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Abstract. We generalise Birch’s seminal work on forms in many variables to handle a system
of forms in which the degrees need not all be the same. This allows us to prove the Hasse prin-
ciple, weak approximation, and the Manin–Peyre conjecture for a smooth and geometrically integral
variety X ⊆ Pm, provided only that its dimension is large enough in terms of its degree.
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1. Introduction and statement of results

This paper will be concerned primarily with integral solutions to general systems of ho-
mogeneous equations

F1(x1, . . . , xn) = · · · = FR(x1, . . . , xn) = 0, (1.1)

where each form Fi has coefficients in Z. Later in the paper we will specialize our results
to “nonsingular systems”, and make deductions about the Hasse principle, weak approx-
imation and the distribution of rational points of bounded height for completely general
smooth varieties.

Before describing the contents of the paper in detail, we would like to state one par-
ticularly succinct result.

Theorem 1.1. Let X ⊆ Pm be a smooth and geometrically integral variety defined
over Q. Then X satisfies the Hasse principle and weak approximation provided only that

dim(X) ≥ (deg(X)− 1)2deg(X)
− 1.

Moreover there is an asymptotic formula for the counting function for Q-rational points
of bounded height on X which agrees with the Manin–Peyre conjecture.

The meaning of the final sentence will be made clear later in this introduction.
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When X is a hypersurface this theorem essentially reduces to a well-known result of
Birch [4]. However, we are able to handle varieties of arbitrary codimension. We would
like to emphasize indeed that our hypotheses make no reference to the shape of the defin-
ing equations for X. In particular we have not required X to be a complete intersection.

It is rather striking that Theorem 1.1 provides such fine arithmetic information about
the set X(Q) of Q-rational points on X with such little geometric input. In the setting
of hypersurfaces, for example, Harris, Mazur and Pandharipande [13, § 1.2.2] have asked
whether the above inequality already implies thatX is unirational, meaning that there is a
dominant rational map Pm−1

→ X defined over Q. In fact one of the main results in [13]
shows that there is an integer M(d) such that for m ≥ M(d) any smooth hypersurface
X ⊆ Pm of degree d is indeed unirational. The value ofM(d) obtained is extremely large,
and grows much faster than a d-fold iterated exponential of d. It would be interesting to
determine whether the methods of [13] could be generalised to prove an analogous result
for general smooth varieties.

Our principal tool will be the Hardy–Littlewood circle method, so that we will be
interested in the case in which the number of variables is large. Our general problem has
been considered by Schmidt [22], whose main result establishes the Hardy–Littlewood
formula when the number of variables is sufficiently large in terms of certain “h-invari-
ants”. Schmidt’s work allowed him to deduce, for example, that the system always has
non-trivial solutions when the forms all have odd degrees, provided only that the number
of variables is large enough in terms of the degrees. The number required is very large,
but not as large as in the original elementary proof of this result by Birch [3]. In general,
while Schmidt’s lower bound on the number of variables required is explicit, the bound
is quite awkward to compute, grows rapidly, and depends on h-invariants which are very
hard to calculate. However, Schmidt also establishes a result (see [22, Corollary, p. 262])
which is tolerably efficient for nonsingular systems, and which we will describe in a little
more detail later. In the context of Theorem 1.1 it would produce a result when n is very
roughly of size 23 deg(X) or more.

It is this second type of result that we wish to explore. Many of the ideas go back
to work of Birch [4]. The method requires the system not to be too singular, but then
gives relatively good lower bounds for the number of variables required. However, Birch’s
original result needed the forms all to have the same degree, and there is a significant
technical problem in extending the method to the general case. Schmidt showed how
this might be overcome, but his approach is somewhat wasteful, and does not recover
Birch’s theorem in the case in which the forms all have the same degree. One of the main
purposes of this paper is to show how forms of unequal degrees can be handled in an
efficient manner, so as to give results in the spirit of Birch [4] for arbitrary systems.

In order to describe Birch’s result we introduce the singular locus for the system of
forms (1.1), which is the set

{x ∈ An : rank(J (x)) < R},

where J (x) is the Jacobian matrix of size R × n formed from the gradient vectors
∇F1(x), . . . ,∇FR(x). We note that the system (1.1) defines an algebraic variety V ⊆ An.
However, points of Birch’s singular locus are not necessarily singular points of V , since
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they are not required to lie on V . If we write B for the dimension (in An) of Birch’s sin-
gular locus then his theorem is that the usual Hardy–Littlewood formula holds as soon as

n > B + R(R + 1)(D − 1)2D−1, (1.2)

where D is the common degree of the forms Fi .
For our main result we will need a little more notation. We will re-number the forms Fi

in (1.1), grouping together those of equal degree. Let D ∈ N such that D ≥ 2 and let
rd ∈ N∪ {0} for 1 ≤ d ≤ D, with r1 = 0 and rD ≥ 1. Suppose then that for every d ≤ D
we have forms

F1,d(x1, . . . , xn), . . . , Frd ,d(x1, . . . , xn) ∈ Z[x1, . . . , xn] (1.3)

of degree d , so that the total number of forms is

R = r1 + · · · + rD.

In practice, if one had any forms of degree 1 it would be natural to use them to eliminate
appropriate variables, leaving a system of forms of degrees at least 2 but involving fewer
variables than originally.

It will be convenient to write

1 := {d ∈ N : rd ≥ 1} ⊆ {2, . . . , D}.

For each degree d ∈ 1 we define the matrix

Jd(x) :=

 ∇F1,d(x)
...

∇Frd ,d(x)


and we set

Sd := {x ∈ An : rank(Jd(x)) < rd}.

This defines an affine algebraic variety and we henceforth set

Bd := dim(Sd). (1.4)

When rd = 0 we shall take Bd = 0. It will also be convenient to set B0 = 0. Our method
breaks down if there is any degree d for which Bd = n, and so we impose the condition
that Bd < n for every d ∈ 1. For example, this rules out the case in which the forms
(1.3) are linearly dependent.

At this point we should observe that independent work of Dietmann [10] and
Schindler [21] allows one to replace Bd by an alternative invariant, which we denote
temporarily by B ′d . One can show in complete generality that B ′d ≤ Bd , but that B ′d can
be strictly less than Bd in appropriate cases. However, we will work with Birch’s invariant
Bd throughout this paper.

We wish to count integral vectors in a fixed congruence class, and which lie in the
dilation of a fixed box. We therefore choose an n-dimensional box B ⊆ [−1, 1]n, with
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sides aligned to the coordinate axes. We also give ourselves a modulus M ∈ N and a
vector m0 ∈ Zn with coordinates in [0,M − 1]. The box B, the modulus M and the
vector m0 will be considered fixed. For any (large) positive real P we then write

N(P ) := #{x = m0 +My : y ∈ Zn, x ∈ PB, Fi,d(x) = 0 ∀i, d}.

The vectors x which occur here all satisfy x ≡ m0 (mod M). Typically we will want to
choose the box B so that the vectors x lie close (in a projective sense) to a given real point.
Suppose we have chosen a nonzero vector x0 ∈ (−1, 1)n and a small positive constant η.
Taking |x| to denote the sup-norm of the vector x and setting

B := {u ∈ Rn : |u− x0| < η},

we see that P−1x will be close x0 whenever x is counted by N(P ).
Unfortunately the condition for n occurring in our first result is rather complicated.

We define
Dj := r1 + 2r2 + · · · + jrj , (1.5)

for 1 ≤ j ≤ D, and we set D0 := 0 and D := DD . Finally, we write

sd :=

D∑
k=d

2k−1(k − 1)rk
n− Bk

. (1.6)

With these conventions we now have the following.

Theorem 1.2. Suppose that

Dd
(

2d−1

n− Bd
+ sd+1

)
+ sd+1 +

D∑
j=d+1

sj rj < 1

for d = 0 and for every d ∈ 1. Then there is a positive δ such that

N(P ) = σ∞

(∏
p

σp

)
P n−D +O(P n−D−δ),

where σ∞ and σp are the usual local densities, given by (2.3) and (2.5), respectively.

Here, and for the rest of the paper, the implied constant is allowed to depend on the
forms Fi,d (and hence on n, R and D) and also on the box B, the modulus M and the
vector m0.

We observe at this point that the entire analysis may be applied to systems of poly-
nomials fi,d , rather than systems of forms. For each such polynomial one defines the
form Fi,d to be the homogeneous part of fi,d of degree d. One then uses the various Fi,d
to define the numbers Bd as before. The entire argument now goes through with only
minor modifications.

Although our condition on n is somewhat complicated, the reader may readily verify
that if r1 = · · · = rD−1 = 0 and rD = R, then it is equivalent to Birch’s constraint
in (1.2). In order to understand better our condition we give the following corollary of
Theorem 1.2, which is simpler but potentially weaker.
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Corollary 1.3. Set

B := max{Bd : d ∈ 1},

td :=

D∑
k=d

2k−1(k − 1)rk (1 ≤ d ≤ D + 1),

n0(d) := Dd(2d−1
+ td+1)+ td+1 +

D∑
j=d+1

tj rj ,

n0 := max{n0(d) : d ∈ 1 ∪ {0}}.

Then the conclusion of Theorem 1.2 holds whenever n > B + n0.

For comparison, the result of Schmidt [22, Corollary, p. 262] mentioned before would
establish the same conclusion as Theorem 1.2 as soon as

n > max
d≤D

(
Bd + (d − 1)(1+ 21−d)−123d−5rdDD

)
.

As examples of Corollary 1.3 we proceed to consider some test cases.

Corollary 1.4. For a system consisting of r ≥ 1 quadratic forms and a single form of
degree D ≥ 3 we have n0 = (2+ r)(D − 1)2D−1

+ 2r(r + 1) when r > (D − 1)2D−2,
and n0 = (2+ 2r)(D − 1)2D−1

+ 4r otherwise.

Thus if D is fixed and r tends to infinity, our bound is asymptotic to the value 2r(r + 1)
we would have for a system consisting solely of quadratic forms. On the other hand, when
r is fixed and D grows, we do not get a bound asymptotic to the value (D − 1)2D we
would have for a single form of degree D.

The proof of Corollary 1.4 is a straightforward calculation. We find that

n0(D) = (D + 2r)2D−1,

n0(2) = (2+ 2r)(D − 1)2D−1
+ 4r,

n0(0) = (2+ r)(D − 1)2D−1
+ 2r(1+ r).

Hence n0(D) ≤ n0(0) for every value of r and moreover n0(0) ≥ n0(2) if and only if
r > (D − 1)2D−2.

Corollary 1.5. For a system consisting of one form of degree D and one of degree E,
where D > E ≥ 2, we have

n0 = (2+ E)(D − 1)2D−1
+ E2E−1.

In particular, if E ≥ 4 then we have a larger value for n0 than for a system consisting of
two forms of degree D. This is slightly disappointing, since one would expect that it is
“easier” to handle a pair of forms of degrees 4 and 5, say, than two forms of degree 5.
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Again the proof of Corollary 1.5 is a straightforward calculation. This time we find
that

n0(D) = (D + E)2D−1,

n0(E) = (2+ E)(D − 1)2D−1
+ E2E−1,

n0(0) = 3(D − 1)2D−1
+ 2(E − 1)2E−1,

and one readily checks that n0(E) is at least as large as n0(D) or n0(0).
In general we can give the following crude upper bound for n0.

Theorem 1.6. We have

n0 + R − 1 ≤ D22D−1
≤ R2D22D−1 and n0 + R − 1 ≤ (D − 1)2D.

Many variants of this are possible. We have chosen to give an estimate with a term R− 1
on the left because there is a significant case in which one has maxBd ≤ R − 1, as we
shall see below.

The first bound shows in particular that for any system of R forms of degrees at
most D one has n0 �D R2. A result of this type, with a somewhat worse dependence
on D, was first proved by Schmidt [22, Corollary, p. 262].

In order to give more information about the dimensions Bd of Birch’s singular loci
we shall now investigate what happens if we impose a nonsingularity condition. This will
also enable us to describe conditions under which the constant σ∞

∏
p σp is positive in

Theorem 1.2. We shall say that the collection of forms Fi,d is a nonsingular system if
rank(J (x)) = R for every nonzero x ∈ Qn satisfying the equations

Fi,d(x) = 0 (1 ≤ i ≤ rd , 1 ≤ d ≤ D), (1.7)

where J (x) is the R × n Jacobian matrix defined above.
In order to get good bounds on Bd we replace our system of forms by an “equivalent

optimal system”. We shall say that two systems {Fi,d} and {Gi,d} of integral forms (with
deg(Fi,d) = deg(Gi,d) = d) are equivalent if for every pair i, d the form Fi,d −Gi,d is a
linear combination ∑

j<i

Hj,d(x)Fj,d(x)+
∑
e<d

∑
j≤re

Hj,e(x)Fj,e(x)

where Hj,e is an integral form of degree d − e. One sees at once that this does indeed
produce an equivalence relation, and that the formsGi,d have the same set of zeros as the
original system Fi,d .

We shall prove in Section 3 that if one has a nonsingular system {Fi,d} of forms, then
there is an equivalent system {Gi,d} with the property that for any value of i and d the
subsystem

{Gj,d : j ≥ i} ∪ {Gj,e : j ≤ re, d < e ≤ D}

is itself a nonsingular system. We call such a system an optimal system. For example,
if our original nonsingular system consists of a cubic form C and a quadratic form Q,
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then there will be a linear form L such that C + LQ is a nonsingular form. The pair
{C + LQ,Q} is then an optimal system.

For an optimal system we shall show in Lemma 3.1 that

Bd ≤ rd + · · · + rD − 1 (1 ≤ d ≤ D). (1.8)

It follows that maxBd ≤ R − 1 for an optimal nonsingular system. Since equivalent
systems have the same counting function N(P ), we deduce the following result.

Theorem 1.7. Suppose we have a nonsingular system of forms such that n > (D−1)2D.
Then there is a positive δ such that

N(P ) = σ∞

(∏
p

σp

)
P n−D +O(P n−D−δ),

where σ∞ and σp are the usual local densities, given by (2.3) and (2.5), respectively.
Moreover σ∞ is positive provided that the system of equations (1.7) has a real solu-
tion in B. Similarly

∏
p σp is positive provided that for each prime p there is a solution

xp ∈ Znp satisfying xp ≡ m0 (mod M).

We show in Section 8 that the singular series and singular integral are absolutely con-
vergent under the conditions of Theorem 1.2. Thus standard arguments, such as those
used by Davenport [9, Chapters 16 & 17], show that they are positive whenever suitable
nonsingular local solutions exist. The details are left to the reader.

The bound (1.8) also enables us to establish the following variant of Corollary 1.5.

Corollary 1.8. For a nonsingular system consisting of one form of degree D and one of
degree E, where D > E ≥ 2, the conclusion of Theorem 1.7 holds whenever

n > (2+ E)(D − 1)2D−1
+ E2E−1.

In the case of one quadratic and one cubic we find that n ≥ 37 suffices. This reproduces
one of the results from the work of Browning, Dietmann and Heath-Brown [5]. However,
in this special case one can do better. Indeed, it is shown in [5, Theorem 1.3] that one can
handle smooth intersections of one quadratic and one cubic as soon as n ≥ 29.

To prove the corollary one has merely to interpret the condition of Theorem 1.2 sub-
ject to the information in (1.8). One therefore needs

(D + E)2D−1

n
< 1,

(2+ E)(D − 1)2D−1

n
+
E2E−1

n− 1
< 1,

3(D − 1)2D−1

n
+

2(E − 1)2E−1

n− 1
< 1,

corresponding to d = D,E, 0, respectively. It is easy to see that (2+E)(D−1) ≥ D+E
wheneverD > E ≥ 2, so that the second condition implies the first. In general, if α and β
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are positive integers one has

α

n
+
β

n
<
α

n
+

β

n− 1
<

α

n− 1
+

β

n− 1
,

so that the inequality
α

n
+

β

n− 1
< 1

will hold for n = α + β + 1, but not for n = α + β. Since

(2+ E)(D − 1)2D−1
+ E2E−1

≥ 3(D − 1)2D−1
+ 2(E − 1)2E−1,

we see that the condition in Theorem 1.2 holds if and only if

n ≥ (2+ E)(D − 1)2D−1
+ E2E−1

+ 1,

and the result follows.
Up to this point we have described our results in terms of zeros of systems of forms.

We now turn to the related question of rational points on projective varieties. Recall that
a family of projective algebraic varieties X, each defined over Q, is said to satisfy the
Hasse principle if X has a point over Q whenever it has a point over each completion
of Q. If in addition the set X(Q) of Q-points of X is dense in the adelic points then we
say that weak approximation holds. When X is Fano (i.e. it is a nonsingular projective
variety with ample anticanonical bundle ω−1

X ) and X(Q) is dense in X under the Zariski
topology, it is natural to study the counting function

N(U,H,P ) := #{x ∈ U(Q) : H(x) ≤ P }

as P → ∞. Here U ⊆ X is any Zariski open subset and H is any anticanonical height
function on X. The Manin–Peyre conjecture (see [11] and [19]) predicts the existence of
an open subset U ⊆ X such that for any anticanonical height function H on X there is a
(precisely described) constant cU,H > 0 such that

N(U,H,P ) ∼ cU,HP(logP)rank Pic(X)−1 (P →∞). (1.9)

We will be interested in this when U = X and Pic(X) ∼= Z.
Any smooth complete intersection in Pn−1 is the zero-set of a nonsingular system of

forms. Conversely, the equations (1.7) define a variety, X say, in Pn−1. We shall prove
in Lemma 3.2 that if one has a nonsingular system, then the corresponding variety X
is geometrically integral, and indeed the ideal in Q[x] which annihilates X(Q) is gen-
erated by the forms Fi,d . In particular X is smooth. Moreover we will show that X has
codimension R in Pn−1, and that its degree is

deg(X) =
∏
d≤D

drd .

Recall that X ⊆ Pn−1 is said to be nondegenerate if it is not contained in any proper
linear subspace of Pn−1. In this case we must have r1 = 0, whence one easily finds that



Forms in many variables 365

deg(X) ≥ D. In view of Theorem 1.7 we can therefore handle any smooth non-degenerate
complete intersection X ⊆ Pn−1 for which

n > (deg(X)− 1)2deg(X). (1.10)

We claim that the Hasse principle and weak approximation hold for such varieties, to-
gether with the Manin–Peyre conjecture with U = X. Since we have the lower bound

deg(X) ≥ D ≥ 2R,

the inequality (1.10) implies that dim(X) = n− 1−R ≥ 3. In particular the natural map
Br(Q) → Br(X) is an isomorphism (see Proposition A.1 in Colliot-Thélène’s appendix
to [20]), where Br(X) = H 2

ét(X,Gm) is the Brauer group of X. Hence this is compat-
ible with the conjecture of Colliot-Thélène that the Brauer–Manin obstruction controls
the Hasse principle and weak approximation for the varieties under consideration here
(see [7] for the most general statement of this conjecture).

To see the claim, we observe that the Hasse principle and weak approximation follow
on choosing B so that the vectors counted by N(P ) lie close to a given real point on X
and letting P run through large positive integers. For the Manin–Peyre conjecture with
U = X, we may assume that X(Q) 6= ∅. It follows from [16, §II, Exercise 8.4] that
ω−1
X = O(n − D). Moreover, the inequality (1.10) ensures that X is Fano. Noether’s

theorem (see [14, Corollary 3.3, p. 180]) implies that PicX ∼= Z. We work with the
height function

H(x) := ‖x‖n−D,

where ‖ · ‖ is an arbitrary norm on Rn, on choosing a representative x = [x] such that
x ∈ Zn is primitive. Set C := supx∈[−1,1]n ‖x‖ and

R := {x ∈ Rn : ‖x‖ ≤ C} ⊆ [−1, 1]n.

In order to establish (1.9), it turns out that it is enough to estimate N(P ) with M = 1
and the box B replaced by the region R. In effect one counts integral points of bounded
height on the universal torsor over X. (Note that the affine cone over X in An \ {0} is the
unique universal torsor over X up to isomorphism since dim(X) ≥ 3.) Although R is not
necessarily a box, it can be approximated arbitrarily closely, both from above and below,
by a disjoint union of admissible boxes. The desired asymptotic formula for N(P ) now
follows from Theorem 1.7.

It has been observed that there are no examples in the literature in which the Hardy–
Littlewood circle method has been used for varieties which are not complete intersections.
Indeed, there has been speculation that the circle method is incapable of handling such
varieties. Of course, it is not easy to formalize such a claim.

However, one reason that the circle method has been applied only to complete inter-
sections is that it requires the dimension to be large relative to the degree, as one sees in
Birch’s result (1.2) for example. In contrast, varieties which are not complete intersec-
tions tend to have dimension which is at most of size comparable with the degree. Indeed,
Hartshorne [15] has conjectured that a smooth variety X ⊆ Pm is a complete intersec-
tion as soon as dim(X) > 2m/3. According to Harris [12, Corollary 18.12] any variety
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X ⊆ Pm lies in a linear subspace of dimension at most dim(X)+ deg(X)− 1, and if X is
defined over Q we can take the subspace also to be defined over Q. Thus in our context
we may assume that m ≤ dim(X)+ deg(X)− 1, so that Hartshorne’s conjecture implies
that X is a complete intersection as soon as

dim(X) > 2
3 (dim(X)+ deg(X)− 1),

or equivalently whenever
dim(X) ≥ 2 deg(X)− 1. (1.11)

If this were true, it would certainly explain why we have no examples where the circle
method has handled a variety which is not a complete intersection.

Hartshorne’s conjecture is still largely wide open. However, it has been shown by
Bertram, Ein and Lazarsfeld [2, Corollary 3] that if X ⊆ Pm is smooth then it is a com-
plete intersection as soon as

deg(X) ≤
m

2(m− dim(X))
.

We may assume as above that m ≤ dim(X) + deg(X) − 1. Inserting this information
into the above inequality and rearranging we conclude that X is a complete intersection
provided only that

dim(X) > deg(X)(2 deg(X)− 3).

This enables us to deduce Theorem 1.1 from Theorem 1.7. We observe firstly that the
result is trivial ifX is linear. Otherwise, ifX is as in Theorem 1.1, then it lies in a minimal
linear space, L say, defined over Q. If we write n − 1 = dim(L) > dim(X), then X is
a smooth, nondegenerate, geometrically integral subvariety of L ∼= Pn−1. Moreover, we
have n− 1 > (deg(X)− 1)2deg(X)

− 1. Under the hypothesis of Theorem 1.1, X will be
a complete intersection, by the result of Bertram, Ein and Lazarsfeld, since we have

(deg(X)− 1)2deg(X)
− 1 > deg(X)(2 deg(X)− 3)

for deg(X) ≥ 2. Moreover, we shall prove in Lemma 3.3 that the annihilating ideal of X
is generated by integral forms. The result then follows since we have already observed
that (1.10) suffices for smooth nondegenerate complete intersections defined over Q.

We conclude this introduction by discussing the extent to which one might relax the
conditions of Theorem 1.1.

Conjecture 1.9. Let X ⊆ Pm be a smooth and geometrically integral variety defined
over Q. Then X satisfies the Hasse principle and weak approximation provided only that
dim(X) ≥ 2 deg(X)−1. Moreover, if X(Q) 6= ∅, the Manin–Peyre conjecture holds with
U = X.

The conclusion of the conjecture is trivial if deg(X) = 1 and it is well-known for
deg(X) = 2. Thus we may assume that deg(X) ≥ 3. In particular dim(X) ≥ 5. In this
case the first part of the conjecture is based on combining the conjectures of Hartshorne
and Colliot-Thélène that we mentioned above. According to the former, the inequality
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(1.11) is enough to ensure that any X in the statement of Conjecture 1.9 is a complete
intersection in L, for some linear subspace L ∼= Pn−1

⊂ Pm. Assuming that X is defined
by a system of R equations (1.1), we deduce that X is Fano since

n > dim(X)+ 1 ≥ 2 deg(X) ≥ 2D. (1.12)

Hence Colliot-Thélène’s conjecture implies that X satisfies the Hasse principle and weak
approximation (see [20, Conjecture 3.2 and Proposition A.1]). Finally, the inequality
(1.12) is precisely what arises from the “square-root barrier” in the circle method, with
the general expectation then being that the usual Hardy–Littlewood formula ought to
hold, provided that X is smooth and geometrically integral. As above, this would lead to
a resolution of the Manin–Peyre conjecture with U = X.

We close by discussing two examples to illustrate Theorem 1.1 and Conjecture 1.9.
Suppose that m = 2d − 1 and consider the Fermat hypersurface

X : xd0 + · · · + x
d
d−1 = x

d
d + · · · + x

d
2d−1

in Pm. Note that X contains the (d − 1)-plane given by the equations

xi = xi+d for i = 0, . . . , d − 1.

It was shown by Hooley [17] that this variety has more points than the circle method leads
one to expect. Indeed, it follows from work of Browning and Loughran [6, Example 3.2]
that there is at least one choice of anticanonical height function for which the Manin–
Peyre conjecture fails when U = X. This example shows that we cannot have a result
like Theorem 1.1 in which the condition is relaxed to dim(X) ≥ 2 deg(X) − 2. Thus the
lower bound in Conjecture 1.9 is optimal, from the point of view of the Manin–Peyre
conjecture.

Turning to the question of the Hasse principle, for any k ∈ N we consider the variety
X ⊆ P3k+2 defined as follows. Let C ⊆ P2 be the curve given by 3x3

1 + 4x3
2 + 5x3

3 = 0,
and let ϕ : P2

×Pk → P3k+2 be the Segre embedding. Then we takeX to be ϕ(C×Pk). It
is easy to see that X fails the Hasse principle since C fails the Hasse principle. Moreover
deg(X) = 3(k + 1), as in Harris [12, pp. 239 & 240], and dim(X) = k + 1. Finally,
X is smooth, as in Hartshorne [16, Proposition III.10.1(d)]. Thus Theorem 1.1 would be
false if the lower bound on dim(X) were replaced by 1

3 deg(X). It would be interesting
to have examples of the failure of the Hasse principle in which dim(X) grows faster than
1
3 deg(X).

Notation. For any α ∈ R, we will follow common convention and write e(α) := e2πiα

and eq(α) := e2πiα/q . We will allow all of our implied constants to depend on ε, in addi-
tion to the forms Fi,d and the objects B, M and m0 occurring in the definition of N(P ).
We shall write |x| for the sup-norm of a vector x ∈ Cn and we use ‖θ‖ for the distance
from a real number θ to the nearest integer. Finally, we shall often write a = (ai,d) to de-
note the vector whose R entries are indexed by i, d satisfying 1 ≤ i ≤ rd and 1 ≤ d ≤ D.
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2. Overview of the paper

The aim of the present section is to present the main ideas in the proof of Theorem 1.2,
which is the principal result in this paper. The starting point in the circle method is the
identity

N(P ) =

∫
(0,1]R

S(α) dα,

where α = (αi,d) for 1 ≤ i ≤ rd and 1 ≤ d ≤ D, and

S(α) :=
∑
x∈Zn

m0+Mx∈PB

e
( D∑
d=1

rd∑
i=1

αi,dFi,d(m0 +Mx)
)
.

The idea is then to divide the region (0, 1]R into a set of major arcs M and minor arcs m.
In the usual way we wish to prove an asymptotic formula∫

M
S(α) dα = σ∞

(∏
p

σp

)
P n−D +O(P n−D−δ) (2.1)

for some δ > 0, together with a satisfactory bound on the minor arcs∫
m
S(α) dα = O(P n−D−δ). (2.2)

In the above formula the real density associated to the counting problem described
by N(P ) is defined to be

σ∞ :=
1
Mn

∫
RR
J (γ ) dγ , (2.3)

where

J (γ ) :=

∫
B
e
( D∑
d=1

rd∑
i=1

γi,dFi,d(x)
)
dx. (2.4)

The corresponding p-adic density is

σp := lim
k→∞

p−(n−R)kN (pk) (2.5)

where
N (q) := #{x ∈ (Z/qZ)n : Fi,d(m0 +Mx) ≡ 0 (mod q) ∀i, d}.

Let $ ∈ (0, 1/3) be a parameter to be decided upon later (see (8.3)). We will take as
major arcs

M :=
⋃
q≤P$

⋃
a (mod q)

gcd(q,a)=1

Mq,a,

where a = (ai,d) and

Mq,a :=

{
α (mod 1) :

∣∣αi,d − ai,d/q∣∣ ≤ P−d+$ for
1 ≤ i ≤ rd and d ∈ 1

}
. (2.6)

We have Mq,a ∩Mq ′,a′ = ∅ whenever a/q 6= a′/q ′, provided that P is taken to be
sufficiently large.
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The minor arcs are defined to be m := (0, 1]R \M. Our estimation of S(α) for α ∈ m
is based on a version of Weyl differencing, which is inspired by the work of Birch [4], but
which is specially adapted to systems of forms of differing degree.

For each d ∈ 1 let Fi,d(x1, . . . , xd) be the d-multilinear polar form attached
to Fi,d(x). After multiplying Fi,d by d! we may assume that Fi,d(x1, . . . , xd) has inte-
ger coefficients. We take Fi,d(x1, . . . , xd−1) to be the row vector for which

Fi,d(x1, . . . , xd) = Fi,d(x1, . . . , xd−1).xd , (2.7)

and we set

Ĵd(x1, . . . , xd−1) :=

 F1,d(x1, . . . , xd−1)
...

Frd ,d(x1, . . . , xd−1)


and

Ŝd := {(x1, . . . , xd−1) ∈ (An)d−1
: rank(Ĵd(x1, . . . , xd−1)) < rd}. (2.8)

Thus Ŝd is an affine algebraic variety.
UsingD− 1 successive applications of Weyl differencing, as in Birch’s work, we can

relate the size of the exponential sum S(α) to the locus of integral points on the affine vari-
ety ŜD . In this way we shall be able to get good control over S(α) unless α1,D, . . . , αrD,D
all happen to be close to a rational number with small denominator. If this occurs then
we shall modify the final Weyl squaring, in a way suggested by the “q-analogue” of van
der Corput’s method, so as to remove the effect of the degree D terms. This process is
then iterated for the terms of degrees d ∈ 1, in decreasing order, ultimately obtaining a
suitable estimate unless all of the coefficients αi,d have good rational approximations.

We should comment here on two other approaches to these questions involving expo-
nential sums. Parsell, Prendiville and Wooley [18] give estimates for general multidimen-
sional sums based on a multidimensional version of Vinogradov’s mean value theorem.
However, the bounds obtained save only a small power of P in our notation, whereas our
results require a saving in excess of PD. Baker [1, Theorem 5.1] gives a strong result
for exponential sums for a one-variable polynomial, taking account of the Diophantine
approximation properties of all the coefficients. It would be very useful if such a result
were available in our situation. However, Baker’s proof ultimately depends on estimates
for complete exponential sums in one variable. Although Baker only requires a relatively
weak bound for such complete sums, there appear to be no corresponding estimates avail-
able in the higher-dimensional setting.

Our modified version of Weyl differencing is the subject of Section 4. We shall apply
it in Section 5 to the leading forms F1,D, . . . , FrD,D of degree D. The iteration process
is then described in Section 6, producing our final bound for the exponential sum S(α)

in Lemma 6.2. Next, in Section 7, we will show how this suffices to prove (2.2) under
the hypothesis in the statement of Theorem 1.2. To complete the proof of the theorem we
will establish (2.1) in Section 8. We begin with Section 3, which is concerned with the
facts from algebraic geometry alluded to in the introduction, and conclude with Section 9,
which provides the proof of Theorem 1.6.
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3. Geometric considerations

We commence this section by showing that, given any nonsingular system {Fi,d} of forms,
there is an equivalent optimal system {Gi,d}. An inspection of the proof of [5, Lemma 3.1]
easily confirms this fact. Specifically, it shows that one can take

Gi,d := Fi,d +
∑

1≤k<i

λ
(i,d)
k Fk,d +

∑
1≤j≤n
1≤e<d
1≤`≤re

λ
(i,d)
j,`,ex

d−e
j F`,e

for 1 ≤ i ≤ rd , 1 ≤ d ≤ D and appropriate integers λ(i,d)k , λ
(i,d)
j,`,e.

Recall from (1.4) that Bd = dim(Sd) with

Sd = {x ∈ An : rank(Jd(x)) < rd}.

For an optimal system we can establish the following estimate for Bd , as claimed in (1.8).

Lemma 3.1. Suppose that {Fi,d} is an optimal system of forms. Let d ∈ 1. Then we have
Bd ≤ rd + · · · + rD − 1.

Proof. In what follows let us write Rd := rd + · · · + rD . It will be convenient to work
projectively. Let d ∈ 1 and write

Td := {[x] ∈ Pn−1
: rank(Jd(x)) < rd}.

In order to establish the lemma it suffices to show that dim(Td) ≤ Rd − 2.
We introduce the varieties Vd , Ṽd ⊆ Pn−1, given by

Vd : F1,d = · · · = Frd ,d = 0 and Ṽd : F2,d = · · · = Frd ,d = 0.

Note that only rd − 1 forms appear in the definition of Ṽd . Since {Fi,d} is an optimal
system it follows that the varieties

Wd := VD ∩ · · · ∩ Vd and W̃d := VD ∩ · · · ∩ Vd+1 ∩ Ṽd

are smooth. Note that W̃d has codimension at most

rd − 1+ rd+1 + · · · + rD = Rd − 1

in Pn−1, since rd ≥ 1.
We are now ready to estimate the dimension of Td . To do so we note that Td is the set

of [x] ∈ Pn−1 for which there exists a point [λ1, . . . , λrd ] ∈ Prd−1 such that

λ1∇F1,d(x)+ · · · + λrd∇Frd ,d(x) = 0. (3.1)

Consider the intersection Id = Td ∩W̃d . We claim that Id is empty. Any point [x] ∈ Id for
which (3.1) occurs with λ1 6= 0 must have F1,d(x) = 0, by Euler’s identity. But then [x]
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must be a point in Wd for which the matrixJrd (x)...
JD(x)


has rank strictly less than Rd . This contradicts the fact that Wd is smooth. Alternatively,
any point [x] ∈ Id for which (3.1) occurs with λ1 = 0 must produce a singular point
on W̃d , which is also impossible. This shows that Id is empty, whence

dim(Td) < codim(W̃d) ≤ Rd − 1.

This concludes the proof of the lemma. ut

Our remaining results deal with complete intersections. Recall that a varietyX ⊆ Pn−1 of
codimension R is said to be a complete intersection if its annihilating ideal is generated
by R forms. The following result shows that any nonsingular system of forms produces a
smooth complete intersection of the appropriate degree, which is geometrically integral.

Lemma 3.2. Let {F1, . . . , FR} be a nonsingular system of integral forms, defining a va-
riety X in Pn−1. Then the annihilating ideal of X is generated by {F1, . . . , FR}, and X is
a smooth complete intersection of codimension R. Moreover, X is geometrically integral
and has degree

deg(X) = deg(F1) . . . deg(FR).

Proof. It follows from [16, Exercise II.8.4] thatX is a complete intersection (as a scheme)
of codimension R, whose annihilating ideal is generated by {F1, . . . , FR}. The smooth-
ness of X follows from the fact that the system {F1, . . . , FR} of forms is nonsingular.

Now the local rings of any smooth scheme are regular. Moreover, a regular local ring is
an integral domain. Thus every local ring of a smooth scheme must be an integral domain.
Moreover, X is connected by [16, Exercise III.5.5]. It follows that X is geometrically
reduced and irreducible, as required. Indeed, if it failed to be geometrically integral, then
it would have two components with a nonempty intersection, since X is connected. But
this is impossible since the local ring of any point lying in the intersection would not be
an integral domain.

Let di := degFi for 1 ≤ i ≤ R. Since X is a complete intersection of codimen-
sion R in Pn−1, the degree of X can be computed via its Hilbert polynomial. Now
{F1, . . . , FR} forms a “regular sequence” of homogeneous elements of Q[x], since X
is a complete intersection. According to Harris [12, Example 13.16], the Koszul complex
associated to the regular sequence {F1, . . . , FR} is a free resolution of the coordinate ring
Q[x]/(F1, . . . , FR). This enables us to compute the Hilbert polynomial of X and we find
that it has d1 . . . dR/(n + 1 − R)! for its leading coefficient. Hence deg(X) = d1 . . . dR ,
as claimed. ut

Our final result in this section shows that any complete intersection which is globally
defined over Q is cut out by integral forms.
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Lemma 3.3. LetX be a smooth complete intersection of codimensionR which is globally
defined over Q. Then there exist forms F1, . . . , FR , with coefficients in Z, such that the
annihilating ideal of X is generated by {F1, . . . , FR}.

Proof. Suppose thatX ⊂ Pn−1 is defined by a system of R equations (1.1). We claim that
there exist forms Gi ∈ Q[x1, . . . , xn] such that deg(Fi) = deg(Gi) for 1 ≤ i ≤ R, and
such that the annihilating ideal of X is generated by {G1, . . . ,GR}. This will establish
the lemma on rescaling the forms appropriately.

Let deg(Fi) = di for d1 ≤ · · · ≤ dR . The annihilating ideal of X is defined to
be Ann(X) := 〈F1, . . . , FR〉. We will argue by induction, the claim being obvious in
the case R = 1 of hypersurfaces. We suppose that we have found G1, . . . ,Gr such that
Ann(X) = 〈G1, . . . ,Gr , Fr+1, . . . , FR〉. SinceX is defined over Q and Fr+1 ∈ Ann(X),
we must have F σr+1 ∈ Ann(X) for every σ ∈ Gal(Q/Q). Thus

F σr+1 ∈ 〈G1, . . . ,Gr , Fr+1, . . . , FR〉

for any σ , whence

TrK/Q(cFr+1) ∈ 〈G1, . . . ,Gr , Fr+1, . . . , FR〉

for any c ∈ Q, where K is the field of definition of cFr+1. We choose c such that
TrK/Q(cFr+1) is nonzero and call it Gr+1, so that it has the correct degree. Thus there
exists forms Hi defined over Q and constants ei ∈ Q such that

Gr+1 = G1H1 + · · · +GrHr +
∑
i

eiFi, (3.2)

where the sum is only over those i for which r + 1 ≤ i ≤ R and di = dr+1. If there is
any choice of c for which one of the ei is nonzero, we can use (3.2) to swap Gr+1 for the
corresponding Fi in the basis 〈G1, . . . ,Gr , Fr+1, . . . , FR〉 of Ann(X), thereby complet-
ing the induction step. Alternatively, if we just have Gr+1 ∈ 〈G1, . . . ,Gr 〉, irrespective
of the choice of c, then Fr+1 ∈ 〈G1, . . . ,Gr 〉, which is impossible. ut

4. Exponential sums

In this section we consider a quite general situation, independent of the setup described
in Section 2. Let

f (x1, . . . , xn), g(x1, . . . , xn) ∈ R[x1, . . . , xn]

be polynomials, and let P ≥ 1 be given. Suppose that f has degree at most d, and
let F be the leading form of degree d. (We shall not rule out the possibility that F
vanishes identically.) We write F(x1, . . . , xd) for the d-linear polar form, and we set
F(x1, . . . , xd) = F (x1, . . . , xd−1).xd in analogy to (2.7). We then take F (i) to be the i-th
component of the row vector F (x1, . . . , xd−1).
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Suppose also that g takes the shape

g = q−1g1 + g2 with q ∈ N and g1 ∈ Z[x1, . . . , xn],

where g2 is a polynomial over R satisfying

∂ i1+···+in

∂ i1x1 . . . ∂ inxn
g2(x1, . . . , xn)�ii ,...,in ϕP

−i1−···−in (4.1)

for some parameter ϕ ≥ 1, uniformly on [−P, P ]n.
We give ourselves an n-dimensional box B ′ ⊆ [−P, P ]n with sides aligned to the

coordinate axes. We then proceed to consider the exponential sum

6 :=
∑
x∈B ′

e(f (x)+ g(x)),

in which f is the polynomial which mainly concerns us, and g is regarded as an inconve-
nient perturbation. Our estimate for 6 will be expressed in terms of the number L � 1
defined by

|6| = P nL.

We now proceed to establish the following bound.

Lemma 4.1. Let d ≥ 2 and K ≥ 1. Then

L2d−1
� P−(d−1)n(qϕK)(d−1)n(logP)nM,

where M counts (d − 1)-tuples (x1, . . . , xd−1) of integer vectors satisfying

|xi | <
P

qϕK
(1 ≤ i ≤ d − 1)

such that

‖qF (i)(x1, . . . , xd−1)‖ ≤
1

P(qϕ)d−2Kd−1 (1 ≤ i ≤ n).

Notice that M ≥ 1 since the (d − 1)-tuple (0, . . . , 0) is always counted. The conclusion
of the lemma is therefore trivial unless

qϕ ≤ P,

as we henceforth suppose.
We start our argument by using d − 2 standard Weyl differencing steps to get

L2d−2
� P−(d−1)n

∑
|x1|<P

· · ·

∑
|xd−2|<P

∣∣∣∑
x∈I

ψ(x)
∣∣∣ (4.2)

with
ψ(x) := e

(
1x1,...,xd−2(f + g)(x)

)
,
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and where I ⊆ [−P, P ]n is a box with sides parallel to the coordinate axes, depending on
x1, . . . , xd−2. Here 1x1,...,xd−2 is the usual forward-difference operator. Normally, since
f potentially has degree d , one would want to perform d − 1 Weyl differencing steps.
However, we will modify the final step in a way suggested by the van der Corput argument
and by its q-analogue. This will enable us to eliminate the effect of the polynomial g.

We now set

H :=

[
P

qϕ

]
, (4.3)

whence qH ≤ P/ϕ ≤ P . We then have∑
x∈I

ψ(x) =
∑
x∈Zn

ψ(x)χI (x)

where χI is the indicator function for I , and hence

H n
∑
x∈I

ψ(x) =
∑

1≤u≤H

∑
x∈Zn

ψ(x+ qu)χI (x+ qu)

=

∑
|x|≤2P

∑
1≤u≤H

ψ(x+ qu)χI (x+ qu),

where the notation 1 ≤ u ≤ H is short for 1 ≤ u1, . . . , un ≤ H . Here we have used the
fact that qH ≤ P in order to bound |x|. Cauchy’s inequality now yields

H 2n
∣∣∣∑

x∈I
ψ(x)

∣∣∣2 � P n
∑
|x|≤2P

∣∣∣ ∑
1≤u≤H

ψ(x+ qu)χI (x+ qu)
∣∣∣2

= P n
∑

1≤u,v≤H

∑
x∈Zn

ψ(x+ qv)χI (x+ qv)ψ(x+ qu)χI (x+ qu)

= P n
∑
|w|<H

n(w)
∑
y∈Zn

ψ(y+ qw)χI (y+ qw)ψ(y)χI (y),

where
n(w) := #{(u, v) ∈ Zn ∩ (0, H ]2n : w = v− u} ≤ H n.

We therefore deduce that∣∣∣∑
x∈I

ψ(x)
∣∣∣2 � P nH−n

∑
|w|<H

∣∣∣∑
y∈I ′

ψ(y+ qw)ψ(y)
∣∣∣� qnϕn

∑
|w|<H

∣∣∣∑
y∈I ′

ψ(y+ qw)ψ(y)
∣∣∣

with some new box I ′ ⊆ I ⊆ [−P, P ]n. On applying Cauchy’s inequality to (4.2) we
thus find that

L2d−1
� P−dnqnϕn

∑
|x1|<P

· · ·

∑
|xd−2|<P

∑
|w|<H

∣∣∣∑
y∈I ′

ψ(y+ qw)ψ(y)
∣∣∣. (4.4)

Referring to the definition of the function ψ we see that

ψ(y+ qw)ψ(y) = e
(
1x1,...,xd−2,qw(f + g)(y)

)
.



Forms in many variables 375

Since f is a polynomial of degree d with leading form F , we see that

1x1,...,xd−2,qw(f )(y)

is a linear polynomial in y with leading homogeneous part

F(x1, . . . , xd−2, qw, y) = qF(x1, . . . , xd−2,w, y),

where F(x1, . . . , xd) is the polar form for F , described above. Moreover

1x1,...,xd−2,qw(g1)(y)

will be an integral polynomial identically divisible by q, so that

e
(
1x1,...,xd−2,qw(q

−1g1)(y)
)
= 1

for every y ∈ Zn. Finally, we consider the exponential factor involving g2. Using (4.1),
for any nonnegative integer k each of the k-th order partial derivatives of

1x1,...,xd−2,qw(g2)(y)

will be

�k

(d−2∏
i=1

|xi |
)
q|w|ϕP−(d−1)−k

�k qHϕP
−1−k

�k P
−k

for y ∈ I ′, in view of our choice (4.3) of H . We may therefore remove the exponential
factor involving g2, using multi-dimensional partial summation, so as to produce∑

y∈I ′
ψ(y+ qw)ψ(y)�

∣∣∣∑
y∈I ′′

e(qF (x1, . . . , xd−2,w, y))
∣∣∣ (4.5)

for a further box I ′′. (To be precise, partial summation produces a bound involving sums
over various boxes, and we take I ′′ to be the box for which the sum is maximal.)

We proceed to sum over y to get∑
y∈I ′′

e(qF (x1, . . . , xd−2,w, y))� E

with

E :=

n∏
i=1

P

1+ P ‖qF (i)(x1, . . . , xd−2,w)‖
.

Combining the above estimate with (4.4) and (4.5) leads to the bound

L2d−1
� P−dnqnϕn

∑
|x1|<P

· · ·

∑
|xd−2|<P

∑
|w|<H

E.
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We now follow the strategy used by Davenport in his proof of [8, Lemma 3.2]. We
write, temporarily, {θ} := θ − [θ ] for any real θ , and define N(x1, . . . , xd−2; r) as the
number of integer vectors w for which |w| < H and

{qF (i)(x1, . . . , xd−2,w)} ∈ (ri/P, (1+ ri)/P ] for 1 ≤ i ≤ n.

We also write n(x1, . . . , xd−2) similarly for the number of integer vectors w for which
|w| < H and

‖qF (i)(x1, . . . , xd−2,w)‖ ≤ P−1 for 1 ≤ i ≤ n.

Now if w1,w2 are counted by N(x1, . . . , xd−2; r) then the vector w2 −w1 is counted by
n(x1, . . . , xd−2), whence N(x1, . . . , xd−2; r) ≤ n(x1, . . . , xd−2) for any r ∈ Rn. Thus

∑
|x1|<P

· · ·

∑
|xd−2|<P

∑
|w|<H

n∏
i=1

(
1+ P ‖qF (i)(x1, . . . , xd−2,w)‖

)−1

�

∑
r∈Zn
|r|≤P

n∏
i=1

(1+ |ri |)−1
∑
|x1|<P

· · ·

∑
|xd−2|<P

N(x1, . . . , xd−2; r)

�

∑
r∈Zn
|r|≤P

n∏
i=1

(1+ |ri |)−1
∑
|x1|<P

· · ·

∑
|xd−2|<P

n(x1, . . . , xd−2)

� (logP)n
∑
|x1|<P

· · ·

∑
|xd−2|<P

n(x1, . . . , xd−2).

We therefore conclude that

L2d−1
� P−(d−1)nqnϕn(logP)nN , (4.6)

where N counts (d − 1)-tuples of integer vectors (x1, . . . , xd−2,w) satisfying

|xi | < P (1 ≤ i ≤ d − 2) and |w| < H,

such that
‖qF (i)(x1, . . . , xd−2,w)‖ ≤ P−1 for 1 ≤ i ≤ n.

To estimate N we apply the following result, which is Lemma 3.3 of Davenport [8].

Lemma 4.2. Let L ∈ Mn(R) be a real symmetric n× n matrix. Let a > 1 and let

N(Z) := #{u ∈ Zn : |u| < aZ, ‖(Lu)i‖ < a−1Z ∀i ≤ n}.

Then, if 0 < Z1 ≤ Z2 ≤ 1, we have

N(Z2)� (Z2/Z1)
nN(Z1).
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We proceed to choose a parameter K ≥ 1, as in Lemma 4.1. It follows in particular that
qϕK ≥ 1, since q and ϕ are at least 1. We then apply Lemma 4.2 to each of the vectors
x1, . . . , xd−2 in succession. At the i-th step we use

a = P(qϕK)(i−1)/2, Z1 = (qϕK)
−(i+1)/2, Z2 = (qϕK)

−(i−1)/2.

Finally, we apply Lemma 4.2 to w with

a = (HP )1/2(qϕK)(d−2)/2,

Z1 = K
−1H 1/2P−1/2(qϕK)−(d−2)/2, Z2 = H

1/2P−1/2(qϕK)−(d−2)/2.

One readily verifies that these choices satisfy the conditions for the lemma, and concludes
that

N � (qϕ)(d−2)nK(d−1)nM,

where M is as in the statement of Lemma 4.1. The required estimate then follows on
inserting this into (4.6).

5. The degree D case

We now return to the situation in Section 2. Suppose that we have a parameter αi,d ∈ R
corresponding to each form Fi,d for 1 ≤ i ≤ rd and each 1 ≤ d ≤ D. Recall that a box
B ⊆ [−1, 1]n, a modulus M ∈ N and an integer vector m0 are given, and are fixed once
for all.

We apply the work of the previous section with

f (x) :=
D∑
j=1

rj∑
i=1

αi,jFi,j (Mx+m0) and g(x) := 0.

If we take B′ := {x : Mx +m0 ∈ PB} then B ′ ⊆ [−P, P ]n for large enough P (since
m0 = 0 for M = 1). We may set q = 1 and ϕ = 1 in the notation of Section 4. Moreover
the leading form of f has degree D and is given by

F(x) := MD
ρ∑
i=1

αi,DFi,D(x), (5.1)

where we have written rD = ρ for brevity. Our problem now corresponds closely to that
encountered by Birch [4], and we shall follow his line of attack. The outcome will be that
either the exponential sum is small, or the coefficients αi,D are all close to rationals with
a small denominator. This denominator will be denoted by q, and is not to be confused
with the number q = 1 above, which is related to the polynomial g(x) = 0.

The analysis of the previous section shows that we have a bound of the shape in
Lemma 4.1, in which the parameter K is at our disposal. We will take K := max{1,K1}

with

K1 := P

(
L2D−1

(logP)n+1

)1/(n−BD)

,
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where BD is given by (1.4). The reader should observe that it is perfectly permissible to
use a value for K which depends on L. We now examine M, considering three different
cases. The first of these is that in which K1 ≤ 1, so that

L2D−1
≤ PBD−n(logP)n+1.

This is satisfactory for our purposes (see Lemma 5.2). We will therefore assume hence-
forth that K = K1 > 1.

The second case is that in which all the (D − 1)-tuples counted by M correspond
to elements of the set ŜD given by (2.8). In this situation we will apply the following
estimate.

Lemma 5.1. Let d ≤ D, let P ≥ 1 and let M0(P ) be the number of (d − 1)-tuples of
vectors (x1, . . . , xd−1) ∈ Ŝd(Z) having max |xi | ≤ P . Then

M0(P )� PBd+n(d−2).

Proof. Since Sd is the intersection of Ŝd with the diagonal Diag :={(x, . . . , x)∈(An)d−1
},

we see that

dim(Ŝd) ≤ Bd + codim(Diag) = Bd + n(d − 2).

We now apply Lemma 3.1 of Birch [4] to conclude the proof. ut

Now, with the above notation, one has

M ≤M0(P/K)� (P/K)BD+n(D−2).

In this case Lemma 4.1 yields

L2D−1
� (K/P )n−BD (logP)n,

Since K = K1 we deduce that

L2D−1
� L2D−1

(logP)−1.

Thus this second case cannot occur if P is sufficiently large.
This takes us to the third case, in whichK = K1 > 1 and there is some (D− 1)-tuple

counted by M for which

rank(ĴD(x1, . . . , xD−1)) = rD = ρ.

Suppose the matrix corresponding to columns j1, . . . , jρ has nonzero determinant. Call-
ing the matrix W , we have

Wik = F
(jk)
i,D (x1, . . . , xD−1) (1 ≤ i, k ≤ ρ),
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where F (jk)i,D (x1, . . . , xD−1) is the jk-th component of the row vector Fi,D(x1, . . . , xD−1).
But then (5.1) yields

F (jk)(x1, . . . , xD−1) = M
D

ρ∑
i=1

αi,DF
(jk)
i,D (x1, . . . , xD−1) = M

D
ρ∑
j=1

αi,DWik.

We record for future reference the fact that

H(W)� (max |xh|)D−1
� (P/K1)

D−1, (5.2)

where we use H(W) to denote the maximum of |Wjk|.
Since (x1, . . . , xD−1) is counted by M it follows that∥∥∥MD

ρ∑
i=1

αi,DWik

∥∥∥ ≤ 1

PKD−1
1

(1 ≤ k ≤ ρ).

We therefore write

MD
ρ∑
i=1

αi,DWik = nk + ξk (5.3)

for k = 1, . . . , ρ with nk ∈ Z and

|ξk| ≤
1

PKD−1
1

.

We proceed to abbreviate the system (5.3) by writing

MDWα = n+ ξ,

and then multiply by the adjoint, W ′ say, of W to see that

MD det(W)α = W ′n+W ′ξ .

However, W ′ is an integer matrix, with

H(W ′)� H(W)ρ−1
� (P/K1)

(D−1)(ρ−1),

by (5.2). It follows that

‖MD det(W)αi,D‖ �
(
P

K1

)(D−1)(ρ−1) 1

PKD−1
1

for i = 1, . . . , ρ. If we now write q = MD
|det(W)| � H(W)ρ , then q will be a positive

integer, since we choseW to have nonzero determinant. Moreover for large enough P we
will have q ≤ Q, where

Q := (P/K1)
(D−1)ρ logP and ‖qαi,D‖ ≤ QP

−D.

We may now summarize all these conclusions as follows.
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Lemma 5.2. Let |S(α)| = P nL and write ρ = rD . Then if P is large enough, either

L2D−1
≤ PBD−n(logP)n+1, (5.4)

or there is a q ≤ Q with

Q ≤ ((logP)n+1L−2D−1
)(D−1)ρ/(n−BD) logP

such that

‖qαi,D‖ ≤ QP
−D (1 ≤ i ≤ ρ).

We now ask what one can say about the minor arc integral using Lemma 5.2. For any
L0 > 0 we write A(L0) for the set of R-tuples of values αi,d with d ≤ D, i ≤ rd such
that L0 < L ≤ 2L0. Then if L0 is such that (5.4) holds, the contribution to the minor arc
integral will be

� P n+ε−(n−BD)/2
D−1
,

for any fixed ε > 0. This is satisfactory if (n − BD)/2D−1 > D, or in other words, if
n > BD + 2D−1D.

In the alternative case we see that there is an integer q ≤ Q such that every αi,D , for
1 ≤ i ≤ ρ, has an approximation

αi,D = ai,D/q +O(QP
−Dq−1)

with ai,D ∈ Z and 0 ≤ ai,D ≤ q. Hence

meas(A(L0))�
∑
q≤Q

qρ(QP−Dq−1)ρ � Q1+ρP−Dρ

� L
−2D−1(D−1)ρ(1+ρ)/(n−BD)
0 P ε−Dρ .

The corresponding contribution to the minor arc integral will therefore be

� L
1−2D−1(D−1)ρ(1+ρ)/(n−BD)
0 P n+ε−Dρ .

Hence, for example, if our system has forms of degreeD only, then D = Dρ and we have
a satisfactory bound when

n > BD + ρ(ρ + 1)2D−1(D − 1),

providing that L−1
0 exceeds some small fixed power of P . This corresponds precisely to

the condition on n in (1.2).
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6. Exponential sums—the iterative argument

In the previous section we showed that either S(α) (or equivalently L) is small, as ex-
pressed by (5.4), or the coefficients αi,D all have good rational approximations with the
same small denominator q. In this section we iterate this idea, assuming that we have
good approximations for αi,j for d < j ≤ D and 1 ≤ i ≤ rj , and deducing either that L
is small, or that the values αi,d also have good rational approximations for 1 ≤ i ≤ rd .

Thus we suppose we have a degree d < D in 1, and we suppose that there is a
positive integer q ≤ Q such that

‖qαi,j‖ ≤ QP
−j for d < j ≤ D and 1 ≤ i ≤ rj .

We then define

f (x) :=
d∑
j=1

rj∑
i=1

αi,jFi,j (Mx+m0), g(x) :=
D∑

j=d+1

rj∑
i=1

αi,jFi,j (Mx+m0),

and we write rd =: ρ for brevity. Then the polynomial f has degree at most d and the
leading form of degree d is now

F(x) := Md
ρ∑
i=1

αi,dFi,d(x).

We also write

αi,j := ai,j/q + θi,j for d < j ≤ D and 1 ≤ i ≤ rj ,

so that
|θi,j | ≤ QP

−jq−1.

To complete the setup we define

g1(x) :=
D∑

j=d+1

rj∑
i=1

ai,jFi,j (Mx+m0), g2(x) :=
D∑

j=d+1

rj∑
i=1

θi,jFi,j (Mx+m0).

Then g = q−1g1 + g2 is in the required shape to apply the work of Section 4, and in
particular we see that (4.1) holds with ϕ = Q/q.

We now proceed exactly as in the previous section, taking K := max{1,K1} with

K1 := PQ
−1
(

L2d−1

(logP)n+1

)1/(n−Bd )

.

Then, if K1 ≤ 1 as in the first case of the argument, we will have

L2d−1
≤ (P/Q)Bd−n(logP)n+1,
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which will be satisfactory. The second case will be that in which all the (d − 1)-tuples
counted by M correspond to elements of the set Ŝd . Since qϕ = Q we then have

M ≤M0(P/QK)�

(
P

QK

)Bd+n(d−2)

by Lemma 5.1, after which Lemma 4.1 yields

L2d−1
� (QK/P )n−Bd (logP)n.

Since K = K1 we deduce that

L2d−1
� L2d−1

(logP)−1,

and as before we conclude that this second case cannot occur if P is sufficiently large.
The third case is that in which some (d − 1)-tuple counted by M has

rank(Ĵd(x1, . . . , xd−1)) = rd = ρ.

Here the argument again follows that in the previous section, but now

H(W)� (max |xh|)d−1
�

(
P

QK1

)d−1

and ∥∥∥qMd
ρ∑
i=1

αi,dWik

∥∥∥ ≤ 1

PQd−2Kd−1
1

(1 ≤ k ≤ ρ).

This time we write

qMd
ρ∑
i=1

αi,dWik = nk + ξk

with nk ∈ Z and

|ξk| ≤
1

PQd−2Kd−1
1

.

We will then have

H(W ′)� H(W)ρ−1
�

(
P

QK1

)(d−1)(ρ−1)

,

whence

‖qMd det(W)αi,d‖ �
(

P

QK1

)(d−1)(ρ−1) 1

PQd−2Kd−1
1

for i = 1, . . . , ρ. We therefore set q∗ := Md
|det(W)| � H(W)ρ , so that q∗ ≤ Q∗ with

Q∗ :=

(
P

QK1

)(d−1)ρ

logP and ‖qq∗αi,d‖ ≤ QQ
∗P−d .

We may now summarize all these conclusions as follows.
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Lemma 6.1. Let |S(α)| = P nL. Suppose that d ∈ 1 and

‖qαi,j‖ ≤ QP
−j for d < j ≤ D and 1 ≤ i ≤ rj

with q ≤ Q. Then if P is large enough, either

L2d−1
≤ (Q/P )n−Bd (logP)n+1,

or there is a q∗ ≤ Q∗ with

Q∗ := ((logP)n+1L−2d−1
)(d−1)rd/(n−Bd ) logP

such that
‖qq∗αi,d‖ ≤ QQ

∗P−d (1 ≤ i ≤ rd).

We may of course interpret Lemma 5.2 as a special case of Lemma 6.1, corresponding to
d = D and Q = 1.

Our plan is to use Lemma 5.2 followed by repeated applications of Lemma 6.1 for the
successively smaller values of d ∈ 1. Thus in Lemma 5.2 either

L2D−1
≤ PBD−n(logP)n+1,

or there is a qD ≤ QD with

QD := ((logP)n+1L−2D−1
)(D−1)rD/(n−BD) logP

such that
‖qDαi,D‖ ≤ QDP

−D (1 ≤ i ≤ rD).

If the second case holds we may then apply Lemma 6.1 for degree

D′ := max{d ∈ 1 : d < D}.

We then deduce that either

L2D
′
−1
≤ (QD/P )

n−BD′ (logP)n+1,

or there is a qD′ = qDq∗ ≤ QD′ = QDQ
∗ with

Q∗ := ((logP)n+1L−2D
′
−1
)(D
′
−1)rD′/(n−BD′ ) logP

such that
‖qD′αi,D′‖ ≤ QD′P

−D′ (1 ≤ i ≤ rD′).

Continuing in this manner we produce a succession of values Qd for decreasing values
of d in 1, taking the form

Qd := (logP)e(d)L−sd (d ∈ 1), (6.1)

where e(d) is some easily computed but unimportant exponent, and sd is given by (1.6).
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When 1 ≤ j ≤ D but j 6∈ 1 it will be convenient to set Qj = Qk , where k is the
smallest integer in 1 with k > j . We will also define QD+1 = 1. In view of (1.6) we
have sj = sk so that (6.1) extends to give

Qd = (logP)e(d)L−sd (1 ≤ d ≤ D) (6.2)

for appropriate exponents e(d). Now, for a general exponent j ∈ 1, as we iterate we will
either obtain a bound

L2j−1
≤ (Qj+1/P )

n−Bj (logP)n+1 (j ∈ 1), (6.3)

or find a positive integer qj satisfying

qk | qj (k > j, k ∈ 1), (6.4)
qj ≤ Qj , (6.5)

‖qjαi,j‖ ≤ QjP
−j (1 ≤ i ≤ rj ). (6.6)

When 1 ≤ j ≤ D but j 6∈ 1 it will also be convenient to set qj = qk , where k is
the smallest integer in 1 with k > j . With this convention we then have qj ≤ Qj and
qj | qj+1 in general.

We can now partition the R-tuples α into sets I (1)d (for d ∈ 1) and I (2), as follows.
The set I (1)d consists of those α for which (6.3) fails for j > d , but holds for j = d . The
set I (2) then consists of the remaining R-tuples α, for which (6.3) fails for all j ∈ 1.

It follows from (6.1) that if (6.3) holds one has

L2j−1
+(n−Bj )sj+1 � PBj−n+ε

for any fixed ε > 0. We therefore draw the following conclusion.

Lemma 6.2. Let d ∈ 1 and α ∈ I
(1)
d . Then

L2d−1
+(n−Bd )sd+1 � PBd−n+ε. (6.7)

Moreover there are positive integers qj such that the conditions (6.4)–(6.6) hold for all
relevant values of j > d.

Similarly, if α ∈ I (2) then there are positive integers qj such that the conditions (6.4)–
(6.6) hold for all values of j ∈ 1.

We conclude this section by remarking that it may be possible to improve on the above
estimates in certain cases. The numbers qd are built up from a sequence of factors. This
would allow one to replace the argument in Section 4 by one in which there were several
van der Corput steps, using various factors of qd . In our present treatment, when one uses
Lemma 4.2, the ratio Z2/Z1 is qϕK for the first d − 2 steps, and K for the final step. In
the proposed variant these values become more equal, which should be to our advantage.
However, this can only be of use when 1 contains at least three values d ≥ 3, since the
number q in our argument would need to have at least two factors, and so the number
d − 1 of squaring steps would have to be at least two.
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7. The minor arc contribution

As in Section 5, for any L0 > 0 we write A(L0) for the set of R-tuples of values αi,d with
d ≤ D, i ≤ rd such that L0 < L ≤ 2L0. We also write A(L0; I

(1)
d ) := I

(1)
d ∩A(L0)∩m,

and similarly for A(L0; I
(2)). In order to establish the required minor arc estimate (2.2)

we begin by examining

T (I
(1)
d ) :=

∫
A(L0;I

(1)
d )

|S(α)| dα

for d ∈ 1.
When d = D we have

L2D−1
≤ PBD−n+ε,

by (6.7). Since meas(A(L0; I
(1)
D )) ≤ 1 and |S(α)| = P nL it follows that

T (I
(1)
D )� P nL0 � P n−(n−BD)/2

D−1
+ε.

Thus we will have a satisfactory estimate T (I (1)D )� P n−D−δ , for some δ > 0, provided
that

D
2D−1

n− BD
< 1. (7.1)

We now consider the general case, in which α ∈ I
(1)
d for some d < D in 1. Thus

(6.7) holds, so that

L
2d−1/(n−Bd )+sd+1
0 � P−1+ε. (7.2)

When d = D we estimated meas(A(L0; I
(1)
D )) trivially, but when d < D we have useful

information on the numbers αi,j for j > d, since we know that (6.6) applies for these.
Thus there are positive integers qD, qD−1, . . . , qd+1 depending on α and satisfying (6.4)
and (6.5), such that

αi,j = ai,j/qj +O(q
−1
j QjP

−j ) (d < j ≤ D, 1 ≤ i ≤ rj )

with 0 ≤ ai,j ≤ qj . Thus, given qj , each αi,j takes values in a set of measureO(QjP−j ),
and the rj -tuple (α1,j , . . . , αrj ,j ) has values in a set of measure O((QjP−j )rj ). At this
point we recall our convention concerning the values of qj andQj when j 6∈ 1. With this
in mind we see that qd+1 determines O(P ε) possibilities for qd+2, . . . , qD , by (6.4), and
we conclude that

meas(A(L0; I
(1)
d ))� P εQd+1

D∏
j=d+1

(QjP
−j )rj .

Hence, using (6.2), we obtain

meas(A(L0; I
(1)
d ))� P ε−(d+1)rd+1−···−DrDL

−(sd+1+sd+1rd+1+···+sDrD)
0 .
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Recalling the notation (1.5) for Dj and that |S(α)| = P nL, it now follows that

T (I
(1)
d )� P n−D+Dd+εL

1−(sd+1+sd+1rd+1+···+sDrD)
0

with L0 subject to (7.2). Thus we will have a satisfactory estimate T (I (1)d ) � P n−D−δ

for some δ > 0 provided that

Dd
(

2d−1

n− Bd
+ sd+1

)
+ sd+1 +

D∑
j=d+1

sj rj < 1. (7.3)

It is clear now that the corresponding condition (7.1) for d = D is just a special case of
this.

For the integral

T (I (2)) :=

∫
A(L0;I (2))

|S(α)| dα

we will provide an estimate for L by using the fact that our R-tuple α belongs to m. It
follows from (6.4)–(6.6) that

‖q1αi,d‖ ≤ q1q
−1
d QdP

−d
≤ Q1QdP

−d

for 1 ≤ d ≤ D and i ≤ rd . If we write smax = max sd and emax = max e(d), then (6.2)
yields

‖q1αi,d‖ ≤ L
−2smaxP−d(logP)2emax with q1 ≤ Q1 ≤ L

−smax(logP)emax .

Let $ be as in Section 2. Then if P is large enough one would have

‖q1αi,d‖ ≤ P
−d+$ (1 ≤ d ≤ D, i ≤ rd) with q1 ≤ P

$

so long as
L ≥ P−$/4smax .

However, this would place α in the major arcs, in view of the definition (2.6). We therefore
conclude that

L0 � P−$/4smax (7.4)

for α ∈ I (2).
We can now use (6.4)–(6.6) as before to show that

meas(A(L0; I
(2)))� P εQ1

D∏
j=1

(QjP
−j )rj � P ε−r1−2r2−···−DrDL

−(s1+s1r1+···+sDrD)
0 .

It follows that
T (I (2))� P n−D+εL1−(s1+s1r1+···+sDrD)

0 .
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In view of (7.4) we obtain a satisfactory bound T (I (2)) � P n−D−δ , for some δ > 0,
under the constraint

s1 +

D∑
j=1

sj rj < 1.

The reader should notice that this condition is the case d = 0 of (7.3), since we have
defined D0 = 0 in connection with (1.5).

We therefore see that we have a satisfactory minor arc estimate provided that (7.3)
holds for all d ∈ 1 ∪ {0}, as required for Theorem 1.2.

8. The major arc contribution

We now turn to the major arc analysis, with the goal of establishing (2.1) under suitable
hypotheses on M and the forms (Fi,d). Let us define

S(a, q) :=
∑

x (mod q)

eq

( D∑
d=1

rd∑
i=1

ai,dFi,d(Mx+m0)
)

for a = (ai,d) ∈ (Z/qZ)R with gcd(q, a) = 1. Next, define the truncated singular series

S(H) :=
∑
q≤H

1
qn

∑
a (mod q)

gcd(q,a)=1

S(a, q)

for anyH > 0. We set S = limH→∞S(H) whenever this limit exists. We will also need
to study the integral

I(H) :=
1
Mn

∫
[−H,H ]R

∫
B
e
( D∑
d=1

rd∑
i=1

γi,dFi,d(x)
)
dx dγ (8.1)

for any H > 0, where γ = (γi,d). Recalling (2.3), we have σ∞ = limH→∞ I(H)
whenever the limit exists. The main aim of this section is to establish the following result.

Lemma 8.1. Assume that

s1 +

D∑
j=1

sj rj < 1. (8.2)

Then the singular series S and the singular integral I are absolutely convergent. More-
over, if we choose

$ =
1

2R + 4
(8.3)

then there is a positive constant δ such that∫
M
S(α) dα = SIP n−D +O(P n−D−δ).
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The condition in the lemma is the case d = 0 of the condition in Theorem 1.2. Once
the lemma is established we will have S =

∏
p σp by the argument of Davenport [9,

Chapter 17], for example. We leave the details to the reader. Theorem 1.2 then follows.
Recall the definition of the major arcs M from Section 2, defined in terms of the

parameter $ ∈ (0, 1/3). Any α ∈Mq,a can be written

αi,d = ai,d/q + θi,d

for 1 ≤ i ≤ rd and d ∈ 1. Our first step in the analysis of S(α) on M is an analogue
of [4, Lemma 5.1]. The argument is well-known and we leave the details to the reader. It
leads to the conclusion that

S(α)− (qM)−nP nS(a, q)J (γ )� q
∑

1≤d≤D

∑
1≤i≤rd

|θi,d |P
n+d−1

+ qP n−1, (8.4)

where J (γ ) is given by (2.4), and γ is the vector whose i, d entry is θi,dP d . But then

S(α) = (qM)−nP nS(a, q)J (γ )+O(P n−1+2$ )

for any α ∈M. The major arcs are easily seen to have measureO(P−D+(2R+1)$ ). Hence∫
M
S(α) dα = P n−DS(P$ )I(P$ )+O(P n−D−1+(2R+1)$+2$ ).

This error term is satisfactory for Lemma 8.1 if $ is taken as in (8.3).
In order to complete the proof of the lemma, it remains to show that S and I are

absolutely convergent when (8.2) holds, and that there is a positive constant δ such that

S−S(H)� H−δ (8.5)

and

I− I(H)� H−δ, (8.6)

for any H > 0.
Beginning with the singular series, we proceed to use (8.4) and our Weyl estimate

Lemma 6.2 to estimate the complete exponential sum S(a, q), as follows.

Lemma 8.2. Let ε > 0 be given. Then

S(a, q)� qn+ε min
j∈1

(
gcd(q, a(j), . . . , a(D))

q

)1/sj
,

where a(j) = (a1,j , . . . , arj ,j ) for any j ∈ 1.
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Proof. Noting that J (0)� 1, we may take (θi,d) = 0 in (8.4) to conclude that

S(a, q)�
qn|S(α)|

P n
+
qn+1

P
with α := a−1a.

In what follows we will take P = qA for some large value of A to be specified during the
course of the proof. Assuming that A > n + 1, in the first instance, it follows from the
previous bound that

S(a, q)� 1+ qnL, (8.7)

where L is defined via |S(α)| = P nL. We now apply Lemma 6.2.
If there exists d ∈ 1 such that α ∈ I

(1)
d then L satisfies (6.7). Once combined with

(8.7), this gives

S(a, q)� 1+
qnP ε

P (n−Bd )/(2
d−1+(n−Bd )sd+1)

.

This is O(1) provided A satisfies A(n− Bd) > (2d−1
+ (n− Bd)sd+1)n.

Suppose next that α ∈ I (2). Then Lemma 6.2 produces a sequence of positive inte-
gers qj , for j ∈ 1, which satisfy the conditions (6.4)–(6.6). For each j ∈ 1 and i ≤ rj
we may choose bi,j ∈ Z and zi,j ∈ R such that

qjai,j/q = bi,j + zi,j

with |zi,j | ≤ QjP−j . If there is a choice of i, j for which qjai,j 6= qbi,j , then we would
be able to conclude that

1
qqj
≤
|zi,j |

qj
≤
QjP

−j

qj
�
L−sjP−j+ε

qj
,

by (6.2). But then Lsj � qP−j+ε, which once substituted into (8.7), would show that
S(a, q)� 1 provided A satisfies jA− 1 > nsj .

We may therefore proceed under the assumption that qjai,j = qbi,j for every j ∈ 1
and every i ≤ rj , or in other words, that qja(j) = qb(j). This implies that

q | gcd(qqj , qb(j)) = gcd(qqj , qja(j)) = qj gcd(q, a(j)).

Moreover, in view of (6.4), we have gcd(q, a(j)) | gcd(q, a(k)) when k > j and k ∈ 1.
Thus

q | qj gcd(q, a(j), . . . , a(D))

for every j ∈ 1. Applying (6.5) and (6.2) we are therefore led to the conclusion that

q

gcd(q, a(j), . . . , a(D))
≤ qj ≤ Qj = (logP)e(j)L−sj

for every j ∈ 1. Since (logP)e(j)/sj � qε, this produces an upper bound for L which
we substitute into (8.7) to arrive at the statement of the lemma. ut
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Using this result we may now handle the singular series. Let

A(q) :=
∑

a (mod q)
gcd(q,a)=1

|S(a, q)|.

Set dj = gcd(q, a(j), . . . , a(D)) for each j ∈ 1. Suppose that j0 is the least index j ∈ 1.
Then dj0 = 1 since gcd(q, a) = 1. Moreover, we have dj | q for every j ∈ 1. The
number of a(j) (mod q) associated to a given dj is (q/dj )rj . Moreover the total number
of d1, . . . , dD associated to a given q is at most τ(q)D = O(qε). Next we note that

min
j∈1

(
dj

q

)1/sj
≤

∏
j∈1

(
dj

q

)λj /sj
for any real numbers λj ≥ 0 such that

∑
j∈1 λj = 1. We will apply this with

λj :=

{
θ + rj0sj0 if j = j0,
rj sj if j ∈ 1 \ {j0},

(8.8)

where θ := 1 − (s1r1 + · · · + sDrD). In view of our assumption (8.2), such a choice is
possible with θ ∈ (0, 1). It therefore follows from Lemma 8.2 that

A(q)� qn+ε/2
∑

d1,...,dD | q

(
1
q

)θ/sj0 ∏
j∈1

(
q

dj

)rj
·

(
dj

q

)rj
� qn−θ/sj0+ε.

Assuming that θ/sj0 > 1, which is evidently implied by (8.2), this shows that the singular
series is absolutely convergent and that (8.5) holds for an appropriate δ > 0.

We now turn to the exponential integral J (γ ) in (2.4) for general values of γ .

Lemma 8.3. We have J (γ )� 1 for any γ . Moreover, for given ε > 0, we have

J (γ )� |γ |ε min
j∈1
|γ (j)|−1/sj ,

where γ (j) = (γ1,j , . . . , γrj ,j ).

Proof. The estimate J (γ )� 1 is trivial. We proceed to establish the bound

J (γ )� |γ (j)|−1/sj |γ |ε

for any j ∈ 1. In doing so we may assume that |γ (j)| > 1, since otherwise it follows
from the trivial bound.

Our proof is analogous to the proof of Lemma 8.2. The starting point is (8.4), which
we apply with α = (P−dγi,d), a = 0 and q = 1. This gives

|J (γ )| ≤ P−n|S(α)| +O(|γ |P−1) = L+O(|γ |P−1). (8.9)

We take P = |γ |A for some large value ofA to be specified during the course of the proof.
Our key ingredient is Lemma 6.2. The case in which α ∈ I

(1)
d for some d ∈ 1 is easily

dispatched on takingA to satisfyA−1 > 1/sj andA(n−Bd) > (2d−1
+(n−Bd)sd+1)/sj .
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It remains to consider the possibility that α ∈ I (2). Then Lemma 6.2 produces a
positive integer qj which satisfies the conditions (6.5) and (6.6). For each i ≤ rj we may
choose bi,j ∈ Z and zi,j ∈ R such that

qjαi,j = bi,j + zi,j (8.10)

with gcd(qj ,b(j)) = 1 and |zi,j | ≤ QjP
−j . If there is a choice of i ≤ rj for which

bi,j 6= 0, then we would be able to conclude that

1 ≤ |bi,j | ≤ qj |αi,j | + |zi,j | ≤ qjP−j |γi,j | +QjP−j ,

whence

1 ≤ QjP−j |γi,j | +QjP−j � QjP
−j
|γ (j)| � L−sjP−j+ε|γ (j)|.

This provides an upper bound for L, which once substituted into (8.9), produces a satis-
factory estimate for J (γ ) provided that A is chosen to satisfy A−1 > 1/sj and A > 2/j .

We proceed under the assumption that bi,j = 0 in (8.10) for every i ≤ rj . But then
qj = 1 and it follows that

P−j |γi,j | = |αi,j | = |zi,j | ≤ QjP
−j
= (logP)e(j)L−sjP−j

for every i ≤ rj . Hence L � |γ (j)|−1/sj (logP)e(j)/sj . Substituting this into (8.9), we
easily conclude the proof of the lemma. ut

We now have everything in place to show that the singular integral converges. Recalling
(8.1) and appealing to Lemma 8.3, we find that

|I− I(H)| ≤

∫
|γ |>H

|J (γ )| dγ �

∫
|γ |>H

|γ |ε/2 min
j∈1
|γ (j)|−1/sj dγ .

LetN := #1 and let t ∈ RN>0. For given j ∈ 1, the set of γ (j) ∈ Rrj satisfying |γ (j)| = tj
has (rj − 1)-dimensional measure O(t

rj−1
j ). Hence

|I− I(H)| �

∫
t∈RN

>0
|t|>H

|t|ε/2 min
j∈1
{t
−1/sj
j }

(∏
j∈1

t
rj−1
j

)
dt

≤

∫
t∈RN

>0
|t|>H

|t|ε min
j∈1
{t
−1/sj
j }

(∏
j∈1

t
rj−1−ε/(2N)
j

)
dt.

We will consider the contribution to the right hand side from t for which |t| = tj0 for
some j0 ∈ 1. If H ≥ 1 we have

min
j∈1
{t
−1/sj
j } � min

j∈1
{(1+ tj )−1/sj } ≤

∏
j∈1

(1+ tj )−λj /sj ,

with λj given by (8.8). This therefore leads to the overall contribution

�

∫
t∈RN

>0
|t|=tj0>H

t
ε−θ/sj0
j0∏

j∈1(1+ tj )1+ε/(2N)
dt�

∫
∞

H

t
ε−θ/sj0−1
j0

dtj0 .
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This establishes (8.6) for a suitable δ > 0, as required, provided only that θ > 0. Recalling
that θ = 1 − (s1r1 + · · · + sDrD), this condition is ensured by (8.2), which thereby
completes the proof of Lemma 8.1.

9. Proof of Theorem 1.6

We begin by disposing of the case in which D is the only degree present, so that rD = R
and D = RD. In this situation

n0 = R(R + 1)(D − 1)2D−1

as in Birch’s result [4]. Thus Theorem 1.6 is trivial in the case D = 1, and for D ≥ 2 we
have to show that n0 +R − 1 ≤ R2D22D−1 and n0 +R − 1 ≤ (RD − 1)2RD . However,

R(R + 1)(D − 1)2D−1
+ R − 1 ≤ {R(R + 1)(D − 1)+ R}2D−1

≤ (2R2(D − 1)+ R2)2D−1
≤ R2D22D−1

since 2D − 1 ≤ D2. The first estimate then follows. For the second, we observe that

R(R + 1)(D − 1)2D−1
+ R − 1 ≤ {R(R + 1)(D − 1)+ R − 1}2D−1

≤ {R(R + 1)+ R − 1}(RD − 1)2D−1,

since we are now supposing that D ≥ 2. However, R(R + 1) + R − 1 ≤ 22R−1 for any
R ≥ 1 and 2D−1+2R−1

≤ 2RD for D ≥ 2. This establishes the second estimate.
We may assume henceforth that not all the forms have the same degree, whenceR ≥ 2

and D ≥ 2. We also note that D+R− 1 ≤ D ≤ DR− 1. We now proceed to dispose of
the case in which n0 = n0(D). We have n0(D) = D2D−1, so that we need to show that

D2D−1
+ R − 1 ≤ D22D−1 and D2D−1

+ R − 1 ≤ (D − 1)2D.

We begin by observing that

D2D−1
+ R − 1 ≤ (D + R − 1)2D−1

≤ 2D2D−1.

The first bound then follows since 2D ≤ D2. Moreover 2D ≤ 4(D− 1) and D + 1 ≤ D,
whence

2D2D−1
≤ (D − 1)2D+1

≤ (D − 1)2D,

as required for the second bound.
For the rest of our argument we examine n0(d) for d < D, and we shall assume that

#1 ≥ 2. This allows us to set E := max{d ∈ 1 : d < D}. We begin by observing that

td =

D∑
k=d

2k−1(k − 1)rk ≤ 2D−1
D∑
k=1

(k − 1)rk = 2D−1(D − R)
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for every d ≥ 1, whence

td+1 +

D∑
j=d+1

tj rj ≤ 2D−1(D − R){1+
D∑
j=1

rj } = 2D−1(D − R)(1+ R).

We also have
Dd ≤ D −D ≤ D − 2 and Dd ≤ E(R − 1)

for 0 ≤ d ≤ D − 1. Thus

n0(d) ≤ 2D−1
{(D − 2)(D − R + 1)+ (D − R)(1+ R)}

and
n0(d) ≤ 2D−1

{E(R − 1)(D − R + 1)+ (D − R)(1+ R)},
for 0 ≤ d ≤ D − 1.

It will therefore suffice to show that

2D−1
{(D − 2)(D − R + 1)+ (D − R)(1+ R)} + R − 1 ≤ D22D−1

and

2D−1
{E(R − 1)(D − R + 1)+ (D − R)(1+ R)} + R − 1 ≤ (D − 1)2D.

For the first inequality we note that the left hand side is at most

2D−1
{(D − 2)(D − R + 1)+ (D − R)(1+ R)+ R − 1}

= 2D−1
{D2
− R2

+ 2R − 3} ≤ 2D−1D2.

For the second inequality one sees that the left hand side is at most

2D−1
{E(R − 1)(D − R + 1)+ (D − R)(1+ R)+ R},

and

E(R − 1)(D − R + 1)+ (D − R)(1+ R)+ R
≤ E(R − 1)(D − 1)+ (D − 1)(R + 1)
= {ER − E + R + 1}(D − 1) ≤ 2RE(D − 1).

To complete the argument we observe that R ≤ 2R−1 and E ≤ 2E−1. Moreover, since
D + R + E − 2 ≤ D, we also have 2D−1+R−1+E−1

≤ 2D−1.
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