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Abstract. We describe the singular locus of the compactification of the moduli space Rg,` of
curves of genus g paired with an `-torsion point in their Jacobian. Generalising previous work for
` ≤ 2, we also describe the sublocus of noncanonical singularities for any positive integer `. For
g ≥ 4 and ` = 3, 4, 6, this allows us to provide a lifting result on pluricanonical forms playing
an essential role in the computation of the Kodaira dimension of Rg,`: for those values of `, every
pluricanonical form on the smooth locus of the moduli space extends to a desingularisation of the
compactified moduli space.

Keywords. Moduli of curves

The modular curve X1(`) := H/01(`) classifying elliptic curves together with an `-
torsion point in their Jacobian is among the most studied objects in arithmetic geometry.
In a series of recent papers, the birational geometry of its higher genus generalisations and
their variants (e.g. theta characteristics) has been systematically studied and proved to be,
in many cases such as ` = 2, better understandable than that of the underlying moduli
space of curves Mg . As an example, we refer to the complete computation of the Kodaira
dimension of all components of the moduli of theta characteristics (L⊗2 ∼= ω)—see [23,
14, 16, 17].

In this paper, for g ≥ 2 and for all positive levels `, we consider the moduli space Rg,`

parametrising level-` curves, i.e. triples (C,L, φ) where C is a smooth curve equipped
with a line bundle L and a trivialisation φ : L⊗`

∼
−→ O. The Kodaira dimension of Rg,`

is defined as the Kodaira dimension of an arbitrary resolution of singularities of a com-
pletion; therefore, as a first step toward the birational classification of Rg,`, we consider
a natural compactification Rg,` and study the singular locus Sing(Rg,`). More precisely
one needs to determine the sublocus Singnc(Rg,`) ⊆ Sing(Rg,`) of noncanonical singu-
larities.

For ` = 2, this analysis has been carried out by the second author and Ludwig
in [15] using Cornalba’s compactification in terms of quasistable curves [11] of Rg,2.
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Clearly, we can leave out the case ` = 1, which coincides with Deligne and Mum-
ford’s functor of stable curves Mg = Rg,1. The passage to all higher levels presents a
new feature from Abramovich and Vistoli’s theory of stable maps to stacks: the points
of the compactification cannot be interpreted in terms of `-torsion line bundles on a
scheme-theoretic curve, but rather on a stack-theoretic curve. Instead of the above triples
(C,L ∈ Pic(C), φ : L⊗`

∼
−→ O), we simply consider their stack-theoretic analogues

(C, L ∈ Pic(C), φ : L⊗`
∼
−→ O) ∈ Rg,`,

where C is a one-dimensional stack, whose nodes may have nontrivial stabilisersµµµr⊆µµµ`,
and where L → C is a line bundle whose fibres are faithful representations (see Def-
inition 1.5). This yields a compactification which is represented by a smooth Deligne–
Mumford stack.

In analogy with the moduli space of stable curves Mg , the boundary locus Rg,`\Rg,`

can be described in terms of the combinatorics of the standard dual graph 0 whose
vertices correspond to the irreducible components of the curve and whose edges cor-
respond to the nodes of the curve. In §1.4.5, we revisit this well known description
by emphasising the natural role of an extra multiplicity datum enriching the graph. In-
deed, the stack-theoretic structure of the underlying curve C and the line bundle L → C
are determined, locally at a node, by assigning to each oriented edge e a character
χe ∈ Hom(µµµr ,Gm) = Z/r ⊆ Z/` of the stabiliser. Hence, to each point of the boundary
we attach a dual graph 0 and a Z/`-valued 1-cochain M : e 7→ χe in C1(0;Z/`) which
we refer to as the multiplicity of the level curve. (Proposition 1.11 recalls that a multiplic-
ity cochain arises at the boundary if and only if it lies in the kernel of the homomorphism
∂ : C1(0;Z/`)→ C0(0;Z/`).)

In order to describe the singular locus of Rg,`, we lift to the moduli of level curves
a result of Harris and Mumford [18]. Theorem 2 in [18] implies that, for g ≥ 4, the
local structure Def(C)/Aut(C) of Mg is singular if and only if C is equipped with an
automorphism which is not the product of “elliptic tail involutions” (ETI for short):

Sing(Mg) = N1 := {C | Aut(C) 3 α not a product of ETI}.

By definition, an ETI operates nontrivially on the curve C only at a genus-1 compo-
nent E which meets the rest of the curve in exactly one node n; its restriction to the “tail”
(E, n) is the canonical involution. These automorphisms are the only nontrivial automor-
phisms of curves (and also of level curves) which do not yield singularities: their action
on moduli is simply a quasireflection. An example of a point of N1 is given by choos-
ing a tail (E, n) with Aut(E, n) ∼= µµµ6. This type of curves fill up a sublocus T1 ⊂ N1,
of codimension 2 within Mg , which plays a remarkable role in this paper. Indeed, the
order-6 automorphism α spanning Aut(E, n) and fixing C \ E is clearly not a product of
ETI and, most important, yields a noncanonical singularity. This can be checked by the
Reid–Shepherd-Barron–Tai criterion: α operates on the regular space Def(C)/〈ETI〉 as
(1/3, 1/3, 0, . . . , 0) := Diag(ξ3, ξ3, 1, . . . , 1) and modding out α yields a noncanonical
singularity, since the age 1/3+ 1/3+ 0+· · ·+ 0 of α is less than 1 (see Definition 2.35).
Harris and Mumford show that these special tailed curves are the only possible curves
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carrying a junior (i.e. aged less than 1) automorphism; this amounts to the following
statement:

Singnc(Mg) = T1 := {C | C ⊃ E, C ∩ C \ E = {n}, Aut(E, n) ∼= µµµ6}.

The generalisation of this statement to level-` curves poses no problems on the in-
terior: the variety Rg,` has only canonical singularities; furthermore, the singular locus
is contained in the inverse image of the singular locus of Mg , but may be smaller in
general: an automorphism α of a smooth curve C does not necessarily give rise to an
automorphism of (C,L) if α∗L 6∼= L.

When we consider the boundary locus Rg,`\Rg,` the analysis becomes subtle due to a
new phenomenon: stack-theoretic curves C may be equipped with ghost automorphisms
a ∈ AutC(C) which fix all geometric points of C and yet operate nontrivially on the
stack C. The group AutC(C) has been completely determined by Abramovich, Corti, and
Vistoli [1]; here, we describe the ghosts of level structures (C, L, φ),

AutC(C, L, φ) = {a ∈ AutC(C) | a∗L ∼= L}.

The loci N1 and T1 naturally lift to N` and T` within Rg,`. For the definition of N`, no
modification is needed (we require that Aut(C, L, φ) contains at least one automorphism
which is not the product of ghost automorphisms or of ETI, using the obvious general-
isation of ETI to stack-theoretic curves, Definition 2.12). The locus T` is defined as we
did for T1 by requiring the presence of an elliptic tail (E, n) with Aut(E, n) ∼= µµµ6, but
also by imposing the extra condition that the line bundle be trivial on the genus-1 tail (see
Definition 2.51). For general values of `, we have proper inclusions N` ( Sing(Rg,`)

and T` ( Singnc(Rg,`). In order to obtain Sing(Rg,`) one needs to include also the entire
locus of level curves with a nontrivial ghost (haunted level curves)

H` = {(C, L, φ) | AutC(C, L, φ) 6= 1}.

Similarly, in order to obtain Singnc(Rg,`) one needs to take the union of T` and of the
locus of level curves haunted by a junior ghost,

J` = {(C, L, φ) | AutC(C, L, φ) 3 a, age(a) < 1},

where, as above, the age refers to the action on the regular space Def(C)/〈ETI〉. This
locus turns out to be entirely contained in the inverse image of the locus of curves with
at least three nonseparating nodes (see Remark 2.43). In this way, J` has codimension
at least three within Rg,` and is a closed subvariety, reducible in general, lying in the
inverse image of the boundary divisor δstable

0 , the closure of the locus of irreducible one-
nodal curves. We deduce that T` is the only irreducible component of Singnc(Rg,`) having
codimension 2 within Rg,`.

Summarising the above discussion and taking advantage of the study of H` and J`
carried out in Theorems 2.28, 2.44 and 2.52, we provide the desired extension of pluri-
canonical forms for ` = 3, 4, 6.
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Theorem. Let g ≥ 4. We have

Sing(Rg,`) = N` ∪H` and Singnc(Rg,`) = T` ∪ J`.

Furthermore, the locus J` is empty if and only if 5 6= ` ≤ 6; therefore, for g ≥ 4 and
5 6= ` ≤ 6, we have

0
(
(Rg,`)

reg,K
⊗q

Rg,`

)
∼= 0(R̂g,`,K

⊗q

R̂g,`
) (1)

for any desingularisation R̂g,`→ Rg,` and for all integers q ≥ 0.

The case ` = 1 is proven by Harris and Mumford [18]. The case ` = 2 is proven by the
second author in collaboration with Ludwig [15] (following work of Ludwig [23]). The
above formulation presents the isomorphism (1) as a consequence of J` = ∅ (and Harris
and Mumford’s work on the locus T1). However, the question of whether (1) holds in the
remaining cases (for ` = 5 or ` > 6) remains open. In §2.4, we provide a complete com-
putation of the group AutC(C, L, φ), which is interesting in its own right. This shows in
particular that the existence of a point in J` over a stable curve C is a combinatorial con-
dition depending only on the dual graph of C and on `. The computation of AutC(C, L, φ)
will certainly allow one to further detail the geometry of J` (e.g. the irreducible compo-
nents) and of Rg,`. We show for instance a simple combinatorial device (ghost camera)
detecting the presence of ghosts and counting their number.

Write ` as
∏
p|` p

ep , where p denotes a prime divisor of ` and ep the p-adic valuation
of `. Fix a level curve (C, L, φ), its dual graph 0 and the multiplicity M : e 7→ χe.
Consider the sequence of subgraphs

∅ ⊆ 1
ep
p ⊆ · · · ⊆ 1

k
p := {e | χe ∈ (p

k) in Z/(pep )} ⊆ · · · ⊆ 11
p ⊆ 1

0
p = 0, (2)

where χe ∈ Z/` is regarded as an element of Z/(pep ). The contraction to points of the
respective subsets of edges yields

0→ 0
ep
p → · · · → 0kp → · · · → 01

p → •. (3)

Then all the ghost automorphisms are trivial, i.e. AutC(C, L, φ) = 1, if and only if 0
ep
p

are bouquets (connected graphs with a single vertex) for all p. Lemma 2.22 provides
an explicit description of the group structure of AutC(C, L, φ). In particular, we get the
number of ghosts.

Corollary. We have #AutC(C, L, φ) =
1
`

∏
p|` p

Vp , where Vp is the total number of

vertices appearing in the graphs 0jp for 1 ≤ j ≤ ep.

Note that if 0jp is a bouquet for all p and j , then #AutC(C, L, φ) =
1
`

∏
p|` p

ep = 1. See
Example 2.24 for a simple demonstration. In §2.4.6 the above formula is used to match
Caporaso, Casagrande, and Cornalba’s computation [7] of the length of the fibre of the
moduli of level curves over the moduli of stable curves.

The above description leads to the claim that junior ghosts (hence noncanonical sin-
gularities of the form Def /AutC(C, L, φ)) can be completely ruled out for 5 6= ` ≤ 6 and
are relatively rare in general: their appearance is due to the presence of age-delay edges
which we describe in the proof of the No-Ghost Lemma 2.44.
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The computation of the Kodaira dimension of Rg,` for ` ≤ 6 and ` 6= 5 can be carried
out without further study of resolutions of noncanonical singularities; for instance, in [10],
in collaboration with Eisenbud and Schreyer, we show the following statement.

Theorem ([10, Thm. 0.2]). Rg,3 is a variety of general type for g ≥ 12. Furthermore,
the Kodaira dimension of R11,3 is at least 19.

Structure of the paper. In Section 1 we introduce moduli of smooth level curves, their
compactification, the relevant combinatorics and the boundary locus of the compactified
moduli space. In Section 2 we study the local structure of the moduli space, we develop
the suitable machinery for the computation of the ghost automorphism group and we
deduce the theorem stated above.

1. Level curves

We work over an algebraically closed field k and we always denote by ` a positive integer
prime to char(k).

1.1. Preliminary conventions on coarse spaces and local pictures

The interplay between stacks and their coarse spaces is crucial in this paper. Any stack X
of Deligne–Mumford (DM) type admits an algebraic spaceX and a morphism εX : X→X

universal with respect to morphisms from X to algebraic spaces [22]. We regard this
operation as a functor. The coarsening of any DM stack X is the algebraic space X (also
called coarse space). The coarsening of a morphism f : X→ Y between DM stacks is the
corresponding morphism f : X→ Y ,

X X and f  f (coarsening).

We will use this notion both for curves, possibly stack-theoretic ones and equipped with
level structures, and for their moduli, which are represented by stacks. For clarity let us
provide two simple examples. (1) Consider the quotient DM stack C = [P1

z/µµµk] with
ζ ∈ µµµk acting as z 7→ ζz (k ≥ 2); the coarsening C of C is the (smooth) quotient
scheme C = P1

z/µµµk
∼= P1

zk
. (2) The coarsening of the proper, smooth, 3g−3-dimensional

DM stack Mg of stable curves of genus g ≥ 2 is the 3g − 3-dimensional projective
scheme Mg .

When we refer to the local picture of X at the geometric point p, we mean the strict
Henselisation of X at p. Hence, the local pictures of Mg and of Mg at the points represent-
ing C are the quotient stack [Def(C)/Aut(C)] and the quotient scheme Def(C)/Aut(C),
respectively.

1.2. Smooth level curves

We set up Rg,`, the space Rg,`, and the compactification problem.

1.2.1. The moduli stack of level smooth curves. The integers g ≥ 2 and ` ≥ 1 denote the
genus and the level. In this way, we do not consider smooth curves with infinite automor-
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phism groups. We further assume that the level is prime to the characteristic of the base
field.

Definition 1.1. The stack Rg,` is the category of level-` curves (C,L, φ) where C is a
smooth genus-g curve (over a base scheme B), L is a line bundle on C, and φ is an
isomorphism φ : L⊗` → OC . We additionally require that the order of the isomorphism
class of L in Pic(C) is exactly `. A morphism from a family (C → B,L, φ) to a family
(C′ → B ′, L′, φ′) is given by a pair (s, ρ) where s : (C′/B ′)→ (C′′/B ′′) is a morphism
of curves and ρ is an isomorphism s∗L′′→ L′ of line bundles satisfying φ′◦ρ⊗` = s∗φ′′.

The category Rg,` is a DM stack. Its points have finite stabilisers and we have a coarsen-
ing Rg,` and a morphism

Rg,`→ Rg,`.

The forgetful functor f : Rg,`→ Mg to the category of smooth genus-g curves is an étale,
connected cover, and indeed a finite morphism of stacks. Finiteness can be regarded as
a consequence of the fact that every fibre (pullback of f via a geometric point) consists
of 82g(`) geometric points, with

8n(`) = `
n
∏
p|`

(
1−

1
pn

)
(8n(`) = `

n
− 1 if ` is prime).

Each of such points of the fibre is isomorphic to the stack Bµµµ` = [SpecC/µµµ`]. This
happens because each point has quasitrivial automorphisms acting on C as the identity
(i.e., s equals idC), and scaling the fibres of L by multiplication by ζ ∈ µµµ`. Since Bµµµ`
has degree 1/` over SpecC, we get

deg(f : Rg,`→ Mg) = 82g(`)/` (= (`2g
− 1)/` if ` is prime).

When we pass to the coarsening f : Rg,` →Mg , the automorphisms are forgotten. The
morphism f is still a finite connected cover, but it may well be ramified.

The stack Rg,` is not compact. If we allow triples (Cst, L, φ), where Cst is a sta-
ble genus-g curve, and keep the rest of the definition unchanged, we obtain an étale
cover of Mg . Properness fails: the cardinality of the fibre is not constant, as can be easily
checked when C is a one-nodal irreducible curve: # Pic(C)[`] = `2g−1.

1.3. Twisted level curves

The compactification becomes straightforward once we use the analogue of nodal curves
in the context of DM stacks (for a scheme-theoretic translation see Remark 1.6).

1.3.1. Twisted curves. We point out that a less restrictive definition of twisted curve
occurs in the literature, where no stability condition on C is preimposed (see for in-
stance [25]).

Definition 1.2. A twisted curve C is a DM stack whose coarse space is a stable curve,
whose smooth locus is represented by a scheme, and whose singularities are nodes whose
local picture is given by [{xy = 0}/µµµr ] with ζ ∈ µµµr acting as ζ · (x, y) = (ζx, ζ−1y).
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1.3.2. Faithful line bundles. A line bundle L on a twisted curve C may be pulled back
from the coarse space C or from an intermediate twisted curve fitting in a sequence of
morphisms C→ C′ → C (with C′ 6= C and C′ = C). The following condition rules out
this possibility.

Definition 1.3. A faithful line bundle on a twisted curve is a line bundle L→ C for which
the associated morphism C→ BGm is representable.

Remark 1.4. Let us phrase the condition explicitly in terms of the local picture of the
fibre bundle mapping from the total space of L to C. The local picture of L → C at a
node n of C is the projection A1

× {xy = 0} → {xy = 0}, with ζ ∈ µµµr acting as
ζ ·(x, y) = (ζx, ζ−1y) on {xy = 0} and as ζ ·(t, x, y) = (ζmt, ζx, ζ−1y) on C×{xy = 0}
for a suitable index m (modulo r). Notice that the index m ∈ Z/r is uniquely determined
as soon as we assign a privileged choice of a branch of the node on which µµµr acts by
the character 1 ∈ Hom(µµµr ,Gm) (the action on the remaining branch is opposite). In this
setting, we may restate faithfulness as follows:

L is faithful at n ⇔ the representation L|n is faithful ⇔ gcd(m, r) = 1.

Notice that if we switch the roles of the two branches, then m changes sign modulo r .
Faithfulness does not depend on the sign of m or the choice of the branch.

1.3.3. Twisted curves and their level structures. Once the notion of twisted curve and
the notion of faithful line bundle are given, level-` structures are defined as for smooth
curves. This is the main advantage of the twisted curve approach.

Definition 1.5. A level-` twisted curve (C → B, L, φ) consists of a twisted curve C of
genus g over a base schemeB, a faithful line bundle L, and an isomorphism φ : L⊗`→OC.
We additionally require that the order of the isomorphism class of L in Pic(C) is exactly `.

The category of level-` twisted curves forms a smooth DM stack Rg,` of dimension
3g − 3, with a finite forgetful morphism over the stack of stable curves f : Rg,` → Mg

of degree deg(f) = 82g(`)/` (or, simply, (`2g
− 1)/` when ` is prime). This definition

is given implicitly in [5] by Abramovich and Vistoli (level-` curves correspond to a con-
nected component of the moduli stack of stable maps to Bµµµ`). The forgetful morphism
f is ramified as we illustrate in §1.5. See also work of the first author [8] for a slightly
modified version, which preserves the étaleness of the forgetful morphism from level-`
smooth curves.

Remark 1.6. We can regard the data L : C → BGm alongside with φ : L⊗` → OC as a
representable map f : C→ Bµµµ`. Then, by exploiting the representability of the map f, one
can pull back the universal µµµ`-cover Spec k → Bµµµ` to C and obtain a scheme-theoretic
curve P equipped with a µµµ`-action. In this way we can equivalently interpret the data of
a level curve (C, L, φ), or more simply the data of a map f : C→ Bµµµ`, as a µµµ`-action on
a scheme-theoretic curve P , with ζ ∈ µµµr acting as ζ · (x, y) = (ζx, ζ−1y) at each node
{xy = 0}. We refer the reader to [1] and [4, p. 506, (i)–(iii)] for this interpretation. We
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notice that P , equipped with its µµµ`-action, is a µµµ`-torsor on C (notice that all fibres over
geometric points Spec k→ C consist of ` distinct points which constitute aµµµ`-orbit). On
the other hand, when we regard P as a cover of C (after composition with C → C), we
get an admissibleµµµ`-cover of the coarsening C in the sense of [4, p. 506, (i)–(iii)] (some
orbits may consist of `/r < ` points, and in this case all points in the orbit are nodes).

1.3.4. Local indices. Consider the local picture from Remark 1.4 of a level-` curve at a
node:

ζ · (t, x, y) = (ζmt, ζx, ζ−1y), ζ ∈ µµµr .

Notice that L⊗` ∼= O implies (ζm)` = 1, that is, `m ∈ rZ with r ≥ 1 and m in
{0, . . . , r − 1}. Faithfulness implies gcd(r,m) = 1; hence r | `. In the rest of the pa-
per, we often use a single multiplicity index M = m`/r to encode the local indices r
and m:

r(M) =
`

gcd(M, `)
, m(M) =

M

gcd(M, `)
(M ∈ {0, . . . , `− 1}),

M(r,m) = m`/r (rx | `,m ∈ {0, . . . , r − 1}, gcd(r,m) = 1).
(4)

The first interesting example is ` = 3. In this case, M equals m, and once we choose
a privileged branch at a node, there are three possible local pictures:

M = 0 (i.e. (m, r) = (0, 1)), trivial stabiliser;
M = 1 (i.e. (m, r) = (1, 3)), nontrivial µµµ3-action: the restriction of L to the privileged

branch parametrised by x is ζ · (t, x) = (ζ t, ζx) (with ζ ∈ µµµ3);
M = 2 (i.e. (m, r) = (2, 3)), nontrivial µµµ3-action: the restriction of L to the privileged

branch parametrised by x is ζ · (t, x) = (ζ 2t, ζx) (with ζ ∈ µµµ3).

Let us fix a node with a given choice of a branch falling under caseM = 1 (resp.M = 2);
note that if we change the choice of the branch, this case falls under case M = 2 (resp.
M = 1). Therefore, we can summarise this analysis by saying that the nodes of level-3
twisted curves are either trivial (M = 0) or nontrivial (M 6= 0), and in the latter case
equipped with a distinguished choice of a branch so that M equals 1.

1.4. Dual graphs of twisted curves and multiplicity of level curves

The dual graph of a twisted curve is simply the dual graph of the coarse curve.

1.4.1. Dual graphs. Dual graphs arising from the standard construction recalled below
are connected nonoriented graphs, possibly containing multiple edges (edges linking the
same two vertices) and loops (edges starting and ending at the same vertex). Consider a
twisted curve C and its normalisation nor : C′ → C. Locally at a node of C the normal-
isation is given by [SpecC[x]/µµµr ] t [SpecC[y]/µµµr ] → [{xy = 0}/µµµr ] with ζ ∈ µµµr
operating on x as ζ · x = ζx and on y as ζ · y = ζ−1y.
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Definition 1.7. The vertex set V of the dual graph is the set of connected components
of C′. The edge set E of the dual graph is the set of nodes of C. The two sets V and E
determine a graph as follows: a node identifies the connected components of C′ where its
preimages lie, in this way an edge links two (possibly equal) vertices.

rr
twisted curve C

r

r r
r

normalisation C′ =
⊔

Cj

• •

dual graph 0

Fig. 1. Normalisation and dual graph of a twisted curve

1.4.2. Cochains. Each node of C has two branches. Let E be the set of branches of each
node of C. The cardinality of E is twice that of E; there is a 2-to-1 projection E→ E and
an involution e 7→ e of E. On E we can define a function E→ V , denoted e 7→ e+ ∈ V ,
assigning to each oriented edge the vertex v = e+ corresponding to the connected com-
ponent C′v of C′ where the chosen branch lies. We get e 7→ e− by applying ( )+ after the
involution. If e+ = e− we have a loop (Figure 1): e 6= e in E map to the same vertex via
e 7→ e+.

We define the groups of 1-cochains and 0-cochains of the dual graph with coefficients
in Z. We define C0(0) as the set of Z-valued functions on V

C0(0) = {a : V → Z} =
⊕
v∈V

Z.

We define 1-cochains as antisymmetric Z-valued functions on E,

C1(0) = {b : E→ Z | b(e) = −b(e)},

where e and e are oriented edges with opposite orientations. After assigning an orientation
to each edge e ∈ E, we may identify C1(0) to

⊕
e∈E Z, but we prefer working with E.

The spaces of Z-valued 0-cochains and 1-cochains, C0(0) and C1(0), are equipped
with nondegenerate bilinear Z-valued forms

〈a1, a2〉 =
∑
v∈V

a1(v)a2(v), 〈b1, b2〉 =
1
2

∑
e∈E

b1(e)b2(e), (5)

with a1, a2 ∈ C
0 and b1, b2 ∈ C

1. The exterior differential is

δ : C0(0)→ C1(0), a 7→ δa, with δa(e) = a(e+)− a(e−).

The adjoint operator with respect to 〈 , 〉 is given by

∂ : C1(0)→ C0(0), b 7→ ∂b, with ∂b(v) =
∑
e∈E
e+=v

b(e).



612 Alessandro Chiodo, Gavril Farkas

Remark 1.8 (cuts and circuits). The image im(δ) is freely generated by #V −1 cuts (see
[6, Ch. 4]),

im(δ) ∼= Z⊕(#V−1). (6)

We recall that a cut is determined by a proper nonempty subsetW of the vertex set V of 0:
the sets W and V \ W form a partition of V . Cuts are 1-cochains b : E → Z in C1(0)

equal to 1 on the (nonempty) set HW of edges having only one end on W and oriented
from W to V \ W , equal to −1 on HW = {e | e ∈ HW }, and vanishing elsewhere. By
construction,HW andHW contain no loops. For this reason, in graph theory literature the
image of δ is often referred to as the cut space.

The kernel ker ∂ is freely generated by b1 = 1− χ(0) = 1− #V + #E circuits,

ker ∂ ∼= Z⊕(1−#V+#E).

We recall that a circuit within a graph is a sequence of n oriented edges e0, . . . , en−1 ∈ E
labelled by i ∈ Z/n, overlying n distinct nonoriented edges in E, so that the head (ei)+
is also the tail (ei+1)− for all i ∈ Z/n and the n vertices vi = (ei)− are distinct. If we
remove the condition (e0)− = (en−1)+ we obtain a path of edges joining v0 = (e0)− to
v = (en−1)+. Here, we treat circuits and paths as 1-cochains, regarding their characteristic
function (given by 1 on ei , −1 on ei and 0 elsewhere) as an element of C1(0). Circuits
formed by a single oriented edge will be called loops.

Since δ is the adjoint of ∂ , for any s∈ker ∂ and δt ∈ im δ we have 〈s, δt〉=〈∂s, t〉=0.
Conversely, the condition 〈s, b〉 = 0 for all s ∈ ker ∂ implies b ∈ im δ. In order to see
this, (for every connected component) fix a vertex v0 ∈ V and define a ∈ C0(0) as
a(v) =

∑n−1
i=0 b(ei) for a path joining v0 to v. The definition of a does not depend on the

chosen path because the difference between two paths lies in ker ∂ and we have 〈s, b〉 = 0
for all s ∈ ker ∂ . By construction, we have δa = b. In this way, we get a simple criterion
for b ∈ C1(0) to lie in im δ:

b ∈ C1(0) is in im δ ⇔ b(K) =
∑

0≤i<n

b(ei) = 0 for all circuits K =
∑

0≤i<n

ei of 0.

(7)

Remark 1.9. For any abelian group A, by taking ∂ ⊗Z A and δ ⊗Z A, we recover the
simplicial cohomology and homology complexes with coefficients in A,

δA : C
0(0;A)→ C1(0;A), ∂A : C

1(0;A)→ C0(0;A) (Ci(0;A) = Ci ⊗Z A).

The forms (5) extend to pairings

〈 , 〉 : C0(0)⊗Z C
0(0;A)→ A and 〈 , 〉 : C1(0)⊗Z C

1(0;A)→ A.

with the same definition, where a1(v)a2(v) is in A for a1(v) ∈ Z and a2(v) ∈ A, and
similarly b1(e)b2(e) is in A for b1(e) ∈ Z and b2(e) ∈ A. Notice that we still have
the equalities 〈δs0, t1〉 = 〈s0, ∂At1〉 and 〈s1, δAt0〉 = 〈∂s1, t0〉 for any si ∈ Ci(0) and
tj ∈ C

j (0;A).
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Then, any elements δAt ∈ im δA ⊂ C
1(0;A) and s ∈ ker ∂ ∈ C1(0) satisfy the con-

dition 〈s, δAt〉 = 〈∂s, t〉 = 0. As above, the condition 〈s, b〉 = 0 for all s ∈ ker ∂ implies
b ∈ im δA. We conclude that (7) still holds. More precisely, for a circuit K =

∑
0≤i<n ei ,

we set b(K) :=
∑

0≤i<n b(ei) so that the claim (7) generalises to C1(0;A) and im δA
verbatim. Notice that if A is multiplicative (e.g.µµµ` and Gm below) all notation should be
read accordingly; for instance, the condition b(e) = −b(e) defining C1(0;A) should be
read as b(e) = b(e)−1, and similarly the sum

∑
0≤i<n b(ei) defining b(K) above should

be read as
∏

0≤i<n b(ei).

1.4.3. The group of line bundles with trivial normalisation and the Gm-valued cut space.
The cohomology of the short exact sequence of sheaves 1 → Gm → nor∗nor

∗Gm →

Gm|SingC→ 1 and the analogous sequence forµµµ` yields the exact sequences

C0(0;Gm)
δ
−→ C1(0;Gm)

τ
−→ Pic(C)

nor∗
−−−→ Pic(C′), (8)

C0(0;µµµ`)
δ
−→ C1(0;µµµ`)

τ
−→ Pic(C)[`]

nor∗
−−−→ Pic(C′)[`]. (9)

Let us state explicitly the definition of the homomorphism τ . It is enough to consider a
1-cochain b vanishing on all edges except e0 and e0 where it equals ζ and ζ−1 respectively
(the cochain is Gm-valued if ζ lies in Gm and µµµ`-valued if ζ ` equals 1). The line bundle
τ(b) is the locally free sheaf of regular functions f on the normalisation of C at the
node n satisfying f (x) = ζf (y) for x and y preimages of n, with x lying on the branch
corresponding to e0 and y lying on the remaining branch.

1.4.4. Line bundles on an `-twisted curve C up to pullbacks from C areµµµ`-valued circuits.
For any stable curve C, up to isomorphism, we can define a unique twisted curve C̃ with
order-` stabilisers at all nodes. We may call the curve C the `-twisted curve attached to C
(in another context [8] it is called `-stable, because imposing that all stabilisers have the
same cardinality amounts to a stability condition). We consider the line bundles of Pic(C̃)
up to pullbacks from Pic(C), or—what is the same—Pic(C̃)[`] modulo Pic(C̃)[`]. By [8,
Cor. 3.1], the long exact sequence of cohomology of the Kummer sequence 1 → µµµ` →

Gm → Gm → 1, combined with that of 1 → A → nor∗nor
∗A → A|SingC → 1 for

A = Gm andµµµ`, yields the exact sequence

1→ Pic(C)[`] → Pic(C̃)[`] −→ C1(0;Z/`) ∂
−→ C0(0;Z/`).

Here, it should be noticed that the cohomology with coefficients in µµµ` naturally pro-
duces Z/`-valued cochains. For instance, the µµµ`-valued second cohomology group of a
curve is canonically identified with Z/` (see [24, §14]). On the other hand, C1(0;Z/`)
equals

⊕
e∈E H

1(Bµµµ`,µµµ`), where each summand is the `-torsion subgroup of the group
of characters Hom(µµµ`,Gm), which—by definition—equals Z/`.

1.4.5. Multiplicity and ker ∂ . Since oriented edges are in one-to-one correspondence
with branches of nodes of C, using §1.3.4 we define the multiplicity cochain.
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Definition 1.10 (Z/`-valued multiplicity 1-cochain of level-` curves). Consider a lev-
el-` curve (C, L, φ). To each oriented edge e, we can attach the multiplicity M(e) of
(C, L, φ) at the node (with its prescribed branch). The function M : e 7→ M(e) ∈ Z/`
satisfies M(e) = −M(e) for all e ∈ E; in this way we have

M ∈ C1(0;Z/`).

Proposition 1.11. Let C be a stable curve and consider the set of level-` curves (C, L, φ)
with coarsening C. Consider the dual graph of C and the differential ∂ . Then associating
to (C, L, φ) its multiplicity 1-cochain M yields a surjective map from the set of level-`
curves with coarsening C to ker ∂ ⊆ C1(0;Z/`).

Proof. All level-` structures overlying C may be regarded as elements in Pic(C̃)[`],
where C̃ is the twisted curve C̃ with µµµ`-stabilisers at all nodes (note that in Pic(C̃)[`]
we do not impose faithfulness). The multiplicity cochain lifts to a homomorphism
M : Pic(C̃)[`] → C1(0;Z/`). The above claim follows from the exact sequence 1 →
Pic(C)[`] → Pic(C̃)[`] −→ C1(0;Z/`) −→ C0(0;Z/`) (see [8, Cor. 3.1]) and from the
existence of an element in Pic(C)[`] (for g ≥ 2) whose order equals `. ut

Remark 1.12. The above Z/`-valued 1-cochain is (in another context) the same as the
1-cochain associated to a weighted subgraph of 0 in [7, Rem. 2.2.1], including the fact
that it takes values in ker ∂ . Similarly, the description of ghost automorphisms for ` prime
in §2.2 is related to [20, Proposition 4.1.11] and [7, Lemma 2.3.2].

Remark 1.13. The fact that M takes values in ker ∂ may be regarded as saying that the
multiplicities M1, . . . ,MN at all special points p1, . . . , pN of a connected component of
the normalisation must add up to zero modulo `. This is easy to see also directly once we
express the line bundle induced by L on a connected component X of the normalisation
of C as the line bundle OX(D), where D is a Cartier divisor on a smooth stack-theoretic
curve X. The divisorD is the sum of a divisor I with integer coefficients plus the rational
coefficients divisor S =

∑N
i=1

Mi

`
[pi] supported on the special points. The condition

L⊗` ∼= O implies that `I + `S is a principal divisor; in particular, it has degree zero and
we have

N∑
i=1

Mi = ` deg S = −` deg I ∈ `Z.

Example 1.14. Consider a two-component twisted curve obtained as the union of two
smooth one-dimensional stacks X and Y meeting transversely at two nodes. For each
node, let us measure the multiplicities with respect to the branch lying in X. Proposition
1.11 says that the multiplicitiesM1 andM2 should add up to 0 (modulo `). Let us examine
in greater detail the case ` = 3, M1 = 1 and M2 = 2. Over X the third root L of O is
given by a divisor D′ of degree 0 (a root of OX) with rational coefficients of the form
D′ = bD′c + [x1]/3 + 2[x2]/3, where x1 : SpecC → X and x2 : SpecC → X are the
geometric points lifting n1 and n2 to X. Conversely, L|Y can be expressed as the degree-0
line bundle O(D′′) with D′′ = bD′′c + 2[y1]/3 + [y2]/3, where again y1 and y2 lift n1
and n2 to Y.
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The multiplicity 1-cochain encodes much of the relevant topological information charac-
terising a level curve. In what follows, we describe some natural invariants of Z/`-valued
1-cochains.

1.4.6. The support and its characteristic function. For any 1-cochain c : E → Z/` we
consider the characteristic function of the support of c taking values in the extended set
Z ∪ {∞} (we use the standard conventions a <∞ and a +∞ =∞ for a ∈ Z):

νc(e) =

{
∞ if c(e) = 0 ∈ Z/`,
0 otherwise.

(10)

Proposition 1.11 implies νc(e) = ∞ for any separating edge.
For any abelian group A, we present a natural subcomplex C•ν (0;A) of C•(0;A)

attached to a given symmetric characteristic function ν : E → {0,∞}, i.e. to any subset
of E. In §2.4 we generalise this construction by allowing, instead of characteristic func-
tions, more general functions arising as truncated valuations of M (see (31)). When ` is
prime we recover the above defined function νc.

1.4.7. The contracted graph 0(ν). We define precisely the graphs obtained by iterated
edge-contractions of 0 mentioned in the introduction. Let us consider any symmetric
characteristic function ν : E → {0,∞} (since ν is symmetric it descends to E and we
sometimes abuse the notation by regarding it as a function on E). We attach to 0 a new
graph 0(ν) whose sets of vertices and edges (V (ν), E(ν)) are obtained from (V ,E)

(i) by setting E(ν) = {e | ν(e) = 0},
(ii) by modding out V by the relations e+ ∼ν e− if ν(e) = ∞, i.e. V (ν) = V/∼ν .

In the new graph, the set of vertices of the edge e ∈ E(ν) is the set of vertices of e ∈ E
in V modulo the relation ∼ν . In simple terms, 0(ν) is the contraction of all edges where
v > 0. We refer to 0(ν) as a contraction of 0, and to 0 as a blowup of 0(ν) (often in
graph theory literature, the graph obtained from an iterated edge-contraction is a “minor”
of the initial graph, but we do not use this terminology here).

1.4.8. The complex C•ν (0;A). The inclusion i : E(ν) ↪→ E and the projec-
tion p : V � V (ν) yield homomorphisms p∗ : C

0(0;A) � C0(0(ν);A) and
i∗ : C1(0;A) � C1(0(ν);A) and the contraction homomorphism between complexes
with differentials given by ∂ ,

C : (C•(0;A), ∂)� (C•(0(ν);A), ∂). (11)

Conversely, the homomorphisms p∗ : C0(0(ν);A) ↪→ C0(0;A) and i∗ : C1(0(ν);A)

↪→ C1(0;A) yield the blowup homomorphism between complexes with differential δ,

B : (C•(0(ν);A), δ) ↪→ (C•(0;A), δ). (12)
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The subcomplex B(C•(0(ν);A), δ) consists of the 0-cochains a ∈ C0(0;A) and the
1-cochains b ∈ C1(0;A) satisfying a(e+) = a(e−) and b(e) = 0 if ν(e) = ∞. Within
(C•(0;A), δ) we denote such a subcomplex by

C•ν (0;A) ⊆ C
•(0;A).

In fact, we have
B(im δ) = im δ ∩ C1

ν (0;A). (13)

The inclusion from left to right follows from (12). Conversely, b = δ(a) is in C1
ν (0;A)

only if, for any contracted edge e, we have a(e+) = a(e−), that is, only if a lies in
C0
ν (0;A)). Passing to the adjoint operator we also get

C(ker ∂) = ker ∂. (14)

Summarising, the contraction of a circuit is a circuit and the blowup of a cut is a cut.

1.5. The boundary locus

We describe Rg,` \ Rg,` by classifying one-nodal level curves.

1.5.1. Reducible one-nodal curves. Consider the union C = C1 ∪ C2 of two smooth
stack-theoretic curves C1 and C2 of genus i and g − i meeting transversely at a point.
Proposition 1.11 implies that the node has multiplicity zero or, in other words, trivial
stabiliser. Hence, we have C = C, i.e. C is an ordinary stable curve of compact type,
C = C1 ∪ C2. The line bundle L = L on C is determined by the choice of two line
bundles L1 and L2 satisfying L⊗`1

∼= OC1 and L⊗`2
∼= OC1 . There are three possibilities:

(i) L1 ∼= O, L2 6∼= O; (ii) L1 6∼= O, L2 ∼= O; (iii) L1, L2 6∼= O

(since we have L 6∼= O, the possibility that both line bundles are trivial is excluded).
If 0 < i < g/2, these three cases characterise three loci in the moduli space whose
closures are the divisors 1g−i,1i and 1i:g−i respectively. We write δg−i, δi and δi:g−i
for the corresponding Q-divisors defined by the same conditions in the moduli stack. The
morphism f is not ramified along these divisors. We have

f∗(δstable
i ) = δg−i + δi + δi:g−i, (15)

where δstable
i is the Q-divisor class in Mg defined by stable curves with at least one node

separating the curve into two components of genus i and g − i.
If i = g/2 the same classification reduces to two divisors: the closure of the locus of

one-nodal level curves for which only one line bundle among L1 and L2 is trivial yields
1g/2, and the closure of the locus classifying curve where both L1 and L2 are nontrivial
yields 1g/2:g/2.
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1.5.2. Irreducible one-nodal curves. If C is irreducible and has one node, then the node
is of nonseparating type: the normalisation nor : C′ → C is given by a connected curve.
There are three possibilities:

(i) M = 0 and nor∗L 6∼= O; (ii) M = 0 and nor∗L ∼= O; (iii) M 6= 0.

The closures of the loci of level curves satisfying the three conditions above determine
three divisors denoted by 1′0,1

′′

0,1
ram
0 in the moduli space. We write again δ′0, δ

′′

0 , δ
ram
0

for the corresponding classes of divisors defined by the same conditions in the moduli
stack. The morphism f is not ramified along δ′0 and δ′′0 . When ` is prime, f is ramified with
order ` along δram

0 . More precisely, we have (cf. [10])

f∗(δstable
0 ) = δ′0 + δ

′′

0 + `δ
ram
0 (` prime). (16)

In general, δram
0 can be decomposed into several components depending on the value of

the multiplicity index M; we refer to §1.5.4 for the study of the order of the ramification.
This calls for an analysis of the irreducible components of the boundary divisors

δ′0, δ
′′

0 , δ
ram
0 as well as for the previous divisors δi, δi:g−i for 1 ≤ i ≤ g/2. We carry it out

in the last part of this section (§1.5.3 and §1.5.4) as a nice application of the combinato-
rial invariants of level curves illustrated above. On the other hand, the present description
of the boundary locus is sufficient for the entire Section 2 and may already be already
regarded as a decomposition into irreducible components of the boundary for ` = 3 (see
Examples 1.16 and 1.18). Therefore, it is worthwhile to illustrate it further by an example,
which will play an important role in the rest of the paper: the case of level structures on
elliptic-tailed curves.

Example 1.15 (two level-` structures on the elliptic-tailed curve). We provide examples
of two distinct twisted level curves, one representing a point of 11 ∩1

ram
0 , and the other

representing a point in11∩1
′′

0 . Consider the stack-theoretic quotient E of Ẽ = P1/(�P ′)

byµµµ`, with ζ ∈ µµµ` operating by multiplication on the local parameter of P1 at 0. Now let
C be a twisted curve containing, as a subcurve, a copy of such a genus-1 stack-theoretic
curve E. We assume E ∩ C \ E = {n}, where n is a separating node with trivial stabiliser
(see Proposition 1.11).

Level-` structures in11 can be defined on C by extending trivially on C \ E nontrivial
`th roots of O on E. To this end, we can exploit p : Ẽ → E, which is an étale µµµ`-cyclic
cover of E. The rank-` locally free sheaf p∗O carries a µµµ`-representation and admits
an isotypical decomposition p∗O =

⊕
χ∈Z/`=Hom(µµµ`,Gm)

Lχ . We set Lram := L1, where
χ = 1 is the character (1 : µµµ` ⊂ Gm) ∈ Z/`. In this way Lram is is equipped with
an isomorphism φram : L

⊗`
ram
∼= O. Then Lram → C yields an object (C, Lram, φram) in

11 ∩ 1
ram
0 because the multiplicity of Lram at the nonseparating node is 6= 0 (1 or l − 1

depending on the chosen branch).
The projection to the coarse space εE : E→ E allows us to define another nontrivial

line bundle in Pic(C)[`] as follows. On E, simply consider the pullback of the line bundle
of regular functions f on the normalisation E′ ∼= P1 satisfying f (∞) = ζf (0) for any
ζ ∈ µµµ`. This is τ(ζ ) in the notation of §1.4.3. If ζ is a primitive root of unity, then we get
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a line bundle Lét → C yielding a point in 11 ∩1
′′

0 (the multiplicity at the nonseparating
node is 0 and Lét is trivial on the normalisation by construction).

1.5.3. The closure of the locus of reducible one-nodal curves: irreducible components.
We provide a decomposition into irreducible components of the divisor defined above
as the closure of the substack of reducible level-` one-nodal curves. It is convenient to
reformulate the problem in Mg: we study the divisor

Dstable
red =

∑
1≤i≤g/2

δstable
i (17)

of stable curves with at least one separating node. We do so, by analysing the degree-2
map D̃stable

red → Dstable
red classifying stable curves alongside with a separating node and

a branch of the node. We have the natural decomposition D̃stable
red =

⊔g−1
i=1 D̃stable

i where
D̃stable
i classifies objects where the chosen branch lies in the genus-i connected component

Z of the normalisation of the separating node. Then, for i = 1, . . . , g−1, we write Dstable
i

for the pushforward in Mg of the cycle D̃stable
i via the map forgetting the branch; for

i 6= g/2, the forgetful map from D̃stable
i has degree 1 and we have Dstable

i = Dstable
g−i , while

for i = g/2 the forgetful map D̃stable
g/2 is a degree-2 morphism. In this way, we reformulate

(17) as follows:

Dstable
red =

1
2

g−1∑
i=1

Dstable
i .

For level curves, consider the stack D̃red classifying level-` curves alongside with a sepa-
rating node and a branch of the node. Hence, we get the decomposition of D̃red into con-
nected components and the corresponding decomposition of Dred into irreducible compo-
nents,

D̃red =
⊔
d1,d2,i

D̃d1,d2
i and Dred =

1
2

∑
d1,d2,i

Dd1,d2
i ,

where d1 and d2 are divisors of `whose least common multiple equals `, i ranges between
1 and g − 1, and the loci D̃d1,d2

i and Dd1,d2
i are defined as follows. The stack D̃d1,d2

i is
the full subcategory of objects where the data of the chosen branch and of the genus-i
connected component Z of the normalisation of the separating node satisfy

(i) the branch lies in Z and g(Z) = i,
(ii) the order of L on Z equals d1,

(iii) the order of L on C \ Z equals d2.

The divisor Dd1,d2
i is the pushforward of the cycle D̃d1,d2

i via the forgetful functor forget-
ting the choice of the branch and of the node. Since the stack-theoretic structure of one-
nodal level-` curves of compact type is trivial, there is no ramification of f along Dred: we
have Dred = f∗Dstable

red . The factor 1/2 in the above expression Dred eliminates the factor 2
due to Dd1,d2

i = Dd2,d1
g−i for any (i, d1, d2) 6= (g/2, `, `), and to the degree 2 of the map

D̃`,``/2 → D`,``/2 when g is even.
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Example 1.16. For ` prime, we notice that δi , δg−i and δi:g−i are precisely the divi-
sors D`,1i , D1,`

i and D`,`i for i 6= g/2 and 1
2D

`,`
g/2 otherwise. For i 6= g/2, they are

the three irreducible components of f∗δstable
i of degrees (`2i

− 1)/`, (`2g−2i
− 1)/` and

(`2g−2i
− 1)(`2i

− 1)/` over δstable
i (we check that they add up to deg(f) = (`2g

− 1)/`).

1.5.4. The closure of the locus of irreducible one-nodal curves: irreducible components.
We study the divisor δstable

0 of stable curves with at least one separating node. As in §1.5.3,
we write Dstable

irr = δstable
0 and we analyze the degree-2 morphism D̃stable

irr → Dstable
irr classi-

fying stable curves alongside with a nonseparating node and a branch of the node. Con-
sider the stack D̃irr classifying level-` curves (C, L, φ) equipped with a prescribed choice
of a nonseparating node and of a branch of that node; this yields a notation x and y for
the points lifting the node to the normalisation nor : C′ → C of the nonseparating node.
On D̃irr, we can define the data M,d, h:

– the multiplicity M ∈ Z/`,
– the order d (dividing ` and multiple of `/gcd(M, `)) of nor∗ L on C′,
– the gluing datum of a root of unity h ∈ µµµ`/d satisfying f (x) = hf (y) for the sections
f of (nor∗ L)⊗d ∼= O.

Within D̃irr, we write D̃M,d,hirr for the locus where the multiplicity, the order and the gluing
datum are respectively M,d and h. Since L has order `, within D̃irr, the gluing datum is
always a primitive `/dth root of unity; however, the same definition, without any condi-
tion on the order of L, yields a stack for any h ∈ µµµ`/d and we have D̃M,d,1irr

∼= D̃M,d,hirr ,
via L 7→ L ⊗ τ(ζ ) for ζ ∈ µµµ` with ζ d = h (see §1.4.3). The moduli stack D̃M,d,hirr is
connected because D̃M,d,1irr is. Indeed, following Remark 1.6, D̃M,d,1irr classifies µµµd -covers
π : P → C of genus-g curves with a specified nonseparating node n in C corresponding
to an orbit of d/r nodes for r = `/gcd(M, `). We further require the following prop-
erties: (1) there is a privileged branch at n and the action of µµµr ⊆ µµµd is of the form
ζ · (z, w) = (ζ z, ζ−1w) on P and is given at the privileged branch by the character
m = M/gcd(M, `) ∈ Z/r , (2) the normalisation of C at n and of P at the d/r points
of π−1(n) is a connected µµµd -cover π : P ′ → C′. The connectedness of D̃M,d,1irr follows
precisely from the connectedness of P ′ and it may be interesting to see it explicitly. We
do it hereafter.

Lemma 1.17. The moduli stack D̃M,d,1irr is connected.

Proof. For simplicity, let us first consider the case r = 1 (i.e. M ∈ `Z). The connected
µµµd -cover π ′ : P ′ → C′ contains two distinguished orbits Dx and Dy ⊂ P ′ lying above
the preimages x and y ∈ C′ of the node n. The claim follows from the existence of a
family ranging through all possible ways to glue back this normalised µµµd -cover of C′

to form a µµµd -cover of C (in general there are d/r distinguished possibilities; here we
have d choices). By deformation, it is enough to show the claim when C′ is P1/(0 ∼ ∞)
marked at x and y and P ′ is the connected étale µµµd -cover attached to τ(ξd). We take P ′

itself as a base scheme and we define a family ofµµµd -covers over it. Above any point p of
�P ′ = P

′
\ (Sing∪Dx) we can consider the cover P ′→ C′ and two distinguished orbits:
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Dx and the orbit of p. By taking the limit µµµd -cover using the properness of Rg,d (or
simply by blowing up conveniently within P1

× P1), the family extends uniquely across
the nodes of P and the points ofDx . We obtain in this way a family P ′ ofµµµd -covers over
the base scheme P ′ with a section δ extending the diagonal of (�P ′)2 and disjoint from
the closure of the orbit Dx × �P ′ . Fix a point t ∈ Dx ; then, for any g ∈ µµµd , we glue
the image of gδ with the (closure of) gt × �P ′ and we get a family of µµµd -covers which
embraces all the possible ways to glue back P ′→ C′ to aµµµd -cover of the initial curve C.
These are precisely the d fibres above the d points of Dy .

If we drop the condition r = 1, we regard the initial data π ′ : P ′ → C′ as the com-
posite of the étale µµµd/µµµr -cover ε′ : E′ → C′ given by τ(ξd/r), and a branched µµµr -cover
with action m ∈ Z/r at the points of Dx = (ε′)−1(x) and r − m ∈ Z/r at the points of
Dy = (ε

′)−1(x). By construction, this branched cover is unique up to isomorphism and
amounts to extracting an rth root of OE′(−mDx − (r − m)Dy). We proceed as above
by defining a family of µµµd -covers over the base scheme E′. To this end, if p lies in
�E′ = E′ \ (Sing∪Dx) we consider the µµµd -cover of C′ given by the µµµr -cover of E′

itself induced by an rth root of OE′(−mDx − (r − m)1), where 1 is the orbit of p.
Again, this family of µµµd -covers extends uniquely across Sing∪Dx and admits two sec-
tions with disjoint orbits (lifting the closure of the diagonal of (�E′)2 and the closure of
a section of Dx ×�E′ → �E′ ). By gluing along these sections as above, we get a family
of µµµd -covers embracing all the possible ways to glue back P ′→ C′ to a µµµd -cover of the
initial curve C. These are precisely the d/r fibres above the d/r points of Dy . ut

Hence, we have decomposed D̃irr into a disjoint union of
∑`−1
M=0 gcd(M, `) connected loci

D̃M,d,hirr , where M ∈ {0, . . . , `− 1}, h is a gcd(M, `)th root of unity and d is determined
by h: we set d = `/ord(h) so that h is a primitive root in µµµ`/d . We may remove d from
the notation and we get the desired decomposition into irreducible components of Dirr:

D̃irr =
⊔

M∈Z/`
h∈µµµgcd(M,`)

D̃M,hirr and Dirr =
1
2

∑
M∈Z/`

h∈µµµgcd(M,`)

DM,hirr .

Here DM,hirr are the pushforwards in Rg,` of the cycles D̃M,hirr via the morphism forgetting
the prescribed branch.

Note that if M ∈ {0, `/2} and h ∈ {1,−1}, this forgetful morphism is a degree-2
morphism and the factor 1/2 removes the degree factor appearing in the direct image
of D̃M,hirr . Actually, not all combinations with M = 0, `/2 and h = 1,−1 occur: if ` is
odd, only (M, h) = (0, 1) occurs; if ` ∈ 2Z \ 4Z, all combinations except (`/2,−1)
occur (µµµ`/2 does not contain −1); if ` is in 4Z, any of the four combinations occurs.

In all the remaining cases DM,hirr equals D`−M,h
−1

irr . For these terms, the sum is re-
dundant and the factor 1/2 removes the factor 2 arising from summing twice the same
divisor.

Notice also that the order of the ramification of the morphism f along DM,d,hirr equals
the order of M in Z/`; that is precisely r = `/gcd(M, `) .
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Example 1.18. If ` = 3, the stack D̃irr has five connected components, as many as∑2
M=0 gcd(M, 3) = 3 + 1 + 1. Since ` is odd, only one of these yields a connected

degree-2 cover: D̃0,1
irr → D0,1

irr . The remaining cases are paired as follows: we have

D̃
0,ξ3
irr = D̃

0,ξ2
3

irr and D̃1,1
irr = D̃2,1

irr .
The divisors δ′0, δ′′0 and δram

0 over δstable
0 can be recovered as follows:

• the divisor δ′0 is the image in Rg,` of D̃0,1
irr ;

• the divisor δ′′0 is the image of D̃0,ξ3
irr and it can also be written as D̃

0,ξ2
3

irr ;
• finally, δram

0 is the image of D̃1,1
irr and it can also be written as D̃2,1

irr .

These divisors coincide with the irreducible components of Dirr. As substacks over
δstable

0 = Dstable
irr they have respectively degree 1/3 times 3(32g−2

− 1), 2, and 2(32g−2);
using (16), we count the degree of δram

0 over δ0 with multiplicity 3 and we obtain again
deg(f) = (32g

− 1)/3.
In view of the next example and further generalisations, we can perform this degree

check more systematically via pushforward via f̃ : D̃irr → D̃stable
irr , i : D̃stable

irr → M
stable
g ,

j : D̃irr → R
stable
g,` and f : Rg,` → Mg (the composite of the first two maps equals the

composite of the last two). Write f∗δstable
0 = δ′0 + δ

′′

0 + 3δram
0 as

f∗δstable
0 =

1
2 (D

0,1
irr + D

0,ξ3
irr + D

0,ξ2
3

irr + 3D1,1
irr + 3D2,1

irr )

and take the pushforward

f∗f
∗δstable

0 =
1
2 (f∗D

0,1
irr + f∗D

0,ξ3
irr + f∗D

0,ξ2
3

irr + 3f∗D
1,1
irr + 3f∗D

2,1
irr ).

We write DM,hirr = j∗D̃
M,h
irr and we replace each f∗j∗D̃

M,h
irr by i∗f∗D̃

M,h
irr = d

M,h(i∗D̃
stable
irr )

where dM,h is the degree of the forgetful morphism D̃M,hirr → D̃stable
irr onto its image. We

obtain

f∗f
∗δstable

0 = (d0,1
+ d0,ξ3 + d0,ξ2

3 + 3d1,1
+ 3d2,1) 1

2 i∗D̃
stable
irr

=

(
3(32g−2

− 1)
3

+
1
3
+

1
3
+ 3

32g−2

3
+ 3

32g−2

3

)
δstable

0 =
32g
− 1

3
δstable

0 .

Example 1.19. If ` = 4, the stack D̃irr has eight connected components, as many as∑3
M=0 gcd(M, 4) = 4+ 1+ 2+ 1. Four of them are paired and yield the same boundary

divisor: D0,ξ4
irr = D

0,ξ3
4

irr and D1,1
irr = D3,1

irr . The remaining four, D0,1
irr ,D

0,ξ2
irr ,D

2,1
irr and D

2,ξ2
irr ,

yield boundary divisors with multiplicity 2. We can write the fundamental class of the
boundary as

Dirr =
1
2 (D

0,1
irr + D

0,ξ2
irr + D

0,ξ4
irr + D

0,ξ3
4

irr + D1,1
irr + D2,1

irr + D
2,ξ2
irr + D3,1

irr ),

or equivalently, highlighting its five irreducible components, as

Dirr =
1
2D

0,1
irr +

1
2D

0,ξ2
4

irr + D
0,ξ4
irr + D1,1

irr +
1
2D

2,1
irr +

1
2D

2,ξ2
irr .
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By pulling back δstable
0 = Dstable

irr we get the same locus with multiplicities; following the
last computation given for ` = 3 we check that this decomposition is compatible with
deg(f) = 82g(4)/4 = (42g

− 22g)/4. We have

f∗δstable
0 =

1
2 (D

0,1
irr + D

0,ξ4
irr + D

0,ξ2
4

irr + D
0,ξ3

4
irr + 4D1,1

irr + 2D2,1
irr + 2D2,ξ2

irr + 4D3,1
irr ),

hence

f∗f
∗δstable

0 = (d0,1
+ d0,ξ4 + d0,ξ2

4 + d0,ξ3
4 + 4d1,1

+ 2d2,1
+ 2d2,ξ2 + 4d3,1) 1

2 i∗D̃
stable
irr

=

(
482g−2(4)

4
+

1
4
+

282g−2(2)
4

+
1
4
+4

42g−2

4
+2

282g−2(4)
4

+2
22g−2

4
+4

42g−2

4

)
δstable

0

=
82g(4)

4
δstable

0 ,

where we have used 8n(4) = 4n − 2n and 8n(2) = 2n − 1.

The combinatorics involved in the previous examples is subsumed under the general treat-
ment of §2.4.6, where we provide the computation of the length of any fibre of moduli of
level curves.

Remark 1.20 (Compatibility with the terminology of [10]). We have the following re-
lations between the coarse decomposition in terms of δ-divisors and the finer analysis in
terms of D-divisors. We have

δi = D1,`
i = D`,1g−i, δg−i = D`,1i = D`,1i , δi:g−i =

∑
d1,d2|`

lcm(d1,d2)=`

Dd1,d2
i (i 6= g/2),

δ′0 =
1
2

∑
h∈µµµ`

D0,h
irr , δ′′0 =

1
2D

0,1
irr , δram

0 =
1
2

∑
0 6=M∈Z/`
h∈µµµgcd(M,`)

DM,hirr

(for g ∈ 2Z we have δg/2:g/2= 1
2
∑
d1,d2|`

Dd1,d2
g/2 where again we impose lcm(d1, d2)=`).

Since the ramification index at DM,hirr equals r(M), it follows that the equation
f∗(δstable

0 ) = δ′0+ δ
′′

0 + `δ
ram
0 only holds for ` prime. However, we point out that the same

equation holds if we replace δram
0 by

∑b`/2c
a=1 δ

(a)
0 and we set, for any a = 1, . . . , b`/2c,

δ
(a)
0 =

1
2

∑
M=a,−a
h∈µµµgcd(M,`)

1
gcd(a, `)

DM,hirr .

When ` is prime, which is the main focus in [10], the divisor above arises naturally as a
substack within Rg,`. For composite values of `, the above divisor can still be obtained as
a codimension-1 substack of a suitable compactification of Rg,`; indeed in [10, §1.3] we
illustrate how in δ(a)0 the multiplicities 1/gcd(a, `) arise naturally when working with the
compactification of [8] which simply imposes stabilisers of order ` at all nonseparating
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nodes instead of imposing the faithfulness condition on L. These compactifications have
the same coarse space Rg,`, bur they are not very convenient for the study of the singular-
ities of Rg,` because their stabilisers are extensions by quasireflections of the stabilisers
of Rg,`.

2. The singularities of the moduli space of level curves

In this section we assume g ≥ 4; this is a standard condition in the study of the sin-
gularity locus of the coarse moduli space of curves essentially motivated by Harris and
Mumford’s work [18] (see Remark 2.11 and Proposition 2.13 and also the role played by
this condition in the proof of Theorem 2.44).

At the point represented by (C, L, φ), the local pictures of Rg,` and of Rg,` are given
by [Def(C, L, φ)/Aut(C, L, φ)] and Def(C, L, φ)/Aut(C, L, φ). We relate these local pic-
tures to [Def(C)/Aut(C)] and Def(C)/Aut(C), the local pictures of Mg and Mg at C.

2.1. Deformation spaces and automorphism groups

The space Def(C, L, φ) can be expressed in terms of Def(C).

2.1.1. Deformations of C. We only consider the stable curve C. We denote by
Def(C,Sing(C)) the space of deformations of the curve C alongside its set of nodes
Sing(C). It may be decomposed canonically as

Def(C,Sing(C)) =
⊕
v∈V

H 1(C′v, T (−Dv)),

where we denote by C′v ⊆ C the connected component of the normalisation of C attached
to v, and by Dv the divisor formed by the inverse images of the nodes of C under the
normalisation map. Indeed, the group H 1(C′v, T (−Dv)) parametrises deformations of
the pair (C′v,Dv).

Note that Def(C,Sing(C)) is a subspace of Def(C); by modding it out we obtain

Def(C)/Def(C,Sing(C)) =
⊕
e∈E

Ne,

where the decomposition is canonical and the term Ne denotes the fibre over [C] of the
normal bundle to the locus of deformations preserving the node attached to e. In fact Ne
is one-dimensional; giving a (noncanonical) parametrisation

Ne ∼= Spec(C[te]) =: A1
te

is equivalent to choosing a smoothing1 of the node attached to e along te.

1 A smoothing of a node n ∈ C is an infinitesimal deformation C → SpecC[te]/(t2e ) of the
curve C, where n is a regular point within the scheme C.
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2.1.2. Deformations of (C, L, φ). The deformation space Def(C, L, φ) is canonically
identified with Def(C) via the étale forgetful functor (C, L, φ) 7→ C. The picture of
Def(C) is analogue to the above picture for Def(C).

Within Def(C, L, φ)=Def(C), we consider Def(C, L, φ,Sing(C))=Def(C,Sing(C)),
the subspace of deformations where Sing(C) deforms alongside C (the topological type of
the curve is preserved). In fact, via the natural forgetful map Def(C, L, φ) = Def(C) →
Def(C), this space is canonically identified to Def(C,Sing(C)) (this happens because
H 1(C′v, T (−Dv)) and the stack-theoretic counterpart are canonically isomorphic [5,
Lem. 2.3.4]). Therefore, we have

Def(C, L, φ,Sing(C)) = Def(C,Sing(C)) =
⊕
v∈V

H 1(C′v, T (−Dv)). (18)

The corresponding quotient space canonically decomposes as

Def(C, L, φ)/Def(C, L, φ,Sing(C)) = Def(C)/Def(C,Sing(C)) =
⊕
e∈E

Ke. (19)

As in §2.1.1, Ke is one-dimensional; indeed, it can be parametrised by τe, the r(e)th
root of the above mentioned parameter te (r(e) is the local index from §1.3.4). In this
way τe may be geometrically interpreted as the parameter smoothing the node of C cor-
responding to e and the map between quotients Def(C, L, φ)/Def(C, L, φ,Sing(C)) →
Def(C)/Def(C,Sing(C)) is the direct sum, for e in E, of

A1
te
→ A1

τe
, te 7→ t r(e)e .

2.1.3. Automorphisms of (C, L, φ). An automorphism of a level curve (C, L, φ) is given
by (s, ρ) where s is an isomorphism of C, and ρ is an isomorphism s∗L → L of line
bundles satisfying φ ◦ ρ⊗` = s∗φ:

s∗(L⊗`)
= //

s∗φ
��

(s∗L)⊗`
ρ⊗r // L⊗`

φ

��
s∗O = // O

We write

Aut(C, L, φ) = {(s, ρ) | s ∈ Aut(C), ρ : s∗L
∼=
−→ L, φ ◦ ρ⊗` = s∗ρ}.

On the other hand, we consider

Aut(C, L, φ) = {s ∈ Aut(C) | s∗L ∼= L}.

It is easy to see that for each element s ∈ Aut(C, L, φ) there exists (s, ρ) ∈ Aut(C, L, φ).
Two pairs of this form differ by a power of a quasitrivial automorphism of the form
(idC, ξ`) operating by scaling the fibres. We have the exact sequence

1→ µµµ`→ Aut(C, L, φ)→ Aut(C, L, φ)→ 1.

As already mentioned, quasitrivial isomorphisms act trivially on Def(C, L, φ). There-
fore, it is natural to study the action of Aut(C, L, φ) on Def(C, L, φ) by focusing on
Aut(C, L, φ) = Aut(C, L, φ)/µµµ`.
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The coarsening s 7→ s induces a group homomorphism

coarse : Aut(C, L, φ)→ Aut(C).

Its kernel and image are natural geometric objects of independent interest. We denote
them by AutC(C, L, φ) and Aut′(C) and we refer to them as the group of ghost automor-
phisms and the group of automorphisms of C lifting to (C, L, φ):

1→ AutC(C, L, φ)→ Aut(C, L, φ)→ Aut′(C)→ 1. (20)

2.1.4. Ghosts automorphisms. The kernel of coarse is the group of ghosts automor-
phisms: automorphisms s of C fixing at the same time the underlying curve C and the
isomorphism class of the overlying line bundle L; we write

AutC(C, L, φ) := ker(coarse).

It is worth pointing out that an automorphism of a stack X may well be nontrivial and, at
the same time, operate as the identity on the coarse space X. In our case, stabilisers are
isolated and we may treat this issue locally. Consider U = [{xy = 0}/µµµr ] the quotient
stack where ξr acts on (x, y) as (ξrx, ξ−1

r y). All automorphisms (x, y) 7→ (ξbr x, ξ
a
r y)

induce the identity on the quotient space. The automorphisms fixing the coarsening U
up to natural transformations (the 2-isomorphisms (x, y) 7→ (ξ irx, ξ

−i
r y)) form a group

AutU (U) ∼= µµµr generated by (x, y) 7→ (ξrx, y). In this way, the automorphisms of a
twisted curve C with order-r stabilisers at k nodes which fix C are freely generated by k
automorphisms, each one operating as (x, y) 7→ (ξrx, y) at a node [1, §7]. Note that
no branch has been privileged: via the natural transformation (x, y) 7→ (ξrx, ξ

−1
r y), the

automorphism (x, y) 7→ (ξrx, y) is 2-isomorphic to (x, y) 7→ (x, ξry).
This explains the canonical identification from [1, §7, Prop. 7.1.1],

AutC(C) =
⊕
e∈E

µµµr(e). (21)

We notice that, throughout the paper, we adopt for clarity the additive notation for sums
and direct sums (e.g. we write

⊕
e∈E µµµr(e), (µµµ`)

⊕#V , and, where sums over a set I of
indices are not direct, we use the symbol

∑
i∈I )

The summand labelled by e on the right hand side corresponds to AutC\{ne}(C), the
subgroup of automorphisms of C operating as the identity off the node ne attached to e.
The action of AutC\{ne}(C) on Def(C)/Def(C,Sing(C)) =

⊕
e∈E Ke (see in (2.1.2)) co-

incides with the natural action of µµµr(e) on the one-dimensional term Ke: the character 1
in Hom(µµµr(e),Gm) = Z/r(e).

2.1.5. Automorphisms of C lifting to (C, L, φ). The image of Aut(C, L, φ) via coarse
is the group of automorphisms s of C which can be obtained as the coarsening of a
morphism s of C satisfying s∗L ∼= L. Clearly, this group differs in general from Aut(C);
notice for instance that automorphisms of the coarse curve C that do not preserve the
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order of the overlying stabiliser of C cannot be lifted to C. More precisely, we have the
obvious inclusion

Aut′(C) := im(coarse) ⊆ {s ∈ Aut(C) | s∗0M = M}

where s0 is the dual graph automorphism induced by s. The condition s∗0M = M is
restrictive in general (it is not, of course, when M vanishes), but it does not guarantee
the existence of an automorphism s lifting s. For a simple counterexample, consider a
point of the divisor 1g/2 from §1.5 lying over the isomorphism class in 1stable

g/2 of two
isomorphic 1-pointed genus-g/2 curves meeting transversely at their marked point; here
the involution of the underlying stable curve respects the multiplicity cochain, but does
not lift to the level structure. We also point out that in general, even when a lift s exists,
there may well be no canonical choice for s. Lifting a morphism that maps a Bµµµk-node
to another Bµµµk-node amounts to extracting a kth root of the identifications between local
parameters on both branches (there may be no distinguished choice, although all choices
can be identified via a ghost isomorphism, up to natural transformation).

Example 2.1. We conclude this subsection with the study of automorphisms of the
genus-1 curve E = [Ẽ/µµµ`], a stack quotient of a nodal cubic P1/(0 ∼ ∞), from Ex-
ample 1.15. Although the group of automorphisms of E and of E = Ẽ/µµµ` is not finite (E
is not stable), the study of this case is relevant to the study of level curves over a stable
curve containing, as a subcurve, a copy of E meeting the rest of the curve in one separat-
ing node n (the orbit µµµ` · 1) with trivial stabiliser by Proposition 1.11. To this end, it is
crucial to study the finite group of automorphisms of E that fix n,

Aut(E, n) = {s ∈ Aut(E) | s(n) = n}.

The exact sequence 1→ AutE(E, n)→ Aut(E, n)→ Aut(E, n) reads

1→ µµµ`→ Aut(E, n)
coarse
−−−−−→ µµµ2.

After choosing ξ`, µµµ` is generated by the automorphism g with coarsening g = id and
local picture (x, y) 7→ (ξ`x, y) at the node. On the other hand, µµµ2 is generated by the
unique involution i fixing n and the node, and interchanging the branches at the node.
In this special case, coarse is surjective and the involution i admits a distinguished lift
i ∈ Aut[Ẽ/µµµ`] as follows. At the level of Ẽ, consider the unique involution of Ẽ fixing
the node of Ẽ and the point 1 and exchanging the branches of the node. At the level of
the group µµµ`, consider the passage to the inverse. We obtain i : [Ẽ/µµµ`] → [Ẽ/µµµ`] and
we have the short exact sequence2

0→ µµµ`→ Aut(E, n)→ µµµ2 → 0.

2 One can observe explicitly that Aut(E, n) is the direct product µµµ` × µµµ2, i.e. the involution i
commutes with the ghost g defined locally at the node as (x, y) 7→ (ξ`x, y). We only need to check
g ◦ i = i ◦ g in the local picture [{xy = 0}/µµµ`] at the node of [Ẽ/µµµ`]. There, the morphism i may
be described as the map interchanging the branches (x, y) 7→ (y, x) and i ◦ g : (x, y) 7→ (ξ`y, x)

equals g ◦ i : (x, y) 7→ (y, ξ`x) up to the natural transformation (x, y) 7→ (ξ`x, ξ
−1
`
y).
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We now set ` = 2 and consider the automorphisms of an explicitly defined level-2
curve. Let C be a twisted curve, the union of E = [Ẽ/µµµ2] with a smooth (g − 1)-curve
X with Aut(X) = {idX}. The curves E and X meet transversely at n and the coarse
spaces form a genus-g stable curve C. Therefore, by construction, the above short ex-
act sequence reads 0 → AutC(C) → Aut(C) → Aut(C) → 0. Let (C = X ∪ E,
L = O ∪ (Lram ⊗ Lét), s) be the unique level-2 curve obtained by glueing over n the fibre
of OX and that of Lram ⊗ Lét from Example 1.15. By construction i∗ operates trivially
on both Lram and Lét; therefore in this example Aut(C, L, s) → Aut(C) is surjective and
Aut′(C) = Aut(C). On the other hand, g∗ acts trivially on Lét but nontrivially on Lram:

g∗Lram = Lram ⊗ Lét

(this relation can be shown directly, but we refer to (29) for a general rule). Notice that,
in fact, there is a second level-2 curve (C, L0 = O ∪ Lram, s0) which is isomorphic to
(C, L, s) via g∗, but L0 6∼= L.

We deduce that AutC(C, L, s), in the example (C, L, s) given above, is trivial: there are
no ghost automorphisms. This is a consequence of the more general No-Ghosts Lemma
2.10. The sequence (20) reads 0→ 0→ µµµ2 → µµµ2 → 0 and Aut(C, L, s) = µµµ2 operates
nontrivially only on the parameter τn = tn appearing in (18) and corresponding to the
family smoothing the node n (the local picture is τn 7→ −τn because i operates trivially
on the y-branch lying on X and operates by a change of sign on the x-branch lying on the
component E, and τn equals xy). In other words, i fixes a hyperplane of Def(C, L, s), i.e.
i is a quasireflection.

2.2. Dual graph and ghost automorphisms when the level is prime

Only for this section the index ` is assumed to be prime. Ghost automorphisms of the
level curve (C, L, φ) can be described in terms of the dual graph 0 of C.

2.2.1. Setup. Consider the characteristic function ν = νM of the support of the multi-
plicityM of (C, L, φ) and the corresponding contraction 0→ 0(ν) (the condition ν > 0,
or ν = ∞, holds if and only if M = 0 and singles out contracted edges, see (10)). Recall
(C•ν (0;µµµ`), δ):

C0
ν (0;µµµ`) = {a : V → µµµ` | a(e+) = a(e−) if ν(e) > 0}, (22)

C1
ν (0;µµµ`) = {b : E→ µµµ` | b(e) = b(e)

−1, and b(e) = 1 if ν(e) > 0}. (23)

By (13) we have the following identification via B:

im
(
δ : C0(0(ν);µµµ`)→ C1(0(ν);µµµ`)

)
∼= C

1
ν (0;µµµ`) ∩ im δ.

2.2.2. Automorphisms of C via 0 and ν. It is natural to define the group of symmetric
µµµ`-valued functions vanishing on the set of edges with zero multiplicity,

Sν(0;µµµ`) = {b : E→ µµµ` | b(e) = b(e), and b(e) = 1 for ν(e) > 0},
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canonically isomorphic to
⊕

e|ν(e)>0µµµ`. As mentioned in (21), the group AutC(C) is easy
to describe by [1, §7]. For ` prime, there is a canonical isomorphism

AutC(C) = Sν(0;µµµ`), (24)

where a : e 7→ a(e) ∈ µµµ` corresponds to a ∈ AutC(C) acting at the node attached to
e ∈ E as

(x, y) 7→ (a(e)x, y) ≡ (x, a(e)y). (25)

2.2.3. Ghost automorphisms via 0 and ν. We characterise ghost automorphisms of
the level structure (C, L, φ). To begin, recall that ` is prime, M is the multiplicity of
(C, L, φ), and ν is equal to ∞ where M vanishes and to 0 elsewhere (see (10)). Via
Z/` = Hom(µµµ`,Gm), we have the product

Sν(0;µµµ`)× C
1
ν (0;Z/`)→ C1

ν (0;µµµ`) (a, f ) 7→ a� f := f (a). (26)

Indeed, since a takes values in µµµ`, and f in Z/` = Hom(µµµ`,Gm), we express the result
of the action of the automorphism a on f by a� f := f (a), i.e. by the evaluation at each
edge e of the homomorphism f (e) at a(e). This could be stated more explicitly: withinµµµ`
we have (a� f )(e) = a(e)f (e). The notation a� f emphasises that a operates on f and
becomes convenient once we fix isomorphisms µµµr ∼= Z/r in the last part of the paper
(see Assumption 2.34); then a� f is actually a product in Z/` (see (44)).

Since M lies in C1
ν (0;Z/`) we get the isomorphisms

M : Sν(0;µµµ`)→ C1
ν (0;µµµ`) and M−1

: C1
ν (0;µµµ`)→ Sν(0;µµµ`) (27)

mapping a ∈ Sν(0;µµµ`) to a � M , and, conversely, the 1-cochain b : e 7→ b(e) of
Cν(0;µµµ`) to the symmetric function a = M−1b,

a : e 7→

{
[M(e)−1

]`(b(e)) = a(e) if M(e) 6= 0,
1 if M(e) = 0,

(28)

(where [M(e)−1
]` is the inverse of M(e) in Z/` and is regarded as an invertible homo-

morphism applied to b(e) ∈ µµµ`; again, this turns into a product under Assumption 2.34).
Now, for any a ∈ AutC(C) = Sν(0;Z/`), we have (see [8, Prop. 2.18])

a∗L ∼= L⊗ τ(a�M), (29)

where τ is the homomorphism defined in §1.4.3 associating to aµµµ`-valued 1-cochain the
line bundle with the corresponding descent data. For completeness, we recall here the ar-
gument proving the above identity. Let us write {xy = 0} for the local picture at a chosen
node attached to the oriented edge e (as already observed, the choice of the notation (x, y)
yields e ∈ E). Then, consider the pullback via the automorphism a : (x, y) 7→ (ξ`x, y) of
the line bundle L defined by the action ξ` · (x, y, t) = (ξ`x, ξ−1

` y, ξ`t) on {xy = 0} ×A1

locally at the chosen node and trivial elsewhere. This definition of L makes sense because
the quotient is canonically trivialised off the node by the invariant sections xt−1 on one
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branch and by yt on the other branch. Pulling back via a changes the trivialisation only at
one branch; in other words, by (9), it is equivalent to tensoring by τ(a�M).

The above statement implies (via (9)) that a is a ghost if and only if a � M lies in
ker τ = im δ. This completely justifies the following notation.

Definition 2.2. Set Gν(0;µµµ`) = C1
ν (0;µµµ`) ∩ im δ.

Remark 2.3. Via the contraction 0→ 0(ν) and (13), we get the alternative presentation

Gν(0;µµµ`) = im
(
δ : C0(0(ν);µµµ`)→ C1(0(ν);µµµ`)

)
(30)

yielding the isomorphism Gν(0;Z/`) = (µµµ`)⊕(#V (ν)−1).

Proposition 2.4. For ` prime, let (C, L, φ) be a level-` curve. We have a canonical iden-
tification

AutC(C, L, φ) ∼= Gν(0;µµµ`).

A 1-cochain b : e 7→b(e) ofGν(0;Z/`) corresponds to the symmetric functionM−1b. ut

Remark 2.5. As an easy consequence of the above analysis, a ghost automorphism
a ∈ AutC(C, L, φ) fixes every irreducible component Z ⊆ C. Indeed, the restriction of
a may operate nontrivially only at the nodes of Z. These are represented by loops in the
dual graph. Indeed Gν(0;µµµ`) is not supported on the loops (cuts are supported off the
loops).

Example 2.6. Assume ` = 3. Consider the case where the dual graph is formed by a
single circuit K consisting of n edges. Then ker ∂ ∼= Z/3 = 〈K〉. There are two possi-
bilities: M = 0, where AutC(C, L, φ) = 1, and M 6= 0, where C1

ν (0;µµµ3) = C
1(0;µµµ3)

and the group of ghosts Gν(0;µµµ`) is isomorphic to im δ ∼= (µµµ`)
⊕(#V−1)

= (µµµ3)
⊕(n−1).

The elements of AutC(C, L, φ) are the functions a ∈ Sν(0;µµµ3) such that a�M(K) = 1
(see (7)).

(i) Assume n = 3. In this case M lies in im δ and we get an element of Gν(0;µµµ3) by
taking a : E → µµµ3 constant. To fix ideas, fix a primitive third root of unity ξ3 and
set a constant and equal to ξ3. Then a is a ghost operating as (x, y) 7→ (ξ3x, y)

at all nodes and acting on Def(C, L, φ) as (ξ3I3) ⊕ id (see (18)). This argument
holds in general whenever M is in im δZ/`; then, for a(e) = ζ for all e, we find that
a�M(e) = ζM(e) for all e, and by (7) the Z/`-valued 1-cochainM ∈ im δZ/` yields
aµµµ`-valued 1-cochain a�M ∈ im δµµµ` .

(ii) Assume n = 2, and let e1 and e2 be the two edges. Here M = 0 or M 6∈ im δ. Again
by choosing ξ3, we define a symmetric function a : E→ Z/` mapping one edge to
ξ3 (e1, e1 7→ ξ3) and the other to its inverse ξ2

3 (e2, e2 7→ ξ2
3 ); then a �M is a cut,

lies in im δ and acts on (18) as Diag(ξ3, ξ
2
3 )⊕ id.

(iii) If the circuit has a single edge, then im δ = (0). There are no nontrivial ghosts.

Example 2.7. The argument at point (iii) shows that the level structures O∪ (Lram⊗Lét)

and O∪Lram introduced in Example 2.1 have no nontrivial ghosts. Indeed, the dual graph
in that case has two vertices vX and vE corresponding toX and E, one edge en connecting
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them and corresponding to the node n, and a second edge eloop with both ends on vE. The
multiplicity is supported on this last vertex, and the vertex set V (ν) of the graph 0(ν)
obtained by contracting all edges with vanishing multiplicity reduces to a single vertex.
We have im(δ : C0(0(ν);µµµ`)→ C1(0(ν);µµµ`))

∼= (µµµ`)
⊕(#V (ν)−1)

= 1. Notice that this
argument holds for any tree-like graph (that is, a graph that becomes a tree once the loops
are removed)—see Corollary 2.14.

Example 2.8. Consider a dual graph with two vertices v1, v2 and three edges, each of
them linking the two vertices to each other. As a multiplicity cochain we choose e 7→M(e)

equal to 1 on the oriented edges of E oriented from v1 to v2. For ` = 3, it is easy to check
that M belongs to the kernel and is indeed the sum of two different two-edge circuits.
The cochain M lies also in im δ (it is the µµµ3-valued cut attached to the proper nonempty
subset H = {v1}). Therefore a constant a ≡ ζ ∈ µµµ3 ∈ Sν(0;µµµ3) satisfies a�M ∈ im δ

and acts on Def(C, L, φ) as ζ I3 ⊕ id. (See also Example 2.6(i).)

2.3. The singular points of the moduli space

Notice that in all the above examples of ghost automorphisms g ∈ Aut(C, L, φ), the fixed
space {v ∈ Def(C, L, φ) | g · v = v} is never a hyperplane. An automorphism of an affine
space whose fixed space coincides with a hyperplane is called a quasireflection. A general
property of nontrivial ghosts is that they never act as quasireflections. Let us recall that
this is crucial for classifying singularities.

Fact 2.9. The scheme-theoretic quotient Def(C, L, φ)/Aut(C, L, φ) is smooth if and only
if Aut(C, L, φ) is spanned by elements acting as the identity or as quasireflections
(see [26]).

2.3.1. Nontrivial ghosts are not quasireflections. Here is a consequence of Proposi-
tion 2.4.

Lemma 2.10. If a ∈ AutC(C, L, φ) fixes a hyperplane of Def(C, L, φ), then a = idC.

As we argue in Remark 2.27, this lemma generalises word for word and straightforwardly
to the case when ` is composite; so, we did not impose the condition on ` to be prime in
the statement.

Proof of Lemma 2.10. Let b be a nontrivial ghost Gν(0;µµµ`), i.e. a 1-cochain b in
C1
ν (0;µµµ`) lying in im δ. Then there exists a (nonseparating) edge e with ν(e) 6= ∞ and
b(e) 6= 1. In this case, there is a circuit K passing through e. Now, K satisfies b(K) = 1
by (7). Hence, the support of b contains an oriented edge e′ which differs from e regard-
less of its orientation. Proposition 2.4 claims that the unique automorphism a such that
a�M = b acts nontrivially on A1

τe
and A1

τe′
. ut

Remark 2.11 (Aut(C, L, φ) operates faithfully on Def(C, L, φ)). Under the assumption
g ≥ 4, any nontrivial automorphism a ∈ Aut(C) acts nontrivially on Def(C) (see [18]).
Then the faithfulness of Aut(C, L, φ) follows from that of AutC(C, L, φ) and from the
above lemma.
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2.3.2. Elliptic tail involutions. In [18, Thm. 2, §2], Harris and Mumford prove that an
automorphism a ∈ Aut(C) is a quasireflection of Def(C) if and only if a is an elliptic
tail involution (ETI): the curve C contains a genus-1 subcurve E meeting the rest of the
curve in a single point n, and a is the identity on C \ E and is the nontrivial canonical
involution i of Aut(E, n). This involution is canonically identified both if E is elliptic or
rational: it is the hyperelliptic involution in the first case, whereas in the second case it
is the unique involution fixing the point n and the node of E ∼= P1/(0 ≡ ∞) and inter-
changing the branches of that node. We need to generalise the notion of ETI to twisted
curves. Because all separating nodes of level-` curves have trivial stabilisers, a genus-1
subcurve E meeting the rest of the curve in a single point n is either a scheme (E, n) or
is isomorphic to the pointed stack-theoretic curve (E, n) of Example 1.15. In both cases,
these tails are equipped with a canonical involution i.

Definition 2.12 (elliptic tail and ETI). Let (C, L, φ) be a level-` twisted curve. An el-
liptic tail is a genus-1 subcurve E meeting the rest of the curve C in a single point. An
elliptic tail involution of (C, L, φ) is an automorphism of C such that the restriction to
C \ E is the identity and the restriction to E equals the canonical involution i and satisfies
i∗(L|E) = L|E.

Proposition 2.13. Consider a stable genus-g level-` curve with g ≥ 4. An automorphism
s ∈ Aut(C, L, φ) acts as a quasireflection on Def(C, L, φ) if and only if it is an ETI.

As we argue in Remark 2.27, this proposition also generalises immediately to the case
of ` composite.

Proof of Proposition 2.13. Let s be an automorphism of (C, L, φ) acting as a quasireflec-
tion on Def(C, L, φ). Then its coarsening s acts either as the identity or as a quasireflection
on Def(C). We rule out s = idC : in this case s would be a ghost, and by Lemma 2.10
there is no ghost acting as quasireflection. Then, by [18], s operates as an ETI on C. If
the elliptic tail is represented by a scheme, then s is an ETI (using Lemma 2.10 on C \ E).
Otherwise, the elliptic tail is the curve E of Example 1.15 and we need to check that i is the
only automorphism lifting the ETI i and operating as a quasireflection on Def(C, L, φ).
By (20) the remaining automorphisms are of the form i ◦ gn with gn 6= id (using the
notation of Example 1.15); due to Proposition 2.4, the automorphism gn acts nontrivially
on Def(C) and i ◦ gn is not a quasireflection. ut

2.3.3. No-Ghosts. By Remark 1.8 and Proposition 2.4, AutC(C, L, φ) is trivial if and
only if the multiplicity graph 0(ν) has only one vertex. We call such graphs bouquets.

Corollary 2.14. Let ` be prime. The group of ghost automorphisms AutC(C, L, φ) is
trivial if and only if 0(ν) is a bouquet. ut

Combining Corollary 2.14 and Proposition 2.13 we get the following result.
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Theorem 2.15. Let ` be prime and assume g ≥ 4. The following conditions are equiva-
lent:

(i) The point of Rg,` representing (C, L, φ) is smooth.
(ii) The group Aut(C, L, φ) is spanned by ETIs of C.

(iii) The graph 0(ν) is a bouquet and Aut′(C) is spanned by ETIs of C.

Proof. The point representing (C, L, φ) is smooth if and only Aut(C, L, φ) is generated
by elements operating on Def(C, L, φ) as the identity or as quasireflections. Nontrivial
elements of Aut(C, L, φ) never operate as the identity (see Remark 2.11). By Propo-
sition 2.13 elements operating as quasireflections are precisely the ETIs of C; hence
(i)⇔(ii). Now (iii) implies AutC(C, L, φ) = 1 and Aut(C, L, φ) = Aut′(C) generated
by ETIs of C; we deduce (ii) because the ETIs generating Aut′(C) lift canonically to
ETIs generating Aut(C, L, φ). Conversely, (ii) holds only if there are no nontrivial ghosts
(AutC(C, L, φ) = 1) because any nontrivial composition of ETIs has a nontrivial coars-
ening. Hence, 0(ν) is a bouquet, Aut(C, L, φ) = Aut′(C), and the coarsening of the ETIs
spanning Aut(C, L, φ) are the ETIs spanning Aut′(C). ut

2.4. Generalisation to the case of level curves of composite level

The generalisation of the above statement requires a modification of the condition “0(ν)
is a bouquet” in part (iii); we introduce a new set of contractions. We are grateful to
Roland Bacher for several ideas that helped us a great deal in finding the correct setup for
this section.

2.4.1. The truncated valuation of Z/pn. For any prime p we recall that the ring Z/pn
is a truncated valuation ring in the sense of [13, §1.1]. We recall the definition, which
applies to any local ring R whose maximal ideal m is generated by a nilpotent element.
We set the valuation valm : R → Z ∪ {∞}, x 7→ sup{i | x ∈ mi}, taking values in
Z ∩ [0, length(R) − 1] on R \ {0} and satisfying valm(0) = ∞ (if R = Z/pn, then
m = (p) and length(R) = n).

2.4.2. The vector-valued function ννν. Consider the prime factorisation of `,

` =
∏
p|`

pep ,

where ep is the p-adic valuation of `. Then the following vector-valued function νννM , or
simply ννν, encodes the truncated valuations of M(e) mod pep in Z/pep for all p | `:

e 7→ ννν(e) = (νp(e))p|` where νp(e) := val(p)(M(e) mod pep ). (31)

Notice that when ` is prime, we recover the characteristic function νM of the support
of M ,

val(p)(M(e)) = νM(e).
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2.4.3. Contractions. For each p | `, the coordinate νp of ννν = (νp)p|` yields a filtration

∅ ⊆ {νp ≥ ep}E ⊆ {νp ≥ ep − 1}E ⊆ · · · ⊆ {νp ≥ k}E
⊆ · · · ⊆ {νp ≥ 1}E ⊆ {νp ≥ 0}E = E.

To each of the above edge subsets we can naturally associate a subgraph (the vertex set is
formed by the heads and the tails of the chosen edges):

∅ ⊆ 1(ν
ep
p ) ⊆ 1(ν

ep−1
p ) ⊆ · · · ⊆ 1(νkp) ⊆ · · · ⊆ 1(ν

1
p) ⊆ 1(ν

0
p) = 0. (32)

The respective contractions 0(νkp) of {νp ≥ k}E fit in the sequence of contractions

0→ 0(ν
ep
p )→ 0(ν

ep−1
p )→ · · · → 0(νkp)→ · · · → 0(ν1

p)→ 0(ν0
p), (33)

where 0(ν0
p) is the null graph (0 is connected). The sets of vertices V (νkp) fit in

V � V (ν
ep
p )� V (ν

ep−1
p )� · · ·� V (νkp)� · · ·� V (ν1

p)� V (ν0
p) = {•}. (34)

The sets of edges E(νkp) are related by the reverse inclusions

E ⊇ E(ν
ep
p ) ⊇ E(ν

ep−1
p ) ⊇ · · · ⊇ E(νkp) ⊇ · · · ⊇ E(ν

1
p) ⊇ E(ν

0
p) = ∅. (35)

In the introduction, for brevity, we used the notation1kp and 0kp for the graphs1(νkp) and
0(νkp). Contracting {νp ≥ k}E makes sense for any k in Z ∪ {∞}; for k ≥ ep we get
0(νkp) = 0(ν

ep
p ), for k ≤ 0 we get the null graph 0(νkp) = 0(ν

0
p). For k ∈ {0, . . . , ep},

the following holds.

Definition 2.16 (the graph 0(νkp)). For p prime dividing `, and k ∈ {0, . . . , ep}, the map
0→ 0(νkp) is given by contracting the edges e for which pk divides M(e) ∈ Z/pep .

2.4.4. The subcomplex C•ννν (0;µµµ`). Let us point out that for

νp(e) = min(ep, νp(e)),

we have gcd(M(e), `) =
∏
p|` p

νp(e)(= `/r(e)). We systematically use the canonical
morphisms ⊕

p|`

µµµ
pep−νp(e)

−→
⊆

⊕
p|`

µµµpep = µµµ`, (36)

where the term on the left hand side may be regarded, via a canonical identification,
asµµµr(e).

Now, we generalise the above mentioned subcomplex C•ν (0;µµµ`) (see (22) and (23)).
Set

C0
ννν (0;µµµ`) =

{
a : V → µµµ`

∣∣∣ a(e+)(a(e−))−1
∈

⊕
p|`

µµµ
pep−νp(e)

= µµµr(e)

}
,

C1
ννν (0;µµµ`) =

{
b : E→ µµµ`

∣∣∣ b(e) = b(e)−1 and b(e) ∈
⊕
p|`

µµµ
pep−νp(e)

= µµµr(e)

}
.
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By restricting δ we get the differential

C0
ννν (0;µµµ`)

δ(ννν)
−−→ C1

ννν (0;µµµ`);

and (C•ννν (0;µµµ`), δ) is a subcomplex of (C•(0;µµµ`), δ). Definition 2.2 extends word for
word.

Definition 2.17. Set Gννν(0;µµµ`) = C1
ννν (0;µµµ`) ∩ im δ.

By construction Gννν(0;µµµ`) equals im δ(ννν) via the inclusion C1
ννν (0;µµµ`) ⊆ C1(0;µµµ`).

The following theorem proves that, with this setup, Gννν(0;µµµ`) is again isomorphic to the
group of ghost automorphisms. First, we introduce the generalised group of symmetric
functions

Sννν(0;µµµ`) =
{
b : E→ µµµ`

∣∣∣ b(e) = b(e) and b(e) ∈
⊕
p|`

µµµ
pep−νp(e)

= µµµr(e)

}
.

Via Z/r(e) = Hom(µµµr(e),Gm), we have the product

Sννν(0;µµµ`)× C
1
ννν (0;Z/`)→ C1

ννν (0;µµµ`), (a, f ) 7→ a� f := f (a).

Again, since M lies by construction in C1
ννν (0;Z/`), we get the isomorphisms

M : Sννν(0;µµµ`)→ C1
ννν (0;µµµ`) and M−1

: C1
ννν (0;µµµ`)→ Sννν(0;µµµ`). (37)

Here M maps the symmetric function a : e 7→ a(e) to the 1-cochain a � M given by
applying at each edge e the homomorphism m(e) ∈ Z/r(e) = Hom(µµµr(e),Gm) to the
r(e)th root a(e). Conversely, M−1 maps the 1-cochain b : e 7→ b(e) of Cννν(0;µµµ`) to the
symmetric function M−1b = a, defined as

M−1b : e 7→

{
[m(e)−1

]r(e)(b(e)) if M(e) 6= 0,
1 if M(e) = 0,

(38)

where [m(e)−1
]r(e) is the inverse of m(e) in Z/r(e).

Theorem 2.18. Let (C, L, φ) be a level curve of level ` ∈ N×; writeM for its multiplicity
and ννν for the corresponding vector-valued function (31).

(i) There is a canonical isomorphism Aut(C, L, φ) = Sννν(0;µµµ`). The above local de-
scription of a ∈ Sννν(0;µµµ`) holds without changes if we write a as a µµµ`-valued func-
tion.

(ii) Let a ∈ Sννν(0;µµµ`). Then a∗L = L⊗ τ(a�M) (using (29)).
(iii) We have

AutC(C, L, φ) ∼= Gννν(0;µµµ`).

The 1-cochain b ∈ Gννν(0;µµµ`) ⊂ C1
ννν (0;µµµ`) identifies the ghost automorphism a

corresponding to the symmetric function M−1b explicitly defined above.
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Proof. Since Sννν(0;Z/`) =
⊕

e∈E µµµr(e), we recover the group AutC(C) of [1, §7,
Prop. 7.1.1]. Point (ii) yields (iii) immediately and is a direct consequence of [8,
Prop. 2.18] as before. ut

Remark 2.19. If we work with a fixed primitive `th root of unity, then giving a(e)∈µµµr(e)
amounts to specifying a multiple ã(e) of `/r(e) modulo ` and the ghost a operates on
Def(C, L, φ) as {⊕

e

(τe 7→ ξ
ã(e)
` τe)

}
⊕ id.

This follows from the analysis of the quotient Def(C, L, φ)/Def(C, L, φ,Sing(C)) carried
out in §2.1.2 and of the action of the ghosts on it (see §2.1.4).

Remark 2.20. Every ghost restricts to the identity on the irreducible components of C.

2.4.5. Computing the group Gννν(0;µµµ`). When ` is a prime integer, the group of ghosts
is a free µµµ`-module and Remark 2.3 allowed us to compute its rank over µµµ`: the number
of vertices of the contracted graph minus 1. In general, when ` is composite, the group of
ghosts is not free over µµµ`. By generalising Remark 2.3, we provide an explicit formula
for its elementary divisors.

Remark 2.21. Once an orientation E→ E is specified, C1
ννν (0;µµµ`) may be written as⊕

e∈E

⊕
p|`

µµµ
pep−νp(e)

.

We may invert the order of the direct sums and rewrite the summands as usual,⊕
p|`

(⊕
e∈E

µµµ
pep−pνp(e)

)
.

The summands of the first direct sum (over the prime divisors p) equal the (nondirect)
sums of subgroups ∑

1≤k≤ep

BC1(0(νkp);µµµpep−k+1) ⊆ C
1(0;µµµ`).

We deduce from this characterisation the following identity which does not involve any
fixed orientation E→ E and holds for both 1-cochains and 0-cochains:

Ciννν(0;µµµ`) =
⊕
p|`

∑
1≤k≤ep

BCi(0(νkp);µµµpep−k+1) i = 0, 1. (39)

Moreover, we immediately get an explicit computation of the groups C1
ννν (0;µµµ`): because

BC0(0(ν);µµµph)
∼= (µµµph)

⊕#V (ν) and BC1(0(ν);µµµph)
∼= (µµµph)

⊕#E(ν), we have

Ciννν(0;µµµ`)
∼=

⊕
p|`

ep⊕
k=1

(µµµpk )
⊕ηi (νkp),
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where, using the Kronecker delta, we can compute ηi(νkp) from (34) and (35):

ηi(νkp) :=

{
#V (ν

ep−k+1
p )− δk,ep#V (ν

ep−k
p ), i = 0,

#E(ν
ep−k+1
p )− δk,ep#E(ν

ep−k
p ), i = 1.

The following lemma, embodying the corollary stated in the introduction, follows.

Lemma 2.22. We have

Gννν(0;µµµ`) =
⊕
p|`

∑
1≤k≤ep

im δ(νkp),

where δ(νkp) is C0(0(νkp);µµµpep−k+1)→ C1(0(νkp);µµµpep−k+1). More explicitly, set

αkp := #V (ν
ep−k+1
p )− #V (ν

ep−k
p );

then the group Gννν(0;µµµ`) decomposes as

Gννν(0;Z/`) ∼=
⊕
p|`

ep⊕
k=1

(µµµpk )
⊕αkp

and has order 1
`

∏
p|` p

#Vp for Vp =
⊔ep
k=1 V (ν

k
p). ut

Remark 2.23. For ` prime, we recover (6): (34) reads V (ν) → {•}, and we find that
α1
p = #V (ν) − 1. (Note that the Kronecker delta does not occur in the formula for the

elementary divisors αkp.)

Example 2.24. We consider the dual graph 0 in Figure 2 of a level-8 curve. The multi-
plicities assigned to each oriented edge define a cocycle M ∈ ker ∂ . Here, 2 is the only
prime divisor of `. In Figure 3, we write, next to each edge e, the value of ν2(e). Then,
in Figure 4, we show the corresponding contractions. We observe that, in this case, at
each step the number of vertices decreases by 1. Therefore, by Lemma 2.22, we compute
αk2 = 1 for k = 1, 2, 3. We finally obtain 64 ghosts

Gννν(0;µµµ8)
∼= µµµ2 ⊕µµµ4 ⊕µµµ8

•

1
↗

1
↘

•

0
→

•

1
→

0
←

6
←

•

4
←

2
←

•

Fig. 2. A dual graph 0 of a level-8 curve with multiplicities.
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•

0 0

•

∞

•

0

∞

1
•

2

1
•

Fig. 3. The truncated valuation associated to (2) in Z/8.

• • • •

• • • • → • • • → • • → • → •

Fig. 4. The contractions 0→ 0(ν3
2 )→ 0(ν2

2 )→ 0(ν1
2 )→ •; we have #V3 = 9.

•

0 0
•

2 0
•

1 7

•

0

•

0

4

0

•

4

4
• •

0

•

0

0

2

•

0

6
• •

0

•

0

0

0

•

0

0
•

Fig. 5. Three generators of order 2, 4 and 8 of the group of ghosts.

that can be spanned by ghosts of order 2, 4 and 8 corresponding to theµµµ8-valued symmet-
ric functions in Sννν(0,µµµ8) displayed in Fig. 5 (in order to simplify the notation we specify
8th roots of unity with respect to a chosen primitive root ξ8 of unity: we write integers
mod 8 next to each edge). We check the corollary stated in the introduction: there are nine
vertices in 0(ν3

2), 0(ν
2
2), and 0(ν1

2) and there are 29/8 (i.e. 64) ghosts.

2.4.6. The length of the fibre of the morphism forgetting level structures. In [7], Capo-
raso, Casagrande and Cornalba check that the length of the fibre of the forgetful morphism
from their compactified moduli of `th roots to the moduli of stable curves equals `2g (see
[7, §4.1, after Lem. 4.1.1]). We show that in the twisted curve approach used in this paper
the length of the fibre is still `2g . The computation here is more involved because our
moduli functor yields more geometric points, which reflects the fact that the compactified
moduli spaces of this paper are smooth and actually provide the normalisations of the
possibly singular spaces of [7] (see [10, §1.2-3]). The contractions 0 → 0(νk` ) allow us
to organise our computation efficiently.

The authors of [7] consider `th roots of a line bundle N and the respective mod-
uli functor which can be naturally regarded as a fibred category (over the category of
schemes). The authors are not considering the stack representing such a category and are
mainly interested in the scheme coarsely representing this moduli functor. For any fam-
ily of curves π : C → B, there exists a scheme S`(N, π) representing `th roots of N .
In general S`(N, π) is smooth over B, but not proper over B. In the same spirit of the



638 Alessandro Chiodo, Gavril Farkas

present paper, the authors introduce a new, less restrictive, notion of root: the “limit `th
root of N”. The corresponding moduli functor is shown in [7] to be coarsely represented
by a proper, but possibly singular, scheme S`(N, π) over B (singularities occur when `
is not prime, see discussion after [7, Thm. 4.2.3]).

We assume N = O; then for any family π : C → B we have a possibly singular
scheme S`(O, π) and, as a byproduct, a moduli space S`g , which is a finite `2g-cover of
the proper moduli space Mg . We consider, for any g ≥ 2 and ` ≥ 1, the moduli stacks
Tg,` =

⊔
d|` Rg,d and the compactifications Tg,` =

⊔
d|` Rg,d yielding the finite cover

p : Tg,`→ Mg.

We can now state precisely what we mean (both here and in [7]) by “the fibre over a point
of” Mg . In [7], for a stable curve C over k, the main focus is S`(O, C → Spec k), which
is the zero-dimensional scheme coarsely representing the fibred product of categories
obtained by pulling back the fibred category of limit `th roots of O over Mg via the map
b : Spec k→ Mg induced by C. In complete analogy, our focus here is the coarsening of
the fibred product Spec k b×pTg,`, which we denote by Fb. Notice that, by definition, this
does not involve the automorphism group of C (as it would have been the case if we had
considered Spec k b×p T g,` instead). Of course the reader may also read this computation
under the additional assumption that the curve C has trivial automorphism group (in this
case we are actually computing Spec k b×p T g,`).

Fix a stable curve C with dual graph 0, that is, a geometric point b → Mg . We
check length(Fb) = `2g for the scheme-theoretic fibre Fb, coarsening of the base
change of Tg,` → Mg to b. Each connected component of Fb is a, possibly nonre-
duced, zero-dimensional scheme corresponding to an isomorphism class of a triple
(C, L, φ : L⊗` → O) with a multiplicity M and corresponding characteristic functions
ννν = (νp). By Theorem 2.18, the length of such a zero-dimensional scheme is

# AutC(C)/#Aut(C, L, φ) =
(∏
p|`

ep∏
k=1

p#E(νkp)/p#V (νkp)−1
)
=

∏
p|`

ep∏
k=1

pb1(0(ν
k
p)).

(By the definition of Fb, we are not considering the action of Aut(C).)
The number of connected components is∑

M∈ker ∂
νννM=(νp)

`2pg(C)
∏
p|`

ep∏
k=1

pb1(1(ν
k
p)).

This happens because the multiplicities range over the elements of ker ∂ by Proposition
1.11. Furthermore, once the multiplicity is specified, the numbers of `th roots equal the
summands appearing above. Indeed, we can count by taking a product over the prime
factors of ` and reduce to showing the claim for ` = pe. Then, we need to show that the
number of `th roots sharing the same multiplicity M is

e∏
k=1

p2pg(C)pb1(1(ν
k
p)).
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This amounts to showing that the factors above are the numbers of pkth roots up to
pk−1st roots for any k = 1, . . . , e. The factor p2pg(C) counts pkth roots up to pk−1st
roots on the normalisation. The last factor involves 1(νkp), the subgraph of 0 formed
by the edges e where pk |M(e). By (29), if pk does not divide M(e), iterated pull-
backs via (x, y) 7→ (ξr(e)x, y) at the node n corresponding to e identify to each other
all gluing data in pk−1Z/pkZ along n. Therefore the gluings, up to automorphisms,
are determined by the subgraphs 1(νkp) and their number is the number of elements of
H 1(1(νkp)),µµµpk/µµµpk−1). We get exactly the power of p appearing in the last factor of the
displayed formula above.

Finally, since 0(νkp) is given by collapsing the subgraph 1(νkp), the Betti numbers
b1(1(ν

k
p)) and b1(0(ν

k
p)) add up to b1(0); we get

length(Fb) =
∑

M∈ker ∂
νννM=(νp)

`2pg(C)
∏
p|`

ep∏
k=1

pb1(1(ν
k
p))+b1(0(ν

k
p)) =

∑
M∈ker ∂
νννM=(νp)

`2pg(C)`b1(0) = `2g.

2.4.7. No-Ghosts. Theorem 2.18 and Lemma 2.22 imply a no (nontrivial) ghost criterion.

Corollary 2.25. Let ` be any positive integer. The group AutC(C, L, φ) is trivial if and
only if for any prime factor p of ` the graph 0(ν

ep
p ) is a bouquet. ut

Remark 2.26. In analogy with the case where ` is prime, one may consider the condition
“the contraction 0′ of {e | ` dividesM(e)} is a bouquet”, which clearly implies the above
no-ghosts condition. The converse is false: for ` = 6, consider 0 with vertices v1, v2,
edges e1, e2, e3 going from v1 to v2, set M(ei) = i.

Remark 2.27. Lemma 2.10 and Proposition 2.13 generalise verbatim, and, by Corol-
lary 2.25, the same holds for Theorem 2.15 once we replace “0(ν) is a bouquet” by
“0(ν

ep
p ) is a bouquet for any prime p | `”.

We can also state the generalisation as follows.

Theorem 2.28. Let g ≥ 4 and let ` ≥ 1. The point representing (C, L, φ) in Rg,` is
smooth if and only if the group Aut′(C) is generated by ETIs of C and the graphs 0(ν

ep
p )

(obtained by contracting the edges e for whichM(e) ∈ Z/pep vanishes) are bouquets for
any prime p | `.

2.4.8. Automorphism group of level structures over stack-theoretic elliptic tails. We de-
scribe the action of the automorphism group of the stack-theoretic elliptic tail of Ex-
ample 1.15 on Pic. We are interested in level structures on a curve with an elliptic tail
E; it is natural to fix a divisor l of `, which should be thought of as the the order of the
restriction of the level-` structure to E. We refer the reader to Example 2.1 for the study
of level structures on E when E is an irreducible twisted curve with a single node.

The 1-pointed 1-nodal twisted genus-1 curve (E, n) is given by the stack-theoretic
quotient of Ẽ = P1/(0 ∼ ∞) by µµµr where r divides l and µµµr acts by multiplication
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as usual. Consider p : Ẽ → E, the isotypical decomposition p∗O =
⊕

χ∈Z/r Lχ , and
the l-torsion line bundle Lram := Lχ=1 on E with φram : L

⊗l
ram → O obtained by taking

the (l/r)th tensor power of the isomorphism L⊗rram
∼= O. We also consider the l-torsion

line bundle Lét, the pullback via εE : E → E of the sheaf of regular functions f on the
normalisation satisfying f (∞) = ξlf (0) for an lth primitive root of unity ξl .

We have
Pic(E)[l] ∼= µµµl ⊕ Z/r. (40)

The second summand has the distinguished generator Lram := L1. The first summand is
generated by Lét, defined after choosing a primitive root of unity ξl .

We have
Aut(E, n) = {a ∈ Aut(E) | a(n) = n} ∼= µµµ2 ⊕µµµr ,

where the first summand is generated by the distinguished involution i, whereas the sec-
ond summand is generated by g, defined after choosing an rth root of unity ξr by the local
picture g : (x, y) 7→ (ξrx, y) at n, and the condition g|E\{n} = id.

Then i operates on Pic(E)[l] as the passage to the inverse

i : (α ∈ µµµl, k ∈ Z/r) 7→ (α−1,−k).

On the other hand, any given root of unity ζ ∈ µµµr operates on Pic(E)[l] as

ζ : (α ∈ µµµl, k ∈ Z/r) 7→ (αk(ζ ), k),

where the product between α ∈ µµµl and k(ζ ) ∈ Gm is obviously taken within Gm.
More explicitly, in terms of the explicit bases mentioned above, we have the additive

groups Pic(E)[l] ∼= 〈Lét, Lram〉 = Z/l⊕Z/r and Aut(E, n) ∼= 〈i, g〉 = Z/2⊕Z/r and the
action of (a1, a2) = ia1 ◦ ga2 ∈ Aut(E, n) on the line bundle (k1, k2) = (Lét)

⊗k1 ⊗ L⊗k2
ram

in Pic(E)[l] yields

(a1, a2) · (k1, k2) = ((−1)a1k1 + (l/r)a2k2, (−1)a1k2), (41)

where a2k2 is the product in Z/r .
In view of the study of ghost automorphisms of level-l curves we consider a

faithful order-l line bundle L on E; in other words, we consider an order-l element
(α, k) ∈ µµµl ⊕ Z/r ∼= Pic(E)[l] where k is prime to r (faithfulness).

Proposition 2.29. The complete list of nontrivial automorphisms (σ ∈ µµµ2, ζ ∈ µµµr) in
Aut(E, n) fixing the isomorphism class of the order-l line bundle L is as follows:

(i) l = 1, r = 1, L = O, and (σ, ζ ) = (−1, 1);
(ii) l = 2, r = 1, L ∈ Pic[2] \ {O}, and (σ, ζ ) = (−1, 1);

(iii) l = 2, r = 2, L = (1, Lram) or (−1, Lram) ∈ Pic[2] = µµµ2 ⊕ Z/2, and (σ, ζ ) =
(−1, 1);

(iv) l = 4, r = 2, L = (α, Lram) ∈ Pic[4] = µµµ4 ⊕ Z/2 (α primitive), and (σ, ζ ) =
(−1,−1).
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Proof. There are no nontrivial solutions (σ, ζ ) of the form (1, ζ ), because this yields
αk(ζ ) = α, which implies ζ = 1 (ker k = 1). Then, we look for solutions (σ, ζ ) of the
form (−1, ζ ); hence we solve the equations α−1k(ζ ) = α and −k = k mod r (with k
prime to r). Then k = 0 (and r = 1) or k = r/2 (and r = 2). Cases (i) and (ii) arise from
k = 0, which yields ζ = 1 and α = 1 (case (i)) or α = −1 (case (ii)). Cases (iii) and (iv)
arise from k = 1, which yields ζ = 1 and α2

= 1 (case (iii)) or ζ = −1 and α2
= −1

(case (iv)). ut

Remark 2.30. Notice that in cases (i)–(iii), the automorphism is the canonical involu-
tion i. This may be thought of as the restriction on an elliptic tail (E, n) of the automor-
phism of a level-` curve (C, L, φ); then the ETI fixing C \ E and yielding i on E operates
on Def(C, L, φ) as the quasireflection (−I1)⊕ id.

Again, if we choose explicit bases Pic(E)[l] ∼= 〈Lét, Lram〉 = Z/l⊕Z/r and Aut(E, n)
∼= 〈i, g〉 = Z/2⊕ Z/r we can explicitly realise the fixed line bundle: O in case (i), Lét in
case (ii), and Lram and Lram ⊗ Lét in case (iii).

Remark 2.31. In case (iv), the automorphism is the involution obtained as the compo-
sition of i with the order-2 ghost g operating locally at the node as (x, y) 7→ (−x,−y).
Again (E, n), with this automorphism and its fixed 4-torsion bundle, may be thought of
as the elliptic tail of a level-` curve (C, L, φ). The involution fixing C \ E and yield-
ing i ◦ g on E does not act as a quasireflection (see Prop. 2.13). Indeed, the action on
Def(C, L, φ)/Def(C, L, L,Sing(C)) is nontrivial only on the parameter τ1 smoothing n:
we have τ1 7→ −τ1. On the other hand, on Def(C, L, L,Sing(C)) the action is trivial
except on the parameter τ2 deforming only the tail: we have τ2 7→ −τ2. Therefore the
involution fixes a codimension-2 subspace of Def(C, L, φ) and operates as −I2 ⊕ id. Fi-
nally, when we choose the above explicit bases of Pic and Aut, we may realise the level-4
structure on (E, n) as L(E,n) := Lram ⊗ Lét. Indeed, we have

(i ◦ g)∗(L(E,n)) = i∗(g∗Lram ⊗ g∗Lét)
(41)
= i∗(Lram ⊗ L⊗2

ét ⊗ Lét) = i∗(L∨ram ⊗ L∨ét) = L(E,n).

2.5. Noncanonical singularities

The problem of describing the locus of noncanonical singularities within the moduli space
of level-` curves is treated locally: we systematically study the action of Aut(C, L, φ) on
Def(C, L, φ). By the Reid–Shepherd-Barron–Tai criterion, the age invariant introduced
below detects in terms of rational numbers the cases where noncanonical singularities
occur.

Throughout the rest of the paper we use the notation {x}, which stands for the frac-
tional part of a real number x; in other words, we set {x} := x − bxc.

Although we do not use this point of view in this paper, we mention in passing that
Abramovich, Graber, and Vistoli [2] have introduced a global age grading function de-
fined on the cyclotomic inertia stack

AGE : Iµµµ(Rg,`)→ Q≥0.
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One could state our description of the noncanonical singularities locus as a description
of the locus AGE−1(]0, 1[) within the cyclotomic inertia stack. We are indebted to the
authors of [2] for this point of view; nevertheless, the following introduction of the age
grading is elementary and can be read without referring to [2].

2.5.1. The age of representations of µµµr . We consider the group µµµr for any positive in-
teger r and we define an additive age grading over the representation ring Rµµµr . Since
Hom(µµµr ,Gm) is canonically identified with Z/r , we can define the age grading of the
character k ∈ Z/r as k/r ∈ Q. Since the characters in Hom(µµµr ,Gm) form a basis for the
representation ring Rµµµr , this yields an additive homomorphism age : Rµµµr → Q.

2.5.2. Cyclotomic injections and group elements. LetG be a finite group. When working
over the complex numbers there is a canonical identification between the set of group
elements and the set of cyclotomic injections,

{g | g ∈ G}
1:1
←→

⊔
r≥1

{γ | γ : µµµr ↪→ G}. (42)

The identification is the obvious one: to an element g ∈ G of order r we attach the
homomorphism γ : µµµr ↪→ G mapping exp(2πi/r) to g; in the other direction, we set
g = γ (exp(2πi/r)).

Over any base field this identification depends on the choice of a primitive root of
unity ξr ∈ µµµr for any positive integer r . Below, we define—without the need of any such
choice—the age grading of cyclotomic injections within a groupG operating on V = Am.

2.5.3. The age grading for a G-representation. Let ρ : G→ GL(V ) be a G-representa-
tion, where V = Am. Any injective homomorphism γ : µµµr ↪→ G yields, by composing
with ρ, aµµµr -representation. We get an invariant of the G-representation

ageV :
⊔
r≥1

{γ | γ : µµµr ↪→ G} → Q, γ 7→ age(ρ ◦ γ ). (43)

Explicitly, ageV (γ ) is defined as follows: for any primitive root of unity ζ inµµµr the matrix
corresponding to the action of γ (ζ ) on V is conjugate to Diag((ζ )a1 , . . . , (ζ )am) and we
have

ageV (γ ) = a1/r + · · · + am/r ∈ Q.

The coefficients a1, . . . , am are uniquely determined by imposing 0 ≤ ai < r and do not
depend on the choice of the primitive root of unity ξr .

Over the complex numbers, the notion of group element and that of cyclotomic injec-
tion are interchangeable and ageV can be defined directly on G. Moreover, the explicit
definition above can be given by fixing ζ := exp(2πi/r).

2.5.4. The Reid–Shepherd-Barron–Tai criterion. Assume that the point at the origin of V
modulo G ∈ GL(V ) is singular. Such a singularity is canonical if and only if any pluri-
canonical form on the smooth locus extends to any desingularisation of V/G. In other
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words, for all q ∈ Z sufficiently high and divisible, we have

0((V/G)reg, ω⊗q) = 0(V̂ /G,ω⊗q) for any desingularisation V̂ /G→ V/G.

Theorem 2.32 (Reid–Shepherd-Barron–Tai criterion [27, 30, 28]). Assume that the fi-
nite groupG operates on V without quasireflections. The scheme-theoretic quotient V/G
has a noncanonical singularity at the origin if and only if the image of ageV (see (43))
intersects ]0, 1[.

Remark 2.33. The above definition does not depend on any choice of primitive roots of
unity. If we fix a root of unity ξr for every order r ≥ 1, the age grading ageV can be
defined directly on G via (42): we get

G
1:1
−−→

⊔
r≥1

{γ | γ : µµµr ↪→ G} −→ Q.

It is important to stress that the image of the above map only depends on the second
morphism. More explicitly, for a fixed element g ∈ G of order r , we have the following
relation between the gradings age′ and age′′ attached to two choices ζ ′ and ζ ′′ of primitive
rth roots of unity inµµµr . If ζ ′ = (ζ ′′)a for a suitable a prime to r , then age′′(g) = age′(ga).

Therefore, we fix, once and for all, a system of roots of unity in order to simplify
the combinatorial analysis. In particular, this will allow us to specify ghosts simply by
writing Z/`-valued symmetric functions (as we already did in Fig. 5). Furthermore, this
will allow us to define the age of a ghost acting on the deformation space.

Assumption 2.34 (choice of rth primitive roots of unity for all r). We now fix, for any
positive integer r , a primitive rth root of unity ξr ∈ µµµr . This is the same as fixing iso-
morphisms Z/r → µµµr , k 7→ (ξr)

k , for all r ∈ Z≥1. In particular, we work with a fixed
identification (42), and to a given representation G→ GL(V ) we attach ageV : G→ Q,
the nonnegative grading directly defined on G. Note that, under any chosen identification
Z/r ∼= µµµr , the pairing Z/r × µµµr = Hom(µµµr ,Gm) → µµµr matches the product of the
ring Z/r .

In this way for M ∈ Z/` and a ∈ µµµr = µµµ
M
` we can express a�M as a product. Via

µµµr
∼= Z/r ⊆ gcd(M, `)Z/`, we write a as a multiple of gcd(M, `) modulo `; then we

have

a�M =
aM

gcd(M, `)
∈ µµµr

∼= gcd(M, `)Z/`. (44)

When ` is prime, the product � is simply the product within the ring Z/`.

Definition 2.35 (junior and senior group elements). An element g ∈ G operating non-
trivially on V is senior on V if ageV (g) ≥ 1, and is junior on V if 0 < ageV (g) < 1 (Ito
and Reid’s [19] terminology).

Now, Theorem 2.32 may be regarded as saying: V/G has a noncanonical singularity at
the origin if and only if there exists an element g ∈ G which is junior on V .
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2.5.5. The computation of the age of an automorphism on Def(C, L, φ)/〈QR〉. We mod
out Def(C, L, φ) by the group 〈QR〉 of automorphisms spanned by quasireflections; by
Proposition 2.13 this amounts to modding out the ETIs restricting to the identity on
the entire curve except for an elliptic tail component E where the canonical involution i
fixes L|E. These involutions operate simply by changing the sign of the parameter τe
smoothing the node where E meets the rest of the curve. We refer to E as a quasireflection
elliptic tail component, or simply quasireflection tail (QR tail). We refer to the node join-
ing the quasireflection tail to the rest of the curve as a quasireflection node (QR node) and
we identify in this way a partition Sing(C) ∼= SingQR(C) t SingnonQR(C) and a partition
E = EQR t EnonQR. Equations (18) and (19) yield

Def(C, L, φ)/〈QR〉 ∼=
(⊕
e∈E

A1
τ e

)
⊕

(⊕
v∈V

H 1(C′v, T (−Dv))
)

with

τ e =

{
τ 2
e for e ∈ EQR,

τe for e ∈ E \ EQR.

The action of Aut(C, L, φ) on (C, L, φ) descends to an action without quasireflections on
the above space.

Corollary 2.36. The point at the origin of Def(C, L, φ)/Aut(C, L, φ) is a noncanonical
singularity if and only if there exists an automorphism which is junior on Def /〈QR〉.

Example 2.37. The stack-theoretic ETI of Remark 2.30 acts trivially on Def /〈QR〉.

Example 2.38. The automorphism a extending i ◦ g in Remark 2.31 operates on A1
τ1
⊕

A1
τ2
⊕A3g−1 as (−I2)⊕ id. Furthermore, by Proposition 2.29, i is not an automorphism of

(C, L, φ). We have Def /〈QR〉 = A1
τ1
⊕A1

τ2
⊕A3g−1 and a is senior: age = 1/2+1/2 = 1.

2.5.6. The computation of the age of a ghost. Using Proposition 2.4 and Theorem 2.18
we can easily compute the age of a ghost automorphism a ∈ AutC(C, L, φ) attached
to b ∈ Gννν(0;µµµ`). Assumption 2.34 allows us to regard b as a Z/`-valued 1-chain
b ∈ Gννν(0;Z/`). We point out that the explicit expressions [M(e)−1

]`b(e) in (28) and
[m(e)−1

]r(e)b(e) in (38) may be interpreted as multiplications in the ring Z/`.
When ` is prime we have

age(a) =
∑
e∈E

{
a(e)

`

}
=

∑
e∈E

{
[M(e)−1

]`b(e)

`

}
(` prime), (45)

where { } denotes fractional part and the terms in the numerators are integer represen-
tatives of a(e), b(e) and [M(e)−1

]` in Z/` (each summand in the above expression is
clearly independent of the choice of the representatives modulo `). For composite `, The-
orem 2.18(3) yields

age(a) =
∑
e∈E

{
a(e)

`

}
=

∑
e∈E

{
[m(e)−1

]r(e)b(e)

r(e)

}
=

∑
e∈E

{
[m(e)−1

]r(e)b̃(e)

`

}
, (46)
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where b̃(e)∈Z/` is the image of b(e)∈Z/r(e) via the identification b̃(e)= (`/r(e))b(e)
= gcd(`,M(e))b(e). Again the above definition does not depend on the choices of the
integer representatives of a(e) ∈ Z/` and of [m(e)−1

]r(e), b(e) ∈ Z/r(e).
In Example 2.24, we presented three ghost automorphisms; the corresponding sym-

metric functions e 7→ a(e) on the set of oriented edges are given in Fig. 5. Equation
(46) allows us to compute their age. According to (46), the order-2 automorphism has age
3/2, the order-4 automorphism has age 5/4, whereas the order-8 automorphism has age 1.
Hence, in all these three cases the ghosts are senior. However, ghost automorphisms op-
erating as junior ghosts actually occur; we provide some examples, which will play a role
in the proof of Theorem 2.44.

Example 2.39. Let ` = 5. Consider a level curve whose dual graph has multiplicity M ,
pictured in the first diagram of Fig. 6; write ννν for the characteristic function of the support
of M . Here we have ννν = 0. In the second and third diagrams we specify the symmetric
function a ∈ Sννν(0;Z/5) and the corresponding 1-cochain b ∈ Gννν(0;Z/5). Using (45)
we get age(a) = 1/5+ 1/5+ 1/5+ 1/5 = 4/5.

•
2
←

1
→

1
→

•
2
←

• •
1

1

1

•
1
• •

2
←

1
→

1
→

•
2
←

•

Fig. 6. The multiplicity cochain M , the symmetric function e 7→ a(e) and the cochain e 7→ b(e).

Example 2.40. We consider a level-5 curve again, but this time we only need three nodes
and two components. The dual graph has multiplicity M pictured in the first diagram
of Fig. 7. Again, we have ννν = 0 and in the second and third diagrams we specify the
symmetric function a ∈ Sννν(0;Z/5) and the corresponding 1-cochain b ∈ Gννν(0;Z/5).
Using (45) we get age(a) = 2/5+ 1/5+ 1/5 = 4/5.

•
3
←

2
→

1
→

• •
1

1

2

• •
3
←

2
→

2
→

•

Fig. 7. The multiplicity cochain M , the symmetric function e 7→ a(e) and the cochain e 7→ b(e).

Example 2.41. Let ` = 8. We adopt the notation M and ννν as above. This time ννν is the
vector-valued function attached to M . Again, the second and third diagrams specify the
symmetric function a ∈ Sν(0;Z/8) and the corresponding 1-cochain b ∈ Gννν(0;Z/8).
More precisely, next to each edge we have written the values of ã and b̃ in Z/8; e.g., “2”
appearing in the second diagram represents the order-4 element 2 mod 8 in Z/8. Using
(46) we get age(a) = 1/8+ 1/8+ 1/8+ 1/8+ 2/8 = 3/4.
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•

5↑

1
↘

1
↘

•

1
1

1
•

5↑

1
↘

1
↘

•

3↓

2
←

• •

1

2
• •

3↓

2
←

•

Fig. 8. The multiplicity cochain M , the Z/8-valued symmetric function e 7→ ã(e) =
a(e) gcd(8,M(e)) and the cochain e 7→ b̃(e) = b(e) gcd(8,M(e)).

Example 2.42. Let ` = 12. In view of the proof of Theorem 2.44 we slightly generalise
Example 2.41. We refer to Figure 9, where we adopt the established conventions. Using
(46) we get age(a) = 1/12+ 1/12+ 1/12+ 1/12+ 2/12+ 2/12 = 2/3.

•

7↑

1
↘

1
↘

•

1
1

1
•

7↑

1
↘

1
↘

•

5↓

2
←

•
2
←

• •

1

2
•

2
• •

5↓

2
←

•
2
←

•

Fig. 9. The multiplicity cochain M , the Z/12-valued symmetric function e 7→ ã(e) =
a(e) gcd(12,M(e)) and the cochain e 7→ b̃(e) = b(e) gcd(12,M(e)).

2.5.7. The locus of noncanonical singularities of Rg,`. We may apply the above crite-
rion as follows. Within Deligne and Mumford’s moduli stack Mg of stable curves, con-
sider the locus

M
◦

g = {C | Aut(C) = 0}/∼=

of stable curves with trivial automorphism group. This is a stack that can be represented
by a smooth scheme. We study the overlying stack

R
◦

g,` = {(C, L, φ) | Aut(C) = 0}/∼=

of level curves (C, L, φ) such that the coarsening C of C has trivial automorphism group
Aut(C). The scheme R◦g,` coarsely representing R

◦

g,` may well have singularities; this
happens as soon as Aut(C, L, φ) = AutC(C, L, φ) is nontrivial (by Lemma 2.10, non-
trivial ghosts cannot operate as the identity or as quasireflections; hence singular points
in R◦g,` are characterised by the presence of nontrivial ghosts). Furthermore, since the
action of Aut(C, L, φ) on Def(C, L, φ) satisfies the hypotheses of the Reid–Shepherd-
Barron–Tai criterion (Theorem 2.32), noncanonical singular points are characterised by
the presence of junior nontrivial ghosts in the sense of Definition 2.35. Examples 2.39–
2.42 already allow a few remarks on the codimension of the locus of noncanonical sin-
gularities. By Example 2.40, within R◦g,5h, the locus of noncanonical singularities has
codimension 3. Furthermore, the theorem that follows may be regarded as saying: for
levels 2, 3, 4, and 6, all singularities of the scheme R◦g,` are canonical. We spell out the
statements in the following remark and theorem in terms of the entire space Rg,`.
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Remark 2.43. In Examples 2.39–2.42 the edges are all nonseparating and are more
than 2. These are general features: the edges are nonseparating because r(e) vanishes
on separating edges. In other words, J` lies over the divisor δstable

0 of curves having at
least one nonseparating node. Furthermore, a graph 0 with only two separating edges
can only be a graph whose nonseparating edges are two loops, or a graph with a single
circuit of length 2. In any case, two circuits never overlap in 0. As a consequence, ghosts
are always senior if the graph has only two nonseparating edges. We conclude that the
codimension of J` is higher than 2. This means that within the locus of noncanonical
singularities there is only one irreducible component which has codimension 2 in Rg,`:
the locus T`.

Theorem 2.44 (No-Junior-Ghosts Theorem). For g ≥ 4 and ` ≥ 1 consider the stack
of level-` genus-g curves Rg,`. In Rg,`, every nontrivial ghost automorphism is senior if
and only if ` ≤ 6 and ` 6= 5.

Proof. Proving the “only if” part of the statement for a given level ` and genus g amounts
to exhibiting a dual graph 0 attached to an object of Rg,` with a multiplicity M ∈ ker ∂
and a symmetric function a : E→ Z/` defining a junior ghost. Notice that if there exists
such a triple (0,M, a) for Rg,`, then we can exhibit a triple (0, (`′/`) ×M, (`′/`) × a)

for Rg,`′ for any multiple `′ of ` (here, Proposition 1.11 has been implicitly used). Ex-
amples 2.39, 2.41, 2.42 actually occur for g ≥ 4 and exhibit junior ghosts for positive
levels ` ∈ 5Z∪8Z∪12Z. By halving a single straight edge in Fig. 6 (• • → • • •), we
can immediately generalise Example 2.39 from ` = 5 to ` = 7; iterating this procedure,
for all odd levels ` ≥ 5 and for their multiples, we exhibit junior ghosts. The “only if”
part is proven: in order for junior ghost not to occur, ` should be a positive integer of the
form 2a3b with a ∈ N and b = 0, 1 (i.e. not a multiple of an odd integer ≥ 5), with a < 3
(i.e. not a multiple of 8) and with a < 2 if b = 1 (i.e. not a multiple of 12).

The “if” part of the statement means that there is no junior ghost a inGννν(M;Z/`) for
any stable graph 0 with ννν = νννM attached to M ∈ ker ∂ . Throughout the entire proof, we
will use the following necessary conditions for the existence of a junior ghost a:

(i) age(a) < 1 (i.e. a is junior);
(ii) M =

∑
i∈I Ki , where I is a finite set of circuits (i.e. M ∈ ker ∂);

(iii) a�M(K) ≡ 0 for any circuit K (i.e. a�M ∈ im δ).

In order to prove that such conditions are incompatible, we provide tables showing all
possible values ofM and a ∈ Z/` and the corresponding value of a�M for ` = 2, 3, 4, 6.
In the first line we list all values M = 0, 1, . . . , ` − 1. In the first column, we list the
possible values i = 0, 1, . . . , ` − 1 that a may take at an edge e of multiplicity M . We
have a(e) = i only if i satisfies the compatibility condition gcd(M, `) | i. Then, we fill
the ith slot of the j th column in the table with the corresponding value of a �M if and
only if a = i is compatible with M = j . We draw a box around the configurations where
a = i is strictly less than a�M ∈ {0, . . . , `− 1}. Indeed, the presence of oriented edges
e with the corresponding values a(e),M(e) is a necessary condition for a to be junior. If
no such oriented edges occur, as it happens for ` = 2, then, for a nontrivial element a,
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` = 2 0 1
0 0 0
1 1

` = 3 0 1 2
0 0 0 0
1 1 2
2 2 1

` = 4 0 1 2 3
0 0 0 0 0
1 1 3
2 2 2 2
3 3 1

` = 6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 5
2 2 2 4 4
3 3 3 3
4 4 4 2 2
5 5 1

Fig. 10. Multiplication tables for � and ` = 2, 3, 4 and 6.

condition (iii) is incompatible with condition (i). Indeed, we have

age(a) =
∑
E

a(e)

`
≥

∑
K

(a�M)(e)

`
≥ 1 (by (iii)),

whereK is a circuit passing through an edge where a(e) is nontrivial. This settles the case
` = 2 and motivates the following definitions.

Definition 2.45. An edge e is active with respect to an automorphism a if a(e) is non-
trivial. For an oriented edge e, we refer to the values (M(e), a(e)) as the type of e. An
oriented edge e is an age-delay edge if after reduction modulo ` within {0, . . . , `− 1} we
have

a(e) < a�M(e). (47)

An age-delay edge is automatically active, otherwise both sides of the inequality vanish.
We say that a circuit K is active if it passes through an active edge and we say that it is
age-delay if it passes through an age-delay edge. An age-delay circuit is automatically
active.

With this terminology, the previous argument may be rephrased.

Lemma 2.46. Let a be a junior automorphism. Then an active circuit is necessarily age-
delay. ut

We can also prove that the type of the active edges of an active circuit cannot be constant.

Lemma 2.47. Let a be a junior automorphism. Consider an active circuit K =
∑n−1
i=0 ei

where the head of ei is the tail of ei+1 for all i ∈ Z/n. Then the active edges ei of K
cannot be all of the same type.

Proof. By way of contradiction, assume there is an active circuit K whose active edges
are all of type (M(e), a(e)) = (J, I ) for some J, I ∈ {1, . . . , ` − 1} with gcd(J, `) | I .
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Then condition (iii) may be expressed via (44) as
∑
K IJ/gcd(J, `)2 ∈ `/gcd(J, `)Z.

In particular, `/gcd(J, `) divides k#IJ/gcd(J, `)2 where k# is the number of ac-
tive edges in K . We conclude that `/gcd(J, `), which is prime to J/gcd(J, `), di-
vides k#I/gcd(J, `), and ` divides k#I > 0. This contradicts age(a) < 1, because
age(a) ≥ k#I/` > 1. ut

In the case ` = 3 (resp. ` = 4) the only age-delay edges are of type (` − 1, 1). A non-
trivial junior automorphism should contain an age-delay circuit K =

∑n−1
i=0 ei with

(M(e0), a(e0)) = (` − 1, 1). For i 6= 0 the total value of a should be strictly less
than 2 (resp. 3) by condition (i). Furthermore the total value of a � M reduced within
{0, . . . , ` − 1} modulo ` should be 1 (resp. 1) by condition (iii). Then only one of the
edges ei for i 6= 0 is active, and its type is (1, 1) (resp. is (1, 1)). For a junior automor-
phism, any active circuit contains exactly two active edges of type (1, 1) and (` − 1, 1).
Then the automorphism cannot be junior; the claim follows from this slightly more gen-
eral statement (which we make in view of ` = 6).

Lemma 2.48. Let a be an automorphism for which all active circuits have only an even
number 2k of active edges equally divided into k edges of type (1, 1) and k edges of type
(`− 1, 1). Then a is either trivial or senior.

Proof. We consider the set of active edges, which by the hypothesis, can only be of multi-
plicityM = 1 or `−1 depending on their orientation. We pick an orientation for all edges
in the edge setE in such a way thatM = 1 on all active edges. Notice that a circuit, which
is by definition a sequence of oriented edges e0, . . . , en−1 ∈ E, can now be regarded,
with respect to the chosen orientation, as a characteristic function χK : E → Z/`, which
equals 1 (resp. −1 ∈ Z/`) on e if e = ei (resp e = ei for some i) and vanishes otherwise.
Condition (ii) may be regarded as saying that the multiplicity is a Z/`-valued sum of
these characteristic functions of circuits. If we add up the values of the multiplicities M
of the active circuits, we obtain 0 ∈ Z/` because each function χK restricted to the active
circuits has total value k − k = 0 by the hypothesis of the lemma. Since M = 1 on all
active edges, the number of active edges is a multiple of `. Then a is senior or trivial,
since it equals 1 on all active edges. ut

For ` = 6 the value of a on an age-delay edge is 1 or 2. By excluding the second case the
claim will be deduced below as for ` = 3 and 4.

Lemma 2.49. Let ` = 6 and let a be junior. Then a(e) 6= 2 on all edges.

Proof. By way of contradiction, let e be an oriented edge with a(e) = 2 and consider a
circuit K =

∑n−1
i=0 ei through it with e = e0. The value of M can be 1, 2, 4, 5 because

gcd(M(e0), `) should divide 2. By conveniently choosing the orientation of e0 and of the
circuit K =

∑n−1
i=0 ei we assume M(e0) = 4 or 5, which implies (a�M)(e0) = 4 (e0 is

age-delay).
The age contribution of e0 is a(e0)/` = 1/3. Furthermore, the function a�M should

add up to 2 ∈ Z/6 on the remaining active edges of K (condition (iii)). Condition (i),
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age(a) < 1, requires edges with a < 4. We have two possibilities for the set of active
edges of K:

(a) it is formed by e0 and two active edges e′′, e′′′ of type (1, 1) where a�M equals 1;
(b) it is of the form {e0, e

′′
} with e′′ of type (1, 2) or (2, 2), and a�M(e′′) = 2.

In any of these cases K contributes 2/3 to age(a) and there is exactly one more active
edge e′ of 0 outside K (by Lemma 2.47 and age(a) < 1): we have a(e′) = 1 and
M(e′) odd. We argue by parity, that is, we compose the functions M and a � M with
P : Z/6 → Z/2. Note that P(M) does not depend on the choice of the orientation. The
value of P(a �M) on the only edge of H that lies off K is odd; therefore, P(a �M)
should add up to 1 ∈ Z/2 also on the set of edges shared by K and H . Thus we exclude
case (b), where P(a�M) is zero identically.

The set of active edges of 0 is formed by e0, e
′, e′′, e′′′. The function P(a�M) is even

on e0 and odd on e′, e′′ and e′′′; hence, any active circuit should go through {e′, e′′, e′′}
an even number of times; by (ii), this implies P(M(e′))+ P(M(e′′))+ P(M(e′′′)) = 0.
This is impossible, because P(M) equals 1 identically on {e′, e′′, e′′′}. ut

For ` = 6, any age-delay edge is of type (5, 1); therefore, in order to be compatible with
(i) and (iii) and the above lemma, an age-delay circuit has either exactly two active edges
of type (1, 1) and (5, 1), or four active edges, divided into two edges of type (1, 1) and
two edges of type (5, 1). Lemma 2.48 implies the claim. ut

Definition 2.50. A level-` curve (C, L, φ) is a J-curve if Aut(C, L, φ) contains a junior
ghost.

The points representing J-curves are noncanonical singularities by definition. Noncanon-
ical singularities may occur even if the level curve has no junior ghost automorphisms
and regardless of the level `. Indeed, this is the case of level curves of type T (or simply
T-curves) which we now illustrate. T-curves represent a codimension-1 locus within the
divisor 1g−1, i.e. a codimension-2 locus in Rg,`.

Definition 2.51. A level-` curve (C, L, φ) is a T-curve if

• C contains an elliptic tail (that is, E ⊂ C with C ∩ C \ E = {n}) (Tail-condition);
• E admits an order-3 automorphism (that is, Aut(E, n) ∼= µµµ6) (Three-condition);
• L is trivial on the elliptic tail, i.e. (C, L, φ) ∈ 1g−1 (Triviality-condition).

Theorem 2.52. The point representing (C, L, φ) in Rg,` is a noncanonical singularity if
and only if (C, L, φ) is a T-curve or a J-curve.

Proof. For the “if” part, we only need to show that a T-curve (C, L, φ) has a junior au-
tomorphism. Let us define the automorphism a1/6 ∈ Aut(C, L, φ), whose restriction to
C \ E is the identity and whose restriction to E generates Aut(E, n) ∼= µµµ6 and operates
on the local parameter of E at n as z 7→ ξ6z. The coordinates τ1 and τ2 correspond to
the direction smoothing the node n and to the direction preserving the node and varying
along 1g−1. The action of a1/6 on Def(C, L, φ) is given by Diag(ξ6, ξ

2
6 , 1, . . . , 1), where

the first coordinates are τ1 and τ2. The action of a1/6 on Def(C, L, φ)/〈QR〉 is given by
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Diag(ξ2
6 , ξ

2
6 , 1, . . . , 1), where the first coordinates are τ 1 = τ

2
1 and τ 2 = τ2 (see §2.5.5).

The age of a1/6 on Def /〈QR〉 is 1/3+ 1/3 = 2/3 < 1, and Def /Aut has a noncanonical
singularity. Notice that all the junior automorphisms operating as z 7→ λz on the tail (and
fixing the rest of the curve) are of the form a1/6 up to ETI.

The “only if” part reduces to the following proposition.

Proposition 2.53. Let (C, L, φ) be a level-` curve which is not a J-curve and has a junior
automorphism a. Then it is a T-curve and the isomorphism a coincides, up to ETIs, with
the above isomorphism a1/6.

Preliminary 1. As in [18, p. 33] we begin by slightly simplifying the problem by adding
a further condition to the hypotheses. A level curve (C, L, φ) representing a noncanonical
singularity in Rg,` is (?)-smoothable if:

(a) There is a junior automorphism a ∈ Aut(C, L, φ) and m nodes n0, . . . , nm−1 lying in
Sing(C) \ {QR nodes} labelled by j ∈ Z/m so that a(nj ) = nj+1.

(b)
∏m−1
i=0 cj = 1, where cj are the complex nonvanishing constants satisfying the condi-

tion a∗τj+1 = cj τj for all j ∈ Z/m, and τj is the parameter smoothing nj .

By [18, p. 33], if (C, L, φ) is (?)-smoothable, then the data a ∈ Aut(C, L, φ) can be
deformed to a′ ∈ Aut(C′, L′, φ′) in such a way that the m nodes above are smoothed
and the age of the action on Def /〈QR〉 is preserved. In [23, Prop. 3.6], Ludwig proves
a generalisation applying to moduli of roots of any line bundle; in particular we can
use this fact for level-` curves. Hence, by iterating such deformations, within the locus of
noncanonical singular points in Rg,`, we can smooth any (?)-smoothable curve to a curve
which is no more (?)-smoothable; we refer to this condition as (?)-rigidity. The loci of
T-curves and of J-curves are closed: in the above deformation, if (C′, L′, φ′) is a J-curve
[a T-curve], then (C, L, φ) is a J-curve [a T-curve]. Proposition 2.53 can be shown under
the following assumption.

Assumption 2.54. In the proof of Proposition 2.53 we assume that (C, L, φ) is (?)-rigid.

Preliminary 2. Set ord(a) = ord(a); this is also the least integer for which am is a ghost
and is a divisor of ord(a). We can provide lower bounds for the age of a.

Lemma 2.55. Consider a level-` curve (C, L, φ).

0. For any automorphism a ∈ Aut(C, L, φ), we have age(a) ≥ (#E −N)/2, where N is
the number of cycles of the permutation of E induced by a.

We can improve the lower bound in the following situations:

1. Assume that (C, L, φ) is a noncanonical (?)-rigid singularity in Rg,`. Then, for any
subcurve Z such that a(Z) = Z and for any length-k cycle of the induced permutation
of SingnonQR(C) ∩ Sing(Z), we have age(a) ≥ k/ord(a|Z)+ (#E −N)/2.

2. If aord(a) is a senior ghost, then age(a) ≥ 1/ord(a)+ (#E −N)/2.
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Proof. We can express the action of a on
⊕

e∈E A1
τ e

(see §2.5.5 for the notation τ e) in
terms of a block-diagonal matrix H whose blocks H1, . . . , HN are of the form

Hi = DiPi = Diag((ξR)q
(i)
0 , . . . , (ξR)

q
(i)
ni−1)Pi,

where Pi is the permutation matrix attached to the cycle permutation operating on Z/ni
as σ(j) = j + 1, R is a suitable positive integer and the exponents q(i)j are contained in
[0, R− 1]. Note that ni divides the order of the permutation of E induced by a. Then (see
also [23, Prop. 3.7]), since the characteristic polynomial of Hi is xni − detDi , we have

age(a) ≥
N∑
i=1

({ni−1∑
j=0

q
(i)
j

R

}
+
ni − 1

2

)
=

N∑
i=1

{ni−1∑
j=0

q
(i)
j

R

}
+

#E −N
2

,

where the right hand side is of the form A+ (#E −N)/2 with A ≥ 0.
In case 1, there is a k × k-block H =Hi0 with D=Di0=Diag((ξR)q0 , . . . , (ξR)

qk−1),
H k
= (ξR)

qI, and q/R = {
∑k−1
j=0 qj/R} 6= 0 (see condition (b) defining (?)-smooth-

ability). Since, for w = ord(a|Z) we have Hw
= id, it follows that w

k
q
R
∈ Z; hence,

A ≥ q/R ≥ k/w as required.
In case 2 we are assuming that am is senior for m = ord(a). Notice that m/ni is an

integer for all i. We want to show A ≥ 1/m. Assume A < 1/m. Then, for all i, we notice

{
m

ni

ni−1∑
j=0

q
(i)
j

R

}
=
m

ni

{ni−1∑
j=0

q
(i)
j

R

}
. (48)

This happens because

m

ni

{ni−1∑
j=0

q
(i)
j

R

}
≤

N∑
i=1

m

{ni−1∑
j=0

q
(i)
j

R

}
= mA < 1.

On the other hand, am is a ghost automorphism and operates on
⊕

e∈E A1
τ e

as the diagonal
matrix Hm with ni eigenvalues equal to (detDi)m/ni for i = 1, . . . , N ; hence using (48),
we get

age(am) = age(Hm) =

N∑
i=1

ni

{ni−1∑
j=0

m

ni

q
(i)
j

R

}
=

N∑
i=1

m

{ni−1∑
j=0

q
(i)
j

R

}
< 1,

contradicting the assumption that am is senior. ut

Step 1: the automorphism a fixes all nodes except possibly a single transposition of two
nodes. Indeed, by [18, p. 34] (embodied in the first part of Lemma 2.55), each node
transposition contributes 1/2 to age(a).
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Step 2: for each irreducible component Z we have a(Z) = Z. Harris and Mumford’s
argument excludes3 the condition a(Z) 6= Z apart from one situation which we now
state more precisely. Case (a) of p. 35 in [18] concerns a smooth, rational, irreducible
component Z,

r
Z

r r
meeting the rest of the curve in three special points; in the present setup we should of
course allow nontrivial stabilisers at these three points. Then [18] relies on the following
claim in the special case a = a ∈ Aut(C). We state a generalised version, which is due to
Ludwig [23, end of proof of Prop. 3.8].

Lemma 2.56. Assume the coarsening of a ∈ Aut(C, L, φ) operates locally at a scheme-
theoretic node SpecC[x, y]/(xy) of C as (x, y) 7→ (y, x). Then a fixes the parameter
smoothing the node in Def(C) and operates on the parameter τ smoothing the node in
Def(C, L, φ) as either τ 7→ τ or τ 7→ −τ . In the first case the curve is not (?)-rigid. ut

It is worthwhile to sketch the proof since Ludwig uses the different setup of quasistable
curves (which is equivalent in this case). If a = a we have xy = t = τ = τ , hence
τ 7→ τ . Otherwise the multiplicity at the oriented edge e corresponding to the above node
satisfies M(e) = −M(e) = −M(e); hence M(e) = `/2 and the action on τe is τe 7→ τe
or τe 7→ −τe.

Now, assume a(Z) 6= Z and apply the fact that a is junior and (C, L, φ) is (?)-rigid.
The three special points of Z are nodes of C. If they are fixed they have two branches, one
in Z and one in a(Z). Since the coarsening Z of Z is a projective line, these fixed nodes
satisfy the condition of the above lemma and, by (?)-rigidity, yield age contribution 1/2.
Recall that each nonfixed node also contributes 1/2. The age is at least 1 (with one pair
of nodes exchanged and the remaining node fixed). So, the argument of [18] holds true:
a(Z) 6= Z is ruled out.

Step 3: classification of the irreducible components. For any irreducible component Z
of C we set up the notation for the rest of the proof. We write N→ Z for its normalisation,
D ⊂ N for the divisor representing special points lifting the nodes of C, r for the restriction
a|Z, and rN ∈ Aut(N) for the lift to N. Coarsening yields N → Z, D ⊂ N , r ∈ Aut(Z)
and rN ∈ Aut(N). Since all components are fixed, we establish a list of possible cases by
recalling the classification [18, Prop., p. 28] of nontrivial automorphisms rN of a smooth

3 The space parametrising the deformations of a hypothetical component Z for which a(Z) 6= Z
(alongside its special points) should have dimension d = 0 or 1 and in this second case we must
have a(a(Z)) = Z, i.e. the cycle of irreducible components obtained by applying the automorphism
a iteratively starting from Z must have length m = 2 (indeed, via an age estimate analogue to
Lemma 2.55, one can prove age ≥ d(m − 1)/2). The case d = 1 corresponding to (c), (d) and (e)
in [18, p. 35] is ruled out by the authors, as also is the case named (b) where Z is a singular elliptic
tail, because it yields g(C) ≤ 3.
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scheme-theoretic curve N paired with a divisor D ⊂ N operating on H 1(N, T (−D))

with age less than 1:

(I) N rational with rN : z 7→ ξnz for n = 2, 4,
(II) N elliptic with rN of order 2, 3, 4, or 6,

(III) N hyperelliptic of genus 2 or 3 with rN the hyperelliptic involution,
(IV) N of genus-2 with an involution rN such that N/〈rN 〉 is an elliptic curve.

Step 4: classification of the irreducible components Z such that a fixes all nodes of
Z ∩ Sing(C). We keep the above notation N,D, r, rN, N,D, r, rN .

First, case (I) does not occur. Indeed, we argue as in [18, case (b), p. 37]: Since the
nodes of Z ∩ Sing(C) are fixed, the special points of N are either fixed or form orbits
of two points with respect to rN. We deduce that rN necessarily operates on the coarse
space as z 7→ ξ2z. Then, using the stability condition, it is easy to show that there is
at least one pair of points with opposite coordinate on N mapping to a node n of Z.
By Lemma 2.56 and (?)-rigidity this yields age contribution 1/2 and the nontriviality of
the stabiliser over n; we deduce (using age(a) < 1) that there is exactly one node of
Z whose preimages in N are interchanged by rN . The remaining nodes lying in Z are
contained in the images of the two fixed points of z 7→ ξ2z. Note that there cannot be
two such nodes, otherwise the action on H 1(N, T (−D)) gives an extra contribution of at
least 1/2, because the order-2 automorphism does not deform to the general four-pointed
rational curve. Therefore, the only possibility is that Z is a stack-theoretic genus-1 tail as
in Definition 2.12. Since a operates by changing the sign of the parameter deforming the
elliptic tail, we are necessarily in the situation (iv) of Proposition 2.29, and by Remark
2.31 we have age(a) ≥ 1, a contradiction.

By a simple age computation,4 [18, p. 39, case (e)] rules out, without changes, the
genus-2 curve of case (IV).

Second, case (II) occurs only if rN fixes at least one point. Assume, by way of contra-
diction, that rN is a nontrivial translation z 7→ z+ t0. Since the translation does not allow
fixed points, it should allow two-point orbits. In this way rN is a translation of order 2.
This implies that C = Z, i.e. C is irreducible. Since g(C) ≥ 4, there are at least three
nodes satisfying the conditions of Lemma 2.56. Applying (?)-rigidity we get an age con-
tribution of 3/2 and we can conclude as in [18] that rN fixes at least one point; then we
can use Harris and Mumford’s list of cases “(c2)–(c5)” at [18, pp. 37–39] specifying the
configuration of the elliptic components and their age contribution. We summarise this in
(i) and (ii) below.

We can reproduce Harris and Mumford’s list of possible irreducible components Z for
which the restriction r = a|Z does not satisfy r = idZ and fixes all points of Z∩ Sing(C).

(i) Z is a scheme-theoretic elliptic tail; r is the ETI (age contribution 0) or an automor-
phism of order 3, 4 or 6 of a smooth elliptic tail Z = Z meeting the rest of the curve
at n acting on H 1(Z, T (n)) with age 1/3, 1/2 or 1/3 (see figures on pages 38 and
39 in [18]).

4 The dimension of the (−1)-eigenspace of rN onH 1(N, T (P )) (where P is a fixed point of rN )
is 2.
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g(Z) = 1

n
ord = 3, 4, 6, age contribution = 1/3, 1/2, 1/3.r

(ii) Z is a smooth genus-1 component (Z = Z) meeting the rest of the curve in two
points p and q; the action on H 1(Z, T (p + q)) has order 2 or 4 and age 1/2 or 3/4
(see figures on pages 38 and 39 in [18]).

g(Z) = 1

p q
ord = 2, 4, age contribution = 1/2, 3/4.r r

(iii) Z is a hyperelliptic tail of genus g = 2; the restriction r is the hyperelliptic involution
contributing 1/2 to age(a) (see case (d) of [18, p. 39]).

g(Z) = 2
ord = 2, age contribution = 1/2.r

Step 5: a ∈ Aut(C) fixes all nodes. To see this, by Step 1, we need to rule out the cases
where a transposes a pair (n1,n2) of nodes. Since a node transposition contributes 1/2 to
age(a), we can exclude the presence in the curve of components of the form (ii) and (iii).
We can assume that a operates as the identity on the elliptic tails (i). If this is not the
case, we can simply modify a by restricting to B = C \ {elliptic tails} and by trivially
extending to C; the resulting automorphism has lower age but it is still nontrivial because
it exchanges two nodes; hence it is a nontrivial junior automorphism, which we will refer
to as a in this step.

We now see that n2 = a(n1) yields a contradiction; since all irreducible components
are (globally) fixed by Step 2, we reduce to the following cases.

rr
case (a)

Z
n1 n2 = a(n1)

case (b)

Z

Nn1 n2 = a(n1)r r

(a) All the branches of n1 and of n2 = a(n1) lie in the same irreducible component Z.
Then Lemma 2.55(1) yields age contribution 2/n + 1/2, where n = ord(r) and fits
in the conditions required by 2.55. We observe that ord(r) = ord(r) because every
ghost is the identity on the irreducible components of C (see Remark 2.20). The age
contribution coincides with that used in [18, pp. 36–37] in order to rule out this case.

(b) There is a component Z containing exactly one branch for each of the nodes n1
and n2. Let H be the second component through n1 and n2. Notice that aord(a) is ei-
ther the identity or a senior ghost because (C, L, φ) is not a J-curve. Then, by Lemma
2.55(1)–(2), the age of a is at least 1/n+1/2 where n is the order of the coarsening of
a|Z∪H. According to the list of cases (I)–(IV), n can be 2, 4, 6, or 12. Since the lower
bound 1/n+ 1/2 is smaller than the lower bound 2/n+ 1/2 found in [18, pp. 36–37]
we can only conclude for n = 2. In particular we should study more carefully the
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case n = 4 where no extra argument was needed in [18]. The same issue arises in
[23, proof of Prop. 3.10], where Ludwig notices that when n equals 4, there is an
extra age contribution of 1/4. Indeed, either Z or H is an elliptic curve on which
the coarsening a operates, locally at a point p 6= n1, n2, as z 7→ ξ4z. This yields an
extra age contribution of 1/4. (Ludwig also checks that the arguments of Harris and
Mumford allow one to consider n = 6 and 12 because of the respective extra age
contributions 1/3 and 1/2 that they find in these two cases. The argument fits equally
well here.)

Step 6. We are left with the problem of patching together the few curves of genus 1 and 2
listed in (i)–(iii) with lots of identity components, i.e. components where the coarsening
of a restricts to the identity. We do it by following [18, p. 39] (see also [23, Propositions
3.12–15]). In case there is a component of type (iii), the second component H through the
node separating Z from the rest of the curve cannot be of type (iii) (each component of
type (iii) adds 1/2 to age(a)). By the same argument we rule out H of type (ii). On the
other hand, H cannot be an elliptic tail because g(C) ≥ 4. Finally, H cannot be an identity
component, because this yields a 1/2-age contribution due to the parameter smoothing
the node H ∩ Z. As a consequence, case (iii) is impossible.

Assume that there is a component Z of type (ii), that is, a so-called elliptic lad-
der. Since such components contribute at least 1/2 to age(a), we assume there is ex-
actly one such case. We argue as in Step 5 where we have replaced a by another ju-
nior automorphism operating as the identity on the elliptic tails. In this way, we have
n = ord(r) = ord(a). If aord(a) is a nontrivial ghost, then it is senior, because (C, L, φ)
is not a J-curve; by Lemma 2.55(2) we have age(a) ≥ 1/n. The same inequality holds,
by Lemma 2.55(1), if aord(a) is trivial, i.e. if ord(a) = ord(a) (since g ≥ 4, there is at
least one fixed node in C \ {elliptic tails}). Now, for n = 2, the total age contribution is
1/2 + 1/2, and for n = 4, the total age contribution is 3/4 + 1/4. We may rule out this
case.

Now the coarsening of a is the identity on all components that are not elliptic tails.
In fact, a is actually the identity on all such components; if this were not the case, we
could replace a by a junior ghost automorphism of (C, L, φ), contradicting the assumption
that (C, L, φ) is not a J-curve. So, a is the identity everywhere except for some scheme-
theoretic elliptic tails. We can now go through the study of elliptic tails (i) and add the age
contribution from the parameter smoothing the QR node where the tail meets the rest of
the curve. As in [18] and [23], we conclude that a has order 6 and operates on the elliptic
tail precisely as prescribed by the statement of Proposition 2.53. ut

By definition, noncanonical singularities are local obstructions to the extension of pluri-
canonical forms. On the other hand, Harris and Mumford show that noncanonical singu-
larities at T-curves do not pose a global obstruction: pluricanonical forms extend across
the locus T of level curves of type T as soon as they are globally defined off T. Their
statement can immediately be adapted to level curves (the argument is spelled out in [15,
Thm. 6.1] and [23, Thm 4.1] and relies on the fact that the morphism forgetting the level
structure is not ramified along δg−1). The precise statement is as follows.
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Corollary 2.57. Fix g ≥ 4 and 5 6= ` ≤ 6. Let R̂g,` → Rg,` be any desingularisation.
Then every pluricanonical form defined on the smooth locus (Rg,`)

reg of Rg,` extends
holomorphically to R̂g,`, that is, for all integers q ≥ 0 we have isomorphisms

0
(
(Rg,`)

reg,K
⊗q

Rg,`

)
∼= 0

(
R̂g,`,K

⊗q

R̂g,`

)
. ut
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