ∈ [a, b]. Let u be the associated entropy solu-
tion of (1.1). Then there exists some T ∗ > 0 such that u(T ∗, (a − ct)+) = 0 and/or
u(T ∗, (b + ct)−) = 0.

4. Sub- and supersolutions: waiting time for support growth

This section is devoted to proving the existence of a waiting time for the support growth
of certain compactly supported solutions to (1.1). In agreement with the numerical results
shown in Figures 2 & 3, this effect can be justified if certain decay conditions at the
interface (depending on m) are satisfied by the initial datum. This will be a consequence
of the existence of certain supersolutions with constant support, as we state below. Some
of the results in this section have been independently discovered in [24].
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4. Sub-and super-solutions: waiting time for support growth

This section is devoted to prove the existence of a waiting time for the support
growth of certain compactly supported solutions to the FLPME (1.1). In agreement
with the numerical results shown in Figures 2 & 3, this effect can be justified if
certain decay conditions at the boundaries (depending on m) are verified by the
initial conditions. This will be a consequence of the existence of certain super–
solutions with constant support, as we state below. Some of the results in this
section have been independently discovered in [25].
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Figure 2. Waiting time: Numerical time evolution by (1.1) for a
compactly supported initial condition with m = 1, ⌫ = c = 1 and
t 2 [0, 0.5] (the smaller the height, the more advanced the times).
The time step between different profiles is 0.1. The initial data
in A) u0 is a triangle and in B) is u2

0. Note that in B) there is a
waiting time in which the mass is reorganized before the support
starts to spread; this fact does not occur in A).

Proposition 4.1. Let u0 be such that supp u0 ⇢ [��, �] and 0  u0  v(x)
1
m for

x 2 (��, �), where v 2 C2(��, �) is a nonnegative function verifying

i) limx!� v(x) = limx!� v0(x) = 0 ,
ii) limx!�� v(x) = limx!�� v0(x) = 0 ,
iii) xv0(x) < 0, for x 2 (��, �) � {0} ,
iv) v00(x)  k, for x 2 (��, �).

Then, ũ(x, t) =
⇣

v(x)
1�(2+m)kt

⌘ 1
m

is a super-solution of (1.1) with initial datum u0

for t 2 [0, 1
(2+m)k ), and its support verifies

supp(ũ(t, x)) = supp(u(0, x)) .

Proof. Note that the proposed super-solution is an ansatz constructed by separation
of variables, where the time dependent part ↵(t) = (1 � (2 + m)kt)

� 1
m is solution

Fig. 2. Waiting time: Numerical time evolution by (1.1) for a compactly supported initial condition
with m = 1, ν = c = 1 and t ∈ [0, 0.5] (the smaller the height, the more advanced the time). The
time step between different profiles is 0.1. u0 in A) is a triangle and in B) is u2

0. Note that in B)
there is a waiting time in which the mass is reorganized before the support starts to spread; this fact
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Figure 3. Waiting time: Numerical time evolution by (1.1) for a
compactly supported initial condition with m = 3, ⌫ = c = 1 and
t 2 [0, 0.5] (the smaller the height, the more advanced the times).
The time step between different profiles is 0.1. The initial data are
triangles of different height. Note that in B) the waiting time is
longer than in A).
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Figure 4. Waiting time: Numerical time evolution by (1.1) for a
compactly supported initial condition with m = 3, ⌫ = c = 1 and
t 2 [0, 0.5] (the smaller the height, the more advanced the times).
The time step between different profiles is 0.1. The initial data is
u0(x) = cos2(x) for x 2 [0,⇡] and 0 elsewhere. Note that in the
case of initial conditions with continuous interfaces, singularities in
the first derivative may be developed in the interior of the support.
This effect is probably justified by the fact that the solution can
be sandwiched by sub- and super-solutions of the types defined in
Sections 3 and 4.

to the initial value problem

(4.1) ↵0(t) =
(2 + m)k

m
↵(t)m+1 , ↵(0) = 1 ,

Fig. 3. Waiting time: Numerical time evolution by (1.1) for a compactly supported initial condition
with m = 3, ν = c = 1 and t ∈ [0, 0.5] (the smaller the height, the more advanced the time). The
time step between different profiles is 0.1. The initial data are triangles of different height. Note
that in B) the waiting time is longer than in A).



456 Juan Calvo et al.

QUALITATIVE BEHAVIOR FOR FLUX-SATURATED EQUATIONS 19

A)
u(t, x)

x

1

0�1 1

B)
u(t, x)

x

0.2

0�1 1

Figure 3. Waiting time: Numerical time evolution by (1.1) for a
compactly supported initial condition with m = 3, ⌫ = c = 1 and
t 2 [0, 0.5] (the smaller the height, the more advanced the times).
The time step between different profiles is 0.1. The initial data are
triangles of different height. Note that in B) the waiting time is
longer than in A).
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Figure 4. Waiting time: Numerical time evolution by (1.1) for a
compactly supported initial condition with m = 3, ⌫ = c = 1 and
t 2 [0, 0.5] (the smaller the height, the more advanced the times).
The time step between different profiles is 0.1. The initial data is
u0(x) = cos2(x) for x 2 [0,⇡] and 0 elsewhere. Note that in the
case of initial conditions with continuous interfaces, singularities in
the first derivative may be developed in the interior of the support.
This effect is probably justified by the fact that the solution can
be sandwiched by sub- and super-solutions of the types defined in
Sections 3 and 4.

to the initial value problem

(4.1) ↵0(t) =
(2 + m)k

m
↵(t)m+1 , ↵(0) = 1 ,

Fig. 4. Waiting time: Numerical time evolution by (1.1) for a compactly supported initial condition
with m = 3, ν = c = 1 and t ∈ [0, 0.5] (the smaller the height, the more advanced the time). The
time step between different profiles is 0.1. The initial data is u0(x) = cos2(x) for x ∈ [0, π] and
zero elsewhere. Note that in the case of initial conditions with continuous interfaces, singularities in
the first derivative may be developed in the interior of the support. This effect is probably justified
by the fact that the solution can be sandwiched by sub- and supersolutions of the types defined in
Sections 3 and 4.

Proposition 4.1. Let u0 be such that supp u0 ⊂ [−δ, δ] and 0 ≤ u0 ≤ v(x)1/m for
x ∈ (−δ, δ), where v ∈ C2(−δ, δ) is a non-negative function satisfying

(i) limx→δ v(x) = limx→δ v
′(x) = 0,

(ii) limx→−δ v(x) = limx→−δ v
′(x) = 0,

(iii) xv′(x) < 0 for x ∈ (−δ, δ) \ {0},
(iv) v′′(x) ≤ k for x ∈ (−δ, δ).

Then ũ(t, x) =
(

v(x)
1−(2+m)kt

)1/m is a supersolution of (1.1) with initial datum u0 for t ∈[
0, 1

(2+m)k

)
, and its support satisfies supp(ũ(t, x)) = supp(ũ(0, x)).

Proof. Note that the proposed supersolution is an ansatz constructed by separation of
variables, where the temporal part α(t) = (1− (2+m)kt)−1/m is a solution to the initial
value problem

α′(t) =
(2+m)k

m
α(t)m+1, α(0) = 1, (4.1)

and the spatial part is v(x)1/m. We claim that assumptions on v allow one to prove that
such a function satisfies

v′(x)2/v(x) ≤ 2k (4.2)

for any x ∈ (−δ, δ). Inequality (4.2) is obviously valid for x = 0 by (iii). In the rest of
the argument we will assume x ∈ (0, δ). The same ideas can be analogously applied to
the case x ∈ (−δ, 0). By using Cauchy’s Mean Value Theorem we see that (v′(x)2 −
v′(y)2)v′(ξ) = 2v′(ξ)v′′(ξ)(v(x) − v(y)) for any y ∈ (x, δ) and ξ = ξ(x, y). This
implies that (v′(x)2 − v′(y)2) ≤ 2k(v(x) − v(y)) for any y ∈ (x, δ), where we have
used (iv) and the fact that v′(ξ) 6= 0 due to (iii). Then (4.2) holds by letting y → δ and
using (i).
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Set 8(s) = s/
√

1+ s2. Then we can prove the estimate

(ũ8
(
(ũ)m

)
)′ = (αv1/m8(αmv′))′ =

α

m
v1/m−1v′8(αmv′)+ αm+1v1/mv′′8′

(
αmv′

)
≤
αm+1

m
v1/m−1v′2 + αm+1v1/mk ≤

(2+m)k
m

α(t)m+1v1/m
= α′v1/m

= ũt , (4.3)

where we have used s8(s) ≤ s2, 8′(s) ≤ 1, (iv), (4.2) and (4.1). This concludes the
proof. ut

A result similar to Proposition 4.1 has been obtained recently and independently in [24].
The next result will be of interest in order to ensure local separation from zero.

Proposition 4.2. Let v be as in Proposition 4.1. Then

W(t, x) =

(
1

(2+m)kt + 1

)1/m

v(x)1/m

is a subsolution with static support for any t > 0.

Proof. The proof follows the same lines as that of Proposition 4.1, but with reversed signs
and inequalities in the chain of estimates (4.3). ut

Remark 4.1. Any function v satisfying (i), (ii) and inequality (4.2) can be bounded by
quadratic polynomials in the following way:

v(x) ≤ k2(x − δ)2 if x ∈ [0, δ), and v(x) ≤ k2(x + δ)2 if x ∈ (−δ, 0].

Given any function u0 ∈ L
∞([−δ, δ]) such that

u0(x)

(x − δ)2/m
,

u0(x)

(x + δ)2/m
∈ L∞([−δ, δ]),

this allows us to ensure the existence of a (maybe non-optimal) function v such that
Proposition 4.1 applies. Just note that the function v(x) = k̃(δ− x)2(x + δ)2 satisfies the
hypotheses of Proposition 4.1 for some constant k̃ large enough.

Now, a simple application of our previous result to any compactly supported initial condi-
tion with appropriate decay estimates at the interface allows us to conclude that the spatial
support is confined to a fixed spatial interval during a certain time period. In those cases in
which the initial support coincides with this spatial interval, we conclude that the support
does not grow for a while. That is, we are dealing with a waiting time mechanism.

Corollary 4.1. Let 0 ≤ u0 ∈ L
∞(R) be supported in [a, b] and such that

u0(x)

(x − a)2/m
,

u0(x)

(b − x)2/m
∈ L∞(a, b).

Let u be the associated entropy solution of (1.1). Then there exists some positive con-
stant k̃ such that

supp(u(t, ·)) ⊂ [a, b] for any t ≤
1

2(2+m)k̃(b − a)2
.
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Proof. We can deduce easily from the hypothesis on u0 the existence of a constant k̃ such
that u0 ≤ (k̃(a − x)

2(b− x)2)1/m. Now, we apply Proposition 4.1 to u0(x + (a + b)/2),
which is compactly supported on [−(b − a)/2, (b − a)/2] and bounded by v(x) =
(k̃(x + (b− a)/2)2(x − (b− a)/2)2)1/m. Note that v satisfies all the required hypotheses
with k = 2k̃(b − a)2. This clearly concludes the proof of the result, given the translation
invariant character of (1.1) and the comparison principle in [6]. ut

5. Smoothing effects for the RHE: analysis of a model case

5.1. Analysis of a model case

The aim of this section is to show the following: Given an initial datum u0 with a single
jump discontinuity inside its support, we can ensure under some technical conditions
that there is some t∗ < ∞ such that the associated entropy solution u(t) of (1.2) is
smooth inside its support for every t > t∗. This means that an isolated jump discontinuity
is dissolved in finite time and after that the solution is smooth everywhere inside the
support. The analysis of this simple case will allow us to show in Section 6, via reduction
to simpler cases, that the regularizing effect of (1.2) is indeed more general than what
we will discuss here. To be more precise, in this section we will track the evolution of
initial data which are compactly supported in an interval, having discontinuous interfaces
at both ends and another jump discontinuity inside their support.

Definition 5.1. Let u0 ∈ L
∞(R). We say that u0 ∈ J0 if the following conditions hold:

(1) u0 is supported in [a, b].
(2) u0 ∈ BV(R).
(3) u0 ≥ κ > 0 for x ∈ [a, b].
(4) The jump set of the initial datum is Ju0 = {a, δ, b}, with a < δ < b. Assume that

the discontinuity at δ will travel to the right (say), i.e. we choose νδ = +1 and so
u+(δ) < u−(δ).

(5) u0 ∈ W
2,1(R \ Ju0) (hence u0 ∈ W

1,∞(R \ Ju0)).
(6) (u0)x(δ)

−, (u0)x(δ)
+
≤ 0.

Some comments are in order here. Given T > 0, set QT := (0, T ) × R. First, it is
mandatory to ensure that u ∈ BV loc(QT ) in order to use the Rankine–Hugoniot conditions
and the characterization of entropy conditions at jump points proved in [20], which are
crucial in what follows. To achieve this, Proposition 4.2 in [20] is the only tool so far.
That is why we require (5)–(6). And second, (1), (3) and (4) are assumed just for the sake
of technical convenience and a clearer exposition; we will remove these assumptions in
Section 6. We let u(t) = u(t, ·) and ut (t) = ∂u

∂t
(t, ·). Our aim is to prove the following

result:

Theorem 5.1. Let u0 ∈ J0 and let u be the associated entropy solution of (1.2). Then:
(1) u(t) ∈ BV(R) for each t > 0 and u ∈ BV((0, T )× R) for every T > 0.
(2) u(t) is supported on [a − ct, b + ct] and u(t) ≥ κ(t) > 0 in the support.
(3) There exists some 0 < T ∗ < ∞ such that u(t) ∈ W 1,1(a − ct, b + ct) and u(t) is

smooth inside its support, for every t ≥ T ∗.
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The rest of the section constitutes a proof for the third statement of this theorem (the others
being already a consequence of previous results in the literature, see [18] for instance).
To begin with, let us state some properties of entropy solutions with initial data in J0 that
can be derived from [6, 20].

Lemma 5.1. Let u0 ∈ J0 and let u be the associated entropy solution of (1.2). Then:

(1) (a(t), b(t)) = (a − ct, b + ct).
(2) u(t) > κ(t) > 0 for x ∈ (a(t), b(t)).
(3) Jump discontinuities at the interfaces x = a(t) and x = b(t) do not dissolve in finite

time.
(4) u ∈ BV([τ, T ] × R) for all τ > 0 and ut (t) is a finite Radon measure in R for all

t > 0; in particular
uux√

u2 + ν2

c2 (ux)
2
∈ BV(R) for any t > 0.

Using the previous result we can show that the traces of the flux can be computed in a
stronger sense than the one in [20]. This is the content of the next statement, which we
formulate in a broader context.

Lemma 5.2. Let u0 ∈ BV(R)+ and let u be the associated entropy solution of (1.2)
in QT . Assume that u0 is supported in (a, b) and u0(x) > κ > 0 for every x ∈ (a, b).
Assume further that ut (t) is a finite Radon measure in R for any t > 0. Then:

(i) a(u, ux),b(u, ux) ∈ BV(R), where zb(z, ξ) = a(z, ξ), for every t > 0.
(ii) [a(u, ux) · ν�] = u|∂�[b(u, ux) · ν�] for all x ∈ ∂�, for every subdomain � ⊂

(a(t), b(t)) and all t > 0, where the square brackets denote weak traces in the sense
of Anzellotti [8].

(iii) For almost any t ∈ (0, T ),

[z · νJu(t) ]+ = u+ and [z · νJu(t) ]− = u− (5.1)

at each point of Ju(t)—where [z · νJu(t) ]+ and [z · νJu(t) ]− are the lateral traces
of the flux—and the speed of any discontinuity front is c. In fact, for every
(t0, x0) ∈ Ju and for every spatiotemporal ball B about (t0, x0) which is contained
in
⋃
t>0(a(t), b(t)), we have

[b · νJu(t) ]+ = c and [b · νJu(t) ]− = c for every (t, x) ∈ Ju ∩ B.

Proof. The fact that a(u, ux) ∈ BV(R) for every t > 0 is given in the previous lemma,
while b(u, ux) ∈ BV(R) for every t > 0 follows from [20, Lemma 5.5]. The factorization
of the trace follows from [20, Lemma 5.6]. Proposition 8.1 in [20] together with the
remarks about vertical contact angles that are stated afterwards constitute a proof of the
third statement. ut

Corollary 5.1. Let u0 be as in Lemma 5.2. Consider the associated function v0 defined
by (2.1)–(2.2) and assume that v0 is regular enough so that Theorem 2.2 applies. Then:

•
νvm√

v4+ ν
2

c2
(vm)2

∈ BV(0,M) for every t > 0.
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• For every t > 0,

νvm√
v4 + ν2

c2 (vm)
2
(t, 0+) =

νvm√
v4 + ν2

c2 (vm)
2
(t,M−) = c.

The following two results are also easy consequences of Lemma 5.2.

Lemma 5.3. Let T > 0 and λ,µ ∈ R. Assume that u solves (1.2) in QT and is smooth
in
⋃

0<t<T (a − λt, b + µt). Then, for any 0 < t < T ,

d

dt

∫ b+µt

a−λt

u dx = u(t, b+µt)(µ+b(t, b+µt))−u(t, a−λt)(λ+b(t, a−λt)). (5.2)

Lemma 5.4. Assume that u(t) is smooth in (a(t), δ̃(t)) and in (δ̃(t), b(t)) for 0 ≤ t

< T ∗. Provided that

t 7→

∫ δ̃(t)

a(t)

u(t) dx and t 7→

∫ b(t)

δ̃(t)

u(t) dx

are constant functions for 0 ≤ t < T ∗, the following assertions hold:

• t 7→ δ̃(t) is differentable for any 0 < t < T ∗.
• b(u, ux)(t, δ̃(t)−) and b(u, ux)(t, δ̃(t)+) agree, for every t ∈ (0, T ∗).

Thanks to Proposition 2.3 we have an alternative description of u in terms of a globally
defined function v : (0, T ) × (0,M) → R+. In such a way, we know that no new sin-
gularities will appear. Let δ = δ̃(0). Then u(t) is smooth in (a(t), b(t)) \ ϕ(t, ϕ−1(0, δ))
(that is, everywhere in its support except maybe on the trajectory traced out by the jump
discontinuity). Thus, our first step in order to prove Theorem 5.1 is to analyze the be-
haviour of the jump discontinuity at x = δ more closely. We have some information
already coming from the Rankine–Hugoniot and entropy conditions:

Lemma and Definition 5.1. Let u0 ∈ J0 and let u be the associated entropy solution.
Then the jump discontinuity at x = δ is not dissolved instantaneously, i.e., there exists
some t1 > 0 such that Ju(t) contains precisely three elements for every t < t1. Let t1
be maximal with that property (that is, t1 := min{t | #Ju(t) 6= 3}). The initial jump
discontinuity at x = δ will be travelling to the right with speed c for t < t1. Let δ(t) :=
δ+ ct be the virtual trajectory of the base point of the discontinuity. Then condition (5.1)
is satisfied for 0 < t < t1.

Proof. Since u ∈ C([0, T ], L1(R)), we can find a sequence tn ↘ 0 such that {u(tn)}
converges a.e. x ∈ R. This is not compatible with instantaneous dissolution of the jump
discontinuity. The trajectory of its base point is given by the Rankine–Hugoniot condi-
tions, while the last statement follows from Lemma 5.2(iii). ut

Let us introduce

ml :=

∫ l

a

u0 dx and mr :=

∫ b

l

u0 dx = M −ml .
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Recall that v(t) ∈ BV(0,M) for every t > 0; this allows us to compute traces at ml for
any t > 0. A variant of Corollary 5.1 shows that

νvm√
(v)4 + ν2

c2 (vm)
2
(t, m−l ) = c,

∀0 < t < t1.νvm√
(v)4 + ν2

c2 (vm)
2
(t, m+l ) = c,

(5.3)

Nothing precludes that (5.3) may hold true past t1.

Lemma and Definition 5.2. The following statements hold true:

(1) Sv(t) = Sv(0) for every t < t1. Let t∗ ∈ [t1,∞] be maximal with this property
(i.e. the first time at which the singularity vanishes, t∗ := min{t | Sv(t) = ∅}, and
t∗ = +∞ if the latter set is empty).

(2) If t∗ > t1 we extend δ(t) to (0, t∗) as δ(t) = ϕ(t, ϕ−1(0, δ)). Then both

t 7→

∫ δ(t)

a(t)

u(t) dx and t 7→

∫ b(t)

δ(t)

u(t) dx

are constant functions for t < t∗.
(3) Let t2 be the maximal time such that (5.3) holds true (that is, t2 := min{t | (5.3) does

not hold}, and t2 = +∞ if the latter set is empty). Then t2 = t∗.

Proof. The first statement is clearly deduced from (2.2). The second is just Corollary 2.3.
To prove the third, we notice that t2 ≤ t∗ by definition. Now let us consider what happens
with (5.3) at t = t2. As vt (t2) is a finite Radon measure on (0,M), spatial traces of the
flux are defined for t = t2 and any m ∈ [0,M]. Then either one of the lateral traces in
(5.3) becomes different from c, or both lateral traces differ from c at the same time. Given
that v(t2) is smooth and bounded in (0, ml) ∪ (ml,M), we deduce in the second case
that vm ∈ L∞loc(0,M). Hence m 7→ v(t2, m) is Lipschitz continuous or even smooth at
m = ml . Thus Sv(t∗) = ∅ and t2 = t∗ in this case.

Let us show that the first case leads to a contradiction. In that case, we would have
Sv(t2) 6= ∅, thus t2 < t∗. By point (2) of the present result, no mass flow is allowed
across ml for any t ∈ [t2, t∗). Then Lemma 5.4 applies, giving a contradiction that con-
cludes the proof. ut

We are now ready to apply the change of variables studied in Section 2 in the regions
(a(t), δ(t)) and (δ(t), b(t)) separately. To that end, we consider a pair of functions
vl(t, m), vr(t, m) defined for t < t∗,

vl(t, ·) : (0, ml)→ (a(t), δ(t)), vr(t, ·) : (0, mr)→ (δ(t), b(t)),

together with the following problems:

vlt =

(
νvlm√

(vl)4 + ν2

c2 (v
l
m)

2

)
m

, m ∈ (0, ml), t ∈ (t, t∗), (5.4)
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with boundary conditions

νvlm√
(vl)4 + ν2

c2 (v
l
m)

2
n = c, m ∈ ∂(0, ml), n(0) = −1, n(ml) = 1, (5.5)

and

vrt =

(
νvrm√

(vr)4 + ν2

c2 (v
r
m)

2

)
m

, m ∈ (0, mr), t ∈ (t, t∗), (5.6)

with boundary conditions

νvrm√
(vr)4+ ν2

c2 (v
r
m)

2
n = c at m = mr and

νvrm√
(vr)4+ ν2

c2 (v
r
m)

2
n = c at m = 0, (5.7)

with n(0) = +1 and n(mr) = 1. The boundary conditions that we impose here are the
natural ones after Lemma 5.1 and Lemma and Definition 5.1 (compare with Section 2).
Following Corollary 5.1, we see that (5.5), (5.7) can be interpreted as relations between
traces of functions of bounded variation and there is no need to use weak traces to describe
the behaviour at the boundary.

Arguing as in Section 2 we get the following results:

Proposition 5.1. There exists a smooth solution vl of (5.4) in (0, t∗) × (0, ml) with
vl(0, m) = vl0(m) and satisfying the boundary conditions (5.5). A similar result holds
for (5.6)–(5.7). We have v(t) = vlχ(0,ml) + v

rχ(ml ,M) for every 0 < t < t∗.

Proposition 5.2. Let us decompose u(t, x) := ulχ(a(t),δ(t))(x)+ urχ(δ(t),r(t))(x) for any
t < t∗. Then

(1) ul is related to vl by means of the change of variables ϕ restricted to (0, ml); ur is
related to vr by means of the change of variables ϕ restricted to (ml,M).

(2) ul(t) ∈ W 1,1(a(t), δ(t)) and ur(t) ∈ W 1,1(δ(t), b(t)) for every t ∈ (0, t∗).
(3) ul(t) ∈ W 1,∞

loc (a(t), δ(t)) and ur(t) ∈ W 1,∞
loc (δ(t), b(t)) for every t ∈ (0, t∗).

(4) Both ul and ur are smooth in their domains of definition.

Using this parallel formulation, we can show that the size of the inner jump at x = δ(t)
cannot increase with time. More precisely:

Proposition 5.3. Let t < t∗. Then:

• ur(t + h, δ(t + h)+) ≥ ur(t, δ(t)+) for any 0 < t < t + h < t∗.
• ur(t + h, b(t + h)−) ≤ ur(t, b(t)−) for any 0 < t < t + h < t∗.
• ul(t + h, δ(t + h)−) ≤ ul(t, δ(t)−) for any 0 < t < t + h < t∗.
• ul(t + h, a(t + h)−) ≤ ul(t, a(t)−) for any 0 < t < t + h < t∗.
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Proof. Let us show the first statement, the proof of the rest being similar. Let t ∈ (0, t∗)
be fixed. Since vr is smooth at (0, t∗)× (0, mr), we compute, for any λ ∈ (0, mr),

d

dt

∫ λ

0
vr(t, m) dm =

∫ λ

0

d

dm

(
νvrm(t)√

(vr(t))4 + ν2

c2 (v
r
m(t))

2

)
dm

=
−νvrm(t)√

(vr(t))4 + ν2

c2 (v
r
m(t))

2

∣∣∣∣
m=λ−

− c.

Thanks to the uniform estimates for vr provided by Steps 1 and 2 of the proof of Theo-
rem 2.2, we arrive at

1
λ

d

dt

∫ λ

0
vr(t, m) dm < 0

for any λ ≤ mr and t < t∗. Then, for any h > 0 such that t + h < t∗, we can integrate in
time to get

1
λ

∫ λ

0
(vr(t + h,m)− vr(t, m)) dm < 0.

Now, we take traces at m = 0+ letting λ → 0. We conclude that vr(t + h, 0+) −
vr(t, 0+) ≤ 0 for any 0 < t < t + h < t∗. This implies the final result. ut

The previous statement shows that the size of the jump discontinuity cannot increase with
time. Let us show next that it vanishes in finite time. For that we will need an auxiliary
result:

Proposition 5.4. Let u0 be an even, compactly supported initial condition which is non-
negative, bounded and log-concave. Let [−R,R] be its support and assume that u0(x) ≥

α > 0 for x ∈ (−R,R). Let SC(r) = [−r − ct, r + ct] be the sound cone about [−r, r].
Then for any ε ∈ (0, R) the associated entropy solution of (1.2) satisfies

‖u(t)‖L∞(SC(R)\SC(ε)) ≤
M

2(ε + ct)
∀t ≥ 0.

Proof. This is just the combination of mass conservation, log-concavity and symmetry.
All these are preserved during evolution [4]. The point is that any log-concave profile
which is even is decreasing as a function of |r|. Thus, a geometric argument shows that
M ≥ 2u(t, ε + ct)(ε + ct) and the result follows.1 ut

Lemma 5.5. We have t∗ < ∞ and u(t∗, δ(t∗)−) = u(t∗, δ(t∗)+). In fact, ux(t∗) ∈
L∞loc(a(t

∗), b(t∗)). Thus u(t∗) ∈ W 1,∞
loc (a(t∗), b(t∗)).

1 We get the following estimate in arbitrary dimension:

‖u(t)‖L∞(SC(R)\SC(ε)) ≤
M

|SN−1|(ε + ct)N
∀t ≥ 0.
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Proof. Assume first that u(t, δ(t)−) > u(t, δ(t)+) for every t > 0. Then u(t, δ(t)+) ≥
u0(δ

+) for every t > 0, in particular as a consequence of Proposition 5.3. This contradicts
Proposition 5.4.

Thus, there exists some t3 < ∞ such that u(t3, δ(t3)−) ≤ u(t3, δ(t3)
+). Set t3 :=

min{t | u(t, δ(t)−) ≤ u(t, δ(t)+)}. Note that t3 ≤ t∗ as t∗ is defined. In fact u(t3, δ(t3)−)
= u(t3, δ(t3)

+), otherwise the condition u ∈ C([0, T ], L1(R)) would be violated.
Hence, there exists some t3 ≤ t∗ such that u(t3, δ(t3)−) = u(t3, δ(t3)+). As long as

t < t∗, the boundary conditions (5.3) hold true. Thus, Proposition 5.3 applies and we
deduce that Ju(t) = {a(t), b(t)} for t3 ≤ t < t∗. Thanks to Theorem 2.2 and Proposition
2.3 we deduce that our solution has W 1,1 spatial regularity inside the support from t3 on
and moreover it is smooth outside x = ϕ(t, ϕ−1(0, δ)).

Let us show next that t∗ <∞: Given that the boundary conditions (5.3) hold true for
t < t∗, Proposition 5.3 applies and ‖u(t)‖∞ ≥ u0(δ

+) for t < t∗ as a consequence. But
this would contradict Proposition 5.4 if t∗ = +∞. Altogether, the first statement of the
lemma is proved.

The remaining statements follow as in the proof of Lemma and Definition 5.2 (recall
that Sv(t∗) = ∅ by definition). ut

The previous result does not preclude the possibility of having t3 < t∗. Were that the case,
Lemma 5.4 would show that δ(t) = δ + ct for t < t∗. One way or another, once we have
Lemma 5.5 at our disposal we may apply Proposition 2.3 with u(t∗) as initial datum. We
conclude that u(t) is smooth inside its support for every t > t∗. Combining all the results
so far completes the proof of Theorem 5.1.

5.2. Analysis of Hölder cusps, continuous interfaces and isolated zeros

The purpose of this paragraph is to extend the ideas involved in the proof of Theorem
5.1 in order to treat a number of other distinctive features that may be present during the
evolution given by (1.2). We will state and prove here several partial statements treating
separately the evolution of an initial datum with a single Hölder cusp, with continuous
interfaces or with an isolated zero inside its support. These results will be blended together
with that of Theorem 5.1 to form a completely general statement in Section 6 below.

Non-Lipschitz continuity points inside the support

We can show that there is a regularization effect which dissolves continuity points for
which Lipschitz continuity does not hold (including the case of Hölder cusps):

Proposition 5.5. Let u0 ∈ L
∞(R) be such that the following conditions hold:

• u0 is supported in [a, b] and u0 ≥ κ > 0 for x ∈ [a, b].
• u0 ∈ BV(R) and Ju0 = {a, b}.
• u0 ∈ W

1,∞
loc (R \ (Ju0 ∪ {δ})) for some a < δ < b.

Let u be the entropy solution of (1.2) with initial datum u0. Assume that ut (t) is a finite
Radon measure for any t > 0. Then:
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(1) u(t) ∈ BV(R) for each t > 0, and u ∈ BV((0, T )× R) for every T > 0.
(2) u(t) is supported on [a − ct, b + ct] and u(t) ≥ κ(t) > 0 in the support.
(3) u(t) ∈ W 1,1(a− ct, b+ ct) for every t > 0. Moreover, there exists T ∗ ≥ 0 such that

u(t) is smooth inside its support for every t > T ∗.

Proof. Thanks to our hypothesis both lateral traces of u0 at x = δ coincide. Hence u0 is
continuous at x = δ and so u0 ∈ W

1,1(a, b). Then Proposition 2.3 ensures that u(t) ∈
W 1,1(a(t), b(t)) for every t > 0.

Using Theorem 2.2 we are able to pass to the inverse distribution formulation (2.4)–
(2.6). Then either v(t) is smoothed out instantaneously, or there is some t1 ∈ (0,∞]
such that Sv(t) is not empty for every t < t1. We are in the first case if, for instance,
u0 has a Hölder cusp at x = δ (combining Corollary 2.3, Lemma 5.4 and the fact that
u ∈ C([0, T ], L1(R))).

Assume now that we are in the second case; we pick t1 maximal with this property.
We notice that Sv(0) = {ϕ(0, δ)}. Let δ(t) := ϕ(t, ϕ−1(0, δ)). Then Corollary 2.3 en-
sures that mass transfer across δ(t) is prevented as long as ϕ(0, δ) lies in the singularity
set of v(t). This can be combined with Lemma 5.4 to argue that b(u, ux)(t, δ(t)−) =
b(u, ux)(t, δ(t)+) for any t ∈ (0, t1), and that both assume either the value +c or −c.
Thus, (5.3) is satisfied in (0, t1) with ml = ϕ(0, δ). Then we can argue exactly as in
Lemma and Definition 5.1. Our situation here is even simpler, as we can assume that
t3 = 0. There is just one minor change: We do not know a priori if δ(t) = δ + ct or
δ(t) = δ − ct . Apart from that, mimicking those arguments we show that there is a regu-
larizing effect in the long time run. ut

Continuous interfaces

Now we show that the statement of Theorem 5.1 remains true if we replace discontinuous
interfaces by continuous ones. In fact, we can argue as in [18, Proposition 3.2], as long
as we are separated from zero inside the support. Let us assume for instance that both
interfaces are continuous.

Definition 5.2. Let u0 ∈ L
∞(R). We say that u0 ∈ JC if the following conditions hold:

(1) u0 is supported in [a, b] and u0 > 0 for x ∈ (a, b).
(2) u0 ∈ BV(R).
(3) The jump set of the initial datum is Ju0 = {δ} with a < δ < b. Assume that the

discontinuity at δ will travel to the right (for instance), i.e. we choose νδ = +1 and
so u+(δ) < u−(δ).

(4) u0 ∈ W
1,∞(R \ Ju0) and u0(x)→ 0 as x → a, b.

(5) u0 ∈ W
2,1(R \ Ju0) and (u0)x(δ)

−, (u0)x(δ)
+
≤ 0.

Proposition 5.6. The results in Theorem 5.1 hold true for u0 ∈ JC , with the following
exception: the property u(t) > 0 holds only in the interior of the support. Moreover, if
u0(x) ≤ A(b−x)

α(x−a)α for someA, α > 0, then u(t, x) ≤ A(t)(b(t)−x)α(x−a(t))α

for any x ∈ (a(t), b(t)), t > 0 and some A(t). In that case, u(t, x) is continuous in a
neighborhood of the interface and tends to 0 as x → a(t), b(t).
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Proof. We know that the support evolves as [a − ct, b + ct] and that we are separated
from zero inside it thanks to [6]. Then we can obtain a number of statements resembling
those in Section 2 but only of local nature. The point here is that v0 /∈ L∞, because it
diverges at ∂(0,M). This can be bypassed as in [18, proof of Proposition 3.2]: Modify
the initial datum adding a constant δ that will converge to zero afterwards. In this way we
obtain regularized solutions vδ which are bounded, on which we can perform estimates
like those in Theorem 2.2. This time also the integral estimates will be local (in order to
avoid the lack of integrability at the boundary). But such local bounds suffice to pass to
the limit as δ → 0 and construct a suitable entropy solution, as explained in [18, proof
of Proposition 3.2]. This means that we can handle inverse distribution formulations in
terms of v, vl and vr as we did in Subsection 5.1.

Let us detail what would be the minor changes. First, we must replace BV(0,M)
by BVloc(0,M) in point (3) of Theorem 2.2. And second, Corollary 2.2 only asserts
BVloc(0,M) regularity this time; we cannot compute traces on ∂(0,M). We would have
(say) vl ∈ BV(ml/3, ml) ∩ BVloc(0, 2ml/3) and something similar for vr ; this is more
than enough in order to proceed. If we take these remarks into account, everything goes
as in Subsection 5.1. Moreover, the supersolutions given in [6, Proposition 2] provide us
with information on the behaviour of the interfaces, as quoted in the statement. ut

It is clear that when there is just one continuous interface, the arguments can be performed
in the same way; the only significant difference is maybe that the supersolutions in [6]
can be used to control only one end of the support. It is also clear that we can get a variant
of Proposition 5.5 with continuous interfaces at one or both ends.

Analysis of isolated zeros

It would seem that the presence of isolated zeros inside the support could spoil the pas-
sage to the inverse distribution formulation. Let us examine more closely the dynamical
behaviour of such isolated zeros. The following statement is our main tool in that regard.

Proposition 5.7. Given R0, α0, l, κ > 0, there are values β1, β2 > 0 large enough such
thatw(t, x) = exp{−β1t−β2t

2
}α0(c/ν)2(t, x) is an entropy subsolution of (1.2), where

2(t, x) is defined by√
(κ + ct)2 − |x + l|2 χ(−l−κ−ct,min{0,−l+κ+ct}]

+

√
(κ + ct)2 − |x − l|2 χ(max{0,l−κ−ct},l+κ+ct).

Proof. The above profile represents two configurations like the one in [6, Proposition 2],
each with initial radius κ and centred at ±l, so that the arrangement is symmetric around
the origin. Thus, as long as l − κ − ct > 0 the proof given in [6] works. We only have to
modify it slightly for t0 ≥ (l − κ)/c in order to get our statement. For that, let

Dl(t) := − exp{−β1t − β2t
2
}α0

c

ν

x + l√
(κ + ct)2 − |x + l|2

χ(−l−κ−ct,min{0,−l+κ+ct}]L1,

Dr(t) := − exp{−β1t − β2t
2
}α0

c

ν

x − l√
(κ + ct)2 − |x − l|2

χ(max{0,l−κ−ct},l+κ+ct)L1,
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where L1 denotes the 1-dimensional Lebesgue measure. If t0 = (l − κ)/c we get Dxz =
Dl(t0)+Dr(t0)+2cδ(0) (δ being the Dirac measure). The extra term comes from the fact
that a(w,wx)(t0, 0−) = −c and a(w,wx)(t0, 0+) = +c. Similarly, when t > t0 we get
Dxz = Dl(t)+Dr(t)+ 2cθ(t)δ(0) with 0 < θ(t) < c depending on the (finite) contact
angle.

Having that information we track [6, proof of Proposition 2] to learn that our result
will be proved if we are able to show that∫ T

t0

∫ l+κ+ct

−l−κ−ct

φ(t)wtT (w)S(w) dx dt ≥

∫ T

t0

∫ l+κ+ct

−l−κ−ct

Dxa(w,wx)φ(t)T (w)S(w) dt

for any 0 ≤ φ ∈ D((t0, T ) × R) and any T ∈ T +, S ∈ T −, where T +, T − are defined
in [6]. In fact, Step 2 in [6, proof of Proposition 2] already shows that∫ T

t0

∫ l+κ+ct

−l−κ−ct

φ(t)wtT (w)S(w) dx dt ≥

∫ T

t0

∫ l+κ+ct

−l−κ−ct

Dacx a(w,wx)φ(t)T (w)S(w) dt.

As ∫ T

t0

∫ l+κ+ct

−l−κ−ct

Dsxa(w,wx)φ(t)T (w)S(w) dt

= 2c
∫ T

t0

θ(t)φ(t, 0)T (w(t, 0))S(w(t, 0)) dt ≤ 0

in our particular case, the proof is complete. ut

Corollary 5.2. Let u0 ∈ BV(R) with connected support and let u be the associated en-
tropy solution of (1.2). The following statements hold true:

(1) Assume that u0 is continuous at x0 ∈ int(supp u0) and u0(x0) = 0. Assume fur-
ther that u0(x) > 0 for x ∈ int(supp u0) \ {x0}. Then u(t, x) > 0 for every x ∈
int(supp u(t)) and every t > 0.

(2) Assume that u0(x) > 0 for x ∈ int(supp u0) \ {x0}, where x0 is such that u(x−0 ) = 0
and u(x+0 ) > 0 (resp. u(x−0 ) > 0 and u(x+0 ) = 0). Then u(t, x) > 0 for every
x ∈ int(supp u(t)) and every t > 0.

(3) A similar statement holds true if we replace x0 by a finite collection of points falling
into any combination of cases (1) and (2).

Proof. There is no loss of generality in assuming that x0 = 0. To prove the first point, let
ε > 0 be given. Then we can find suitable parameters so that the profile w constructed in
Proposition 5.7 satisfies w(0, x) ≤ u0(x) and w(ε, x0) > 0. As we can do this for any
value of ε > 0, we deduce that u(t, x0) > 0 for any t > 0. The rest is a consequence of
the results in [6].

The proof of the second point is similar: We are able to find parameters such that
w(0, x) ≤ u0(x) and w(ε, x0) > 0, thus u(t, x−0 ) > 0 and u(t, x+0 ) > 0 for any t > 0.
Finally, the last statement is a consequence of the local character of Proposition 5.7 and
the results in [6] concerning positivity and support size. ut
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Provided that ut (t) is a finite Radon measure for any t > 0, this result shows that any
initial datum falling under points (1) or (2) of the previous results falls immediately under
the assumptions of either Theorem 5.1 or Proposition 5.5 (or any suitable modification
of those with continuous interfaces). Hence the associated solution becomes eventually
smooth.

6. Smoothing effects for the RHE: the general situation

Let us discuss now what happens when we consider an initial condition with a finite
number of jump discontinuities. Keep in mind that a jump discontinuity could evolve into
a point of continuity which is not Lipschitz, and that a point where u0 vanishes could
evolve into a point of continuity which is not Lipschitz and also into a jump discontinuity.
From the point of view of our analysis in Section 5, the common trait that these singular
points share is that they allow no mass flux through them as long as they stand—the only
noticeable difference is that zeros of u0 disappear instantaneously, while non-Lipschitz
continuity points and jump discontinuities may take some time to dissolve.

We have discussed in Section 5 what would be the dynamics of an isolated singular
point: it will eventually disappear. This will also be the case if we have an array of singular
points initially, as long as the trajectories that they trace out during evolution do not cross
or do not meet those of the interfaces. In such a case we would be able to treat them one
by one as isolated singular points. If this is true, the analysis of the evolution would be
reduced to label and track carefully each trajectory traced out by a singular point as long
as it is not dissolved. The following statement gives shape to these ideas.

Proposition 6.1. Let 0 ≤ u0 ∈ BV(R). Assume that u0 is supported in [a, b]. Consider
a finite set Su0 = {si} ⊂ [a, b], in which each si is one of the following:

• a point at which u0 has a jump discontinuity,
• a point at which u0 is continuous but not Lipschitz continuous,
• a point at which u0 has a zero.

Assume also that u0 ∈ (W
1,∞
loc ∩W

1,1)(R \ Su0) and u0(x) > 0 in (a, b) \ Su0 . Assume
finally that ut (t) is a finite Radon measure for any t > 0. Then:

(1) u(t) ∈ BV(R) for each t > 0.
(2) u(t) is supported on [a − ct, b + ct].
(3) There exists some 0 < T ∗ < ∞ such that u(t) ∈ W 1,1(a − ct, b + ct) and u(t)

is smooth inside its support, for every t ≥ T ∗. Moreover, u(t) > 0 for all x ∈
(a − ct, b + ct).

Proof. To start with, we notice that no singularity overlap can take place during the dy-
namical evolution, due to the fact that mass flux is not allowed through any such singular
point. If the trajectories traced out by two singular points happen to cross, a Dirac measure
would appear at the crossing location due to mass preservation. But this is not possible,
since u0 ∈ L

∞(R). Now, based on our previous results, there is some t1 > 0 such that the
cardinality of the set Sv(t) is constant for all 0 < t < t1. Choose t1 to be maximal with
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this property. Then we define Sess(u0) = ϕ(0, Sv(t1/2)). This is the set of points that are
associated with singularities that are not dissolved instantaneously, the only ones we have
to worry about. In fact, as a consequence of the results in Section 5, members of Sess(u0)

fall at most into one of two categories: jump discontinuities or points of continuity such
that both lateral traces of b happen to be +c or −c.

Say Sess(u0)={pi}i , i=1, . . . , n. Let Pi(t)=(pi±ct, pi+1±ct) :=(pi(t), pi+1(t)),
i = 1, . . . , n − 1, be the corresponding virtual evolution of the connected components
of [a, b] \ Ju0 for t > 0. We choose ± according to the Rankine–Hugoniot relations
when we are tracking a jump discontinuity. When dealing with points of continuity at
which Lipschitz continuity does not hold, we choose “+” if both lateral traces of b are
−c, and “−” if both lateral traces of b are +c (note that this can be regarded as a limit-
ing case of the Rankine–Hugoniot relations). Now we may define mi =

∫
Pi (0)

u0 dx >

0, i = 1, . . . , n− 1. Then, since none of the trajectories given by pi(t) cross, we see that∫
Pi (t)

u(t) dx = mi, i = 1, . . . , n− 1, as long as no singularity is dissolved. Thus, what
we do is to consider the set of maps

ϕi(t, m) = pi(t)+

∫ m

0
vi(t, r) dr, u(t, ϕi(t, m)) =

1
vi(t, m)

, i = 1, . . . , n,

which define a set of functions vi : (t1/2, t1)× (0, mi)→ R+, i = 1, . . . , n−1. Each vi

falls under the hypothesis of Theorem 2.2—and moreover Svi (t1/2) = ∅. In that way we
get a description of the evolution of u(t) in terms of the functions vi(t) as long as there is
no breakdown of singularities.

Thus, there is a first time t1 for which a singularity (meaning a jump discontinuity
or a continuity point at which Lipschitz continuity does not hold) is dissolved, say that
at p2(t1). Then we merge P1(t1) and P2(t1) into one single component P̃1(t), t ≥ t1,
enclosing a quantity of mass m̃1 := m1 + m2, while we relabel the remaining Pi(t1)
accordingly and reset the inverse distribution formulation for each P̃i(t), t ≥ t1, in terms
of a reduced set of functions vi , i = 1, . . . , n− 2. We modify this procedure accordingly
if two or more singularities happen to vanish at the same time. This new description
can be used until another singularity vanishes at a time t2, when we repeat the relabelling
operation and we reset again the inverse distribution formulation for each separated piece.
We proceed similarly until every singularity which was initially present has vanished,
which happens thanks to the results in Section 5. ut

Once the connected compact support case is done, we address the general case:

Theorem 6.1. Let 0 ≤ u0 ∈ BV(R) and let supp u0 be a disjoint union of closed inter-
vals. Consider Su0 = {si} ⊂ supp u0 such that Su0 is finite on each connected component
of supp u0, with each si being one of the following:

• a point at which u0 has a jump discontinuity,
• a point at which u0 is continuous but not Lipschitz continuous,
• a point at which u0 has a zero.

Assume also that u0 ∈ (W
1,∞
loc ∩ W

1,1)(R \ Su0) and u0(x) > 0 for every x ∈
int(supp u0) \ Su0 . Assume finally that ut (t) is a finite Radon measure for any t > 0.
Then:
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(1) u(t) ∈ BV(R) for each t > 0.
(2) There exists some 0 < T ∗ < ∞ such that u(t) ∈ W 1,1(int(supp u(t))) and u(t) is

smooth inside its support, for every t ≥ T ∗. Moreover, u(t) > 0 in the support.

Proof. It is mostly straightforward: we apply Proposition 6.1 to each connected compo-
nent in the initial support. In fact, an obvious modification of Proposition 6.1 applies to
the case of a connected support which is not compact (if any such component is present):
The support is no longer [a − ct, b + ct] and we have to replace it with the Minkowski
sum supp u0⊕B(0, ct). Once this is done, the result applies mutatis mutandis. Thus, this
procedure describes what happens as long as no pair of connected components interact.
When two (or more) connected components meet, we consider their union as a new con-
nected component of the support. At the merging time t = tm, the solution may have a
singularity at each contact point, depending on what the meeting interfaces were. (More
specifically, we may get a jump discontinuity, a continuous zero—maybe not Lipschitz
continuous—or a continuity point of strict positivity, where we may lack Lipschitz reg-
ularity.) These are all instances that we met previously, so we consider the solution at
t = tm as a new initial datum and we apply Proposition 6.1—more precisely, a variant of
it allowing for unbounded supports—to each of the connected components. We repeat the
procedure until no more connected components merge (which is a finite time that we can
estimate in terms of the initial configuration of connected components), and in this way
the result is proved. ut

7. Regularity for the FLPME before contact time

We can state a local regularity result:

Proposition 7.1. Let u0 ∈ BV(R) with u0(x) ≥ κ > 0 for x ∈ [a, b], and u0(x) = 0
for x 6∈ [a, b]. Assume that u0 is locally Lipschitz in its support outside a finite set
ϕ(0, Sv(0)). Let T ∗ be defined by Corollary 3.1. Then the entropy solution u of (1.1)
has the following additional properties:

• u(t) ∈ W
1,∞
loc ((a(t), b(t)) \ ϕ(t, Sv(t))) for all t ∈ (0, T ∗).

• u(t) is smooth in (a(t), b(t)) \ ϕ(t, Sv(t)) for t < T ∗ (in fact, u is smooth in⋃
0<t<T ∗({t} × ((a(t), b(t)) \ ϕ(t, Sv(t))))).

• u(t) ∈ BV(R) for all t ∈ (0, T ∗). Moreover, if u0 ∈ W
1,1(0,M) then u(t) ∈ W 1,1(R)

for all t ∈ (0, T ∗).

Roughly speaking, this result shows that, up to the time at which (some) interfaces be-
come continuous, the solution undergoes some regularizing effect. In fact, Lipschitz cusps
are regularized instantaneously, while no new jump discontinuities and/or points with
Hölder continuity appear. This can be shown by a careful adaptation of the arguments in
Section 2.1. Moreover, arguing as in Lemma 5.4 we see that Hölder cusps vanish instan-
taneously, and arguing as Proposition 5.3 we find that the size of any jump discontinuity
does not increase. The main technical difficulty that we face in order to try to extend this
result beyond T ∗ is that we do not know how to make sense of the inverse distribution
formulation in that case. Were this possible, the arguments in Sections 5 and 6 would
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likely imply a complete smoothing effect in the long time run as the one in Theorem 6.1
(replacing Proposition 5.4 by Proposition 3.1 this time).

Regarding the case of initial data with continuous interfaces, local-in-time regularity
results were shown in [14] for initial data having global Lipschitz regularity. The local
character of these results, together with heuristic arguments and numerical simulations
like that in Fig. 4 and those in [23], suggest that there will be a loss of regularity which
is connected with a waiting time phenomenon. Anyhow, after the support starts to spread
we expect smoothing effects to operate on the solution.
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