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Abstract. We consider an exact magnetic flow on the tangent bundle of a closed surface. We prove
that for almost every energy level κ below the Mañé critical value of the universal cover there are
infinitely many periodic orbits with energy κ .
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Introduction

In this paper we study the existence of periodic orbits of prescribed energy of an exact
magnetic flow on the tangent bundle of a closed surface.

Let M be a closed surface. An exact magnetic flow on TM is induced by the choice
of a Riemannian metric g and of a smooth 1-form θ on M . Let Y : TM → TM be the
endomorphism uniquely defined by dθ = g(Y (·), ·). A curve γ : R→ M is said to be a
magnetic geodesic if it solves the ODE

∇t γ̇ = Y (γ̇ ), (1)

where ∇t denotes the Levi-Civita covariant derivative. The flow on TM of this second
order ODE is called an exact magnetic flow. The exactness refers to the fact that the 2-
form dθ is exact. When dθ is replaced by a non-exact 2-form, one talks about a non-exact
magnetic flow. These flows are models for the motion of a particle in a magnetic field
with Lorentz force Y and were put into the context of modern dynamical systems by
Arnold [Arn61].

Unlike the general non-exact case, exact magnetic flows admit a Lagrangian formula-
tion: Equation (1) is the Euler–Lagrange equation of the Lagrangian

L : TM → R, L(x, v) = 1
2 |v|

2
x − θx(v), ∀(x, v) ∈ TM, (2)

where | · |x denotes the norm on TxM which is induced by gx . The energy which is
associated to this autonomous Lagrangian is the function

E : TM → R, E(x, v) = 1
2 |v|

2
x, ∀(x, v) ∈ TM.

Therefore, the energy levels of this system are the same ones of the geodesic flow of g.
However, the dynamics on these levels is quite different and changes with the value of
the energy, because of the non-homogeneity of the Lagrangian. Roughly speaking, the
magnetic flow on E−1(κ) behaves like a geodesic flow for high values of κ , where the
dominant term in the Lagrangian is given by the metric g, and quite differently for low
values of κ , for which the magnetic form dθ becomes dominant.

A critical value of the energy which marks a change in the dynamics and is relevant
in this paper is the number

cu := − inf
{

1
T

∫ T

0
L(γ, γ̇ ) dt

∣∣∣ γ : R→ M a T -periodic contractible smooth curve
}
,

which is called the Mañé critical value of the universal cover. The specification “of the
universal cover” refers to the fact that the infimum is taken over all contractible curves.
By considering curves whose lift to other covering spaces of M is closed, one finds other
Mañé critical values, which play different roles in the dynamical and geometric properties
of the energy levels (see [Mañ97, CI+98]). The value cu is the smallest of all Mañé critical
values, and if dθ 6= 0, it is strictly positive.

For an energy level E−1(κ) with κ > cu one can prove the same lower bounds for
the number of periodic orbits which hold for closed Finsler geodesics. Indeed, if κ is
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larger than c0, i.e. the Mañé critical value associated to the abelian cover of M , the flow
on E−1(κ) is conjugate—up to a time reparametrization—to a Finsler geodesic flow. If
κ ∈ (cu, c0] this is not true anymore, but periodic orbits on E−1(κ) can be found as
critical points of a functional which behaves essentially as the Finsler geodesic energy
functional (see [Con06] and [Abb13]). In particular, when M = S2 one has at least two
periodic orbits on E−1(κ) for every κ > cu, as proven for Finsler geodesic flows by
Bangert and Long [BL10]. Examples due to Katok [Kat73] show that in this case the
number of periodic orbits on E−1(κ) can be exactly two.

In this paper we deal with the more mysterious range of energies (0, cu). When κ
is in this interval, E−1(κ) always has at least one periodic orbit. This result essentially
goes back to the work of Taı̆manov [Tai92a, Tai92b, Tai92c], but was put into the con-
text of Mañé critical values and reproved using ideas from geometric measure theory by
Contreras, Macarini and Paternain [CMP04]. This result is the best one so far concerning
existence for all energy levels in the range (0, cu). For almost every κ in (0, cu) the exis-
tence of at least three periodic orbits is known: The second periodic orbit was found by
Contreras [Con06] (on manifolds of arbitrary dimension and for any Tonelli Lagrangian)
and the third one by three of the authors of this paper in [AMP15]. In the latter paper the
existence of infinitely many periodic orbits on E−1(κ) is also proved, under the assump-
tion that κ belongs to a suitable full-measure subset of (0, cu) and that all the periodic
orbits on E−1(κ) are transversally non-degenerate. The aim of this paper is to remove all
non-degeneracy assumptions and to prove the following:

Theorem. Let (M, g) be a closed Riemannian surface and let θ be a smooth 1-form. For
almost every κ in (0, cu), the exact magnetic flow induced by g and θ has infinitely many
periodic orbits on the energy hypersurface E−1(κ).

The proof of this theorem is variational and is based on the study of the free-period La-
grangian action functional

Sκ(γ ) :=
∫ T

0
(L(γ, γ̇ )+ κ) dt

on the space of periodic curves γ : R → M of arbitrary period T . In order to give a
differentiable structure to the space of periodic curves with arbitrary period, one identifies
the T -periodic curve γ with the pair (x, T ), where x(s) := γ (sT ) is 1-periodic. In this
way one obtains the functional

Sκ : H 1(T,M)× (0,∞)→ R, Sκ(x, T ) = T
∫
T
(L(x, ẋ/T )+ κ) ds,

on the Hilbert manifold M := H 1(T,M)× (0,∞), where T := R/Z and H 1(T,M) de-
notes the space of 1-periodic curves onM of Sobolev classH 1. This functional is smooth
and its critical points are exactly the periodic orbits of energy κ . The main difficulties in
working with this functional are that for κ < cu it is unbounded from below on every
connected component of M and fails to satisfy the Palais–Smale condition.
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Up to lifting our Lagrangian system to the orientation double cover of M , we can
assume that M is orientable. As shown in [AMP15], the periodic orbit ακ which was
found by Taı̆manov is a local minimizer of Sκ with Sκ(ακ) < 0. The iterates αnκ of ακ
are also local minimizers and their Sκ -action goes to −∞ as n → ∞. Using the fact
that Sκ is unbounded from below on every connected component of M, one would like
to find other periodic orbits as mountain pass critical points associated to paths in M
starting at some given iterate αnκ and ending at some curve with lower Sκ -action. The
main difficulty is the already mentioned lack of the Palais–Smale condition. However,
thanks to the monotonicity of the function κ 7→ Sκ , one can overcome this difficulty by
an argument due to Struwe [Str90], which allows one to find converging Palais–Smale
sequences for almost every value of κ . This strategy was successfully implemented in
[AMP15] and for a sufficiently high value of n produces a mountain pass periodic orbit
which is different from the one found by Contreras [Con06]. When it is transversally non-
degenerate, the n-th mountain pass periodic orbit can be shown to have positive mean
Morse index. Hence, in the non-degenerate case one can exclude that the infinitely many
mountain pass critical points are the iterates of finitely many periodic orbits and gets the
above mentioned result from [AMP15].

If we drop the non-degeneracy assumption, mountain pass critical points might have
mean Morse index zero and the above argument fails. In this paper we show that never-
theless the infinitely many mountain pass critical points cannot be the iterates of finitely
many periodic orbits. The reason is the following result, which we prove for manifolds
M of arbitrary dimension and for more general Lagrangians, since it might be of inde-
pendent interest: A sufficiently high iterate of a periodic orbit cannot be a mountain pass
critical point of the free-period action functional. See Theorem 2.6 below for a precise
statement. Its proof uses the fact that periodic orbits with mean Morse index zero have
Morse index zero; this is known to be true for the fixed-period action functional, and in
Section 1 below we prove it for the free-period action functional. The proof of Theorem
2.6 is contained in Section 2; it is based on a careful analysis of the local behavior of Sκ
near its critical set and on a homotopy argument due to Bangert [Ban80].

There is a last technical difficulty which is dealt with in Section 3: in order to over-
come the lack of the Palais–Smale condition one needs to introduce a family of minimax
functions which depend monotonically on the energy κ on some interval I ⊂ (0, cu).
Moreover, the interval I should remain the same also when considering the n-th minimax
function. Since Taı̆manov’s local minimizers ακ might not depend continuously on κ ,
the obvious minimax class consisting of all paths joining αnκ to some curve with nega-
tive action might not produce a minimax value which is monotone in κ . This difficulty is
overcome by considering classes of paths starting at an arbitrary point in the closure of all
local minimizers of Sκ within a certain open subset of M, and proving that in this case
the required monotonicity holds on some interval which is independent of n.

We conclude this introduction by drawing a parallel between the main result of this
paper and the waist theorem due to Bangert [Ban80, Theorem 4], which states that if a
Riemannian metric on S2 has a “waist”, that is, a closed geodesic which is a local mini-
mizer of the length functional, then it has infinitely many closed geodesics. This statement
has been incorporated into the later proved fact that every Riemannian metric on S2 has
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infinitely many closed geodesics (see [Fra92, Ban93, Hin93]), but its proof remains inter-
esting and is clearly related to our main result. In our theorem the existence of the “waist”
does not have to be postulated, since it follows from the fact that the energy is below
the Mañé critical value and that we are dealing with a surface. Moreover, the topology
of the surface does not play any role: in general we do not have any information on the
homotopy class of Taı̆manov’s local minimizer αk , but the free-period action functional
is unbounded from below on every free homotopy class, so mountain pass critical values
can always be defined. Our Theorem 2.6, which states that high iterates of periodic orbits
cannot be mountain passes, is related to Theorem 2 of [Ban80], which states essentially
the same thing for closed geodesics on surfaces, although the two proofs are quite dif-
ferent. Actually, Theorem 2.6 (or its variant for fixed period problems), could be used to
show that the waist theorem also holds for Finsler metrics on S2 (see Remark 2.8 below
for more details). Finally, unlike the geodesic case, here we have to deal with the lack of
the Palais–Smale condition, an issue which is ultimately responsible for the fact that we
can establish the existence of infinitely many periodic orbits only for almost every energy
level.

1. The free-period action functional

1.1. Definitions and basic properties

The results of Sections 1 and 2 hold for a closed manifold M of arbitrary dimension d
and for a general Lagrangian L : TM → R of the form

L(x, v) = 1
2 |v|

2
x − θx(v)− V (x),

where | · |· denotes the norm which is induced by a Riemannian metric g on M , θ is a
smooth 1-form on M , and V is a smooth real-valued function on M . The flow on TM
which is determined by the corresponding Euler–Lagrange equations preserves the energy
function E : TM → R,

E(x, v) = ∂vL(x, v)[v] − L(x, v) =
1
2 |v|

2
x + V (x).

The space of closed curves on M of Sobolev class H 1 and arbitrary period is identified
with the Hilbert manifold

M := H 1(T,M)× (0,∞),

where T := R/Z and the pair (x, T ) ∈ H 1(T,M)×(0,∞) corresponds to the T -periodic
curve γ (t) = x(t/T ). We denote the elements of M indifferently as (x, T ) or as γ . The
free-period action functional

S :M→ R, S(γ ) = S(x, T ) :=
∫ T

0
L(γ (t), γ̇ (t)) dt = T

∫
T
L(x(s), ẋ(s)/T ) ds,

is smooth on M and its critical points are precisely the periodic orbits γ with energy
E(γ, γ̇ ) = 0. See [Con06] and [Abb13] for general facts about this functional.
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The functional S is invariant with respect to the continuous action of T by time trans-
lations, which we denote by

T×M→M, (τ, (x, T )) 7→ τ · (x, T ) := (x(· + τ), T ).

In particular, the critical set crit(S) of S consists of critical orbits T · γ . We shall be
interested in non-constant periodic orbits γ = (x, T ); in this case, T · γ is a smooth
embedded circle in M (multiply covered by the action of T if T is not the prime period
of γ ).

We endow M with the product metric between the standard Riemannian metric of
H 1(T,M) and the standard metric of (0,∞) ⊂ R, where the former metric is given by

〈u, v〉H 1 :=

∫
T

(
gx(∇su,∇sv)+ gx(u, v)

)
ds, ∀u, v ∈ TxH

1(T,M), x ∈ H 1(T,M).

This metric induces a distance on M and a norm ‖ · ‖ on elements of TM and T ∗M.
We shall repeatedly use the fact that when M is compact, the functional S satisfies

the Palais–Smale condition on subsets of M consisting of pairs (x, T ) for which T is
bounded and bounded away from 0: every sequence γh = (xh, Th) in M such that

0 < inf
h
Th ≤ sup

h

Th <∞

and
sup
h

|S(γh)| <∞, ‖dS(γh)‖ → 0

has a converging subsequence. See [Con06, Proposition 3.12] or [Abb13, Lemma 5.3]. In
particular, ‖dS‖ is bounded away from zero on bounded closed subsets of M on which
the second component T is bounded away from zero and which contain no critical points.

1.2. The Morse index and the iteration map

We denote by ind(γ ) = ind(x, T ) the Morse index of the critical point γ = (x, T ) of S.
The Morse index of x with respect to the fixed-period action S|H 1(T,M)×{T } is denoted by
indT (x). Clearly

0 ≤ ind(x, T )− indT (x) ≤ 1.

The precise relationship between the two indices in the special case of transversally non-
degenerate critical points (as defined below) is discussed in [AMP15, Proposition 2.1].

Let H : T ∗M → R be the smooth Hamiltonian that is dual to L, i.e.

H(x, p) = p(L−1(x, p))− L(L−1(x, p)),

where L : TM → T ∗M is the Legendre transform, a diffeomorphism given by L(x, v)
= (x, ∂vL(x, v)). We denote byXH the Hamiltonian vector field on the cotangent bundle
T ∗M given by ω(XH , ·) = −dH , where ω = dp ∧ dq is the canonical symplectic
structure of T ∗M . The Legendre transform conjugates the Euler–Lagrange flow of L on
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any energy hypersurface E−1(κ) with the Hamiltonian flow φtH of the vector field XH on
the corresponding hypersurface H−1(κ).

Assume that the critical point (x, T ) corresponds to a non-constant periodic orbit
γ (t) = x(t/T ). We set z := L(γ (0), γ̇ (0)), and notice that the differential of the Hamil-
tonian flow dφTH (z) preserves the coisotropic vector subspace Tz(H−1(0)) and satisfies
dφTH (z)XH (z) = XH (z). Let e1, f1, . . . , ed , fd be a symplectic basis of TzT ∗M such
that f1 = XH (z) and

span{f1, e2, f2, . . . , ed , fd} = Tz(H
−1(0)).

In this symplectic basis, we can write dφTH (z) as an element of Sp(2d) of the form

dφTH (z) =


1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0
...

... P

∗ 0

 ,

where P ∈ Sp(2d − 2) is the linearized Poincaré map of φTH at z, and the entries marked
by ∗ contain some real numbers. Notice that the spectra of dφTH (z) and P are related by

σ(dφTH (z)) = {1} ∪ σ(P ). (3)

The vector (ẋ, 0) belongs to the kernel of d2S(x, T ), and there is an isomorphism

ker d2S(x, T )/span{(ẋ, 0)} ∼= ker(I − P) (4)

(see [AMP15, Proposition A.3]). The dimension of the subspace ker(I − P) is by def-
inition the transverse nullity null(x, T ). When null(x, T ) = 0, the orbit γ is said to be
transversally non-degenerate.

The multiplicative semigroup N = {1, 2, . . . , } acts smoothly on M by iteration

N×M→M, (n, (x, T )) = (n, γ ) 7→ γ n = ψn(x, T ) := (xn, nT ),

where xn(s) := x(ns). The free-period action functional S is equivariant with respect to
this action on M and to the multiplicative action of N on R, i.e.

S(γ n) = nS(γ ), ∀(n, γ ) ∈ N×M.

Notice that the iteration mapψn :M ↪→M is a smooth embedding and maps the critical
set of S into itself. The mean index of the critical point γ = (x, T ) is the non-negative
real number

ind(γ ) = ind(x, T ) := lim
n→∞

ind(γ n)
n

= lim
n→∞

indnT (xn)
n

.

It is well known that ind(x, T ) vanishes if and only if the fixed-period Morse index
indnT (xn) vanishes for every n ∈ N. The following result says that the same fact is
true for the free-period Morse index.
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Proposition 1.1. The mean index ind(γ ) vanishes if and only if ind(γ n) = 0 for every
n ∈ N.

Proof. If ind(γ n) = 0 for every n, then ind(γ ) obviously vanishes. To prove the converse,
we shall show that if ind(γ ) > 0 then ind(γ ) > 0 as well. Since the mean index is
homogeneous, i.e. ind(γ n) = n ind(γ ), our proposition will readily follow.

Assume that ind(γ ) > 0. The transversally non-degenerate case null(γ ) = 0 was al-
ready treated in [AMP15, Theorem 2.2]. Therefore we will deal with the case null(γ ) > 0.

Let V ⊂ C∞(M,R) be the vector subspace of those smooth functions U : M → R
whose 1-jet vanishes identically along γ , i.e. U(γ (t)) = 0 and dU(γ (t)) = 0 for all
t ∈ R. For U ∈ V , we introduce the Lagrangian

(x, v) 7→ L(x, v)− U(x),

and we denote by EU : TM → R and SU :M→ R the corresponding energy function
and free-period action functional. A straightforward computation shows that γ is still a
solution of the Euler–Lagrange equations of L−U with energy EU (γ, γ̇ ) = 0. In partic-
ular γ = (x, T ) is still a critical point of SU . The Hamiltonian dual to L−U is precisely
H + U , and we denote by PU ∈ Sp(2d − 2) the corresponding linearized Poincaré map
at z = L(γ (0), γ̇ (0)). The so-called Hamiltonian Franks Lemma (see [RR12, Th. 1.2 and
Sect. 3]) implies that, for all open neighborhoods U ⊂ V of the origin in the C2 topology,
the image of the map U → Sp(2d−2) given by U 7→ PU contains an open neighborhood
of P .

Consider the splitting R2d−2
= V ⊕W , where V is the symplectic subspace invariant

by P whose complexification is the generalized eigenspace of the eigenvalue 1, and W
is its symplectic orthogonal (whose complexification is the direct sum of the generalized
eigenspaces of the remaining eigenvalues). Using this splitting, we can write P as a block-
diagonal matrix of the form

P =

(
A 0
0 B

)
,

where A = P |V and B = P |W . Notice that the spectra of A and B satisfy σ(A) = {1}
and σ(B) ∩ {1} = ∅. By Proposition A.1 in the Appendix, the matrix A belongs to the
closure of the set of symplectic matrices whose spectrum does not intersect the unit circle.
Thus, we can find an arbitrarily C2-small smooth potential U : M → R such that

PU =

(
A′ 0
0 B

)
and σ(A′) does not intersect the unit circle. In particular

S1
∩ σ(PU ) = S

1
∩ σ(P ) \ {1}. (5)

We recall that the spectra of dφTH+U (z) and PU are related as in (3).
For all s ∈ [0, 1], we denote by 3s : S1

→ N the Bott function associated to the lin-
earization along γ = (x, T ) of the d-dimensional second order system which is induced
by the perturbed Lagrangian L− sU . We refer the reader to Bott’s original paper [Bot56],
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or to [Lon02, Ch. 9] and [Maz11, Sect. 2.2], for the definition and main properties of Bott
functions. Here, we just recall that these functions compute in particular the fixed-period
Morse indices as indT (x) = 30(1), and the mean index as the average

ind(γ ) =
1

2π

∫ 2π

0
30(e

iθ ) dθ.

Each Bott function 3s is lower semicontinuous and is actually locally constant outside
σ(dφTH+sU (z)) ∩ S

1. Moreover, the function s 7→ 3s(e
iθ ) is constant provided

eiθ 6∈
⋃

s∈[0,1]

σ(dφTH+sU (z)).

We choose α > 0 small enough such that the spectrum of dφTH (z) does not contain
any eigenvalue on the unit circle with argument in (0, α], i.e.

{eiθ | θ ∈ (0, α]} ∩ σ(dφTH (z)) = ∅.

This implies that θ 7→ 30(e
iθ ) is constant on (0, α]. By (5) and (3), we also have

{eiθ | θ ∈ (0, α]} ∩ σ(dφTH+U (z)) = ∅. (6)

We denote by ind(SU , γ ) the Morse index of SU at γ . Since our U can be chosen to be
arbitrarily C2-small, we can assume that

eiα 6∈
⋃

s∈[0,1]

σ(dφTH+sU (z)). (7)

Moreover, by the lower semicontinuity of the Morse index, we can further assume that

ind(SU , γ ) ≥ ind(γ ) > 0.

Notice that γ is transversally non-degenerate for SU . Therefore, by [AMP15, Theo-
rem 2.2], we infer 31(1) > 0. By (6), the function θ 7→ 31(e

iθ ) is constant on (0, α],
and since Bott functions are lower semicontinuous, this constant must be larger than or
equal to 31(1). By (7) and the above mentioned continuity property of homotopies of
Bott functions, we have

3s(e
iα) = 31(e

iα) ≥ 31(1) > 0, ∀s ∈ [0, 1].

This implies that

ind(γ ) =
1

2π

∫ 2π

0
30(e

iθ ) dθ ≥
1

2π

∫ α

0
30(e

iθ ) dθ =
α

2π
30(e

iα) ≥
α

2π
31(1) > 0.

ut

We conclude this section with the following lemma, which turns out to be useful when
dealing with degenerate critical points. The lemma was first proved by Gromoll and
Meyer [GM69b, Lemma 2] in the context of non-magnetic closed geodesics. We include
its short proof here for the reader’s convenience.
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Lemma 1.2. Let γ = (x, T ) be a critical point of S which corresponds to a non-constant
periodic orbit. Then there is a partition N = N1∪· · ·∪Nk , integers n1 ∈ N1, . . . , nk ∈ Nk ,
and ν1, . . . , νk ∈ {0, . . . , 2d − 2} with the following property: nj divides all the integers
in Nj , and null(γ n) = νj for all n ∈ Nj .

Proof. Since P is an automorphism, the geometric multiplicity of the eigenvalue 1 varies
under iteration according to

dim ker(P n − id) =
∑
λ∈

n√1

dimC kerC(P − λ id). (8)

Let σ(P ) be the set of eigenvalues of P , and for all n ∈ N, set

σn(P ) = {λ ∈ σ(P ) | λ
n
= 1}.

We define an equivalence relation on N by declaring that m ∼ n when σm(P ) = σn(P ).
We denote by N1, . . . ,Nr the equivalence classes, and by nj the minimum of Nj . If

σnj (P ) = {exp(i2πp1/q1), . . . , exp(i2πpn/qn)},

where ph and qh are relatively prime, then the integers in Nj are common multiples of
q1, . . . , qn, and nj is the least common multiple of q1, . . . , qn. By (4) and (8) we have

null(γ n) =
∑

λ∈σn(P )

dimC kerC(P − λ id),

which is the same integer for all n belonging to the same set Nj . ut

2. High iterates of periodic orbits are not mountain passes

2.1. A tubular neighborhood lemma for critical orbits

In this subsection, we will denote by ∇S the gradient vector field of the free-period action
functional S with respect to the following Riemannian metric on M:

〈(u, R), (v, S)〉(x,T ) :=
RS

T
+ T

∫ 1

0

(
gx(u, v)+

1
T 2 gx(∇su,∇sv)

)
ds

=
RS

T
+

∫ T

0

(
gγ (ξ, η)+ gγ (∇tξ,∇tη)

)
dt, (9)

where ξ(t) = u(t/T ) and η(t) = v(t/T ). This metric is equivalent to the standard one
of M (see Section 1.1) on subsets consisting of pairs (x, T ) for which T is bounded
and bounded away from 0. In particular, in these subsets, S satisfies the Palais–Smale
condition with respect to the metric (9).

The advantage of this metric is that it makes the iteration map ψn conformal with
constant conformal factor n. Indeed, using the identity dψn(x, T )[(u, R)] = (un, nR),
one checks easily that

〈dψn(x, T )[(u, R)], dψn(x, T )[(v, S)]〉(xn,nT ) = n 〈(u, R), (v, S)〉(x,T )
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for all (u, R) and (v, S) in the tangent space of M at (x, T ). In particular, if the super-
script ∗ denotes the adjoint operation with respect to the metric (9), we have

dψn(x, T ) dψn(x, T )∗ = n5, (10)

where 5 is the orthogonal projector onto the image of dψn(x, T ), that is, the tangent
space of the submanifold ψn(M) at (xn, nT ). Furthermore, it is easy to see that the
orthogonal space of T(xn,nT )ψn(M) is

(T(xn,nT )ψ
n(M))⊥ =

{
(u, R) ∈ T(xn,nT )M

∣∣∣∣ R = 0,
n−1∑
j=0

u

(
s + j

n

)
= 0, ∀s ∈ T

}
.

(11)
The above facts allow us to prove the following:

Lemma 2.1. If ∇ denotes the gradient with respect to the metric (9), then

∇S(γ n) = dψn(γ )∇S(γ ), ∀γ ∈M. (12)

Proof. By applying the projector 5 onto the tangent space of ψn(M) at γ n = ψn(γ )

and its complementary projector I−5, the identity (12) is equivalent to the two identities

5∇S(γ n) = dψn(γ )∇S(γ ), (13)
(I −5)∇S(γ n) = 0. (14)

By differentiating the identity S(ψn(γ )) = nS(γ ) we find the formula

dψn(γ )∗∇S(ψn(γ )) = n∇S(γ ).

If we apply dψn(γ ) to both sides and we use (10), we see that (13) holds. The identity
(14) says that the differential of S at γ n vanishes on the orthogonal space of Tγ nψn(M).
By (11) an element of this orthogonal space has the form (u, 0), where

n−1∑
j=0

u

(
s + j

n

)
= 0, ∀s ∈ T.

By setting ξ(t) := u(t/(nT )) we obtain

n−1∑
j=0

ξ(t + jT ) = 0, ∀t ∈ R. (15)

Therefore,

dS(γ n)[(u, 0)] =
∫ nT

0

(
∂xL(γ, γ̇ )[ξ ] + ∂vL(γ, γ̇ )[∇tξ ]

)
dt

vanishes, because the functions t 7→ ∂xL(γ (t), γ̇ (t)) and t 7→ ∂vL(γ (t), γ̇ (t)) are
T -periodic while ξ satisfies (15). ut

The following tubular neighborhood lemma, which is reminiscent of some arguments
in [GM69b, Section 3], will be useful later on, in the proof of Theorem 2.6.
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Lemma 2.2. Let γ be a critical point of S such that for some n ∈ N, we have ind(γ ) =
ind(γ n) and null(γ ) = null(γ n). Then for every sufficiently small open neighborhood U
of T · γ there is an open neighborhood V of ψn(U) and a smooth map

r : [0, 1] × V → V, (t, β) 7→ rt (β),

such that:

(i) r0 = id;
(ii) rt |ψn(U) = id for every t ∈ [0, 1];

(iii) r1(V) = ψn(U);
(iv) d

dt
S(rt (β)) < 0 for all β ∈ V \ ψn(U).

Proof. Let U be an open neighborhood of the critical orbit T · γ (which may consist of
an embedded circle or just the critical point alone if γ is a stationary curve). The image
of this neighborhood under the iteration map ψn has a normal bundle N(ψn(U)). By
our assumptions on the Morse index and nullity, and since 0 is an isolated point in the
spectrum of d2S(γ n), there exists a constant δ > 0 such that

d2S(γ n)[ξ, ξ ] ≥ δ〈ξ, ξ〉γ n , ∀ξ ∈ Nγ n(ψ
n(U)).

Since S is smooth, up to shrinking U and choosing a smaller δ > 0, we can assume that

d2S(β)[η, η] ≥ δ〈η, η〉β , ∀β ∈ ψn(U), η ∈ Nβ(ψn(U)). (16)

We now consider a sufficiently small neighborhood of the 0-section and apply to it the
exponential map of the metric (9). We obtain a tubular neighborhood V of ψn(U) with
associated deformation retraction rt : V → V given by

rt ◦ expβ(η) = expβ((1− t)η), ∀β ∈ ψn(U), η ∈ Nβ(ψn(U)),

which satisfies (i)–(iii). Notice that given β ∈ ψn(U), the tangent space to the fiber of r1
at β is Tβ(r−1

1 (β)) = Nβ(ψ
n(U)). By (12), the restriction of S to each fiber r−1

1 (β) has
a critical point at β. Moreover, by (16), such a restriction has a positive definite Hessian.
In particular, it is a convex function near its local minimum β, and up to shrinking V we
have d

dt
S(rt (β)) < 0 for all β ∈ V \ ψn(U). Therefore, also (iv) holds. ut

2.2. Resolution of degenerate critical circles

Let T · γ be an isolated critical circle of the free-period action functional S, and set

ι := ind(γ ), ν := null(γ )+ 1 = dim ker d2S(γ ).

We denote by Z → T · γ the vector bundle whose fiber over any t · γ is equal to the
intersection of the normal bundle of T · γ ⊂M with the kernel of the Hessian of S, i.e.

Zt ·γ = Nt ·γ (T · γ ) ∩ ker d2S(t · γ ).
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The rank of Z is finite, and it is actually equal to the nullity ν − 1. We denote by Q the
orthogonal complement of the subbundle Z ⊂ N(T · γ ) with respect to the Riemannian
metric of M (see Section 1.1). By the very definition of Q, and since 0 is an isolated
point in the spectrum of d2S(t · γ ), there exists a constant δ > 0 such that

‖d2S(t · γ )[ξ, ·]‖ ≥ δ‖ξ‖, ∀t ∈ T, ξ ∈ Qt ·γ , (17)

where the norm on the left-hand side is the dual of the Riemannian one on M, and Qt ·γ ⊂

Q is the fiber above t ·γ . Since the orthogonal group of the infinite-dimensional separable
Hilbert space E is connected, the vector bundle Q is trivial. Therefore we can make the
identification

N(T · γ ) ∼= Z × E.

We will denote the coordinates in Z × E as (t, z, y), where (t, z) ∈ Z and y ∈ E.
Let UR ⊂ Z denote the open neighborhood of radius R of the 0-section, and BR ⊂ E

the open ball of radius R centered at the origin. For a sufficiently small R > 0, the
exponential map of the normal bundle identifies UR × BR with a neighborhood of T · γ
that does not contain other critical points of S. Thus, from now on we can see the free-
period action functional as being of the form

S : UR × BR → R,

with crit(S) = {0-section} × {0}. We equip UR with the Riemannian metric pulled back
from the one of M by means of the exponential map, and equip UR × BR with the
product Riemannian metric induced by the one on UR and the flat Hilbert metric on E.
The standard Riemannian metric on M is uniformly equivalent on UR×BR to the product
one. Therefore, since S satisfies the Palais–Smale condition inside UR ×BR with respect
to the Riemannian metric of M, it does so with respect to the product metric as well.

We shall show that we can resolve the degeneracy of the isolated critical circle with
a small perturbation of the function supported on any neighborhood of the circle. The
following result is a version of Marino and Prodi’s perturbation lemma from [MP75], the
difference being that we start from an isolated critical circle rather than an isolated critical
point.

Lemma 2.3. For any neighborhood U of the critical circle {0-section} × {0} there exists
a smooth function S′ : UR × BR → R that satisfies the Palais–Smale condition, has only
finitely many critical points, all of which are non-degenerate with Morse index larger
than or equal to the original one ι, and such that S′ − S is supported in U and arbitrarily
C2-small.

Proof. Up to choosing a sufficiently small constant δ1 > 0, the inequality (17) can be
rephrased in our coordinates as

‖∂2
yyS(t, 0, 0)[v, ·]‖ ≥ δ1‖v‖, ∀t ∈ T, v ∈ E.

By the implicit function theorem, there exist r1, r2 ∈ (0, R/2) and a smooth map

ψ : U r1 → Br2
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such that for all (t, z, y) ∈ U r1×Br2 , we have ∂yS(t, z, y) = 0 if and only if y = ψ(t, z).
We define

9 : U r1 × Br2 → UR × BR

by9(t, z, y) = (t, z, ψ(t, z)+y). Notice that9 is a diffeomorphism onto a neighborhood
of {0-section}×{0}. From now on we will employ the new coordinates defined by9, and
therefore we will simply write S : U r1 × Br2 → R for S ◦ 9. If we consider U r1 × Br2
as a trivial bundle over U r1 by means of the projection onto the first factor, the function S
has non-degenerate fiberwise critical points everywhere on the 0-section. Namely, up to
reducing δ1 > 0 and r1 > 0, we have

∂yS(t, z, 0) = 0, ‖∂2
yyS(t, z, 0)[v, ·]‖ ≥ δ1‖v‖, ∀(t, z) ∈ U r1 , v ∈ E. (18)

In particular, for all r ∈ (0,min{r1, r2}) sufficiently small, there exists δ2 > 0 such that

‖∂yS(t, z, y)‖ ≥ δ2, ∀(t, z, y) ∈ U r × Br \ Br/2.

We denote by F : U r → R the smooth function F(t, y) = S(t, y, 0). As {0-section}×{0}
is the only critical point of S : UR ×BR → R, the 0-section is precisely the critical point
set of F . In particular, there exists δ3 > 0 such that

‖∇F(t, z)‖ ≥ δ3, ∀(t, z) ∈ Ur \ Ur/2.

We recall that U r is a compact manifold of dimension ν with smooth boundary. By the
density of the Morse functions in the space of smooth functions on finite-dimensional
manifolds (see e.g. [Mil63, Corollary 6.8]), for any ε > 0 we can find a Morse function
Fε : U r → R that is ε-close to F in the C2 topology. Notice that if ε < δ3, the function
Fε has finitely many non-degenerate critical points, all of which are contained in Ur/2. Let
χ : Ur → [0, 1] be a compactly supported smooth function that is identically 1 on Ur/2,
and let ρ : Br → [0, 1] be a compactly supported smooth function that is identically 1
on Br/2. We define the function S′ of the lemma by

S′(t, z, y) = S(t, z, y)+ χ(t, z)ρ(y)(Fε(t, z)− F(t, z)).

Let us verify that, for ε > 0 sufficiently small, S′ satisfies the desired properties. First of
all, S′ tends to S in the C2 topology as ε → 0, and is equal to S outside Ur × Br . Since
S : UR × BR → R satisfies the Palais–Smale condition, there exists δ4 > 0 such that

‖∇S(t, z, y)‖ ≥ δ4, ∀(t, z, y) ∈ (Ur × Br) \ (Ur/2 × Br/2).

In the region (Ur × Br) \ (Ur/2 × Br/2) we have

‖∇S′‖ = ‖∇S+ (Fε − F)(ρ∇χ + χ∇ρ)+ χρ(∇Fε −∇F)‖
≥ ‖∇S‖ − |Fε − F |(‖∇χ‖ + ‖∇ρ‖)− ‖∇Fε −∇F‖
≥ δ4 − ε(‖∇χ‖ + ‖∇ρ‖)− ε ≥ δ4/2
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provided

ε ≤
δ4

2(1+max ‖∇χ‖ +max ‖∇ρ‖)
.

In particular, S′ has no critical points and satisfies the Palais–Smale condition in this
region. In U r/2×Br/2, the function (t, z, y) 7→ χ(t, z)ρ(y) is identically 1, and therefore
∂yS′ = ∂yS. This, together with (18), shows that all the critical points of S′ are contained
in U r/2×{0}. They are all non-degenerate with Morse index larger than or equal to ι, since
they are non-degenerate for S′|Ur/2×{0} = Fε and since, by the inequality in (18), they are
fiberwise non-degenerate and thus have fiberwise Morse index equal to ι. In particular,
S′ has finitely many critical points in U r/2 × Br/2. Finally, suppose that {(tn, zn, yn)} is a
Palais–Smale sequence for S′ contained in U r/2 × Br/2. This implies ∂yS′(tn, zn, yn) =
∂yS(tn, zn, yn) → 0, and by (18) we have yn → 0. Since the sequence {(xn, zn)} varies
inside the compact set U r/2, the Palais–Smale sequence admits a converging subsequence.
This proves that S′ satisfies the Palais–Smale condition inside U r/2 × Br/2. ut

2.3. Properties of sublevel sets near critical circles

Now, we trivialize the normal bundle N(T · γ ) (once again, we recall that this is possi-
ble since the orthogonal group of the infinite-dimensional separable Hilbert space E is
connected). Thus, we make the identification N(T · γ ) ∼= T × E, and for a sufficiently
small R > 0, we employ the exponential map in order to identify T× BR ⊂ T× E with
a neighborhood of T · γ which does not contain other critical points of S. The restric-
tion of the free-period action functional to this neighborhood will be a smooth function
of the form S : T × BR → R. We equip T × BR with the product Riemannian metric
induced by the Euclidean metric on T and the flat Hilbert metric on E. Since this met-
ric is uniformly equivalent to the standard one of M, the functional S still satisfies the
Palais–Smale condition with respect to it. We denote by ∇S the gradient of S with respect
to the product metric, and by φs the associated negative gradient flow. We also set c to
be the critical value S(T × {0}). The following lemma, which is essentially due to Gro-
moll and Meyer [GM69a, Sect. 2], provides neighborhoods of the critical circle with good
properties.

Lemma 2.4. The isolated critical circle T× {0} has a fundamental system of connected
open neighborhoods U with the following property: there exists ε = ε(U) > 0 such that
U ⊂ {S > c − ε}, and if y ∈ U and φs(y) 6∈ U for some s > 0, then S(φs(y)) ≤ c − ε.

Proof. We slightly modify Chang’s treatment [Cha93, p. 49] in order to deal with our iso-
lated critical circle T×{0}. We can assume without loss of generality that c = S(t, 0) = 0
for all t ∈ T. We consider an auxiliary function G : T× BR → R given by

G(t, z) = 1
2 |z|

2
+ h S(t, z),

where h > 0 is a constant that we will determine shortly. The open set U of the statement
will be of the form

U = {−ε < S < ε} ∩ {G < g}
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for suitable constants ε, g > 0. Let us now proceed to determine all the constants. Since S
satisfies the Palais–Smale condition inside T×BR , for all δ2 > 0 we can find (arbitrarily
small) r ∈ (0, R) and δ1 ∈ (0, δ2) such that

δ2 ≥ |∇S(t, z)|, ∀(t, z) ∈ T× Br ,
δ1 ≤ |∇S(t, z)|, ∀(t, z) ∈ T× (Br \ Br/2).

On T× (Br \ Br/2) we have

〈∇S,∇G〉 = h|∇S|2 + 〈∇S, z〉 ≥ hδ2
1 − rδ2.

We fix the constant h > rδ2/δ
2
1 so that

〈∇S(t, z),∇G(t, z)〉 > 0, ∀(t, z) ∈ T× (Br \ Br/2). (19)

In order to conclude the proof, it is enough to find values of ε and g such that

(i) U ⊂ T× Br ;
(ii) (T× Br/2) ∩ {−ε < S < ε} ⊂ U .

Let us show that (i) and (ii) imply the lemma. Property (i) allows us to control the size
of U . Property (ii) implies that U is a neighborhood of T×{0} contained in the superlevel
set {S > −ε}. If U is not connected, we disregard all its connected components other than
the one containing T×{0}. Consider a point y ∈ U whose forward negative gradient flow
orbit is not entirely contained in U , and set

s0 := min{s > 0 | φs(y) 6∈ U}.

The point φs0(y) must be contained in the boundary of the open set U , and we have
S(φs0(y)) < S(y) < ε. By the definition of U , if S(φs0(y)) 6= −ε we must have
G(φs0(y)) = g, and by properties (i)–(ii) we must have φs0(y) ∈ T×(Br \Br/2). By (19),
for all s ∈ (0, s0) sufficiently close to s0, we have G(φs(y)) > g. This implies that
φs(y) 6∈ U and contradicts the definition of s0. Therefore we must have S(φs0(y)) = −ε,
which readily implies the lemma.

Now, conditions (i) and (ii) can be rewritten as

(i) if |S(t, z)| < ε and G(t, z) < g, then |z| < r;
(ii) if |z| < r/2 and |S(t, z)| < ε, then G(t, z) < g.

Condition (i) is satisfied provided 2g+ 2hε < r2, while (ii) is satisfied if r2/8+ hε < g.
In order to satisfy them simultaneously, we can choose ε = 3r2/(32h) and g = 5r2/16.

ut

In order to state the next result, we go back to the general global setting in which the
free-period action functional has the form S :M→ R.

Lemma 2.5. Let T · γ be an isolated critical circle of S with critical value c := S(γ ).
This circle admits a fundamental system of connected open neighborhoods U such that
U ∩ {S < c} has finitely many connected components. Moreover, if ind(γ ) ≥ 2, then for
every such U the intersection U ∩ {S < c} is non-empty and connected.
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Proof. The fundamental system of connected open neighborhoods will be the one given
by Lemma 2.4. Let U be any open set in this fundamental system, and let ε = ε(U) > 0
be the associated constant given by Lemma 2.4. Let V be another neighborhood of T · γ
whose closure in contained in U∩{S > c−ε/2}. By Lemma 2.3, we can find a function S′
such that S′|V > c − ε/2, S′ = S outside V , and V contains only finitely many critical
points of S′, all of which are non-degenerate and with Morse index larger than or equal to
ind(γ ). Since U ∩ {S ≤ c− ε/2} is the exit set of U for the negative gradient flow of S′ in
forward time, we have the Morse inequality

rankH1(U ,U ∩ {S ≤ c − ε/2}) ≤ #crit1(S′|V ) <∞, (20)

where crit1(S′|V ) denotes the set of critical points of S′|V with Morse index 1. Let r be
the number of path-connected components of the subspace U ∩{S ≤ c−ε/2}. The Morse
inequality (20), together with the long exact homology sequence

· · · → H1(U ,U ∩{S ≤ c− ε/2};Z)→ H0(U ∩{S ≤ c− ε/2};Z)→ H0(U;Z)→ · · · ,

implies

r = rankH0(U ∩ {S ≤ c − ε/2};Z) ≤ #crit1(S′|V )+ 1 <∞. (21)

Now, we denote by θt the flow of the renormalized gradient −∇S/|∇S|2, which is a well
defined smooth vector field on U ∩ {S < c}. Notice that if θs(β) is well-defined for all
s ∈ [0, t], we have S(β)−S(θt (β)) = t . Let τ : U ∩{S < c} → [0,∞) be the continuous
function given by τ(β) = max{0,S(β)− c + ε/2}. By the properties of U , we have

θτ(β)(β) ∈ U ∩ {S ≤ c − ε/2}, ∀β ∈ U ∩ {S < c}.

This shows that U ∩ {S ≤ c− ε/2} is a deformation retract of U ∩ {S < c}, and therefore
the latter open set has r path-connected components.

As for the “moreover” part of the lemma, assume that ind(γ ) ≥ 2. In particular γ is
not a local minimum, and therefore r ≥ 1. But since all the critical points of the function
S′|V have Morse index larger than or equal to ind(γ ), the inequality (21) implies that
r ≤ 1, and we conclude that r = 1. ut

2.4. Iterated mountain passes

After these preliminaries, we can finally prove the main result of this section, which shows
that critical circles of the free-period action functional cannot be of mountain pass type if
iterated sufficiently many times.

Theorem 2.6. Let T · γ be a critical circle of the free-period action functional S with
critical value c = S(γ ). Assume that all the iterates of γ belong to isolated critical
circles of S. Then for all integers n large enough there exists an open neighborhood W
of T · γ n with the following property: if any two points γ0, γ1 ∈ {S < nc} are contained
in the same connected component of {S < nc} ∪W , they are actually contained in the
same connected component of {S < nc}.



568 Alberto Abbondandolo et al.

Proof. Assume first that the mean Morse index ind(γ ) is positive. In this case, for n large
enough the Morse index ind(γ n) is larger than one. By Lemma 2.5, the critical circle
T · γ n has an open neighborhood W whose intersection with the sublevel set {S < nc} is
connected, and our theorem readily follows.

Now, assume that ind(γ ) = 0. By Proposition 1.1, this is equivalent to the Morse in-
dex of γ n being zero for all n ∈ N. Lemma 1.2 further implies that there exists a partition
N = N1 ∪ · · · ∪ Nk , integers n1 ∈ N1, . . . , nk ∈ Nk , and ν1, . . . , νk ∈ {0, . . . , 2d − 2}
with the following property: the integers in Ni are all multiples of ni , and for all n ∈ Ni
the critical point γ n has nullity νi .

Let us choose, once and for all, i ∈ {1, . . . , k} and consider integers n belonging
to Ni . Since T · γ ni is an isolated critical circle of S, by Lemma 2.5 it has a connected
open neighborhood U such that the open subset U− := U ∩ {S < nic} has finitely
many connected components U−1 , . . . ,U

−
r . For each α ∈ {1, . . . , r} we fix an arbitrary

point γα ∈ U−α , and for each pair of distinct α, β ∈ {1, . . . , r} we fix a continuous
path 2αβ : [−1, 1] → U joining γα and γβ . By Bangert’s technique of “pulling one
loop at a time” (see [Ban80, pp. 86–87] or [Abb13, p. 421]), for all sufficiently large
multiples n of ni , each iterated path ψn/ni ◦2αβ is homotopic with fixed endpoints to a
path entirely contained in {S < nc}. In other words, ψn/ni (U−) is contained in a path-
connected component of {S < nc} provided n ∈ Ni is larger than some number ni .

Let us fix such an n ∈ Ni . By Lemma 2.2, if we choose a sufficiently small neighbor-
hood U ′ ⊂ U of the critical circle T · ψni (γ ), its image ψn/ni (U ′) has a tubular neigh-
borhood V with an associated deformation retraction rt : V → V such that r0 = id,
r1(V) = ψn/ni (U ′), and d

dt
S ◦ rt ≤ 0. We set W to be an open neighborhood of

T · γ n that is small enough so that its closure is contained in V . Consider two points
γ0, γ1 ∈ {S < nc} as in the statement, and a continuous path 0 : [0, 1] → {S < nc} ∪W
joining them. We denote by s0 and s1 respectively the infimum and the supremum of
all s ∈ [0, 1] such that 0(s) ∈ W . The points 0(s0) and 0(s1) lie in V ∩ {S < nc}.
Since the deformation retraction rt does not increase S, the points 0(s0) and r1(0(s0))
are in the same connected component of {S < nc}. Moreover, r1(0(s0)) is in ψn/ni (U−).
Analogously, 0(s1) and r1(0(s1)) are in the same connected component of {S < nc},
and r1(0(s1)) lies in ψn/ni (U−). Since, as proved in the previous paragraph of the proof,
ψn/ni (U−) is contained in a connected component of {S < nc}, we conclude that γ0 and
γ1 belong to the same connected component of {S < nc}. ut

Theorem 2.6 should be compared with [Ban80, Theorem 2], which gives a similar state-
ment for isolated closed Riemannian geodesics on surfaces and is proved using geometric
arguments. A rather immediate corollary is the following generalization of the waist the-
orem of Bangert.

Corollary 2.7. Assume thatM is an orientable surface, the free-period action functional
S satisfies the Palais–Smale condition, and it admits a local minimum γ with S(γ ) 6= 0
whose critical circle T · γ is not the whole set of global minima of S in its connected
component. Then there are infinitely many periodic orbits with energy 0.

The proof of this corollary is a minor variation of the argument in Section 3.3, and we
leave its details to the reader. Notice that if the Mañé critical value of the universal cover
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cu is negative, then S satisfies the Palais–Smale condition (see [Abb13, Lemmata 5.1
and 5.4]). Moreover, in this situation, any contractible local minimum of S has positive
action, and it is never a global minimum. In particular, the existence of one such minimum
is enough to infer the existence of infinitely many other periodic orbits on the energy
hypersurface.

Remark 2.8. We expect Corollary 2.7 to hold for more general Lagrangians L, such as
the square of a Finsler norm. In the latter case, the functional S is not twice differentiable,
but our proof makes a minimal use of higher regularity and it should be possible to adapt
it to this situation. As already mentioned in the introduction, this would permit one to
generalize the waist theorem of Bangert to Finsler metrics on S2. We also expect Corol-
lary 2.7 to hold for some non-exact magnetic flows, for instance when M is a surface of
higher genus, for which a suitable free-time action functional is still available.

3. The minimax argument

3.1. The sequence of minimax functions

Throughout Section 3 we will assume that our closed surface M is orientable. This is
not a restrictive assumption: if M is non-orientable, we can replace it by its orientation
double cover and work there. In fact, the existence of infinitely many periodic orbits for
the orientation double cover of M clearly implies the same result for M .

We take the energy κ into account, by considering the one-parameter family of func-
tionals Sκ :M→ R given by

Sκ(x, T ) := T
∫
T

(
L(x(s), ẋ(s)/T )+ κ

)
ds.

Critical points of Sκ are in one-to-one correspondence with periodic orbits of energy κ:
more precisely, a critical point (x, T ) is associated to the T -periodic orbit γ (t) = x(t/T )
which has energy E(γ, γ̇ ) = κ . Notice that T is not necessarily the minimal period of γ .

In the remaining part of the paper we endow M = H 1(T,M) × (0,∞) with the
standard product metric as in Section 1.1 and with the induced distance.

For every κ ∈ (0, c0) the functional Sκ has a local minimizer ακ with

Sκ(ακ) < 0.

The proof of this fact is contained in [AMP15, Lemma 3.2] and builds on previous results
by Taı̆manov [Tai92a, Tai92b, Tai92c] and Contreras, Macarini and Paternain [CMP04].
SinceM is an orientable surface, every iteration αnκ of ακ remains a local minimizer of Sκ
(see [AMP15, Lemma 4.1]). Moreover, if the local minimizer ακ is strict, meaning that

Sκ(γ ) > Sκ(ακ), ∀γ ∈ U \ (T · ακ),

for some neighborhood U of the critical circle T · ακ , so are all the iterates αnκ .
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Fix some κ∗ ∈ (0, cu) such that ακ∗ is a strict local minimizer of Sκ∗ . Since κ∗ < cu,
the infimum of Sκ∗ over all contractible closed curves is −∞, and hence we can find
µ ∈M in the same free homotopy class of ακ∗ such that

Sκ∗(µ) < Sκ∗(ακ∗).

Choose a bounded open neighborhood U of T · ακ∗ whose closure intersects the critical
set of Sκ∗ only in T · ακ∗ , such that

inf
∂U

Sκ∗ > Sκ∗(ακ∗),

and such that T is bounded away from zero for (x, T ) ∈ U . The existence of such a neigh-
borhood is an easy consequence of the fact that Sκ∗ satisfies the Palais–Smale condition
on bounded subsets on which T is bounded away from zero (see [AMP15, Lemma 5.3]).
We denote byMκ the closure of the set of local minimizers of Sκ which belong to U . Such
a set consists of critical points of Sκ , but in general may contain critical points which are
not local minimizers. If Mκ is a finite union of critical circles, then all its elements are
strict local minimizers.

Lemma 3.1. There exists a closed interval J = J (κ∗) ⊂ (0, cu) whose interior contains
κ∗ and which has the following properties:

(i) For every κ ∈ J the set Mκ is a non-empty compact set.
(ii) For every κ ∈ J we have

Sκ(µ) < min
Mκ

Sκ .

(iii) For every κ ∈ J we have

sup
κ ′∈J

max
Mκ′

Sκ < min
{

inf
∂U

Sκ , 0
}
.

Proof. This lemma is an easy consequence of the fact that on bounded subsets of M the
functionals Sκ converge to Sκ∗ in the C1 norm as κ → κ∗, because

Sκ(x, T )− Sκ∗(x, T ) = (κ − κ∗)T ,

and of the fact that Sκ satisfies the Palais–Smale condition on U . Indeed, fix numbers
A0, A1, A2, A3 and A4 such that

Sκ∗(µ) < A0 < A1 < Sκ∗(ακ∗) < A2 < A3 < A4 < A5 := min
{

inf
∂U

Sκ∗ , 0
}
.

Let U ′ ⊂ U be a neighborhood of T ·ακ∗ such that Sκ∗(U ′) ⊂ (A1, A2). Since the closure
of the bounded set U \ U ′ does not contain critical points of Sκ∗ , by the Palais–Smale
condition there exists a positive number δ such that

‖dSκ∗‖ ≥ δ on U \ U ′.
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By the C1 convergence of Sκ |U to Sκ∗ |U , we can find a neighborhood J0 ⊂ (0, cu) of κ∗
such that

‖dSκ‖ ≥ δ/2 on U \ U ′, ∀κ ∈ J0.

In particular, the critical set of Sκ |U is contained in U ′ for every κ ∈ J0, and so is its
subset Mκ . Since Sκ∗(µ) < A0, Sκ∗(U ′) ⊂ (A1, A2) and Sκ∗(∂U) ⊂ [A5,∞), we can
find a closed interval J ⊂ J0 which is a neighborhood of κ∗ such that

Sκ(µ) < A0, Sκ(U ′) ⊂ (A0, A3), Sκ(∂U) ⊂ (A4,∞), ∀κ ∈ J. (22)

The interval J satisfies the required properties. Indeed, by (22) the infimum of Sκ on U
is strictly smaller than its infimum on ∂U , and hence, by the Palais–Smale condition,
Sκ |U has a global minimizer. Therefore, Mκ is not empty and, again by the Palais–Smale
condition, compact. So (i) holds. Since Mκ is contained in U ′, the minimum of Sκ on Mκ

is greater than A0, which is greater than Sκ(µ), by (22), proving (ii). Finally, (22) implies
that

sup
κ ′∈J

max
Mκ′

Sκ ≤ sup
U ′

Sκ ≤ A3 < A4 ≤ min
{

inf
∂U

Sκ , 0
}
, ∀κ ∈ J,

which proves (iii). ut

Property (iii) of the above lemma is used in the following:

Lemma 3.2. Let κ0 < κ1 be in J . For every α ∈ Mκ1 there exists a continuous path
w : [0, 1] → U such that w(0) ∈ Mκ0 , w(1) = α and Sκ0 ◦ w ≤ Sκ0(α).

Proof. The element α corresponds to a periodic orbit of energy κ1, and in particular is not
a critical point of Sκ0 . Set a := Sκ0(α). Being a regular point of the hypersurface S−1

κ0
(a),

α can be connected to a point β ∈ U ∩ {Sκ0 < a} by a continuous path in {Sκ0 ≤ a}. By
Lemma 3.1(iii),

a = Sκ0(α) < inf
∂U

Sκ0 ,

and hence the connected component of {Sκ0 ≤ a} which contains α is contained in U .
Since Sκ0 satisfies the Palais–Smale condition on U , the above fact ensures the existence
of a global minimizer γ of the restriction of Sκ0 to the connected component of {Sκ0 < a}

which contains β. Such a γ belongs to Mκ0 and can be connected to β by a continuous
path in {Sκ0 < a}. We conclude that there exists a continuous pathw : [0, 1] → {Sκ0 ≤ a}

such that w(0) = γ ∈ Mκ0 and w(1) = α. ut

For every n ∈ N and every κ ∈ J we define the set of continuous paths

Pn(κ) := {u ∈ C0([0, 1],M) | u(0) ∈ ψn(Mκ), u(1) = µn},

which join the n-th iterate of some element in Mκ to the n-th iterate of µ. Correspond-
ingly, we define the minimax value

cn(κ) := inf
u∈Pn(κ)

max
σ∈[0,1]

Sκ(u(σ )).

By Lemma 3.1(ii),

cn(κ) ≥ min
ψn(Mκ )

Sκ = nmin
Mκ

Sκ > nSκ(µ). (23)
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Lemma 3.3. For every n ∈ N the function cn is increasing on J .

Proof. Let κ0 < κ1 be in J . Let u ∈ Pn(κ1). Then u(0) is the n-th iterate of an element
of Mκ1 and by Lemma 3.2 we can join u(0) to the n-th iterate of some element of Mκ0 by
a path in {Sκ0 ≤ Sκ0(u(0))}. By concatenation we obtain a path v : [0, 1] →M such that
v(0) ∈ ψn(Mκ0), v([0, 1/2]) ⊂ {Sκ0 ≤ Sκ0(u(0))}, and v|[1/2,1] = u(2(· − 1/2)). Then v
belongs to Pn(κ0), and since Sκ0 ≤ Sκ1 , we have

max
[0,1]

Sκ0 ◦ v ≤ max
[0,1]

Sκ0 ◦ u ≤ max
[0,1]

Sκ1 ◦ u.

Therefore,

cn(κ0) ≤ max
[0,1]

Sκ0 ◦ v ≤ max
[0,1]

Sκ1 ◦ u,

and by taking the infimum over all u ∈ Pn(κ1) we conclude that cn(κ0) ≤ cn(κ1). ut

The next lemma is a simple generalization of [AMP15, Lemma 6.2], where we replace the
elements µ0, µ1 ∈M by compact subsets K0,K1 ⊂M. Its proof is based on Bangert’s
argument from [Ban80].

Lemma 3.4. Let K0 and K1 be compact sets in the same connected component of M,
and set

Rn := {u ∈ C
0([0, 1],M) | u(0) ∈ ψn(K0), u(1) ∈ ψn(K1)}.

For some fixed κ set

an := inf
u∈Rn

max
σ∈[0,1]

Sκ(u(σ )).

Then there exists a number A such that

an ≤ n max
K0∪K1

Sκ + A, ∀n ∈ N.

If we apply the above lemma to κ̂ = max J , K0 = Mκ̂ , K1 = {µ} and use the fact that
Sκ̂(µ) is negative and, by Lemma 3.1(iii), maxMκ̂

Sκ̂ is also negative, we find in particular
that cn(κ̂)→−∞ as n→∞. Since cn is increasing, we conclude that

lim
n→∞

cn = −∞ uniformly on J. (24)

3.2. The monotonicity argument

Let cn : J → R be the sequence of minimax functions defined in the previous section.
By (24) there exists a natural number n0 such that all the cn’s are negative for n ≥ n0.
The proof of the next lemma is based on Struwe’s monotonicity argument from [Str90]
and is similar to the proof of [AMP15, Lemma 7.1]. The fact that we are dealing with a
peculiar minimax class requires some extra care, and therefore we include a full proof.
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Lemma 3.5. Let n ≥ n0. Let κ̄ be an interior point of J at which cn is differentiable and
such that the setMκ̄ is a finite union of critical circles. Then for every neighborhood V of
the set

crit(Sκ̄) ∩ S−1
κ̄ (cn(κ̄))

there exists an element u of Pn(κ̄) such that Sκ̄(u(0)) < cn(κ̄) and

u([0, 1]) ⊂ {Sκ̄ < cn(κ̄)} ∪ V.

In particular, cn(κ̄) is a critical value of Sκ̄ .

Proof. The last assertion follows from the previous one by arguing by contradiction and
choosing V to be the empty set. Therefore, we must prove the existence of a path u which
satisfies the above requirements.

Since cn is differentiable at the interior point κ̄ ∈ J , there exist a neighborhood I of κ̄
which is contained in J and a number C ≥ 0 such that

|cn(κ)− cn(κ̄)| ≤ C|κ − κ̄|, ∀κ ∈ I. (25)

Let (κh) ⊂ I be a strictly decreasing sequence which converges to κ̄ , and consider the
infinitesimal sequence of positive numbers εh := κh − κ̄ . Let uh ∈ Pn(κh) be such that

max
[0,1]

Sκh ◦ uh ≤ cn(κh)+ εh.

Let γ = (x, T ) be in the image of uh. From (25) we deduce that

Sκ̄(γ ) ≤ Sκh(γ ) ≤ cn(κh)+ εh ≤ cn(κ̄)+ (C + 1)εh. (26)

If moreover γ ∈ uh([0, 1]) is such that Sκ̄(γ ) > cn(κ̄) − εh, then a second application
of (25) gives us the bound

T =
Sκh(x, T )− Sκ̄(x, T )

κh − κ̄
≤
cn(κh)+ εh − cn(κ̄)+ εh

εh
≤ C + 2.

It follows that
uh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪Ah,

where

Ah := {(x, T ) ∈M | T ≤ C + 2, Sκ̄(x, T ) ≤ cn(κ̄)+ (C + 1)εh}.

By the estimate

Sκ̄(x, T ) =
1

2T

∫
T
|ẋ(s)|2x(s) ds −

∫
T
x∗(θ)+ κ̄T ≥

1
2T
‖ẋ‖2

L2 − ‖θ‖∞‖ẋ‖L2 ,

the set Ah is bounded in M, uniformly with respect to h ∈ N.
The point uh(0) belongs to ψn(Mκh) and by Lemma 3.2 it can be joined to some

element in ψn(Mκ̄) by a path which remains in ψn(U) and in

{Sκ̄ ≤ Sκ̄(uh(0))} ⊂ {Sκ̄ ≤ cn(κ̄)+ (C + 1)εh},
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where we have used (26) again. By concatenating the latter path with uh, we obtain a path
vh : [0, 1] →M such that vh(0) ∈ ψn(Mκ̄), vh(1) = µn, and

vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪Ah ∪
(
ψn(U) ∩ {Sκ̄ ≤ cn(κ̄)+ (C + 1)εh}

)
.

In particular, vh belongs to Pn(κ̄). From the uniform boundedness of Ah and the fact
that ψn(U) is also bounded, we deduce that there exists a bounded set B ⊂M which is
independent of h ∈ N and such that

vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪
(
B ∩ {Sκ̄ ≤ cn(κ̄)+ (C + 1)εh}

)
. (27)

In particular,
lim sup
h→∞

max
[0,1]

Sκ̄ ◦ vh ≤ cn(κ̄). (28)

Since by assumption Mκ̄ is a finite union of critical circles, it consists of strict local min-
imizers for Sκ̄ . By the already mentioned [AMP15, Lemma 4.1], also ψn(Mκ̄) consists
of strict local minimizers for Sκ̄ . Since ψn(Mκ̄) consists of finitely many critical circles,
up to the choice of a subsequence we may assume that vh(0) belongs to the same critical
circle T · α for every h ∈ N. In particular,

A0 := Sκ̄(vh(0)) = Sκ̄(α)

does not depend on h. Since T · α minimizes Sκ̄ strictly, it has a neighborhood W on
which Sκ̄ ≥ A0 and such that

inf
∂W

Sκ̄ > A0

(see the already mentioned [AMP15, Lemma 5.3]). Since

Sκ̄(vh(1)) = Sκ̄(µn) < Sκ̄(vh(0))

because of Lemma 3.1(ii), every path vh must meet the boundary of W , and hence

inf
h∈N

max
[0,1]

Sκ̄ ◦ vh > A0.

Together with (28), the above strict inequality implies that

cn(κ̄) > A0.

Using also the fact that cn(κ̄) is negative (because n ≥ n0), we can find numbers A1
and A2 such that

A0 < A1 < cn(κ̄) < A2 < 0.

Let ∇Sκ̄ be the gradient vector field of Sκ̄ with respect to the standard product Rie-
mannian metric on M = H 1(T,M)×(0,∞). By multiplying−∇Sκ̄ by a suitable smooth
non-negative function we can construct a smooth bounded tangent vector field X on M
which vanishes on

{Sκ̄ ≤ A0} ∪ {Sκ̄ ≥ 0},
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satisfies dSκ̄(X) ≤ 0 on M, and

dSκ̄(X) ≤ −min{‖dSκ̄‖2, 1} on {A1 ≤ Sκ̄ ≤ A2}. (29)

The flow φ of X is well-defined on M × [0,∞), because X is bounded and the only
source of non-completeness is T going to zero, but this may happen only for negative-
gradient flow lines for which Sκ̄ tends to zero (see [Abb13, Lemmata 3.2 and 3.3]), and
we have made X vanish on {Sκ̄ ≥ 0}. Furthermore, since X is bounded, φ maps bounded
sets into bounded sets.

We claim that if h is large enough, then

φ1(vh([0, 1])) ⊂ {Sκ̄ < cn(κ̄)} ∪ V.

This claim implies the conclusion of the lemma: indeed, the path φ1◦vh belongs to Pn(κ̄),
because

Sκ̄(φ1 ◦ vh(0)) = A0 < cn(κ̄), Sκ̄(φ1 ◦ vh(1)) = Sκ̄(µn) < A0,

and φ fixes the points in {Sκ̄ ≤ A0}.
It remains to prove the above claim. By (27) and the properties of X,

φ([0, 1] × vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪
(
B′ ∩ {Sκ̄ ≤ cn(κ̄)+ (C + 1)εh}

)
(30)

for some bounded subset B′ of M. Since Sκ̄ satisfies the Palais–Smale condition on
bounded subsets of M on which Sκ̄ is bounded away from zero (see [Abb13, Lem-
mata 5.1 and 5.3]), the set

K := B′ ∩ crit(Sκ̄) ∩ S−1
κ̄ (cn(κ̄))

is compact. Since K consists of fixed points of the flow φ, it has a neighborhood V ′ ⊂ V
such that

φ([0, 1] × V ′) ⊂ V. (31)

Using again the fact that Sκ̄ satisfies the Palais–Smale condition on bounded subsets of M
on which Sκ̄ is bounded away from zero, we can find ε > 0 and δ ∈ (0, 1] such that

‖dSκ̄‖ ≥ δ on (B′ \ V ′) ∩ {cn(κ̄)− ε ≤ Sκ̄ ≤ cn(κ̄)+ ε}. (32)

Let σ ∈ [0, 1] be such that

Sκ̄(φ1(vh(σ ))) ≥ cn(κ̄) and φ1(vh(σ )) /∈ V. (33)

By (31), φr(vh(σ )) cannot belong to V ′ for any r ∈ [0, 1]. Together with (30) we deduce
that

φ([0, 1] × {vh(σ )}) ⊂ (B′ \ V ′) ∩ {cn(κ̄) ≤ Sκ̄ ≤ cn(κ̄)+ (C + 1)εh}.

When h is so large that (C + 1)εh ≤ ε, (32) implies that

‖dSκ̄(φr(uh(σ )))‖ ≥ δ, ∀r ∈ [0, 1],
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and by (29) we find

cn(κ̄) ≤ Sκ̄(φ1(vh(σ ))) = Sκ̄(vh(σ ))+
∫ 1

0

d

dr
Sκ̄(φr(vh(σ ))) dr

≤ cn(κ̄)+ (C + 1)εh +
∫ 1

0
dSκ̄(φr(vh(σ )))[X(φr(vh(σ )))] dr

≤ cn(κ̄)+ (C + 1)εh − δ2.

Since (εh) is infinitesimal, the above inequality implies that h is smaller than some h0.
When h is larger than h0, (33) cannot occur and hence

φ1(vh([0, 1])) ⊂ {Sκ̄ < cn(κ̄)} ∪ V,

as claimed. ut

3.3. The proof of the theorem

We can finally prove the theorem stated in the Introduction. Let κ ∈ (0, cu). If the local
minimizer ακ is not strict, then T · ακ is the limit of a sequence of critical circles of Sκ
in M \ (T · ακ), which determine infinitely many distinct periodic orbits of energy κ .
Therefore, it is enough to prove the following statement:

Every κ∗ in (0, cu) such that the local minimizer ακ∗ is strict has a neighborhood J ⊂
(0, cu) such that for almost every κ ∈ J the energy level E−1(κ) has infinitely many
periodic orbits.

Fix κ∗ as above and let J = J (κ∗) ⊂ (0, cu) be the interval which is constructed in
Section 3.1. Let cn : J → R be the corresponding sequence of minimax functions and let
n0 ∈ N be such that cn < 0 for every n ≥ n0. Since the countably many functions cn are
monotone, Lebesgue’s theorem implies that the set

J ′ := {κ ∈ Int(J ) | cn is differentiable at κ for every n ≥ n0}

has full measure in J . We shall prove that for every κ ∈ J ′ the energy level E−1(κ) has
infinitely many periodic orbits.

Fix some κ ∈ J ′. If Mκ consists of infinitely many critical circles, then E−1(κ)

clearly has infinitely many periodic orbits. Therefore, we may assume thatMκ consists of
only finitely many critical circles, which thus consist of strict local minimizers. Assume
for contradiction that E−1(κ) has only finitely many periodic orbits. Then the critical set
of Sκ consists of finitely many critical circles T ·γ1, . . . ,T ·γk together with their iterates
T · γ nj for 1 ≤ j ≤ k and n ∈ N. By Theorem 2.6 we can find a natural number n1
such that the following is true: for every n ≥ n1 and every j ∈ {1, . . . , k} there exists a
neighborhood Wj,n of T · γ nj such that any two points in {Sκ < Sκ(γ nj )} which can be
connected within

{Sκ < Sκ(γ nj )} ∪Wj,n
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can also be connected in {Sκ < Sκ(γ nj )}. Moreover, the sets Wj,n can be chosen to be so
small that their closures are pairwise disjoint. Set

a := min
1≤j≤k

Sκ(γ n1−1
j ).

By (24) we can find a natural number n ≥ n0 such that cn(κ) < a. By Lemma 3.5, cn(κ)
is a critical value of Sκ , and by our finiteness assumption,

crit(Sκ) ∩ S−1
κ (cn(κ)) = T · γm1

j1
∪ · · · ∪ T · γmhjh

for some non-empty subset {j1, . . . , jh} of {1, . . . , k} and some positive integers
m1, . . . , mh. Since cn(κ) < a, all the mi’s are at least n1. We apply Lemma 3.5 with

V :=Wj1,m1 ∪ · · · ∪Wjh,mh

to obtain a path u ∈ Pn(κ) with image in

{Sκ < cn(κ)} ∪ V,

and such that Sκ(u(0)) < cn(κ). Since also Sκ(u(1)) = Sκ(µn) < cn(κ) by (23), and
since the sets Wji ,mi , 1 ≤ i ≤ h, have pairwise disjoint closures, the path u is the con-
catenation of finitely many paths v, each of which has endpoints in {Sκ < cn(κ)} and is
contained in {Sκ < cn(κ)} ∪Wji ,mi for some i ∈ {1, . . . , h}. By the properties of the
sets Wji ,mi stated above, the endpoints of each of the v’s can be joined by paths w in
{Sκ < cn(κ)}. By concatenating the w’s, we obtain a path in {Sκ < cn(κ)} which joins
u(0) and u(1). Since such a path belongs to Pn(κ), this contradicts the definition of cn(κ).
This contradiction proves that E−1(κ) has infinitely many periodic orbits.

Appendix. Hyperbolic perturbation of unipotent symplectic matrices

We recall that an element of GL(n,R) is called unipotent when its spectrum is equal
to {1}, and hyperbolic when its spectrum does not intersect the unit circle of the complex
plane. The argument in the proof of the following statement was suggested to us by Marie-
Claude Arnaud and Jairo Bochi. Notice that the statement becomes straightforward if
n = 1, since Sp(2) = SL(2,R).

Proposition A.1. All unipotent elements of Sp(2n) belong to the closure of the space of
hyperbolic elements of Sp(2n).

Proof. Consider an arbitrary P ∈ Sp(2n) with spectrum σ(P ) = {1}. Let us prove that
there exists a Lagrangian vector subspace V ⊂ R2n invariant by P . To see this, let V
be a maximal isotropic subspace invariant by P , that is, an invariant isotropic subspace
that is not strictly contained in any other isotropic invariant subspace. We claim that V
is Lagrangian. Indeed, towards a contradiction, suppose that dimV < n. Let V ω be the
symplectic orthogonal of V and notice that P(V ω) = V ω. By our hypothesis, V is strictly
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contained in V ω and therefore has a positive-dimensional complementary subspace V ′

in V ω. Using the decomposition V ω = V ⊕ V ′ we can write

P |V ω =

(
P |V π1 ◦ P |V ′

0 π2 ◦ P |V ′

)
,

where π1 : V
ω
→ V and π2 : V

ω
→ V ′ are the projections. Since σ(P |V ω ) = σ(P |V )

= {1} and

det(P |V ω − λI) = det(P |V − λI) det(π2 ◦ P |V ′ − λI), ∀λ ∈ C,

we infer that σ(π2◦P |V ′) = {1}. Consequently, there exists v ∈ V ′ such that Pv−v ∈ V .
But this implies that V ⊕ span{v} is isotropic and invariant, contradicting the maximality
of V .

Now, choose a symplectic basis {e1, . . . , en, f1, . . . , fn} with V = span{e1, . . . , en}.
Using these coordinates we can write P as

P =

(
A B

0 C

)
,

where A = P |V . For all t ∈ R, we set

Pt :=

(
etI 0
0 e−tI

)
·

(
A B

0 C

)
=

(
etA etB

0 e−tC

)
.

Notice that Pt ∈ Sp(2n), being the product of two elements of Sp(2n). Clearly, Pt de-
pends smoothly on t , and P0 = P . Finally, since σ(A) = {1}, we see that et is an
eigenvalue of Pt with algebraic multiplicity n. This, together with the fact that Pt is sym-
plectic, implies that for all t 6= 0 the matrix Pt is hyperbolic with σ(Pt ) = {et , e−t }. ut
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