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Abstract. We prove da Silva’s 1987 conjecture that any positively oriented matroid is a positroid,
that is, it can be realized by a set of vectors in a real vector space. It follows from this result and
a result of the third author that the positive matroid Grassmannian (or positive MacPhersonian) is
homeomorphic to a closed ball.
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1. Introduction

Matroid theory was introduced in the 1930s as a combinatorial model that keeps track
of, and abstracts, the dependence relations among a set of vectors. It has become an ex-
tremely powerful model in many other contexts, but its connections to linear algebra are
still the subject of very interesting research today. In a different but related direction, ori-
ented matroid theory was introduced in the 1970s as a model for the (signed) dependence
relations among a set of real vectors.

Not every matroid or oriented matroid can be realized by a set of vectors. In fact, one
of the early hopes in the area was to discover the “missing axiom” which characterizes the
“linear” matroids that arise in this way. It is now believed that this is not a reasonable goal
[MNW14a, Vám78], or in Vámos’s words, that “the missing axiom of matroid theory is
lost forever”.

Nevertheless, “the realizability problem—given an (oriented) matroid, find a realiza-
tion or prove that none exists—is a key problem” [Zie96] in combinatorics, and there has
been a lot of work in recent years on realizability of matroids and oriented matroids over
various fields. For realizability over a finite field, there has been some recent progress:
Geelen, Gerards, and Whittle announced a proof of Rota’s 1970 conjecture that for any
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finite field Fq , there are only finitely many obstructions (“excluded minors”) to being re-
alizable over Fq . On the other hand, there are very few positive results on the realizability
of oriented matroids over a field of characteristic zero, and those that exist are mostly for
matroids of small rank. In fact Sturmfels [Stu87] proved that the existence of an algo-
rithm for deciding if any given (oriented) matroid is realizable over Q is equivalent to the
existence of an algorithm for deciding the solvability of arbitrary Diophantine equations
within the field of rational numbers. Even for orientations of uniform matroids over R,
there is no finite set of excluded minors for realizability [BS89], [BL+99, Theorem 8.3.5].

The main goal of this paper is to prove the realizability over Q of positively oriented
matroids—a large family of combinatorially defined oriented matroids, which were in-
troduced by Ilda da Silva in 1987. They are oriented matroids for which all bases have
a positive orientation. The motivating example is the uniform positively oriented ma-
troid Cn,r , which is realized by the vertices of the cyclic polytope Cn,r [Bla77, LV75]. Da
Silva studied the combinatorial properties of positively oriented matroids, and proposed
the following conjecture, which is the main result of this paper.

Conjecture 1.1 (da Silva, 1987 [dS87]). Every positively oriented matroid is realizable
as a set of vectors over R.

More recently, Postnikov [Pos] introduced positroids in his study of the totally nonneg-
ative part of the Grassmannian. They are the (unoriented) matroids that can be repre-
sented by a real matrix in which all maximal minors are nonnegative. He unveiled their
elegant combinatorial structure, and showed they are in bijection with several interest-
ing classes of combinatorial objects, including Grassmann necklaces, decorated permu-
tations,

0

-diagrams, and equivalence classes of plabic graphs. He also showed they can
all be represented by matrices over Q. Positroids have recently been found to have very
interesting connections with cluster algebras [Sco06] and quantum field theory [AH+16].

Every positroid gives rise to a positively oriented matroid, and da Silva’s Conjec-
ture 1.1 is the converse statement. This is our main theorem.

Theorem 5.1. Every positively oriented matroid is a positroid, and is therefore realizable
as a set of vectors over Q.

There is a natural partial order on oriented matroids called specialization or weak order.
In [Mac93], motivated by his theory of combinatorial differential manifolds, MacPher-
son introduced the matroid Grassmannian (also called the MacPhersonian) MacP(d, n),
which is the poset of rank d oriented matroids on [n] ordered by specialization. He showed
that MacP(d, n) plays the same role for matroid bundles as the ordinary Grassmannian
plays for vector bundles, and pointed out that the geometric realization of the order com-
plex ‖MacP(d, n)‖ of MacP(d, n) is homeomorphic to the real Grassmannian Gr(d, n) if
d equals 1, 2, n − 2, or n − 1. “Otherwise, the topology of the matroid Grassmannian is
mostly a mystery.”

Since MacPherson’s work, some progress on this question has been made, most no-
tably by Anderson [And99], who obtained results on homotopy groups of the matroid
Grassmannian, and by Anderson and Davis [AD02], who constructed maps between the
real Grassmannian and the matroid Grassmannian—showing that philosophically, there is
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a splitting of the map from topology to combinatorics—and thereby gained some under-
standing of the mod 2 cohomology of the matroid Grassmannian. However, many open
questions remain.

We define the positive matroid Grassmannian or positive MacPhersonian
MacP+(d, n) to be the poset of rank d positively oriented matroids on [n], ordered by
specialization. By Theorem 5.1, each positively oriented matroid can be realized by an
element of the positive Grassmannian Gr+(d, n). Combining this fact with results of the
third author [Wil07], we obtain the following result.

Theorem 1.2. The positive matroid Grassmannian ‖MacP+(d, n)‖ is homeomorphic to
a closed ball.

The structure of this paper is as follows. In Sections 2 and 3 we recall some basic def-
initions and facts about matroids and positroids, respectively. In Section 4 we introduce
positively oriented matroids, and prove some preliminary results about them. In Section 5
we prove da Silva’s conjecture that all positively oriented matroids are realizable. Finally,
in Section 6, we introduce the positive MacPhersonian, and show that it is homeomorphic
to a closed ball.

2. Matroids

A matroid is a combinatorial object that unifies several notions of independence. Among
the many equivalent ways of defining a matroid we will adopt the point of view of bases,
which is one of the most convenient for the study of positroids and matroid polytopes. We
refer the reader to [Oxl92] for a more in-depth introduction to matroid theory.

Definition 2.1. A matroid M is a pair (E,B) consisting of a finite set E and a nonempty
collection B = B(M) of subsets of E, called the bases of M , which satisfy the strong
basis exchange axiom:
• If B1, B2 ∈ B and b1 ∈ B1 − B2, then there exists b2 ∈ B2 − B1 such that both
(B1 − b1) ∪ b2 ∈ B and (B2 − b2) ∪ b1 ∈ B.

This is seemingly stronger than the usual basis exchange axiom, but is actually equivalent
to it. The set E is called the ground set of M; we also say that M is a matroid on E.
A subset F ⊆ E is called independent if it is contained in some basis. The maximal
independent sets contained in a given set A ⊆ E are called the bases of A. They all have
the same size, which is called the rank rM(A) = r(A) of A. In particular, all the bases of
M have the same size, called the rank r(M) of M . A subset of E that is not independent
is called dependent. A circuit is a minimal dependent subset of E—that is, a dependent
set whose proper subsets are all independent.

Example 2.2. Let A be a d × n matrix of rank d with entries in a field K, and denote its
columns by a1, . . . , an ∈ Kd . The subsets B ⊆ [n] for which the columns {ai | i ∈ B}
form a linear basis for Kd are the bases of a matroidM(A) on the set [n]. Matroids arising
in this way are called realizable over K, and motivate much of the theory of matroids.

There are several natural operations on matroids.
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Definition 2.3. Given a matroid M = (E,B), the orthogonal or dual matroid M∗ =
(E,B∗) is the matroid on E defined by B∗ := {E − B | B ∈ B}.

A cocircuit of M is a circuit of the dual matroid M∗.

Definition 2.4. Given a matroid M = (E,B) and a subset S ⊆ E, the restriction of
M to S, written M|S, is the matroid on the ground set S whose independent sets are all
independent sets of M which are contained in S. Equivalently, the set of bases of M|S is

B(M|S) = {B ∩ S | B ∈ B and |B ∩ S| is maximal among all B ∈ B}.

The dual operation of restriction is contraction.

Definition 2.5. Given a matroid M = (E,B) and a subset T ⊆ E, the contraction of M
by T , writtenM/T , is the matroid on the ground setE−T whose bases are the following:

B(M/T ) = {B − T | B ∈ B and |B ∩ T | is maximal among all B ∈ B}.

Proposition 2.6 ([Oxl92, Chapter 3.1, Exercise 1]). IfM is a matroid on E and T ⊆ E,
then

(M/T )∗ = M∗|(E − T ).

The following geometric representation of a matroid will be useful in our study of
positroids.

Definition 2.7. Given a matroid M = ([n],B), the (basis) matroid polytope 0M of M is
the convex hull of the indicator vectors of the bases of M:

0M := convex{eB | B ∈ B} ⊂ Rn,

where eB :=
∑
i∈B ei , and {e1, . . . , en} is the standard basis of Rn.

Definition 2.8. Let M be a matroid on E and N a matroid on F . The direct sum of
matroids M and N is the matroid M ⊕N whose underlying set is the disjoint union of E
and F , and whose bases are the disjoint unions of a basis of M with a basis of N .

Definition 2.9. A matroid which cannot be written as the direct sum of two nonempty
matroids is called connected. Any matroid M can be written uniquely as a direct sum
of connected matroids, called its connected components; let c(M) denote the number of
connected components of M .

Taking duals distributes among direct sums, so a matroidM is connected if and only if its
dual matroid M∗ is connected.

Proposition 2.10 ([Oxl92]). Let M be a matroid on E. For a, b ∈ E, set a ∼ b when-
ever there are bases B1, B2 ofM such that B2 = (B1− a)∪ b. Equivalently, a ∼ b if and
only if there is a circuit C ofM containing both a and b. The relation∼ is an equivalence
relation, and the equivalence classes are precisely the connected components of M .

The following lemma is well-known and easy to check.
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Lemma 2.11. Let M be a matroid on the ground set [n]. The dimension of the matroid
polytope 0M equals n− c(M).

The following result is a restatement of the greedy algorithm for matroids.

Proposition 2.12 ([BGW03, Exercise 1.26], [AK06, Prop. 2]). Let M be a matroid
on [n]. Any face of the matroid polytope 0M is itself a matroid polytope. More specif-
ically, for w : Rn → R let wi = w(ei); by linearity, these values determine w. Now
consider the flag of sets

∅ = A0 ( A1 ( · · · ( Ak = [n]

such that wa = wb for a, b ∈ Ai − Ai−1, and wa > wb for a ∈ Ai − Ai−1 and
b ∈ Ai+1 − Ai . Then the face of 0M maximizing the linear functional w is the matroid
polytope of the matroid

k⊕
i=1

(M|Ai)/Ai−1.

3. Positroids

We now introduce a special class of realizable matroids introduced by Postnikov [Pos].
We also collect several foundational results on positroids, which come from [Oh11, Pos,
ARW16].

Definition 3.1. Suppose A is a d × n matrix of rank d with real entries such that all its
maximal minors are nonnegative. Such a matrix A is called totally nonnegative, and the
realizable matroid M(A) associated to it is called a positroid. In fact, it follows from the
work of Postnikov that any positroid can be realized by a totally nonnegative matrix with
entries in Q [Pos, Theorem 4.12].

Remark 3.2. We will often identify the ground set of a positroid with the set [n], but
more generally, the ground set of a positroid may be any finite set E = {e1, . . . , en},
endowed with a specified total order e1 < · · · < en. Note that the fact that a given matroid
is a positroid is strongly dependent on the total order of its ground set; in particular, being
a positroid is not invariant under matroid isomorphism.

Example 3.3. To visualize positroids geometrically, it is instructive to analyze the cases
d = 2, 3. Some of these examples are well-known to the experts; for example, part of this
discussion also appears in [AH+16]. Let the columns of A be a1, . . . , an ∈ Rd .

Case d = 2: Since det(ai, aj ) is the signed area of the parallelogram generated by ai
and aj , we have 0◦ ≤ ∠(ai, aj ) ≤ 180◦ for i < j . Therefore the vectors a1, . . . , an
appear in counterclockwise order in a half-plane, as shown in Figure 1.

Case d = 3: Again we claim that a1, . . . , an are contained in a half-space. If this were not
the case, then the origin would be inside a triangular pyramid with affinely independent
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 2   

 1   

 5    4   

 3    6    7   

Wednesday, October 9, 13

Fig. 1. A realization of a positroid of rank 2.

vertices ai1 , ai2 , ai3 , ai4 for i1 < · · · < i4. This would give λ1ai1 + · · · + λ4ai4 = 0 for
some λ1, . . . , λ4 > 0. Then

0 = det(ai1 , ai2 , 0) =
4∑

m=1

λm · det(ai1 , ai2 , aim)

= λ3 · det(ai1 , ai2 , ai3)+ λ4 · det(ai1 , ai2 , ai4) > 0,

a contradiction.
There is no significant loss in assuming that our positroid contains no loops. Now

there are two cases:

(a) The vectors a1, . . . , an are in an open half-space. After a suitable linear transforma-
tion and rescaling of the individual vectors, we may assume that ai = [1,bi]T for some
row vector bi ∈ R2. Now det(ai, aj , ak) is the signed area of the triangle with vertices
bi,bj ,bk , so b1, . . . ,bn must be the vertices (and possibly other points on the bound-
ary) of a convex polygon, listed in counterclockwise order as shown in the left panel of
Figure 2.
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 3   

 2   
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 3   

 8   
 7   

Wednesday, October 9, 13

Fig. 2. The two kinds of loop-free positroids of rank 3.

(b) The vector 0 is in the convex hull of a1, . . . , an. First assume that 0 = λiai + λjaj +
λkak where λi, λj , λk > 0 and ai, aj , ak are affinely independent. Let al be one of the
given vectors which is not on their plane. By [ARW16, Lemma 3.3], after possibly rela-
beling i, j, k, we may assume that i < j < k < l. This gives the following contradiction:

0 = det(0, ak, al) = λi det(ai, ak, al)+ λj det(aj , ak, al) > 0.

Therefore 0 = λiai + λjaj for λi, λj > 0. If rank({ai, ai+1, . . . , aj }) = 3, we would be
able to find i < r < s < j with

0 = det(0, ar , as) = λi det(ai, ar , as)+ λj det(aj , ar , as) > 0.
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Thus rank({ai, ai+1, . . . , aj }) ≤ 2 and similarly rank({aj , aj+1, . . . , ai}) ≤ 2. Since our
collection has rank 3, these sets must both have rank exactly 2. Hence our positroid is
obtained by gluing the rank 2 positroids of ai, ai+1 . . . , aj and aj , aj+1, . . . , ai along the
line containing ai and aj , as shown in the right panel of Figure 2. One easily checks that
this is a positroid when the angle from the second plane to the first is less than 180◦.

Case d > 3: In higher rank, the idea that any basis among a1, . . . , an must be “pos-
itively oriented” is harder to visualize, and the combinatorics is now more intricate.
However, we can still give a realization for the most generic positroid: it is given by
any points f (x1), . . . , f (xn) with x1 < · · · < xn on the moment curve t 7→ f (t) =

(1, t, t2, . . . , td−1) in Rd . Every d × d minor of the resulting matrix is positive, thanks to
the Vandermonde determinant. These n points are the vertices of the cyclic polytope Cn,r ,
whose combinatorics plays a key role in the Upper Bound Theorem [McM70]. In that
sense, the combinatorics of positroids may be seen as a generalization of the combina-
torics of cyclic polytopes.

If A is as in Definition 3.1 and I ∈
(
[n]
d

)
is a d-element subset of [n], then we let 1I (A)

denote the d × d minor of A indexed by the column set I . These minors are called the
Plücker coordinates of A.

In our study of positroids, we will repeatedly make use of the following notation.
Given k, ` ∈ [n], we define the (cyclic) interval [k, `] to be the set

[k, `] :=

{
{k, k + 1, . . . , `} if k ≤ `,
{k, k + 1, . . . , n, 1, . . . , `} if ` < k.

We will often put a total order on a cyclic interval in the natural way.
The following proposition says that positroids are closed under duality, restriction,

and contraction. For a proof, see for example [ARW16].

Proposition 3.4. Let M be a positroid on [n]. Then M∗ is also a positroid on [n]. Fur-
thermore, for any subset S of [n], the restriction M|S is a positroid on S, and the con-
traction M/S is a positroid on [n] − S. Here the total orders on S and [n] − S are the
ones inherited from [n].

We say that two disjoint subsets T and T ′ of [n] are noncrossing if there is a cyclic
interval of [n] containing T and disjoint from T ′ (and vice versa). Equivalently, T and T ′

are noncrossing if there are no a < b < c < d in cyclic order in [n] such that a, c ∈ T
and b, d ∈ T ′.

If S is a partition [n] = S1 t · · · t St of [n] into pairwise disjoint nonempty sub-
sets, we say that S is a noncrossing partition if any two parts Si and Sj are noncrossing.
Equivalently, place the numbers 1, . . . , n on n vertices around a circle in clockwise order,
and then for each Si draw a polygon on the corresponding vertices. If no two of these
polygons intersect, then S is a noncrossing partition of [n].

Let NCn denote the set of noncrossing partitions of [n].
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Theorem 3.5 ([ARW16, Theorem 7.6]). Let M be a positroid on [n] and let S1, . . . , St
be the ground sets of the connected components of M . Then 5M = {S1, . . . , St } is a
noncrossing partition of [n], called the noncrossing partition of M .

Conversely, if S1, . . . , St form a noncrossing partition of [n] and M1, . . . ,Mt are
connected positroids on S1, . . . , St , respectively, then M1 ⊕ · · · ⊕Mt is a positroid.

The following key result gives a characterization of positroids in terms of their matroid
polytopes.

Proposition 3.6 ([LP], [ARW16, Proposition 5.7]). A matroid M of rank d on [n] is
a positroid if and only if its matroid polytope 0M can be described by the equality
x1 + · · · + xn = d and inequalities of the form∑

`∈[i,j ]

x` ≤ aij with i, j ∈ [n].

4. Oriented matroids and positively oriented matroids

An oriented matroid is a matroid with additional structure, given in terms of signs. Just
as for matroids, there are several equivalent points of view and axiom systems. We will
mostly focus on the chirotope point of view, but we will also use the signed circuit axioms.
For a thorough introduction to the theory of oriented matroids, see [BL+99].

Definition 4.1 ([BL+99, Theorem 3.6.2]). An oriented matroid M of rank d is a pair
(E, χ) consisting of a finite set E and a chirotope χ : Ed → {−1, 0, 1} that satisfies the
following properties:

(B1′) The map χ is alternating, i.e., for any permutation σ of [d] and any y1, . . . , yd
in E, we have

χ(yσ(1), . . . , yσ(d)) = sign(σ ) · χ(y1, . . . , yd),

where sign(σ ) is the sign of σ . Moreover, the d-subsets {y1, . . . , yd} of E such
that χ(y1, . . . , yd) 6= 0 are the bases of a matroid on E.

(B2′′′) For any v1, v2, v3, v4, y3, y4, . . . , yd ∈ E, if

ε := χ(v1, v2, y3, y4, . . . , yd) · χ(v3, v4, y3, y4, . . . , yd) ∈ {−1, 1},

then either

χ(v3, v2, y3, y4, . . . , yd) · χ(v1, v4, y3, y4, . . . , yd) = ε, or
χ(v2, v4, y3, y4, . . . , yd) · χ(v1, v3, y3, y4, . . . , yd) = ε.

We consider (E, χ) to be the same oriented matroid as (E,−χ).

Definition 4.1 differs slightly from the usual definition of chirotope, but it is equivalent
to the usual definition by [BL+99, Theorem 3.6.2]. We prefer to work with the definition
above because it is closely related to the 3-term Grassmann–Plücker relations.
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Note that the value of χ on a d-tuple (y1, . . . , yd) determines the value of χ on every
d-tuple obtained by permuting y1, . . . , yd . Therefore when E is a set with a total order,
we will make the following convention: if I = {i1, . . . , id} is a d-element subset of E
with i1 < · · · < id then we will let χ(I) denote χ(i1, . . . , id). We may then think of χ as
a function whose domain is the set of d-element subsets of E.

Example 4.2. Let A be a d × n matrix of rank d with entries in an ordered field K.
Recall that for a d-element subset I of [n] we let 1I (A) denote the determinant of the
d × d submatrix of A consisting of the columns indexed by I . We obtain a chirotope
χA :

(
[n]
d

)
→ {−1, 0, 1} by setting

χA(I ) =


0 if 1I (A) = 0,
1 if 1I (A) > 0,
−1 if 1I (A) < 0.

(1)

An oriented matroid M = ([n], χ(A)) arising in this way is called realizable over the
field K.

Definition 4.3. If M = (E, χ) is an oriented matroid, its underlying matroid M is the
(unoriented) matroid M := (E,B) whose bases B are precisely the sets {b1, . . . , bd}

such that χ(b1, . . . , bd) is nonzero.

Remark 4.4. Every oriented matroid M gives rise in this way to a matroid M. However,
given a matroid (E,B) it is not in general possible to give it the structure of an oriented
matroid; that is, it is not always possible to find a chirotope χ such that χ is nonzero
precisely on the bases B.

Definition 4.5. If M = (E, χ) is an oriented matroid, any A ⊆ E induces a reorienta-
tion −AM := (E, −Aχ) of M, where −Aχ is the chirotope

−Aχ(y1, . . . , yd) := (−1)|A∩{y1,...,yd }| · χ(y1, . . . , yd).

This can be thought of as the oriented matroid obtained from M by “changing the sign
of the vectors in A”.

The following definition introduces our main objects of study.

Definition 4.6. Let M = (E, χ) be an oriented matroid of rank d on a setE with a linear
order<. We say M is positively oriented with respect to< if there is a reorientation −Aχ
that makes all bases positive, that is,

−Aχ(I) := −Aχ(i1, . . . , id) ≥ 0

for every d-element subset I = {i1 < . . . < id} ⊆ E.

One can also define oriented matroids using the signed circuit axioms.
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Definition 4.7. Let E be a finite set. Let C be a collection of signed subsets of E. If
X ∈ C, we let X denote the underlying (unsigned) subset of E, and X+ and X− denote
the subsets of X consisting of the elements which have positive and negative signs, re-
spectively. If the following axioms hold for C, then we say that C is the set of signed
circuits of an oriented matroid on E.
(C0) ∅ /∈ C.
(C1) (symmetric) C = −C.
(C2) (incomparable) For all X, Y ∈ C, if X ⊂ Y , then X = Y or X = −Y .
(C3) (weak elimination) For all X, Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y− there is a Z ∈ C

such that

• Z+ ⊆ (X+ ∪ Y+)− e,
• Z− ⊆ (X− ∪ Y−)− e.

If C is a signed subset of E and e ∈ C, we will denote by C(e) the sign of e in C, that is,
C(e) = 1 if e ∈ C+, and C(e) = −1 if e ∈ C−.

Remark 4.8. The chirotope axioms and signed circuit axioms for oriented matroids are
equivalent. While the proof of this equivalence is intricate, the bijection is easy to de-
scribe, as follows. For more details, see [BL+99, Theorem 3.5.5]. Given the chirotope χ
of an oriented matroid M, one can read off the bases of the underlying matroid M by
looking at the subsets that χ assigns a nonzero value. Then each circuit C of M gives
rise to a signed circuit C (up to sign) as follows. If e, f ∈ C are distinct, let

σ(e, f ) := −χ(e,X) · χ(f,X) ∈ {−1, 1},

where (f,X) is any ordered basis of M containing C − e. The value of σ(e, f ) does not
depend on the choice of X. Let c ∈ C, and let

C+ := {c} ∪ {f ∈ C − c | σ(c, f ) = 1},

C− := {f ∈ C − c | σ(c, f ) = −1}.

The signed circuit C arising in this way does not depend (up to global sign) on the choice
of c. Finally, let C be the collection of signed circuits of M just described (together with
their negatives).

Lemma 4.9. If an oriented matroid M = ([n], χ) is positively oriented with respect to
the order 1 < 2 < · · · < n, then it is also positively oriented with respect to the order
i < i + 1 < · · · < n < 1 < · · · < i − 1, for any 1 ≤ i ≤ n.
Proof. It suffices to prove this for i = 2. After reorienting, we may assume that the bases
of M are all positive with respect to the order 1 < 2 < · · · < n. Consider a basis
B = {b1 < · · · < bd}. If 1 /∈ B then B is automatically positive with respect to the new
order. Otherwise, if 1 ∈ B then

χ(b2, . . . , bd , 1) = (−1)d−1χ(1, b2, . . . , bd) = (−1)d−1.

Hence if d is odd, all bases of M are positive with respect to 2 < · · · < n < 1. If d is
even, all bases of the reorientation −{1}M are positive with respect to 2 < · · · < n < 1.
In either case, the desired result holds. ut
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Definition 4.10 ([BL+99, pp. 133–134]). Let M = (E, χ) be an oriented matroid of
rank d, and let A ⊆ E. Suppose that E − A has rank d ′, and choose a1, . . . , ad−d ′ ∈ A

such that (E − A) ∪ {a1, . . . , ad−d ′} has rank d . The deletion M − A, or restriction
M|(E − A), is the oriented matroid on E − A with chirotope

χM−A(b1, . . . , bd ′) := χM(b1, . . . , bd ′ , a1, . . . , ad−d ′)

for b1, . . . , bd ′ ∈ E − A. This oriented matroid is independent of a1, . . . , ad−d ′ .

Positively oriented matroids are closed under restriction.

Lemma 4.11. Let M be a positively oriented matroid on [n]. For any S ⊆ [n], the
restriction M|S is positively oriented on S. Here the total order on S is inherited from
the order 1 < · · · < n.

Proof. It suffices to show that the deletion M − i of i is positively oriented for any
element 1 ≤ i ≤ n. By Lemma 4.9, we may assume that i = n. We can also assume, after
reorientation, that the bases of M are positive.

If r(M− n) = r(M) =: d , then the bases of M− n are also bases of M, and they
inherit their (positive) orientation from M. Otherwise, if r(M − n) = d − 1, then each
basis {a1 < · · · < ad−1} of M− n satisfies

χM−n(a1, . . . , ad−1) = χM(a1, . . . , ad−1, n) = 1,

since {a1 < · · · < ad−1 < n} is a basis of M. ut

Definition 4.12. Let M1 = (E1, χ1) and M2 = (E2, χ2) be oriented matroids on dis-
joint sets having ranks d1 and d2, respectively. The direct sum M1 ⊕M2 is the oriented
matroid on the set E1 t E2 whose chirotope χ is

χ(e1, . . . , ed1 , f1, . . . , fd2) := χ1(e1, . . . , ed1) · χ2(f1, . . . , fd2).

The corresponding underlying matroids satisfy

M1 ⊕M2 =M1 ⊕M2.

It is not hard to check that if C1 and C2 are the sets of signed circuits of M1 and M2
respectively, then C1 t C2 is the set of signed circuits of their direct sum M1 ⊕M2. We
say that an oriented matroid M is connected if it cannot be decomposed as a direct sum
of two oriented matroids on nonempty ground sets.

Proposition 4.13. An oriented matroid M is connected if and only if its underlying ma-
troid M is connected.

Proof. It is clear that if M is connected then M is connected. Conversely, suppose that
M is a connected oriented matroid. We assume, for the sake of contradiction, that M =

M1 ⊕M2 is the direct sum of two matroids on disjoint ground sets E1 and E2. Let C
and C be the sets of signed and unsigned circuits of M, respectively, and let C1 and C2 be
the sets of (unsigned) circuits of M1 and M2. We have C = C1 t C2. For i = 1, 2, let
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Ci be the set of signed circuits obtained by giving each circuit in Ci the signature that it
has in C. One easily checks that each Ci satisfies the signed circuit axioms, and hence it
defines an orientation Mi of the matroid Mi . We claim that M =M1 ⊕M2.

Since C1 and C2 determine χ1 and χ2 up to sign only, we need to show that there is a
choice of signs that satisfies

χ(A1, A2) = χ1(A1) · χ2(A2) (2)

for any ordered bases A1, A2 of M1,M2. Here (A1, A2) denotes the ordered basis of M
where we list A1 first and then A2. Choose ordered bases B1 and B2 of M1 and M2. We
may choose χ1(B1) and χ2(B2) so that (2) holds for B1 and B2. Notice that (2) will also
hold for any reordering of B1 and B2.

Now we prove that (2) holds for any adjacent basis, which differs from B1 t B2 by a
basis exchange; we may assume it is B ′1 t B2 where B ′1 = (B1 − e) ∪ f and e is the first
element of B1. If B1 = (e, e2, . . . , em), order the elements of B ′1 as B ′1 = (f, e2, . . . , em).
If C is the signed circuit (of M and M1) contained in B1 ∪ f , the pivoting property
[BL+99, Definition 3.5.1] applied to M and M1 gives

χ(B ′1, B2) = −C(e)C(f )χ(B1, B2), χ1(B
′

1) = −C(e)C(f )χ1(B1).

Therefore, if (2) holds for B1 t B2, it also holds for the adjacent basis B ′1 t B2. Since all
bases of M are connected by basis exchanges, (2) holds for all bases. Therefore M =

M1 ⊕M2 as oriented matroids, which contradicts the connectedness of M. ut

5. Every positively oriented matroid is realizable

The main result of this paper is the following.

Theorem 5.1. Every positively oriented matroid is realizable over Q. Equivalently, the
underlying matroid of any positively oriented matroid is a positroid.

In the proof of Theorem 5.1 we will make use of the forward direction in the following
characterization. The full result, due to da Silva, appears in the unpublished work [dS87].
For completeness, we include a proof of the direction we use.

Theorem 5.2 ([dS87, Chapter 4, Theorem 1.1]). A matroid M on the set [n] is the un-
derlying matroid of a positively oriented matroid if and only if

• for any circuit C and any cocircuit C∗ satisfying C ∩ C∗ = ∅, the sets C and C∗ are
noncrossing subsets of [n].

Proof of the forward direction. Suppose M is the underlying matroid of a positively ori-
ented matroid M = ([n], χ). After reorienting, we can assume that χ(B) = 1 for any
basis B of M . Let C be a circuit of M , and C∗ be a cocircuit of M such that C ∩C∗ = ∅.
If C and C∗ are not noncrossing subsets of [n] then there exist a, b ∈ C and x, y ∈ C∗

such that 1 ≤ a < x < b < y ≤ n or 1 ≤ y < a < x < b ≤ n.
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Consider the hyperplane H = [n] − C∗. Since C is a circuit in the restriction M|H ,
there exist bases A,B ofH such that B = (A−a)∪b. Let r = |{e ∈ A | e < x}| and s =
|{e ∈ B | e < x}|. Clearly r = s + 1. Then χ(x,A) = (−1)r = −(−1)s = −χ(x, B),
where the elements of A and B are listed in increasing order. Similarly χ(y,A) =
χ(y, B). However, this contradicts the dual pivoting property (PV∗) of oriented matroids
[BL+99, Definition 3.5.1], which implies that χ(x,A)/χ(y,A) = χ(x, B)/χ(y, B). ut

Note that after Theorem 5.1 has been proved, the statement of Theorem 5.2 will also
constitute a characterization of positroids.

Remark 5.3. In [dS87, Chapter 4, Definition 2.1], da Silva studies the notion of “circular
matroids”. A rank d matroidM on [n] is circular if for any circuitC of rank r(C) < d, the
flat C spanned by C is a cyclic interval of [n]. As she observed, her Theorem 5.2 implies
that every circular matroid is the underlying matroid of a positively oriented matroid. The
converse statement was left open by her, and we now show that it is not true.

1

2

3

4

5

6

7

Fig. 3. A perfect orientation of a plabic graph.

We will make use of the correspondence between positroids and (equivalence classes
of) plabic graphs; for more information, see [Pos, ARW16]. Consider the plabic graphG
depicted in Figure 3 with a perfect orientation O. Let M be the corresponding positroid
on [7]. Its bases are the 4-subsets I ⊆ [7] for which there exists a flow from the source
set IO = {1, 2, 4, 5} to I . One easily verifies that C = {1, 4, 7} is a circuit of rank 2, and
it is also a flat which is not a cyclic interval. Therefore M is not circular.

We now continue on our way toward proving Theorem 5.1.

Proposition 5.4. Let M be a positively oriented matroid on [n] which is a direct sum
of the connected oriented matroids M1, . . . ,Mk . Let S1, . . . , Sk denote the ground
sets of M1, . . . ,Mk . Then M1, . . . ,Mk are also positively oriented matroids, and
{S1, . . . , Sk} is a noncrossing partition of [n].

Proof. Each oriented matroid Mi = M|Si is positively oriented by Lemma 4.11. We
need to prove that S = {S1, . . . , Sk} is a noncrossing partition of [n]. Consider any two
distinct parts Si and Sj of S. By Proposition 4.13, the matroids Mi and Mj are connected.
It follows from Proposition 2.10 that if a, b ∈ Si then there is a circuit C of Mi (and thus
a circuit of M) containing both a and b. Similarly, since the matroid Mj is connected,
its dual matroid Mj

∗ is connected too, so for any c, d ∈ Sj there is a cocircuit C∗ of Mj
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(and thus a cocircuit of M) containing both c and d. The circuitC and the cocircuitC∗ are
disjoint, so by Theorem 5.2 they are noncrossing subsets of [n]. The elements a, b, c, d
were arbitrary, so Si and Sj are noncrossing, as desired. ut

Lemma 5.5. If Theorem 5.1 holds for connected positively oriented matroids, then it
holds for arbitrary positively oriented matroids.

Proof. Let M be an arbitrary positively oriented matroid on [n], and write it as a direct
sum of connected oriented matroids M1, . . . ,Mk on ground sets S1, . . . , Sk . By Propo-
sition 5.4, each Mi is a positively oriented matroid, and {S1, . . . , Sk} is a noncrossing
partition of [n]. If Theorem 5.1 holds for connected positively oriented matroids then
each Mi is a (connected) positroid. But now by Theorem 3.5, their direct sum M is a
positroid. ut

We now prove the main result of the paper.

Proof of Theorem 5.1. Let M be a positively oriented matroid of rank d on [n]. By
Lemma 5.5, we may assume that M is connected. It follows from Proposition 4.13 that
its underlying matroid M :=M is connected. By Lemma 2.11, its matroid polytope 0M
has dimension dim(0M) = n − 1. Moreover, any facet of 0M is the matroid polytope
of a matroid with exactly two connected components; so by Proposition 2.12, it is the
face of 0M maximizing the dot product with a 0/1-vector w. Assume for the sake of
contradiction that M is not a positroid. It then follows from Proposition 3.6 that 0M has
a facet F of the form

∑
i∈S xi = rM(S), where S ⊆ [n] is not a cyclic interval. Each of

the matroids M|S and M/S is connected.
Since S is not a cyclic interval, we can find i < j < k < ` (in cyclic order) such that

i, k ∈ S and j, ` /∈ S. In view of Proposition 2.10, there exist bases A ∪ {i} and A ∪ {k}
of M|S exhibiting a basis exchange between i and k. Similarly, consider bases B ∪ {j}
and B ∪ {`} of M/S which exhibit a basis exchange between j and `. We now have the
following bases of M|S ⊕M/S:

A ∪ B ∪ {i, j}, A ∪ B ∪ {i, `}, A ∪ B ∪ {j, k}, A ∪ B ∪ {k, `}.

The corresponding vertices ofM are on F , so w(eA∪B∪{i,j}) = r(S). Then A∪B ∪ {i, k}
is not a basis ofM , becausew(eA∪B∪{i,k}) = w(eA∪B∪{i,j})+1 = r(S)+1, since i, k ∈ S
and j /∈ S.

We now use Definition 4.1. Denote the elements of A∪B by y3, . . . , yd , where y3 <

· · · < yd . We claim that

χ(i, j, y3, . . . , yd)χ(k, `, y3, . . . , yd) = χ(j, k, y3, . . . , yd)χ(i, `, y3, . . . , yd). (3)

If we can prove the claim then we will contradict property (B2′′′) of Definition 4.1, be-
cause ε := χ(i, j, y3, . . . , yd)χ(k, `, y3, . . . , yd) is nonzero, but

χ(k, j, y3, . . . , yd)χ(i, `, y3, . . . , yd) = −χ(j, k, y3, . . . , yd)χ(i, `, y3, . . . , yd)

= −χ(i, j, y3, . . . , yd)χ(k, `, y3, . . . , yd) = −ε,

and χ(i, k, y3, . . . , yd)χ(j, `, y3, . . . , yd) = 0 since A ∪ B ∪ {i, k} is not a basis.
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Recall that if I = {i1 < · · · < id}, we let χ(I) = χ(i1, . . . , id). Since M is positively
oriented, after reorienting we can assume χ(I) ≥ 0 for all d-subsets I of [n]. We then
have

χ(a, b, y3, . . . , yd) = (−1)rχ({a} ∪ {b} ∪ {y3, . . . , yd}) = (−1)r ,

where r is the number of transpositions needed to put the elements of the sequence
(a, b, y3, . . . , yd) in increasing order. Therefore to prove (3), we will compute r for each
term within it.

We know that i < j < k < ` in cyclic order. In view of Lemma 4.9: we can assume
that in fact 1 ≤ i < j < k < ` ≤ n. Define

c1 = |(A ∪ B) ∩ [1, i − 1]|,
c2 = |(A ∪ B) ∩ [i + 1, . . . , j − 1]|,
c3 = |(A ∪ B) ∩ [j + 1, . . . , k − 1]|,
c4 = |(A ∪ B) ∩ [k + 1, . . . , `− 1]|.

Then we have

χ(i, j, y3, . . . , yd) = (−1)c1+c1+c2 = (−1)c2 ,

χ(k, `, y3, . . . , yd) = (−1)2c1+2c2+2c3+c4 = (−1)c4 ,

χ(j, k, y3, . . . , yd) = (−1)2c1+2c2+c3 = (−1)c3 ,

χ(i, `, y3, . . . , yd) = (−1)2c1+c2+c3+c4 = (−1)c2+c3+c4 .

Therefore
χ(i, j, y3, . . . , yd) · χ(k, `, y3, . . . , yd) = (−1)c2+c4 ,

and also

χ(j, k, y3, . . . , yd) · χ(i, `, y3, . . . , yd) = (−1)c2+2c3+c4 = (−1)c2+c4 ,

which proves the claim. ut

6. The positive matroid Grassmannian is homeomorphic to a ball

In [Mac93], MacPherson introduced the notion of combinatorial differential manifold,
a simplicial pseudomanifold with an additional discrete structure—described in the lan-
guage of oriented matroids—to model “the tangent bundle.” He also developed the bundle
theory associated to combinatorial differential manifolds, and showed that the classifying
space of matroid bundles is the matroid Grassmannian or MacPhersonian. The matroid
Grassmannian therefore plays the same role for matroid bundles as the ordinary Grass-
mannian plays for vector bundles.

After giving some preliminaries, we will introduce the matroid Grassmannian and
define its positive analogue. The main result of this section is that the positive matroid
Grassmannian is homeomorphic to a closed ball.

Given a poset, there is a natural topological object which one may associate to it,
namely, the geometric realization of its order complex.
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Definition 6.1. The order complex ‖P‖ of a poset P = (P,≤) is the simplicial complex
on the set P whose simplices are the chains in P .

Definition 6.2. A CW complex is regular if the closure c of each cell c is homeomorphic
to a closed ball, and c \ c is homeomorphic to a sphere.

Given a cell complex K, we define its face poset F(K) to be the set of closed cells or-
dered by containment, and augmented by a least element 0̂. In general, the order complex
‖F(K)− 0̂‖ does not reveal the topology of K. However, the following result shows that
regular CW complexes are combinatorial objects in the sense that the incidence relations
of cells determine their topology.

Proposition 6.3 ([Bjö84, Proposition 4.7.8]). Let K be a regular CW complex. Then K
is homeomorphic to ‖F(K)− 0̂‖.

There is a natural partial order on oriented matroids called specialization.

Definition 6.4. Suppose that M = (E, χ) and M′
= (E, χ ′) are two rank k oriented

matroids on E. We say that M′ is a specialization of M, denoted M  M′, if (after
replacing χ with −χ if necessary) we have

χ(y1, . . . , yk) = χ
′(y1, . . . , yk) whenever χ ′(y1, . . . , yk) 6= 0.

Definition 6.5. The matroid Grassmannian or MacPhersonian MacP(k, n) of rank k on
[n] is the poset of rank k oriented matroids on the set [n], where M ≥M′ if and only if
M M′.

One often identifies MacP(k, n) with its order complex. When we speak of the topology
of MacP(k, n), we mean the topology of (the geometric realization of) the order complex
of MacP(k, n), denoted ‖MacP(k, n)‖.

MacPherson [Mac93] pointed out that ‖MacP(k, n)‖ is homeomorphic to the real
Grassmannian Gr(k, n) if k equals 1, 2, n − 2, or n − 1, but that “otherwise, the topol-
ogy of the matroid Grassmannian is mostly a mystery.” As mentioned in the introduction
of this paper, Anderson [And99], and Anderson and Davis [AD02] made some progress
on this question, obtaining results on the homotopy groups and cohomology of the ma-
troid Grassmannian. Shortly thereafter, the paper [Bis03] put forward a proof that the
matroid Grassmannian ‖MacP(k, n)‖ is homotopy equivalent to the real Grassmannian
Gr(k, n). Unfortunately, a serious mistake was found in the proof [Bis09], and it is still
open whether MacP(k, n) is homotopy equivalent to Gr(k, n).

We now introduce a positive counterpart MacP+(k, n) of the matroid Grassmannian.
This space turns out to be more tractable than MacP(k, n): we can completely describe
its homeomorphism type.

Definition 6.6. The positive matroid Grassmannian or positive MacPhersonian
MacP+(k, n) of rank k on [n] is the poset of rank k positively oriented matroids on the
set [n], where M ≥M′ if and only if M M′.
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For convenience, we usually augment MacP+(k, n) by adding a least element 0̂. Our main
theorem on the topology of MacP+(k, n) is the following.

Theorem 6.7. MacP+(k, n) is the face poset of a regular CW complex homeomorphic to
a ball. It follows that:

• ‖MacP+(k, n)‖ is homeomorphic to a ball.
• For each M ∈ MacP+(k, n), the closed and open intervals ‖[0̂,M]‖ and ‖(0̂,M)‖ in

MacP+(k, n) ∪ {0̂} are homeomorphic to a ball and a sphere, respectively.
• MacP+(k, n) ∪ {0̂} is Eulerian.

The positive analogue of the real Grassmannian is the positive Grassmannian (also called
the totally nonnegative Grassmannian). The positive Grassmannian is an example of a
positive flag variety, as introduced by Lusztig in his theory of total positivity for real flag
manifolds [Lus98], and its combinatorics was beautifully developed by Postnikov [Pos].
The positive Grassmannian has recently received a great deal of attention because of its
connection with scattering amplitudes [AH+16].

Definition 6.8. The positive Grassmannian Gr+(k, n) is the subset of the real Grassman-
nian where all Plücker coordinates are nonnegative.

While it remains unknown whether ‖MacP(k, n)‖ is homotopy-equivalent to Gr(k, n),
the positive analogue of that statement is true.

Theorem 6.9. The positive matroid Grassmannian ‖MacP+(k, n)‖ and the positive
Grassmannian Gr+(k, n) are homotopy-equivalent; more specifically, both are con-
tractible, with boundaries homotopy-equivalent to a sphere.

Before proving Theorems 6.7 and 6.9, we review some results on the positive Grassman-
nian [Pos, Wil07, RW10].

Let B ⊆
(
[n]
k

)
be a collection of k-element subsets of [n]. We define

StnnB = {A ∈ Gr+(k, n) | 1I (A) > 0 if and only if I ∈ B}.

Theorem 6.10 ([Pos]). Each subset StnnB is either empty or a cell. The positive Grass-

mannian Gr+(k, n) is therefore a disjoint union of cells, where StnnB′ ⊂ S
tnn
B if and only if

B′ ⊆ B.

Let Q(k, n) denote the poset of cells of Gr+(k, n), ordered by containment of closures,
and augmented by a least element 0̂.

Theorem 6.11 ([Wil07]). The posetQ(k, n) is graded, thin, and EL-shellable. It follows
that Q(k, n) is the face poset of a regular CW complex homeomorphic to a ball, and that
it is Eulerian.

Theorem 6.12 ([RW10]). The positive Grassmannian Gr+(k, n) is contractible, and its
boundary is homotopy-equivalent to a sphere. Moreover, the closure of every cell is con-
tractible, and the boundary of every cell is homotopy-equivalent to a sphere.



832 Federico Ardila et al.

Remark 6.13. In fact, Theorems 6.11 and 6.12 were proved more generally in [Wil07,
RW10] for real flag varieties G/P .

We have the following result.

Proposition 6.14. For any k ≤ n, MacP+(k, n) and Q(k, n) are isomorphic as posets.

Proof. By Theorem 5.1, every positively oriented matroid is a positroid. Therefore each
positively oriented matroid is realizable by a totally nonnegative matrix. It follows from
the definitions that positively oriented matroids in MacP+(k, n) are in bijection with the
cells of Gr+(k, n). Moreover, by Theorem 6.10, the order relation (specialization) in
MacP+(k, n) precisely corresponds to the order relation on closures of cells in Gr+(k, n).

ut

Theorem 6.7 now follows directly from Proposition 6.14 and Theorem 6.11, while Theo-
rem 6.9 follows from Proposition 6.14 and Theorem 6.12.
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