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Abstract. This paper deals with the existence of algebraic structures on compact Nash sets. We
introduce the algebraic-topological notion of asymmetric Nash cobordism between compact Nash
sets, and we prove that a compact Nash set is semialgebraically homeomorphic to a real algebraic set
if and only if it is asymmetric Nash cobordant to a point or, equivalently, if it is strongly asymmetric
Nash cobordant to a real algebraic set. As a consequence, we obtain new large classes of compact
Nash sets semialgebraically homeomorphic to real algebraic sets. To prove our results, we need
to develop new algebraic-topological approximation procedures. We conjecture that every compact
Nash set is asymmetric Nash cobordant to a point, and hence semialgebraically homeomorphic to
a real algebraic set.

Keywords. Nash sets, algebraic models, cobordism, topology of real algebraic sets, semialgebraic
sets

1. The algebraization problem: state of the art

The problem of the existence of algebraic structures on topological spaces is an old and
deep question of real algebraic geometry.

The nonsingular case has been completely settled. In 1952, Nash [27] showed that
every compact smooth manifold M is diffeomorphic to a union of nonsingular connected
components of a real algebraic set. The algebraization problem for M arose: Is M diffeo-
morphic to a whole nonsingular real algebraic set? Five years later, Wallace [36] proved
that the answer is affirmative if M is the boundary of a compact smooth manifold-with-
boundary. This insight of using cobordism was of crucial importance. In fact, in 1965,
Milnor [26] showed that every compact smooth manifold is unoriented cobordant to a
nonsingular real algebraic set, and later, in 1973, Tognoli [34] used this result to prove
that the answer to the preceding question is always affirmative: every compact smooth
manifold has an algebraic model, that is, it is diffeomorphic to a nonsingular real alge-
braic set.
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Cobordism can also be employed to make algebraic topological spaces having singu-
larities. This was done by Akbulut and King in their theory of resolution towers (see [4]).
Their idea is to consider compact topological spaces M whose singularities can be topo-
logically resolved in the following way: there exist finite families {Mi}i of compact
smooth manifolds and {fij : Mij → Mj }i,j of smooth maps from subsets Mij of Mi

to Mj such that the quotient space obtained by gluing the Mi’s along the fij ’s is home-
omorphic to M . The Mij ’s are finite unions of smooth hypersurfaces of Mi in general
position. Now, one can topologically identify M with the pair I = ({Mi}i, {fij }i,j ),
which is said to be a resolution tower for M . Observe that Hironaka’s desingularization
theorem [21] ensures the existence of a resolution tower for every compact real algebraic
set. The resolution tower I forM is said to be a weak boundary if there exists another res-
olution tower ({M ′i}i, {f

′

ij : M
′

ij → M ′j }i,j ) such that, for all i, j ,M ′i is a compact smooth
manifold-with-boundary, ∂M ′i = Mi ,M ′ij is a finite union of smooth hypersurfaces ofM ′i
in general position, Mij = M ′ij ∩ Mi and fij = f ′ij |Mij

. Thanks to this notion, Akbu-
lut and King obtained a complete topological characterization of real algebraic sets with
isolated singularities (see [1]) and, together with L. Taylor, they proved the existence of
algebraic structures on every compact PL manifold (see [2, 5]). Furthermore, they found
local topological necessary conditions for a compact polyhedron P of dimension ≤ 3
to be homeomorphic to a real algebraic set. In dimension ≤ 2, these conditions reduce
to the Sullivan condition: the link of each vertex of P has even Euler characteristic. In
dimension 3, the above mentioned conditions define five independent local topological
obstructions for the algebraicity of P , including the Sullivan one. By employing the con-
cept of weak boundary, Akbulut and King proved that these local topological obstructions
are the unique obstructions for a compact polyhedron of dimension ≤ 3 to be homeomor-
phic to a real algebraic set. As a significant corollary, every compact Nash set (or rather
every compact real analytic set) of dimension ≤ 3 has a real algebraic structure. We refer
the reader to [9, 3] for the 2-dimensional case and to [4] for the 3-dimensional one.

In [24, 25], by means of a completely different method, McCrory and Parusiński dis-
covered local topological necessary conditions for the algebraicity of compact polyhedra
in any dimension. These conditions coincide with the ones of Akbulut and King in dimen-
sion ≤ 3. In higher dimensions, the number of independent local topological obstructions
defined by such necessary conditions is enormous, at least 243

− 43.
The latter result has an important consequence: in arbitrary dimension, there is no

hope to give a reasonable local topological description of compact polyhedra admitting
a real algebraic structure. However, if compact polyhedra we want to make algebraic
have a Nash structure, then they satisfy all the McCrory–Parusiński conditions (see [28,
16]). Furthermore, such polyhedra admit resolution of singularities via Hironaka’s desin-
gularization theorem, and hence the method of resolution towers applies. In this way, at
present, the following seems to be the most promising and meaningful formulation of the
algebraization problem:

Algebraization problem. Is a Nash set semialgebraically homeomorphic to a real alge-
braic set?

A similar question can be restated in the real analytic setting.
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Here we are interested in the compact Nash case only.
It is important to remark that the theory of resolution towers furnishes a natural and

intriguing three-step strategy to tackle the preceding problem for an arbitrary compact
Nash set M: (I) resolve the singularities of M obtaining a resolution tower I; (II) make
I algebraic via algebraic approximation techniques, obtaining an algebraic resolution
tower I ′; (III) blow down I ′ obtaining a real algebraic set semialgebraically homeomor-
phic to M .

As we have just recalled, the existence of I in step I is ensured by Hironaka’s desin-
gularization theorem. The first part of step III can be performed as well: one can show
that the blowing down of every algebraic resolution tower is semialgebraically homeo-
morphic to a real algebraic set. A serious difficulty appears in step II. In fact, the blowing
down of a (generic) resolution tower is topologically unstable with respect to the usual
algebraic approximation techniques. Hence one cannot conclude that the blowing down
of I ′ is semialgebraically homeomorphic to M . For this reason, one needs to require that
the resolution tower I of step I be of a very special type. Unfortunately, as one reads on
page 173 of the 1992 book [4] (for the algebraic case), in order to obtain that type of
resolution tower, an “as yet unproven resolution of singularities theorem” for Nash maps
seems to be necessary. This assertion is still true nowadays. The preceding considerations
fully describe the intrinsic difficulty of treating the algebraization problem by the method
of resolution towers.

Recently, by using different methods, some examples of compact Nash sets admitting
real algebraic structures have been found in arbitrary dimension and with nonisolated
singularities. The examples are the following:

(Ex1) The product of a standard sphere and of a compact Nash set is Nash isomorphic to
a real algebraic set (see [32]).

(Ex2) Let M ⊂ Rn be a compact Nash set symmetric with respect to a point p ∈ Rn.
Then M is Nash isomorphic to a real algebraic set if p 6∈ M or if p is an isolated
point of M , and it is semialgebraically homeomorphic to a real algebraic set if
p is a nonisolated point of M . Under suitable conditions, these results extend to
the case of M symmetric with respect to an affine subspace of Rn of positive
dimension (see [17, 18]).

To the best of our knowledge, in the singular setting, until now, the algebraization problem
has been solved only for the compact Nash sets described above, that is, the compact
Nash sets of dimension ≤ 3 or with isolated singularities, or the ones mentioned in the
preceding two examples.

On the contrary, the study of the algebraization problem for manifolds has been deep-
ened in several directions. In [6, 12], it is proved that, for every compact smooth man-
ifold M of positive dimension, the set of birationally nonisomorphic algebraic models
of M has the power of the continuum. In [7], Ballico and the first author improved this
result by showing that the algebraic structure of every nonsingular real algebraic set of
positive dimension can be deformed by an arbitrarily large number of effective parameters
(see [8, 15] for the singular case).
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The existence of several distinct algebraic models of M poses the question of con-
structing algebraic models of M with additional algebraic-geometric properties or alge-
braic models of M on which certain smooth objects attached to M become algebraic.
There is a wide literature devoted to this topic. For some of the main developments on the
algebraization problem for manifolds, we refer the reader to two recent papers, and to the
numerous references therein: [22], especially the first section, for the algebraization of
manifold pairs, of vector bundles, of homology and cohomology classes, of smooth sub-
manifolds of euclidean spaces via ambient isotopies, and of analytic hypersurfaces with
isolated singularities via ambient isotopies; and [23] for the Nash rationality conjecture
concerning the existence of rational algebraic models.

2. The results

The goal of this paper is to introduce the new algebraic-topological notion of asymmetric
Nash cobordant compact Nash sets, and to use it to deal with the algebraization problem.
We prove that a compact Nash set is semialgebraically homeomorphic to a real algebraic
set if and only if it is (strongly) asymmetric Nash cobordant to a compact real algebraic
set or, equivalently, if it is asymmetric Nash cobordant to a point. As an application, we
obtain quite general algebraization theorems, which describe, by means of transversality,
new large classes of compact Nash sets semialgebraically homeomorphic to real algebraic
sets.

In what follows, we use standard notions and results concerning real algebraic, Nash
and semialgebraic sets. As usual, we assume that these sets are equipped with the eu-
clidean topology. Our standard reference is [11] (see also [10, 29]).

Let us only specify the meaning we give to some basic notions from Nash geometry.
Let M be a locally closed semialgebraic subset of Rm. Given an open semialgebraic
subset� of Rm containingM , we say thatM is a Nash subset of� if it is the zero set of a
finite family of Nash functions defined on �. We underline that, by the results of [13], M
is a Nash subset of Rm if and only if M is closed in Rm and it is a Nash subset of one of
its open semialgebraic neighborhoods (see [31]). By a Nash set, we mean a Nash subset
of an open semialgebraic subset of some Rm. A Nash manifold is a nonsingular Nash
set, that is, a Nash submanifold of some Rm (see [11, Definition 2.9.9]). Let M ⊂ Rm
and N ⊂ Rn be Nash sets. A map f : M → N is a Nash map if there exist an open
semialgebraic neighborhood U of M in Rm and an extension F : U → Rn of f which is
Nash, that is, semialgebraic and of class C∞.

We recall that a semialgebraic Whitney stratification of a locally closed semialgebraic
set A ⊂ Rm is a finite stratification whose strata are Nash submanifolds of Rm satisfying
conditions a and b of Whitney. We refer the reader to [19, 30] for the general properties of
Whitney and semialgebraic Whitney stratifications. Given a Nash submanifold B of Rm,
we say that B is transverse to A in Rm if there exists a semialgebraic Whitney stratifica-
tion {Ai}i of an open semialgebraic neighborhood of A∩B in A such that B is transverse
to each stratum Ai in Rm.

For short, we say that a Nash set has an algebraic structure if it is semialgebraically
homeomorphic to a real algebraic set. Given n,m ∈ N with n < m, we identify Rn with
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the vector subspace Rn×{0} of Rm = Rn×Rm−n. If S is a subset of Rm, then we denote
by ZclRm(S) the Zariski closure of S in Rm.

Let us introduce the above mentioned new notion of asymmetric Nash cobordism.

Definition 2.1. Let M be a compact Nash set. Given a compact Nash subset M ′ of Rn,
we say that M is asymmetric Nash cobordant to M ′, or asym-Nash cobordant to M ′ for
short, if there exist a compact Nash subset S of some Rm+1 with n ≤ m andM ′ ⊂ S, and
a compact Nash subset N of S with N ∩M ′ = ∅ such that:

(i) N is semialgebraically homeomorphic to M .
(ii) Rm ∩ S = N ∪M ′.
(iii) Rm is transverse to S in Rm+1 locally at N . More precisely, there exists an open

semialgebraic neighborhood W of N in S such that Rm is transverse to W in Rm+1.

If, in addition, S satisfies condition (iv) below, then we say thatM is strongly asymmetric
Nash cobordant to M ′, or simply strongly asym-Nash cobordant to M ′:

(iv) S is a union of connected components of ZclRm+1(S).

The compact Nash set M is called a Nash boundary if it is asym-Nash cobordant to the
empty set.

The use of the adjective “asymmetric” is justified by the fact that the statement of the
preceding definition is not symmetric in M and M ′. A deeper motivation is revealed by
Theorem 2.3 below. The reader should compare Definition 2.1 with the classical “sym-
metric” notion of cobordism between Whitney stratified compact subsets of Rm (see [20,
Definition 3.3] with X = Rm).

The concept of asymmetric Nash cobordism just defined generalizes the standard one
of unoriented cobordism between compact smooth manifolds. Indeed, if M and M ′ are
two unoriented cobordant compact Nash manifolds and T is a compact smooth manifold-
with-boundary having their disjoint union M tM ′ as boundary, then, by standard Nash
approximation results (see [11, 29]), the double of T can be embedded into some Rm+1

as a compact Nash submanifold S in such a way that Rm ∩ S is Nash isomorphic to
M tM ′ and Rm is transverse to S in Rm+1. In particular, it follows that if a compact Nash
manifold is a smooth boundary, that is, the boundary of a compact smooth manifold-with-
boundary, then it is also a Nash boundary. It is worth noting that there exist topological
obstructions for a compact Nash set to be a Nash boundary. Indeed, every Nash boundary
is also a P-boundary (see [16, Theorem 1.2]). In particular, it must have even Euler
characteristic.

Observe that ifM is semialgebraically homeomorphic toM ′, then it is also asym-Nash
cobordant toM ′. It suffices to set S := M ′×S1

⊂ Rn+2
= Rn×R2,N := M ′×{(1, 0)},

m := n + 1 and to identify M ′ with M ′ × {(−1, 0)} in the preceding definition. For the
same reason, if a compact Nash set has an algebraic structure, then it is also strongly
asym-Nash cobordant to a compact real algebraic set.

Our main result proves the converse implication:

Theorem 2.2. If a compact Nash set is strongly asym-Nash cobordant to a compact real
algebraic set, then it has an algebraic structure.
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At first glance, one may hope to prove Theorem 2.2 by adapting the classical proof of
the Nash–Tognoli theorem via standard algebraic approximation results and the semi-
algebraic version of Thom’s first isotopy lemma. However, this is not possible.

Let us explain why. Suppose we have a compact Nash manifold M we want to make
algebraic. Then there exists a compact Nash submanifold S of some Rm+1 such that Rm
is transverse to S in Rm+1, Rm ∩ S is equal to the disjoint union N tM ′ of a compact
Nash manifold N diffeomorphic (and hence Nash isomorphic) to M and of a compact
nonsingular real algebraic set M ′, and S is a union of connected components of S′ :=
ZclRm+1(S). This is the first part of the above mentioned classical proof: see, for example,
[11, Theorem 14.1.10, p. 378], where the notation is very different from the one used
here.

The classical proof proceeds as follows. Consider the Nash function g : S′→ R equal
to the projection (x1, . . . , xm+1) 7→ xm+1 on S and to 1 on S′ \ S. Observe that 0 is a
regular value of g|S and g−1(0) = N tM ′. Since the real algebraic setM ′ is nonsingular,
it follows that it is “quasi regular” (see [35, p. 51]) or, what is the same, it is “nice” (see
[4, p. 57]). For this reason, we can apply the relative Weierstrass approximation theorem
(see [34, Teorema 1] or [4, Lemma 2.8.1]), obtaining a regular function h : S′ → R
arbitrarily C∞-close to g on S, vanishing on M ′ and nowhere null on S′ \ S. In this way,
by the smooth version of Thom’s first isotopy lemma, there exists a small smooth isotopy
(Ft : g

−1(0)→ S)t∈[0,1] from g−1(0) to h−1(0) in S fixingM ′. In particular, F1(N)tM
′

is equal to the nonsingular real algebraic set h−1(0). Since M ′ is Zariski closed in Rm+1,
it follows immediately that F1(N) is a nonsingular real algebraic set, as desired.

Suppose now that M is an arbitrary (possibly singular) compact Nash set strongly
asym-Nash cobordant to a compact real algebraic set M ′. Let S ⊂ Rm+1 and N be as
in Definition 2.1, and let S′ := ZclRm+1(S). Observe that there are two serious obstruc-
tions to adapting the preceding proof to the present singular situation. First, we do not
require thatM ′ is nice; hence, one cannot apply the above mentioned relative Weierstrass
approximation theorem to the function g (which can be defined as above). Secondly, we
have imposed the transversality between Rm and S locally at N , but not locally at M ′.
In this way, also in the case in which one would have a regular map h arbitrarily C∞-
close to g on S, vanishing on M ′ and nowhere null on S′ \ S, the semialgebraic version
of Thom’s first isotopy lemma would not ensure the existence of a semialgebraic isotopy
from g−1(0) to h−1(0) in S fixing M ′.

Our strategy to prove Theorem 2.2 is based on a new algebraic-topological approxi-
mation procedure. First, we reduce to the case in which M ′ is a point by using the real
algebraic blowing down operation and then we perform the algebraic approximation of
g by means of an ad hoc family of nonsingular hypersurfaces of Rm+1 “converging to
the boundary of a cylinder”. More precisely, we obtain Theorem 2.2 as an immediate
consequence of the following two results.

Theorem 2.3. Let M be a compact Nash set. The following assertions are equivalent:

(i) M is strongly asym-Nash cobordant to a compact real algebraic set.
(ii) M is strongly asym-Nash cobordant to a point.
(iii) M is asym-Nash cobordant to a point.
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Theorem 2.4. If a compact Nash set is strongly asym-Nash cobordant to a point, then it
has an algebraic structure.

We observe that, by definition, if a compact Nash set M is asym-Nash cobordant to the
empty set (that is, if M is a Nash boundary), then it is also asym-Nash cobordant to a
point. In this way, thanks to Theorem 2.3, M is strongly asym-Nash cobordant to a point
as well. By applying Theorem 2.4 to M , we infer at once the following significant result.

Corollary 2.5. Every Nash boundary has an algebraic structure.

Let us present some applications of our results. First, we need to extend to Nash maps
the notion of transversality between Nash submanifolds and locally closed semialgebraic
subsets of Rm, given above.

Let A be a Nash set, let N be a Nash manifold, let B be a Nash subset of N and let
f : A→ N be a Nash map. We say that f is transverse to B if there exist a semialgebraic
Whitney stratification {Ai}i of an open semialgebraic neighborhood of f−1(B) in A and
a semialgebraic Whitney stratification {Bj }j of an open semialgebraic neighborhood of
f (f−1(B)) in N such that the restriction of f to each stratum Ai is transverse to each
stratum Bj in N . If A is a Nash subset of N and the inclusion map A ↪→ N is trans-
verse to B, we say that A is transverse to B in N and also that A ∩ B is the transverse
intersection of A and B in N .

In the latter situation, the condition of transversality between A and B in N can be
restated explicitly as follows: A is transverse to B in N if there exist a semialgebraic
Whitney stratification {Ai}i of an open semialgebraic neighborhood of A ∩ B in A and
a semialgebraic Whitney stratification {Bj }j of an open semialgebraic neighborhood of
A ∩ B in B such that each stratum Ai is transverse to each stratum Bj in N .

We remind the reader that a real algebraic set is said to have totally algebraic homol-
ogy if each of its homology classes over Z2 can be represented by a real algebraic subset.
Remarkable examples of compact nonsingular real algebraic sets with totally algebraic
homology are the standard unit spheres and the grassmannians.

Thanks to Theorem 2.2, we obtain the following quite general algebraization result.

Theorem 2.6. Let X be a compact real algebraic set, let Y be a nonsingular real al-
gebraic set, let Z be a real algebraic subset of Y and let f : X → Y be a Nash map
transverse to Z. Then, in each of the following two cases, the compact Nash set f−1(Z)

has an algebraic structure:

(i) f is C 0-homotopic to a regular map.
(ii) X is a real algebraic subset of some compact nonsingular real algebraic set V with

totally algebraic homology, Y has totally algebraic homology and f admits a Nash
extension V → Y .

We remark that, in order to prove the latter theorem, we will need the semialgebraic
version of a powerful isotopy result of Thom (see Corollary 3.3) and a new nonstan-
dard version of a basic algebraic approximation result of Akbulut and King, the so-called
workhorse theorem (see Lemma 3.6 and Remark 3.7). Furthermore, the asymmetry of
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Definition 2.1 will play a crucial role, at least in the proof of (i) (see Remarks 3.8, 3.10
and 3.12). Finally, as a byproduct of the proof of (ii), we obtain a new algebraic approxi-
mation result for Nash maps between nonsingular real algebraic sets with totally algebraic
homology (see Theorem 3.11), which is interesting in its own right.

Our next result gives two simple ways of constructing Nash boundaries, which have
algebraic structures, as we saw in Corollary 2.5. As usual, a subset of Rm is said to be
proper if it is different from Rm.

Theorem 2.7. In each of the following two cases, the compact Nash set M is a Nash
boundary and hence it has an algebraic structure:

(i) M is the product of a Nash boundary (for example, a compact Nash manifold which
is a smooth boundary) by an arbitrary compact Nash set.

(ii) M is the transverse intersection of two proper Nash subsets of some Rm, one of which
is compact.

In the semialgebraic setting, (i) generalizes (Ex1).
We make a conjecture:

Conjecture 2.8. Every compact Nash set is strongly asym-Nash cobordant to a compact
real algebraic set or, equivalently, every compact Nash set is asym-Nash cobordant to a
point.

Observe that the validity of this conjecture, combined with Theorem 2.2, would imply the
complete affirmative solution of the algebraization problem in the compact case: “every
compact Nash set has an algebraic structure”.

The proofs of our results are given in the next section.

3. Proofs of the results

We divide this section into four subsections. In the first, we prove Theorem 2.3. The sec-
ond subsection is devoted to the proofs of Theorems 2.4 and 2.2. The last two subsections
deal with Theorems 2.6 and 2.7.

3.1. Proof of Theorem 2.3

The implications (ii)⇒(i) and (ii)⇒(iii) are evident. The implication (iii)⇒(ii) is an easy
consequence of the Artin–Mazur theorem.

Proof of the implication (iii)⇒(ii). Suppose M is asym-Nash cobordant to a point. By
definition, there exists a compact Nash subset S of some Rm+1 such that Rm ∩ S is
equal to the disjoint union of a point p and of a compact Nash set N semialgebraically
homeomorphic toM , and Rm is transverse to S in Rm+1 locally at N . Let h : Rm+1

→ R
be a Nash function having S as its zero set. We apply the Artin–Mazur theorem to h (see
[11, Theorem 8.4.4]), obtaining a positive integer k, a nonsingular real algebraic subset V
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of Rm+2+k
= Rm+1

× R × Rk , a semialgebraically connected component V ′ of V and
a Nash isomorphism σ : Rm+1

→ V ′ such that π(σ(x)) = x and τ(σ (x)) = h(x) for
every x ∈ Rm+1, where π : Rm+1

× R × Rk → Rm+1 and τ : Rm+1
× R × Rk → R

denote the natural projections. LetH be the coordinate hyperplane xm+1 = 0 of Rm+2+k ,
let S′ := ZclRm+2+k (σ (S)) and let g : V → R be the restriction of τ to V . Observe that
H ∩ σ(S) = σ(N) t {σ(p)} and H is transverse to σ(S) in Rm+2+k locally at σ(N).
Moreover, since σ(S) = V ′ ∩ g−1(0) is a union of connected components of g−1(0) and
S′ ⊂ g−1(0), we infer at once that σ(S) is a union of connected components of S′ as well.
This proves that M is strongly asym-Nash cobordant to the point σ(p). ut

In order to prove the implication (i)⇒(ii), our idea is to use a suitable version of the
real algebraic blowing down lemma by Akbulut and King, which allows one to make
algebraic the topological operation of “collapsing a subspace to a point”. In this context,
a key notion is the one of projectively closed real algebraic set. Let jn : Rn → Pn(R) be
the affine chart sending x into [1, x]. A real algebraic set X ⊂ Rn is called projectively
closed if jn(X) is Zariski closed in Pn(R). This condition can be restated in terms of overt
polynomials. A polynomial P ∈ R[X1, . . . , Xn] is overt if its homogeneous leading term
(the homogeneous part of maximum degree) vanishes only at the origin of Rn. It is easy
to verify that the real algebraic subset X of Rn is projectively closed if and only if there
exists an overt polynomial in R[X1, . . . , Xn]whose zero set coincides withX. The reader
is referred to [4, Sections II.3 and II.6] for more details on this topic.

Lemma 3.1. If a compact Nash set is strongly asym-Nash cobordant to a compact real
algebraic set, then it is also strongly asym-Nash cobordant to a projectively closed real
algebraic set.
Proof. Let M be a compact Nash set strongly asym-Nash cobordant to a compact real
algebraic set. By definition, there exist a compact Nash subset S of some Rm+1 such that
Rm ∩ S is the disjoint union of a compact real algebraic set M ′ and of a compact Nash
set N semialgebraically homeomorphic to M , Rm is transverse to S in Rm+1 locally
at N , and S is the union of certain connected components of ZclRm+1(S). Thanks to [4,
Theorem 2.5.13] (or rather thanks to its proof withW := Rm and V := M ′), we know that
there exists a biregular embedding ψ : Rm → Rk (that is, ψ(Rm) is Zariski closed in Rk
and the restriction of ψ from Rm to ψ(Rm) is a biregular isomorphism) such that ψ(M ′)
is projectively closed. Denote by 9 : Rm+1

→ Rk+1 the biregular embedding ψ × idR,
where idR : R → R is the identity map on R. The reader observes that Rk ∩ 9(S) =
ψ(N)tψ(M ′), Rk is transverse to 9(S) in Rk+1 locally at ψ(N) and 9(S) is a union of
connected components of ZclRk+1(9(S)) = 9(ZclRm+1(S)). It follows thatM is strongly
asym-Nash cobordant to the projectively closed real algebraic set ψ(M ′). ut

We are ready to complete the proof of Theorem 2.3.
Proof of the implication (i)⇒(ii). By Lemma 3.1, we can assume that M is strongly
asym-Nash cobordant to a projectively closed real algebraic set. Then there exists a com-
pact Nash subset S of some Rm+1 such that Rm ∩ S is equal to the disjoint union of a
projectively closed real algebraic set M ′ ⊂ Rm and of a compact Nash set N semialge-
braically homeomorphic to M , Rm is transverse to S in Rm+1 locally at N , and S is a
union of connected components of S′ := ZclRm+1(S).
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Let D ∈ R[X] = R[X1, . . . , Xm+1] be a (nonzero) polynomial whose zero set is S′

and let d be its degree. SinceM ′ is projectively closed as a real algebraic subset of Rm, it is
also projectively closed as a real algebraic subset of Rm+1: indeed, jm(M ′) = jm+1(M

′)

and Pm(R) is a Zariski closed subset of Pm+1(R), up to natural identifications. In this
way, there exists an overt polynomial E ∈ R[X] having M ′ as its zero set. If M ′ = ∅,
then we define E(X) := 1 +

∑m+1
i=1 X

2
i . Write E as follows: E =

∑e
j=0 Ej , where

e := deg(E) and Ej is a homogeneous polynomial in R[X] of degree j . Since E is overt
and not constant, we have e ≥ 2 and Ee vanishes only at 0. Let ` be a positive integer
such that e` > d.

Denote by x = (x1, . . . , xm+1) the coordinates of Rm+1. Define the polynomial L ∈
R[X,Xm+2], the polynomial maps α : Rm+1

→ Rm+2 and β : Rm+2
→ Rm+2, and the

subsets S∗, S′∗ and N∗ by setting

L(X,Xm+2) := D(X)
2
+ (Xm+2 − E(X))

2`,

α(x) := (x, E(x)), β(x, xm+2) := (xxm+2, xm+2),

S∗ := {0} ∪ β(α(S)), S′∗ := {0} ∪ β(α(S
′)), N∗ := β(α(N)).

Observe that α(S′)∩Rm+1
= M ′×{0}, the restriction of β ◦α from Rm+1

\M ′ to Rm+2
\

Rm+1 is a biregular embedding, S∗ is a compact semialgebraic set equal to the union of
connected components of S′∗, N∗ is a compact Nash set semialgebraically homeomorphic
to M , and L is a polynomial of degree 2e` with α(S′) as its zero set and with E2`

e as its
homogeneous leading term. Moreover,

β(α(S′)) \ Rm+1
= {(x, xm+2) ∈ Rm+2

\ Rm+1
| L(β−1(x, xm+2)) = 0}.

By clearing denominators in the rational expression of L(X/Xm+2, Xm+2), we infer at
once the existence of a polynomial R ∈ R[X,Xm+2] such that

L(β−1(x, xm+2)) = x
−2e`
m+2 (Ee(x)

2`
+ xm+2R(x, xm+2))

for every (x, xm+2) ∈ Rm+2
\Rm+1. Since Ee vanishes only at 0, we infer that S′∗ is equal

to the zero set of the polynomial Ee(X)2` + Xm+2R(X,Xm+2), and hence it is Zariski
closed in Rm+2. It follows that S∗ is a union of connected components of ZclRm+2(S∗).

Denote by H the coordinate hyperplane xm+1 = 0 of Rm+2. It is immediate to verify
thatH ∩S∗ = N∗ t {0}, and since N∗ ∩Rm+1

= ∅,H is transverse to S∗ in Rm+2 locally
at N∗.

Summarizing, we have proved that S∗ is a compact Nash subset of Rm+2, H ∩ S∗ is
the disjoint union of {0} and of the compact Nash set N∗ semialgebraically homeomor-
phic to M , H is transverse to S∗ in Rm+2 locally at N∗, and S∗ is a union of connected
components of its Zariski closure in Rm+2. This ensures that M is strongly asym-Nash
cobordant to a point, as desired. ut

3.2. Proofs of Theorems 2.4 and 2.2

We begin with three preliminary lemmas and a corollary.
The first result is a simple consequence of the semialgebraic version of Thom’s first

isotopy lemma of Coste and Shiota [14].



Algebraicity of Nash sets and of their asymmetric cobordism 517

Lemma 3.2. LetA be a locally closed semialgebraic subset of Rm equipped with a semi-
algebraic Whitney stratification {Ai}i , and let u : U → Rk be a Nash map from an open
semialgebraic neighborhood U of A in Rm to some Rk such that 0 is a regular value of
the restriction of u to each stratum Ai , and u−1(0) ∩ A is compact. Choose a compact
neighborhood C of u−1(0)∩A in U . Suppose we have a Nash map v : U → Rk with the
following property:

(∗) there exists an ε > 0 such that the set L = {(x, s) ∈ A×[−ε, 1+ ε] | (1− s)u(x)+
sv(x) = 0} is compact and πA(L) ⊂ C, where πA : A×R→ A denotes the natural
projection onto A.

If the Nash map v is also sufficiently C 1-close to u on C, then there exists a semialgebraic
homemorphism θ : u−1(0) ∩ A→ v−1(0) ∩ A such that, for every i, θ(u−1(0) ∩ Ai) =
v−1(0)∩Ai and the restriction of θ from u−1(0)∩Ai to v−1(0)∩Ai is a Nash isomorphism.

Proof. Let ρ : R → R be a Nash embedding and let a, b ∈ R such that ρ(R) =
(−ε, 1+ ε), ρ(a) = 0 and ρ(b) = 1. For example, one can set

ρ(t) :=
(
1+ (1+ 2ε)t (1+ t2)−1/2)/2.

Consider the Nash map ϕ : U × R→ Rk defined by setting

ϕ(x, t) := (1− ρ(t))u(x)+ ρ(t)v(x).

Define the closed semialgebraic subset B of U ×R, the partition {Bi}i of B and the Nash
map π : U × R→ R as follows:

B := {(x, t) ∈ A× R | ϕ(x, t) = 0},
Bi := {(x, t) ∈ Ai × R | ϕ(x, t) = 0} for every i,
π(x, t) := t.

By (∗), it follows immediately that the restriction of π to B is a proper map. Furthermore,
if v is sufficiently C 1-close to u on C, then {Bi}i is a semialgebraic Whitney stratification
of B and the restriction of π to each stratum Bi is a Nash submersion. Thanks to the semi-
algebraic version of Thom’s first isotopy lemma [14], there exists a semialgebraic hom-
eomorphism from π−1(a)∩B = (u−1(0)∩A)×{a} to π−1(b)∩B = (v−1(0)∩A)×{b},
which induces a Nash isomorphism from π−1(a)∩Bi=(u

−1(0)∩Ai)×{a} to π−1(b)∩Bi
= (v−1(0) ∩ Ai)× {b} for each i. ut

Observe that if A is compact, then condition (∗) is always satisfied (with an arbitrary
compact neighborhood C of A in U and with an arbitrary ε > 0).

Let us present a useful corollary of the preceding lemma. It is a semialgebraic version
of a classical isotopy result of Thom (see [33, Théorème 2.D.2, pp. 270–271]). Certainly,
such a semialgebraic version is known to experts in semialgebraic geometry. However, to
the best of our knowledge, it is explicitly stated and proved here for the first time.



518 Riccardo Ghiloni, Alessandro Tancredi

Corollary 3.3. Let X ⊂ Rn be a compact semialgebraic set equipped with a semialge-
braic Whitney stratification {Xi}i , let Y be a Nash manifold, let Z be a closed semial-
gebraic subset of Y equipped with a semialgebraic Whitney stratification {Zj }j and let
f : � → Y be a Nash map from an open semialgebraic neighborhood � of X in Rn
to Y such that the restriction of f to each stratum Xi is transverse to each stratum Zj
in Y . Choose a compact semialgebraic neighborhood K of X in �. If g : � → Y is a
Nash map sufficiently C 1-close to f on K , then the semialgebraic sets f−1(Z) ∩ X and
g−1(Z) ∩X are semialgebraically homeomorphic.
Proof. Suppose Y is a Nash submanifold of Rk . Let ρ : T → Y be a Nash tubular
neighborhood of Y in Rk , that is, T is an open semialgebraic neighborhood of Y in Rk , ρ
is a Nash retraction (for example, the closest point map) and (T , ρ, Y ) is a vector bundle
(see [11, Corollary 8.9.5]). Define Z∗ := ρ−1(Z) and Z∗j := ρ

−1(Zj ) for every j . Since
ρ is a Nash submersion, {Z∗j }j turns out to be a semialgebraic Whitney stratification of
the closed semialgebraic subset Z∗ of T . Let iY : Y ↪→ Rk be the inclusion map and let
F,G : �→ Rk be the Nash maps defined by F := iY ◦ f and G := iY ◦ g. Consider the
open semialgebraic subset U := � × T of Rn+k = Rn × Rk , the closed semialgebraic
subsetA := X×Z∗ of U , the semialgebraic Whitney stratification {Xi×Z∗j }i,j ofA, and
the Nash maps u, v : U → Rk defined as follows: u(x, y) := F(x) − y and v(x, y) :=
G(x)− y for every (x, y) ∈ �× T = U .

By hypothesis, the restriction of f to each stratum Xi of X is transverse to each
stratum Zj of Z in Y . This is equivalent to asserting that the restriction of F to each
stratum Xi of X is transverse to each stratum Z∗j of Z∗ in Rk . The latter transversality
condition is in turn equivalent to the fact that 0 is a regular value of the restriction of u to
each stratum Xi × Z

∗

j of A.
Let T ∗ be a compact neighborhood of f (X) in T , let Z∗∗ be the compact set Z∗ ∩T ∗

and let C be a compact neighborhood of X × Z∗∗ in K × T . Define the continuous map
H : X×[−1, 2] → Rk by settingH(x, s) := (1− s)F (x)+ sG(x). Since g is arbitrarily
C 1-close to f on K , it follows that G is arbitrarily C 1-close to F on K as well. In
particular,G is also C 0-close to F onX. In this way, we can assume thatH(X×[−1, 2])
is a subset of T ∗. Define

L := {(x, y, s) ∈ A× [−1, 2] | (1− s)u(x, y)+ sv(x, y) = 0}.

Observe that (1− s)u(x, y)+ sv(x, y) = (1− s)F (x)+ sG(x)− y for every (x, y, s) ∈
U × [−1, 2]. It follows that L is compact, because it is a closed subset of the compact set
X × Z∗∗ × [−1, 2].

We have just proved that A, u, v and C satisfy the hypothesis of Lemma 3.2 (with
ε = 1). Thanks to this lemma, we infer that u−1(0) ∩ A and v−1(0) ∩ A are semi-
algebraically homeomorphic. It remains to show that u−1(0) ∩ A and v−1(0) ∩ A are
semialgebraically homeomorphic to f−1(Z) ∩ X and to g−1(Z) ∩ X, respectively. This
is quite easy. Indeed, we have

u−1(0) ∩ A = {(x, y) ∈ X × Z | y = f (x)},

and hence u−1(0) ∩ A is the graph of the restriction of f to f−1(Z) ∩ X. Similarly,
v−1(0) ∩ A is the graph of the restriction of g to g−1(Z) ∩X. ut
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Fix a positive integerm. We denote by ‖x‖ the euclidean norm (
∑m
i=1 x

2
i )

1/2 of the vector
x = (x1, . . . , xm) of Rm, by Bm(r) the open ball {x ∈ Rm | ‖x‖ < r}, and by B̄m(r) its
closure in Rm.

Lemma 3.4. LetQ be a compact semialgebraic subset of Rm+1 such thatQ∩Rm = {0}.
Then there exist an ε > 0 and a positive integer k such that

|xm+1| > ε‖x‖2k for every (x, xm+1) ∈ Q \ {0}.

Proof. Let ν : (Rm \ {0}) × R→ (Rm \ {0}) × R be the biregular automorphism send-
ing (x, xm+1) to (x‖x‖−2, xm+1) and let Q′ := ν(Q \ ({0} × R)). Since Q is compact
in Rm+1 and Q ∩ Rm = {0}, it is immediate to verify that Q′ is closed in Rm+1 and
Q′ ∩ Rm = ∅. Consider the positive continuous semialgebraic function f : Q′ → R
defined by f (x, xm+1) := 1/|xm+1| and apply Proposition 2.6.2 of [11] to f . We obtain
an r > 0 and a positive integer k such that

1/|xm+1| < r(1+ ‖x‖2 + x2
m+1)

k for every (x, xm+1) ∈ Q
′.

Let s > 0 be so large that Q ⊂ B̄m(s)× [−s, s]. Since Q′ ⊂ Rm × [−s, s], we infer that

|xm+1| > r−1(1+ ‖x‖2 + x2
m+1)

−k
≥ r−1(1+ s2

+ ‖x‖2)−k

for every (x, xm+1) ∈ Q
′. Define ε := r−1((1 + s2)s2

+ 1)−k > 0. If (x, xm+1) ∈

Q \ ({0} × R), then

|xm+1| > r−1(1+ s2
+
∥∥x‖x‖−2∥∥2)−k

= r−1((1+ s2)‖x‖2 + 1
)−k
‖x‖2k ≥ ε‖x‖2k,

as desired. ut

For every δ > 0 and for every positive integer k, we define the open semialgebraic subset
�δ,k of Rm+1 by setting

�δ,k := {(x, xm+1) ∈ Rm+1
| |xm+1| < δ‖x‖2k},

and we denote its closure in Rm+1 by �δ,k .
In the next lemma, we improve the geometric conditions in which a strongly asym-

metric Nash cobordism to a point can be performed.

Lemma 3.5. Let M be a compact Nash set, strongly asym-Nash cobordant to a point.
Then there exist a compact Nash subset S of some Rm+1, a Nash subset N of S semial-
gebraically homeomorphic to M , a compact semialgebraic neighborhood W of N in S,
a δ > 0 and a positive integer k such that 0 6∈ N , Rm ∩ S = N ∪ {0}, Rm is transverse
to W in Rm+1, 0 is an isolated point of S ∩�δ,k , W = (S ∩�δ,k ) \ {0} and

S ⊂ Bm(1/2)× (−1/2, 1/2), (3.1)

ZclRm+1(S) \ S ⊂ Rm+1
\ (B̄m(2)× [−2, 2]). (3.2)
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Proof. Since M is strongly asym-Nash cobordant to a point, there exists a compact Nash
subset T of some Rn+1, a compact Nash subset Z of T semialgebraically homeomor-
phic to M , an open semialgebraic neighborhood U of Z in T equipped with a semialge-
braic Whitney stratification {Ui}i and a point q ∈ T \ Z such that Rn ∩ T = Z ∪ {q},
Rn is transverse to each Ui in Rn+1 and T is a union of connected components of
ZclRn+1(T ). Moreover, by using affinity of Rn+1 if necessary, we can assume that q = 0
and T ⊂ B̄n+1(1/4).

Let us move L := ZclRn+1(T ) \ T away from T by using a classical method of
A. H. Wallace (see [36, Subsection 3.2]). Since T and L are disjoint closed subsets
of Rn+1, there exists a continuous function f : Rn+1

→ R such that f vanishes on T
and is constantly equal to 4 on L. Apply the Weierstrass approximation theorem to the
restriction of f to B̄n+1(3). We obtain a polynomial P ∈ R[X1, . . . , Xn+1] such that
|P | ≤ 1/4 on T , P(0) = 0 and P > 3 on L ∩ B̄n+1(3). Consider the biregular embed-
ding G : Rn+1

→ Rn+2 sending x ∈ Rn+1 to (x, P (x)) ∈ Rn+1
× R = Rn+2. Define

S′ := G(T ), N ′ := G(Z), W ′ := G(U), W ′i := G(Ui) for every i, m := n + 1 and
H := {(x1, . . . , xm+1) ∈ Rm+1

| xm = 0}. Then S′ is a compact Nash subset of Rm+1

contained in B̄m+1(
√

2/4) ⊂ Bm+1(1/2), H ∩ S′ is the disjoint union of {0} and of
the compact Nash set N ′ semialgebraically homeomorphic to M , {W ′i }i is a semialge-
braic Whitney stratification of the open semialgebraic neighborhoodW ′ of N ′ in S′, H is
transverse to each W ′i in Rm+1, and

ZclRm+1(S
′) \ S′ = G(L) ⊂ Rm+1

\ (B̄m(3)× [−3, 3]) ⊂ Rm+1
\ B̄m+1(3).

Let 2 : Rm+1
→ Rm+1 be the linear change of coordinates of Rm+1, sending

(x1, . . . , xm−1, xm, xm+1) to (x1, . . . , xm−1, xm+1, xm). Define S :=2(S′),N := 2(N ′),
W • := 2(W ′) and W •i := 2(W

′

i ) for every i. Observe that 2(H) = Rm,

S ⊂ Bm+1(1/2) = 2(Bm+1(1/2)) ⊂ Bm(1/2)× (−1/2, 1/2),

B̄m(2)× [−2, 2] ⊂ B̄m+1(2
√

2) ⊂ B̄m+1(3) = 2(B̄m+1(3)),

and hence
ZclRm+1(S) \ S ⊂ Rm+1

\ (B̄m(2)× [−2, 2]).

In order to complete the proof, we must modify W • (and its semialgebraic Whitney
stratification {W •i }i) in such a way that it remains transverse to Rm in Rm+1, but assumes
the required form. Restrict W • around N in such a way that

Q := S \W • is a neighborhood of 0 in S. (3.3)

Since Q ∩ Rm = {0}, by Lemma 3.4 there exists an ε > 0 and a positive integer k such
that

|xm+1| > ε‖x‖2k for every (x, xm+1) ∈ Q \ {0}. (3.4)

For every δ ∈ (0, ε), define

W ∗δ := S ∩�δ,k, W i
δ := W

•

i ∩�δ,k for every i,

Wδ := W
∗
δ \ {0}, W

i,∂
δ := W

•

i ∩ ∂�δ,k for every i,
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where ∂�δ,k denotes the boundary of �δ,k in Rm+1. Thanks to (3.4), W ∗δ turns out to be
a compact semialgebraic neighborhood of N in S contained inW • ∪ {0}. By (3.3), 0 is an
isolated point ofW ∗δ . It follows at once thatWδ is a compact semialgebraic neighborhood
of N in S contained in W •. Bearing in mind that Rm is transverse to each W •i in Rm+1,
if we choose δ sufficiently small, then ∂�δ,k is transverse to each W •i in Rm+1 as well.
It follows that the Nash submanifolds {W i

δ }i ∪ {W
i,∂
δ }i of Rm+1 form a semialgebraic

Whitney stratification of Wδ , whose elements are transverse to Rm in Rm+1.
By construction, S, N and W := Wδ have all the required properties. ut

Theorem 2.2 is an immediate consequence of Theorem 2.3 proved in the preceding sub-
section and of Theorem 2.4 we prove below.

Proof of Theorem 2.4. Let M , S ⊂ Rm+1, N , W , δ and k be as in the statement of
Lemma 3.5. For every positive integer h, define the nonsingular real algebraic subset Eh
of Rm+1 and the Nash function rh : Bm(1/2)→ R by setting

Eh := {(x, xm+1) ∈ Rm+1
| (xm+1 − 1)2 + ‖x‖2h − 1 = 0},

rh(x) := 1− (1− ‖x‖2h)1/2,

and denote by G(rh) ⊂ Rm+1 the graph of rh. Since

Eh ⊂ B̄m(1)× [0, 2] ⊂ B̄m(2)× [−2, 2],
Eh ∩ (Bm(1/2)× (−1/2, 1/2)) = G(rh) ∩ (Bm(1/2)× (−1/2, 1/2)),

(3.1) and (3.2) imply that

G(rh) ∩ S = Eh ∩ S = Eh ∩ ZclRm+1(S),

and hence G(rh) ∩ S is Zariski closed in Rm+1.
Choose an integer h0 > k such that 4−h0+k < δ. For all h ≥ h0 and x ∈ B̄m(1/2)\{0},

we have

rh(x) = ‖x‖
2h/(1+ (1− ‖x‖2h)1/2) ≤ ‖x‖2h = ‖x‖2k‖x‖2h−2k

≤ ‖x‖2k(1/2)2h−2k
≤ ‖x‖2k4−h0+k < δ‖x‖2k.

Bearing in mind that 0 is an isolated point of S ∩�δ,k and W is equal to (S ∩�δ,k) \ {0},
we infer at once that 0 is an isolated point of G(rh)∩S and (G(rh)∩S)\{0} = G(rh)∩W
for every h ≥ h0. It follows that G(rh) ∩W is biregularly isomorphic to a real algebraic
set for every h ≥ h0.

Fix h ≥ h0. Consider the Nash functions f, gh : Bm(1/2)×R→ R defined by setting

f (x, xm+1) := xm+1 and gh(x, xm+1) := xm+1 − rh(x).

If h is sufficiently large, then gh is arbitrarily C 1-close to f locally at W . In this way,
by Lemma 3.2, we infer that N = f−1(0) ∩ W (and hence M) is semialgebraically
homeomorphic to the real algebraic set G(rh) ∩W = (gh)−1(0) ∩W . ut
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3.3. Proof of Theorem 2.6

In order to prove (i), we need a new version of an important algebraic approximation
result, the so-called workhorse theorem of Akbulut and King (see [1, Lemma 2.4] or [4,
Theorem 2.8.3, p. 63]).

Lemma 3.6. Let X ⊂ Rn be a compact real algebraic set, let Y ⊂ Rk be a nonsingular
real algebraic set, let H : X × S1

→ Y be a Nash map and let b ∈ S1 be such that
the restriction of H to X × {b} is a regular map. Choose a ∈ S1

\ {b} and a compact
semialgebraic neighborhood Ia of a in S1

\ {b}. Then there exist an open semialgebraic
neighborhood U of X in Rn, a Nash extension H̃ : U ×S1

→ Y ofH , a compact semial-
gebraic neighborhood U∗ ofX in U , a nonsingular real algebraic set L ⊂ Rn×S1

×Rk ,
an open semialgebraic subset L0 of L and a regular map R : L→ Y with the following
properties:

(i) If π : Rn×S1
×Rk → Rn×S1 denotes the natural projection, then π(L0) = U×S

1

and the restriction$ : L0 → U×S1 of π from L0 toU×S1 is a Nash isomorphism.
(ii) X × {b} × {0} ⊂ L0.
(iii) R ◦ iL0 ◦$

−1 is arbitrarily C 1-close to H̃ on U∗ × Ia , and R ◦ iL0 ◦$
−1
= H̃ on

X × {b}, where iL0 : L0 ↪→ L denotes the inclusion map.

Proof. We organize the proof into two steps.

Step I. Let iY : Y ↪→ Rk be the inclusion map and let q : X × {b} → Rk be the
regular map sending (x, b) to H(x, b) for every x ∈ X. Choose a Nash extension Ĥ :
Rn× S1

→ Rk of iY ◦H and a regular extensionQ : Rn× S1
→ Rk of q. The existence

of Ĥ is ensured by Efroymson’s extension theorem (see [11, Theorem 8.9.12]), and the
existence of Q by [11, Proposition 3.2.3].

Let % : T → Y be a Nash tubular neighborhood of Y in Rk with % equal to the closest
point map (see [11, Corollary 8.9.5]) and let U be an open semialgebraic neighborhood
of X in Rn with compact closure U in Rn such that Ĥ (U × S1) ⊂ T . Define the Nash
map H ∗ : U × S1

→ Rk by setting H ∗(x, p) := %(Ĥ (x, p)). We remark that the image
of H ∗ is contained in Y .

Define δ,1 ∈ R as follows:

δ := dist
(
H ∗(U × S1),Rk \ T

)
> 0, 1 := max

{
sup
U×S1
‖H ∗‖k, sup

U×S1
‖Q‖k

}
,

where ‖·‖k denotes the usual euclidean norm of Rk . SinceH ∗(x, b) = q(x, b) = Q(x, b)
for every x ∈ X, by restricting U around X if necessary, we can find a compact semial-
gebraic neighborhood Ib of b in S1 so small that Ia ∩ Ib = ∅ and

sup
U×Ib

‖H ∗ −Q‖k < δ/5. (3.5)

Consider a C 1-function ξ : S1
→ R such that ξ = 1 on S1

\ Ib, ξ(b) = 0 and
|ξ | ≤ 1 on the whole S1. By the relative Weierstrass approximation theorem (see [4,
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Lemma 2.8.1]), there exists a regular function θ : S1
→ R arbitrarily C 1-close to ξ such

that θ(a) = 1 and θ(b) = 0. Furthermore, we can assume that

|θ | < 2 on S1 (3.6)

and (
sup
S1\Ib

|1− θ |
)
·1 < δ/5. (3.7)

By using the Weierstrass approximation theorem again, we find a regular map G :
Rn × S1

→ Rk arbitrarily C 1-close to H ∗ on U × S1. In particular, we can suppose that

sup
U×S1
‖G−H ∗‖k < δ/5. (3.8)

Define the regular map g : Rn × S1
→ Rk as follows:

g := θ ·G+ (1− θ) ·Q.

Observe that
g −H ∗ = θ · (G−H ∗)+ (1− θ) · (Q−H ∗). (3.9)

By construction,G is arbitrarily C 1-close to H ∗ on U × S1, and θ is arbitrarily C 1-close
to the function constantly equal to 1 on Ia . Thanks to (3.9), it follows that

g is arbitrarily C 1-close to H ∗ on U × Ia . (3.10)

Since θ(b) = 0, we have g(x, b) = q(x, b) ∈ Y for every x ∈ X, and hence

g(X × {b}) ⊂ Y. (3.11)

Let us show that
g(U × S1) ⊂ T . (3.12)

To do this, it suffices to prove that ‖g −H ∗‖k < δ on U × S1.
Let x′ = (x, p) ∈ U × Ib. By (3.9), (3.5), (3.6) and (3.8), we have

‖g(x′)−H ∗(x′)‖k < |θ(p)| · δ/5+ (1+ |θ(p)|) · δ/5 < 2δ/5+ 3δ/5 = δ.

Suppose now that x′ = (x, p) ∈ U × (S1
\ Ib). By (3.6)–(3.9) we have

‖g(x′)−H ∗(x′)‖k < |θ(p)| · δ/5+ |1− θ(p)| · (21) < 2δ/5+ 2δ/5 < δ.

This proves (3.12). We conclude this step by choosing a compact semialgebraic neigh-
borhood U∗ of X in U .

Step II. The remainder of the proof is quite standard: it follows the classical proof of the
workhorse theorem. We will omit the almost identical details.

Let Y := {(y, v) ∈ Y × Rk | v ∈ Ty(Y )⊥} be the embedded normal bundle of Y
in Rk , let η : Rn×S1

×Rk → Rk×Rk be the regular map given by setting η(x, p, v) :=
(g(x, p)+v, v), let L := η−1(Y) and letR : L→ Y be the regular map sending (x, p, v)
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to g(x, p)+v. Since η is transverse to Y in R2k
= Rk×Rk , we find thatL is a nonsingular

real algebraic subset of Rn × S1
× Rk .

Denote by V the open semialgebraic subset g−1(T ) of Rn×S1. Define the Nash maps
α : V → Y and β : V → Rk , and the open semialgebraic subset L̂0 of L, by setting

α(x, p) := %(g(x, p)),

β(x, p) := α(x, p)− g(x, p),

L̂0 := L ∩ (V × Rk) = {(x, p, v) ∈ L | g(x, p) ∈ T }.

By construction, we see at once that L̂0 is the graph of β. By (3.12), we inferU×S1
⊂ V .

In this way, if we define L0 := L̂0 ∩ (U ×S
1
×Rk), point (i) is proved. Point (ii) follows

immediately from (3.11), and (iii) from (3.10) and (3.11), provided we define the Nash
map H̃ : U × S1

→ Y as the restriction of H ∗. ut

Remark 3.7. Observe that Lemma 3.6 is a quite nonstandard version of the workhorse
theorem. In fact, R◦ iL0 ◦$

−1 approximates H̃ on U∗×Ia , but not on the whole U∗×S1

as in the classical version. Moreover, the maps R ◦ iL0 ◦$
−1 and H̃ coincide on X×{b}

without the assumption that X is nice.

Proof of Theorem 2.6: point (i). We organize the proof into two steps.

Step I. Let X ⊂ Rn be a compact real algebraic set, let Y ⊂ Rk be a nonsingular real
algebraic set, let Z be a real algebraic subset of Y and let f : X → Y be a Nash map
transverse to Z and C 0-homotopic to a regular map g. By doubling such a homotopy, we
obtain a continuous map h : X × S1

→ Y such that h(x, a) = f (x) and h(x, b) = g(x)
for every x ∈ X, where a := (1, 0) and b := (−1, 0) are points of S1

⊂ R2. Since the
restriction of h toX×{a, b} is Nash, there exists a Nash mapH : X×S1

→ Y (arbitrarily
C 0-close to h and) equal to h on X× {a, b}. The existence of such a Nash map H can be
proved by an argument similar to the one used in Step I of the proof of Lemma 3.6. For
the sake of completeness, we sketch the argument below.

Let iY : Y ↪→ Rk be the inclusion map, let % : T → Y be a Nash tubular neighbor-
hood of Y in Rk and let I be a small open semialgebraic neighborhood of {a, b} in S1.
By Efroymson’s extension theorem, there exists a Nash map h∗ : X × S1

→ Rk which
coincides with iY ◦ h on X × {a, b}. If I is sufficiently small around {a, b} in S1, then
h∗ is arbitrarily C 0-close to iY ◦ h on X× I . By the Weierstrass approximation theorem,
we can find a polynomial map h∗∗ : X × S1

→ Rk arbitrarily C 0-close to iY ◦ h on
the whole X × S1. Choose a Nash function ξ : S1

→ R such that ξ(a) = ξ(b) = 0,
|ξ | < 2 on S1 and ξ is arbitrarily C 0-close to 1 on S1

\ I . It follows that the Nash map
H ∗ : X× S1

→ Rk given by H ∗ := ξ ·h∗∗+ (1− ξ) ·h∗ is arbitrarily C 0-close to iY ◦h
onX×S1 and is equal to iY ◦h onX×{a, b}. In particular, the image ofH ∗ is contained
in T . Now, it suffices to set H(x, t) := %(H ∗(x, p)).

Step II. Let us apply Lemma 3.6 to H . Let Ia , U , U∗, H̃ : U × S1
→ Y , L, L0,

R : L → Y and π : Rn × S1
× Rk → Rn × S1 be as in the statement of the lemma.

Denote by$ : L0 → U×S1 the Nash isomorphism obtained by restricting π . Define the
Nash maps r : U × S1

→ Y and ra, H̃a : U → Y by setting r(x, p) := R($−1(x, p)),
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ra(x) := r(x, a) and H̃a(x) := H̃ (x, a). Observe that H̃a is a Nash extension of f on U .
By Lemma 3.6(iii), we have r(x, b) = g(x) for every x ∈ X.

Equip Rn+2 with the coordinates (x1, . . . , xn+2) and denote by J the coordinate hy-
perplane xn+2 = 0 of Rn+2. Consider the compact Nash set S∗ := r−1(Z) ∩ (X × S1).
Then J ∩ S∗ is the disjoint union of ((ra)−1(Z) ∩X)× {a} and g−1(Z)× {b}. By using
Lemma 3.6(iii) again, we find that r is arbitrarily C 1-close to H̃ on U∗×Ia . In particular,
ra is arbitrarily C 1-close to H̃a on U∗. Since f is transverse to Z, it follows that J is
transverse to S∗ in Rn+2 locally at ((ra)−1(Z) ∩ X) × {a}. Furthermore, Corollary 3.3
implies that (ra)−1(Z) ∩X is semialgebraically homeomorphic to f−1(Z).

Define the real algebraic set S′ := R−1(Z) and the compact Nash set S := L0 ∩ S
′.

Since S is equal to the compact Nash set $−1(S∗), we infer that S is a union of con-
nected components of S′ (and hence of ZclRn+2+k (S)), and (J × Rk) ∩ S is the dis-
joint union of the real algebraic set g−1(Z) × {b} × {0} and of the compact Nash set
N := $−1(((ra)

−1(Z)∩X)×{a}), which is semialgebraically homeomorphic to f−1(Z).
Finally, J×Rk is transverse to S in Rn+2+k locally atN . We have just proved that f−1(Z)

is strongly asym-Nash cobordant to a real algebraic set. An application of Theorem 2.2
completes the proof. ut

Remark 3.8. In the preceding proof, we cannot conclude that J × Rk is transverse to S
in Rn+2+k locally at g−1(Z) × {b} × {0}. This is due to the fact that we do not require
that g be transverse to Z. In this sense, we can say that the asymmetry of Definition 2.1
is necessary.

Remark 3.9. If f is null homotopic (and hence C 0-homotopic to a regular map) and
dim(Z) < dim(Y ), then the argument used in the preceding proof ensures that f−1(Z) is
a Nash boundary.

Proof of Theorem 2.6: point (ii). As in the preceding proof, we will show that f−1(Z) is
strongly asym-Nash cobordant to a real algebraic set. By Theorem 2.2, the proof will be
complete.

Let F : V → Y be a Nash extension of f . Consider the Nash map F × idV :
V → Y × V , where idV : V → V is the identity map on V . By hypothesis, Y and V
have totally algebraic homology. The Künneth formula implies that Y × V has totally
algebraic homology as well. Thanks to [4, Lemma 2.7.1], F × idV is unoriented bordant
to a regular map. Equivalently, there exist a compact Nash submanifold B of some Rn+1

containing V , a nonsingular real algebraic subset V ′ of Rn contained in B \V and a Nash
map H : B → Y × V such that Rn ∩ B = V ∪ V ′, Rn is transverse to B in Rn+1,
the restriction of H to V is equal to F × idV and the restriction of H to V ′ is a regular
map. Now, by applying [4, Theorem 2.8.3, p. 64] to H , we obtain a positive integer k, a
nonsingular real algebraic subset L of Rn+1+k

= Rn+1
× Rk , a union L0 of connected

components of L and regular maps P : L → Y and Q : L → V with the following
properties:

(a) If π : Rn+1
× Rk → Rn+1 denotes the natural projection, then π(L0) = B and the

restriction $ : L0 → B of π is a Nash isomorphism.
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(b) V ′ × {0} ⊂ L0.
(c) (P ×Q)◦ iL0 ◦$

−1 is arbitrarily C 1-close toH on B and (P ×Q)◦ iL0 ◦$
−1
= H

on V ′, where iL0 : L0 ↪→ L denotes the inclusion map.

Let p : B → Y and q : B → V be the Nash maps sending x to p(x) := (P ◦iL0◦$
−1)(x)

and q(x) := (Q ◦ iL0 ◦ $
−1)(x), respectively. By (b) and (c), p × q coincides with H

on V ′. In particular, p and q are regular maps on V ′. By using (c) again, we infer that:

(c′) p is arbitrarily C 1-close to F on V .
(c′′) q is arbitrarily C 1-close to idV on V . In particular, it is a Nash submersion locally

at V in B and its restriction q ′ : V → V is a Nash automorphism of V arbitrarily
C 1-close to idV .

Let X∗ and X̃ be the compact Nash sets and let X′ be the real algebraic set defined by
setting X∗ := q−1(X), X̃ := X∗ ∩ V and X′ := X∗ ∩ V ′. Observe that Rn ∩ X∗ is the
disjoint union of X̃ and X′. Moreover, by the second part of (c′′), Rn is transverse to X∗
in Rn+1 locally at X̃, and X̃ = (q ′)−1(X) is Nash isomorphic to X.

Consider the compact Nash set S∗ := p−1(Z) ∩ X∗. Then Rn ∩ S∗ is the dis-
joint union of the compact Nash set X̃∗ := p−1(Z) ∩ X̃ and of the real algebraic set
X′∗ := p

−1(Z) ∩X′. By combining points (c′) and (c′′) with the fact that f is transverse
to Z, we find at once that Rn is transverse to S∗ in Rn+1 locally at X̃∗. Furthermore,
Corollary 3.3 ensures that X̃∗ is semialgebraically homeomorphic to (F ◦q)−1(Z)∩ X̃ =

(q ′)−1(f−1(Z)) (and hence to f−1(Z)).
Define the real algebraic set S′ := P−1(Z)∩Q−1(X) and the compact Nash set S :=

L0∩S
′. Denote byO the coordinate hyperplane xn+1 = 0 of Rn+1+k

= Rn+1
×Rk . Since

S is equal to $−1(S∗), we infer that S is a union of connected components of S′ (and
hence of ZclRn+1+k (S)), and O ∩ S is the disjoint union of the real algebraic set X′∗ × {0}
and of the compact Nash set N := $−1(X̃∗), which is semialgebraically homeomorphic
to f−1(Z). Finally,O is transverse to S in Rn+1+k locally at N . This proves that f−1(Z)

is strongly asym-Nash cobordant to a real algebraic set, as desired. ut

Remark 3.10. In the preceding proof of (ii), similarly to the one of (i), we do not know
if O is transverse to S in Rn+1+k locally at X′∗ × {0}.

It is worth noting that the argument used in the latter proof implies a new algebraic ap-
proximation result. The result is as follows.

Theorem 3.11. Let V and Y be nonsingular real algebraic sets with totally algebraic
homology and let F : V → Y be a Nash map. Suppose that V is compact. Then there
exist a compact nonsingular real algebraic set Ṽ , a regular map F̃ : Ṽ → Y and a Nash
isomorphism 5 : Ṽ → V such that 5 is a regular map and F̃ is arbitrarily C∞-close to
F ◦5.

Proof. Let V ′, B, H , L, L0, P , Q and $ be as in the preceding proof. Observe that the
nonsingular Nash hypersurface $−1(V ) of L0 is homologous to the real algebraic set
V ′×{0} in L0. In this way, by [4, Theorem 2.8.2], there exist a nonsingular real algebraic
hypersurface Ṽ of L contained in L0 and a smooth (or rather Nash) automorphism of L0
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arbitrarily C∞-close to idL0 sending Ṽ to $−1(V ). Let $ ′ : $−1(V ) → V be the
restriction of $ , and let F̃ : Ṽ → Y and 5 : Ṽ → V be the restrictions of P and Q,
respectively. Since P is arbitrarily C∞-close to F ◦$ ′ on $−1(V ) and Q is arbitrarily
C∞-close to $ ′ on $−1(V ), it follows that F̃ is arbitrarily C∞-close to F ◦5. ut

The reader can compare the statement and proof of the preceding theorem with the state-
ment and proof of [4, Proposition 2.8.8], in which Akbulut and King prove a similar
result for smooth maps homotopic to regular maps between nonsingular real algebraic
sets, whose homology is not necessarily totally algebraic.

Remark 3.12. We point out that, starting from Theorem 3.11, one can prove Theorem
2.6(ii) by a direct application of Corollary 3.3.

3.4. Proof of Theorem 2.7

(i) Let A be a Nash boundary and let B ⊂ Rn be a compact Nash set such that
M = A × B. Replacing A with one of its semialgebraically homeomorphic copies if
necessary, we can assume that there exist a compact Nash subset S of some Rm+1 with
Rm ∩ S = A and a semialgebraic Whitney stratification {Ui}i of an open semialgebraic
neighborhood U of A in S such that Rm is transverse to each Ui in Rm+1.

Choose a semialgebraic Whitney stratification {Bj }j of B (see [11, Section 9.7] for its
existence). Define the compact Nash subset S∗ := S×B of Rm+1+n

= Rm+1
×Rn and the

semialgebraic Whitney stratification {Ui×Bj }i,j of the open semialgebraic neighborhood
U × B of M in S∗. Denote by J the coordinate hyperplane xm+1 = 0 of Rm+1+n. It is
immediate to verify that J ∩ S∗ = M and J is transverse to each stratum Ui × Bj
in Rm+1+n. This proves that M is a Nash boundary.

(ii) Let P and Q be proper Nash subsets of some Rm such that Q is compact and
M = P ∩ Q. Since P is a proper subset of Rm, we may suppose that 0 6∈ P . Assume
that P is transverse to Q in Rm, that is, there exist a semialgebraic Whitney stratification
{Vk}k of an open semialgebraic neighborhood V of M in P and a semialgebraic Whitney
stratification {Wh}h of an open semialgebraic neighborhood W of M in Q such that each
stratum Vk is transverse to each stratum Wh in Rm.

Choose r, r ′ > 0 in such a way that r ′ > r , B̄m(r) ∩ P = ∅ and Q ⊂ B̄m(r ′). Such
numbers exist, because P is closed in Rm, 0 6∈ P and Q is compact. Equip Rm+1

=

Rm × R with the coordinates (x, xm+1) = (x1, . . . , xm, xm+1), and consider the polyno-
mial map H : Rm+1

→ Rm and the Nash subset S of Rm+1 defined by setting

H(x, xm+1) :=
(
r ′−r
r
x2
m+1 + 1

)
x and S := (P × R) ∩H−1(Q).

By the choice of r and r ′, it is immediate that S is contained in B̄m(r ′) × [−1, 1], and
hence compact. Moreover, Rm ∩ S = M . Observe that {Vk × R}k and {H−1(Wh)}h are
semialgebraic Whitney stratifications of V ×R and H−1(W), respectively. The transver-
sality between the strata Vk and Wh in Rm implies the transversality between the strata
Vk ×R and H−1(Wh) in Rm+1 locally at (Vk ∩Wh)×{0}. Furthermore, Rm is transverse
to each intersection (Vk ×R)∩H−1(Wh) in Rm+1 locally at (Vk ∩Wh)× {0}. It follows
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that, for a sufficiently small ε > 0, the family {(Vk× (−ε, ε))∩H−1(Wh)}k,h is a semial-
gebraic Whitney stratification of the open semialgebraic neighborhood (Rm×(−ε, ε))∩S
ofM in S, and Rm is transverse to each element of that stratification in Rm+1. This proves
that M is a Nash boundary.
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Sup. 33, 139–149 (2000) Zbl 0981.14027 MR 1743722

[14] Coste, M., Shiota, M.: Thom’s first isotopy lemma: a semialgebraic version, with uniform
bound. In: Real Analytic and Algebraic Geometry (Trento, 1992), de Gruyter, Berlin, 83–
101 (1995) Zbl 0844.14025 MR 1320312

[15] Ghiloni, R.: Rigidity and moduli space in real algebraic geometry. Math. Ann. 335, 751–766
(2006) Zbl 1098.14045 MR 2232015

[16] Ghiloni, R.: Boundary slices and the P-Euler condition. Bull. London Math. Soc. 39, 623–
630 (2007) Zbl 1118.14061 MR 2346943

[17] Ghiloni, R., Tancredi, A.: Algebraic models of symmetric Nash sets. Rev. Mat. Complut. 27,
385–419 (2014) Zbl 1327.14237 MR 3223573

[18] Ghiloni, R., Tancredi, A.: On the algebraic models of symmetric smooth manifolds. Adv.
Geom. 14, 553–560 (2014) Zbl 06320219 MR 3228900

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0494.57004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0621011
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0531.57019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0623536
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0541.14019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0719311
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0808.14045&format=complete
http://www.ams.org/mathscinet-getitem?mr=1225577
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0476.57008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0623537
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0726.58006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1112671
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1292.14038&format=complete
http://www.ams.org/mathscinet-getitem?mr=3071725
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1308.14061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3229423
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0507.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0633398
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0694.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1070358
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0912.14023&format=complete
http://www.ams.org/mathscinet-getitem?mr=1659509
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0714.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1107659
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0981.14027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1743722
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0844.14025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1320312
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1098.14045&format=complete
http://www.ams.org/mathscinet-getitem?mr=2232015
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1118.14061&format=complete
http://www.ams.org/mathscinet-getitem?mr=2346943
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1327.14237&format=complete
http://www.ams.org/mathscinet-getitem?mr=3223573
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06320219&format=complete
http://www.ams.org/mathscinet-getitem?mr=3228900


Algebraicity of Nash sets and of their asymmetric cobordism 529

[19] Gibson, C. G., Wirthmüller, K., du Plessis, A. A., Looijenga, E.: Topological Stability of
Smooth Mappings. Lecture Notes in Math. 552, Springer, Berlin (1976) Zbl 0377.58006
MR 0436203

[20] Goresky, R. M.: Whitney stratified chains and cochains. Trans. Amer. Math. Soc. 267, 175–
196 (1981) Zbl 0476.57019 MR 0621981

[21] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic
zero. I, II. Ann. of Math. (2) 79, 109–203, 205–326 (1964) Zbl 0122.38603 MR 0199184

[22] Kucharz, W.: Algebraicity of cycles on smooth manifolds. Selecta Math. (N.S.) 17, 855–878
(2011) Zbl 1231.14048 MR 2861609

[23] Mangolte, F.: Topologie des variétés algébriques réelles de dimension 3. Gaz. Math. 139,
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Boston, Boston, MA (1997) Zbl 0889.32006 MR 1463945

[31] Tancredi, A., Tognoli, A.: A note on global Nash subvarieties and Artin–Mazur Theorem.
Boll. Un. Mat. Ital. (8) B 7, 425–431 (2004) Zbl 1150.14015 MR 2072945

[32] Tancredi, A., Tognoli, A.: On the products of Nash subvarieties by spheres. Proc. Amer. Math.
Soc. 134, 983–987 (2006) Zbl 1093.14079 MR 2196028

[33] Thom, R.: Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc. 75, 240–284 (1969)
Zbl 0197.20502 MR 0239613

[34] Tognoli, A.: Su una congettura di Nash. Ann. Scuola Norm. Sup. Pisa (3) 27, 167–185 (1973)
Zbl 0263.57011 MR 0396571

[35] Tognoli, A.: Algebraic Geometry and Nash Functions. Academic Press, London (1978)
Zbl 0418.14002 MR 0556239

[36] Wallace, A. H.: Algebraic approximation of manifolds. Proc. London Math. Soc. (3) 7, 196–
210 (1957) Zbl 0081.37802 MR 0087205

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0377.58006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0436203
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0476.57019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0621981
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0122.38603&format=complete
http://www.ams.org/mathscinet-getitem?mr=0199184
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1231.14048&format=complete
http://www.ams.org/mathscinet-getitem?mr=2861609
http://www.ams.org/mathscinet-getitem?mr=3183986
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0913.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1456244
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0965.14031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1746905
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0132.19601&format=complete
http://www.ams.org/mathscinet-getitem?mr=0180977
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0048.38501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0050928
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.14073&format=complete
http://www.ams.org/mathscinet-getitem?mr=2147900
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0629.58002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0904479
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0889.32006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1463945
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1150.14015&format=complete
http://www.ams.org/mathscinet-getitem?mr=2072945
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.14079&format=complete
http://www.ams.org/mathscinet-getitem?mr=2196028
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0197.20502&format=complete
http://www.ams.org/mathscinet-getitem?mr=0239613
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0263.57011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0396571
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0418.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0556239
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0081.37802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0087205

	The algebraization problem: state of the art
	The results
	Proofs of the results
	References

