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Abstract. Let X,Y ⊂ R2 be topologically equivalent bounded Lipschitz domains. We prove that
weak and strong limits of homeomorphisms h : X onto

−−→ Y in the Sobolev space W 1,p(X,R2),
p ≥ 2, are the same. As an application, we establish the existence of 2D-traction free minimal
deformations for fairly general energy integrals.
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1. Introduction

Throughout this text, X and Y are bounded Lipschitz domains in R2
' C of the same

topological type, and H (X,Y) denotes the set of all orientation preserving homeo-
morphisms h : X onto

−−→ Y. Our interest is in the subspace Hp(X,Y) := H (X,Y) ∩
W 1,p(X,R2), p ≥ 2.

Remark 1.1. The results we are about to demonstrate also hold for domains with iso-
lated points as boundary components. However, such generality gives essentially noth-
ing better than the case of Lipschitz domains. This is because every homeomorphism
h ∈ W 1,p(X,R2), p ≥ 2, of a domain with a singleton {x◦} as a boundary component
extends to X∪ {x◦} as a homeomorphism in the Sobolev space W 1,p(X∪ {x◦},R2). That
is why we may, and do, assume that each boundary ∂X and ∂Y consists of the same num-
ber, say 1 ≤ ` <∞, of Lipschitz disjoint closed Jordan curves. We say that the domains
are multiply connected if ` ≥ 2, and simply connected if ` = 1. Let W

1,p
◦ (X,R2) denote

the completion of C∞◦ (X,R2) in W 1,p(X,R2).
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1.1. Main result

The chief conclusion of this paper is that weak and strong limits of Sobolev homeomor-
phisms are the same thing.

Theorem 1.2. Let X and Y be bounded multiply connected Lipschitz domains in R2 and
hj : X

onto
−−→ Y homeomorphisms converging weakly to h in the space W 1,p(X,R2), p ≥ 2.

Then there exists a sequence of homeomorphisms (actually C∞-diffeomorphisms)

h∗j : X
onto
−−→ Y, h∗j ∈ h+W 1,p

◦ (X,R2), (1.1)

converging to h strongly in W 1,p(X,R2). The same holds for simply connected domains,
except for p = 2, in which case the mappings hj must be fixed either at one point in X or
at three points on ∂X.

For this last case, the reader may wish to consider a sequence of conformal mappings
of the unit disk onto itself, which take the center of the disk into points approaching its
boundary. The weak limit, being a constant map, cannot be strongly approximated by
homeomorphisms in W 1,p(X,R2), p ≥ 2.

Weak limits of Sobolev homeomorphisms arise naturally (as energy-minimal map-
pings) in both Geometric Function Theory (GFT) [5, 34, 63] and Nonlinear Elasticity
(NE) [4, 8, 18, 55, 64, 67]. It should be noted that in general weak and strong limits of
homeomorphisms X onto

−−→ Y take X into the closure of Y. Nevertheless, by convenient
abuse of customary notation, denote by Hp(X,Y) and H̃p(X,Y) the classes of strong
and weak limits of homeomorphisms in Hp(X,Y), respectively. Theorem 1.2 tells us
that

Hp(X,Y) ⊂Hp(X,Y) = H̃p(X,Y) ⊂ W 1,p(X,R2). (1.2)

Remark 1.3. Further improvements on homeomorphisms h∗j in Theorem 1.2 are pos-

sible. First, in view of [30], each homeomorphism h∗j : X
onto
−−→ Y can be strongly ap-

proximated in W 1,p(X,Y) by C∞-diffeomorphisms which agree with h∗j on ∂X. That is
why one can take C∞-diffeomorphisms for h∗j in (1.1). For p = 2, other advances come

from recent results in [31]. Accordingly, one may find diffeomorphisms h∗j : X
onto
−−→ Y

(strongly converging to h) which extend as homeomorphisms between the closures of X
and Y, obviously at the sacrifice of the boundary conditions in (1.1).

For the proof of Theorem 1.2 the natural idea of correcting mappings {hj } to gain strong
convergence does not work. Instead, we construct the sequence {h∗j } through a series of
local replacements of the limit mapping h with p-harmonic diffeomorphisms. At this
stage we take advantage of the celebrated Radó–Kneser–Choquet Theorem [23] and its
generalization to the p-harmonic setting due to Alessandrini and Sigalotti [3]. We employ
quasiconformal mappings so that the associated complex Beltrami type equations come
into play. A result of independent interest is a p-harmonic variant of the Hurwitz Theorem
(Theorem 4.13).
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1.2. Weak (sequential) closure versus strong closure of Sobolev homeomorphisms

As is well known, in any Banach space weakly closed convex sets and closed convex sets
are the same. Mazur’s Lemma tells us that to every weakly converging sequence there cor-
responds a sequence of convex combinations of its members that converges strongly to the
same limit. However, for nonconvex sets (such as our sets of homeomorphisms) the rela-
tions between sequential weak closure and strong closure are only partially understood.
In general, the set of all weak limits of sequences assembled from a subset of a Banach
space need not be sequentially weakly closed. Let Ĥp(X,Y) denote the sequential weak
closure of Hp(X,Y). Recall the class H̃p(X,Y) of weak limits of homeomorphisms in
Hp(X,Y). By virtue of Theorem 1.2, it is a simple matter to see that Ĥp(X,Y) actually
coincides with the strong closure.

Corollary 1.4. Let X and Y be bounded multiply connected Lipschitz domains in R2 and
2 ≤ p <∞. Then

Ĥp(X,Y) = H̃p(X,Y) =Hp(X,Y). (1.3)

2. The existence of 2D-traction free minimal deformations

We can now pose problems whose solutions demonstrate how Theorem 1.2 can be used
for the variational approach to Geometric Function Theory (GFT), with relevance to
Nonlinear Elasticity (NE); specifically, energy-minimal deformations of thin plates (2D-
domains).

Let us commence with NE. The 2 × 2 differential matrix Dh(x) ∈ R2×2, called the
deformation gradient, is well defined almost everywhere in X. It is axiomatic that the
hyperelastic deformations h : X onto

−−→ Y are the minima of a given energy integral

E [h] =

∫
X

E(x, h,Dh) dx (2.1)

The integrand E : X×Y×R2×2
→ R (stored energy function) tells us something about the

elastic features of the materials in X and Y. Nowadays, advanced mathematical models
deal with stored energy functions that satisfy Morrey’s quasiconvexity condition with
respect to the deformation gradient [59]. Without going into details, a consequence of
quasiconvexity is lower semicontinuity. Let us specify this property for our purpose as
follows:

EX[h] ≤ lim inf EX[hj ] whenever hj ∈Hp(X,Y) converge weakly to h. (2.2)

We shall further impose on E the following coercivity condition:∫
X
|Dh(x)|p dx ≤ C

∫
X

E(x, h,Dh) dx for all h ∈Hp(X,Y). (2.3)
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And we assume continuity of the energy integral with respect to strong convergence.
More precisely, whenever mappings hj ∈ Hp(X,Y) converge to h in the norm topology
of W 1,p(X,R2), we have

EX[h] = lim inf EX[hj ] (2.4)

Verification of (2.2)–(2.4) presents no difficulty in widely studied energy-minimal
mappings.

In GFT, on the other hand, to every quasiconformal mapping f : X onto
−−→ Y there corre-

sponds a distinctive conformal energy for which f is an absolute minimizer, that is, with
smallest energy among all homeomorphisms f : X onto

−−→ Y. Note that in this minimization
problem we allow f to slide along the boundaries, no boundary values are prescribed
upfront. We call it the traction free minimization problem. As an example, consider a
quasilinear complex Beltrami equation for a K-quasiconformal map f ∈H2(X,Y),

∂f

∂z
= µ(z, f )

∂f

∂z
, |µ| ≤ k :=

K − 1
K + 1

< 1 in X× Y. (2.5)

Here the function µ : X×Y→ C (a complex Beltrami coefficient) comes naturally from
specific measurable Riemannian metric tensors on X and Y. With respect to those metrics,
f becomes a conformal transformation. In this setting the relevant energy integral, defined
for all homeomorphisms h ∈ H2(X,Y), is the following (note it reduces to the Dirichlet
energy if µ ≡ 0):

E [h] =

∫
X

|hz − µhz|
2
+ |hz − µhz|

2

1− |µ(z, h)|2
dz =

∫
X

(
2|hz − µhz|2

1− |µ(z, h)|2
+ |hz|

2
− |hz|

2
)
dz

≥

∫
X
(|hz|

2
− |hz|

2) dz = |Y|. (2.6)

In the above energy estimate equality occurs iff h satisfies the first order complex Bel-
trami system (2.5). An additional interest in the energy functional (2.6) arises when the
first order Beltrami equation (2.5) admits no homeomorphic solution h : X onto

−−→ Y, which
is typical for multiply connected domains [5, 6]. Consequently, the lower bound (2.6)
among all homeomorphisms in H2(X,Y) is larger than |Y|. New, sometimes unexpected,
phenomena of interpenetration of matter occur, stimulating further studies of such ener-
gies. The existence of energy-minimal mappings (injective or not) is the vital part of
these new studies. Nowadays the Quasiconformal Mapping Theory is already enriched
by letting in energy-minimal deformations [21, 29, 38, 44, 45, 46] which, like complex
harmonic mappings, are solutions of second order Lagrange equations rather than first
order Beltrami type systems. The traction free solutions can be realized physically, for
example as deformations of incompressible material confined in a given box [8, 9, 10]—a
new connection with NE.

2.1. Existence of traction free minimal deformations (no Lavrent’ev’s phenomenon)

It is certainly unrealistic to expect that the infimum energy will be attained within Sobolev
homeomorphisms h : X onto

−−→ Y. The best illustration is the collapse of injectivity in the
Dirichlet energy-minimal map between circular annuli [6, 40] (see also [41] for more
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examples). Except for a few specific cases [37] the collapse of injectivity remains an
open question for intensively studied neohookean energy functionals [11, 15, 20, 24, 65].

This suggests a more general point of view. Let us take a quick look at the energy
functional

EX [h] =

∫
X

E(x, h,Dh) dx defined for h ∈Hp(X,Y), (2.7)

with the purpose of determining its infimum value,

E(X,Y) := inf
h∈Hp(X,Y)

∫∫
X

E(x, h,Dh) dx. (2.8)

We address the following question:

Question 2.1. What is the smallest subspace F (X,Y) ⊂ W 1,p(X,Rn), containing
homeomorphisms in Hp(X,Y), within which the minimum energy is attained, and fur-
thermore

min
h∈F (X,Y)

∫
X

E(x, h,Dh) dx = inf
h∈Hp(X,Y)

∫
X

E(x, h,Dh) dx ? (2.9)

That is to say, we wish to avoid Lavrent’ev’s phenomenon in finding energy-minimal
deformations.

By virtue of Theorem 1.2 the subspace F (X,Y) = Hp(X,Y) serves this purpose per-
fectly. Indeed, we have

Theorem 2.2. Let X,Y ⊂ R2 be bounded multiply connected Lipschitz domains of the
same topological type. Consider the energy integral

E [h] =

∫
X

E(x, h,Dh) dx defined for h ∈Hp(X,Y), p ≥ 2.

Then, under the conditions (2.2)–(2.4), there exists h◦ ∈Hp(X,Y) such that

E [h◦] = inf
h∈Hp(X,Y)

∫
X

E(x, h,Dh) dx.

Some specific examples have already been known [6, 32, 37, 40, 41].

2.2. Partially traction free problems

It should be noted that homeomorphisms h : X onto
−−→ Y (between Lipschitz domains) in

the Sobolev space W 1,p(X,R2), p ≥ 2, and their weak limits extend continuously as
monotone mappings between the closures, still denoted by h : X→ Y. Monotonicity, the
concept of C. B. Morrey [58], means that the preimage h−1(C) of a continuum C ⊂ Y
is a continuum in X. The modulus of continuity is controlled by the L p-norm of the
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gradient—see [39] for such results. Note that therefore a W 1,p-weakly converging se-
quence of homeomorphisms between X and Y actually converges uniformly. Now, we
choose and fix a mapping g ∈ Hp(X,Y) and a compact subset K ⊂ ∂X, for example, a
union of selected boundary components. This g will serve as a boundary data for a par-
tially traction free problem. Accordingly, we introduce the following admissible family:

Hp(X,Y; g,K) = {h ∈Hp(X,Y) : h|K = g|K (upon continuous extension to ∂X)}

and denote its strong closure by Hp(X,Y; g,K) ⊂ W 1,p(X,R2). Actually, the strong
closure coincides with the weak (sequential) closure. With the aid of Theorem 1.2, by the
direct method in the calculus of variations, we obtain:

Theorem 2.3. Under the same hypotheses as in Theorem 2.2 there exists h◦ ∈

Hp(X,Y; g,K) such that

E [h◦] = inf
h∈Hp(X,Y;g,K)

∫
X

E(x, h,Dh) dx.

2.3. Remaks on monotone Sobolev mappings

Uniform approximation of monotone mappings with homeomorphisms is of great interest
in topology. We refer the interested reader to Youngs [71, 72] and Radó [61] for the early
results and to [56, 70] for further developments. In the Sobolev setting, let X ⊂ R2 and
Y ⊂ R2 be bounded Lipschitz domains of the same topological type. Then every contin-
uous monotone map h : X onto

−−→ Y of Sobolev class W 1,p(X,R2), p > 1, can be approx-
imated uniformly and strongly in W 1,p(X,R2) by homeomorphisms hj : X

onto
−−→ Y (and

with diffeomorphisms as well). This result has been established by the present authors
in [42]. The reader may wish to notice that for 1 < p < 2 the lack of uniform continuity
estimates prevents a W 1,p-limit of homeomorphisms from being continuous and mono-
tone. Nevertheless, if for some reason, a sequence of homeomorphisms hj : X

onto
−−→ Y

converges uniformly and weakly in W 1,p(X,Y), 1 ≤ p < 2, then its limit (being a
monotone map) can also be approximated by diffeomorphisms hj : X

onto
−−→ Y, uniformly

and strongly in W 1,p(X,Y).

Question 2.4. Does Theorem 1.2 also hold for all 1 < p < 2, that is, without the addi-
tional assumption that the sequence hj : X

onto
−−→ Y converges uniformly?

2.4. Practical significance of Hp(X,Y)

Theorems 2.2 and 2.3 assert that the minimum energy is always attained in the Sobolev
class Hp(X,Y), that is, within the strong limits of homeomorphisms. This result is com-
pletely new in the theory of traction free deformations; and it is very useful when in-
jectivity of the minimal map fails. In this case the energy-minimal map tells us that we
must stop the minimizing sequence prior to the collapse of injectivity. This latter devel-
opment can be interpreted as interpenetration of matter. Is there any better motivation for
studying the class Hp(X,Y) in the theory of Nonlinear Elasticity?
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The rest of the paper is devoted to a thorough proof of Theorem 1.2. We worked out
fairly detailed arguments. Several technical novelties cannot be dispensed with without
compromising the completeness of the proofs—see for example Proposition 3.1 (not ob-
vious at all) or Lemma 4.5.

3. Geometric preliminaries

3.1. Domains

Recall that X and Y are bounded Lipschitz domains in R2
' C of connectivity 1 ≤ `

<∞. Each boundary ∂X and ∂Y consists of ` disjoint closed Jordan curves which locally,
upon suitable rotation, become graphs of Lipschitz functions. We reserve the ordered
`-tuples

(X1, . . . ,X`) for the components of ∂X,
(ϒ1, . . . , ϒ`) for the components of ∂Y.

(3.1)

Let us emphasize that a bi-Lipschitz image of a smooth `-connected domain need not
be Lipschitz [43, 68, 69]. For the converse, however, any Lipschitz domain can be mapped
via a bi-Lipschitz transformation 9 : C onto

−−→ C onto a domain whose boundaries are
circles; we refer to it as a Schottky domain. We shall take advantage of such bi-Lipschitz
transformations; they will simplify the forthcoming extension procedures and cause no
loss of generality.

3.2. Reduction to Schottky domains

Transition from a Lipschitz domain X to a circular domain X′ via a bi-Lipschitz trans-
formation T : R2 onto

−−→ R2 such that T : X′ onto
−−→ X presents no difficulty. For, every such

transformation induces a composition operator

T[ : W
1,p(X,Y)→ W 1,p(X′,Y), T[(h) = g, g := h ◦ T ,

which is a linear isomorphism. Surprisingly enough, an analogous transformation of the
target domain Y takes some effort because the continuity (in the Sobolev norm) of the
composition operator with a bi-Lipschitz transformation is not always the case.

Let Y ⊂ R2 be a bounded domain and F : Y onto
−−→ Y′ a bi-Lipschitz transformation.

Then, whatever the domain X, the induced composition map

F] : W
1,p(X,Y)→ W 1,p(X,Y′), F](g) := F ◦ g, (3.2)

is well defined as a bounded nonlinear operator, though its continuity is not always guar-
anteed [26]. There exists, however, a bi-Lipschitz transformation which works perfectly
for our purposes.

Proposition 3.1. Given any bounded Lipschitz domain Y ⊂ R2, there exists a bi-Lip-
schitz map F : R2 onto

−−→ R2 which takes Y onto a circular domain Y′. The induced compo-
sition operator F] : W 1,p(X,Y) → W 1,p(X,Y′) and its inverse F−1

] : W
1,p(X,Y′) →

W 1,p(X,Y) are continuous for all 1 < p <∞.
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Let us comment on some related results. First consider the Sobolev space W 1,p(X,R)
of real-valued functions. If F : R → R is Lipschitz then the composition F ◦ u with
u ∈ W 1,p(X,R) results in a Sobolev function whose gradient is computed by the rule

∇(F ◦ u) =

{
F ′(u(x))∇u if F is differentiable at u(x),
0 otherwise.

The point is that F is differentiable everywhere except for a set E ⊂ R of zero linear
measure. The preimage u−1(E) ⊂ X may have a positive Lebesgue measure where F ′

may not be defined. What comes to the rescue is that ∇u vanishes on u−1(E) anyway.
We refer the reader to a paper by Marcus and Mizel [54] in which they show that in fact
the induced operator

F] : W
1,p(X,R)→ W 1,p(X,R), F](u) = F ◦ u, (3.3)

is continuous. Now, suppose that a Lipschitz map F : Y onto
−−→ Y′ is C 1-smooth everywhere

except for a set E ⊂ Y of isolated points. Then the induced composition map

F] : W
1,p(X,Y)→ W 1,p(X,Y′), F](g) = F ◦ g, (3.4)

with g ∈ W 1,p(X,Y) is still well defined. The differential is given by

D(F ◦ g) =

{
DF(g(x))Dg(x) whenever g(x) 6∈ E,
0 otherwise.

The preimage g−1(E) may have positive measure, but Dg(x) still vanishes on this set.
Because of this it is not difficult to see that the operator (3.4) is continuous.

Proof of Proposition 3.1. We first approximate Y by polygonal domains. Let ϒν
be one of the boundaries of Y. Consider a partition of ϒν into closed Jordan arcs
Â1A2, Â2A3, . . . , Ân−1An, ÂnAn+1, An+1 = A1, defined by a sequence of consecu-
tive points A1, . . . , An ∈ ϒν . Associated with such a partition is a polygonal chain with
vertices at A1, . . . , An, that is, a piecewise linear curve Pν that consists of the line seg-
ments A1A2, A2A3, . . . , An−1An, AnA1 connecting the endpoints of the arcs. Although
the union ϒν =

⋃n
i=1 ÂiAi+1 is a closed Jordan curve, the polygonal chain may have

points of self-intersection. However, since ϒν is Lipschitz regular, there is a small ε > 0
such that if

dist(A1, A2) ≤ ε, . . . , dist(An, A1) ≤ ε (3.5)

then only the consecutive segments in the sequence A1A2, A2A3, . . . , An−1An, AnA1
may intersect, of course, at their common endpoint. Under the condition (3.5) we obtain
the boundary of a simply connected domain, call it polygonal. By taking ε > 0 sufficiently
small we may, and do, ensure that each arc Â1A2, . . . , ÂnA1 represents (upon a rotation)
the graph of a Lipschitz function; points slightly above the graph lie in Y and points
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slightly below the graph lie in R2
\ Y. Fix one of the arcs ÂiAi+1, say the graph of a

Lipschitz function y = f (x), a ≤ x ≤ b. Here, for some small positive δ, we have

�+ = {(x, y) : a ≤ x ≤ b, f (x) ≤ y ≤ f (x)+ δ} ⊂ Y,

�− = {(x, y) : a ≤ x ≤ b, f (x)− δ ≤ y ≤ f (x)} ⊂ R2
\ Y.

With such a δ fixed we may, if needed, further partition the arc ÂiAi+1 into a finite number
of consecutive subarcs

ÂjAj+1 = ÂjB1 ∪ B̂1B2 ∪ · · · ∪ B̂kAj+1

so that each straight line segment AjB1, B1B2, . . . , BkAj+1 lies strictly below the graph
of the function y = f (x)+ δ and strictly above the graph of the function y = f (x)− δ.
However, to simplify the writing we assume that the arc ÂjAj+1 already enjoys this prop-
erty. Thus we have the region

� = �+ ∪�− = {(x, y) : a ≤ x ≤ b, f (x)− δ ≤ y ≤ f (x)+ δ}

and two cross-cuts with endpoints Aj = (a, f (a)) and Aj+1 = (b, f (b)). One cross-cut
is the graph of y = f (x), a ≤ x ≤ b, and the other is the straight line segment AjAj+1,
which we shall view as the graph over [a, b] of the linear function ϕ = ϕ(x),

ϕ(x) =
(x − a)f (b)+ (b − x)f (a)

b − a
for all x ∈ R.

Note that f (x)−δ < ϕ(x) < f (x)+δ for a ≤ x ≤ b. It will be convenient to extend f as
a Lipschitz function on the entire real line simply by setting f (x) = ϕ(x) outside [a, b].

We are now in a position to define a bi-Lipschitz mapping 8 : R2
→ R2 associated

with the arc ÂjAj+1 ⊂ ∂Y,

8(x, y) = (x, y′) for −∞ < x, y <∞,

where

y′ = y +
ϕ(x)− f (x)

2δ
(|y − f (x)− δ| − 2|y − f (x)| + |y − f (x)+ δ|)

=



y, y ≥ f (x)+ δ,

f (x)+ δ − ϕ(x)

δ
y +

f (x)+ δ

δ
[ϕ(x)− f (x)], f (x) ≤ y ≤ f (x)+ δ,

ϕ(x)+ δ − f (x)

δ
y +

f (x)− δ

δ
[f (x)− ϕ(x)], f (x)− δ ≤ y ≤ f (x),

y, y ≤ f (x)− δ.

We see from this formula that if x is fixed the function y′ = y′(x, y) is piecewise linear
and strictly increasing in y. Thus 8 is bi-Lipschitz. Moreover, 8(x, y) = (x, y) for all
(x, y) ∈ R2

\ �, which is immediate when y ≥ f (x) + δ and y ≤ f (x) − δ. On the
other hand, if x 6∈ (a, b) then ϕ(x) = f (x), and so y′ = y from the first formula. Also
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note that 8 takes the arc ÂjAj+1 into the line segment connecting Aj and Aj+1. Indeed,
for y = f (x) we have 8(x, f (x)) = (x, ϕ(x)). An important feature of this particu-
lar map 8 : R2

→ R2 is that it induces a continuous operator 8] : W 1,p(X,R2)
onto
−−→

W 1,p(X,R2). To see this consider a sequence hk(z) = uk + ivk(z) converging strongly
in W 1,p(X,R2) to h(x) = u(x)+ iv(x). We have

8(uk, vk)

=

(
uk, vk +

ϕ(uk)− f (uk)

2δ
(|vk − f (uk)− δ| − 2|vk − f (uk)| + |vk − f (uk)+ δ|)

)
→

(
u, v +

ϕ(u)− f (u)

2δ
(|v − f (u)− δ| − 2|v − f (u)| + |v − f (u)+ δ|)

)
= 8(u, v), by (3.3).

The final step in the construction of the map F : R2
→ R2 consists in dividing the entire

boundary ∂Y into a finite number of sufficiently small arcs 01, . . . , 0N ⊂ ∂Y. To each
arc 0i there corresponds a bi-Lipschitz map 8i : R2 onto

−−→ R2, i = 1, . . . , N , which
takes 0i into a line segment connecting the endpoints of 0i . Note that 8i is the identity
map on all remaining arcs. Therefore, the composition

F := 81
◦ · · · ◦8N : R2 onto

−−→ R2

is a bi-Lipschitz map which takes Y onto a polygonal domain, denote it by Y♦. The
induced operator

F] = 8
1
] ◦ · · · ◦8

N
] : W

1,p(X,R2)→ W 1,p(X,R2)

is continuous. The same applies to the inverse map F−1; it induces a continuous operator
F−1
] as well. Lastly, we compose F with a bi-Lipschitz map G : R2

→ R2 which is
a C∞-diffeomorphism outside the corners of Y♦ and takes this polygon into a circular
domain Y′. Recall that the operator of composition with G is continuous, by (3.4). All
the above compositions result in a desired map G ◦ F : R2

→ R2 which takes Y into a
circular domain Y′. ut

Complete justification of the reduction to Schottky domains goes as follows. Suppose
we are given a sequence {hj } ⊂ Hp(X,Y) weakly converging to h ∈ H̃p(X,Y), thus
uniformly as well (see §2.2). Consider the sequence {Hj } ⊂ Hp(X′,Y′) of homeomor-
phisms between Schottky domains, defined by Hj = (F] ◦ T[)hj . This sequence con-
verges weakly to H = (F] ◦ T[)h ∈ Hp(X′,Y′), because it is bounded in W 1,p(X′,R2)

and its uniform limit equals H . Once Theorem 1.2 for Schottky domains is in hand, no
further work is required. Indeed, we have homeomorphisms H ∗j ∈ Hp(X′,Y′) converg-

ing strongly to H . Then the sequence of homeomorphisms h∗j := (T −1
[ ◦ F−1

] )H ∗j ∈

Hp(X,Y) serves for Theorem 1.2 in its general setting.
From now on, the components X1, . . . ,X` ⊂ ∂X and ϒ1, . . . , ϒ` ⊂ ∂Y are circles.

These circles are so numbered that the mappings hj ∈ Hp(X,Y) and their weak limit
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h ∈ Ĥp(X,Y) take Xν onto ϒν :

hj (Xν) = ϒν and h(Xν) = ϒν, ν = 1, . . . , `, (3.6)

for sufficiently large j . To simplify the writing we allow j = 1, 2, . . . .

Remark 3.2. Later, there will be a reason to assume, so we do it now, that the centers of
the outer boundary circles of X and Y lie outside those domains. For this we need ` ≥ 2.
The case ` = 1 will be treated differently.

3.3. Extension to the Riemann sphere

Here, with the usual convention concerning the point ∞, the one-point compactifica-
tion Ĉ = C ∪ {∞}, equipped with the chordal metric, will be identified with S2. Let
h : X onto

−−→ Y be an arbitrary continuous monotone map satisfying the boundary corre-
spondence (3.6). There is a natural way to extend it to a monotone map ĥ : Ĉ onto

−−→ Ĉ.
Each boundary circle Xi = {z : |z− zi | = ri} provides a reflection

ϕi : Ĉ→ Ĉ, ϕi(z) =
z− zi

|z− zi |2
r2
i + zi, i = 1, . . . , `,

and a domain Xi = ϕi(X) which is attached to X on the other side of the circle. In this
way X is furnished with its neighborhood

X+ = X ∪ X1 ∪ · · · ∪ X`.

This is a circular domain of connectivity `(`− 1) whose boundary components are

X
j
i = ϕi(Xj ), i 6= j, ∂X+ =

⋃
i 6=j

X
j
i .

The same construction works for the circles ϒi ⊂ ∂Y in the target domain; we have the
reflections ψi : Ĉ → Ĉ, the domains Yi = ψi(Y), i = 1, . . . , `, and a neighborhood
of Y:

Y+ = Y ∪ Y1 ∪ · · · ∪ Y`, ∂Y+ =
⋃
i 6=j

ϒ
j
i .

Now we define the extension ĥ : X+
onto
−−→ Y+ of h : X→ Y by the rule

ĥ = ψi ◦ h ◦ ϕi : Xi → Yi for i = 1, . . . , `.

Since h : X→ Y is monotone, so is the extended mapping ĥ : X+
onto
−−→ Y+. Furthermore,

whenever h : X onto
−−→ Y is a homeomorphism, the extended mappings ĥ : Xi

onto
−−→ Yi ,

i = 1, . . . , `, are homeomorphisms. The boundary mappings h : Xi
onto
−−→ ϒi are also

monotone; this implies that ĥ : Xji
onto
−−→ ϒ

j
i , i 6= j , is monotone as well.
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3.3.1. A supplementary extension ĥ : C onto
−−→ C. Proceeding in this direction, we further

extend ĥ : X+
onto
−−→ Y+ to the entire Riemann sphere Ĉ, obtaining a map again denoted

by ĥ : Ĉ onto
−−→ Ĉ. We need this additional extension only to provide easy references to

the theory of monotone mappings on S2. There will be no need for any regularity of ĥ
outside X+.

Let Xji and Yji , i 6= j , denote the components of Ĉ \ X+ and Ĉ \ Y+ at the oppo-
site sides of the boundary circles Xji and ϒji , respectively. We then extend the boundary
mappings ĥ : Xji

onto
−−→ ϒ

j
i , i 6= j , in a radial fashion to those components, and continue

to write ĥ : Xji
onto
−−→ Yji , i 6= j .

Of course, continuity and monotonicity of ĥ : Ĉ → Ĉ are understood with re-
spect to the chordal metric. Observe that uniform convergence of continuous mappings
hj : X

onto
−−→ Y, hj : Xν → ϒν , ν = 1, . . . , `, j = 1, 2, . . . , to h : X onto

−−→ Y yields uniform
convergence of ĥj : Ĉ

onto
−−→ Ĉ to ĥ : Ĉ onto

−−→ Ĉ.
A theorem of Kuratowski and Lacher [48, 49] asserts that:

Theorem 3.3. Let X and Y be compact Hausdorff spaces, Y being locally connected.
Suppose we are given a sequence of monotone mappings fk : X onto

−−→ Y (e.g. homeomor-
phisms) converging uniformly to a mapping f : X→ Y. Then f : X onto

−−→ Y is monotone.

Throughout this text, we shall freely use, without explicit mention, basic topological prop-
erties of monotone mappings of S2. Nevertheless, when clarity requires it, we shall pro-
vide an explanation.

Proposition 3.4. Let f : Ĉ onto
−−→ Ĉ be a continuous monotone map such that

f : C onto
−−→ C. If 0 ⊂ C is a continuum that disconnects C into two components then

so is f−1(0).

4. Analytical preliminaries

At this point we must specify our definition of p-harmonic mappings.

4.1. p-harmonic mappings

Let h = u + iv be a complex-valued function in the Sobolev space W 1,p(X,C),
1 < p < ∞. We consider the gradient map ∇h = (∇u,∇v) : X into

−→ R2
× R2, its

modulus |∇h| = (|∇u|p + |∇v|p)1/p and the L p-energy

EX[h] =
∫∫

X
|∇h(x)|p dx =

∫∫
X
(|∇u(x)|p + |∇v(x)|p) dx = ‖∇h‖

p
p . (4.1)

The reason for choosing exactly this type of L p-energy is that the associated Lagrange–
Euler system consists of two scalar p-harmonic equations

div |∇u|p−2
∇u = 0 and div |∇v|p−2

∇v = 0. (4.2)
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Definition 4.1. A complex-valued function h = u + iv of Sobolev class W
1,p

loc (�,C),
1 < p < ∞, is called a p-harmonic map if it satisfies the uncoupled system of equa-
tions (4.2).

We shall take advantage of this setting by considering the complex gradients ∂u/∂z and
∂v/∂z, which turn out to be quasiregular mappings. Their topological properties will play
a vital role in the proof of a p-harmonic variant of Hurwitz theorems.

4.2. Modulus of continuity

When p > 2, just the Sobolev inequality gives a uniform bound of the modulus of conti-
nuity in terms of L p-energy:

Lemma 4.2. For every Sobolev mapping h ∈ W 1,p(X,C), p > 2, in a bounded Lipschitz
domain X ⊂ R2 we have

|h(x1)− h(x2)|
p
≤ Cp(X)|x1 − x2|

p−2
∫∫

X
|∇h|p, x1, x2 ∈ X. (4.3)

When p = 2, monotonicity of Sobolev mappings lets us prove similar estimates in terms
of the Dirichlet energy. The multiply connected case, ` ≥ 2, is easy to handle via uniform
energy bounds in a neighborhood of X,∫∫

X+
|∇ĥ|2 ≤ C(X,Y)

∫∫
X
|∇h|2. (4.4)

The neighborhood X+ = X ∪ X1 ∪ · · · ∪ X` and the extended map ĥ : X+
onto
−−→ Y+ are

obtained via the reflections ϕi : X
onto
−−→ Xi and ψi : Y

onto
−−→ Yi , which are C∞-smooth dif-

feomorphisms up to the boundary (recall that the centers of the outer circles lie outside X
and Y, and that is why we need ` ≥ 2).

We may now use local estimates for monotone mapping ĥ in the Sobolev space
W 1,2(X+,R2) (see [34, Corollary 7.5.1]) to obtain

Lemma 4.3. For h ∈H2(X,Y) and ` ≥ 2,

|h(x1)− h(x2)|
2
≤

C2(X,Y)
log
(
1+ diamX

|x1−x2|

) ∫∫
X
|∇h|2, x1, x2 ∈ X. (4.5)

Remark 4.4. Inequality (4.5), and hence Theorem 1.2, fail without the additional re-
quirement when ` = 1 and p = 2. Consider the Möbius transformations hk : D

onto
−−→ D

(normalized at two boundary points)

hk(z) =
z+ ak

1+ akz
, hk(1) = 1, hk(−1) = −1, ED[hk] = 2π, (4.6)

where 0 < ak < 1. As ak approaches 1 the mappings converge to h(z) ≡ 1, c-uniformly
and weakly in W 1,2(D). Obviously, the constant map cannot be obtained as a strong
W 1,2(D)-limit of homeomorphisms of D onto itself. We are losing equicontinuity of the
boundary mappings hk : ∂D

onto
−−→ ∂D.
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Lemma 4.5. Inequality (4.5) still holds for ` = 1 if the mapping h ∈ H2(X,Y) is
properly normalized, say being fixed at a given point in X or at three preassigned points
in ∂X; the constant C2(X,Y) depends on the normalization.

Proof. We argue for (4.5) in each of the two cases separately.

4.2.1. A normalization at the interior point. Consider homeomorphisms h ∈ H2(X,Y)
between simply connected Lipschitz domains, which are fixed at a given point inside X,

h(x◦) = y◦, where x◦ ∈ X and y◦ ∈ Y.

With the aid of a bi-Lipschitz transformation (Section 3.2) we are reduced to a self-
homeomorphism of the unit disk, still denoted by h : D onto

−−→ D, with h(0) = 0. From
[39, Theorem 8.1] we deduce the inequality

dist2(h(z), ∂D) ≤
C

log
(
e + 2

dist(z,∂D)
) ∫∫

D
|∇h|2 (4.7)

where C ≥ 1 is an absolute constant.

Case 1. Suppose that

E :=
∫∫

D
|∇h|2 ≥

1
4C

log
(

1+
2

|x1 − x2|

)
.

Inequality (4.5) holds with any constant C2(X,Y) ≥ 4C diam2 Y = 16C.

Case 2. Suppose that

E =
∫∫

D
|∇h|2 <

1
4C

log
(

1+
2

|x1 − x2|

)
, obviously E ≥ 2|D| = 2π.

Therefore x1, x2 ∈ B(a, r) ⊂ B(a, 2r), where B ⊂ 2B are concentric disks centered at
a = 1

2 (x1 + x2) ∈ D and r = 1
2 |x1 − x2| < (e8πC

− 1)−1 < 1/2.
Now introduce a continuous monotone extension ĥ : Ĉ→ Ĉ,

ĥ(z) =
[
h(1/z)

]−1 for |z| ≥ 1.

For z ∈ B(a, 2r) \ D, we have 1 < |z| < 1+ 2r < 2. It then follows from (4.7) that[
1− |h(1/z)|

]2
≤

CE
log
(
e +

2|z|
|z|−1

) < log(1+ 1/r)

4 log
(
e + 1+2r

r

) < 1
4
.

Hence |h(1/z)| > 1/2 and |∇ĥ(z)| ≤ |∇h(1/z̄)| · |h(1/z̄)|−2
≤ 4|∇h(1/z̄)|. The change

of variable z = 1/ξ gives∫∫
B(a,2r)\D

|∇ĥ|2 ≤ 256
∫∫

D
|∇h|2, hence

∫∫
B(a,2r)

|∇ĥ|2 ≤ 512
∫∫

D
|∇h|2.

Now (4.5) is immediate from [34, Corollary 7.5.1].
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4.2.2. A normalization at three boundary points. Let h ∈ H2(X,Y) be normalized by
three conditions: h(x1) = y1, h(x2) = y2 and h(x3) = y3, where we are given distinct
points x1, x2, x3 ∈ ∂X and y1, y2, y3 ∈ ∂Y. We assume that these points are positively
oriented along ∂X and ∂Y, respectively. First we reduce the domains X and Y (via bi-
Lipschitz transformations) to equilateral triangles in which (x1, x2, x3) and (y1, y2, y3)

are their vertices. We aim to extend h to a neighborhood X+ ⊃ X. To define such a
neighborhood we reflect the triangle X across its edges, which results in three adjacent
triangles. We then reflect the adjacent triangles across their edges, and so forth. Eventually
we arrive at 12 equilateral triangles surrounding X, which together with X form a neigh-
borhood denoted by X+. The same reflection procedure is made for Y. We then extend
h : X onto

−−→ Y in accordance with the above reflections and define continuous monotone
extensions ĥk : X+

onto
−−→ Y+. The way the extensions are made secures a uniform energy

bound ∫∫
X+
|∇ĥ|2 = 13

∫∫
X
|∇h|2 ≤ M.

By the same arguments as before we conclude with inequality (4.5). ut

Remark 4.6. In view of (4.3) and (4.5) a sequence {hj } ⊂ Hp(X,Y) that is converging
weakly to h actually converges uniformly on X. Furthermore, hj : X

onto
−−→ Y and their

boundary mappings hj : ∂X
onto
−−→ ∂Y are monotone as well. This also applies to the weak

limit h : X onto
−−→ Y and its boundary map h : ∂X onto

−−→ ∂Y. Inequalities (4.3) and (4.5)
remain valid for h ∈ Ĥp(X,Y).

4.2.3. Royden p-algebra. For notational simplicity we introduce the space Rp(X)which
consists of continuous functions on X having finite p-energy. The norm is given by

‖h‖Rp(X) = sup
x∈X
|h(x)| +

(∫∫
X
|∇h(x)|p dx

)1/p

<∞.

R
p

0 (X) is the completion of C∞0 (X) in this norm; it consists of functions vanishing on ∂X.

Remark 4.7. The proofs above (except for simply connected domains with normaliza-
tion at the inner point) show that a mapping h ∈ Ĥp(X,Y) admits an extension to a con-
tinuous monotone map ĥ : O→ R2 defined in a neighborhood O ⊃ X which is indepen-
dent of h. This extension retains control on the energy; namely, EO [̂h] ≤ Cp(X,Y)EX[h].
Concerning the exceptional case, a slight change in the proof actually gives an extension
ĥ : O→ R2, due to inequality (4.7), but the neighborhood O depends on the energy of h.

In summary, regardless of the case, if we restrict ourselves to mappings in Ĥp(X,Y)
whose energy is bounded by a given constant, say EX[h] ≤ M , then we still have an
extension ĥ : O → R2 to a neighborhood depending only on M . The extended map has
nonnegative Jacobian and its energy is controlled byM . This observation is the key to the
following lemma.
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4.3. Weak-L 1 convergence of Jacobians

Lemma 4.8. If a sequence of mappings fk ∈ Ĥp(X,Y), p ≥ 2, converges to f weakly in
W 1,p(X,R2) then the Jacobian determinants Jfk = J (x, fk) converge to Jf = J (x, f )
weakly in L 1(X), meaning that∫∫

X
ϕ(x)J (x, fk) dx →

∫∫
X
ϕ(x)J (x, f ) dx for every ϕ ∈ L∞(X). (4.8)

Proof. It has long been known that (4.8) holds for ϕ ∈ C∞0 (X). Now, if p > 2, the
sequence {J (x, fk)} is bounded in L p/2(X), and so (4.8) is true for all test functions in
the dual space L p/(p−2)(X) ⊃ L∞(X) where C∞0 (X) is dense.

For p = 2 the proof is not straightforward, but relies on the well known higher inte-
grability property of nonnegative Jacobians [60], which we state as∫∫

X
J (x, fk) log

(
e +

J (x, fk)

‖Jfk‖L 1(X)

)
dx ≤ C(X,O)

∫∫
O
|∇fk(x)|

2 dx. (4.9)

The interested reader is referred to [19, 35] for further results in this direction. Now,
by similar arguments, estimate (4.9) yields (4.8) for all test functions ϕ ∈ L∞(X). As
a particular case, upon setting ϕ = χ� , we see that the averages of J (x, fk) over any
measurable set � ⊂ X converge to the average of J (x, f ),∫∫

�

J (x, fk) dx →

∫∫
�

J (x, f ) dx. (4.10)

ut

4.4. Dirichlet problem

There are two commonly used settings of the Dirichlet problem. The classical one, with
continuous boundary data, combines the Perron method and Wiener’s criterion of regular
points on the boundary of the domain. In the variational approach, on the other hand,
one seeks to minimize the p-harmonic energy integral over the class of functions in
u + W

1,p
◦ (�), where u ∈ W 1,p(�) is viewed as the boundary data. Even when these

two different settings are well defined, the question whether they represent the same so-
lution involves a delicate analysis of the boundary of the domain. Strangely enough, in
the widely developed theory of the Dirichlet problem, explicit statements concerning sim-
ply connected domains appear to be rare in the literature. The equivalence of these two
settings is vital in our approach.

Theorem 4.9. Let � ⊂ R2 be a bounded simply connected domain and u ∈ C (�) ∩
W 1,p(�), 1 < p <∞. Then there exists a unique function ũ ∈ C (�) ∩W 1,p(�) that is
p-harmonic in � and equal to u on ∂�. Furthermore, ũ ∈ u+W

1,p
◦ (�) and

Ep[ũ] ≤ Ep[u].

Equality occurs if and only if ũ ≡ u.
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Proof. We shall not give all details of the proof. Nevertheless, it is worth remarking (be-
cause it is not obvious) that the variational solution ũ extends continuously up to the
boundary. This is because each boundary point of a planar simply connected domain
is a regular point for the p-Laplace operator 1p [25, p. 418]. This issue has been dis-
cussed by various writers; we refer here to the book by J. Heinonen, T. Kilpeläinen and
O. Martio [28, 6.16] for the boundary regularity and relevant notion of capacities and,
in particular, to [27, Lemma 5.3] (see also [47, Lemma 4.1] and [50, Lemma 2]) for a
capacity estimate that applies to simply connected domains. ut

4.5. Radó–Kneser–Choquet theorems in p-harmonic setting

The classical Radó–Kneser–Choquet theorem asserts that a planar harmonic homeomor-
phism is in fact a C∞-diffeomorphism [23]. The same holds for p-harmonic homeomor-
phisms (see Alessandrini and Sigalotti [3]).

Radó–Kneser–Choquet theory also asserts that a harmonic function h : � → C in
a Jordan domain that extends continuously to a homeomorphism of ∂� onto a closed
convex curve 0 ⊂ C is a C∞-diffeomorphism of � onto the bounded component of
C \ 0. Numerous works were devoted to the extension of this result to solutions of linear
elliptic type systems [1, 2, 14, 17, 52, 53]. It resulted in a generalization to nonlinear
PDEs by Alessandrini and Sigalotti [3].

Theorem 4.10. Suppose that � ⊂ C is a simply connected Jordan domain, G a bounded
convex domain and h ∈ C (�) ∩W

1,p
loc (�) a p-harmonic map that takes ∂� homeomor-

phically onto ∂G. Then h : � onto
−−→ G is a C∞-diffeomorphism.

4.6. Hurwitz’s theorem

Let us begin with the quasiconformal variants of the Hurwitz theorems, well known for
holomorphic functions (see [51, II 5.3] and [57, Lemma 3]).

Theorem 4.11. If a sequence of K-quasiconformal mappings ϕn : � → C converges
c-uniformly to ϕ : �→ C, then ϕ is either constant or K-quasiconformal.

Theorem 4.12. If a sequence of K-quasiregular mappings ϕn : � → C converges
c-uniformly to ϕ : � → C, and ϕn(z) 6= 0 for all z ∈ � and n = 1, 2, . . . , then ϕ
is either identically zero, or ϕ(z) 6= 0 for all z ∈ �.

The full analog of Theorem 4.11 fails for solutions of second order PDEs. For exam-
ple, the uniform limit of the harmonic homeomorphisms ϕn(z) = x + (i/n)y is neither
constant nor a homeomorphism. Nevertheless, the Jacobian determinant of the limit map
vanishes identically. Hurwitz’s theorem below reflects this example.

Theorem 4.13. If a sequence of p-harmonic orientation preserving homeomorphisms
ϕn : �→ C converges c-uniformly to ϕ : �→ C, then either ϕ is a p-harmonic homeo-
morphism (actually C∞-diffeomorphism) or Jϕ(z) ≡ 0 in �.
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Proof. For basic properties of quasiregular mappings in relation to p-harmonic functions
we refer the reader to [17], and for further reading to [22]. Recall from [17] that the
complex gradient

f := uz =
1
2 (ux − iuy), z = x + iy, (4.11)

of a p-harmonic function u : � → R is K-quasiregular. Thus u ∈ C 1,α
loc (�), α = 1/K .

The complex gradient actually satisfies the quasilinear elliptic equation

∂f

∂z̄
=

2− p
2p

[
f

f

∂f

∂z
+
f

f

∂f

∂z

]
, hence 1 ≤ K ≤ p − 1. (4.12)

In particular, every sequence {un}∞n=1 of p-harmonic functions converging c-uniformly
on � actually converges in C 1,α

loc (�). Then, by Theorem 4.12, if the complex gradients
f n = unz vanish nowhere in � then f = uz is either identically zero or nowhere vanish-
ing. Moreover, f n → f uniformly on compact subsets together with first order deriva-
tives. Now, consider the p-harmonic homeomorphisms (thus C∞-diffeomorphisms)

ϕn := u
n
+ ivn : �→ C

and their limit

ϕ := u+ iv : �→ C.

Each ϕn has positive Jacobian determinant, Jϕn(z) = u
n
xv
n
y−u

n
yv
n
x > 0. Thus the complex

gradients (quasiregular mappings)

f n(z) := unz and gn(z) := vnz

do not vanish in�. In view of Theorem 4.12 the limit functions f (z) = uz and g(z) = vz
do not vanish either, unless they are identically zero in which case Jϕ = uxvy−uyvx ≡ 0,
as claimed. Let us now assume that both f 6= 0 and g 6= 0 in �. We shall show that in
this case also Jϕ(z) 6= 0 in �. Suppose otherwise: Jϕ(z◦) = 0 at some point z◦ ∈ �.
Equivalently,

αf (z◦)+ βg(z◦) = 0 for some real numbers α, β 6= 0.

Consider the complex functions

F n(z) = αf n(z)+ βgn(z)

and their limit

F(z) = αf (z)+ βg(z) (recall that F(z◦) = 0).

To any real coefficients α, β 6= 0 there corresponds an elliptic first order system of partial
differential equations for F n. The derivation of that system goes as follows.
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Using (4.12) and the analogous equation for g we compute

F nz̄ =
2− p

2p

[
f n

f n

∂f n

∂z
+
f n

f n

∂f n

∂z

]
α +

2− p
2p

[
gn

gn

∂gn

∂z
+
gn

gn

∂gn

∂z

]
β

=
2− p

2p

[
gn

gn

∂F n

∂z
+
gn

gn

∂F n

∂z

]
+

2− p
2p

[(
f n

f n
−
gn

gn

)
∂f n

∂z
+

(
f n

f n
−
gn

gn

)
∂f n

∂z

]
α.

Here we have
f n

f n
−
gn

gn
=
(αf n + βgn)f n − (αf n + βgn)f n

βf ngn
,

and hence ∣∣∣∣f nf n − gngn
∣∣∣∣ ≤ 2|F n|
|β| |gn|

.

Thus we have the first order (elliptic) inequality∣∣∣∣∂F n∂z̄
∣∣∣∣ ≤ ∣∣∣∣1− 2

p

∣∣∣∣ ∣∣∣∣∂F n∂z
∣∣∣∣+ ∣∣∣∣1− 2

p

∣∣∣∣ 2|α|
|β| |gn|

|F n|.

This yields a linear equation in �,

∂F n

∂z̄
= µn(z)

∂F n

∂z
+ An(z)F n, (4.13)

whose complex measurable coefficients satisfy

|µn(z)| ≤ k =

∣∣∣∣1− 2
p

∣∣∣∣ < 1,

|An(z)| ≤ 2k
∣∣∣∣αβ
∣∣∣∣ ∣∣∣∣ 1
gn

∣∣∣∣ ∣∣∣∣∂f n∂z
∣∣∣∣ ∈ L∞loc(�).

To see this last inclusion we fix a compactly contained subdomain G b �. Recall that
the functions gn(z) and their c-uniform limit g never vanish. This yields a uniform bound
from below |gn(z)| ≥ m, for z ∈ G, m being independent of n = 1, 2, . . . . On the other
hand, the continuous functions ∂f n

∂z
(z) converge uniformly on G, so we also have the

uniform bound
∣∣ ∂f n
∂z
(z)
∣∣ ≤ M . Therefore we have a pointwise estimate |An(z)| ≤ 2kM|α|

m|β|
in G, as required.

To deal with equation (4.13) we solve (uniquely) the nonhomogeneous Beltrami equa-
tion

λnz̄ = [µ
n(z)λnz − A

n(z)]χ
G
(z) for a complex function λn ∈ W 1,s(R2) (4.14)
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where s > 2. The unknown function λn(z) is represented by the Cauchy transform of a
measurable function ωn ∈ L s(R2) with suppωn ⊂ G b �:

λn(z) =
1
π

∫∫
C

ωn(ξ) dξ

z− ξ
.

The unknown density function ωn is found (uniquely) by solving the singular integral
equation

ωn = µnχ
G
Sωn − Anχ

G
, Sωn = −

1
π

∫∫
C

ωn(ξ)

(z− ξ)2
dξ.

Here S : L s(C) → L s(C) is the familiar Beurling–Ahlfors operator. At this stage we
appeal to the seminal work of B. Bojarski [16] which provides us with the solution

ωn = −(I − µnχ
G
S)−1Anχ

G
.

Here the operator
I − µnχ

G
S : L s(C)→ L s(C)

is invertible for some s > 2 (see [7] for the full range 1 + k < s < 1 + 1/k). We see
that supn‖ω

n
‖L s (C) < ∞ and conclude that the family {λn}∞n=1 is equicontinuous. This

follows from basic estimates of the Cauchy transform,

|λn(z1)− λ
n(z2)| ≤ Cs |z1 − z2|

1−2/s
‖ωn‖L s (C).

We may and do assume, by passing to a subsequence if necessary, that λn(z) ⇒ λ(z)

(uniformly) in C. Therefore,

eλ
n(z)F n(z)⇒ eλ(z)F(z) uniformly on G.

Now observe that the nowhere vanishing function H n(z) = eλ
n
F n satisfies the homoge-

neous Beltrami equation
H n
z̄ = µ

n(z)H n
z in G.

This is straightforward from (4.13) and (4.14). Thus H n are K-quasiregular mappings,
K = 1+k

1−k = p− 1. Using Theorem 4.12 we see that the limit function H(z) = eλ(z)F(z)
does not vanish anywhere in G. But F(z◦) = 0, a clear contradiction.

Finally, the inequality Jϕ(z) 6= 0 implies that the map ϕ is a local C 1-diffeomorphism.
Since this map is a c-uniform limit of homeomorphisms, it must be a global C∞-diffeo-
morphism. ut

5. Proof of Theorem 1.2

Given a mapping h ∈ Ĥp(X,Y) ⊂ Rp(X) and ε > 0, the goal is to find an injective
mapping h∗ : X onto

−−→ Y with h∗ − h ∈ R
p

0 (X) such that

‖h∗ − h‖Rp(X) ≤ ε. (5.1)

It takes several procedures to accomplish this task.



Limits of Sobolev homeomorphisms 493

5.1. Injectivity in good domains Gν
The construction of h∗ is by induction on ν = 1, . . . , `. In each step we gain injectivity
in a subdomain Gν ⊂ X that touches the boundary component Xν . Let us call it a good
domain. Inequality (5.1) is just all those injectivity properties in good domains combined.

Proposition 5.1. To every f ∈ Ĥp(X,Y) and ν = 1, . . . , `, there corresponds a domain
G = Gν := {x ∈ X : f (x) ∈ Y ∪ ϒν} such that whenever ε > 0 there exists an
approximation f ∗ ∈ Ĥp(X,Y) of f such that

‖f ∗ − f ‖Rp(X) ≤ ε/`, f ∗ − f ∈ R
p

0 (G) ⊂ R
p

0 (X), (5.2)

f ∗
|G : G

onto
−−→ Y is injective. (5.3)

In the above hypotheses, a normalization of f must be included if ` = 1 and p = 2,
exactly as in Theorem 1.2 .

Remark 5.2. It involves no loss of generality to assume that the given boundary compo-
nent ϒν ⊂ ∂Y is the outer circle; for if not, we reflect Y across ϒν . In what follows, we
suppress the index ν in the notation of the outer circle, writing simply ϒν = ϒ .

The proof is postponed until Section 5.1. Meanwhile let us demonstrate how the construc-
tion of h∗ ∈Hp(X,Y) goes once Proposition 5.1 is in hand.

5.1.1. Construction of h∗. We define by induction a chain of mappings f0, . . . , f` ∈

Ĥp(X,Y) that begins with f0 ≡ h. The last term in the chain will serve for h∗. Suppose
fν−1 ∈ Ĥp(X,Y), for some 1 ≤ ν ≤ `, is given. We appeal to Proposition 5.1 in which
f = fν−1 and G = Gν = {x ∈ X : fν−1(x) ∈ Y ∪ ϒν}, and define fν = f ∗ν−1. Take f`
for h∗. Obviously h∗ ∈ h+R

p

0 (X) and

‖h∗ − h‖Rp(X) ≤
∑̀
ν=1

‖fν − fν−1‖Rp(X) ≤ ` · ε/` = ε.

Claim 1. G1 ∪ · · · ∪G` = X.

Suppose otherwise: some x ∈ X does not lie in G1 ∪ · · · ∪ G`. Since x 6∈ G`, it follows
that f`(x) = f`−1(x), because f` − f`−1 ∈ R

p

0 (G`). Continuing in this fashion, we see
that f`−1(x) = f`−2(x) = · · · = f0(x) = h(x). Going backwards we get

h(x) = f0(x) 6∈ Y ∪ ϒ1, because x 6∈ G1,

h(x) = f1(x) 6∈ Y ∪ ϒ2, because x 6∈ G2,

. . .

h(x) = f`−1(x) 6∈ Y ∪ ϒ`, because x 6∈ G`.

Thus h(x) 6∈ Y ∪ ϒ1 ∪ · · · ∪ ϒ` = Y, a clear contradiction.

Claim 2. f` : X
onto
−−→ Y.

We obviously have Y ⊃ f`(X) ⊃ f`(G`) = Y, because f`|G` = f ∗
`−1|G` = Y, by

condition (5.3). Suppose that, contrary to the claim, f`(x) ∈ ∂Y for some x ∈ X\G` . This
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means that f`(x) = f`−1(x) ∈ ∂Y. But f`−1 : G`−1
onto
−−→ Y, so x 6∈ G`−1. Continuing in

this way we arrive at x 6∈ G`−2, . . . , x 6∈ G1. This summarizes as x 6∈ G1∪· · ·∪G` = X,
which contradicts Claim 1.

Claim 3. f` : X
onto
−−→ Y is injective, thus a homeomorphism.

Suppose that, on the contrary, there are x1 6= x2 in X for which f`(x1) = f`(x2) =:

y ∈ Y . Since f` : G`
onto
−−→ Y is injective, x1 and x2 cannot both belong to G`. It is also

impossible that x1 ∈ G` and x2 6∈ G`, since we would then have f`(x1) ∈ Y whereas
f`(x2) ∈ ∂Y\ϒ`. This leaves us with the only possibility that x1, x2 6∈ G`, so y ∈ ∂Y\ϒ`,
contradicting Claim 2.

All that remains is to prove Proposition 5.1. Some additional prerequisites, more specific
to the proof of Proposition 5.1, are in order.

5.2. Squares and cells

Let ĥ : Ĉ onto
−−→ Ĉ be an arbitrary continuous monotone map, ĥ : C → C, ĥ(∞) = ∞.

Consider an open square Q ⊂ C and its preimage � = ĥ−1(Q). The set � is called a
cell, which is surely a domain. Its complement Ĉ \�, being equal to ĥ−1(Ĉ \Q), is also
connected. In view of unicoherence of Ĉ, the boundary ∂� = � ∩ (Ĉ \�) is connected.
Thus � is a simply connected domain. As for the preimage ĥ−1(∂Q), caution is required.
Although it is straightforward that ∂ĥ−1(Q) ⊂ ĥ−1(∂Q), the set C := ĥ−1(∂Q) can be
larger than ∂ĥ−1(Q). We note that C is a continuum disconnecting Ĉ into two components
(see Proposition 3.4). Also note that the bounded component of C\C equals� = ĥ−1(Q).

Next consider an increasing sequence Q1 b Q2 b · · · b Q of open squares, Qn =
λnQ, 0 < λn ↗ 1, so

⋃
∞

n=1 Qn = Q. Hereafter, the notation λQ stands for the square
with the same center as Q but λ-times smaller than Q. We will be dealing with the induced
cells �1 b �2 b · · · b �, where �n = ĥ−1(Qn), so

⋃
∞

n=1�n = �. Choose one of
the boundaries ∂Qn, n = 2, 3, . . . . This is a Jordan curve which separates Qn−1 from
∂Qn+1. By monotonicity of ĥ : Ĉ onto

−−→ Ĉ we see that Cn := ĥ−1(∂Qn) is a continuum
in �n+1. This continuum separates ∂�n+1 from �n−1. More precisely, Cn ⊂ �n+1 and
the bounded component of Ĉ \ Cn contains �n−1, because no point in �n = ĥ−1(Qn)
can be connected to∞ by a path in the open set Ĉ \ Cn.

Now suppose we are given a sequence {̂hj }∞j=1 of continuous monotone mappings
ĥj : Ĉ → Ĉ such that ĥj : C → C and ĥ(∞) = ∞. We assume that this sequence
converges uniformly to ĥ : Ĉ → Ĉ. Denote Cjn = ĥ−1

j (∂Qn), j = 1, 2, . . . . These are
continua disconnecting Ĉ into two components. The sets

�
j
n := ĥ

−1
j (Qn) (5.4)

are the bounded components of Ĉ \ Cjn . Just the uniform convergence ĥj ⇒ ĥ yields

lim
j→∞

sup
x∈C

j
n

dist(x, Cn) = 0.
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Therefore, for sufficiently large j , say j ≥ jn, the continuum C
j
n separates �n−1 from

∂�n+1, which yields the inclusions

�n−1 ⊂ �
j
n ⊂ �

j

n ⊂ �n+1, n ≥ 2 and j ≥ jn. (5.5)

5.2.1. Cutting a cell. From now on, ĥ : Ĉ→ Ĉ will be the continuous monotone exten-
sion of h : X onto

−−→ Y, as in Section 3.3. Fix one of the boundary circles X1, . . . ,X` ⊂ ∂X,
say Xi for some i = 1, . . . , `, and recall the correspondence ϒi = h(Xi) with a boundary
circle in ∂Y. We also recall the notation Xi for the reflection of X across Xi , and Yi for
the reflection of Y across ϒi . Now let an open square Q intersect ϒi along an open arc
γ = ϒi ∩ Q. We assume that Q is small enough so it lies entirely in Y ∪ ϒi ∪ Yi . The
arc γ is a cross-cut of Q; it cuts Q into two connected subdomains Q ∩ Y and Q ∩ Yi .
We shall now look closely at the corresponding cross-cut of the cell � = ĥ−1(Q). The
boundary map h : Xi

onto
−−→ ϒi , being continuous and monotone, defines an open subarc

of Xi ,
β = {x ∈ Xi : h(x) ∈ γ },

which obviously lies in �. The endpoints of β belong to ∂�. Indeed, if x is an endpoint
of β then there are points xν ∈ β ⊂ � which converge to x 6∈ β, thus h(xν) ∈ γ . Passing
to the limit we obtain h(x) ∈ γ \ γ ⊂ ∂Q. Therefore, x 6∈ h−1(Q) = �, meaning that
x ∈ ∂�.

This is surely a geometric folklore that the arc β ⊂ � (in the simply connected
domain �) whose endpoints lie in ∂� splits � into two connected subdomains, namely,

U = X ∩� and Xi ∩�. (5.6)

The latter subdomain will be of no interest to us. Be aware that in general U is not the
same as h−1(Q ∩ Y). In fact, we have obtained the domain

U = h−1(Q ∩ Y) = {x ∈ X : h(x) ∈ Q ∩ Y}. (5.7)

This domain will hereafter be referred to as a cell in X.
We are now approaching the decisive point of the arguments in this paper.

5.3. p-harmonic replacement in a cell (the heart of the matter)

Here X and Y are circular domains and X and ϒ denote their outer circles. We consider
homeomorphisms ĥj : X

onto
−−→ Y in W 1,p(X,R2) which take X onto ϒ , and their weak

limit h ∈ Ĥp(X,Y), ĥ : X
into
−→ Y. The domain U in (5.7) will be called an inner cell if

Q ⊂ Y and an outer boundary cell if Q ∩ ∂Y = Q ∩ ϒ 6= ∅.

Proposition 5.3. Let h ∈ Ĥp(X,Y) and U ⊂ X be as above. Then there exists h∗ ∈
Ĥp(X,Y) such that

(i) h∗ : U onto
−−→ Q ∩ Y is a p-harmonic diffeomorphism,

(ii) h∗ = h : X \ U onto
−−→ Y \ (Q ∩ Y),

(iii)
∫∫

X|∇h
∗
|
p
≤
∫∫

X|∇h|
p.

Note that (ii) yields h∗ = h : ∂X onto
−−→ ∂Y, and so h∗ ∈ h+R

p
◦ (X).
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Proof. We first construct h∗ for the inner cell U = h−1(Q), Q ⊂ Y. This highlights the
idea and suggests how to modify the arguments to obtain a proof for the boundary cells.

1. Replacement in an inner cell. Consider, as in §5.2, an increasing sequence of open
squares Qn = λnQ and the associated cells in X,

�n = h
−1(Qn) ⊂ X, �1 b �2 b · · · b � = h

−1(Q).

Also recall the continua Cjn = h−1
j (∂Qn), the domains�jn = h−1

j (Qn), and the inclusions

�n−1 ⊂ �
j
n ⊂ �

j

n ⊂ �n+1 for all j ≥ jn (n ≥ 2).

For every n ≥ 2 we have a homeomorphism

hjn : �
jn
n

onto
−−→ Qn (5.8)

of a Jordan domain onto a convex domain. With the aid of Theorem 4.10 we may re-
place (5.8) by a p-harmonic diffeomorphism, which results in the mapping

h̃n =

{
p-harmonic diffeomorphism of �jnn

onto
−−→ Qn

hjn : X \�
jn
n → Y \Qn.

By Theorem 4.9, we see that h̃n ∈Hp(X,Y) and its energy does not increase,

EX [̃hn] ≤ EX[hjn ].

Now the desired mapping h∗ ∈ Ĥp(X,Y) is a weak limit of h̃n (after passing to a subse-
quence if necessary). We recall that any family of mappings in Ĥp(X,Y) whose energy
is controlled by a constant is equicontinuous. Therefore, h̃n converges uniformly to h∗

on X. For x ∈ X \�, we have h̃n(x) = hjn(x)→ h(x), and so h∗ = h on X \�. More-
over, h∗ : � → C is p-harmonic. From Theorem 4.9 we infer that h∗ ∈ h + W

1,p
◦ (�).

This theorem also tells us that
EX[h∗] ≤ EX[h].

It remains to show that h∗ : � onto
−−→ Q, and it is a diffeomorphism. To this end, fix (tem-

porarily) an arbitrary compactly contained subdomain �′ b �. Note that �′ b �
jn
n for

sufficiently large n. By the p-harmonic Hurwitz Theorem 4.13, either the map h∗ : �′ into
−→

C is a diffeomorphism, or its Jacobian determinant vanishes identically. However, the lat-
ter case is easily ruled out by computing the integral of the Jacobian over �. Indeed,
appealing to (4.10), we see that∫

�

J (x, h∗) dx = lim
n→∞

∫
�

J (x, hjn) dx ≥ lim
n→∞

∫
�
jn
n

J (x, hjn) dx

= lim
n→∞
|Qn| = |Q| > 0.

Hence also
∫
�′
J (x, h∗) dx > 0, at least for all sufficiently large subdomains �′ b �.

In conclusion, h∗ : �′ into
−→ C is a diffeomorphism, and so is h∗ : � into

−→ C. Since the
homeomorphisms hjn take �jnn ⊂ � onto Qn ⊂ Q and converge uniformly on � to h∗, it
is an elementary check that h∗ : � onto

−−→ Q. ut
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2. Replacement in an outer boundary cell. Although the construction of h∗ runs along
similar lines, there are subtle adjustments necessary to fit the arguments to a cell U ⊂ X,
because it touches the outer boundary X ⊂ ∂X. We denote X′ = X ∪ X ∪ ϕ(X) and
Y′ = Y ∪ ϒ ∪ ψ(Y), where ϕ(X) is the reflection of X across X, and ψ(Y) is the
reflection of Y across ϒ . This time U is a portion of � = ĥ−1(Q) ⊂ X′, whereas Q is an
open square in Y′. More precisely, U = � ∩ X.

We recall the sequence of homeomorphisms hj : X
onto
−−→ Y converging to h

weakly in W 1,p(X,R2) together with their extensions to continuous monotone mappings
ĥj : Ĉ

onto
−−→ Ĉ and ĥ : Ĉ onto

−−→ Ĉ. Note that the ĥj are homeomorphisms in X as well as in
the reflected domain ϕ(X), but not necessarily along the boundary circle. Therefore, this
time the mappings

ĥj : X′
onto
−−→ Y′

are only continuous and monotone. Recall from §5.2 the sequence of open squares Qn =
λnQ ⊂ Y′, where 0 < λn ↗ 1, and the cells

�n = ĥ
−1(Qn) ⊂ X′, �1 b �2 b · · · b � = ĥ

−1(Q).

Also recall the continua Cjn = ĥ−1
j (∂Qn), the domains�jn = ĥ−1

j (Qn), and the inclusions

�n−1 ⊂ �
j
n ⊂ �

j

n ⊂ �n+1 for all j ≥ jn (n ≥ 2).

Although the continuum C
j
n = ĥ

−1
j (∂Qn) may no longer be a Jordan curve, it neverthe-

less disconnects C into two components; the domain �jn is none other than the bounded
component of C \Cjn . Even the portion �jn ∩X (always simply connected) may fail to be
Jordan. We need to truncate �jn ∩X slightly near X to obtain a Jordan domain compactly
contained in X. It will be additionally required that the image of the truncated region
under the homeomorphism hjn be convex.

To this end, we consider the convex regions Qn ∩ Yδ , where Yδ = {y ∈ Y :
dist(y, ∂Y) > δ}. The parameters δ = δn → 0 must be suitably chosen to ensure that the
truncated cells approximate U as n→∞.

Let us fix n ≥ 2 for a moment. Since hjn : X
onto
−−→ Y is a homeomorphism, there is

δ = δn > 0 such that the set

Un := h
−1
j (Qn ∩ Yδ), j = jn, δ = δn, (5.9)

contains �jn ∩ X1/n, where X1/n
= {x ∈ X : dist(x, ∂X) > 1/n}.

Now, in analogy with (5.8), we have a sequence of homeomorphisms

hjn : Un
onto
−−→ Qn ∩ Yδn (5.10)

which take the Jordan domains Un onto the convex domains Qn ∩ Yδn . As before, we
replace hjn by a p-harmonic diffeomorphism on Un. This furnishes the mapping h̃n ∈
Ĥp(X,Y),

h̃n =

{
p-harmonic diffeomorphism of Un

onto
−−→ Qn ∩ Yδn

hjn : X \ Un→ Y \Qn ∩ Yδn .
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The desired map h∗ is a weak limit of h̃n. The remaining part of the proof goes in the
same way as for the inner cell. We leave the details to the interested reader.

5.4. Proof of Proposition 5.1

We begin with a geometric covering lemma. For this we recall the neighborhood Y′ =
Y ∪ ϒ ∪ ψ(Y) of the outer boundary ϒ ⊂ ∂Y.

Lemma 5.4 (Three nets of squares). Let Y′ ⊂ R2 be any open set. For every ρ > 0
there exist three nets A = {Aα}∞α=1, B = {Bβ}∞β=1 and C = {Cγ }∞γ=1, each consisting of
disjoint open squares of diameter ρ or less, such that

∞⋃
α=1

Aα ∪

∞⋃
β=1

Bβ ∪

∞⋃
γ=1

Cγ = Y′. (5.11)

The proof presents no difficulty. We shall not bother the reader with an explicit assembly
of the nets. To each of the nets A,B and C there corresponds a reticulation of cells in X.
We begin with the net A.

Step 1 (p-harmonic replacements in A-cells). Note that each Aα is convex. Consider a
disjoint family of open cells in X,

Uα = f
−1(Aα ∩ Y) = {x ∈ X : f (x) ∈ Aα ∩ Y}.

It should be noted that Uα is empty whenever Aα ∩ Y = ∅.
At this stage we appeal to the p-harmonic replacements provided by Proposition 5.3,

with Uα in place of U . Upon consecutive replacements in the cells Uα we arrive at a
mapping fA : X

onto
−−→ Y such that

(i) fA ∈ H̃p(X,Y) and fA = f : ∂X
onto
−−→ ∂Y,

(ii) fA :
⋃
∞

α=1 Uα
onto
−−→

⋃
∞

α=1(Aα ∩ Y) is a p-harmonic diffeomorphism,

(iii) fA = f : X \
⋃
∞

α=1 Uα
onto
−−→ Y \

⋃
∞

α=1(Aα ∩ Y),
(iv)

∫∫
X|∇fA|

p
≤
∫∫

X|∇f |
p.

The net A actually depends on ρ > 0, which we indicate by writing A = Aρ . Let us
take a close look at the mappings fAρ

when ρ approaches 0. First, given x ∈ X, we see
that fAρ

(x) = f (x) if x does not belong to any of the cells Uα . If, however, x ∈ Uα for
some α then

fAρ
(x) ∈ f (Uα) = Aα ∩ Y.

In either case |fAα
(x) − f (x)| ≤ ρ. We then infer that ‖fAρ

− f ‖C (X) ≤ ρ, which
means that fAδ

⇒ f (uniformly on X) as ρ → 0. On the other hand, the energy of fAδ

does not exceed that of f . Thus also fAδ
⇀ f weakly in W 1,p(X). Hence, by lower

semicontinuity of the energy functional,

EX[f ] ≤ lim
ρ→0

EX[fAρ
] ≤ lim

ρ→0
EX[f ] = EX[f ], so lim

ρ→0
EX[fAρ

] = EX[f ].
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Since the space L p(X) is uniformly convex, the mappings fAδ
actually converge strongly

in Rp(X).
In summary, given any ε > 0, there is a net A = {Aα}∞α=1 for which

‖hA − h‖Rp(X) ≤
ε

3`
. (5.12)

Step 2 (p-harmonic replacements in B-cells). This is essentially a repetition of the pro-
cedure in Step 1, but with fA in place of f and with the net B in place of A. It gives us
another reticulation of open cells in X. Namely, we obtain

Vβ = f
−1
A (Bβ ∩ Y) = {x ∈ X : fA(x) ∈ Bβ ∩ Y},

and a mapping fAB : X
onto
−−→ Y, such that

(i) fAB ∈ Ĥp(X,Y) and fAB = fA = f : ∂X
onto
−−→ ∂Y,

(ii) fAB :
⋃
∞

β=1 Vβ
onto
−−→

⋃
∞

β=1(Bβ ∩ Y) is a p-harmonic diffeomorphism,

(iii) fAB = fA : X \
⋃
∞

β=1 Vβ
onto
−−→ Y \

⋃
∞

β=1(Bβ ∩ Y),
(iv)

∫∫
X|∇fAB|p ≤

∫∫
X|∇fA|

p
≤
∫∫

X|∇f |
p.

The counterpart of (5.12) reads

‖fAB − fA‖Rp(X) ≤
ε

3`
.

Step 3 (p-harmonic replacements in C-cells). Analogously to Steps 1 and 2, we assemble
open cells in X associated with the net C,

Wγ = f
−1
AB(Cγ ∩ Y) = {x ∈ X : fAB(x) ∈ Cγ ∩ Y}.

The p-harmonic replacements in these cells result in the mapping, denoted by fABC :
X onto
−−→ Y, such that

(i) fABC ∈ H̃p(X,Y) and fABC = fAB = hA = f : ∂X
onto
−−→ ∂Y,

(ii) fABC :
⋃
∞

γ=1Wγ
onto
−−→

⋃
∞

β=1(Cγ ∩ Y) is a p-harmonic diffeomorphism,

(iii) fABC = fAB : X \
⋃
∞

γ=1Wγ
onto
−−→ Y \

⋃
∞

β=1(Cγ ∩ Y),
(iv)

∫∫
X|∇fABC |p ≤

∫∫
X|∇fAB|p ≤

∫∫
X|∇f |

p.

Moreover,

‖fABC − fAB‖Rp(X) ≤
ε

3`
. (5.13)
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5.4.1. The desired mapping f ∗. Having performed the replacement procedures in the A-
cells, B-cells and C-cells we finally arrive at the mapping fABC . We allege that this map
satisfies all the conditions asserted in Proposition 5.1, whence we denote it by

f ∗ = fABC ∈ Ĥp(X,Y).

Let us verify those conditions. Inequality (5.2) is obvious;

‖f ∗ − f ‖Rp(X) ≤ ‖fABC − fAB‖Rp(X) + ‖fAB − fA‖Rp(X) + ‖fA − f ‖Rp(X)

≤
ε

3`
+
ε

3`
+
ε

3`
=
ε

`
.

Verification of the other conditions involves elementary set-theoretical considerations,
which we include for completeness; some do not seem immediate at all. First we show
the identity

∞⋃
α=1

Uα ∪

∞⋃
β=1

Vβ ∪

∞⋃
γ=1

Wγ = G (5.14)

where we recall that G = {x ∈ X : f (x) ∈ Y ∪ ϒ}.

Proof of (5.14). Suppose x ∈
⋃
∞

α=1 Uα ∪
⋃
∞

β=1 Vβ ∪
⋃
∞

γ=1Wγ . There are three cases
to consider.

Case 1: x ∈
⋃
∞

α=1 Uα . This yields h(x) ∈ Aα ∩ Y ⊂ Y ∪ ϒ for some α. Thus x ∈ G.

Case 2: x 6∈
⋃
∞

α=1 Uα and x ∈
⋃
∞

β=1 Vβ . Hence for some β,

f (x) = fA(x) ∈ Bβ ∩ Y ⊂ Y ∪ ϒ, thus x ∈ G.

Case 3: x 6∈
⋃
∞

α=1 Uα and x 6∈
⋃
∞

β=1 Vβ , so x ∈ Wγ for some γ . This yields

f (x) = fA(x) = fAB(x) ∈ Cγ ∩ Y ⊂ Y ∪ ϒ, thus x ∈ G.

In either case we have the inclusion
⋃
∞

α=1 Uα ∪
⋃
∞

β=1 Vβ ∪
⋃
∞

γ=1Wγ ⊂ G.
For the opposite inclusion, suppose that x ∈ X and

x 6∈

∞⋃
α=1

Uα ∪

∞⋃
β=1

Vβ ∪

∞⋃
γ=1

Wγ .

Since x 6∈
⋃
∞

α=1 Uα , we see that f (x) = fA(x). Since x 6∈
⋃
∞

β=1 Vβ , we see that
fA(x) = fAB(x). Since x 6∈

⋃
∞

γ=1Wγ , we see that fAB(x) = fABC(x) = f ∗(x).
Consider the point y = f (x) = fA(x) = fAB(x) = fABC(x). We have

y = f (x) 6∈

∞⋃
α=1

(Aα ∩Y), y = fA(x) 6∈
∞⋃
β=1

(Bβ ∩Y), y = fAB(x) 6∈
∞⋃
γ=1

(Cγ ∩Y).

Thus

y 6∈
( ∞⋃
α=1

Aα ∪

∞⋃
β=1

Bβ ∪

∞⋃
γ=1

Cγ

)
∩ Y = Y ∪ ϒ.
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The last equality is immediate from (5.11). Thus h(x) 6∈ Y ∪ ϒ , and so x 6∈ G. This
completes the proof of (5.14). ut

In order to see that f ∗ : G→ Y is injective, we consider distinct points

x1, x2 ∈ G =
∞⋃
α=1

Uα ∪

∞⋃
β=1

Vβ ∪

∞⋃
γ=1

Wγ .

Suppose, to the contrary, that f ∗(x1) = f ∗(x2) =: y. Since the mapping f ∗ =

fABC :
⋃
∞

γ=1Wγ
onto
−−→

⋃
∞

γ=1(Cγ ∩ Y) is injective and

fABC = fAB : X \
∞⋃
γ=1

Wγ → Y \
∞⋃
γ=1

(Cγ ∩ Y)

it follows that x1, x2 6∈
⋃
∞

γ=1Wγ . Thus we are reduced to the case x1, x2 ∈
⋃
∞

β=1 Uα ∪⋃
∞

β=1 Vβ and y = fAB(x1) = fAB(x2). In exactly the same way we infer that x1, x2 6∈⋃
∞

β=1 Vβ . Thus we are further reduced to the case

x1, x2 ∈

∞⋃
α=1

Uα and y = fA(x1) = fA(x2).

Just as before, x1, x2 6∈
⋃
∞

α=1 Uα . We arrive at the contradiction

x1, x2 6∈

∞⋃
α=1

Uα ∪

∞⋃
β=1

Vβ ∪

∞⋃
γ=1

Wγ = G,

finishing the argument for injectivity of f ∗ : G→ Y.
Next, to see that f ∗ : G into

−→ Y, we choose

x ∈ G =
∞⋃
α=1

Uα ∪

∞⋃
β=1

Vβ ∪

∞⋃
γ=1

Wγ .

Denote y = f ∗(x). If x ∈
⋃
∞

γ=1Wγ , then

f ∗(x) = fABC(x) ∈
∞⋃
γ=1

Cγ ∩ Y ⊂ Y.

Thus suppose x 6∈
⋃
∞

γ=1Wγ . In this case f ∗(x) = fAB(x) and x ∈
⋃
∞

α=1 Uα∪
⋃
∞

β=1 Vβ .
Now, if x ∈

⋃
∞

β=1 Vβ then y = fAB ∈
⋃
∞

β=1 Bβ ∩ Y ⊂ Y, as desired. Finally, if
x 6∈

⋃
∞

β=1 Vβ then x ∈
⋃
∞

β=1 Uα , which yields y = fA(x) ∈
⋃
∞

α=1Aα ∩ Y ⊂ Y,
completing the proof of the inclusion f ∗(G) ⊂ Y.

Lastly, to see surjectivity f ∗ : G onto
−−→ Y we recall that f ∗ = fABC : X

onto
−−→ Y and

f ∗ = f : ∂X onto
−−→ ∂Y. Hence f ∗(X) ⊃ Y. Take any y ∈ Y to show that it lies in
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f ∗(G). Obviously, there exists x ∈ X such that f ∗(x) = y, whereas the assumption
x 6∈ G =

⋃
∞

α=1 Uα ∪
⋃
∞

β=1 Vβ ∪
⋃
∞

γ=1Wγ leads to a clear contradiction,

y = f ∗(x) = fABC(x) = fAB(x) = fA(x) = f (x) ∈ Y, so x ∈ f−1(Y) ⊂ G.

finishing the proof of Proposition 5.1. ut

This also completes the proof of Theorem 1.2.
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(2008) Zbl 1137.74011 MR 2383087

[66] Sivaloganathan, J., Spector, S. J.: On irregular weak solutions of the energy-momentum
equations. Proc. Roy. Soc. Edinburgh Sect. A 141, 193–204 (2011) Zbl 1211.49006
MR 2773446

[67] Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (2004)
Zbl 0779.73004 MR 2056350

[68] Tukia, P.: The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I
Math. 5, 49–72 (1980) Zbl 0411.57015 MR 0595177
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