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Abstract. We provide a geometric characterization of rigidity of equality cases in Ehrhard’s sym-
metrization inequality for Gaussian perimeter. This condition is formulated in terms of a new
measure-theoretic notion of connectedness for Borel sets, inspired by Federer’s definition of in-
decomposable current, and of possible broader interest.
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1. Introduction

1.1. Overview

Symmetrization inequalities are among the most basic tools used in the calculus of vari-
ations. The study of their equality cases plays a fundamental role in the explicit char-
acterization of minimizers, thus in the computation of optimal constants in geometric
and functional inequalities. Although it is usually easy to derive useful necessary con-
ditions for equality cases, the analysis of rigidity of equality cases (that is, the situa-
tion when every set realizing equality in the given symmetrization inequality turns out
to be symmetric) is a much subtler issue. Two deep results that provide sufficient con-
ditions for the rigidity of equality cases are the Brothers–Ziemer theorem concerning
Schwartz’s symmetrization inequality for Dirichlet-type integral functionals [BZ88], and
the Chlebı́k–Cianchi–Fusco theorem, concerning Steiner’s symmetrization inequality for
distributional perimeter [CCF05] (see [BCF13] for an extension of this last result to higher
dimensional Steiner’s symmetrization). In this paper we introduce a new point of view on
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rigidity of equality cases, which will allow us to provide characterizations of rigidity
(rather than merely sufficient conditions) in various situations.

We address the case of Ehrhard’s symmetrization inequality for Gaussian perimeter.
Ehrhard’s symmetrization is a powerful device in the analysis of geometric variational
problems in the Gauss space, the versatility of which is well-known in probability theory.
Rigidity of equality cases for Ehrhard’s inequality are an open problem, even at the level
of finding sufficient conditions for rigidity. Theorem 1.3 below completely solves this
problem, by providing a geometric characterization of rigidity of equality cases.

This characterization is obtained in terms of a measure-theoretic notion of connected-
ness, named essential connectedness, which is meaningful in the very general context of
Borel sets, and is inspired by the notion of indecomposable current adopted in geometric
measure theory [Fed69, 4.2.25]. We shall actually make precise the more general idea of
having one (Borel) set disconnecting another (Borel) set. The rigidity results of this paper
validate these new notions of connectedness as natural and usable concepts.

Constancy results for functions of bounded variation, based on the notion of inde-
composability, have been exploited in nonlinear elasticity [DM95] and image reconstruc-
tion [ACMM01]. In the companion paper [CCDPM13] we address the rigidity problem
in Steiner’s inequality for Euclidean perimeter, and we exploit essential connectedness
to formulate constancy results for measurable functions with no distributional gradient
structure (namely, the functions defined by the barycenters of one-dimensional orthog-
onal sections of sets of finite perimeter). As similarly rough functions naturally arise in
other problems (e.g., as minimizers of variational limits in singular perturbations models
[DLO03]), we expect these ideas to be useful in obtaining rigidity results also outside the
context of symmetrization inequalities.

The rest of this introduction is organized as follows. In Section 1.2 we introduce
Gaussian perimeter, together with the Gaussian isoperimetric problem. This important
variational problem motivates the notion of Ehrhard’s symmetrization, presented in Sec-
tion 1.3. In Sections 1.4 and 1.5 we introduce, respectively, the rigidity problem for
Ehrhard’s inequality, and the measure-theoretic notion of connectedness we shall exploit
in its solution. In Section 1.6 we state our main result, Theorem 1.3, together with its
proper reformulation in the planar setting.

1.2. Gaussian perimeter and the Gaussian isoperimetric problem

We introduce our setting. Given a Lebesgue measurable set E ⊂ Rn, we define its Gaus-
sian volume as

γn(E) =
1

(2π)n/2

∫
E

e−|x|
2/2 dx.

If n ≥ k ≥ 1, the k-dimensional Gaussian-Hausdorff measure of a Borel set S ⊂ Rn is

Hk
γ (S) =

1
(2π)k/2

∫
S

e−|x|
2/2 dHk(x),

where Hk denotes the k-dimensional Hausdorff measure on Rn. (In this way, γn = Hn
γ

and Hk
γ (S) = 1 whenever S is a k-dimensional plane containing the origin.) The Gaussian
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perimeter of an open set E with Lipschitz boundary is then defined as

Pγ (E) = Hn−1
γ (∂E) =

1
(2π)(n−1)/2

∫
∂E

e−|x|
2/2 dHn−1(x). (1.1)

The most basic geometric variational problem in the Gauss space is, of course, the Gaus-
sian isoperimetric problem, which consists in the minimization of Gaussian perimeter
at fixed Gaussian volume. As it turns out, (the only) isoperimetric sets are half-spaces.
The Gaussian isoperimetric theorem can be translated into a geometric inequality, with
a characterization of equality cases. Indeed, if we define 8 : R ∪ {±∞} → [0, 1] and
9 = 8−1

: [0, 1] → R ∪ {±∞} by setting

8(t) =
1
√

2π

∫
∞

t

e−s
2/2 ds, t ∈ R ∪ {±∞}, (1.2)

then 8(t) is the Gaussian volume of a half-space lying at “signed distance” t from the
origin (more precisely, 8(t) = γn({x1 > t}) for every t ∈ R). It is then clear that, given
λ ∈ (0, 1), e−9(λ)

2/2 is the Gaussian perimeter of any half-space of Gaussian volume λ,
and thus the Gaussian isoperimetric inequality takes the form

Pγ (E) ≥ e
−9(γn(E))

2/2, (1.3)

with equality if and only if, up to rotations keeping the origin fixed, E is a half-space with
the suitable Gaussian volume, that is,

E = {x ∈ Rn : xn > 9(γn(E))}.

Inequality (1.3) was first proved by Borell [Bor75] and by Sudakov and Cirel’son [SC74].
Alternative proofs, either of probabilistic [BL95, Bob97, Led98, BM00] or geometric
[Ehr83, Ehr84, Ehr86] nature, have been proposed, although the characterization of equal-
ity cases has been obtained only recently, by probabilistic methods, by Carlen and Kerce
[CK01]. Finally, a characterization of equality cases, and a stability inequality with sharp
decay rate, were obtained in [CFMP11] building on the symmetrization methods intro-
duced by Ehrhard [Ehr83]. Let us mention in passing that the study of stability issues for
Gaussian isoperimetry still poses some difficult questions—see [MN12] for some recent
progresses in this direction.

Let us notice that the natural domain of validity of the Gaussian isoperimetric in-
equality, and, in fact, of Ehrhard’s symmetrization technique, is much broader than what
we have explained so far. Indeed, Gaussian perimeter can be defined for every Lebesgue
measurable set E ⊂ Rn by setting

Pγ (E) = Hn−1
γ (∂eE) ∈ [0,∞].

We recall that the essential boundary ∂eE of E is defined as

∂eE = Rn \ (E(0) ∪ E(1)),
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where, given t ∈ [0, 1], E(t) denotes the set of points of density t of E,

E(t) =

{
x ∈ Rn : lim

r→0+

Hn(E ∩ B(x, r))

ωnrn
= t

}
,

and ωn is the volume of the Euclidean unit ball of Rn. If E is an open set with Lipschitz
boundary, then we trivially have ∂eE = ∂E, and thus this new definition of Pγ (E) pro-
vides a coherent extension of (1.1). In general, if Pγ (E) < ∞, then E is a set of locally
finite perimeter, and in that case Pγ (E) = Hn−1

γ (∂∗E), where ∂∗E denotes the reduced
boundary of E; see Section 2.5 for the terminology introduced here. (More generally,
E is of locally finite perimeter if and only if E is of locally finite Gaussian perimeter,
that is, Hn−1

γ (K ∩ ∂eE) < ∞ for every compact set K ⊂ Rn.) Finally, we notice that,
with these definitions in force, inequality (1.3) holds true for every Lebesgue measurable
set E ⊂ Rn, and equality holds if and only if, up to rotations around the origin, E is
Hn-equivalent to the half-space {x ∈ Rn : xn > 9(γn(E))}.

1.3. Ehrhard’s symmetrization

Ehrhard’s approach [Ehr83, Ehr84, Ehr86] to the Gaussian isoperimetric inequality is
based on a symmetrization procedure that is the natural analogue of Steiner’s symmetriza-
tion in the Gaussian setting. The definition goes as follows. We decompose Rn, n ≥ 2,
as the Cartesian product Rn−1

× R, denoting by p : Rn → Rn−1 and q : Rn → R
the horizontal and vertical projections, so that x = (px,qx), px = (x1, . . . , xn−1), and
qx = xn for every x ∈ Rn. Given a set E ⊂ Rn, we denote by Ez its vertical section with
respect to z ∈ Rn−1, that is,

Ez = {t ∈ R : (z, t) ∈ E}, z ∈ Rn−1. (1.4)

Given a Lebesgue measurable function v : Rn−1
→ [0, 1], we say that E is v-distributed

provided H1
γ (Ez) = v(z) for Hn−1-a.e. z ∈ Rn−1, and we write

F [v] = {x ∈ Rn : qx > 9(v(px))}, (1.5)

for the v-distributed set whose vertical sections are positive half-lines in the xn-direction.
If E is a v-distributed set, then the Ehrhard symmetral Es of E is defined as

Es = F [v]

(see Figure 1.1). By Fubini’s theorem, Gaussian volume is preserved under Ehrhard’s
symmetrization, that is, γn(E) = γn(E

s). At the same time, Gaussian perimeter is de-
creased under Ehrhard’s symmetrization. More precisely, if there exists a v-distributed
set of finite Gaussian perimeter E, then F [v] is of locally finite perimeter, and Ehrhard’s
inequality

Pγ (E) ≥ Pγ (F [v]), (1.6)

holds true. A proof of these facts based on the coarea formula is presented in [CFMP11,
Section 4.1]. This approach also leads to the following theorem concerning equality cases,
which will play an important role below. (Here, νE denotes the measure-theoretic outer
unit normal to a set of locally finite perimeter E—see Section 2.5.)
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Rn−1

R

E

Es

z

Ez

Esz

Fig. 1.1. Ehrhard’s symmetrization consists in replacing the vertical sections of a set with vertical
half-lines with the same Gaussian length and positive orientation. Note that, in this picture, the
non-trivial vertical sections Ez of E are constantly equal to the same segment. The corresponding
sections Esz of Es are thus constantly equal to the half-line of Gaussian length H1

γ (Ez).

Theorem A. If E ⊂ Rn is a set of locally finite perimeter with Pγ (E) = Pγ (Es), then

Ez is H1-equivalent to a half-line for Hn−1-a.e. z ∈ Rn−1. (1.7)

Moreover, if E satisfies (1.7), and ∂∗E has no “vertical parts”, that is,

Hn−1({x ∈ ∂∗E : qνE(x) = 0}) = 0, (1.8)

then Pγ (E) = Pγ (Es).

1.4. The rigidity problem for Ehrhard’s inequality

We now turn to the rigidity problem related to the Ehrhard inequality. Given v : Rn−1
→

[0, 1] such that

M(v) = {E ⊂ Rn : E is v-distributed and Pγ (E) = Pγ (F [v]) <∞}

is non-empty, we ask about necessary and sufficient conditions for

E ∈M(v) if and only if either Hn(E 4 F [v]) = 0 or Hn(E 4 g(F [v])) = 0,
(1.9)

where g : Rn→ Rn denotes the reflection with respect to Rn−1, that is,

g(x) = (px,−qx), x ∈ Rn.

Simple examples show that the rigidity condition (1.9) may fail if we allow v to take
the values 0 or 1 (see Figure 1.2) and suggest that a reasonable sufficient condition for
rigidity could amount to ruling out this possibility. At the same time, v may take the
values 0 and/or 1 and still rigidity may hold: an example is depicted in Figure 1.3. Thus,
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x2x2

x1

E

x2

F [v]

x1

E

x1

F [v]

x1

x2

Fig. 1.2. In the first example (two top pictures), the function v : R→ [0, 1] takes the value 1 at the
origin. The correspoding set F [v] is connected and there exists E ∈M(v) such that H2(E4F) =
H2(E 4 g(F )) = ∞. In the second example (two bottom pictures), we observe the same features
in the case of a function v that takes the value 0 at the origin.

F [v]

x2

x3

{0 < v < 1}(1)

{v∧ = 0}x1

Fig. 1.3. In this example, {v∧ = 0} is a segment lying inside {0 < v < 1}(1). Nevertheless, we have
rigidity of equality, as a vertical reflection of F [v] on any proper non-empty subset of {0 < v < 1}
will create extra Gaussian perimeter.
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this plausible sufficient condition would be far from necessary. As it turns out, one needs
to introduce some proper notions of connectedness in order to formulate conditions that
effectively characterize rigidity.

Before entering into this, let us notice how the need for working in a measure-theoretic
framework arises naturally here. Indeed, if w = v Hn−1-a.e. on Rn−1, then F [v] and
F [w] are Hn-equivalent (thus Pγ (F [v]) = Pγ (F [w]) ∈ [0,∞]), a set E ⊂ Rn is v-
distributed if and only if it is w-distributed, and M(v) = M(w). In particular, a con-
dition like “v takes the value 0 or 1 on a given set S” has no meaning in our problem
if Hn−1(S) = 0. We shall rule out these ambiguities by exploiting the notions of ap-
proximate upper and lower limits of a Lebesgue measurable function f : Rm→ R. More
precisely, the approximate upper limit f ∨(x) and the approximate lower limit f ∧(x) of f
at x ∈ Rm are defined by setting

f ∨(x) = inf
{
t ∈ R : x ∈ {f > t}(0)

}
, (1.10)

f ∧(x) = sup
{
t ∈ R : x ∈ {f < t}(0)

}
. (1.11)

In this way, f ∨ and f ∧ are defined at every point of Rm, with values in R∪{±∞}, in such
a way that if f1 = f2 Hm-a.e. on Rm, then f ∨1 = f

∨

2 and f ∧1 = f
∧

2 everywhere on Rm.
Moreover, both f ∨ and f ∧ turn out to be Borel functions on Rm (see Section 2.3).

1.5. A measure-theoretic notion of connectedness

Given an open setG and a hypersurfaceK in Rm, the intuitive idea of what it means forK
to disconnectG is pretty clear: one simply expectsK to be the relative boundary insideG
of two non-trivial, disjoint open setsG+ andG− such thatG+∪G− = G. In this section,
we precisely define what it means for a Borel set K ⊂ Rm to “essentially” disconnect a
Borel set G ⊂ Rm, in such a way that this definition is stable under modifications of K
by Hm−1-negligible sets, and of G by Hm-negligible sets.

In order to introduce our definition, let us first recall the measure-theoretic notion
of connectedness used in the theory of sets of finite perimeter. A set of finite perimeter
G ⊂ Rm is indecomposable (see [DM95, Definition 2.11] or [ACMM01, Section 4]) if
for every non-trivial partition {G+,G−} ofG into sets of finite perimeter modulo Hm, i.e.

Hm(G+∩G−) = 0, Hm(G4 (G+∪G−)) = 0, Hm(G+)Hm(G−) > 0, (1.12)

we have P(G) < P(G+) + P(G−), where P(G) = Hm−1(∂∗G) = Hm−1(∂eG). (The
indecomposability of G in this sense is equivalent to the indecomposability in the sense
of [Fed69, 4.2.25] of the m-dimensional integer current on Rm canonically associated
to G.) More generally, we can say that a set of locally finite perimeter G ⊂ Rm is in-
decomposable if there exists r0 > 0 such that P(G;Br) < P (G+;Br) + P(G−;Br)

for every r > r0 and for every non-trivial partition {G+,G−} of G into sets of locally
finite perimeter. For sets of finite perimeter, indecomposability plays the same role that
connectedness plays for open sets: see, for example, the various results supporting this
intuition collected in [ACMM01, Section 4]. In contrast to topological connectedness,
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G

K

Fig. 1.4. If G = [0, 1] × [−1, 1] ⊂ R2 and K ⊂ ` = [0, 1] × {0}, then K essentially disconnects
G if and only if H1(` \ K) = 0. Thus, the set of rational numbers in [0, 1] does not essentially
disconnect G, while the set of irrational numbers in [0, 1] does.

indecomposability has however the following important stability property: if G1 is an
indecomposable set and G2 is Hm-equivalent to G1, then G2 is indecomposable too.

We now want to extend the notion of indecomposability to arbitrary Borel sets. In-
deed, a pretty obvious necessary condition for rigidity in Ehrhard’s inequality should
be the “connectedness” of {0 < v < 1}. Of course, for the reasons explained so far,
topological connectedness is not suitable here. Moreover, the Borel set {0 < v < 1} de-
fined by v ∈ BV loc(Rn−1

; [0, 1]) may fail to be of locally finite perimeter (see Example
3.9), and in that case we cannot exploit indecomposability. Finally, we shall in fact need
to give a precise meaning to the idea that a Borel set “disconnects” another Borel set.
This is achieved as follows. Given two Borel sets K and G in Rm, m ≥ 1, we say that
K essentially disconnects G if there exists a non-trivial Borel partition {G+,G−} of G
modulo Hm with

Hm−1((G(1) ∩ ∂eG+ ∩ ∂
eG−) \K) = 0. (1.13)

Of course, we say that K does not essentially disconnect G if for every non-trivial Borel
partition {G+,G−} of G modulo Hm we have

Hm−1((G(1) ∩ ∂eG+ ∩ ∂
eG−) \K) > 0. (1.14)

Finally, we say that G is essentially connected if ∅ does not essentially disconnect G. An
example is depicted in Figure 1.4.

Remark 1.1. If Hm(G1 4 G2) = 0, then G(1)1 = G
(1)
2 ; thus, K essentially discon-

nects G1 if and only if K essentially disconnects G2. Similarly, if Hm−1(K1 4K2) = 0,
then K1 essentially disconnects G if and only if K2 essentially disconnects G.

Remark 1.2. We shall prove in Remark 2.3 that a setG ⊂ Rm of locally finite perimeter
is indecomposable if and only if Hm−1(G(1) ∩ ∂eG+ ∩ ∂

eG−) > 0 for every non-trivial
Borel partition {G+,G−} of G modulo Hm. Therefore, a set of locally finite perimeter
is indecomposable if and only if it is essentially connected. At the same, the notion of
essential connectedness makes sense on arbitrary Borel sets. Actually, by replacing G(1)

with (Rm \G)(0) in the definition of ∂eG, we define a notion of connectedness that should
retain reasonable properties even when G is a not necessarily measurable set in Rm.
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1.6. Characterizations of rigidity for Ehrhard’s inequality

We are finally in a position to state our characterization of rigidity of equality cases in
Ehrhard’s inequality.

Theorem 1.3. If v : Rn−1
→ [0, 1] is a Lebesgue measurable function with Pγ (F [v])

<∞, then the following two statements are equivalent:

(i) if E ∈M(v), then either Hn(E 4 F [v]) = 0, or Hn(E 4 g(F [v])) = 0;
(ii) the set {v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect {0 < v < 1}.

Remark 1.4. If v = w Hn−1-a.e. on Rn−1, then v∨ = w∨ and v∧ = w∧. In particular,
the characterization (ii) of rigidity is independent of the representative of v.

Remark 1.5. The assumption Pγ (F [v]) < ∞ is of course the minimal hypothesis un-
der which it makes sense to consider the rigidity problem. As we shall see in Proposi-
tion 3.1, it implies a minimal amount of regularity on v. More precisely, it implies that
the Lebesgue measurable function9 ◦v : Rn−1

→ R∪{±∞} is an extended-real-valued
function of generalized bounded variation (see Section 3.1).

Despite the geometric clarity of the characterization of rigidity presented in Theorem 1.3,
its proof is actually quite delicate. We shall explain the reasons for this in the course
of its proof, presented in Section 3. For the moment, let us just mention the following
reformulation of Theorem 1.3 in the planar case n = 2.

Theorem 1.6. If v : R→ [0, 1] is a Lebesgue measurable function with Pγ (F [v]) <∞,
then the following two statements are equivalent:

(i) if E ∈M(v), then either H2(E 4 F [v]) = 0, or H2(E 4 g(F [v])) = 0;
(ii) {0 < v < 1} is H1-equivalent to an open interval I , with v∧ > 0 and v∨ < 1 on I .

Remark 1.7. A natural problem is that of characterizing rigidity, or providing sufficient
conditions for rigidity, in terms of indecomposability properties of F [v]. As shown by
the examples in Figure 1.2, it is not enough to ask that either F [v] or Rn \ F [v] be
indecomposable sets. As it turns out, if we are in the planar case, and we ask that both
F [v] and R2

\ F [v] be indecomposable, then rigidity holds (see Theorem 4.2). This last
condition is not necessary for rigidity in the planar case (see Figure 1.5), and, in fact, it is
not even sufficient for rigidity in Rn when n ≥ 3 (see Figure 1.6). A sufficient condition
for rigidity in Rn, n ≥ 3, is obtained by requiring the existence of ε > 0 such that

F [v] ∩ ({t < v < 1− t} × R) is indecomposable for a.e. t < ε (1.15)

(see Theorem 4.1). However, not even this last condition is necessary for rigidity in Rn:
for an example in the planar case, see Figure 1.7. In this case, (1.15) fails for every t ∈
(0, 1), but, of course, rigidity holds true. In conclusion, it seems not possible to achieve a
characterization of rigidity in terms of indecomposability properties of F [v] and related



404 Filippo Cagnetti et al.

x1

F [v]

x2

Fig. 1.5. Asking that both F [v] and Rn \ F [v] be indecomposable is a sufficient condition for
rigidity in Rn when n = 2, although it is not necessary, as this example shows.

x2

x3

x1

Fig. 1.6. It may happen that both F [v] and R3
\ F [v] are indecomposable, but rigidity fails. An

example is obtained by setting

F [v] = {x ∈ R3
: 0 < x1 < 1, |x2| < 1, x3 > −1/|x2|}

∪ {x ∈ R3
: −1 < x1 < 0, |x2| < 1, x3 > 1/|x2|}.

Notice that the section F [v] ∩ {x ∈ R3
: x1 = t} for t ∈ (0, 1) (depicted on the left) is an epigraph

defined by two “negative” equilateral hyperbolas, while the section F [v] ∩ {x ∈ R3
: x1 = t} for

t ∈ (−1, 0) (depicted on the right) is an epigraph defined by two “positive” equilateral hyperbolas.
Also, {x ∈ R2

: −1 < x1 < 0, x2 = 0} ⊂ {v∧ = 0} and {v∨ = 1} = {x ∈ R2
: 0 < x1 < 1,

x2 = 0}, so that {v∧ = 0} ∪ {v∨ = 1} essentially disconnects {0 < v < 1} = (−1, 1) × (−1, 1),
and by Theorem 1.3 regularity fails. Indeed, the set E defined by a vertical reflection of the part of
F [v] above x2 > 0,

E = {x ∈ F [v] : x2 < 0} ∪ {x ∈ R3
: g(x) ∈ F [v], x2 > 0},

is such that H3(E 4 F [v]) > 0, H3(E 4 g(F [v])) > 0, and Pγ (E) = Pγ (F [v]). We also notice
that condition (1.15) does not hold true in this example.
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x2 = 9(t)

x2 = 9(1− t)

Fig. 1.7. A planar epigraph such that rigidity holds true but condition (1.15) fails. The grey shaded
area corresponds, for a generic t ∈ (0, 1), to the set F [v] ∩ ({t < v < 1− t} ×R), which turns out
to be disconnected.

sets. At the same time, it is natural to guess that a characterization of rigidity in terms of
essential connectedness should be expressed by the requirement that

({v∧ = 0} ∪ {v∨ = 1})× R does not essentially disconnect F [v].

Although we shall not pursue this last direction here, in Section 4 we shall provide proofs
of the above stated sufficient conditions for rigidity (Theorems 4.1 and 4.2).

2. Notions from geometric measure theory

Here we gather some tools from geometric measure theory. The notions needed in this
paper are treated in adequate generality in the monographs [GMS98, AFP00, Mag12].

2.1. General notation in Rn

We denote by B(x, r) and B(x, r) the open and closed Euclidean balls of radius r > 0
and center x ∈ Rn. Given x ∈ Rn and ν ∈ Sn−1 we denote by H+x,ν and H−x,ν the
complementary half-spaces

H+x,ν = {y ∈ Rn : (y − x) · ν ≥ 0}, H−x,ν = {y ∈ Rn : (y − x) · ν ≤ 0}. (2.1)

Finally, we decompose Rn as the product Rn−1
× R, and denote by p : Rn → Rn−1

and q : Rn → R the corresponding horizontal and vertical projections, so that x =
(px,qx) = (x′, xn) and x′ = (x1, . . . , xn−1) for every x ∈ Rn. We set

Cx,r = {y ∈ Rn : |px − py| < r, |qx − qy| < r},

Dz,r = {w ∈ Rn−1
: |w − z| < r},

for the vertical cylinder of center x ∈ Rn and radius r > 0, and for the (n−1)-dimensional
ball in Rn−1 of center z ∈ Rn−1 and radius r > 0, respectively. In this way, Cx,r =
Dpx,r × (qx − r,qx + r). We shall use the following two notions of convergence for
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Lebesgue measurable subsets of Rn. Given Lebesgue measurable sets {Eh}h∈N and E
in Rn, we shall say that Eh locally converges to E, and write

Eh
loc
−→ E as h→∞,

provided Hn((Eh 4 E) ∩ K) → 0 as h → ∞ for every compact set K ⊂ Rn; we say
that Eh converges to E as h → ∞, and write Eh → E, provided Hn(Eh 4 E) → 0 as
h→∞.

2.2. Density points

If E is a Lebesgue measurable set in Rn and x ∈ Rn, then we define the upper and lower
n-dimensional densities of E at x as

θ∗(E, x) = lim sup
r→0+

Hn(E ∩ B(x, r))

ωnrn
, θ∗(E, x) = lim inf

r→0+

Hn(E ∩ B(x, r))

ωnrn
,

respectively. In this way we define two Borel functions on Rn, which agree a.e. on Rn. In
particular, the n-dimensional density of E at x,

θ(E, x) = lim
r→0+

Hn(E ∩ B(x, r))

ωnrn
= lim
r→0

Hn(E ∩ B(x, r))

ωnrn
,

is defined for a.e. x ∈ Rn, and θ(E, ·) is a Borel function on Rn (after extending it by
a constant value on some Hn-negligible set). Furthermore, for t ∈ [0, 1], we set E(t) =
{x ∈ Rn : θ(E, x) = t}. By the Lebesgue differentiation theorem, {E(0), E(1)} is a
partition of Rn up to an Hn-negligible set. It is useful to keep in mind that

x ∈ E(1) if and only if Ex,r
loc
−→ Rn as r → 0+,

x ∈ E(0) if and only if Ex,r
loc
−→ ∅ as r → 0+,

where Ex,r denotes the blow-up of E at x at scale r , defined as

Ex,r =
E − x

r
=

{
y − x

r
: y ∈ E

}
, x ∈ Rn, r > 0.

The set ∂eE = Rn \ (E(0) ∪E(1)) is called the essential boundary of E. Thus, in general,
we only have Hn(∂eE) = 0, and we do not claim ∂eE to be “(n− 1)-dimensional”.

2.3. Approximate limits

Strictly related to the notion of density is that of approximate upper and lower limits of
a measurable function. We shall stick to Federer’s convention [Fed69, 2.9.12] in place
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of the one usually adopted in the study of functions of bounded variation [AFP00, Sec-
tion 3.6] since we will mainly deal with functions of generalized bounded variation (see
Section 2.5). Given a Lebesgue measurable function f : Rn→ R ∪ {±∞} we define the
(weak) approximate upper and lower limits of f at x ∈ Rn as

f ∨(x) = inf
{
t ∈ R : θ({f > t}, x) = 0

}
= inf

{
t ∈ R : θ({f < t}, x) = 1

}
,

f ∧(x) = sup
{
t ∈ R : θ({f < t}, x) = 0

}
= sup

{
t ∈ R : θ({f > t}, x) = 1

}
.

Note that f ∨ and f ∧ are Borel functions with values in R∪{±∞}, defined at every point
x of Rn, and they do not depend on the representative chosen for the function f . The
approximate jump of f is the Borel function [f ] : Rn→ [0,∞] defined by

[f ](x) = f ∨(x)− f ∧(x), x ∈ Rn.

We easily deduce the following properties, which hold true for every Lebesgue measur-
able f : Rn→ R ∪ {±∞} and for every t ∈ R:

{|f |∨ < t} = {−t < f ∧} ∩ {f ∨ < t}, (2.2)

{f ∨ < t} ⊂ {f < t}(1) ⊂ {f ∨ ≤ t}, (2.3)

{f ∧ > t} ⊂ {f > t}(1) ⊂ {f ∧ ≥ t}. (2.4)

(Note that all the inclusions may be strict, that we also have {f < t}(1) = {f ∨ < t}(1), and
that all the other analogous relations hold true.) If f is non-negative and E is Lebesgue
measurable, then for every x ∈ E(1), we have

(1Ef )∨(x) = f ∨(x), (1Ef )∧(x) = f ∧(x). (2.5)

Finally, we notice that if I and J are intervals in R∪{±∞}, ϕ : I → J is continuous and
decreasing, and f takes values in I , then v = ϕ ◦ f is Lebesgue measurable on Rn, with

v∧ = ϕ(f ∨), v∨ = ϕ(f ∧). (2.6)

We now introduce the set Sf of approximate discontinuity points of a Lebesgue measur-
able function f : Rn→ R ∪ {±∞}, which is defined as

Sf = {x ∈ Rn : f ∧(x) < f ∨(x)} = {x ∈ Rn : [f ](x) > 0}.

We have the following general fact, which is usually stated in the finite-valued case only.
For this reason we have included a short proof.

Proposition 2.1. If f : Rn→ R∪{±∞} is Lebesgue measurable, then {f ∧ = f ∨ = f }
is Hn-equivalent to Rn. In particular, f ∨ and f ∧ are representatives of f , and Hn(Sf )

= 0.
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Proof. Let us consider the function 8 defined in (1.2). Since 8 : R ∪ {±∞} → [0, 1] is
continuous and decreasing, the function v = 8◦f : Rn→ [0, 1] is Lebesgue measurable,
with v∨ = 8 ◦ f ∧ and v∧ = 8 ◦ f ∨. Thus Sv = Sf , where, by [GMS98, Section 3.1.4,
Proposition 3], Hn(Sv) = 0. ut

If f : Rn→ R∪{±∞} andA ⊂ Rn Lebesgue measurable, then we say that t ∈ R∪{±∞}
is the approximate limit of f at x with respect to A, and write t = ap lim(f,A, x), if

θ({|f − t | > ε} ∩ A; x) = 0, ∀ε > 0 (t ∈ R),
θ({f < M} ∩ A; x) = 0, ∀M > 0 (t = +∞),

θ({f > −M} ∩ A; x) = 0, ∀M > 0 (t = −∞).

We say that x ∈ Sf is a jump point of f if there exists ν ∈ Sn−1 such that

f ∨(x) = ap lim(f,H+x,ν, x), f ∧(x) = ap lim(f,H−x,ν, x).

If this is the case we set ν = νf (x), the approximate jump direction of f at x. We
denote by Jf the set of approximate jump points of f , so that Jf ⊂ Sf ; moreover, νf :
Jf → Sn−1 is a Borel function. It will be particularly useful to keep in mind the following
proposition.

Proposition 2.2. We have x ∈ Jf if and only if for every ε > 0 such that f ∧(x) + ε <
f ∨(x)− ε we have

{|f − f ∨(x)| ≤ ε}x,r
loc
−→ H+0,ν, {|f − f ∧(x)| ≤ ε}x,r

loc
−→ H−0,ν, as r → 0+.

Similarly, x ∈ Jf if and only if for every τ ∈ (f ∧(x), f ∨(x)) we have

{f > τ }x,r
loc
−→ H+0,ν, {f < τ }x,r

loc
−→ H−0,ν, as r → 0+. (2.7)

Proof. We prove the “only if” part of the first equivalence only, leaving the other impli-
cations to the reader. Set t = f ∨(x) and s = f ∧(x). By assumption

({|f − t | > ε} ∩H+x,ν)x,r
loc
−→ ∅, ({|f − s| > ε} ∩H−x,ν)x,r

loc
−→ ∅,

as r → 0+. As a consequence, as r → 0+,

({|f − t | ≤ ε} ∪H−x,ν)x,r
loc
−→ Rn, ({|f − s| ≤ ε} ∪H+x,ν)x,r

loc
−→ Rn.

As E(1) ∩ F (1) = (E ∩ F)(1), we find

(({|f − t | ≤ ε} ∪H−x,ν) ∩ ({|f − s| ≤ ε} ∪H
+
x,ν))x,r

loc
−→ Rn,

that is, ({|f − t | ≤ ε} ∩H+x,ν)x,r ∪ ({|f − s| ≤ ε} ∩H
−
x,ν)x,r

loc
−→ Rn,

Since the two sets are disjoint, the first one is contained in H+0,ν , while the second is
in H−0,ν , we complete the proof. ut
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2.4. Rectifiable sets

Let 1 ≤ k ≤ n, k ∈ N. A Borel set M ⊂ Rn is countably Hk-rectifiable if there exist
Lipschitz functions fh : Rk → Rn (h ∈ N) such that

Hk
(
M \

⋃
h∈N

fh(Rk)
)
= 0. (2.8)

We further say that M is locally Hk-rectifiable if Hk(M ∩ K) < ∞ for every compact
set K ⊂ Rn, or equivalently HkxM is a Radon measure on Rn. Hence, for a locally
Hk-rectifiable set M in Rn the following definition is well-posed: we say that M has a
k-dimensional subspace L of Rn as its approximate tangent plane at x ∈ Rn, L = TxM ,
if

lim
r→0+

1
rk

∫
B(x,r)∩M

ϕ

(
y − x

r

)
dHk(y) =

∫
L

ϕ dHk, ∀ϕ ∈ C0
c (R

n).

It turns out that TxM exists and is uniquely defined at Hk-a.e. x ∈ M . Moreover, given
two locally Hk-rectifiable sets M1 and M2 in Rn, we have TxM1 = TxM2 for Hk-a.e.
x ∈ M1∩M2. Since f (Rk) is locally Hk-rectifiable whenever f : Rk → Rn is a Lipschitz
function, if M is merely a countably Hk-rectifiable set and {fh}h∈N is a sequence of
Lipschitz functions satisfying (2.8), then we can find a partition {Mh}h∈N of M modulo
Hk into Borel sets such that Txfh(Rk) exists for every x ∈ Mh; we then set TxM =
Txfh(Rk) for x ∈ Mh. The definition is well-posed in the sense that the approximate
tangent spaces defined by another family {gh}h∈N of Lipschitz functions satisfying (2.8)
will just coincide at Hk-a.e. x ∈ M with the ones defined by {fh}h∈N. In other words,
{TxM}x∈M is well-defined as an equivalence class modulo Hk of Borel functions fromM

to the set of k-planes in Rn.
Finally, we mention the following consequence of [Fed69, 3.2.23]: if M is countably

Hk-rectifiable in Rn, then M × R` is countably Hk+`-rectifiable in Rn+`, and

(HkxM)×H`
= Hk+`x(M × R`). (2.9)

2.5. Functions of bounded variation and sets of finite perimeter

Given an open set � ⊂ Rn and f ∈ L1(�), we say that f has bounded variation in �,
f ∈ BV(�), if the total variation of f in �, defined as

|Df |(�) = sup
{∫

�

f (x) div T (x) dx : T ∈ C1
c (�;R

n), |T | ≤ 1
}
,

is finite. We say that f ∈ BV loc(�) if f : � → R is Lebesgue measurable and
f ∈ BV(�′) for every open set �′ ⊂⊂ �. If f ∈ BV loc(Rn) then the distributional
derivative Df of f is an Rn-valued Radon measure. The Radon–Nikodym decomposi-
tion of Df with respect to Hn is denoted by Df = Daf +Dsf , where Dsf and Hn are
mutually singular, and where Daf � Hn. Moreover, Sf is countably Hn−1-rectifiable,
with Hn−1(Sf \Jf ) = 0, [f ] ∈ L1

loc(H
n−1xJf ), and the Rn-valued Radon measureDjf ,
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defined asDjf = [f ]νf dHn−1xJf , is called the jump part ofDf . SinceDaf andDjf
are mutually singular, by setting Dcf = Dsf −Djf we come to the canonical decom-
position ofDf into the sumDaf +Djf +Dcf , whereDcf is called the Cantorian part
of Df . It turns out that |Dcf |(M) = 0 whenever M is σ -finite with respect to Hn−1.

A Lebesgue measurable set E ⊂ Rn is said to be of locally finite perimeter in Rn if
1E ∈ BV loc(Rn). In this case, we call µE = −D1E the Gauss–Green measure of E, so
that ∫

E

∇ϕ(x) dx =

∫
Rn
ϕ(x) dµE(x), ∀ϕ ∈ C1

c (R
n).

The reduced boundary of E is the set ∂∗E of those x ∈ Rn such that

νE(x) = lim
r→0+

µE(B(x, r))

|µE |(B(x, r))
exists and belongs to Sn−1.

The Borel function νE : ∂∗E → Sn−1 is called the measure-theoretic outer unit normal
toE. It turns out that ∂∗E is a locally Hn−1-rectifiable set in Rn [Mag12, Corollary 16.1],
and µE = νEHn−1x∂∗E, so that∫

E

∇ϕ(x) dx =

∫
∂∗E

ϕ(x)νE(x) dHn−1(x), ∀ϕ ∈ C1
c (R

n).

We say that x ∈ Rn is a jump point of E if there exists ν ∈ Sn−1 such that

Ex,r
loc
−→ H+0,ν as r → 0+, (2.10)

and we denote by ∂JE the set of jump points of E. Notice that we always have ∂JE ⊂
E(1/2) ⊂ ∂eE. In fact, if E is a set of locally finite perimeter and x ∈ ∂∗E, then (2.10)
holds true with ν = −νE(x), so that ∂∗E ⊂ ∂JE. Summarizing, if E is a set of locally
finite perimeter, we have

∂∗E ⊂ ∂JE ⊂ E1/2
⊂ ∂eE, (2.11)

and moreover, by Federer’s theorem [AFP00, Theorem 3.61], [Mag12, Theorem 16.2],

Hn−1(∂eE \ ∂∗E) = 0,

so that ∂eE is locally Hn−1-rectifiable in Rn. We shall also need the following criterion
for finite perimeter, known as Federer’s criterion [Fed69, 4.5.11] (see also [EG92, Theo-
rem 1, Section 5.11]): if E is a Lebesgue measurable set in Rn such that

Hn−1(K ∩ ∂eE) <∞ for every compact set K ⊂ Rn,

then E is a set of locally finite perimeter. (Notice that Federer’s criterion is actually more
general than this.) We conclude this preliminary section with the following remark, which
shows the equivalence for a set of locally finite perimeter between being indecomposable
and being essentially connected (see Section 1.5 for the terminology).
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Remark 2.3. If E is an indecomposable set in Rn, then, whenever {F,G} is a non-trivial
partition of E into Lebesgue measurable sets, we have

Hn−1(E(1) ∩ ∂eF ∩ ∂eG) > 0. (2.12)

Indeed, if {F,G} is further assumed to be a partition into sets of locally finite perimeter,
then, by definition of indecomposability, there exists r0 such that P(E;Br) < P (F ;Br)+

P(G;Br) for every r > r0. Thus, by Federer’s theorem,

Hn−1(Br ∩ ∂
eE) < Hn−1(Br ∩ ∂

eF)+Hn−1(Br ∩ ∂
eG)

= Hn−1(Br ∩ ∂
eF ∩ ∂eE)+Hn−1(Br ∩ ∂

eG ∩ ∂eE)

+Hn−1(Br ∩ ∂
eF ∩ E(1))+Hn−1(Br ∩ ∂

eG ∩ E(1)), (2.13)

where we have used the fact that since F ⊂ E, we have ∂eF = (∂eF∩∂eE)∪(∂eF∩E(1))

(a similar remark applies toG). Since (∂eF 4 ∂eG)∩ (E(1) ∪E(0)) = ∅ and ∂JF ∩ ∂JG
⊂ E(1), by Federer’s theorem we find that ∂eF 4 ∂eG is Hn−1-equivalent to ∂eE. Hence,
(2.13) is equivalent to 0 < 2Hn−1(∂eF ∩∂eG∩E(1)∩Br) for every r > r0, that is, (2.12).
To settle the general case, assume, towards a contradiction, the existence of a non-trivial
Lebesgue measurable partition {F,G} of E such that

0 = Hn−1(E(1) ∩ ∂eF ∩ ∂eG) = Hn−1((∂eF ∩ ∂eG) \ ∂eE). (2.14)

We are now going to show that, in this case, F and G are necessarily sets of locally finite
perimeter, thus contradicting the fact that E is indecomposable. Indeed, since F ⊂ E, we
have E(0) ⊂ F (0), and thus ∂eF ∩ E(0) = E(0) \ (F (0) ∪ F (1)) = ∅; hence

∂eF ⊂ ∂eE ∪ (∂eF ∩ E(1)). (2.15)

At the same time, since ∂eF ∩ E(1) ⊂ ∂eF ∩ ∂eG, we find

∂eF ∩ E(1) ⊂ (∂eF ∩ ∂eG) \ ∂eE.

Therefore, by (2.14) and (2.15), for every compact set K ⊂ Rn, and since E is of locally
finite perimeter, Hn−1(K ∩ ∂eF) ≤ Hn−1(K ∩ ∂eE) < ∞. By Federer’s criterion, F
is a set of locally finite perimeter, and so is G = E \ F . We can thus repeat our initial
argument to prove that Hn−1(E(1) ∩ ∂eF ∩ ∂eG) > 0 and obtain a contradiction.

3. Rigidity of equality cases in Ehrhard’s inequality

This section contains the proofs of Theorems 1.3 and 1.6. In Section 3.1 we collect the
basic results concerning epigraphs of locally finite perimeter. In Section 3.2 we show the
implication (ii)⇒(i) of Theorem 1.3, while in Section 3.3 we prove (i)⇒(ii). In Sec-
tion 3.4, we finally prove Theorem 1.6.
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3.1. Epigraphs of locally finite perimeter and the space GBV∗

Write
6f = {x ∈ Rn : qx > f (px)}

for the epigraph of f : Rn−1
→ R∪{±∞}. In this section we analyze the situation when

f defines an epigraph of locally finite perimeter. To this end, it is convenient to introduce
the functions τM : R→ R (M > 0) defined as

τM(s) = max
{
−M,min{M, s}

}
, s ∈ R ∪ {±∞},

and set the following definition: a Lebesgue measurable function f : Rn−1
→ R∪{±∞}

is a function of generalized bounded variation with values in extended real numbers,
f ∈ GBV∗(Rn−1), if τM(f ) ∈ BV loc(Rn−1) for every M > 0, or equivalently ψ(f ) ∈
BV loc(Rn−1) for every ψ ∈ C1(R) with ψ ′ ∈ C0

c (R). (Note that the composition makes
sense since, for example, there are positive constants c and t0 such that ψ(t) = c for every
t > t0; therefore, we shall write ψ(f ) = c on {f = ∞}, and argue similarly on the set
{f = −∞}.) If we start from Lebesgue measurable functions f : Rn−1

→ R, we shall
set GBV(Rn−1) for the corresponding space. The space GBV∗(Rn−1) plays a particularly
important role in our analysis because of the following proposition.

Proposition 3.1. If f : Rn−1
→ R ∪ {±∞} is Lebesgue measurable, then f ∈

GBV∗(Rn−1) if and only if 6f is of locally finite perimeter in Rn; moreover, in this case,
for a.e. t ∈ R, the set {f < t} is of locally finite perimeter in Rn−1.

Remark 3.2. If � ⊂ Rn−1 is an open set and f ∈ L1(�), it is well-known that f ∈
BV(�) if and only if6f is of finite perimeter in�×R (see e.g. [GMS98, Section 4.1.5]).
This result, because of the artificial structures assumed in it (open set and summable
function), will not suffice for our purposes. Moreover, it seems that the infinite-valued
case is not covered in the literature. Therefore, we shall provide a proof of Proposition 3.1.
Similar remarks apply to Proposition 3.4 and Lemma 3.6 below. We also notice that we
shall need to refer to these proofs in some crucial steps of the proof of Theorem 1.3.

Remark 3.3. Note that if v ∈ BV loc(Rn−1
; [0, 1]), then f = 9 ◦ v ∈ GBV∗(Rn−1),

where 9 is defined as in (1.2). Indeed, if we pick any ψ ∈ C1(R) with ψ ′ ∈ C0
c (R),

then ψ ◦9 is real-valued on [0, 1], with ψ ◦9 ∈ C1([0, 1]) and (ψ ◦9)′ ∈ C0
c ((0, 1)).

Therefore, ψ ◦ f = (ψ ◦9) ◦ v ∈ BV loc(Rn−1) by the C1 chain rule theorem on BV .

Proof of Proposition 3.1. Step 1. We show that if 6f is of locally finite perimeter then
f ∈ GBV∗(Rn−1). Let ψ ∈ C1(R) with ψ ′ ∈ C0

c (R), so that ψ ◦ f is defined on Rn−1

with ψ ◦ f ∈ L∞(Rn−1) ⊂ L1
loc(R

n−1). If ψ ∈ C2(R), then ψ ′(qx)ϕ(px) ∈ C1
c (Rn) for

every ϕ ∈ C1
c (Rn−1), and thus, setting ∇ ′ = (∂1, . . . , ∂n−1), we have∣∣∣∣∫

6f

∇
′(ψ ′(qx)ϕ(px)) dx

∣∣∣∣ = ∣∣∣∣∫
∂∗6f

ψ ′(qx)ϕ(px)pν6f (x) dH
n−1(x)

∣∣∣∣
≤ Lip(ψ) sup |ϕ|P(6f ; sptϕ × sptψ ′).
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At the same time, by Fubini’s theorem,∫
6f

∇
′(ψ ′(qx)ϕ(px)) dx=

∫
Rn−1
∇
′ϕ(z) dz

∫
∞

f (z)

ψ ′(t) dt=−

∫
Rn−1

ψ(f (z))∇ ′ϕ(z) dz.

Hence, for every R > 0,

sup
{∣∣∣∣∫

Rn−1
(ψ ◦ f )∇ ′ϕ

∣∣∣∣ : ϕ ∈ C1
c (DR), |ϕ| ≤ 1

}
≤ Lip(ψ)P (6f ;DR × sptψ ′) <∞,

that is, ψ(f ) ∈ BV loc(Rn−1) if ψ ∈ C2(R). By approximation, the same holds if we only
have ψ ∈ C1(R), and thus f ∈ GBV∗(Rn−1).

Step 2. If f ∈ GBV∗(Rn−1), then τM ◦ f ∈ BV loc(Rn−1), {τM ◦ f < t} = {f < t}

for every |t | < M , and {τM ◦ f < t} is of locally finite perimeter for a.e. t ∈ R.
Hence, {f < t} is of locally finite perimeter for a.e. t ∈ R. Let now ϕ ∈ C1

c (Rn) with
sptϕ ⊂⊂ DR × (−R,R) for some R > 0. On the one hand, we have∣∣∣∣∫

6f

∂nϕ

∣∣∣∣ = ∣∣∣∣∫
Rn−1

dz

∫
∞

f (z)

∂nϕ

∣∣∣∣ ≤ sup
Rn
|ϕ|Hn−1(DR); (3.1)

on the other hand, since {f < t} is of locally finite perimeter for a.e. t ∈ R, we find∣∣∣∣∫
6f

∇
′ϕ

∣∣∣∣ = ∣∣∣∣∫
R
dt

∫
{f<t}

∇
′ϕ(z, t) dz

∣∣∣∣ = ∣∣∣∣∫
R
dt

∫
∂∗{f<t}

ϕ(z, t)ν{f<t}(z) dHn−2(z)

∣∣∣∣
≤ sup

Rn
|ϕ|

∫ R

−R

P({f < t};DR) dt = sup
Rn
|ϕ| |D(τR ◦ f )|(DR), (3.2)

by the coarea formula. By (3.1) and (3.2), 6f is a set of locally finite perimeter. ut

Given a Lebesgue measurable function f : Rn−1
→ R ∪ {±∞}, we set

0f = {x ∈ Rn : f ∧(px) ≤ qx ≤ f ∨(px)},
0v
f = {x ∈ Rn : f ∧(px) < qx < f ∨(px)}.

We call 0f the complete graph of f , and 0v
f the vertical graph of f . Note that these

objects are invariant in the Hn−1-equivalence class of f .

Proposition 3.4. If f ∈ GBV∗(Rn−1), then

∂∗6f ∩ (S
c
f × R) =Hn−1 {x ∈ Rn : qx = f ∧(px) = f ∨(px)}, (3.3)

∂∗6f ∩ (Sf × R) =Hn−1 0
v
f , (3.4)

6
(1)
f =Hn−1 {x ∈ Rn : qx > f ∨(px)}, (3.5)

6
(0)
f =Hn−1 {x ∈ Rn : qx < f ∧(px)}. (3.6)

Moreover, Sf is countably Hn−2-rectifiable with Hn−2(Sf \ Jf ) = 0. Finally, for Hn−1-
a.e. x ∈ 0v

f , the outer unit normal ν6f (x) exists, Sf has an approximate tangent plane
at px, and ν6f (x) = (νSf (px), 0), where νSf (px) is a unit normal direction to TpxSf
in Rn−1.
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Remark 3.5. Here and in the following,A =Hk B stands for Hk(A4B) = 0. Moreover,
Ac = Rm \ A whenever A ⊂ Rm.

Proposition 3.4 is in turn based on the following lemma, which will play a crucial role
also in the proof of Theorem 1.3.

Lemma 3.6. If f : Rn−1
→ R ∪ {±∞} is a Lebesgue measurable function and I is a

countable dense subset of R with the property that {f > t} is of locally finite perimeter
for every t ∈ I , and if we set

Nf =
⋃
t∈I

∂e
{f > t} \ ∂∗{f > t},

then Hn−2(Nf ) = 0, and for every z ∈ Sf \Nf there exists ν(z) ∈ Sn−2 such that

z ∈ ∂J {f > t}, ∀t ∈ (f ∧(z), f ∨(z)),

with jump direction ν(z). (In other words, the jump direction of {f > t} at z is indepen-
dent of t .) In particular,

Sf \Nf ⊂ Jf , Hn−2(Sf \ Jf ) = 0.

Remark 3.7. Notice that the set Nf also depends on the choice of I .

Proof of Lemma 3.6. By Federer’s theorem, Hn−2(Nf ) = 0. We now notice that{
z ∈ Sf ,

f ∧(z) < t < s < f ∨(z),
⇒ z ∈ ∂e

{f > t} ∩ ∂e
{f > s}.

By taking into account that z ∈ Sf \ Nf if and only if z ∈ Sf and for every t ∈ I either
z 6∈ ∂e

{f > t} or z ∈ ∂∗{f > t}, we thus find z ∈ Sf \Nf ,f ∧(z) < t < s < f ∨(z),

t, s ∈ I,

⇒ z ∈ ∂∗{f > t} ∩ ∂∗{f > s}

⇒ {f > t}z,r
loc
−→ H+0,ν(z), {f > s}z,r

loc
−→ H+0,ν(z),

where −ν(z) = ν{f>t}(z) = ν{f>s}(z), (3.7)

as E ⊂ F implies indeed that νE = νF on ∂∗E ∩ ∂∗F . In other words, for every z ∈
Sf \Nf there exists ν(z) ∈ Sn−2 such that

{f > t}z,r
loc
−→ H+0,ν(z), ∀t ∈ I ∩ (f ∧(z), f ∨(z)).

Finally, if z ∈ Sf \ Nf with f ∧(z) < t < f ∨(z), then we may pick s, s′ ∈ I with
f ∧(z) < s < t < s′ < f ∨(z) and use

{f > s}z,r
loc
−→ H+0,ν(z), {f > s′}z,r

loc
−→ H+0,ν(z),
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to infer {f > t}z,r
loc
−→ H+0,ν(z). Indeed, as a general fact, if Eh ⊂ Fh ⊂ Gh with Eh→ E

and Gh→ E as h→∞, then Fh→ E as h→∞. ut

Proof of Proposition 3.4. Step 1. We show that Sf is countably Hn−2-rectifiable. Let
I ⊂ R be a countable dense set in R such that for every t ∈ I the set {f > t} is of
locally finite perimeter in Rn−1. By Federer’s theorem, if t ∈ I , then ∂∗{f > t} is locally
Hn−2-rectifiable, with Hn−2(∂e

{f > t} \ ∂∗{f > t}) = 0. Since t < f ∨(z) gives
θ∗({f > t}, z) > 0, while t > f ∧(z) implies θ∗({f > t}, z) < 1, we find that for every
t ∈ R,

{z ∈ Rn−1
: f ∨(z) > t > f ∧(z)} ⊂ ∂e

{f > t},

so that, as I is dense in R,

Sf ⊂
⋃
t∈I

{z ∈ Rn−1
: f ∨(z) > t > f ∧(z)} ⊂

⋃
t∈I

∂e
{f > t}.

Thus Sf is countably Hn−2-rectifiable, as, by Federer’s theorem and since I is countable,

Hn−2
(
Sf \

⋃
t∈I

∂∗{f > t}
)
= 0.

Step 2. We prove that

∂e6f ∩ (Sf × R) ⊂Hn−1 0
v
f , (3.8)

∂e6f ∩ (S
c
f × R) ⊂ {x ∈ Rn : qx = f ∧(px) = f ∨(px)}, (3.9)

{x ∈ Rn : qx < f ∧(px)} ⊂ 6(0)f , (3.10)

{x ∈ Rn : qx > f ∨(px)} ⊂ 6(1)f . (3.11)

We start by proving (3.10): if x ∈ Rn is such that qx < f ∧(px), then f ∧(px) > −∞,
and taking t∗ > qx with θ({f < t∗},px) = 0, for every r < t∗ − qx we find

Hn(6f ∩ Cx,r) =
∫ qx+r

qx−r
Hn−1({f < s} ∩ Dpx,r) ds

≤ 2rHn−1({f < t∗} ∩ Dpx,r) = o(r
n).

This proves (3.10), and (3.11) follows similarly. As a consequence, ∂e6f ⊂ 0f , which
yields (3.9), as well as ∂e6f ∩ (Sf × R) ⊂ 0f ∩ (Sf × R). This last inclusion implies
(3.8), as

(0f ∩ (Sf × R)) \ 0v
f = {(z, f

∧(z)) : z ∈ Sf } ∪ {(z, f
∨(z)) : z ∈ Sf },

is Hn−1-negligible (indeed, it projects 2-to-1 over the countably Hn−2-rectifiable set Sf ).

Step 3. Let now Nf be as in Lemma 3.6. We claim that if z ∈ Sf \ Nf and f ∧(z) <
t < f ∨(z) (so that z ∈ ∂J {f > t} for every such t , with constant jump direction ν(z) ∈
Sn−1
∩Rn−1), then (z, t) ∈ ∂J6f with jump direction given by (−ν(z), 0); in particular,

0v
f ∩ ((Sf \Nf )× R) ⊂ ∂J6f . (3.12)
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Indeed, if t0, t1 ∈ I are such that f ∧(z) < t0 < t < t1 < f ∨(z), then for r small enough,

Hn
(
(6f 4H

+

(z,t),(−ν(z),0)) ∩ C(z,t),r
)

=

∫ t+r

t−r

Hn−1(Dz,r ∩H−z,−ν(z) ∩ {f < s})+Hn−1(Dz,r ∩H+z,−ν(z) ∩ {f ≥ s}) ds

≤ 2rHn−1(Dz,r ∩H+z,ν(z) ∩ {f < t1})+ 2rHn−1(Dz,r ∩H−z,ν(z) ∩ {f ≥ t0}) = o(r
n),

as {f < t1}z,r
loc
−→ H−z,ν(z) and {f ≥ t0}z,r

loc
−→ H+z,ν(z). We conclude by Federer’s

theorem.

Step 4. By (3.9)–(3.11) and by Federer’s theorem we deduce (3.3). By (3.8), (3.12), and
by Federer’s theorem, we get (3.4). Finally, a last application of Federer’s theorem allows
us to deduce (3.5) and (3.6) from (3.3), (3.4), (3.10), and (3.11). ut

Recall that if M ⊂ Rn and z ∈ Rn−1, then Mz = {t ∈ R : (z, t) ∈ M}. As a corollary of
Proposition 3.4 we find the following statement.

Corollary 3.8. If f ∈ GBV∗(Rn−1) and Nf is defined as in Lemma 3.6, then for every
z ∈ Sf \Nf we have

(0v
f )z = (f

∧(z), f ∨(z)) ⊂ (∂J6f ∩ (Sf × R))z
⊂ (∂e6f ∩ (Sf × R))z ⊂ [f ∧(z), f ∨(z)]. (3.13)

In particular, for every Borel set A ⊂ Sf ,

Pγ (6f ;A× R) =
∫
A

∫ f ∨(z)

f ∧(z)

dH1
γ (t) dHn−2

γ (z).

Proof. The first inclusion in (3.13) follows immediately from (3.12), while the second is
immediate from (2.11). The third inclusion follows of course from ∂e6f ⊂ 0f . Finally,
since Sf is countably Hn−2-rectifiable, (2.9) implies Hn−1x(Sf ×R) = (Hn−2xSf )×H1.
Thus, if A is a Borel set with A ⊂ Sf , then by (3.13) we find

Pγ (6f ;A× R) = Hn−1
γ (∂e6f ∩ (A× R)) =

∫
A

H1
γ ((∂

e6f )z) dHn−2
γ (z)

=

∫
A

∫ f ∨(z)

f ∧(z)

dH1
γ (t) dHn−2

γ (z),

where the tensorization property of e−|x|
2/2 was also taken into account. ut

3.2. Proof of Theorem 1.3, (ii) implies (i)

In this section we present the proof of the implication (ii)⇒(i) in Theorem 1.3. At the end
of the proof we collect some examples and remarks that should justify the rather involved
technical argument we adopt.
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Proof of Theorem 1.3, (ii) implies (i). Overview. We let v : Rn−1
→ [0, 1] be a Lebesgue

measurable function such that Pγ (F [v]) <∞ (and therefore {F [v], g(F [v])} ⊂M(v)).
If we define f : Rn−1

→ R ∪ {±∞} as f (z) = 9(v(z)), z ∈ Rn−1, then

F [v] = 6f = epigraph of f .

We shall set for brevity F = F [v]. Since F has finite Gaussian perimeter, it is of locally
finite perimeter, and thus, by Proposition 3.1, f ∈ GBV∗(Rn−1). Up to redefinition of v
on an Hn−1-negligible set, we can also assume that v is Borel measurable. (As noticed
in the introduction, Theorem 1.3 is stable under modifications of v over Hn−1-negligible
sets.) We now consider the Borel set

G = {z ∈ Rn−1
: 0 < v(z) < 1} = {z ∈ Rn−1

: f (z) ∈ R},

and assume that

{v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect G. (3.14)

We want to prove that if E is a v-distributed set such that

Pγ (E) = Pγ (F ), (3.15)

then either Hn(E 4 F) = 0 or Hn(E 4 g(F )) = 0, where g denotes the reflection with
respect to Rn−1, g(x) = (px,−qx), x ∈ Rn. To this end, write as usual Ez = {t ∈ R :
(z, t) ∈ E} for z ∈ Rn−1, and set

G+ =
{
z ∈ G : H1(Ez 4 (f (z),∞)) = 0

}
,

G− =
{
z ∈ G : H1(Ez 4 (−∞,−f (z))) = 0

}
,

G1 = {v = 1} = {z ∈ Rn−1
: H1(Ez 4 R) = 0},

G0 = {v = 0} = {z ∈ Rn−1
: H1(Ez) = 0}.

By Theorem A we find that

E =Hn

(
F ∩ ((G+ ∪G1)× R)

)
∪ (g(F ) ∩ (G− × R)), (3.16)

as well as that {G+,G−,G1,G0} is a partition of Rn−1 modulo Hn−1, and {G+,G−} is
a partition of G modulo Hn−1, where this last condition means

Hn−1(G4 (G+ ∪G−)) = 0, Hn−1(G+ ∩G−) = 0.

Clearly, G = {0 < v < 1}, G1 = {v = 1}, and G0 = {v = 0} are Borel sets, as v is a
Borel function. Notice that also G+ and G− are Lebesgue measurable sets. Indeed, if we
define β : Rn−1

→ R as

β(z) =

{ 1
v(z)

∫
Ez
t dγ1(t), z ∈ {0 < v ≤ 1},

0, z ∈ {v = 0},
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(so that β(z) is the Gaussian barycenter ofEz), then, by Fubini’s theorem, β is a Lebesgue
measurable function. At the same time, a simple computation shows that

β(z) =
1
√

2π

(
1G+(z)

e−f (z)
2/2

v(z)
− 1G−(z)

e−f (z)
2/2

v(z)

)
, ∀z ∈ G ∪G1,

so that G+ = {β > 0} and G− = {β < 0}. Thus, both G+ and G− are Lebesgue mea-
surable sets. We now look back at (3.16), and notice that Hn(E 4 F)Hn(E 4 g(F )) = 0
if and only if Hn−1(G+)Hn−1(G−) = 0. To reach a contradiction, assume that rigidity
fails because of E, which amounts to asking that

Hn−1(G+)Hn−1(G−) > 0. (3.17)

In other words, {G+,G−} is a non-trivial Lebesgue measurable partition of G. Hence,
thanks to (3.14), by Borel regularity of the Lebesgue measure, and since ∂eA = ∂eB if
A,B ⊂ Rn−1 with Hn−1(A4 B) = 0, we find that

Hn−2((G(1) ∩ ∂eG+ ∩ ∂
eG−) \ ({v

∧
= 0} ∪ {v∨ = 1})

)
> 0. (3.18)

Comparing (3.16) and (3.18) we see that E is obtained by reflecting F across a region of
non-trivial Hn−2 measure where the sections of F are neither negligible nor equivalent
to R; accordingly, we expect Gaussian perimeter to increase in this operation, that is, we
expect (3.16) and (3.18) to imply Pγ (E) > Pγ (F ), thus contradicting (3.15). The main
difficulty in proving that this actually happens relies on the fact that the setG(1)∩∂eG+∩

∂eG− may not have a reasonable metric structure, that is, it may fail to be countably
Hn−2-rectifiable. (Examples 3.9 and 3.10 below show that, respectively, G may fail to
be of locally finite perimeter, and G(1) ∩ ∂eG+ ∩ ∂

eG− may fail to be countably Hn−2-
rectifiable even if v ∈ Lip(Rn−1

; [0, 1]).) We shall avoid this difficulty by showing the
existence of a countably Hn−2-rectifiable set 6 such that

6 ⊂ (G(1) ∩ ∂eG+ ∩ ∂
eG−) \ ({v

∧
= 0} ∪ {v∨ = 1}), Hn−2(6) > 0.

We shall then deduce that, as simple drawings suggest, Pγ (E;6 ×R) > Pγ (F ;6 ×R).
Finally, by taking into account that Pγ (E;A × R) ≥ Pγ (F ;A × R) for every Borel set
A ⊂ Rn−1, we shall find Pγ (E) > Pγ (F ). We divide this argument into nine steps.

Step 1. We use the information that E is of locally finite perimeter to deduce that for
every k ∈ N the function uk : Rn−1

→ R defined as

uk = (k − |f |)1{|f |<k}(1G+ − 1G−) is in BV loc(Rn−1).

Indeed, if we take into account (3.16) and repeat the argument in the proof of Proposi-
tion 3.1 with E in place of F = 6f , then we find

P(E;K × I ) ≥

∫
G+

∇
′ϕ(z) dz

∫
∞

f (z)

ψ ′(t) dt +

∫
G−

∇
′ϕ(z) dz

∫
−f (z)

−∞

ψ ′(t) dt

+

∫
G1

∇
′ϕ(z) dz

∫
∞

−∞

ψ ′(t) dt (3.19)
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whenever ϕ ∈ C1
c (Rn−1) with sptϕ ⊂ K ⊂⊂ Rn−1 and |ϕ| ≤ 1, and ψ : R → R is a

Lipschitz function with sptψ ′ ⊂ I ⊂⊂ R and Lip(ψ) ≤ 1. If we apply (3.19) with ψ
defined by ψ(t) = k for |t | > k and ψ(t) = |t | for |t | ≤ k, then we deduce our assertion
by exploiting the relations (valid for every a ∈ R)∫

∞

a

ψ ′ = (k − |a|)1(−k,k)(a),
∫
−a

−∞

ψ ′ = −(k − |a|)1(−k,k)(a),
∫
∞

−∞

ψ ′ = 0.

Step 2. We show that, for every k ∈ N,

{|f |∨ < k/2} ∩G(1)+ ⊂ {u
∧

k > k/2} ∩G(1)+ .

It suffices to prove that if z ∈ {|f |∨ < k/2} ∩G(1)+ and ε < (k/2)− |f |∨(z), then

θ({uk < s}, z) = 0, ∀s < k/2+ ε.

Indeed, thanks to (2.3), we have {|f |∨ < k/2} ⊂ {|f | < k/2}(1). Thus, for every such s,

Hn−1(Dz,r ∩ {uk < s})

= Hn−1(Dz,r ∩ {uk < s} ∩G+)+ o(r
n−1) (since z ∈ G(1)+ )

= Hn−1(Dz,r ∩ {uk < s} ∩ {|f | < k/2} ∩G+)+ o(rn−1) (since z ∈ {|f | < k/2}(1))

= Hn−1(Dz,r ∩ {k − |f | < s} ∩ {|f | < k/2} ∩G+)+ o(rn−1)

≤ Hn−1(Dz,r ∩ {k − s < |f |})+ o(rn−1) = o(rn−1),

where the last identity follows by definition of |f |∨ since k − s > k/2− ε > |f |∨(z).

Step 3. We set

6k = ∂
eG+ ∩ ∂

eG− ∩ {−k/2 < f ∧ ≤ f ∨ < k/2}(1), k ∈ N,

and prove that
6k ⊂ {u

∨

k ≥ k/2} ∩ {u
∧

k ≤ −k/2}, ∀k ∈ N. (3.20)

To show this, we start by noticing that for every z ∈ 6k we have

Hn−1(Dz,r ∩ {uk > k/2}) = Hn−1(Dz,r ∩ {uk > k/2}(1))

≥ Hn−1(Dz,r ∩ {uk > k/2}(1) ∩G(1)+ )

≥ Hn−1(Dz,r ∩ {u∧k > k/2} ∩G(1)+ ), (3.21)

where the last inequality follows from (2.4). Now, by Step 2 and (2.2),

{u∧k > k/2} ∩G(1)+ ⊃ {|f |
∨ < k/2} ∩G(1)+ = {−k/2 < f ∧ ≤ f ∨ < k/2} ∩G(1)+ ,

so that, by (3.21),

Hn−1(Dz,r ∩ {uk > k/2}) ≥ Hn−1(Dz,r ∩ {−k/2 < f ∧ ≤ f ∨ < k/2} ∩G(1)+ )

= Hn−1(Dz,r ∩G+)+ o(rn−1),
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where in the last identity we have used the fact that z ∈ {k/2 > f ∨ ≥ f ∧ > −k/2}(1).
Since, by assumption, z ∈ ∂eG+, we conclude that

0 < θ∗(G+, z) ≤ θ
∗({uk > k/2}, z),

which in turn gives u∨k (z) ≥ k/2. One can prove analogously that u∧k (z) ≤ −k/2.

Step 4. We show that, for every k ∈ N,

6k is locally Hn−2-rectifiable.

From Step 3 we know that 6k ⊂ Suk . Since uk ∈ BV loc(Rn−1), this implies that 6k is
countably Hn−2-rectifiable, and it remains to show that 6k is locally Hn−2-finite. To this
end, let K ⊂ Rn−1 be a compact set; since

6k = [6k ∩ (Suk \ Juk )] ∪ (6k ∩ Juk )

and Hn−2(Suk \ Juk ) = 0, we have

Hn−2(6k ∩K) = Hn−2(6k ∩ Juk ∩K) ∈ [0,∞].

By Step 3 and since uk ∈ BV loc(Rn−1),

kHn−2(6k ∩ Juk ∩K) ≤

∫
6k∩Juk∩K

(u∨k − u
∧

k ) dH
n−2
≤ |Djuk|(K).

Thus, if K ⊂ Rn−1 is compact and k ∈ N, then Hn−2(K ∩ 6k) ≤ k
−1
|Djuk|(K) <∞.

This proves 6k is locally Hn−2-finite.

Step 5. We are now going to deduce from (3.18) that, for k sufficiently large,

Hn−2(6k) > 0. (3.22)

We start by proving the following identity:⋃
k∈N

6k = (∂
eG+ ∩ ∂

eG−) \ ({f
∨
= ∞} ∪ {f ∧ = −∞}). (3.23)

Indeed, by definition of 6k , and by repeatedly applying (2.3) and (2.4),

6k = ∂
eG+ ∩ ∂

eG− ∩ {−k/2 < f ∧ ≤ f ∨ < k/2}(1)

⊂ ∂eG+ ∩ ∂
eG− ∩ {−k/2 ≤ f ∧ ≤ f ∨ ≤ k/2}

⊂ ∂eG+ ∩ ∂
eG− ∩ {−(k + 1)/2 < f ∧ ≤ f ∨ < (k + 1)/2}

⊂ ∂eG+ ∩ ∂
eG− ∩ {−(k + 1)/2 < f ∧ ≤ f ∨ < (k + 1)/2}(1) = 6k+1, (3.24)

from which (3.23) immediately follows. Since f = 9(v)with9 continuous and decreas-
ing, and thanks to (2.6), we have {f ∨ = ∞} = {v∧ = 0} and {f ∧ = −∞} = {v∨ = 1},
so that (3.23) is equivalent to⋃

k∈N
6k = (∂

eG+ ∩ ∂
eG−) \ ({v

∧
= 0} ∪ {v∨ = 1}). (3.25)
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Finally, by (3.25), (3.24), and (3.18), we find

lim
k→∞

Hn−2(6k) = Hn−2((∂eG+ ∩ ∂
eG−) \ ({v

∧
= 0} ∪ {v∨ = 1})

)
> 0.

Step 6. We show that if W ⊂ 6k is a Borel set, then

Pγ (F ;W × R) =
∫
W

dHn−2
γ (z)

∫ f ∨(z)

f ∧(z)

dH1
γ . (3.26)

Indeed, (3.26) follows immediately from Corollary 3.8 providedW ⊂ Sf . Since the right-
hand side of (3.26) is trivially equal to zero if W ⊂ Scf , it remains to prove that

Pγ (F ; (6k ∩ S
c
f )× R) = 0.

To this end, we notice that, by Proposition 3.4,

∂eF ∩ (Scf × R) ⊂Hn−1 {x ∈ Rn : px ∈ Scf , qx = f ∧(px) = f ∨(px)}.

If L denotes the set on the right-hand side of this inclusion, then H0(Lz) = 1 for every
z ∈ Scf . As 6k is countably Hn−2-rectifiable, by (2.9) we find that

Pγ (F ; (S
c
f ∩6k)× R) = Hn−1

γ

(
∂eF ∩ ((Scf ∩6k)× R)

)
≤ Hn−1

γ

(
L ∩ ((Scf ∩6k)× R)

)
=

∫
Scf∩6k

H1
γ (Lz) dHn−2

γ (z) = 0.

We have thus completed the proof of (3.26).

Step 7. We show that if z ∈ 6k \ Nuk (with Nuk defined as in Lemma 3.6), then there
exists ν ∈ Sn−1

∩ Rn−1 such that

(G+)z,r
loc
−→ H+0,ν, (G−)z,r

loc
−→ H−0,ν, (3.27)

{uk > t}z,r
loc
−→ H+0,ν, ∀t ∈ (u∧k (z), u

∨

k (z)). (3.28)

By (3.23) and since Hn−2(Nuk ) = 0, this will imply in particular that

6k ⊂Hn−2 ∂
JG+ ∩ ∂

JG− ∩ {|f |
∨ <∞}. (3.29)

We first recall that, by Lemma 3.6, if z ∈ Suk \ Nuk , then there exists ν = ν(z) ∈ Sn−2

such that (3.28) holds true. Now, we easily find that

{uk > t} = G+ ∩ {|f | < k − t}, ∀t > 0,

which in particular gives

z ∈
⋂

0<t<u∨k (z)

∂J (G+ ∩ {|f | < k − t}).
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Since, by (3.20), u∨k (z) ≥ k/2 for every z ∈ 6k , for ε small enough we find that

6k \Nuk ⊂ ∂
J (G+ ∩ {|f | < k − (k/2− ε)}) = ∂J (G+ ∩ {|f | < k/2+ ε}).

Taking now into account that ∂J (A ∩ B) ∩ B(1) ⊂ (∂JA) ∩ B(1), we thus find

(6k \Nuk ) ∩ {|f | < k/2+ ε}(1) ⊂ ∂JG+.

Finally, since 6k ⊂ {|f | < (k/2) + ε}(1), we conclude that 6k \ Nuk ⊂ ∂JG+. One
proves analogously the inclusion in ∂JG−.

Step 8. We have proved so far that if k is large enough, then 6k is a locally Hn−2-
rectifiable set in Rn−1 with Hn−2(6k) > 0, and 6k ⊂ ∂JG+ ∩ ∂

JG− ∩ {|f |
∨ < ∞}

(modulo Hn−2). Moreover, we have computed the Gaussian perimeter of F above6k . We
now want to compute Pγ (E;6k × R), in order to show that this last quantity is strictly
larger than Pγ (F ;6k×R). To this end, it is convenient to divide6k into two parts, defined
by the sets 5+ and 5− introduced in this and in the following step. More precisely, we
start this conclusive part of our argument by considering the set 5+ of those

z ∈ ∂JG+ ∩ ∂
JG− ∩ {|f |

∨ <∞} ∩ (Scf ∪ Jf )

such that, for some ν ∈ Sn−1
∩ Rn−1,

(G+)z,r
loc
−→ H+0,ν, (G−)z,r

loc
−→ H−0,ν, (3.30)

{f > s}
loc
−→ H+0,ν if z ∈ Jf and s ∈ (f ∧(z), f ∨(z)). (3.31)

We want to characterize (∂JE)z for z ∈ 5+ by showing that

(∂JE)z =H1 (−∞,−f
∧(z)) ∪ (f ∨(z),∞), ∀z ∈ 5+ ∩ {f

∨
≥ −f ∧}, (3.32)

(∂JE)z =H1 (−∞, f
∨(z)) ∪ (−f ∧(z),∞), ∀z ∈ 5+ ∩ {f

∨
≤ −f ∧}. (3.33)

In particular, we shall prove that if z ∈ 5+ and f ∨(z) ≥ −f ∧(z), then

(z, t) ∈ ∂JE, ∀t ∈ (−∞,−f ∧(z)) ∪ (f ∨(z),∞), (3.34)

(z, t) ∈ E(0) ⊂ Rn \ ∂eE, ∀t ∈ (−f ∧(z), f ∨(z)) (3.35)

(so that (3.32) holds true, see Figure 3.1), while if z ∈ 5+ and f ∨(z) ≤ −f ∧(z), then

(z, t) ∈ ∂JE, ∀t ∈ (−∞, f ∨(z)) ∪ (−f ∧(z),∞), (3.36)

(z, t) ∈ E(1) ⊂ Rn \ ∂eE, ∀t ∈ (f ∨(z),−f ∧(z)) (3.37)

(thus proving (3.33)—see, once again, Figure 3.1). Before entering into the proof of
(3.34)–(3.37), let us notice that (3.32) and (3.33) imply that

(∂JE)z =H1 (−∞, a(z)) ∪ (b(z),∞), ∀z ∈ 5+, (3.38)
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(a)

(b)

(z, 0)(z, 0)

(z, 0) Rn−1

R

(z, 0)
(z,−f∧(z))

E

E
(z, f∨(z))

F

f∨(z) ≥ −f∧(z)

(z,−f∧(z))

(z, f∧(z))

(z, f∨(z))

F

f∨(z) ≤ −f∧(z)

(z, f∨(z))

G+G−

(z, f∧(z))

G+G−

(z, f∨(z))

Fig. 3.1. In panel (a) we consider the case when z ∈ 5+ and f∨(z) ≥ −f∧(z). In this case
we must have f∨(z) ≥ 0, while, of course, f∧(z) has arbitrary sign. Moreover, (∂eE)z is H1-
equivalent to (−∞,−f∧(z))∪ (f∨(z),∞) (see (3.34)), and (−f∧(z), f∨(z)) is H1-equivalent to
(E(0))z (see (3.35)). In panel (b) we consider the complementary case when z ∈ 5+ and f∨(z) ≤
−f∧(z). In this case (∂eE)z is H1-equivalent to (−∞, f∨(z))∪ (−f∧(z),∞) (see (3.36)), while
(f∨(z),−f∧(z)) is H1-equivalent to (E(1))z (see (3.37)). In both cases, of course, (∂eF)z is H1-
equivalent to (f∧(z), f∨(z)).

where we have set

a(z) = min{−f ∧(z), f ∨(z)}, b(z) = max{−f ∧(z), f ∨(z)}. (3.39)

We shall now provide the details of the proof of (3.34), noticing that (3.35)–(3.37) can be
proved by entirely analogous arguments. Let z ∈ 5+ with f ∨(z) ≥ −f ∧(z), and notice
that necessarily f ∨(z) ≥ (f ∨(z)+ f ∧(z))/2 ≥ 0. We now consider two separate cases.

Proof of (3.34) when t > f ∨(z). Let r∗ > 0 be such that t − r∗ > f ∨(z), so that

{f < s}z,r
loc
−→ Rn−1, {f < −s}z,r

loc
−→ ∅, ∀s ∈ [t − r∗, t + r∗], (3.40)

thanks to the fact that f ∨(z) ≥ 0. Since z ∈ G(1/2)+ ∩G
(1/2)
− ⊂ G

(0)
1 ∩G

(0)
0 , we have

Hn
(
C(z,t),r ∩ ((G1 ∪G0)× R)

)
= o(rn); (3.41)
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moreover, if r < r∗, then by (3.40) and (3.30) we have

Hn(E ∩ C(z,t),r ∩ (G− × R)) =
∫ t+r

t−r

Hn−1(G− ∩ {f < −s} ∩ Dz,r) ds

≤ 2rHn−1({f < −(t − r∗)} ∩ Dz,r) = o(rn), (3.42)

as well as

Hn(H+(z,t),(ν,0) ∩C(z,t),r ∩ (G− ×R)) = 2rHn−1(H+z,ν ∩G− ∩Dz,r) = o(rn). (3.43)

Hence, by (3.41)–(3.43), and taking again into account (3.40) and (3.30), we obtain

Hn((E 4H+(z,t),(ν,0)) ∩ C(z,t),r)

= o(rn)+

∫ t+r

t−r

Hn−1((H+z,ν 4 (G+ ∩ {f < s})) ∩ Dz,r
)
ds

= o(rn)+

∫ t+r

t−r

Hn−1((G+ 4H
+
z,ν) ∩ Dz,r) ds = o(rn).

This proves that if t > f ∨(z), then (z, t) ∈ ∂JE with E(z,t),r
loc
−→ H+(0,0),(ν,0).

Proof of (3.34) when t < −f ∧(z). In the subcase that t < −f ∨(z), we immediately see
(by symmetry) that (z, t) ∈ ∂JE with

E(z,t),r
loc
−→ H−(0,0),(ν,0). (3.44)

In particular, if z ∈ Scf , this concludes the proof of (3.34). It remains to consider the case
that z ∈ Jf and−f ∨(z) < t < −f ∧(z). In this case, we still record the validity of (3.44),
but this time, in the proof, we also have to take (3.31) into account: indeed, by (3.31) we
have

{f < s}z,r
loc
−→ H−0,ν, ∀s ∈ (f ∧(z), f ∨(z)),

therefore, if −f ∨(z) < t < −f ∧(z) then there exists r∗ > 0 such that

{f < −s}z,r
loc
−→ H−0,ν, ∀s ∈ [t − r∗, t + r∗]. (3.45)

We now notice that since t + r∗ < −f ∧(z) ≤ f ∧(z), we have {f < t + r∗}z,r
loc
−→ ∅, and

so

Hn(E ∩ C(z,t),r ∩ (G+ × R)) ≤
∫ t+r

t−r

Hn−1(G+ ∩ {f < s} ∩ Dz,r) ds

≤ 2rHn−1(G+ ∩ {f < t + r∗} ∩ Dz,r) = o(rn). (3.46)

By (3.30), we similarly have

Hn(H−(z,t),(ν,0) ∩C(z,t),r ∩ (G+ ×R)) = 2rHn−1(H−z,ν ∩G+ ∩Dz,r) = o(rn). (3.47)
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By combining (3.46) and (3.47) with (3.41) (which holds true simply because z ∈
G
(1/2)
+ ∩G

(1/2)
− ), we thus find

Hn((E 4H−(z,t),(ν,0)) ∩ C(z,t),r)

= o(rn)+

∫ t+r

t−r

Hn−1((H−z,ν 4 (G− ∩ {f < −s})) ∩ Dz,r
)
ds

= o(rn)+

∫ t+r

t−r

Hn−1(G− ∩ {f < −s} ∩H
+
z,ν ∩ Dz,r) ds

+

∫ t+r

t−r

Hn−1((H−z,ν \ (G− ∩ {f < −s})) ∩ Dz,r
)
ds

≤ o(rn)+ 2rHn−1(G− ∩ {f < −(t − r∗)} ∩H
+
z,ν ∩ Dz,r)

+ 2rHn−1((H−z,ν \ (G− ∩ {f < −(t + r∗)})) ∩ Dz,r
)
= o(rn),

where in the last step we have also used (3.30) and (3.45). This concludes the proof of
(3.34).

Step 9. We finally find a contradiction. To this end, define 5− as the set of those

z ∈ ∂JG+ ∩ ∂
JG− ∩ {|f |

∨ <∞} ∩ (Scf ∪ Jf )

such that, for some ν ∈ Sn−1,

(G+)z,r
loc
−→ H+0,ν, (G−)z,r

loc
−→ H−0,ν, (3.48)

{f > s}
loc
−→ H−0,ν if z ∈ Jf and s ∈ (f ∧(z), f ∨(z)). (3.49)

Now notice the following two facts. First, trivially,

(5+ ∪5−) ∩ S
c
f = ∂

JG+ ∩ ∂
JG− ∩ {|f |

∨ <∞} ∩ Scf . (3.50)

Second, since Jf and Suk are both countably Hn−2-rectifiable, we have νf = ±νuk Hn−2-
a.e. on Jf ∩ Suk , and thus by (3.27) and (3.28),

(5+ ∪5−) ∩ Jf ∩ Suk =Hn−2 ∂
JG+ ∩ ∂

JG− ∩ {|f |
∨ <∞} ∩ Jf ∩ Suk . (3.51)

Since Hn−2(Sf \ Jf ) = 0, we finally conclude that

(5+ ∪5−) ∩ Suk =Hn−2 ∂
JG+ ∩ ∂

JG− ∩ {|f |
∨ <∞} ∩ Suk .

In particular, by (3.22) and (3.29), we may assume (up to replacing E with g(E)) that

Hn−2(6k ∩5+) > 0



426 Filippo Cagnetti et al.

for sufficiently large values of k. Since 6k is countably Hn−2-rectifiable, by (2.9) and
(3.38) we find

Pγ (E; (6k ∩5+)× R) =
∫
6k∩5+

dHn−2
γ (z)

∫
(∂JE)z

dH1
γ

=

∫
6k∩5+

dHn−2
γ (z)

(∫ a(z)

−∞

dH1
γ +

∫
∞

b(z)

dH1
γ

)
,

where a and b have been defined as in (3.39). Since H1
γ (R) = 1, we thus have

Pγ (E; (6k ∩5+)× R) =
∫
6k∩5+

(1− γ1(a(z), b(z))) dHn−2
γ (z),

while, by (3.26),

Pγ (F ; (6k ∩5+)× R) =
∫
6k∩5+

γ1(f
∧(z), f ∨(z)) dHn−2

γ (z).

Since Pγ (E;W × R) ≥ Pγ (F ;W × R) for every Borel set W ⊂ Rn−1, by using
Pγ (E) = Pγ (F ) we find that

Pγ (E; (6k ∩5+)× R) = Pγ (F ; (6k ∩5+)× R).

This contradicts Hn−2(6k ∩5+) > 0 and the fact that the function

δ(α, β) = 1− γ1(min{−α, β},max{−α, β})− γ1(α, β), ∀β ≥ α,

is strictly positive on {(α, β) ∈ R2
: β ≥ α}. Indeed, if −α ≤ β, then

δ(α, β) = 1− γ1(−α, β)− γ1(α, β) = 1− γ1(−α, β)− γ1(−β,−α)

= 1− γ1(−β, β) > 0;

if instead −α > β, then

δ(α, β) = 1− γ1(β,−α)− γ1(α, β) = 1− γ1(α,−α) > 0.

This completes the proof of the implication (ii)⇒(i). ut

Example 3.9. It may happen that v ∈ BV(Rn−1
; [0, 1]) but G = {0 < v < 1} is not of

locally finite perimeter in Rn−1. For example, if n ≥ 3, take

v(z) =
|z|2

2

∞∑
h=1

1[1/(2h+1)1/(n−2),1/(2h)1/(n−2)](|z|), z ∈ Rn−1.

In this case G = {0 < v < 1} is not of locally finite perimeter, as

Hn−2(Dr∩∂eG) = Hn−2(Dr∩∂G) = (n−1)ωn−1

∞∑
h=h(r)

(
1

2h
+

1
2h+ 1

)
= ∞, ∀r > 0.

At the same time v ∈ BV(Rn−1
; [0, 1]), as

|Dv|(Rn−1) ≤
√

2Hn−1(G)+ 2(n− 1)ωn−1

∞∑
h=1

1
(2h)2/(n−2)

1
2h

<∞.
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Example 3.10. The set G(1) ∩ ∂eG+ ∩ ∂
eG− may fail to be countably Hn−2-rectifiable

even if v ∈ Lip(Rn−1
; [0, 1]). To construct an example, consider an open equilateral tri-

angle T in R2, and define an increasing sequence {Th}∞h=0 of open sets by setting T0 = T ;
T1 is obtained from T0 by adding a copy of T rescaled by a factor of 1/3 with respect to
the center of each side of T0; and so on. In this way, the open set A =

⋃
∞

h=0 Th has the
well-known von Koch curve K as its topological boundary. If we set

v(z) = min{1/2, dist(z,K)}, z ∈ R2,

then v is a Lipschitz function on R2 with G = {0 < v < 1} = R2
\K . Notice that

K = {v∧ = 0} = {v = 0} ⊂ G(1), {v∨ = 1} = ∅,

that is, G(1) ∩ {v∧ = 0} ∩ {v∨ = 1} = K , and thus it is not countably H1-rectifiable.
(Indeed, the Hausdorff dimension of K is equal to log(4)/log(3).) In particular, given a
Borel partition {G+,G−} of G we cannot expect the set

G(1) ∩ ∂eG+ ∩ ∂
eG− ∩ ({v

∧
= 0} ∪ {v∨ = 1}) ⊂ K

to possess any rectifiability property. Notice also that, in this example, K = {v∧ = 0}
essentially disconnects {0 < v < 1}, as is seen by considering the non-trivial Borel parti-
tion {G+,G−} of G defined by G+ = A and G− = R2

\ A. (Indeed, we easily find that
∂eG+ = ∂

eG− ⊂ K .) Also, by Theorem 1.3, we expect rigidity to fail. A counterexample
to rigidity is obtained by setting

E = (F ∩ (G+ × R)) ∪ (g(F ) ∩ (G− × R)).

The fact that Pγ (E) = Pγ (F ) comes from the proof of (i)⇒(ii) in Section 3.3.

3.3. Proof of Theorem 1.3, (i) implies (ii)

In this section we present the proof of the implication (i)⇒(ii) in Theorem 1.3. Recall
the following general relation for essential boundaries:

∂e(A ∩ B) ∩ B(1) = (∂eA) ∩ B(1), (3.52)

which holds true for every pair of Lebesgue measurable sets A,B ⊂ Rn.

Proof of Theorem 1.3, (i) implies (ii). Overview. We shall prove that if (ii) fails then
(i) fails. More precisely, assume there exists a non-trivial Borel partition {G+,G−} of
G = {0 < v < 1} such that

Hn−2((G(1) ∩ ∂eG+ ∩ ∂
eG−) \ ({v

∧
= 0} ∪ {v∨ = 1})

)
= 0. (3.53)

We set G1 = {v = 1}, G0 = {v = 0}, and then consider the Borel set

E =
(
F ∩ ((G+ ∪G1)× R)

)
∪ (g(F ) ∩ (G− × R)).

The idea here is that sinceE is obtained by reflecting F across a region where the sections
of F are either negligible or equivalent to R, then we should have Pγ (E) = Pγ (F );
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however, since Hn−1(G+)Hn−1(G−) > 0 by assumption, this would imply that both
Hn(E 4 F) > 0 and Hn(E 4 g(F )) > 0, and thus that (i) fails. In order to prove that
Pγ (E) = Pγ (F ) we shall first need to prove that E is of locally finite perimeter, and then
use the information that its reduced boundary is Hn−1-equivalent to its essential boundary
in order to be able to check that no additional Gaussian perimeter is created in passing
from F to E.

Step 1. In this step we gather some preliminary remarks. We start by noticing that if we
set for brevity

G10+ = G1 ∪G0 ∪G+, G10− = G1 ∪G0 ∪G−,

then by (3.52) and since F ∩ (G10+ × R) = E ∩ (G10+ × R) we find that

∂eF ∩ (G
(1)
10+ × R) = ∂eE ∩ (G

(1)
10+ × R). (3.54)

Similarly, starting from g(F ) ∩ (G10− × R) = E ∩ (G10− × R), we deduce that

∂e(g(F )) ∩ (G
(1)
10− × R) = ∂eE ∩ (G

(1)
10− × R). (3.55)

By (3.54) and (3.55), we thus find

Hn−1
γ (∂eE ∩ (G

(1)
10+ × R)) = Hn−1

γ (∂eF ∩ (G
(1)
10+ × R)), (3.56)

Hn−1
γ (∂eE ∩ (G

(1)
10− × R)) = Hn−1

γ (∂eg(F ) ∩ (G
(1)
10− × R))

= Hn−1
γ (∂eF ∩ (G

(1)
10− × R)). (3.57)

By (3.56) and (3.57), it remains to understand the situation outside the cylinder of basis
Rn−1

\ (G
(1)
10+ ∪G

(1)
10−). To this end, notice that

G
(0)
10+ = G

(1)
− , G

(0)
10− = G

(1)
+ , ∂eG10+ = ∂

eG−, ∂eG10− = ∂
eG+,

so that

Rn−1
\ (G

(1)
10+ ∪G

(1)
10−) = (G

(0)
10+ ∪ ∂

eG10+) ∩ (G
(0)
10− ∪ ∂

eG10−)

= ∂eG+ ∩ ∂
eG−. (3.58)

Also notice that, by (3.53) and [Fed69, 2.10.45],

Hn−1(
[(G(1) ∩ ∂eG+ ∩ ∂

eG−) \ ({v
∧
= 0} ∪ {v∨ = 1})] × R

)
= 0. (3.59)

(We cannot apply (2.9) here, since ∂eG+∩∂
eG− may fail to be countably Hn−2-rectifiable

—see Example 3.10.) By taking into account that ∂eGσ = (∂
eGσ ∩∂

eG)∪(∂eGσ ∩G
(1))

for σ ∈ {+,−}, it remains to understand the situation inside the cylinder (W1 ∪W2)×R,
where we have set

W1 = G
(1)
∩ ∂eG+ ∩ ∂

eG− ∩ ({v
∧
= 0} ∪ {v∨ = 1}),

W2 = ∂
eG ∩ ∂eG+ ∩ ∂

eG−.
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In fact, by taking into account that

∂eG ⊂
{
z ∈ Rn−1

: θ∗({v = 0}, z) > 0
}
∪
{
z ∈ Rn−1

: θ∗({v = 1}, z) > 0
}

⊂ {v∧ = 0} ∪ {v∨ = 1},

we find

W2 = ∂
eG ∩ ∂eG+ ∩ ∂

eG− ∩ ({v
∧
= 0} ∪ {v∨ = 1}),

so that
W1 ∪W2 = ∂

eG+ ∩ ∂
eG− ∩ ({v

∧
= 0} ∪ {v∨ = 1}). (3.60)

Step 2. We show that E and F have no essential boundary above {v∨ = 0} ∪ {v∧ = 1}.
Indeed, we are going to prove

{v∨ = 0} × R ⊂ E(0) ∩ F (0), (3.61)

{v∧ = 1} × R ⊂ E(1) ∩ F (1), (3.62)

thus deducing that

Hn−1
γ (∂eF ∩ ({v∨ = 0} × R)) = Hn−1

γ (∂eE ∩ ({v∨ = 0} × R)) = 0, (3.63)

Hn−1
γ (∂eF ∩ ({v∧ = 1} × R)) = Hn−1

γ (∂eE ∩ ({v∧ = 1} × R)) = 0. (3.64)

Let us show for example that if z ∈ {v∨ = 0}, then (z, s) ∈ E(0) for every s ∈ R. Indeed,
if s ∈ R and r < 1, then

Hn(E ∩ C(z,s),r) = 2rHn−1(Dz,r ∩G1)+

∫ s+r

s−r

Hn−1(Dz,r ∩G+ ∩ {f < t}) dt

+

∫ s+r

s−r

Hn−1(Dz,r ∩G− ∩ {f < −t}) dt

≤ 2rHn−1(Dz,r ∩G1)+ 2rHn−1(Dz,r ∩ {f < |s| + 1}) = o(rn),

where in the last identity we have used the assumption that v∨(z) = 0 (and thus f ∧(z) =
+∞) to deduce that θ({f < |s| + 1}, z) = 0. This proves (3.61), and (3.62) follows
analogously.

Step 3. We show that E is of locally finite perimeter. To this end, by taking into account
Steps 1 and 2, it suffices to prove that

Hn−1
γ (∂eE ∩ (61 × R)) <∞, (3.65)

where we have set

61 = ∂
eG+ ∩ ∂

eG− ∩ ({0 = v∧ < v∨} ∪ {v∧ < v∨ = 1}).

We now claim that if z ∈ {0 = v∧ < v∨} ∪ {v∧ < v∨ = 1}, then

(∂eE)z ⊂H1 (∂
eF)z ∪ (∂

eg(F ))z. (3.66)
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(b)(a) (c)

zRn−1
z

R

z

0 ≤ f ∧(z) ≤ f ∨(z)

(z, f∧(z))

F
(z, f∨(z))(z, f∨(z))

(z, f∧(z))

F

f ∧(z) ≤ 0 ≤ f ∨(z)

F

(z, f∧(z))

f ∧(z) ≤ f ∨(z) ≤ 0

(z, f∨(z)) f∨(z)

−f∨(z)

−f∧(z)

f∧(z)

Fig. 3.2. The three cases one has to consider in describing (∂eE)z. Notice that, in case (a), both
inclusions (3.69) and (3.70) are trivial; in case (b), (3.70) is trivial, and (3.69) carries all the useful
information; finally, in case (c), (3.69) is trivial and (3.70) is not.

Indeed, on the one hand, by (3.13) we have

(∂eF)z =H1 [f
∧(z),∞), ∀z ∈ {0 = v∧ < v∨}, (3.67)

(∂eF)z =H1 (−∞, f
∨(z)], ∀z ∈ {v∧ < v∨ = 1}; (3.68)

on the other hand, we also have, for every z ∈ Rn−1,

(∂eE)z ⊂ (−∞,−f
∧(z)] ∪ [f ∧(z),∞), (3.69)

(∂eE)z ⊂ (−∞, f
∨(z)] ∪ [−f ∨(z),∞) (3.70)

(see Figure 3.2). Let us show, for example, the validity of (3.69): if f ∧(z) ≤ 0, then the
inclusion is trivial; if f ∧(z) > 0, then v∨(z) < 1/2, thus

0 = θ({v > 2/3}, z) ≥ θ(G1, z),

that is, z ∈ G(0)1 . Hence,

Hn(E ∩ C(z,t),r) = 2rHn−1(G1 ∩ Dz,r)+
∫ t+r

t−r

Hn−1(G+ ∩ {f < s} ∩ Dz,r) ds

+

∫ t+r

t−r

Hn−1(G− ∩ {f < −s} ∩ Dz,r) ds

≤ o(rn)+ 2rHn−1({f < |t | + r} ∩ Dz,r);

therefore, if t ∈ (−f ∧(z), f ∧(z)) and r < r∗ for a suitable r∗, then

Hn(E ∩ C(z,t),r) ≤ o(rn)+ 2rHn−1({f < |t | + r∗} ∩ Dz,r) = o(rn),

that is, (z, t) ∈ E(0); in other words,

(−f ∧(z), f ∧(z)) ⊂ (E(0))z ⊂ R \ (∂eE)z,
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that is, (3.69) holds. The proof of (3.70) is analogous; by taking into account (3.67)–
(3.70), we thus obtain (3.66), which in particular gives

Hn−1
γ (∂eE ∩ (61 × R)) ≤ 2Hn−1

γ (∂eF ∩ (61 × R)), (3.71)

and this proves (3.65). By (3.56)–(3.60) and (3.63)–(3.65), we find Hn−1
γ (∂eE) < ∞.

Hence, by Federer’s criterion, E is of locally finite perimeter.

Step 4. We have proved so far that E is of locally finite perimeter with

Pγ (E; (Rn−1
\61)× R) = Pγ (F ; (Rn−1

\61)× R).

Since Pγ (E;W × R) ≥ Pγ (F ;W × R) for every Borel set W ⊂ Rn−1, we only need to
show

Pγ (E;61 × R) ≤ Pγ (F ;61 × R). (3.72)

By Federer’s theorem, Hn−1(∂eE \ ∂JE) = 0, and moreover by Proposition 3.4 we have
Hn−2(Sf \ Jf ) = 0 (so that Hn−1((Sf \ Jf ) × R) = 0). Since {v∧ = 0} = {f ∨ = ∞}
and {v∨ = 1} = {f ∧ = −∞}, we conclude that (3.72) follows from

Hn−1
γ (∂JE ∩ (62 × R)) ≤ Hn−1

γ (∂eF ∩ (62 × R)), (3.73)

where

62 = ∂
eG+ ∩ ∂

eG− ∩ Jf ∩ ({−∞ < f ∧ < f ∨ = ∞} ∪ {−∞ = f ∧ < f ∨ <∞}).

We now turn to the proof of (3.73), and thus complete the proof of (ii)⇒(i). To this end,
we pick

z ∈ Jf ∩ ({−∞ < f ∧ < f ∨ = ∞} ∪ {−∞ = f ∧ < f ∨ <∞})

and show that either (∂JE)z ⊂H1 (∂JF)z or (∂JE)z ⊂H1 g((∂JF)z). In fact, by sym-
metry, we only have to consider the case

z ∈ Jf ∩ {−∞ < f ∧ < f ∨ = ∞}. (3.74)

Under assumption (3.74), we thus want to show that

either (∂JE)z ⊂H1 (∂
JF)z =H1 (f

∧(z),∞), (3.75)

or (∂JE)z ⊂H1 g((∂
JF)z) =H1 (−∞,−f

∧(z)). (3.76)

We first notice that, by Lemma 3.6, there exists ν ∈ Sn−1
∩ Rn−1 such that

{f < s}z,r
loc
−→ H+z,ν, ∀s > f ∧(z), (3.77)

{f < s}z,r
loc
−→ ∅, ∀s < f ∧(z). (3.78)
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Moreover, we have the inclusions

(∂JE)z ∩ (f
∧(z),−f ∧(z)) ⊂H1 (∂

JF)z if f ∧(z) ≤ 0, (3.79)

(∂JE)z ∩ (−f
∧(z), f ∧(z)) ⊂H1 ∅ if f ∧(z) > 0, (3.80)

which follow from (3.67) and (3.69). We now divide our argument into two cases.

Case 1. Assuming that there exists t0 ∈ (∂JE)z with t0 > |f ∧(z)| we show that

{t ∈ (∂JE)z : |t | > |f
∧(z)|} = (|f ∧(z)|,∞). (3.81)

Case 2. Assuming that there exists t0 ∈ (∂JE)z with t0 < −|f ∧(z)| we show that

{t ∈ (∂JE)z : |t | > |f
∧(z)|} = (−∞,−|f ∧(z)|). (3.82)

Before entering into the proof of the two cases, notice how they allow us to complete
the proof of the theorem (see also Figure 3.3). Indeed, if none of the two cases holds
true, then (∂JE)z ⊂H1 (−|f ∧(z)|, |f ∧(z)|), and the validity of either (3.75) or (3.76)
follows from (3.79) and (3.80). (Just notice that if f ∧(z) ≤ 0, then (−|f ∧(z)|, |f ∧(z)|) ⊂
(∂JF)z ∩ g(∂

JF)z.) Similarly, if we are in the first case, and f ∧(z) > 0, then (3.75)
follows by combining (3.80) with (3.81); if we are in the first case and f ∧(z) ≤ 0, then
(3.75) follows from (3.79) and (3.81); finally, if we are in the second case then (3.76)
holds true by combining (3.79), (3.80), and (3.82). We prove (3.81) and (3.82) in the next
step.

Step 5. We assume to be in the first case, and prove (3.81). Let us first show that

Hn−1(Dz,r ∩G1+ ∩H
+
z,ν) = ωn−1r

n−1/2+ o(rn−1), (3.83)

and thus clearly
Hn−1(Dz,r ∩G0− ∩H

+
z,ν) = o(r

n−1), (3.84)

where we have set G1+ = G+ ∪ G1 and G0− = G− ∪ G0. To prove (3.83), we pick t1
and t2 such that |f ∧(z)| < t1 < t0 < t2. Since (z, t0) ∈ ∂JE, and since every half-space
H with x ∈ ∂H cuts Cx,r into two halves of equal volume, we find that

Hn(C(z,t0),r)/2+ o(r
n) = Hn(E ∩ C(z,t0),r)

=

∫ t0+r

t0−r
[Hn−1(Dz,r ∩G1+ ∩ {f < s})+Hn−1(Dz,r ∩G− ∩ {f < −s})] ds

≤ 2rHn−1(Dz,r ∩G1+ ∩ {f < t2}) ds + o(r
n),

where in the last identity we have used (3.78) with s = −t1 < −|f ∧(z)| ≤ f ∧(z). By
applying (3.77) with s = t2 > |f

∧(z)| ≥ f ∧(z), and since Hn−1(Cr) = 2ωn−1r
n, we

find

ωn−1r
n
+ o(rn) ≤ 2rHn−1(Dz,r ∩G1+ ∩H

+
z,ν)+ o(r

n),

that is,

ωn−1r
n−1/2+ o(rn−1) ≤ Hn−1(Dz,r ∩G1+ ∩H

+
z,ν) ≤ ωn−1r

n−1/2.
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(b) (b), case one

(a) (a), case one (a), case two

(b), case two

(z, t0)

(z, t0)

(z, 0)(z, 0) Rn−1

(z, 0)(z, 0) Rn−1
(z, 0)

R

R

(z, t0)

(z, t0)

(z, 0)

f∧(z) > 0

EF

E

G+G−G−

(z, f∧(z))

F E

G+
f∧(z) ≤ 0

E

G+ G+G−G−

(z, f∧(z))

Fig. 3.3. The situation in the proof of (3.75) and (3.76). If f∧(z) ≤ 0, then (3.79) shows that
(f∧(z),−f∧(z)) is contained in both (∂eF)z and (∂eE)z. Moreover, if f∧(z) ≤ 0 and we are in
case one, then (see (3.81)) there exists t0 > −f∧(z) such that (z, t0) ∈ ∂JE, (∂eE)z and (∂eF)z
are both H1-equivalent to (f∧(z),∞), and (3.75) holds true. Finally, if f∧(z) ≤ 0 and we are in
case two, then (see (3.82)) there exists t0 < f∧(z) such that (z, t0) ∈ ∂JE, (∂eE)z and g((∂eF)z)
are both H1 equivalent to (−∞, f∧(z)), and thus (3.76) holds true. Similar remarks apply when
f∧(z) > 0.

This proves (3.83), and thus (3.84). We now pick t > |f ∧(z)|, choose t1 and t2 such that
|f ∧(z)| < t1 < t < t2, and notice that

Hn((E 4H+(z,t),(ν,0)) ∩ C(z,t),r) =
∫ t+r

t−r

Hn−1(Dz,r ∩G1+ ∩ {f < s} ∩H−z,ν) ds

+

∫ t+r

t−r

Hn−1(Dz,r ∩G1+ ∩ {f ≥ s} ∩H
+
z,ν) ds

+

∫ t+r

t−r

Hn−1(Dz,r ∩G− ∩ {f < −s} ∩H−z,ν) ds

+

∫ t+r

t−r

Hn−1(Dz,r ∩G− ∩ {f ≥ −s} ∩H+z,ν) ds,
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so that Hn((E 4H+(z,t),(ν,0)) ∩ C(z,t),r) ≤ 2r(I1 + I2 + I3 + I4) where

I1 = Hn−1(Dz,r ∩G1+ ∩ {f < t2} ∩H
−
z,ν),

I2 = Hn−1(Dz,r ∩G1+ ∩ {f ≥ t1} ∩H
+
z,ν),

I3 = Hn−1(Dz,r ∩G− ∩ {f < −t1} ∩H−z,ν),

I4 = Hn−1(Dz,r ∩G− ∩ {f ≥ −t2} ∩H+z,ν).

We see that I1 = I2 = o(r
n−1) by (3.77), while I3 = o(r

n−1) by (3.78), and I4 = o(r
n−1)

by (3.84). We have thus proved that

(|f ∧(z)|,∞) ⊂ (∂JE)z.

In order to conclude the proof of (3.81) we will now prove that

(−∞,−|f ∧(z)|) ⊂ E(0).

Indeed, pick t < −|f ∧(z)|. This time we take t1 and t2 such that t1 < t < t2 < −|f
∧(z)|.

In this way, by arguing as above, and by also recalling that z ∈ G(0)1 , we find

Hn(E ∩ C(z,t),r) ≤ 2rHn−1(Dz,r ∩G+ ∩ {f < t2})

+ 2rHn−1(Dz,r ∩G− ∩ {f < −t1}),

where the first term is o(rn) by (3.78). By (3.77) we thus find

Hn(E ∩ C(z,t),r) = o(rn)+ 2rHn−1(Dz,r ∩G− ∩H+z,ν) = o(r
n),

where the last identity follows from (3.84). Hence (z, t) ∈ E(0), as claimed, and the
proof of (3.81) is completed. In order to prove (3.82), we notice that the existence of
t0 < −|f

∧(z)| such that (z, t0) ∈ ∂JE implies

Hn−1(Dz,r ∩G1+ ∩H
+
z,ν) = o(r

n−1). (3.85)

The proof of (3.82) is then analogous to that of (3.81), with (3.85) in place of (3.84). ut

Proof of Theorem 1.3. The equivalence of (i) and (ii) is proved in Sections 3.2 and 3.3.
ut

3.4. Proof of Theorem 1.6

Step 1. We show that if a Borel set G ⊂ R is essentially connected, then G(1) is an
interval. Indeed, let us prove that if a, b ∈ G(1) with a < b and c ∈ (a, b), then c ∈ G(1).
To see this, we set G+ = G ∩ (c,∞), G− = G ∩ (−∞, c), so that {G+,G−} is a Borel
partition of G modulo H1. In fact, H1(G+)H1(G−) > 0. Indeed, should H1(G+) be 0,
we would have (G+)(1) = ∅, and thus

b ∈ G(1) ∩ (c,∞)(1) ⊂ (G ∩ (c,∞))(1) = (G+)
(1)
= ∅,
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a contradiction. Since G is essentially connected, we find

H0(G(1) ∩ ∂eG+ ∩ ∂
eG−) > 0. (3.86)

Since G(1) ∩ ∂eG+ = G
(1)
∩ {c} and G(1) ∩ ∂eG− = G

(1)
∩ {c}, (3.86) gives c ∈ G(1).

Step 2. If {v∧ = 0} ∪ {v∨ = 1} does not essentially disconnect {0 < v < 1}, then
in particular {0 < v < 1} is essentially connected, and thus H1-equivalent to an open
interval I by Step 1. Let now c ∈ I , and assume that v∧(c) = 0. Since {c} (thus {v∧ = 0})
essentially disconnects I , by Remark 1.1 we find that {v∧ = 0} essentially disconnects
{0 < v < 1}, a contradiction. Therefore, v∧ > 0 on I . We similarly see that v∨ < 1 on I .
This shows that assumption (ii) in Theorem 1.3 implies assumption (ii) in Theorem 1.6.
Since the reverse implication is trivial, we are done. ut

4. Some further conditions for rigidity

As noticed in Remark 1.7, a natural question is whether it is possible to formulate suf-
ficient conditions for rigidity in terms of suitable connectedness properties of F [v]. Re-
ferring the readers to the remark for a list of examples and possible conditions, we prove
two results that provide simple sufficient conditions for rigidity.

Theorem 4.1. If v : Rn−1
→ [0, 1] is Lebesgue measurable and Pγ (F [v]) <∞, and if

there exists a sequence th→ 0 as h→∞ such that, for every h ∈ N,

F [v] ∩ ({th < v < 1− th} × R) is essentially connected in Rn, (4.1)

then E ∈M(v) if and only if Hn(E 4 F [v]) = 0 or Hn(E 4 g(F [v])) = 0.

Proof. We notice that in the proof of (ii)⇒ (i) in Theorem 1.3, assumption (ii) was used
only to guarantee the validity of (3.18), which in turn was used in Step 5 of that proof
to deduce that Hn−2(6k) > 0. Thus, in order to prove that (4.1) implies rigidity, it will
suffice to show that it implies Hn−2(6k) > 0 for k large enough. Now set

Gh = {th < v < 1− th}, Fh = F ∩ (Gh × R), h ∈ N.

If we write Gh,+ = G+ ∩Gh and Gh,− = G− ∩Gh, then Hn−1(Gh,±)→ Hn−1(G±)

as h→∞. Hence, Hn−1(Gh,+)Hn−1(Gh,−) > 0 for h large enough, and so the sets

Fh,+ = F ∩ (Gh,+ × R), Fh,− = F ∩ (Gh,− × R)

define a non-trivial Lebesgue measurable partition of Fh. By (4.1),

Hn−1(∂eFh,+ ∩ ∂
eFh,− ∩ F

(1)
h ) > 0 (4.2)

for h large enough. Now set

3h = p(∂eFh,+ ∩ ∂
eFh,− ∩ F

(1)
h ), ∀h ∈ N.
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If Hn−2(3h) <∞, then, by [Fed69, 2.10.45], for every R > 0 we have

Hn−2(3h)L1((−R,R)) ≥ c(n)Hn−1(3h × (−R,R))

≥ c(n)Hn−1(∂eFh,+ ∩ ∂
eFh,− ∩ F

(1)
h ∩ {|qx| < R}),

so that, by (4.2), Hn−2(3h) > 0 for every h large enough.
We now claim that given h ∈ N there exists kh ∈ N such that

3h ⊂ 6k, ∀k ≥ kh; (4.3)

this will conclude the proof. To show (4.3), we start by noticing that

z ∈ G
(0)
+ ⇒ z ∈ G

(0)
h,+

⇒ (z, s) ∈ (Gh,+ × R)(0), ∀s ∈ R,

⇒ (z, s) ∈ [F ∩ (Gh,+ × R)](0), ∀s ∈ R,
⇒ z /∈ p(∂eFh,+);

similarly, since G+ and G− are disjoint, z ∈ G(1)+ implies z ∈ G(0)− , and consequently
z /∈ p(∂eFh,−). We have thus proved so far that

3h ⊂ p(∂eFh,+ ∩ ∂
eFh,−) ⊂ ∂

eG+ ∩ ∂
eG−, ∀h ∈ N. (4.4)

We now notice that

G
(1)
h ⊂ {v > th}

(1)
∩ {v < 1− th}(1)

⊂ {v∧ ≥ th} ∩ {v
∨
≤ 1− th} (by (2.3) and (2.4))

⊂ {f ∨ ≤ 9(th)} ∩ {f
∧
≥ 9(1− th)} (by (2.6)). (4.5)

Hence, if x ∈ F (1)h , then x ∈ (Gh × R)(1), and thus px = z ∈ G(1)h , so that, by (4.5),

3h ⊂ G
(1)
h ⊂ {f

∨
≤ 9(th)} ∩ {f

∧
≥ 9(1− th)}, ∀h ∈ N. (4.6)

By combining (4.4), (4.6), and the definition of 6k , we thus obtain (4.3) provided we
choose kh such that kh > 9(th) and −kh < 9(1− th). ut

Theorem 4.2. If v : R → [0, 1] is Lebesgue measurable with Pγ (F [v]) < ∞, and
the sets F [v] and R2

\ F [v] are both indecomposable, then E ∈ M(v) if and only if
H2(E 4 F [v]) = 0 or H2(E 4 g(F [v])) = 0.

Proof. Step 1. We show that if F = F [v] is indecomposable in R2 and v∧(c) = 0, then

H2(F ∩ ((c,∞)× R))H2(F ∩ ((−∞, c)× R)) = 0. (4.7)

Indeed, assume this is not the case, and set F+ = F ∩ ((c,∞) × R) and F− = F ∩

((−∞, c)×R). We claim that {F+, F−} is a non-trivial partition of F into sets of locally
finite perimeter with

F (1) ∩ ∂eF+ ∩ ∂
eF− = ∅, (4.8)
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contrary to the indecomposability of F . To show that (4.8) holds true, notice that since
F+ and F− are disjoint subsets of F whose union is F , we have

F (1) ∩ ∂eF+ ∩ ∂
eF− = F

(1)
∩ ∂eF+ = F

(1)
∩ ({c} × R).

However, if (c, t) ∈ F (1) for some t ∈ R, then for every r < 1,

4r2
+ o(r2) = H2(F ∩ C(c,t),r) =

∫ t+r

t−r

H1(Dc,r ∩ {f < s}) ds

≤ 2rH1(Dc,r ∩ {f < t + 1}),

which leads to a contradiction, because v∧(c) = 0 (that is, f ∨(c) = +∞) implies

lim inf
r→0+

H1(Dc,r ∩ {f < t + 1})
2r

< 1.

This proves (4.8), and thus our claim.

Step 2. By arguing as in Step 1, we notice that if R2
\ F is indecomposable in R2 and

v∨(c) = 1, then

H2(((c,∞)× R) \ F
)
H2(((−∞, c)× R) \ F

)
= 0. (4.9)

Step 3. We show that if both F and R2
\ F are indecomposable, then {0 < v < 1} is

H1-equivalent to an open interval. Indeed, let I be the least closed interval that contains
{0 < v < 1} modulo H1. If {0 < v < 1} is not H1-equivalent to I , then there exists
J ⊂ I ∩ ({v = 0} ∪ {v = 1}) with H1(J ) > 0. In particular, if ε = H1(J )/3, then there
exists c ∈ J (1) with

c > inf I + ε, c < sup I − ε. (4.10)

By (4.10), and by minimality of I , we see that

H2(F ∩ ((c,∞)× R)
)
H2(F ∩ ((−∞, c)× R)

)
> 0, (4.11)

H2(((c,∞)× R) \ F
)
H2(((−∞, c)× R) \ F

)
> 0. (4.12)

Since c ∈ J (1) we find that c ∈ ({v = 0}∪{v = 1})(1), and thus either θ∗({v = 0}, c) > 0
or θ∗({v = 1}, c) > 0; therefore, either v∧(c) = 0 (but then (4.11) contradicts (4.7)), or
v∨(c) = 1 (but then (4.12) contradicts (4.9)). Hence, {0 < v < 1} is H1-equivalent to the
interval I .

Step 4. We prove the validity of condition (ii) in Theorem 1.6 by a simple combination
of the first three steps. Hence, rigidity holds true by Theorem 1.6. ut
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[GMS98] Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Vari-
ations. I. Cartesian Currents. Ergeb. Math. Grenzgeb. 37, Springer, Berlin (1998)
Zbl 0914.49001 MR 1645086

[Led98] Ledoux, M.: A short proof of the Gaussian isoperimetric inequality. In: High Di-
mensional Probability (Oberwolfach, 1996), Progr. Probab. 43, Birkhäuser, Basel,
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