J. Eur. Math. Soc. 19, 601–602

DOI 10.4171/JEMS/676

M. Guardia · V. Kaloshin

Erratum to "Growth of Sobolev norms in JEMS the cubic defocusing nonlinear Schrödinger equation"

(J. Eur. Math. Soc. 17, 71–149 (2015))

Received December 19, 2016

The goal of this note is to make a correction in Appendix C of the article [GK15]. This correction does not affect Theorem 1 but it does affect Theorem 7 in Appendix C.

To prove Theorem 7, one needs to estimate the size of the modes which belong to the set $\Lambda \subset \mathbb{Z}^2$. This estimate is crucial because it is used to bound the original Sobolev norm and thus also the time *T*.

At the end of page 144 of [GK15], it is stated that all $n \in \Lambda$ satisfy

$$|n| \le 60^{3N^2}$$
.

This estimate should be replaced by

$$|n| < (N2^N)^{32N(N2^N)^{16}+1}.$$
(0.1)

How to obtain this estimate is explained in [GHP16, Lemma 3.20 and Corollary 3.22]. That paper deals with a more general setting and includes the cubic defocusing NLS (1.1) of [GK15].

This corrected estimate leads to the following modification of Theorem 7 of [GK15].

Theorem 0.1. Let s > 1. Then there exists c > 0 with the following property: for any small $\mu \ll 1$ and large $\mathcal{A} \gg 1$ there exists a a global solution u(t, x) of [GK15, (1.1)] and a time T satisfying

$$0 < T < e^{(\mathcal{A}/\mu)^c}$$

such that

$$||u(T)||_{H^s} \ge \mathcal{A} \text{ and } ||u(0)||_{H^s} \le \mu.$$

Note that in this corrected version the time is slower than in the original version.

The proof of [GK15, Theorem 7] only needs to be modified as follows. The corrected estimate (0.1) of this erratum implies that now the constant S_3 defined in [GK15, (3.20)] has a different size. Indeed, its estimate given in [GK15, (C.1)] has to be replaced by

 $S_3 \lesssim e^{B^N}$

M. Guardia: Universitat Politècnica de Catalunya; e-mail: marcel.guardia@upc.edu

V. Kaloshin: University of Maryland at College Park; e-mail: vadim.kaloshin@gmail.com

for some B > 0. This implies that

 $\lambda \sim rac{1}{\mu} e^{B^N}$

and therefore

$$\lambda \lesssim e^{(\mathcal{A}/\mu)^2}$$

for some c > 0. With these corrections, one gets the corrected version of Theorem 7.

Acknowledgments. We would like to thank M. Procesi and E. Haus for pointing out this mistake in the original paper. The first author is partially supported by the Spanish MINECO-FEDER Grant MTM2012-31714 and the Catalan Grant 2014SGR504. The second author acknowledges partial support of the NSF grant DMS-1402164.

References

- $\begin{array}{ll} \mbox{[GHP16]} & \mbox{Guardia, M., Haus, E., Procesi, M.: Growth of Sobolev norms for the analytic NLS on \mathbb{T}^2. Adv. Math.$ **301** $, 615–692 (2016) Zbl 06620629 MR 3539385 \end{array}$
- [GK15] Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 71–149 (2015) Zbl 1311.35284 MR 3312404