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Abstract. We show that the spectrum of a Schrödinger operator on Rn, n ≥ 3, with a periodic
smooth Riemannian metric, whose conformal multiple has a product structure with one Euclidean
direction, and with a periodic electric potential in Ln/2loc (R

n), is purely absolutely continuous. Pre-
vious results in the case of a general metric are obtained in [12] (see also [9]) under the assumption
that the metric, as well as the potential, are reflection symmetric.
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1. Introduction

Consider the Schrödinger operator

H = −1g + q on Rn, n ≥ 3.

Here−1g is the Laplace–Beltrami operator associated to aC∞-smooth Riemannian met-
ric g, given by

−1g = |g|
−1/2Dxj (|g|

1/2gjkDxk ),

where Dxj = i
−1∂xj , (gjk) is the matrix inverse of (gjk), and |g| = det(gjk). Throughout

the paper we shall assume that the metric g and the electric potential q are 2π -periodic in
all variables.

Let q ∈ Ln/2loc (R
n) be real-valued. Then the operator H is the self-adjoint operator on

L2(Rn; |g|1/2dx) given via the closed sesquilinear form, semibounded from below,

h[u, v] =

∫
Rn
gjkDxkuDxj v|g|

1/2 dx +

∫
Rn
quv|g|1/2 dx, (1.1)

with domain D(h) = H 1(Rn), the standard L2 based Sobolev space (see Appendix).
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Starting with the pioneering work [30], the structure of the spectrum of the periodic
Schrödinger operatorH in Rn has been intensively studied. We refer to [22], [2], [3], [24],
and [25] for some of the works in this direction. In particular, in the case of the Euclidean
metric, i.e. g = I , we know that the spectrum of H is purely absolutely continuous for
a potential q ∈ Ln/2loc (R

n) when n ≥ 3, thanks to [3] and [24], and for q ∈ L1+ε
loc (R

2),
ε > 0, thanks to [2]. These results can be extended to the case of a metric g conformal to
the Euclidean, i.e. g = cI , where c > 0 is a smooth periodic function.

The absolute continuity of the spectrum for the magnetic Schrödinger operator with
periodic electric and magnetic potentials, in the case of the Euclidean metric, was estab-
lished in [1] in two dimensions and in [27] in higher dimensions. See also [15].

In two dimensions, the case of a general C∞-smooth metric g was investigated com-
pletely in [21] and the absolute continuity of the spectrum of a periodic magnetic Schrö-
dinger operator was established.

In higher dimensions, the case of a general metric is wide open and the only result
concerning the absolute continuity of the spectrum of a periodic magnetic Schrödinger
operator that we are aware of is due to [12], under the assumption that the operator is
invariant under reflection x1 7→ −x1, in the case of smooth coefficients. The smoothness
assumptions of [12] were relaxed in [9], and the absolute continuity of the spectrum was
obtained for a Lipschitz continuous metric g, the magnetic potential A ∈ Ln+εloc (R

n),
ε > 0, and the electric potential q ∈ Ln/2loc (R

n) (see also [11]).
The purpose of this paper is to consider the case n ≥ 3 and to show the absolute

continuity of the spectrum of the periodic Schrödinger operator H with a Riemannian
metric g, whose conformal multiple has a product structure with one Euclidean direction,
and q ∈ Ln/2loc (R

n). To be precise, we assume that

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
, (1.2)

where c > 0 is a positive smooth function, x = (x1, x
′) ∈ Rn, and g0 is a Riemannian

metric on Rn−1.
Our main result is as follows.

Theorem 1.1. Let g be a C∞-smooth Riemannian metric on Rn, n ≥ 3, of the form
(1.2), and let q ∈ Ln/2loc (R

n
;C). Assume that g and q are periodic with respect to the

lattice 2πZn. Then the Schrödinger operatorH = −1g+q in L2(Rn; |g|1/2 dx), defined
by the sesquilinear form (1.1), has no eigenvalues. In the case when q is real-valued, the
spectrum of H is purely absolutely continuous.

Remark 1.2. The metric c−1g is independent of x1 and therefore satisfies the assump-
tions of [12]. On the other hand, no symmetry condition is imposed on the conformal
factor c and the potential q.

Our inspiration for considering metrics of the form (1.2) came from recent works on in-
verse boundary value problems for Schrödinger operators on compact Riemannian mani-
folds with boundary, equipped with metrics of this form (see [6]).
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We would like to mention that the problem of absolute continuity of the spectrum
of the Schrödinger operator H on a smooth cylinder M × Rm was treated in [8] (see
also the references given there). Here M is a smooth compact Riemannian manifold, and
the metric g on M × Rm is a product of a Riemannian metric on M and the Euclidean
metric on Rm. Furthermore, the potential q is assumed to be periodic with respect to the
Euclidean variables. In the case when the dimension of the cylinder is ≥ 3, the absolute
continuity is established in [8] when q ∈ Ln/2+εloc (M × Rm), ε > 0.

Let us finish the introduction by making some indications concerning the main steps
in the proof of Theorem 1.1. First, as a consequence of general spectral theory, it will
be seen that it is sufficient to treat the case when the conformal factor c in (1.2) satisfies
c = 1, and therefore to work with the operator D2

x1
− 1g0(x′) + q. We would like to

show the absence of eigenvalues for this operator, and replacing q by q − λ we reduce
the problem to establishing that zero is not an eigenvalue. An application of the Floquet
theory combined with the Thomas approach (see Proposition A.1 in the Appendix) allows
us next to conclude that it suffices to find θ ∈ Cn such that

Ker(H(θ)) = {0}.

Here the operator H(θ), acting on the torus Tn = Rn/2πZn, is given by

H(θ) = |g|−1/2(Dxj + θj )(|g|
1/2gjk(Dxk + θk))+ q, 1 ≤ j, k ≤ n.

See Subsection A.2 for the definition of this operator using the method of quadratic forms.
We shall make the following choice of the complex quasimomentum θ , for τ ∈ R:

θτ = (1/2+ iτ, 0, . . . , 0) ∈ Cn,

with the corresponding family of operators given by

H(θτ ) = (Dx1 + 1/2)2 + 2iτ (Dx1 + 1/2)− τ 2
−1g0(x′) + q.

In the case when q ∈ L∞(Rn), the fact that we know explicitly the eigenvalues of the
one-dimensional normal operator (Dx1+1/2)2+2iτ (Dx1+1/2)−τ 2 on T1 implies that
for τ ∈ R with |τ | sufficiently large, we have

1
2 |τ | ‖u‖L2(Tn) ≤ ‖H(θτ )u‖L2(Tn)

for u ∈ D(H(θτ )), and therefore Ker(H(θτ )) = {0}.
In the case when q ∈ Ln/2loc (R

n), we shall show that there exists a constant C > 0 such
that for τ ∈ R with |τ | sufficiently large,

‖u‖L2n/(n−2)(Tn) ≤ C‖H(θτ )u‖L2n/(n+2)(Tn) (1.3)

when u ∈ D(H(θτ )), and thus Ker(H(θτ )) = {0}.
When establishing (1.3), the crucial ingredients are spectral cluster estimates for the

non-negative elliptic self-adjoint operator

(Dx1 + 1/2)2 −1g0(x′)

acting on L2(Tn) (see [28], [23], [29]), and uniform resolvent estimates for it, obtained
recently in [5], [4], [18].
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Let us point out that the idea of using the spectral cluster estimates of [28], and uni-
form Lp resolvent estimates for constant coefficient elliptic operators on the torus, in
the study of absolute continuity of the spectrum of the Schrödinger operator goes back
to [24], where the absolute continuity of the spectrum of a Schrödinger operator with a
Euclidean metric and a potential in Ln/2loc was established. The spectral cluster estimates
of [28] were also used in [8]. In this paper we use the recently established uniform Lp

resolvent estimates for elliptic self-adjoint operators with variable coefficients.
The paper is organized as follows. After explaining in Section 2 how to get rid of

the conformal factor in the metric, Section 3 is devoted to the proof of Theorem 1.1 in
the special case of a bounded potential. The proof in this case is quite straightforward
and is presented here as a warm-up, before handling the general case in Section 4. The
Appendix contains some standard material pertaining to the definition of our operators,
review of Floquet theory, and a description of the Thomas approach to the absolute con-
tinuity problem. It is presented merely for the convenience of the reader.

2. Removing the conformal factor

In the case when q ∈ Ln/2loc (R
n) is real-valued, it follows from Remark A.2 in the Ap-

pendix that the singular continuous component of the spectrum of the Schrödinger op-
erator H is empty, and the pure point spectrum is at most discrete, consisting only of
isolated points without finite accumulation points. To establish the absolute continuity of
H it suffices therefore to show the absence of eigenvalues. Hence, in what follows we
shall concentrate on proving the absence of eigenvalues in the general non-self-adjoint
case, i.e. when q is complex-valued.

We have the following conformal relation (see [6]):

c(n+2)/4(−1g + q)(c
−(n−2)/4u) = (−1c−1g + qc)u

for u ∈ D. Here

qc = cq + c
(n+2)/4(−1g)(c

−(n−2)/4) ∈ L
n/2
loc (R

n)

is 2πZn-periodic, and

D := D(−1c−1g + qc) = {u ∈ H
1(Rn) : c(n+2)/4(−1g + q)c

−(n−2)/4u ∈ L2(Rn)}

= {u ∈ H 1(Rn) : (gjkDxjDxk + q)u ∈ L
2(Rn)}.

The last equality follows since c ∈ C∞(Rn) is a strictly positive periodic function.
Assume that λ ∈ C is an eigenvalue of −1g + q. Then for some u ∈ D not vanishing

identically, we have

0 = c(n+2)/4(−1g + q − λ)u = (−1c−1g + qc − cλ)(c
(n−2)/4u), (2.1)

and therefore 0 is an eigenvalue of −1c−1g + qc − cλ.
To establish the absence of eigenvalues of the operator H it is thus sufficient to prove

that zero is not an eigenvalue of the operator −1c−1g + q with an arbitrary periodic

q ∈ L
n/2
loc (R

n). In what follows we shall therefore assume that the metric g is of the form
(1.2) with c = 1.
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It follows from Proposition A.1 that to prove that zero is not an eigenvalue of−1g+q
it suffices to show that there exists θ ∈ Cn such that the operator H(θ) defined in (A.5) is
injective.

Let τ ∈ R, and set

θτ = (1/2+ iτ, 0, . . . , 0) ∈ Cn,

H0(θτ ) = (Dx1 + 1/2)2 + 2iτ (Dx1 + 1/2)− τ 2
−1g0(x′),

so that
H(θτ ) = H0(θτ )+ q.

Theorem 1.1 will follow once we prove that the operator H(θτ ) is injective for τ ∈ R
with |τ | sufficiently large.

3. Proof of Theorem 1.1 for q bounded

Proposition 3.1. For all τ ∈ R with |τ | ≥ 1,

|τ | ‖u‖L2(Tn) ≤ ‖H0(θτ )u‖L2(Tn) (3.1)

for u ∈ H 2(Tn).
Proof. By a density argument it suffices to prove the estimate (3.1) for u ∈ C∞(Tn).
Expanding u in the Fourier series with respect to x1, we have

u(x1, x
′) =

∑
j∈Z

eijx1uj (x
′), where uj (x

′) =
1

2π

∫ 2π

0
u(y1, x

′)e−ijy1 dy1,

and therefore

H0(θτ )u =
(
(Dx1 + 1/2)2 + 2iτ (Dx1 + 1/2)− τ 2

−1g0(x′)

)
u

=

∑
j∈Z

(
(j + 1/2)2 + 2iτ (j + 1/2)− τ 2

−1g0(x′)

)
eijx1uj (x

′).

Since the operator −1g0(x′) acting on L2(Tn−1) is self-adjoint, we have

‖(−1g0(x′) − z)
−1
‖L2(Tn−1)→L2(Tn−1) ≤ 1/|Im z|, Im z 6= 0,

and hence, as |j + 1/2| ≥ 1/2, j ∈ Z, for |τ | ≥ 1 we get∥∥((j + 1/2)2 + 2iτ (j + 1/2)− τ 2
−1g0(x′)

)−1∥∥
L2(Tn−1)→L2(Tn−1)

≤ 1/|τ |.

By Parseval’s identity, we obtain

1
2π
‖H0(θτ )u‖

2
L2(Tn) =

∑
j∈Z

∥∥((j+1/2)2+2iτ (j+1/2)−τ 2
−1g0(x′)

)
uj (x

′)
∥∥2
L2(Tn−1)

≥
1

2π
|τ |2‖u‖2

L2(Tn). ut
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Let q ∈ L∞(Tn), so that D(H(θτ )) = H 2(Tn). Thus, by Proposition 3.1 we conclude
that for |τ | ≥ 1 sufficiently large,

1
2 |τ | ‖u‖L2(Tn) ≤ ‖(H0(θτ )+ q)u‖L2(Tn)

for u ∈ D(H(θτ )). The proof of Theorem 1.1 in the case q ∈ L∞ is therefore complete.

4. Proof of Theorem 1.1 for q ∈ Ln/2(Tn)

Let us start by recalling the following chain of continuous inclusions, where the first and
the last ones follow from the Sobolev embedding theorem:

H 1(Tn) ↪→ L2n/(n−2)(Tn) ↪→ L2(Tn) ↪→ L2n/(n+2)(Tn) ↪→ H−1(Tn).

We shall need the following result.

Lemma 4.1. Let q ∈ Ln/2(Tn). Then

D(H(θτ )) ⊂ W 2,2n/(n+2)(Tn).

Proof. Let u ∈ D(H(θτ )). Then f := H(θτ )u ∈ L2(Tn). Using the fact that D(H(θτ ))
⊂ H 1(Tn), Sobolev’s embedding H 1(Tn) ↪→ L2n/(n−2)(Tn), and Hölder’s inequality

‖qu‖L2n/(n+2)(Tn) ≤ ‖q‖Ln/2(Tn)‖u‖L2n/(n−2)(Tn),

we get qu ∈ L2n/(n+2)(Tn). Hence,

H0(θτ )u = f − qu ∈ L
2n/(n+2)(Tn).

As u ∈ L2n/(n+2)(Tn) and the operator H0(θτ ) is elliptic with smooth coefficients, by
elliptic regularity we conclude that u ∈ W 2,2n/(n+2)(Tn). ut

Proposition 4.2. There exists a constant C > 0 such that for all τ ∈ R with |τ | suffi-
ciently large,

‖u‖L2(Tn) ≤
C

|τ |1/2
‖H0(θτ )u‖L2n/(n+2)(Tn), (4.1)

‖u‖L2n/(n−2)(Tn) ≤ C‖H0(θτ )u‖L2n/(n+2)(Tn), (4.2)

for u ∈ W 2,2n/(n+2)(Tn).

Proof. Here we use the notation and some ideas of [5]. We denote by 0 = λ0 < λ1 ≤ · · ·

the sequence of eigenvalues of −1g0(x′) on Tn−1, counted with their multiplicities, and
by (ψk)k≥0 the corresponding sequence of eigenfunctions forming an orthonormal basis
of L2(Tn−1),

−1g0(x′)ψk = λkψk.
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The operator
H0(θ0) = (Dx1 + 1/2)2 −1g0(x′)

with domain H 2(Tn) is non-negative elliptic self-adjoint on L2(Tn; |g|1/2dx), with
eigenvalues (j + 1/2)2 + λk , j ∈ Z, k ∈ N, and the corresponding eigenfunctions
ψ̃j,k(x) = e

ijx1ψk(x
′), i.e.

H0(θ0)ψ̃j,k = ((j + 1/2)2 + λk)ψ̃j,k.

We denote by πj,k : L2(Tn) → L2(Tn) the orthogonal projection on the linear space
spanned by the eigenfunction ψ̃j,k ,

πj,kf (x) =
1

2π

(∫
Tn
f (y)e−ijy1ψk(y′)

√
|g0|

)
eijx1ψk(x

′).

We have ∑
j∈Z, k∈N

πj,k = I.

Let us denote by χm the spectral projection operator on the space generated by the eigen-
functions corresponding to the mth spectral cluster of the operator H0(θ0),

χm =
∑

m≤
√
(j+1/2)2+λk<m+1

πj,k, m ∈ N.

To establish the estimates (4.1) and (4.2) we shall need the spectral cluster estimates
obtained in [28], [23] (see also [29]),

‖χmf ‖L2(Tn) ≤ C(1+m)
1/2
‖f ‖L2n/(n+2)(Tn), (4.3)

and the dual estimates

‖χmf ‖L2n/(n−2)(Tn) ≤ C(1+m)
1/2
‖f ‖L2(Tn), (4.4)

for f ∈ C∞(Tn).
By a density argument it suffices to establish (4.1) and (4.2) for u ∈ C∞(Tn). Con-

sider the equation
H0(θτ )u = f

with u, f ∈ C∞(Tn). Writing u =
∑
j,k πj,ku and f =

∑
j,k πj,kf , we get(

(j + 1/2)2 + 2iτ (j + 1/2)− τ 2
+ λk

)
πj,ku = πj,kf

for all j ∈ Z and k ∈ N. As |j + 1/2| ≥ 1/2 for j ∈ Z, we have

|(j + 1/2)2 + 2iτ (j + 1/2)− τ 2
+ λk| ≥ 2|τ | |j + 1/2| ≥ |τ |,

and therefore, when |τ | ≥ 1,

u = Gτf :=

∞∑
j=−∞

∞∑
k=0

πj,kf

(j + 1/2)2 + 2iτ (j + 1/2)− τ 2 + λk
.
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We now prove that there exists a constant C > 0 such that for τ ∈ R with |τ | ≥ 1,

‖Gτf ‖L2(Tn) ≤
C

|τ |1/2
‖f ‖L2n/(n+2)(Tn) (4.5)

for f ∈ C∞(Tn). Using (4.3), we get

‖Gτf ‖
2
L2(Tn) =

∞∑
j=−∞

∞∑
k=0

‖πj,kf ‖
2
L2(Tn)

|(j + 1/2)2 + 2iτ (j + 1/2)− τ 2 + λk|2

≤

∞∑
m=0

sup
m≤
√
(j+1/2)2+λk<m+1

1
|(j + 1/2)2 + 2iτ (j + 1/2)− τ 2 + λk|2

‖χmf ‖
2
L2(Tn)

≤ CS‖f ‖2
L2n/(n+2)(Tn), (4.6)

where

S :=

∞∑
m=0

(1+m) sup
m≤
√
(j+1/2)2+λk<m+1

1
|(j +1/2)2+2iτ (j +1/2)− τ 2+λk|2

. (4.7)

Let us show that the series S converges and behaves as 1/|τ | for |τ | large. To that end
we observe that

2|(j + 1/2)2 + 2iτ (j + 1/2)− τ 2
+ λk| ≥ |(j + 1/2)2 + λk − τ 2

| + |τ |. (4.8)

Assume now that m ≤
√
(j + 1/2)2 + λk < m+ 1 and let m ≤ |τ |. Then using the fact

that |τ | ≥ 1, we obtain

|m2
− τ 2
| ≤ |(j + 1/2)2 + λk − τ 2

| + |m2
− (j + 1/2)2 − λk|

≤ |(j + 1/2)2 + λk − τ 2
| + 2m+ 1 ≤ |(j + 1/2)2 + λk − τ 2

| + 3|τ |, (4.9)

and therefore

4(|(j + 1/2)2 + λk − τ 2
| + |τ |) ≥ |m2

− τ 2
| + |τ |. (4.10)

When m > |τ |, we have

|(j + 1/2)2 + λk − τ 2
| ≥ |m2

− τ 2
|. (4.11)

Now we are ready to estimate S given by (4.7). Using (4.8), (4.10) and (4.11), we get

S .
∞∑
m=0

1+m
(m2 − τ 2)2 + τ 2 .

1
|τ |4
+

∞∑
m=1

m

(m2 − τ 2)2 + τ 2

.
1
|τ |
+

∫
∞

0

tdt

(t2 − τ 2)2 + τ 2 .
1
|τ |

∫
∞

−∞

ds

s2 + 1
.

1
|τ |
. (4.12)

Here we have used the fact that the function t 7→ t/((t2 − τ 2)2 + τ 2) is increasing
when t ∈ [0, |τ |/

√
3) and decreasing when t ∈ (|τ |/

√
3,∞), and we have performed

the change of variables s = t2/|τ | − |τ | in the integral. Combining (4.6) and (4.12), we
obtain (4.5), and therefore (4.1).
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Let us now prove the estimate (4.2) for u ∈ C∞(Tn), which amounts to obtaining the
uniform estimate

‖Gτf ‖L2n/(n−2)(Tn) ≤ C‖f ‖L2n/(n+2)(Tn) (4.13)

for f ∈ C∞(Tn) and τ ∈ R with |τ | sufficiently large.
To that end we shall need the following uniform resolvent estimate for the elliptic

self-adjoint operator H0(θ0): for each δ ∈ (0, 1), there exists a constant C > 0 such that
for all u ∈ C∞(Tn) and all z ∈ C with Im z ≥ δ,

‖u‖L2n/(n−2)(Tn) ≤ C‖(H0(θ0)− z
2)u‖L2n/(n+2)(Tn) (4.14)

(see [5], [4] and [18]). When establishing (4.13), we shall follow [5] closely, and use a
localization argument to deduce this estimate from (4.14) (see also [17] and [24]). We
have

f (x1, x
′) =

∑
j∈Z

eijx1fj (x
′), fj (x

′) =
1

2π

∫ 2π

0
f (y1, x

′)e−ijy1 dy1.

Letting χ be the characteristic function of the interval [1/2, 1), and further localizing f
in frequency with respect to the variable x1, we introduce

f̃ν(x1, x
′) = χ(|Dx1 |/2

ν)f (x1, x
′) =

∑
2ν−1≤|j |<2ν

eijx1fj (x
′), ν = 1, 2, . . . ,

f̃0(x1, x
′) = f0(x

′),

so that f =
∑
∞

ν=0 f̃ν . Since the operators χ(|Dx1 |/2
ν) and H0(θτ ) commute, the local-

ization of Gτf in frequency with respect to the variable x1 is given by

(G̃τf )ν = Gτ f̃ν, ν = 0, 1, 2, . . . .

Standard arguments based on the one-dimensional Littlewood–Paley theory [7, Theo-
rem 8.4] imply that in order to prove (4.13) it suffices to establish the uniform estimates

‖Gτ f̃ν‖L2n/(n−2)(Tn) ≤ C‖f̃ν‖L2n/(n+2)(Tn), ν = 0, 1, 2, . . . (4.15)

(see also [18, Lemma 2.3]).
When proving (4.15), we introduce the resolvent of H0(θ0), given by

R(ζ ) := (H0(θ0)− ζ )
−1
=

∞∑
j=−∞

∞∑
k=0

πj,k

(j + 1/2)2 + λk − ζ
, ζ /∈ Spec(H0(θ0)).

For future reference observe that for ζ = τ 2
− iρτ with ρ ≥ 1, we have

Im
√
ζ =

√
|ζ | − Re ζ

2
=

√
|τ |
√
τ 2 + ρ2 − τ 2

2
=
ρ

2
+O

(
1
τ 2

)
≥

1
4
, (4.16)

provided that |τ | is large.
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In the case when ν = 0, we have

Gτ f̃0 = R(τ
2
− iτ )f̃0,

and thus (4.15) becomes the uniform resolvent estimate (4.14) with z2
= τ 2

− iτ .
Let us show that in the case ν ≥ 1, (4.15) follows from the resolvent estimate

‖R(τ 2
− i(2ν + 1)τ )f̃ν‖L2n/(n−2)(Tn) . ‖f̃ν‖L2n/(n+2)(Tn), (4.17)

where the implicit constant is independent of τ and ν. To that end, we write

(R(τ 2
− i(2ν + 1)τ )−Gτ )f̃ν =

∞∑
j=−∞

∞∑
k=0

aj,k,ν(τ )πj,k f̃ν,

where

aj,k,ν(τ ) =
iτ (2j − 2ν)1[2ν−1,2ν )(|j |)

((j + 1/2)2+ 2i(j + 1/2)τ − τ 2+ λk)((j + 1/2)2+ i(2ν + 1)τ − τ 2+ λk)
.

Using the fact that
∑
∞

m=0 χ
2
m = 1, and spectral cluster estimates (4.3) and (4.4), we get

‖(R(τ 2
− i(2ν + 1)τ )−Gτ )f̃ν‖L2n/(n−2)(Tn)

.
∞∑
m=0

(1+m)1/2‖χm(R(τ 2
− i(2ν + 1)τ )−Gτ )f̃ν‖L2(Tn)

.
( ∞∑
m=0

(1+m) sup
m≤
√
(j+1/2)2+λk<m+1

|aj,k,ν(τ )|
)
‖f̃ν‖L2n/(n+2)(Tn). (4.18)

To see that the above series converges and is bounded uniformly with respect to τ with
|τ | ≥ 1 and ν, we first observe using (4.9) and (4.11) that

sup
m≤
√
(j+1/2)2+λk<m+1

|aj,k,ν(τ )|

. sup
m≤
√
(j+1/2)2+λk<m+1

2ν |τ |
(|(j+1/2)2+λk−τ 2|+2ν−1|τ |)2

.
2ν |τ |

(m2−τ 2)2+4ν−1τ 2 .

Hence,

∞∑
m=0

(1+m) sup
m≤
√
(j+1/2)2+λk<m+1

|aj,k,ν(τ )| . 2ν |τ |
∞∑
m=0

1+m
(m2 − τ 2)2 + 4ν−1τ 2

.
1
|τ |
+ 2ν |τ |

∞∑
m=1

m

(m2 − τ 2)2 + 4ν−1τ 2

. 1+
∫
∞

0

2ν |τ |t
(t2 − τ 2)2 + 4ν−1τ 2 dt .

∫
∞

−∞

ds

s2 + 1
<∞. (4.19)
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Here we have performed the change of variables s = (t2/|τ |−|τ |)/2ν−1. Thus, it follows
from (4.18) and (4.19) that

‖(R(τ 2
− i(2ν + 1)τ )−Gτ )f̃ν‖L2n/(n−2)(Tn) . ‖f̃ν‖L2n/(n+2)(Tn),

with a constant uniform in τ and ν. The estimate (4.15) is therefore a consequence of
the uniform resolvent estimate (4.17), in view of (4.16). The proof of Proposition 4.2 is
complete. ut

It is now easy to finish the proof of Theorem 1.1. Let q ∈ Ln/2(Tn) and let us check that
there exists a constant C > 0 such that for τ ∈ R with |τ | sufficiently large,

‖u‖L2n/(n−2)(Tn) ≤ C‖(H0(θτ )+ q)u‖L2n/(n+2)(Tn) (4.20)

for u ∈ D(H(θτ )). Let u ∈ D(H(θτ )). Then by Lemma 4.1, we know that u ∈
W 2,2n/(n+2)(Tn). Denoting by C0 the uniform constant in the estimate (4.2), we write
q = q] + (q − q]) where q] ∈ L∞(Tn) and

‖q − q]‖Ln/2(Tn) ≤
1

4C0
. (4.21)

By the embedding L2(Tn) ↪→ L2n/(n+2)(Tn) and the estimate (4.1), for τ ∈ R with
|τ | ≥ 1 sufficiently large we have

‖q]u‖L2n/(n+2)(Tn) ≤ C‖q
]
‖L∞(Tn)‖u‖L2(Tn) ≤

1
2‖H0(θτ )u‖L2n/(n+2)(Tn). (4.22)

Using Hölder’s inequality and estimates (4.2), (4.21), and (4.22), for τ ∈ R with |τ | ≥ 1
sufficiently large we have

‖(H0(θτ )+ q)u‖L2n/(n+2)(Tn)

≥ ‖H0(θτ )u‖L2n/(n+2)(Tn) − ‖q
]u‖L2n/(n+2)(Tn) − ‖(q − q

])u‖L2n/(n+2)(Tn)

≥
1
2‖H0(θτ )u‖L2n/(n+2)(Tn) − ‖q − q

]
‖Ln/2(Tn)‖u‖L2n/(n−2)(Tn) ≥

1
4C0
‖u‖L2n/(n−2)(Tn),

which proves the estimate (4.20). This completes the proof of Theorem 1.1.

Appendix. Definition of operators using sesquilinear forms, Floquet theory and the
Thomas approach

The material of this appendix is standard and is presented here for completeness and
convenience of the reader (see [3], [22], [24], [26], [19], [20], and [31]).

A.1. Definition of the Schrödinger operator acting on L2(Rn)

Let us start by reviewing the definition of the Schrödinger operatorH = −1g+q on Rn,
n ≥ 3, with a potential q ∈ Ln/2loc (R

n
;C) and with a smooth Riemannian metric g, as a

closed densely defined sectorial operator on L2(Rn). We assume that g and q are periodic
with respect to the lattice 2πZn.
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In what follows all norms are defined using the Riemannian volume element |g|1/2 dx.
Consider the sesquilinear form

h[u, v] =

∫
Rn
gjkDxkuDxj v|g|

1/2 dx +

∫
Rn
quv|g|1/2 dx

for u, v ∈ C∞0 (R
n).

Let (0, 2π)n be the interior of the fundamental domain of the lattice 2πZn. By
Hölder’s inequality and the Sobolev embedding H 1((0, 2π)n) ⊂ L2n/(n−2)((0, 2π)n),
we get∣∣∣∣∫

(0,2π)n
quv|g|1/2 dx

∣∣∣∣ ≤ ‖q‖Ln/2((0,2π)n)‖u‖L2n/(n−2)((0,2π)n)‖v‖L2n/(n−2)((0,2π)n)

≤ C‖u‖H 1((0,2π)n)‖v‖H 1((0,2π)n).

Replacing (0, 2π)n by its translates Ek = (0, 2π)n + k, k ∈ 2πZn, summing over all k,
and using the Cauchy–Schwarz inequality, we get∣∣∣∣∫

Rn
quv|g|1/2 dx

∣∣∣∣ ≤ C ∑
k∈2πZn

‖u‖H 1(Ek)
‖v‖H 1(Ek)

≤ C‖u‖H 1(Rn)‖v‖H 1(Rn).

It follows that
|h[u, v]| ≤ C‖u‖H 1(Rn)‖v‖H 1(Rn) (A.1)

for u, v ∈ C∞0 (R
n). Hence, the form h extends to a bounded sesquilinear form

on H 1(Rn).
We shall next check the coercivity of h on H 1(Rn), i.e.,

Reh[u, u] ≥ c0‖u‖
2
H 1(Rn) − C1‖u‖

2
L2(Rn), c0 > 0, C1 ∈ R. (A.2)

Writing
q = q] + (q − q]), (A.3)

where q] ∈ L∞((0, 2π)n) and ‖q − q]‖Ln/2((0,2π)n) ≤ ε for some ε > 0 small, we have∫
(0,2π)n

|q| |u|2|g|1/2 dx ≤ ‖q]‖L∞((0,2π)n)‖u‖
2
L2((0,2π)n)

+ ‖q − q]‖Ln/2((0,2π)n)‖u‖
2
L2n/(n−2)((0,2π)n)

≤ Oε(1)‖u‖2L2((0,2π)n) +O(ε)‖u‖2
H 1((0,2π)n).

It follows that ∫
Rn
|q| |u|2|g|1/2 dx ≤ Oε(1)‖u‖2L2(Rn) +O(ε)‖u‖2

H 1(Rn). (A.4)

As g positive definite, using (A.4) and choosing ε sufficiently small, we get (A.2).
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When equipped with the domain D(h) = H 1(Rn), the form h is densely defined,
closed and sectorial with the bound

|Imh[u, u]| ≤ |h[u, u]| ≤ Cc−1
0 (Reh[u, u] + C1‖u‖

2
L2(Rn)).

Here we have used (A.1) and (A.2). By [14, Corollary 12.19], there exists a closed densely
defined sectorial operatorH on L2(Rn), which we denote byH = −1g+q, with domain

D(H) = {u ∈ H 1(Rn) : (−1g + q)u ∈ L2(Rn)}

such that
h[u, v] = (Hu, v)L2(Rn), u ∈ D(H), v ∈ D(h).

A.2. Definition of a family of operators acting on L2(Tn)

Let θ ∈ Cn. We shall next define a family of operators H(θ) acting on L2(Tn), where
Tn = Rn/2πZn, formally given by

H(θ) = e−ix·θHeix·θ = |g|−1/2(Dxj + θj )(|g|
1/2gjk(Dxk + θk))+ q. (A.5)

Let u, v ∈ C∞(Tn) and consider the family of sesquilinear forms

h(θ)[u, v] =

∫
Tn
gjkDxkuDxj v|g|

1/2 dx + w[θ ][u, v], (A.6)

where

w[θ ][u, v] =

∫
Tn
gjk

(
θkuDxj v + (Dxku)θjv + θkθjuv

)
|g|1/2 dx +

∫
Tn
quv|g|1/2 dx.

By Hölder’s inequality and the Sobolev embedding H 1(Tn) ⊂ L2n/(n−2)(Tn), we see
that

|h(θ)[u, v]| ≤ C‖u‖H 1(Tn)‖v‖H 1(Tn) (A.7)

with C = C(θ) > 0, and hence, for each θ ∈ Cn, the form h(θ) extends to a bounded
sesquilinear form on H 1(Tn).

Using the Peter–Paul inequality, the decomposition (A.3), and the Sobolev embed-
ding, we get

|w(θ)[u, u]| ≤ O(ε)‖u‖2
H 1(Tn) +Oθ,ε(1)‖u‖2L2(Tn)

for ε > 0. Hence, using the fact that g is positive definite, and choosing ε > 0 sufficiently
small in the previous estimate, we obtain

Reh[θ ][u, u] ≥ c0‖u‖
2
H 1(Tn) − C1‖u‖

2
L2(Tn), c0 > 0, C1 = C1(θ) ∈ R. (A.8)

When equipped with the domain D(h(θ)) = H 1(Tn), the form h(θ) is densely de-
fined, closed and sectorial with the bound

|Imh(θ)[u, u]| ≤ |h(θ)[u, u]| ≤ Cc−1
0 (Reh(θ)[u, u] + C1‖u‖

2
L2(Tn)). (A.9)
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Here we have used (A.7) and (A.8), and we may also notice that the constants C and C1
are uniform in θ on compact subsets of Cn.

By [14, Corollary 12.19], there exists a closed densely defined sectorial operatorH(θ)
on L2(Tn), which we write as in (A.5), with domain

D(H(θ)) = {u ∈ H 1(Tn) : H(θ)u ∈ L2(Tn)}, (A.10)

such that

h(θ)[u, v] = (H(θ)u, v)L2(Tn), u ∈ D(H(θ)), v ∈ D(h(θ)).

In view of (A.10) and (A.5), we have

D(H(θ)) = {u ∈ H 1(Tn) : (gjkDxjDxk + q)u ∈ L
2(Tn)}, (A.11)

and in particular we see that D(H(θ)) is independent of θ ∈ Cn.
Furthermore, by [14, Corollary 12.21] the spectrum of H(θ) is contained in the fol-

lowing angular set with opening < π :

{λ ∈ C : Re λ ≥ −C1(θ)+ c0, |Im λ| ≤ C(θ)c−1
0 (Re λ+ C1(θ))},

where the constants are taken from (A.8) and (A.9).
It follows that for each θ ∈ Cn, the resolvent of H(θ) is compact on L2(Tn), and

hence the spectrum of H(θ) is discrete, each eigenvalue having a finite algebraic multi-
plicity.

We conclude that the family of operators H(θ) is an entire holomorphic family of
type (A) with respect to each of the complex variables θ1, . . . , θn (see [16, Section VII.2]).

A.3. The Floquet decomposition

The idea here is to pass from the operator H acting on functions on Rn to the family of
operators H(θ) acting on functions on the torus Tn.

To that end, for u ∈ S(Rn), we define the Floquet–Bloch–Gelfand transform by

(Uu)(θ, x) = e−ix·θ
∑
k∈Zn

e−2πki·θu(x + 2πk), θ ∈ Rn, x ∈ [0, 2π ]n,

where the series converges in the C∞-sense. We have

U : S(Rn)→ C∞Fl (R
n
θ × Tnx),

where

C∞Fl (R
n
θ × Tnx) = {f ∈ C

∞(Rnθ × Tnx) : f (θ + l, x) = e
−ix·lf (θ, x), l ∈ Zn}.

It follows that∫
(0,2π)n

∫
(0,1)n
|(Uu)(θ, x)|2 dθ |g|1/2 dx =

∑
k∈Zn

∫
(0,2π)n

|u(x + 2πk)|2|g|1/2 dx,



Absolute continuity of the periodic Schrödinger operator 545

and therefore
‖Uu‖L2((0,1)nθ×(0,2π)

n
x )
= ‖u‖L2(Rn).

Hence, U can be extended to an isometry

U : L2(Rn)→ L2((0, 1)nθ × Tnx).

Thus, U∗U = I , where U∗ is the L2-adjoint of U . A direct computation shows that for
v ∈ C∞Fl (R

n
θ × Tnx), we have

(U∗v)(x) =

∫
(0,1)n

eix·θv(θ, x) dθ ∈ S(Rn). (A.12)

To see that UU∗ = I , we first let v ∈ C∞Fl (R
n
θ ×Tnx). Then we have the Fourier series

expansion with respect to θ ,

v(θ, x) =
∑
k∈Zn

(∫
(0,1)n

v(θ ′, x)e−i(2πk−x)·θ
′

dθ ′
)
ei(2πk−x)·θ .

We get

U(U∗v)(θ, x) =
∑
k∈Zn

e−i(x+2πk)·θ
∫
(0,1)n

ei(x+2πk)·θ ′v(θ ′, x) dθ ′ = v(θ, x),

and therefore, by density, UU∗ = I on L2((0, 1)nθ × Tnx).
Hence, the map

U : L2(Rn)→ L2((0, 1)nθ × Tnx) = L
2((0, 1)nθ ;L

2(Tn)) =:
∫
⊕

(0,1)n
L2(Tn) dθ (A.13)

is unitary.
We shall next show that

U : H 1(Rn)→ L2((0, 1)n;H 1(Tn)) (A.14)

is a linear homeomorphism. To that end, let u ∈ H 1(Rn), and let us check that Uu ∈
L2((0, 1)n;H 1(Tn)). Using the fact that for u ∈ S(Rn),

Dxk (Uu)(θ, x) = (U(Dxku))(θ, x)− θk(Uu)(θ, x), k = 1, . . . , n,

we get

‖Dxk (Uu)‖L2((0,1)n;L2(Tn)) ≤ ‖Dxku‖L2(Rn) + ‖u‖L2(Rn), u ∈ S(Rn). (A.15)

By a standard approximation argument, we get Uu ∈ L2((0, 1)n;H 1(Tn)), and the esti-
mate (A.15) extends to u ∈ H 1(Rn). Hence, the map (A.14) is continuous.

It remains to show that the map (A.14) is surjective. Let v ∈ L2((0, 1)n;H 1(Tn)),
and thus U−1v ∈ L2(Rn). As a consequence of (A.12), we get

‖Dxk (U
−1v)‖L2(Rn) ≤ ‖Dxkv‖L2((0,1)n;L2(Tn)) + ‖v‖L2((0,1)n;L2(Tn))
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for v ∈ C∞Fl (R
n
θ×T

n
x). An approximation argument yieldsU−1v ∈ H 1(Rn), which shows

the claim.
Now a direct computation shows that

h[u, v] =

∫
(0,1)n

h(θ)[(Uu)(θ, ·), (Uv)(θ, ·)] dθ (A.16)

for u, v ∈ S(Rn). In view of the fact that the map (A.14) is a linear homeomorphism, and
the forms h and h(θ) are continuous on H 1(Rn) and H 1(Tn), respectively, the decompo-
sition (A.16) extends to u, v ∈ H 1(Rn).

Let us show that we have the following decomposition of the operator UHU−1 into
a direct integral:

UHU−1
=

∫
⊕

(0,1)n
H(θ) dθ. (A.17)

To that end let us recall the definition of the direct integral:

D
(∫
⊕

(0,1)n
H(θ) dθ

)
=

{
φ ∈

∫
⊕

(0,1)n
L2(Tn) dθ : φ(θ, ·) ∈ D(H(θ)) for a.a. θ ∈ (0, 1)n,∫

(0,1)n
‖H(θ)φ(θ, ·)‖2

L2(Tn) dθ <∞

}
,

and ((∫
⊕

(0,1)n
H(θ) dθ

)
φ

)
(θ, x) = (H(θ)φ(θ, ·))(x)

for a.a. θ ∈ (0, 1)n. Let us first prove that

D(UHU−1) = D
(∫
⊕

(0,1)n
H(θ) dθ

)
.

Using [14, Theorem 12.18], (A.13), (A.14) and (A.16), we get

D(UHU−1) = {φ ∈ L2((0, 1)n;L2(Tn)) : U−1φ ∈ D(H)}
= {φ ∈ L2((0, 1)n;H 1(Tn)) : ∃f ∈ L2(Rn) such that

h[U−1φ, ϕ] = (f, ϕ)L2(Rn),∀ϕ ∈ H
1(Rn)}

=

{
φ ∈ L2((0, 1)n;H 1(Tn)) : ∃f ∈ L2((0, 1)n;L2(Tn)) such that∫

(0,1)n
h(θ)[φ,ψ] dθ = (f, ψ)L2((0,1)n;L2(Tn)), ∀ψ ∈ L

2((0, 1)n;H 1(Tn))
}
.

Using (A.6), integrating by parts and modifying the function f by a suitable expression
depending only on the first order partial derivatives of the metric g and the function φ in
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the variables x ∈ Tn, we obtain

D(UHU−1) =

{
φ ∈ L2((0, 1)n;H 1(Tn)) : ∃f ∈ L2((0, 1)n;L2(Tn)) such that∫

(0,1)n

∫
Tn

(
DxkφDxj (g

jk|g|1/2ψ)+ qφψ |g|1/2
)
dx dθ =

∫
(0,1)n

∫
Tn
fψ |g|1/2 dx dθ,

∀ψ ∈ L2((0, 1)n;H 1(Tn))
}

= {φ ∈ L2((0, 1)n;H 1(Tn)) : (gjkDxjDxk + q)φ ∈ L
2((0, 1)n;L2(Tn))}

= D
(∫
⊕

(0,1)n
H(θ) dθ

)
.

Here we have also used (A.11).
Let φ ∈ D(UHU−1). For any ψ ∈ C∞0 ((0, 1)n;C∞(Tn)), we get

(UHU−1φ,ψ)L2((0,1)n;L2(Tn)) = h[U
−1φ,U−1ψ] =

∫
(0,1)n

(H(θ)φ,ψ)L2(Tn) dθ

=

((∫
⊕

(0,1)n
H(θ) dθ

)
φ,ψ

)
L2((0,1)n;L2(Tn))

,

which shows (A.17).

A.4. Thomas’s approach

To show that the operator H has no eigenvalues, a fundamental idea of Thomas [30] is to
complexify the quasimomentum θ and use analytic perturbation theory. As a consequence
of this idea the following result is obtained. We have learned this result from [19], [20],
and for the proof we follow [31].

Proposition A.1. Let λ ∈ C. If there exists θ = θ(λ) ∈ Cn such that the operator
H(θ) − λ acting on L2(Tn) has zero kernel, then λ is not an eigenvalue of the operator
H acting on L2(Rn).
Proof. Seeking a contradiction, assume that λ is an eigenvalue of H acting on L2(Rn),
i.e. there exists u ∈ D(H) with ‖u‖L2(Rn) = 1 such that

(H − λ)u = 0. (A.18)

We shall show that λ is an eigenvalue of H(θ) acting on L2(Tn) for all θ ∈ Cn. Since the
Floquet–Bloch–Gelfand transform U is an isometry, we have

‖u‖2
L2(Rn) =

∫
θ∈(0,1)n

‖(Uu)(θ, ·)‖2
L2(Tn) dθ = 1,

and therefore
µn({θ ∈ (0, 1)n : ‖(Uu)(θ, ·)‖L2(Tn) 6= 0}) > 0. (A.19)

Here and in what follows, µn is the Lebesgue measure on Rn.
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It follows from (A.18) that

(UHU−1
− λ)Uu = 0.

This together with the decomposition (A.17) implies that(∫
⊕

(0,1)n
H(θ) dθ − λ

)
Uu = 0,

and hence
(H(θ)− λ)(Uu)(θ, ·) = 0 (A.20)

for almost every θ ∈ (0, 1)n.
It follows from (A.19) and (A.20) that

µn(2) > 0, 2 = {θ ∈ (0, 1)n : λ is an eigenvalue of H(θ)}.

When 1 ≤ j ≤ n, let us consider the holomorphic family of operators

H(θj ) = H(θ0
1 , . . . , θ

0
j−1, θj , θ

0
j+1, . . . , θ

0
n ), θj ∈ C,

where the complex values θ0
k , k 6= j , are kept fixed. The resolvent of the operator H(θj )

is compact for each θj , and an application of analytic Fredholm theory (see [16, Theo-
rem VII.1.10]) allows us to conclude that either λ is an eigenvalue of the operator H(θj )
for each θj ∈ C, or the set of points θj ∈ C for which λ is an eigenvalue of H(θj ) is
discrete.

Let θ̃ ∈ Cn be an arbitrary fixed vector and let us show that λ is an eigenvalue ofH(θ̃).
We shall show this by induction. First, consider the set

22 =
{
(θ2, . . . , θn) ∈ (0, 1)n−1

: µ1({θ1 ∈ (0, 1) : (θ1, θ2, . . . , θn) ∈ 2}) > 0
}
.

Thus, for any (θ2, . . . , θn) ∈ 22, we have

µ1({θ1 ∈ (0, 1) : λ is an eigenvalue of H(θ1)}) > 0.

Hence, by analytic Fredholm theory, we conclude that λ is an eigenvalue of H(θ) for all
θ1 ∈ C and all (θ2, . . . , θn) ∈ 22, and therefore λ is an eigenvalue of H(θ̃1, θ2, . . . , θn)

for all (θ2, . . . , θn) ∈ 22.
As µn(2) > 0, by Fubini’s theorem we have µn−1(22) > 0. Consider the set

23 =
{
(θ3, . . . , θn) ∈ (0, 1)n−2

: µ1({θ2 ∈ (0, 1) : (θ2, . . . , θn) ∈ 22}) > 0
}
.

Then for any (θ3, . . . , θn) ∈ 23, since µ1({θ2 ∈ (0, 1) : (θ2, . . . , θn) ∈ 22}) > 0, by ana-
lytic Fredholm theory, we see that λ is an eigenvalue of the operatorH(θ̃1, θ2, θ3, . . . , θn)

for all θ2 ∈ C and all (θ3, . . . , θn) ∈ 23. In particular, λ is an eigenvalue of
H(θ̃1, θ̃2, θ3, . . . , θn) for all (θ3, . . . , θn) ∈ 23. Continuing in the same fashion, after
n − 2 steps we find that λ is an eigenvalue of H(θ̃). This contradicts the assumption of
the proposition. ut
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Remark A.2. In the case of a real valued periodic potential q ∈ Ln/2loc (R
n), the sesquilin-

ear form h is symmetric and bounded from below, and therefore the Schrödinger oper-
ator H = −1g + q acting on L2(Rn) is self-adjoint and bounded from below. For any
θ ∈ (0, 1)n, the sesquilinear form h(θ) is symmetric and bounded from below, and thus
the operatorH(θ) acting onL2(Tn) is self-adjoint and bounded from below. Furthermore,
the resolvent (H(θ)+ i)−1 is a real-analytic function of θ ∈ (0, 1)n, and (H(θ)+ i)−1 is
compact for every θ ∈ (0, 1)n. Then using a general result of [10] and [13], concerning
the spectrum of the analytic direct integral (A.17), we conclude that the singular contin-
uous component of the spectrum of H is empty, and the pure point spectrum is at most
discrete, consisting only of isolated points without finite accumulation points, and each
eigenvalue λ of H is of infinite multiplicity. Hence, in the case of a real valued periodic
potential q, the absence of eigenvalues implies that the spectrum ofH is purely absolutely
continuous.
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