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Abstract. We study bond percolation on the Hamming hypercube {0, 1}m around the critical prob-
ability pc. It is known that if p = pc(1 + O(2−m/3)), then with high probability the largest
connected component C1 is of size 2(22m/3). Here we show that for any sequence ε(m) such that
ε(m) = o(1) but ε(m)� 2−m/3 percolation on the hypercube at pc(1+ ε(m)) has

|C1| = (2+ o(1))ε(m)2
m and |C2| = o(ε(m)2

m),

with high probability, where C2 is the second largest component. This resolves a conjecture of
Borgs, Chayes, the first author, Slade and Spencer [18].
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1. Introduction

Percolation on the Hamming hypercube {0, 1}m is a combinatorial model proposed in
1979 by Erdős and Spencer [24]. The study of its phase transition poses two inherent
difficulties. Firstly, its non-trivial geometry makes the combinatorial “subgraph count”
techniques unavailable. Secondly, the critical probability where the phase transition oc-
curs is significantly larger than 1/(m−1), making the method of stochastic domination by
branching processes very limited. Unfortunately, these are the two prominent techniques
for obtaining scaling windows in mean-field settings (see e.g. [4, 13, 19, 23, 32, 38, 44,
46, 47, 48]).

In light of the second difficulty, Borgs, Chayes, the first author, Slade and Spencer
[16, 17, 18] suggested that the precise location pc of the phase transition is the unique
solution to the equation

Epc |C (0)| = λ2m/3, (1.1)

where C (0) is the connected component containing the origin, |C (0)| denotes its size, and
λ ∈ (0, 1) denotes an arbitrary constant. Later it will become clear how λ is chosen. The
lace expansion was then employed by the authors to show that at p = pc(1+O(2−m/3))
the largest connected component C1 is of size2(22m/3) with high probability —the same
asymptotics as in the critical Erdős and Rényi random graph both with respect to the size
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of the cluster and the width of the scaling window (see Section 1.1 for more details).
However, this result does not rule out the possibility that this critical behavior proceeds
beyond the O(2−m/3) window and does not give an upper bound on the width of the
scaling window.

The authors conjectured that the giant component “emerges” just above this window
(see [18, Conjecture 3.2]). They were unable to prove this primarily because their combi-
nation of lace expansion and sprinkling methodology breaks down for p above the scaling
window. In this paper we resolve their conjecture:

Theorem 1.1. Consider bond percolation on the Hamming hypercube {0, 1}m with p =
pc(1+ ε), where pc = pc(λ) with λ ∈ (0,∞) a fixed constant, and ε = ε(m) = o(1) is
a positive sequence with ε(m)� 2−m/3. Then

|C1|

2ε2m
P
−→ 1,

where
P
−→ denotes convergence in probability, and

E|C (0)| = (4+ o(1))ε22m.

Furthermore, the second largest component C2 satisfies

|C2|

ε2m
P
−→ 0.

The main novelty of our approach is showing that large percolation clusters behave in
some sense like uniform random sets. We use this to deduce that two large clusters tend
to “clump” together and form a giant component. This analysis replaces the appeal to
the hypercube’s isoperimetric inequality which is key in all the previous works on this
problem (see further details in Section 1.3). It essentially rules out the possibility that two
large percolation clusters are “worst-case” sets, that is, sets which saturate the isoperimet-
ric inequality (e.g., two balls of radiusm/2−

√
m around the two poles of the hypercube).

The precise behavior of the non-backtracking random walk on the hypercube plays a key
role in proving such statements. Our proof combines this idea with some combinatorial
ideas (the “sprinkling” method of [3], see Section 1.3), and ideas originating in statistical
physics (Aizenman and Barsky’s [1] differential inequalities and variants of the triangle
condition). Our proof methods are general and apply to other families of graphs such as
various expanders of high degree and high girth, finite tori of dimension growing with the
length and products of complete graphs of any dimension (answering a question asked
in [32]). We state our most general theorem in Section 1.5 and illustrate its use with some
examples.

The problem of establishing a phase transition for the appearance of a component of
size order 2m was solved in the breakthrough work of Ajtai, Komlós and Szemerédi [3].
They proved that when the retention probability of an edge is scaled as p = c/m for a
fixed constant c > 0, the model exhibits a phase transition: if c < 1, then the largest
component has size of order m, and if c > 1, then the largest component has size linear
in 2m, with high probability.
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At about the same time, Bollobás [13] initiated a study of zooming in onto the large
scale properties of the phase transition on the Erdős and Rényi [23] random graphG(n, p)
(see Section 1.1 below). However, unlike G(n, p), the phase transition in the hypercube
does not occur around p = 1/(deg − 1), where deg denotes the degree of the graph. In
fact, it was shown by the first author and Slade [35, 36] that pc of the hypercube {0, 1}m

satisfies

pc =
1

m− 1
+

5/2
m3 +O(m

−4). (1.2)

Here and below we write f (m) = O(g(m)) if |f (m)|/|g(m)| is uniformly bounded
from above by a positive constant, f (m) = 2(g(m)) if f (m) = O(g(m)) and g(m) =
O(f (m)), and f (m) = o(g(m)) if f (m)/g(m) tends to 0 with m. We also say that a se-
quence of events (Em)m≥1 occurs with high probability (whp) when limm→∞ P(Em) = 1.

The first improvement to [3] was obtained by Bollobás, Kohayakawa and Łuczak [15].
They showed that if p=(1+ε(m))/(m−1)with ε(m)=o(1) but ε(m)≥60m−1(logm)3,
then |C1| = (2 + o(1))ε(m)2m whp. In view of (1.2), it is clear that one cannot improve
the regime of ε(m) in their result to more than ε(m) ≥ m−2. In [18], the authors show
that if ε(m) ≥ e−cm

1/3
and p = pc(1 + ε(m)), then |C1| ≥ cε(m)2m whp. Note that

e−cm
1/3
� 2−αm for any α > 0, so the requirement on ε(m) of Theorem 1.1 is much

weaker. Our result, combined with those in [16, 17, 18], shows that it is sharp and there-
fore fully identifies the phase transition on the hypercube.

Other models of statistical physics, such as random minimal spanning trees and boot-
strap percolation on the hypercube, have been studied before; we refer the reader to
[7, 8, 50]. In the remainder of this section we present some of the necessary background
and context of the result, briefly describe our techniques (we provide a more detailed
overview of the proof in the next section) and present a general theorem that is used to
establish scaling windows for percolation on various other graphs studied in the literature.

1.1. The Erdős and Rényi random graph. Recall that G(n, p) is obtained from the
complete graph by retaining each edge of the complete graph on n vertices with proba-
bility p and erasing it otherwise, independently for all edges. Write Cj for the j th largest
component obtained this way. An inspiring discovery of Erdős and Rényi [23] is that this
model exhibits a phase transition when p is scaled like p = c/n. When c < 1 we have
|C1| = 2(log n) whp, while |C1| = 2(n) whp when c > 1.

The investigation of the case c ∼ 1, initiated by Bollobás [13] and continued by
Łuczak [44], revealed an intricate picture of the phase transition’s nature. See [14] for
results up to 1984, and [4, 38, 39, 45] for references to subsequent work. We briefly
describe these here.

The critical window. If p = (1 + an−1/3)/n for some fixed a ∈ R, then for any fixed
integer j ≥ 1,

(|C1|/n
2/3, . . . , |Cj |/n

2/3)
d
−→ (χ1, . . . , χj ),

where (χi)
j

i=1 are random variables supported on (0,∞), and
d
−→ denotes convergence in

distribution.
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The subcritical phase. Let ε = ε(n) = o(1) be a non-negative sequence with ε � n−1/3

and set p = (1− ε)/n. Then, for any fixed integer j ≥ 1,

|Cj |

2ε−2 log(ε3n)

P
−→ 1.

The supercritical phase. Let ε = ε(n) = o(1) be a non-negative sequence with ε �
n−1/3 and set p = (1+ ε)/n. Then

|C1|

2εn
P
−→ 1,

and, for any fixed integer j ≥ 2,

|Cj |

2ε−2 log(ε3n)

P
−→ 1.

Thus, the prominent qualitative features of this phase transition are:

(1) The emergence of the giant component just above the scaling window. That is, only
in the supercritical phase do we find that |C2| � |C1|, and that |C1|/n increases
suddenly but smoothly above the critical value (in mathematical physics jargon, the
phase transition is of second order).

(2) Concentration of the size of the largest connected components outside the scaling
window and non-concentration inside the window.

(3) Duality: |C2| in the supercritical phase has the same asymptotics as |C1| in the corre-
sponding subcritical phase.

Theorem 1.1 proves (1) and the concentration in the supercritical regime in (2). Property
(3) on the hypercube remains an open problem (see Section 8).

1.2. Random subgraphs of transitive graphs. Let us briefly review the study of per-
colation on finite transitive graphs presented in [16, 17, 18] (see also [6]). We focus here
only on some of the many results obtained in those papers. Let G be a finite transitive
graph and write V for the number of vertices of G. Let p ∈ [0, 1] and write Gp for the
random graph obtained from G by retaining each edge with probability p and erasing it
with probability 1− p, independently for all edges. We also write Pp for this probability
measure. We say an edge is p-open [p-closed] if it was retained [erased]. We say that a
path in the graph is p-open if all of its edges are p-open. For two vertices x, y we write
x ↔ y for the event that there exists a p-open path connecting x and y. For an integer
j ≥ 1 we write Cj for the j th largest component ofGp (breaking ties arbitrarily), and for
a vertex v we write C (v) for the component in Gp containing v.

For two vertices x, y we denote

∇p(x, y) =
∑
u,v

Pp(x ↔ u)Pp(u↔ v)Pp(v ↔ y). (1.3)

The quantity ∇p(x, y), known as the triangle diagram, was introduced by Aizenman and
Newman [2] to study critical percolation on high-dimensional infinite lattices. In that
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setting, an important feature of an infinite graph G is whether ∇pc (0, 0) < ∞. This
condition is often referred to as the triangle condition. In high dimensions, Hara and
Slade [28] proved the triangle condition. It allows one to deduce that numerous critical
exponents attain the same values as they do on an infinite regular tree (see e.g. [9, 2, 40,
42]). See also [31] for a survey of results on high-dimensional percolation, including a
discussion of percolation on high-dimensional tori such as the hypercube.

When G is a finite graph, ∇p(0, 0) is obviously finite; however, there is still a finite
triangle condition which in turn guarantees that random critical subgraphs of G have
the same geometry as random subgraphs of the complete graph on V vertices, where V
denotes the number of vertices in G. That is, in the finite setting the role of the infinite
regular tree is played by the complete graph. Let us make this heuristic formal.

We always have V → ∞, and λ ∈ (0, 1) is a fixed constant. Let pc = pc(λ) be
defined by

Epc(λ)|C (0)| = λV
1/3. (1.4)

The finite triangle condition is the assumption that ∇pc(λ)(x, y) ≤ 1{x=y} + a0 for some
a0 = a0(λ) sufficiently small when λ is small. The strong triangle condition, defined in
[17, (1.26)], is the statement that there exists a constant C such that for all p ≤ pc,

∇p(x, y) ≤ 1{x=y} + Cχ(p)3/V + αG, (1.5)

where αG → 0 as m → ∞ and χ(p) = Ep|C (0)| denotes the expected cluster size.
Throughout this paper, we will assume that the strong triangle condition holds. In fact,
in all examples where the finite triangle condition is proved to hold, actually the strong
triangle condition (1.5) is proved. In [17], (1.5) is shown to hold for various graphs:
the complete graph, the hypercube and high-dimensional tori Zdn. In particular, the next
theorem states (1.5) for the hypercube.

Theorem 1.2 ([17]). Consider percolation on the hypercube {0, 1}m. Then for any λ
there exists a constant C = C(λ) > 0 such that for any p ≤ pc(λ) (as defined in (1.4)),

∇p(x, y) ≤ 1{x=y} + C(χ(p)3/V + 1/m). (1.6)

As we discuss in Remark 4 below Theorem 1.3, our methodology can be used to yield
a simple proof of Theorem 1.2 without relying on the lace-expansion methods derived
in [17]. The main effort in [16] is to show that under condition (1.5) the phase transition
behaves similarly to the one inG(n, p) described in the previous section. The main results
obtained in [16] are the following:

The critical window. Let G be a finite transitive graph for which (1.5) holds. Then, for
p = pc(1+O(V −1/3)),

P(A−1V 2/3
≤ |C1| ≤ AV

2/3) = 1−O(A−1).

The subcritical phase. Let G be a finite transitive graph for which (1.5) holds. Let ε =
o(1) be a non-negative sequence with ε � V −1/3 and set p = pc(1 − ε). Then, for all
fixed δ > 0,

P
(
|C1| ≤ (2+ δ)ε−1 log(ε3V )

)
= 1− o(1).
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The supercritical phase. Let G be a finite transitive graph for which (1.5) holds. Let
ε = o(1) be a non-negative sequence with ε � V −1/3 and set p = pc(1+ ε). Then

P(|C1| ≥ AεV ) = O(A
−1).

Thus, while these results hold in a very general setting, they are incomplete. Most notably,
in the supercritical phase there is no matching lower bound on |C1|. So, a priori, it is
possible that |C1| is still of order V 2/3 when p = pc(1 + ε) for some ε � V −1/3 and
that the scaling window is in fact much larger than V −1/3. It remains an open problem
whether (1.5) alone implies that |C1|/(εV ) converges in probability to a constant in the
supercritical phase.

As we mentioned before, the particular case of the hypercube was addressed in [18].
There the authors employed some of the result of [16, 17] together with a sprinkling
argument to provide a lower bound of order ε2m on |C1| valid only when ε ≥ e−cm

1/3
.

We will rely on the sprinkling method for the arguments in this paper, so let us briefly
expand on it.

1.3. Sprinkling. The sprinkling technique was invented by Ajtai, Komlós and Szeme-
rédi [3] to show that |C1| = 2(2m) when p = (1 + ε)/m for fixed ε > 0, and can
be described as follows. Fix some small θ > 0 and write p1 = (1+ (1− θ)ε)/m and
p2 ≥ θε/m such that (1 − p1)(1 − p2) = 1 − p. It is clear that Gp is distributed as
the union of the edges in two independent copies ofGp1 andGp2 . The sprinkling method
consists of two steps. The first step is performed in Gp1 and uses a branching process
comparison argument together with the Azuma–Hoeffding concentration inequality to
deduce that whp at least c22m vertices are contained in connected components of size at
least 2c1m for some small but fixed constants c1, c2 > 0. In the second step we add the
edges of Gp2 (these are the “sprinkled” edges) and show that they connect many of the
clusters of size at least 2c1m into a giant cluster of size 2(2m).

Let us give some details on how the last step is done. A key tool here is the isoperimet-
ric inequality for the hypercube, stating that two disjoint subsets of the hypercube of size
at least c22m/3 have at least 2m/m100 disjoint paths of length C(c2)

√
m connecting them,

for some constant C(c2). (Them100 in the denominator is not sharp, but this is immaterial
as long as it is a polynomial in m.) This fact is used in the following way. Write V ′ for
the set of vertices that are contained in a component of size at least 2c1m in Gp1 so that
V ′ ≥ c22m. We say that sprinkling fails when |C1| ≤ c22m/3 in Gp1 ∪ Gp2 . If sprin-
kling fails, then we can partition V ′ = A ] B so that both A and B have cardinality at
least c22m/3 and any path of length at most C(c2)

√
m between them has an edge that is

p2-closed. The number of such partitions is at most 22m/2c1m . The probability that a path
of length k has a p2-closed edge is 1 − pk2 . Applying the isoperimetric inequality and
using the fact that the paths guaranteed to exist by it are disjoint so that the edges in them
are independent, we find that the probability that sprinkling fails is at most

22m/2c1m
· (1− (θε/m)C(c2)

√
m)2

m/m100
= e−2(1+o(1))m , (1.7)

which tends to 0.
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1.4. Revised sprinkling. The sprinkling argument above is not optimal due to the use
of the isoperimetric inequality. It is wasteful because it assumes that large percolation
clusters can be “worst-case” sets, that is, sets which saturate the isoperimetric inequal-
ity (e.g., two balls of radius m/2 −

√
m around two vertices at Hamming distance m).

However, it is in fact very improbable for percolation clusters to be similar to this kind
of worst-case sets. Our approach replaces the use of the isoperimetric inequality by prov-
ing statements showing that large percolation clusters are “close” to uniform random sets
of similar size, more precisely, they behave like a random collection of connected com-
ponents of size ε−2. This allows us to deduce that two large clusters share many closed
edges with the property that if we open even one of them, then the two clusters connect.
While previously we had paths of length

√
m connecting the two clusters, here we will

have paths of length precisely 1. The final line of our proof, replacing (1.7), will be

22εV/(k(m)ε−2)
· (1− θε/m)mε

2V
≤ e−θε

3V (1+o(1)), (1.8)

where k(m) is some sequence with k(m) → ∞ very slowly. This tends to 0 since
ε3V → ∞. Compared with the logic leading to (1.7), this line is rather suggestive. We
will see that whp 2εV vertices are in components of size at least k(m)ε−2, explaining
the 22εV/(k(m)ε−2) factor in (1.8). The main effort in this paper is to justify the second
factor showing that for any partition of these vertices into two sets of size εV , the number
of closed edges between them is at least ε2mV—the same number of edges one would
expect two uniform random sets of size εV to have between them. Therefore, given a
partition, the probability that sprinkling fails for it is bounded by (1− θε/m)mε

2V .

1.5. The general theorem. Our methods use relatively simple geometric properties of
the hypercube and apply to a larger set of underlying graphs. We present this general
setting that the majority of the paper assumes and briefly discuss some other cases for
which our main theorem holds aside from the hypercube. We remark that the impatient
reader may proceed assuming the underlying graph is always the hypercube {0, 1}m—we
have set up the notation to support this, since the hypercube, in some sense, is our most
“difficult” example.

The geometric conditions of our underlying graphs will be stated in terms of non-
backtracking random walks. The main advantage of this approach is that these conditions
are relatively easy to verify. LetG be a finite transitive graph on V vertices and degreem.
Consider the non-backtracking random walk on it (this is just a simple random walk
not allowed to traverse back on the edge it just came from; see Section 3.4 for a precise
definition). For any vertices x, y, we write pt (x, y) for the probability that the walk started
at x visits y at time t . For any ξ > 0, we write Tmix(ξ) for the ξ -upper-uniform mixing
time of the walk, that is,

Tmix(ξ) = min
{
t : max

x,y

pt (x, y)+ pt+1(x, y)

2
≤ (1+ ξ)V −1

}
.

Theorem 1.3. Let G be a transitive graph on V vertices with degree m and define pc as
in (1.1) with λ = 1/10. Assume that there exists a sequence αG = o(1) with αG ≥ 1/m
such that if we set tmix = Tmix(αG) then:
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(1) m→∞ as V →∞,
(2) [pc(m− 1)]tmix = 1+O(αG),
(3) for any vertices x, y,∑

u,v

tmix∑
t1,t2,t3=0
t1+t2+t3≥3

pt1(x, u)pt2(u, v)pt3(v, y) = O(αG/ logV ).

Then

(a) the finite triangle condition (1.5) holds (and hence the results in [16] described in
Section 1.2 hold),

(b) for any sequence ε = ε(m) satisfying ε � V −1/3 and ε = o(1/tmix), bond percola-
tion on G with p = pc(1+ ε) has

|C1|

2εV
P
−→ 1, E|C (0)| = (4+ o(1))ε2V,

|C2|

εV

P
−→ 0.

Remark 1. In the case of the hypercube {0, 1}m we will take αG = m−1 logm and
verify the conditions of Theorem 1.3. This is done in Section 7. Although the behav-
ior of random walks on the hypercube is well understood, we have not been able to find
an estimate on the uniform mixing time of the non-backtracking random walk yielding
Tmix(m

−1 logm) = 2(m logm) in the literature. To show this we use the recent paper of
Fitzner and the first author [25] in which the non-backtracking walk transition matrix on
the hypercube is analyzed. We use this result in Lemma 7.1 to verify condition (3), and
condition (2) follows directly from (1.2) (though (2) can also be verified by elementary
means without using (1.2)—see Remark 4).

Remark 2. Note that part (b) of Theorem 1.3 only applies when ε(m) = o(1/tmix) and
not for any ε = ε(m) = o(1). Thus, for a complete proof of Theorem 1.1, we also require
a separate argument dealing with the regime ε(m) ≥ c/tmix—in the case of the hypercube
and other graphs mentioned in this paper, this is a much easier regime in which previous
techniques based on sprinkling and isoperimetric inequalities are effective.

Remark 3. Random walk conditions for percolation on finite graphs were first given by
the second author in [47]. The significant difference between the two approaches is that
in [47] the condition requires controlling the random walk behavior for a period of time
that is as long as the critical cluster diameter, that is, V 1/3. The outcome is that the results
of [47] only apply when pc = (1 + O(V −1/3))/(m − 1), and hence do not apply in the
case of the hypercube. Here we are only interested in the behavior of the random walk up
to the mixing time, even though typical percolation paths are much longer. The reason for
this is that it turns out that it is enough to randomize the beginning of a percolation path
in order to conclude that the end point is uniformly distributed (see Section 2.4). Another
difference is that the results in [47] only show that |C1| ≥ cεV for some c > 0 and do
not give the precise asymptotic value of |C1| as we do here.

Remark 4. Our approach also enables us to give a simple proof for the fact that the
finite triangle condition (Theorem 1.2) holds for the hypercube without using the lace
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expansion as in [17]; this is done in [34]. Our proof of this fact relies on the estimate
pc = 1/(m − 1) + O(m−3) (which is much weaker than (1.2) but also much easier to
prove) and on the argument presented in Section 2.4. In fact, in the current paper we only
rely on this easy estimate for pc, so our main result, Theorem 1.1, is in fact self-contained
and does not rely at any time on results obtained via the lace expansion in [17] (we do
use arguments of [16] which rely on the triangle condition). We refer to [34] for a more
extensive discussion on this subject.

In many cases, verifying the conditions of Theorem 1.3 is done using known methods
from the theory of percolation and random walks (note that condition (2) involves both a
random walk and a percolation estimate). We illustrate this in Section 7 in the case of the
hypercube (thus proving Theorem 1.1) and for expander families of high degree and high
girth (see [37] for an introduction to expanders). This is a class of graphs that contains
various examples such as Payley graphs (see e.g. [21]), products Kd

n of complete graphs
and many others. Percolation on products of complete graphs was studied in [32, 33, 47]
in the cases d = 2, 3; our expander theorem allows us to provide a complete description of
the phase transition in any fixed dimension d , answering a question posed in [32]. Recall
that a sequence of graphs Gn is called an expander family if there exists a constant c > 0
such that the second largest eigenvalue of the transition matrix of the simple random walk
is at most 1− c (the largest eigenvalue is 1). Also, the girth of a graph is the length of the
shortest cycle. It is a classical fact that on expanders Tmix(V

−1) = O(logV ), where V is
the number of vertices of the graph (see e.g. [5, below (19)]).

Theorem 1.4. Let Gm be a transitive family of expanders with degree m → ∞ and V
vertices. Assume that m ≥ c logV and the girth of G is at least c logV/log(m − 1) for
some fixed c > 0. Then the conditions of Theorem 1.3 hold, and hence the conclusions of
that theorem hold.

For productsKd
n of complete graphs, the girth equals 3, V = nd andm = d(n−1), so that

the girth assumption is satisfied for c ≤ 3(1− o(1))/d and n sufficiently large. Theorem
1.3 applies to other examples of graphs, not included in the last theorem, for example,
products of complete graphs Kd

n where d may depend on n (as long as n+ d →∞) and
finite tori Zdn but only when d = d(n) grows at some rate with n. We omit the details
since they are rather similar. We emphasize, however, that there are important examples
which our methods are insufficient to solve. Most prominently, there are bounded degree
expanders with low girth (the case of girth ≥ (2/3+ ε) logm−1 n was solved in [47]) and
finite tori Zdn where d is large but fixed. It seems that new ideas are required to study
percolation on these graphs (see Section 8).

1.6. Organization. This paper is organized as follows. In Section 2 we give an overview
of our proof, stating the main results upon which the proof is based. In Section 3 we
prove several estimates on the number of vertices satisfying various properties, such as
having large clusters, or surviving up to great depth. We further prove detailed estimates
on connection probabilities. In Section 4 we prove expected volume estimates both in
the critical and supercritical regimes. In Section 5 we prove an intrinsic-metric regularity
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theorem, showing that most vertices that survive long and have a large cluster size have
neighborhoods that are sufficiently regular. See Section 2.5 for an explanation on how the
estimates of Section 5 are used in the proof. In Section 6 we show that most large clusters
have many closed edges between them, which is the main result in our proof. In Section 7
we perform the improved sprinkling argument as indicated in Section 1.4, and complete
the proof of Theorem 1.1. In Section 8 we discuss several open problems. We close the
paper with an Appendix where we sharpen the arguments in [9] and [17] to obtain the
asymptotics of the supercritical cluster tail.

2. Overview of the proof

In this section we give an overview of the key steps in our proof. Throughout the rest of
the paper we assume that ε = ε(m) is a sequence such that ε = o(1) but ε3V →∞.

2.1. Notation and tools. Let G be a transitive graph and recall that Gp is obtained
from G by independently retaining each edge with probability p. Recall that x ↔ y

denotes that there exists a p-open path connecting x and y. We write dGp (x, y) for the
length of a shortest p-open path between x, y, and set dGp (x, y) = ∞ if x is not con-

nected to y in Gp. We write x
r
←→ y if dGp (x, y) ≤ r; x

=r
←→ y if dGp (x, y) = r; and

x
[a,b]
←−→ y if dGp (x, y) ∈ [a, b]. Further, we write x

P [a,b]
←−−→ y if there exists an open path

of length in [a, b] between x and y (not necessarily a shortest path). The event {x
[a,b]
←−→ y}

is not increasing with respect to adding edges, but the event {x
P [a,b]
←−−→ y} is, which often

makes it easier to deal with. Whenever the sign↔ appears, it will be clear what p is, and
we will drop it from the notation. The intrinsic metric ball of radius r around x and its
boundary are defined by

BGx (r) = {y : dGp (x, y) ≤ r}, ∂BGx (r) = {y : dGp (x, y) = r}.

Note that these are random sets of the graph and not balls in the shortest path metric of
the graph G. We often drop the G from the above notation and write Bx(r) when it is
clear what the underlying graph G is. We also denote

BGx ([a, b]) = {y : x
[a,b]
←−→ y}.

Our graphs always contain a marked vertex that we call the origin and denote by 0. In
the case of the hypercube this is taken to be the all-zero vector. We often drop 0 from the
notation and write B(r) for B0(r) whenever possible.

We now define the intrinsic metric one-arm event. This was introduced in [49] to
study the mixing time of critical G(n, p) clusters and was very useful in the context of
high-dimensional percolation in [40]. Define the event

HG(r) = {∂BG0 (r) 6= ∅}



736 Remco van der Hofstad, Asaf Nachmias

for any integer r ≥ 0, and

0(r) = sup
G′⊂G

P(HG′(r)), (2.1)

where the supremum is over all subgraphs G′ of G. The reason for the somewhat un-
natural definition of 0 is that the event ∂BG0 (r) 6= ∅ is not monotone with respect to
addition of edges. Indeed, turning an edge from closed to open may shorten a shortest
path, rendering a configuration such that the event ∂BG0 (r) 6= ∅ no longer occurs. This
non-monotonicity problem arises whenever one conditions on BG0 (r) and would like to
estimate the probability that some v ∈ ∂BG0 (r) survives an additional ` generations, that
is, ∂BGv (`) 6= ∅ off BG0 (r). A priori, the survival probability may be much larger on the
subgraph G \ BG0 (r) than on G itself; the next theorem shows this is not the case.

The following theorem studies the survival probability and expected ball sizes at pc,
and is the finite graph analogue of a theorem of Kozma and the second author [40]. The
proof is almost identical to the one in [40] and is given explicitly in [30, 41].

Theorem 2.1 (Volume and survival probability [40]). Let G be a finite transitive graph
on V vertices such that the finite triangle condition (1.5) holds, and consider percolation
on G at p = pc(λ) with any λ > 0. Then there exists a constant C = C(λ) > 0 such that
for any r > 0,

(1) E|B(r)| ≤ Cr ,
(2) 0(r) ≤ C/r.

We often need to consider percolation performed at different values of p. We write Pp
and Ep for the probability distribution and the corresponding expectation operator with
parameter p when necessary. Furthermore, we sometimes need to consider percolation
configurations at different p’s on the same probability space. This is a standard procedure
called the simultaneous coupling and it works as follows. For each edge e of our graphG,
we draw an independent uniform random variable U(e) in [0, 1]. We say that the edge e
receives the valueU(e). For any p ∈ [0, 1], the set of p-open edges is distributed precisely
as {e : U(e) ≤ p}. In this way, Gp1 ⊂ Gp2 with probability 1 whenever p1 ≤ p2.

2.2. Tails of the supercritical cluster size. We start by describing the tail of the cluster
size in the supercritical regime. Note that the following theorem requires only the finite
triangle condition, and not the stronger assumptions of Theorem 1.3, and so the restriction
ε = o(1/tmix) is not needed.

Theorem 2.2 (Bounds on the cluster tail). Let G be a finite transitive graph of degree
m on V vertices such that the finite triangle condition (1.5) holds and set p = pc(1+ ε)
where ε = o(1) and ε � V −1/3. Then, for any k satisfying k � ε−2,

P(|C (0)| ≥ k) ≤ 2ε
[
1+O

(
ε + (ε3V )−1

+ (ε2k)−1/4
+ αG

)]
, (2.2)

and, for the sequence k0 = ε
−2(ε3V )α for any α ∈ (0, 1/3), there exists a c = c(α) > 0

such that

P(|C (0)| ≥ k0) ≥ 2ε
[
1+O

(
ε + (ε3V )−c + αG

)]
. (2.3)
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Theorem 2.2 is reminiscent of the fact that a branching process with Poisson progeny
distribution of mean 1 + ε has survival probability 2ε(1 +O(ε)) when ε = o(1). Upper
and lower bounds of order ε for the cluster tail were proved already in [17] using Barsky
and Aizenman’s differential inequalities [9]. However, to get the precise constant 2 we
need to sharpen these differential inequalities and handle some error terms in them that
were neglected in the past. This derivation and the proof of Theorem 2.2 are presented in
the Appendix. The proof is entirely self-contained.

Let Z≥k denote the number of vertices with cluster size at least k, i.e.,

Z≥k =
∣∣{v : |C (v)| ≥ k}∣∣. (2.4)

We use Theorem 2.2 to show that Z≥k0 , with k0 as in the theorem, is concentrated. This
advances us towards the first factor on the left hand side of (1.8).

Lemma 2.3 (Concentration of Z≥k0 ). In the setting of Theorem 2.2, if m→∞, then

Z≥k0

2εV
P
−→ 1 and E|C (0)| ≤ (4+ o(1))ε2V.

2.3. Many boundary edges between large clusters. The factor (1−θε/m)mε
2V in (1.8)

suggests that after partitioning the large clusters into two sets of order εV vertices, as we
did before, the number of closed edges connecting them is of order mε2V . This is the
content of Theorem 2.4 below, which is the main effort of this paper. It is rather intuitive
if one believes that large clusters are uniform random sets. Indeed, let v be a vertex in one
of the sets of the partition. It has degree m and hence we expect mε of these neighbors
to belong to the second set of the partition. Summing over all vertices v we obtain of the
order ε2mV edges. Making this a precise statement requires some details which we now
provide.

We work under the general assumptions of Theorem 1.3. In particular, we are given
sequences ε, αG, both o(1), such that ε3V →∞ and αG ≥ 1/m. Without loss of general-
ity we assume that

αG ≥ (ε
3V )−1/2, (2.5)

otherwise we replace the original αG by (ε(m)3V )−1/2, and note that in both cases αG =
o(1) and αG ≥ 1/m.

Let us start by introducing some notation. For vertices x, y and radii jx, jy , we define
the event

A (x, y, jx, jy) =
{
∂Bx(jx) 6= ∅, ∂By(jy) 6= ∅ and Bx(jx) ∩ By(jy) = ∅

}
. (2.6)

Intuitively, if A (x, y, jx, jy) occurs for jx and jy sufficiently large, then x and y are both
in the giant component. The event A (x, y, jx, jy) plays a central role throughout our
paper.

We continue by choosing some parameters. The role of each will become clear later.
We set

M = M(m) = log log log(ε3V ∧ α−1
G
∧ (εtmix)

−1), r = r(m) = M(m)ε−1. (2.7)
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Note that M(m)→∞ in our setting. We choose r0 = r0(m) to be

r0 =
ε−1

2
log(αGε3V ). (2.8)

It is important that r0 is chosen so that r0 � r . Additionally, in Corollary 4.6 we prove
that E|B(j)| = 2(ε−1(1+ε)j ) as long as j ≤ ε−1

[log(ε3V )−4 log log(ε3V )]—the same
asymptotics as in a Poisson 1+ ε branching process (though in the branching process the
estimate is valid for all j ). This implies that E|B(r0)| = 2

(√
αGεV

)
, a fact that we use

throughout the paper, but not right now.
For vertices x, y we define

S2r+r0(x, y) =
∣∣{(u, u′) ∈ E(G) : {x 2r+r0

←−−→ u} ◦ {y
2r+r0
←−−→ u′},

|Bu(2r + r0)| · |Bu′(2r + r0)| ≤ e40Mε−2(E|B(r0)|)2
}∣∣.

The edges counted in S2r+r0(x, y) are the ones that will be used in the sprinkling. Infor-
mally, a pair (x, y) of vertices is good when their clusters are large and S2r+r0(x, y) is
large, so that their clusters have many bonds between them. We make this quantitative in
the following definition:

Definition 2.1 ((r, r0)-good pairs). We say that x, y are (r, r0)-good if:
(1) A (x, y, 2r, 2r),
(2) |C (x)| ≥ (ε3V )1/4ε−2 and |C (y)| ≥ (ε3V )1/4ε−2, and
(3) S2r+r0(x, y) ≥ (logM)−1V −1mε−2(E|B(r0)|)2.
Write Pr,r0 for the number of (r, r0)-good pairs.

Theorem 2.4 (Most large clusters share many boundary edges). Let G be a graph on V
vertices and degree m satisfying the assumptions of Theorem 1.3. Assume that ε = ε(m)
satisfies

ε � V −1/3 and ε = o(1/tmix), (2.9)

as in part (b) of Theorem 1.3. Take M and r = Mε−1 as in (2.7), and r0 as in (2.8). Then

Pr,r0

(2εV )2
P
−→ 1.

In light of Theorem 2.2, we expect that the number of pairs of vertices (x, y) with
|C (x)| ≥ (ε3V )1/4ε−2 and |C (y)| ≥ (ε3V )1/4ε−2 is close to (2εV )2. Theorem 2.4
shows that the majority of these pairs have clusters that share many edges between them.
This allows us to proceed with the sprinkling argument leading to (1.8), and we perform
this in Section 7.1 leading to the proof of Theorem 1.3. Since the latter proof assumes
only Theorem 2.4, the curious reader may now skip to Section 7.1 to see how this is done.

2.4. Uniform connection bounds and the role of the random walk. We briefly expand
here on one of our most useful percolation inequalities and its connection with random
walks. In the analysis of the Erdős–Rényi random graph G(n, p), symmetry plays a spe-
cial role. One instance of this symmetry is that the function f (x) = P(0↔ x) is constant
whenever x 6= 0 and its value is precisely (V − 1)−1(E|C (0)| − 1), and 1 when x = 0.
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Such a statement clearly does not hold on the hypercube at pc: the probability that two
neighbors are connected is at least m−1 (recall (1.2)) and the probability that 0 is con-
nected to one of the vertices in the barycenter of the cube is at most

√
m 2−mE|C (0)| by

symmetry.
A key observation in our proof is that one can recover this symmetry as long as we

require the connecting paths to be longer than the mixing time of the random walk. A pre-
cise statement is that percolation at pc occurs on any graph G satisfying the assumptions
of Theorem 1.3,

P(0
[tmix,∞)
←−−−→ x) ≤ (1+ o(1))

E|C (0)|
V

, (2.10)

where tmix is the uniform mixing time, as defined in Theorem 1.3. This is the content of
Lemma 3.13 (or rather it follows by taking r →∞ in the lemma). In addition to allowing
us to estimate difficult sums such as ∇p(0, 0) in (1.3) (see Section 3.6) and other similar
quantities, this estimate also plays a key role in the high level idea of the proof, as we now
explain.

2.5. Sketch of proof of Theorem 2.4. The difficulty in Theorem 2.4 is the requirement
(3) in Definition 2.1. Indeed, conditioned on survival (that is, on the event A (x, y, 2r, 2r)),
the random variable S2r+r0(x, y) is not concentrated, and hence it is hard to prove that
it is large with high probability. In fact, even the variable |B(r0)| is not concentrated.
This is not surprising: the number of descendants at generation n of a branching process
with mean µ > 1 divided by µn converges as n → ∞ to a non-trivial random variable.
Intuitively, this non-concentration occurs because the first generations of the process have
a strong and lasting effect on the future of the population.

In order to counteract this, we condition on the event A (x, y, r, r) and on the entire
balls Bx(r) and By(r) including all the open and closed edges touching them (during the
actual proof we will use some other radii jx, jy between r and 2r , but this is a technical
matter). We will prove that given this conditioning the variable Sr+r0(x, y) is concentrated
around the value

|∂Bx(r)| |∂By(r)|V
−1m(E|B(r0)|)2, (2.11)

and that |∂Bx(r)| |∂By(r)| ≥ ε−2 with high probability, implying that requirement (3) in
Definition 2.1 occurs with high probability conditioned on the event above. Our choice of
r0 in (2.8) is made in such a way that the above quantity is large (however, later we will
see that r0 cannot be too large).

Let us elaborate on the estimate (2.11). Assume that Bx(r) = A and By(r) = B and
write PA,B and EA,B for the conditional probability and expectation given Bx(r) = A

and By(r) = B. We have

EA,BSr+r0(x, y) ≈
∑

a∈∂A, b∈∂B

∑
(u,u′)

PA,B({a
r0
←→ u} ◦ {b

r0
←→ u′}),

where we do not write equality because (a) we have ignored the second condition in the
definition of Sr+r0(x, y), on |Bu(2r + r0)| · |Bu′(2r + r0)|; (b) some edges (u, u′) may be
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over-counted in the sum; and (c) we have neglected to count the closed edges (u, u′) that
connect A and B (that is, occurring in height smaller than r). However, it turns out that
all of these contributions are small compared to (2.11). It is a standard matter by now to
use the triangle condition in order to deduce that for most edges (u, u′),

PA,B({a
r0
←→ u} ◦ {b

r0
←→ u′}) ≈ PA,B(a

r0
←→ u)PA,B(b

r0
←→ u′),

so to proceed we need a good lower bound on PA,B(a
r0
←→ u). The uniform connec-

tion bounds, that is, Lemma 3.13 or (2.10), immediately imply that P(a
r0
←→ u) ≥

(1 − o(1))V −1E|B(r0)| for most vertices u (since
∑
u P(a

r0
←→ u) = E|B(r0)|). Had

we had the same estimate for PA,B(a
r0
←→ u), the lower bound on the conditional first

moment required to prove the estimate (2.11) would follow immediately. However, the
probability PA,B(a

r0
←→ u) may heavily depend on the sets A and B.

To that end, in Section 5 we establish an intrinsic metric regularity theorem, similar
in spirit to the extrinsic metric regularity theorem presented in [42]. Roughly, it states
that for most sets A (more precisely, the weight of sets not having this is o(ε)) for which
Bx(r) = A satisfies ∂Bx(r) 6= ∅, most vertices a ∈ ∂A satisfy∑

u

PA(a
r0
←→ u) ≥ (1− o(1))E|B(r0)|,

where PA is the conditional probability given Bx(r) = A. Thus, the expected size of the
“future” of most vertices on the boundary is not affected by the conditioning on a typical
“past”.

At this point comes another crucial application of the uniform connection bounds as
in (2.10). Indeed, even if the expected “future” of a vertex has the same asymptotics with
or without conditioning, we cannot a priori rule out the possibility that this conditional
“future” concentrates on a small remote portion of the underlying graph G—this can
potentially violate the concentration around the value in (2.11). However, our uniform
connection bounds stated in Lemma 3.13 are robust enough to deal with conditioning and
immediately imply that PA(a

r0
←→ u) = (1− o(1))V −1E|B(r0)| for most a in ∂A and for

most vertices u. In other words, not only did the conditioning not influence the size of the
“future”, it also left its distribution approximately unaltered. These considerations allow
us to give a lower bound of (2.11) on the conditional expectation. This and the conditional
second moment calculation required to show concentration are performed in Section 6.

3. Preliminaries

In this section we provide some preliminary results that we will use. These involve various
expectations and probabilities related to the random variable |∂B(r)| in Section 3.2 and
3.3, non-backtracking random walks in Section 3.4 and its relation to uniform bounds for
connection probabilities in Section 3.5. In Section 3.6 we use these results to prove part
(a) of Theorem 1.3. Finally, in Section 3.7 we bound triangle and square diagrams. The
results in this section do not rely on the assumptions of Theorem 1.3 but sometimes we
do assume the finite triangle condition (1.5).
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3.1. The “off” method and BK-Reimer inequality. We will frequently handle the
events ∂B(r) 6= ∅ and x

=t
←→ y. These events are non-monotone with respect to adding

edges; indeed, adding an edge may shorten a shortest path and prevent the events from
holding. This non-monotonicity is a technical difficulty which unfortunately manifests
itself in many of the arguments in this paper. Our main tools to deal with this problem
are the BK-Reimer inequality [12, 53] and the notion of events occurring “off” a set of
vertices. For the BK-Reimer inequality we use the formulation in [20].

For a subsetA of vertices, we say that an event M occurs offA, intuitively, if it occurs
in Gp \A. Formally, for a percolation configuration ω, we write ωA for the configuration
obtained from ω by turning all the edges touching A to closed. The event “M occurs
off A” is defined to be {ω : ωA ∈M }. We also frequently write PoffA to denote the mea-
sure PoffA(M ) = Pp(M off A). Equivalently, PoffA can be thought of as a percolation
measure in which all edges touching A are closed with probability 1 and the rest are dis-
tributed independently as before. We often drop p from the notation when it is clear what
p is. This framework also allows us to address the case when A = A(ω) is a random set
measurable with respect to Gp (the most prominent example is A = B0(r)). In this case,
the event {M occurs off A(ω)} is defined to be

{M occurs off A(ω)} = {ω : ωA(ω) ∈M }.

Let us review an example occurring frequently in our arguments in which M is an
arbitrary event and A = Bx(s). In this case,

P(M off Bx(s)) =
∑
A

P(Bx(s) = A)P(M off A), (3.1)

where we have used the fact that

P(M off Bx(s) | Bx(s) = A) = P(M off A),

since the events do not depend on edges touching A on both sides of the equation, and
the marginal of the two distributions on the edges not touching A is the same product
measure. In terms of this notation, for a subset A of vertices, we define

BGx (r;A) = {y : dGp (x, y) ≤ r off A}, ∂BGx (r;A) = {y : dGp (x, y) = r off A}

to be the intrinsic ball off A, and its boundary. We finally say that M occurs only on A if
M occurs but M off A does not occur. We frequently rely on the following inclusion:

Claim 3.1. For any event M and any subset of vertices A ⊂ V (G),

M \ {M only on A} ⊂ {M off A}.
Proof. By definition of “M only on A” the event on the left hand side equals

M ∩
{
M c
∪ {M off A}

}
.

From this, it is easy to see that this event implies M off A. ut

Remark. Equality does not hold in Claim 3.1 (unless the right hand side is replaced
by M ∩ {M off A}). This can easily be seen by taking a non-monotone event, say
∂Bx(r) 6=∅.

The following lemmas are inequalities valid for any graph G and any p.
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Lemma 3.2 (Disjoint survival). For any graph G, p ∈ [0, 1], vertices x, y, z and inte-
gers r, s,

P
(
∂Bx(r) 6= ∅, ∂By(s) 6= ∅, Bx(r) ∩ By(s) = ∅

)
≤ P(∂Bx(r) 6= ∅) max

A⊂V (G)
PoffA(∂By(s) 6= ∅).

Proof. We condition on Bx(r) = A such that ∂Bx(r) 6= ∅ and P(Bx(r) = A) > 0. The
left hand side is at most∑

A: ∂Bx (r)6=∅

P(Bx(r) = A)P(∂By(s) 6= ∅ off A),

as in (3.1). The lemma now follows. ut

Lemma 3.3. For any graph G, p ∈ [0, 1], vertices u, v and integers r, ` > 0,

P(0 =r
←→ u and 0

`
←→ v) ≤

∑
z

r∑
t=0

P(0 =t
←→ z)P(z `

←→ v) max
A⊂V (G)

PoffA(z
=r−t
←−→ u).

Proof. We claim that if 0
=r
←→ u and 0

`
←→ v, then there exist z ∈ V (G) and t ≤ r such

that the following two events occur disjointly:

(a) there exists a shortest open path η of length r between 0 and u such that η(t) = z;
(b) there exists an open path between z and ` of length at most `.

Indeed, if the event occurs, let η be the lexicographical first shortest path of length r
between 0 and u, and let γ be an open path of length at most ` between 0 and v. We take
z to be the last vertex on γ which belongs to η, and choose t such that η(t) = z. The
witness for the first event is the set of open edges of η together with all the closed edges
in Gp (the closed edges determine that η is a shortest path), and the second witness is
the edges of γ from z to v. These are disjoint witnesses so we may use the BK-Reimer
inequality and bound

P(0 =r
←→ u and 0

`
←→ v) ≤

∑
z∈V (G), t≤r

P((a))P(z `
←→ v).

To bound P((a)) we condition on B0(t) = A such that A satisfies 0
=t
←→ z, so

P((a)) =
∑

A: 0
=t
←→ z

P(B0(t) = A)P(z
=r−t
←−→ u off A),

and the lemma follows. ut

3.2. Survival probabilities. In this section, we prove Lemma 2.3 and a few other useful
estimates of a similar nature. In the rest of this section we only rely on the finite triangle
condition (1.5), Theorem 2.1 and Theorem 2.2 (both of which follow from the triangle
condition, as shown in [40] and the Appendix).
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Lemma 3.4 (Relating connection probabilities for different p’s). Let p1, p2 ∈ [0, 1]
satisfy p1 ≤ p2 and let r > 0 be an integer. Then, for any graph G and vertex v:

(1) Pp2(∂Bv(r) 6= ∅) ≤ (p2/p1)
rPp1(∂Bv(r) 6= ∅),

(2) Ep2 |∂Bv(r)| ≤ (p2/p1)
rEp1 |∂Bv(r)|.

Proof. We recall the standard simultaneous coupling between percolation measure at dif-
ferent p’s discussed in Section 2.1. Order all the paths in G of length r starting at v
lexicographically. Write A for the event that ∂Bv(r) 6= ∅ in Gp2 and that the lexico-
graphically first p2-open shortest path of length r starting at v is in fact p1-open. We
claim that

P(A ) = (p1/p2)
rP(∂Bv(r) 6= ∅ in Gp2). (3.2)

Indeed, conditioned on the edges ofGp2 , the valueU(e) of each edge inGp2 is distributed
uniformly on the interval [0, p2]. Hence, the probability of the first shortest path being
p1-open in this conditioning is precisely (p1/p2)

r , which proves (3.2). To see (1), note
that if the first p2-open shortest path is p1-open, then it is a shortest path of length r
in Gp1 , so that A implies that ∂Bv(r) 6= ∅ in Gp1 , whence

Pp1(∂Bv(r) 6= ∅) ≥ (p1/p2)
rPp2(∂Bv(r) 6= ∅).

The proof of (2) is similar and we omit the details. ut

Corollary 3.5 (Correlation length is 1/ε). Let G be a transitive finite graph for which
(1.5) holds and set p = pc(1 + ε). Then, for any subset A of vertices, any vertex v and
any integer r:

(1) PoffA(∂Bv(ε
−1) 6= ∅) = O(ε),

(2) E|Bv(r;A)| = O(r(1+ ε)r).

Proof. The result is immediate by combining Lemma 3.4 and Theorem 2.1. ut

Remark. In Section 4 we will show a sharp estimate replacing (2) in the above corollary.

Lemma 3.6 (Supercritical survival probability). Let G be a transitive finite graph for
which (1.5) holds and set p = pc(1 + ε). Then, for any M → ∞ and any subset A of
vertices,

PoffA(∂B(Mε
−1) 6= ∅) ≤ (2+ o(1))ε,

and for any M ≤ log log(ε3V ) such that M →∞,

P(∂B(Mε−1) 6= ∅) ≥ (2− o(1))ε.

Proof. To prove the upper bound we write

PoffA(∂B(Mε
−1) 6= ∅) = PoffA

(
∂B(Mε−1) 6= ∅, |C (0)| >

√
M ε−2)

+ PoffA
(
∂B(Mε−1) 6= ∅, |C (0)| ≤

√
M ε−2).

The first term on the right hand side is at most (2 + o(1))ε by Theorem 2.2—note that
we have used the fact that the event |C (0)| ≥ k is monotone, so PoffA(|C (0)| ≥ k) ≤
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P(|C (0)| ≥ k). It remains to show that the second term is o(ε). Indeed, if this event
occurs, then there exists a radius j ∈ [Mε−1/3, 2Mε−1/3] such that

0 < ∂B(j ;A) ≤ 3M−1/2ε−1 and ∂B(Mε−1
;A) 6= ∅.

Let J be the first level satisfying this. By Corollary 3.5 and the union bound,

PoffA
(
∃y ∈ ∂B(J ;A) with ∂By(Mε−1/3;A) 6= ∅ off B(J ;A)

∣∣ B(J ;A))
≤ Cε|∂B(J ;A)| = O(M−1/2).

Corollary 3.5 also shows that PoffA(∂B(Mε
−1/3) 6= ∅) = O(ε), so putting this together

gives

PoffA
(
∂B(Mε−1) 6= ∅, |C (x)| ≤

√
M ε−2)

= O(M−1/2ε), (3.3)

concluding the proof of the upper bound. For the lower bound, take k0 = ε
−2(ε3V )α for

some fixed α ∈ (0, 1/3). We have

P(∂B(Mε−1) 6= ∅) ≥ P
(
∂B(Mε−1) 6= ∅ and |C (0)| ≥ k0

)
= P(|C (0)| ≥ k0)− P

(
|C (0)| ≥ k0 and ∂B(Mε−1) = ∅

)
,

so by Theorem 2.2 it suffices to bound the last term on the right hand side from above.
Indeed, by Markov’s inequality and Corollary 3.5,

P
(
|C (0)| ≥ k0 and ∂B(Mε−1) = ∅

)
≤ P(|B(Mε−1)| ≥ k0)

≤
CMeMε−1

k0
= O

(
ε(ε3V )−α log(ε3V )

)
= o(ε), (3.4)

since M ≤ log log(ε3V ). ut

We proceed with the preparations towards the proof of Lemma 2.3. For an integer r > 0,
we write Nr for the random variable

Nr = |{x : ∂Bx(r) 6= ∅}|.

We think of 1/ε as the correlation length (see [27]). In other words, if r � 1/ε, then the
vertices contributing to Nr should be those in the giant component.

Lemma 3.7 (Nr is concentrated). Let Gm be a sequence of transitive finite graphs with
degree m for which (1.5) holds and m→∞. Set p = pc(1+ ε). Then, for any r � 1/ε
satisfying r ≤ ε−1 log log(ε3V ),

Nr

2εV
P
−→ 1.
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Proof. We use a second moment method on Nr . Lemma 3.6 and our assumption on r
show that

ENr = (2+ o(1))εV .
The second moment is

EN2
r =

∑
x,y

P
(
∂Bx(r) 6= ∅ and ∂By(r) 6= ∅

)
.

We have

P
(
∂Bx(r) 6= ∅ and ∂By(r) 6= ∅

)
≤ P

(
∂Bx(r) 6= ∅ and ∂By(r) 6= ∅, Bx(r) ∩ By(r) = ∅

)
+ P(x 2r

←→ y).

We sum the first term on the right hand side using Lemmas 3.2 and 3.6 and the second
term using Corollary 3.5. We get

EN2
r ≤ (4+ o(1))ε

2V 2
+O(V r(1+ ε)2r) = (1+ o(1))[ENr ]2,

since V r(1+ε)2r = o(ε2V 2) by our assumption on r and since ε3V →∞. The assertion
of the lemma now follows by Chebyshev’s inequality. ut

Proof of Lemma 2.3. Take M = M(m) and r as in (2.7) and write

Z≥k0 = Nr +
∣∣{x : ∂Bx(r) = ∅, |C (x)| ≥ k0}

∣∣− ∣∣{x : ∂Bx(r) 6= ∅, |C (x)| < k0}
∣∣.

By Lemma 3.7, Nr/(2εV )
P
−→ 1, so it suffices to show that the expectation of both re-

maining terms is o(εV ). The expectation of the first term is

VP(x : ∂Bx(r) = ∅, |C (v)| ≥ k0) = o(εV ), (3.5)

by (3.4). The expectation of the second term now must be o(εV ) since both Nr and Z≥k0
have mean (2+o(1))εV by Theorem 2.2 and Lemma 3.6. This shows thatZ≥k0/(2εV )

P
−→1

as stated in Lemma 2.3.
To prove the upper bound on E|C (0)| we write

E|C (0)| =
∑
y

P(0↔ y) =
∑
y

P(0
[0,2r)
←−→ y)+

∑
y

P(0
[2r,∞)
←−−→ y).

By Corollary 3.5,∑
y

P(0
[0,2r)
←−→ y) = E|B(2r)| ≤ Cε−1(log(ε3V ))3 = o(ε2V ), (3.6)

since ε3V � 1. If 0
[2r,∞)
←−−→ y, then the event{
∂B0(r) 6= ∅, ∂By(r) 6= ∅, B0(r) ∩ By(r) = ∅

}
occurs. Hence Lemmas 3.2 and 3.6 give P(0

[2r,∞)
←−−→ y) ≤ (4 + o(1))ε2, and summing

this over y yields the required upper bound on E|C (0)|. ut
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3.3. Disjoint survival probabilities. In this section we show that for most pairs x, y
the event A (x, y, r, r) occurs with probability asymptotic to 4ε2. The point is that r is
chosen such that r � ε−1, where ε−1 is the correlation length, but r � ε−1 log(ε3V ),
which is the order of the diameter of C1 (we do not prove the estimate on the diameter
here, but it can be obtained using the techniques of this paper).

Lemma 3.8 (Number of pairs surviving disjointly). Let Gm be a sequence of transitive
finite graphs with degree m for which (1.5) holds and m→∞. Set p = pc(1+ ε). Then,
for any r � ε−1 satisfying r ≤ ε−1 log log(ε3V ),

|{{x, y} : A (x, y, r, r) occurs}|
(2εV )2

P
−→ 1.

Proof. Define
N (2)
r = |{{x, y} : A (x, y, r, r) occurs}|.

Then
N2
r − |{{x, y} : x

2r
←→ y}| ≤ N (2)

r ≤ N
2
r ,

and E|{{x, y} : x 2r
←→ y}| = o(ε2V 2) as shown in (3.6). The result now follows from

Markov’s inequality and Lemma 3.7. ut

Lemma 3.9 (Most pairs have almost independent disjoint survival probabilities). Let
Gm be a sequence of transitive finite graphs with degree m for which (1.5) holds and
m → ∞. Set p = pc(1 + ε). Then, for any jx, jy ≤ ε−1 log log(ε3V ) such that
jx, jy � ε−1, there exist at least (1− o(1))V 2 pairs of vertices x, y such that

P(A (x, y, jx, jy)) = (1+ o(1))4ε2.

Proof. The upper bound P(A (x, y, jx, jx)) ≤ (1 + o(1))4ε2 follows immediately from
Lemmas 3.2 and 3.6 and is valid for all pairs x, y. We turn to showing the corresponding
lower bound. First, the inequality E[N2

r ] ≥ (ENr)2 can be written as∑
x,y

P
(
∂Bx(r) 6= ∅ and ∂By(r) 6= ∅

)
≥ V 2P(∂B(r) 6= ∅)2.

We take r = ε−1 log log(ε3V ). Since P(∂Bx(j) 6= ∅) is decreasing in j , by Lemma 3.6
and our assumption on jx and jy we get∑

x,y

P
(
∂Bx(jx) 6= ∅ and ∂By(jy) 6= ∅

)
≥ (4− o(1))V 2ε2.

Secondly, Corollary 3.5 implies that∑
x,y

P(x 2r
←→ y) = VE|B(2r)| ≤ CV r(1+ ε)2r = o(ε2V 2),

by our choice of r and since ε3V →∞. Since

A (x, y, jx, jy) ⊆ {∂Bx(jx) 6= ∅, ∂By(jy) 6= ∅} \ {x
2r
←→ y},
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we deduce that ∑
x,y

P(A (x, y, jx, jy)) ≥ (4− o(1))ε2V 2,

and since the upper bound was valid for all x, y, the lemma follows. ut

Lemma 3.10. Let Gm be a sequence of transitive finite graphs with degree m for which
(1.5) holds and m → ∞. Set p = pc(1 + ε). Then, for any r ≤ ε−1 log log(ε3V ) such
that r � ε−1, ∣∣{(x, y) : A (x, y, r, r) and |C (x)| ≤ (ε3V )1/4ε−2

}
∣∣

(εV )2
P
−→ 0.

Proof. By Lemma 3.7, the assertion follows from the statement that∣∣{x : ∂Bx(r) 6= ∅ and |C (x)| ≤ (ε3V )1/4ε−2
}
∣∣/(εV ) P

−→ 0.

To show this, note that

P
(
∂Bx(r) = ∅ and |C (x)| ≥ (ε3V )1/4ε−2)

≤ P
(
|Bx(r)| ≥ (ε

3V )1/4ε−2)
≤

Cr(1+ ε)r

(ε3V )1/4ε−2 = o(ε).

Hence, by Theorem 2.2,

P
(
∂Bx(r) 6= ∅ and |C (x)| ≥ (ε3V )1/4ε−2)

≥ (2− o(1))ε.

Together with Lemma 3.6, this yields

P
(
∂Bx(r) 6= ∅ and |C (x)| ≤ (ε3V )1/4ε−2)

= o(ε),

concluding our proof. ut

3.4. Using the non-backtracking random walk. In the rest of this section we provide
several basic percolation estimates which we use throughout the paper. These include
bounds on long and short connection probabilities and bounds on various triangle and
square diagrams. It is here that we make crucial use of the geometry of the graph and
of the behavior of the random walk on it, namely, the assumptions of Theorem 1.3. We
frequently use non-backtracking random walk estimates. Such a walk is a simple random
walk on a graph that is not allowed to traverse back on an edge it has just walked on. Let
us first define it formally.

The non-backtracking random walk on an undirected graph G = (V (G),E(G)),
starting from a vertex x ∈ V (G), is a Markov chain {Xt } with transition matrix Px on the
state space of directed edges

−→
E = {(x, y) : {x, y} ∈ E(G)}.

If Xt = (x, y), then we write X(1)t = x and X(2)t = y. Also, for notational convenience,
we write

P(x,w)(·) = Px(· | X0 = (x,w)) and pt (x, y) = Px(X(2)t = y).
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The non-backtracking walk starting from a vertex x has initial state given by

Px(X0 = (x, y)) = 1
{(x,y)∈

−→
E }

1
deg(x)

,

and transition probabilities given by

P(u,v)(X1 = (v,w)) = 1
{(v,w)∈

−→
E ,w 6=v}

1
deg(v)− 1

,

where we write deg(x) for the degree of x in G. The following lemma will be useful.

Lemma 3.11. Let G be a regular graph of degree m. Then, for t ≥ 0,

m

m− 1

∑
u

p1(0, u)pt (u, z) = pt+1(0, z)+
1

m− 1
pt−1(0, z),

with the convention that p−1(0, z) = 0.

Proof. For any neighbour u of 0 we have p1(0, u) = m−1, hence∑
u

p1(0, u)pt (u, z) = m−1
∑
u: u∼0

[∑
ω

1
m(m− 1)t−1 +

∑
ω′

1
m(m− 1)t−1

]
,

where ω runs over the non-backtracking paths of length t from u to z such that the first
step is not 0, and ω′ runs over the same paths such that the first step is 0. Similarly

pt+1(0, z) = m−1
∑
u: u∼0

∑
ω

1
(m− 1)t

,

where ω runs over the same paths as above. Thus[
m

m− 1

∑
u

p1(0, u)pt (u, z)
]
− pt+1(0, z) = m−1

∑
u: u∼0

∑
ω′

1
(m− 1)t

.

By changing the order of summation the last sum equals

m−1
∑
ω′′

∑
u: u∼0, u6=ω′′1

(m− 1)−t ,

where ω′′ runs over non-backtracking paths of length t − 1 from 0 to z. For each ω′′ the
number of summands in the second sum is precisely m− 1, so that the sum equals∑

ω′′

m−1(m− 1)−(t−1),

which is precisely (m− 1)−1pt−1(0, z) as required. ut
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3.5. Uniform upper bounds on long connection probabilities. In this section we show
that long percolation paths are asymptotically equally likely to end at any vertex in G.

Lemma 3.12. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider
percolation on it with p ≤ pc(1+ ε). Then, for any integer t ≥ tmix and any vertex x,

Pp(0
=t
←→ x)+ Pp(0

=t+1
←−→ x) ≤

2+O(αG + εtmix)

V
E|∂B(t − tmix)|.

Proof. If 0
=t
←→ x, then there exists a vertex v and a simple path ω of length tmix from x to

v such that the event

{ω is open} ◦ {v
=t−tmix
←−−−→ x}

occurs. Indeed, consider a shortest path η of length t between 0 to x. Take v = η(tmix) and

ω = η[1, tmix]. Now, the first witness is the path ω and the witness for {v
=t−tmix
←−−−→ x} is

the path η[tmix, t] together with all the closed edges in Gp (which determine that η[tmix, t]

is a shortest path). These are disjoint witnesses. If 0
=t+1
←−→ x occurs, then we get the same

conclusion with ω of length tmix+1. We now apply the BK-Reimer inequality and the fact
that the probability that ω is open is precisely p|ω|. This yields

Pp(0
=t
←→ x) ≤ ptmix

∑
v

∑
ω: |ω|=tmix
ω[tmix]=v

Pp(v
=t−tmix
←−−−→ x),

and

Pp(0
=t+1
←−→ x) ≤ ptmix+1

∑
v

∑
ω: |ω|=tmix+1
ω[tmix+1]=v

Pp(v
=t−tmix
←−−−→ x).

We now bound these by relaxing the requirement that ω is simple and only requiring that
it is non-backtracking. Since tmix = Tmix(αG), we find by definition that∣∣{ω : |ω| = tmix, ω[tmix] = v}

∣∣
m(m− 1)tmix−1 +

∣∣{ω : |ω| = tmix + 1, ω[tmix + 1] = v}
∣∣

m(m− 1)tmix

= ptmix(0, v)+ ptmix+1(0, v) ≤
2+ 2αG
V

,

where we have enumerated only non-backtracking paths. Using this, condition (2) and
summing over v gives

Pp(0
=t
←→ x)+ Pp(0

=t+1
←−→ x) ≤

2+O(αG)
V

[p(m− 1)]tmixE|∂B(t − tmix)|

≤
2+O(αG + εtmix)

V
E|∂B(t − tmix)|,

concluding our proof. ut
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Lemma 3.13. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider
percolation on it with p ≤ pc(1+ ε). Then, for any r ≥ tmix and any vertex x,

Pp(0
P [tmix,r]
←−−−→ x) ≤

1+O(αG + εtmix)

V
E|B(r)|.

Proof. The proof is similar to that of Lemma 3.12. If the event occurs, then there exists a
vertex v and a simple path ω of length tmix from 0 to v such that the event

{ω is open} ◦ {v
r
←→ x}

occurs. Hence,

Pp(0
P [tmix,r]
←−−−→ x) ≤ ptmix

∑
v

∑
ω: |ω|=tmix
ω[tmix]=v

Pp(v
r
←→ x),

by the BK inequality. By the same argument,

Pp(0
P [tmix,r]
←−−−→ x) ≤ ptmix+1

∑
v

∑
ω: |ω|=tmix+1
ω[tmix+1]=v

Pp(v
r
←→ x).

The reason we make two such similar estimates is that due to possible periodicity, in each
of the estimates the sum over v may be 0 on half the vertices. We now take the average of
these two estimates, sum over v to get the E|B(r)| factor and use the same analysis as in
Lemma 3.12 using condition (2). This gives the required assertion of the lemma. ut

Lemma 3.14. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider
percolation on it with p ≤ pc(1+ ε). Then, for any r ≥ tmix and any vertex x,

P(0 [r,2r]
←−→ x) ≤

1+O(αG + εtmix)

V
E|B([r − tmix, 2r − tmix])|.

Proof. This follows by summing the estimate of Lemma 3.12 and using the fact that

E|∂B(t)| ≤ p(m− 1)E|∂B(t − 1)| ≤ (1+m−1
+ ε)E|∂B(t − 1)|,

where the last inequality is due to condition (2) and the first inequality holds since, given
∂B(t − 1), |∂B(t)| is stochastically bounded above by a sum of |∂B(t − 1)| binomial
random variables with parametersm− 1 and p. The lemma follows since αG ≥ m−1. ut

We close this section with a remark to be used later. We would often like to have these
uniform connection bounds off some subsets of vertices. The proofs of the lemmas in this
section immediately generalize to such a setting, because the claim “the number of paths
from 0 to v of length tmix is at most n” still holds even if we are in G \ A, for any subset
A of vertices. We state the required assertion here and omit the proof:

Lemma 3.15 (Uniform connection bounds off sets). Consider percolation on G =

{0, 1}m with p = pc(1 + ε), and let A be any subset of vertices. Then, for any r ≥ tmix

and any vertex x,

PoffA(0
=r
←→ x) ≤ (2+O(αG + εtmix))V

−1E|∂B(r − tmix;A)|,

PoffA(0
[tmix,r]
←−−→ x) ≤ (1+O(αG + εtmix))V

−1E|B(r;A)|.
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3.6. Proof of part (a) of Theorem 1.3. We demonstrate the use of Lemma 3.13 by
showing that the finite triangle condition holds under the assumptions of Theorem 1.3.
We begin with an easy calculation.

Claim 3.16. On any regular graph G of degree m, for vertices x, y,∑
u,v

∑
t1,t2,t3: t1+t2+t3∈{0,1,2}

pt1(x, u)pt2(u, v)pt3(v, y) = 1{x=y} +O(m−1),∑
u,v

∑
t1,t2,t3: t1+t2+t3∈{1,2}

pt1(x, u)pt2(u, v)pt3(v, y) = O(m−1).

Proof. We prove both statements simultaneously. The contribution coming from t1 + t2
+ t3 = 0 is the one we get when x = u = v = y, giving 1{x=y}. The contributions from
t1 + t2 + t3 = 1 can only come from the cases u = v = y and (t1, t2, t3) = (1, 0, 0), or
u = v = x and (t1, t2, t3) = (0, 0, 1), or u = x and v = y and (t1, t2, t3) = (0, 1, 0).
These are easily bounded using the fact that maxz pt (w, z) ≤ 1/(m − 1) for any t ≥ 1.
We perform a similar case analysis to bound the contributions from t1 + t2 + t3 = 2.
If (t1, t2, t3) = (0, 0, 2), then we must have u = v = x and p2(v, y) = O(m−1); this
argument also handles the case where one of the other ti’s is 2. In the case (t1, t2, t3) =
(1, 1, 0) we must have v = y and u is a neighbor of both x and y. There are at most m
such u’s, and for each we have p1(x, u)p1(u, y) = O(m−2). The cases (t1, t2, t3) ∈
{(0, 1, 1), (1, 0, 1)} are handled similarly. ut

Proof of part (a) of Theorem 1.3. Let p ≤ pc. If one of the connections in the sum
∇p(x, y) is of length in [tmix,∞), say between x and u, then we may estimate∑
u,v

Pp(x
[tmix,∞)
←−−−→ u)Pp(u↔ v)Pp(v ↔ y)

≤
(1+ o(1))Ep|C (0)|

V

∑
u,v

Pp(u↔ v)Pp(v ↔ y) =
(1+ o(1))(Ep|C (0)|)3

V
,

where we have used Lemma 3.13 (and taken r →∞ on both sides of the lemma) for the
first inequality. Thus, it remains to deal with short connections,

∇p(x, y) ≤
∑
u,v

Pp(x
tmix
←→ u)Pp(u

tmix
←→ v)Pp(v

tmix
←→ y)+O(V −1χ(p)3).

We write

Pp(x
tmix
←→ u) =

tmix∑
t1=0

Pp(x
=t1
←→ u),

and do the same for all three terms so that

∇p(x, y) ≤
∑
u,v

tmix∑
t1,t2,t3

Pp(x
=t1
←→ u)Pp(u

=t2
←→ v)Pp(v

=t3
←→ y)+O(V −1χ(p)3). (3.7)

We bound
Pp(x

=t1
←→ u) ≤ m(m− 1)t1−1pt1(x, u)pt1 ,
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simply because m(m− 1)t1−1pt1(x, u) is an upper bound on the number of simple paths
of length t1 starting at x and ending at u. Hence

∇p(x, y)

≤
m3

(m− 1)3
∑
u,v

tmix∑
t1,t2,t3

[p(m− 1)]t1+t2+t3pt1(x, u)pt2(u, v)pt3(v, y)+O(V −1χ(p)3).

Since p ≤ pc, assumption (2) gives [p(m − 1)]t1+t2+t3 = 1 +O(αG), and condition (3)
together with Claim 3.16 yields

∇p(x, y) ≤ 1{x=y} +O(V −1χ(p)3)+O(m−1
+ αG/logV ),

concluding the proof. ut

3.7. Restricted triangle and square diagrams. In this section, we provide several ex-
tensions to the triangle condition (1.5). We will bound the triangle diagram in the super-
critical phase (which requires a bound on the length of connections, otherwise the sums
blow up) and estimate a square diagram which will be useful in a key second moment
calculation in Section 6.

Lemma 3.17 (Short supercritical triangles). LetG be a graph satisfying the assumptions
in Theorem 1.3 and consider percolation on it with p ≤ pc(1+ ε). Then

max
x,y

∑
u,v : {u,v}6={0,0}

Pp(x
tmix
←→ u)Pp(u

tmix
←→ v)Pp(v

tmix
←→ y) = O(αG + εtmix).

Proof. This follows immediately from assumptions (2) and (3) of Theorem 1.3 and the
usual bound

Pp(x
=s
←→ u) ≤ psm(m− 1)s−1ps(x, u),

as before. ut

Corollary 3.18 (Long supercritical triangles). Let G be a graph satisfying the assump-
tions in Theorem 1.3 and consider percolation on it with p ≤ pc(1+ ε). Let r1 = r1(m),
r2 = r2(m), r3 = r3(m) be integers that are all at least tmix. Then

max
x,y

∑
u,v: {u,v}6={x,y}

P(x
r1
←→ u)P(u

r2
←→ v)P(v

r3
←→ y)

≤ O(αG + εtmix)+
3+O(αG + εtmix)

V
E|B(r1)|E|B(r2)|E|B(r3)|. (3.8)

Proof. We split the sum into two cases. The first case is that at least one of the connection
events occurs with a path of length at least tmix. For instance, if x

P [tmix,r1]
←−−−−→ u occurs, then

we use Lemma 3.13 to bound, uniformly in x, y,
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∑
u,v

P(x
P [tmix,r1]
←−−−−→ u)P(u

r2
←→ v)P(v

r3
←→ y)

≤
1+O(αG + εtmix)

V
E|B(r1)|

∑
u,v

P(u
r2
←→ v)P(v

r3
←→ y)

=
1+O(αG + εtmix)

V
E|B(r1)|E|B(r2)|E|B(r3)|.

The second case is when all the connections occur with paths of length at most tmix, in
which case we use Lemma 3.17 to get an O(αG + εtmix) bound. ut

Lemma 3.19 (Supercritical square diagram). Let G be a graph satisfying the assump-
tions in Theorem 1.3 and consider percolation on it with p ≤ pc(1+ ε). Let r1, r2 ≤ tmix.
Then ∑

(u1,u
′

1),(u2,u
′

2),z1,z2

P(z1
r1
←→ u1)P(z1

r1
←→ u2)P(z2

r2
←→ u′1)P(z2

r2
←→ u′2)

≤ Cm2(E|B(r1)|)2(E|B(r2)|)2 + CVm2tmixαG.

Proof. See Figure 1. If one of the connections is of length at least tmix, then we use Lemma
3.13 and the summation simplifies. For instance, if u1

[tmix,r1]
←−−−→ z1, then we use Lemma

3.13 and sum over z1, and subsequently over u1 and u2. This gives a bound of

Cm2(E|B(r1)|)2

V

∑
u′1,u

′

2,z2

P(z2
r2
←→ u′1)P(z2

r2
←→ u′2) ≤ Cm

2
[E|B(r1)|2E|B(r2)|]2,

where C > 1 is an upper bound on 1+O(αG + εtmix).

(u1, u
′
1)

(u2, u
′
2)

z1 z2

≤ r1

≤ r1

≤ r2

≤ r2

Fig. 1. A square diagram.

It remains to bound the sum∑
(u1,u

′

1),(u2,u
′

2),z1,z2

P(z1
tmix
←→ u1)P(z1

tmix
←→ u2)P(z2

tmix
←→ u′1)P(z2

tmix
←→ u′2)

= V
∑

(u1,u
′

1),(u2,u
′

2),z2

P(0
tmix
←→ u1)P(0

tmix
←→ u2)P(z2

tmix
←→ u′1)P(z2

tmix
←→ u′2), (3.9)

by transitivity. We write this sum as V
∑
u′2
f (u′2)g(u

′

2), where

g(u′2) =
∑

(u1,u
′

1),z2

P(0
tmix
←→ u1)P(z2

tmix
←→ u′1)P(z2

tmix
←→ u′2),

f (u′2) =
∑
u2∼u

′

2

P(0
tmix
←→ u2).

(3.10)
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We then bound

V
∑
u′2

f (u′2)g(u
′

2) ≤ V
(∑
u′2

f (u′2)
)(

max
u′2

g(u′2)
)

= VmE|B(tmix)|max
x

∑
(u1,u

′

1),z2

P(0
tmix
←→ u1)P(z2

tmix
←→ u′1)P(z2

tmix
←→ x).

By condition (2) in Theorem 1.3, we can write the above as

V
∑
u′2

f (u′2)g(u
′

2)

≤ CVm2E|B(tmix)|max
x

∑
u1,u

′

1,z2

tmix∑
t1,t2,t3≥0

pt1(0, u1)p1(u1, u
′

1)p
t2(u′1, z2)pt3(z2, x)

≤ CVm2E|B(tmix)|

×max
x

∑
u1,z2

tmix∑
t1,t2,t3≥0

pt1(0, u1)

[
pt2+1(u1, z2)+

1
m− 1

pt2−1(u1, z2)

]
pt3(z2, x)

≤ CVm2E|B(tmix)|(αG +O(1/m)) ≤ CVm2E|B(tmix)|αG,

where we use Lemma 3.11 in the second inequality, and Claim 3.16, condition (2) of
Theorem 1.3 and αG ≥ 1/m in the final inequality. Further, E|B(tmix)| = O(tmix) by
Corollary 3.5 and the fact that tmix = o(ε

−1). This concludes our proof. ut

4. Volume estimates

In this section, we study the expected volume of intrinsic balls and their boundaries at
various radii in both the critical and supercritical phase.

4.1. In the critical regime. Given a subset A of vertices and integer r ≥ 0 we write

G(r;A) = E|∂B(r;A)|, G(r) = max
A⊆V (G)

G(r;A).

Theorem 2.1 implies that for “most” r’s the value G(r) is bounded above by a constant
(more precisely, given any fixed A and R, the number of r’s satisfying 1 ≤ r ≤ R and
E|∂B(r;A)| ≥ C/δ is at most δR). The following useful result states thatG(r) is at most
a constant for all r . We believe that this estimate should hold only under the assumption
of the triangle condition but we are only able to prove it under the stronger assumptions
of Theorem 1.3. The proof’s strategy is similar to the proof of Theorem 2.1(1) in [40],
that is, finding recursive inequalities involving G(r). However, the details are somewhat
more involved, and the uniform connection bounds (Lemma 3.15) are used to decouple a
sum we could not decouple otherwise.

Theorem 4.1 (Expected boundary size). LetG be a graph satisfying the assumptions of
Theorem 1.3 and consider percolation on it with p = pc. Then there exists a constant
C > 0 such that for any integer r ,

G(r) ≤ C.
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Proof. Define F(r) = E|B(r)| and F(r;A) = E|B(r;A)|, so that F(r;A) ≤ F(r) for
all subsets A. Define G∗(r) = maxs≤r G(s), and let r ≥ 2tmix be a maximizer of G∗, that
is,G(r ′) ≤ G(r) for any r ′ < r . Let A = A(r) be the subset of vertices which maximizes
G(r;A), so that G(r;A) = G(r) = G∗(r). We will prove that there exists c > 0 such
that for any integer s ≥ 0,

F(r + s;A) ≥ cG∗(r)F (s;A). (4.1)

We begin by bounding

F(r + s;A) ≥
∑
v

PoffA(0
(r,r+s]
←−−→ v).

For a vertex u we define C u(0;A) = {x : 0 ↔ x off A ∪ {u}}. Now, for any vertex v, if

there exists u 6= v such that 0
=r
←→ u off A and u

s
←→ v off C u(0;A), then 0

(r,r+s]
←−−→ v

off A. Furthermore, if such a u exists, then it is unique because otherwise v ∈ C u(0;A).
We deduce that

F(r + s;A) ≥
∑
v 6=u

PoffA
(
0
=r
←→ u and {u

s
←→ v off C u(0;A)}

)
.

We now condition on C u(0;A) = H for some admissible H (that is, for which the
probability of the event C u(0;A) = H is positive, and in which 0

=r
←→ u occurs). In

this conditioning, we also condition on the status of all edges touching H . Note that by
definition A ∩H = ∅. We can write the right hand side of the last inequality as∑

v 6=u

∑
H : 0

=r
←→ u offA

PoffA(C
u(0;A) = H)PoffA(u

s
←→ v off H),

in the same way as we derived (3.1). This can be rewritten as∑
v 6=u

∑
H : 0

=r
↔ u offA

PoffA(C
u(0;A) = H)

[
PoffA(u

s
←→ v)− PoffA(u

s
←→ v only on H)

]
.

We open the parenthesis and find that the first part of this sum is precisely G∗(r)F (s;A)
since r and A were maximizers. We need to show that the second part of the sum is of
lower order. To that end, note that if u

s
←→ v only on H , then there exists h ∈ H such that

h 6= u and {u
s
←→ h} ◦ {h

s
←→ v}. By the BK inequality, we bound the second part of the

sum above by∑
u

∑
H : 0

=r
←→ u offA

∑
h∈H, h6=u,v

PoffA(C
u(0;A) = H)PoffA(u

s
←→ h)PoffA(h

s
←→ v).

Summing over v and changing the order of summation shows that the last sum is at most

F(s;A)
∑
u6=h

PoffA(0
=r
←→ u, 0↔ h)PoffA(u

s
←→ h).
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We bound this from above using Lemma 3.3 by

F(s;A)
∑
u6=h,z

∑
t≤r

PoffA(0
=t
←→ z)

× max
D⊆V (G)

P(z =r−t←−→ u off A ∪D)PoffA(z↔ h)PoffA(u
s
←→ h). (4.2)

We sum this separately for t ≤ r − tmix and t ∈ [r − tmix, r]. For t ≤ r − tmix we bound,
for any D ⊂ V ,

P(z =r−t←−→ u off A ∪D) ≤ 3G(r − t − tmix;A ∪D)/V ≤ 3G∗(r)/V ,

where the first inequality is by Lemma 3.15 and the second by definition ofG∗(r). Hence,
the sum over t ≤ r − tmix in (4.2) is at most

3G∗(r)F (s;A)
V

∑
u,h,z

PoffA(0
r
←→ z)PoffA(z↔ h)PoffA(h

s
←→ u)

≤ 3G∗(r)F (s;A)(E|C (0)|)3/V = 3λ3G∗(r)F (s;A),

where the inequality is obtained by summing over u, h and z (in that order), and the
equality is due to the definition of pc in (1.1). Our λ = 1/10 is chosen small enough so
that 3λ3

≤ 1/2.
We now bound the sum in (4.2) for t ∈ [r − tmix, r]. We first bound

PoffA(0
=t
←→ z) ≤ 3G∗(r)/V ,

as we did before using Lemma 3.15, and pull that term out of the sum. This gives an upper
bound of

3G∗(r)F (s;A)
V

∑
u6=h,z

tmix∑
s1=0

max
D⊆V (G)

P(z
=s1
←→ u off A ∪D)PoffA(z↔ h)PoffA(u

s
←→ h).

We would like to sum the first term in the sum over s1 and get a contribution of P(z
tmix
←→u).

We cannot do that, however, because the maximizing set D may depend on s1 so these
are not necessarily disjoint events. Instead we estimate, for all D ⊆ V (G),

P(z
=s1
←→ u off A ∪D) ≤ m(m− 1)s1ps1c ps1(z, u) ≤ (1+ o(1))ps1(z, u),

where the first inequality is sincem(m−1)s1ps1(z, u) bounds the number of simple paths
of length s1 connecting z to u, and the second inequality is due to condition (2) of The-
orem 1.3. Now, if one of the connections z ↔ h or u

s
←→ h is in fact a connection of

length at least tmix, we use Lemma 3.13 to simplify the sum. For instance, if the connec-

tion is z
[tmix,∞)
←−−−→ h, then we bound the probability of this by 2V −1E|C (0)| and the sum

simplifies to

4G∗(r)F (s;A)E|C (0)|
V 2

∑
u6=h,z

tmix∑
s1=0

ps1(z, u)P(u s
←→ h);



Hypercube percolation 757

we then sum over h, u, z to s1 and get a contribution of

4G∗(r)F (s;A)tmix(E|C (0)|)2

V
= o(G∗(r)F (s;A)),

since (E|C (0)|)2 = O(V 2/3) and tmix = o(ε
−1) = o(V 1/3). It remains to bound

3G∗(r)F (s;A)
V

∑
u6=h,z

tmix∑
s1=0

ps1(z, u)PoffA(z
tmix
←→ h)PoffA(u

tmix
←→ h),

by

CG∗(r)F (s;A)

V

∑
u6=h,z

tmix∑
s1=0, s2=1, s3=0

ps1(z, u)ps2(u, h)ps3(h, z) = o(1) ·G∗(r)F (s;A),

where we have used Claim 3.16 and condition (3) of Theorem 1.3. This concludes the
proof of (4.1).

We now prove the main result assuming (4.1). First, for any r ≤ 2tmix the number of
non-backtracking paths emanating from 0 is at most m(m− 1)r−1, and hence, for any A,

G(r;A) ≤ m(m− 1)r−1prc = 1+ o(1),

by condition (2) of Theorem 1.3. It remains to consider the case r ≥ 2tmix. Assume
for contradiction that there exists some r ≥ 2tmix such that r is the maximizer in the
definition G∗(r), and G∗(r) ≥ 2/c where c is the constant from (4.1). Fix such an r and
let A = A(r) be the maximizing set as in (4.1). Now, setting s = r in (4.1) gives

F(2r;A) ≥ cG∗(r)F (r;A) ≥ 2F(r;A).

Setting s = 2r in (4.1) gives

F(3r;A) ≥ cG∗(r)F (2r;A) ≥ 4F(r;A),

and so by induction, for any k,

F(kr;A) ≥ 2k−1F(r;A).

We have reached a contradiction, since on the right hand side we have a quantity go-
ing to ∞ with k (note that A cannot contain 0, otherwise it will not be maximizing, so
F(r;A) ≥ 1), and on the left hand side our quantity is bounded by V . ut

We now wish to obtain the reverse inequality to Theorem 4.1, that is, a lower bound
on E|∂B(r)|. Of course, this cannot hold for all r , but it turns out to hold as long as
r � V 1/3. This is the correct upper bound on r because the diameter of critical clusters
is of order V 1/3 (see [49]).

Lemma 4.2 (Lower bound on critical expected ball). LetG be any transitive finite graph
and set p = pc where pc is defined in (1.4). Then there exists a constant ξ > 0 such that
for all r ≤ ξV 1/3,

E|B(r)| ≥ r/4.



758 Remco van der Hofstad, Asaf Nachmias

Proof. For convenience write c = 1/4. Assume for contradiction that E|B(r)| ≤ cr .
Given this assumption, we will prove by induction that for any integer k ≥ 0,

E
∣∣B([r(1+ k/2), r(1+ (k + 1)/2)]

)∣∣ ≤ 2k+1ck+2r. (4.3)

For k = 0, since E|B(r)| ≤ cr there exists r ′ ∈ [r/2, r] such that E|∂B(r ′)| ≤ 2c, so

E|B([r, 3r/2])| =
∑
A

P(B(r ′) = A)E[|B([r, 3r/2])| | B(r ′) = A]

=

∑
A

P(B(r ′) = A)E
[∑
a∈∂A

E|Ba(3r/2− r ′;A)|
]

≤ crE|∂B(r ′)| ≤ 2c2r,

where the inequality follows since E|Ba(3r/2 − r ′;A)| ≤ E|B(r)| ≤ cr for any A
by monotonicity. Assume now that (4.3) holds for some k. Then there exists r ′ ∈
[r(1 + k/2), r(1 + (k + 1)/2)] such that E|∂B(r ′)| ≤ 2k+2ck+2. By conditioning on
B(r ′) = A as before we get

E
∣∣B([r(1+ (k + 1)/2), r(1+ (k + 2)/2)]

)∣∣ ≤ cr · 2k+2ck+2,

concluding the proof of (4.3).
Now, since c < 1/2 it is clear that the sum over k of (4.3) is at most Cr , contradicting

the fact that Epc |C (0)| = λV 1/3 by our definition of pc in (1.4). Note that the constant ξ
may depend on λ. ut

Lemma 4.3 (Lower bound on expected boundary size). LetG be a transitive finite graph
for which (1.5) holds and set p = pc. Then there exist constants c, ξ > 0 such that for
any r ≤ ξV 1/3,

E|∂B(r)| ≥ c.
Proof. By Lemma 4.2 and Theorem 2.1 we know that E|B([2r, Cr])| ≥ r for some large
fixed C > 0. Also,

E|B(Cr)|2 ≤
∑
x,y

P(0 Cr
←→ x, 0

Cr
←→ y) ≤

∑
x,y,z

P(0 Cr
←→ z)P(z Cr

←→ x)P(z Cr
←→ y) ≤ Cr3,

by Theorem 2.1. From the inequality

P(X > a) ≥ (EX − a)2/EX2 (4.4)

valid for any non-negative random variable X and a < EX, we obtain, with a = 0,

P(∂B(2r) 6= ∅) ≥ c/r

for some c > 0. Furthermore, given B(r), each vertex of ∂B(r) has probability at
most Cr−1 of reaching ∂B(2r) by Theorem 2.1. Hence, for any ζ = ζ(m) > 0,

P
(
∂B(2r) 6= ∅ and |∂B(r)| ≤ ζ r

)
= P

(
∂B(2r) 6= ∅

∣∣ 0 < |∂B(r)| ≤ ζ r
)
P(0 < |∂B(r)| ≤ ζ r) ≤ C2ζ/r.
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We now have

P(|∂B(r)| ≥ ζ r) ≥ P(∂B(2r) 6= ∅)− P
(
∂B(2r) 6= ∅ and |∂B(r)| ≤ ζ r

)
≥ c/r − C2ζ/r,

and the lemma follows by choosing ζ > 0 small enough. ut

4.2. In the supercritical regime. In this section, we extend the volume estimates to the
supercritical regime. The following is an immediate corollary of Theorem 4.1:

Lemma 4.4 (Upper bound on supercritical volume). Let G be a graph satisfying the
assumptions in Theorem 1.3 and consider percolation on it with p ≤ pc(1+ ε). Then, for
any r and any A ⊂ V (G),

E|∂B(t;A)| ≤ C(1+ ε)t and E|B(r;A)| ≤ Cε−1(1+ ε)r .

Proof. The first assertion is immediate from Theorem 4.1 and Lemma 3.4. The second
assertion follows by summing the first over t ≤ r . ut

The corresponding lower bound is more complicated to obtain, and as before, can only
hold up to some value of r . In conjunction with Lemma 4.4, it identifies E|B(r)| =
2(ε−1(1+ ε)r) for appropriate r’s.

Theorem 4.5 (Lower bound on supercritical volume). Let G be a graph satisfying the
assumptions in Theorem 1.3 and consider percolation on it with p = pc(1+ ε). Then, for
any r satisfying

E|B(r)| ≤
ε2V

(log(ε3V ))4
, (4.5)

the following bound holds:

E|B(r)| ≥ cε−1(1+ ε)r .

Proof. First, we may assume that

r ≤ ε−1 log(ε3V ), (4.6)

since otherwise the assumption of the lemma cannot hold together with the conclusion.
Recall now the simultaneous coupling (described at the end of Section 2.1) between per-
colation at p1 = pc and p2 = pc(1+ ε). Let

A`(x) = {0
=`
←→ x in Gp2},

and given a simple path η of length ` between 0 and x, write

A`(x, η)

= {0
=`
←→ x in Gp2 and η is the lexicographically first p2-open path between 0 and x},

so that A`(x) =
⋃
η A`(x, η). Write B`(x, η) for the event that the edges of η are in fact

p1-open (not just p2). We have

A`(x, η) ∩B`(x, η) ⊆ {0
=`
←→ x in Gp1},
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so ⋃
`∈[r−ε−1,r], η

A`(x, η) ∩B`(x, η) ⊆ {0
[r−ε−1,r]
←−−−−→ x in Gp1}. (4.7)

We will show that∑
x

P
(

0
[r−ε−1,r]
←−−−−→ x in Gp1 \

⋃
`∈[r−ε−1,r], η

A`(x, η) ∩B`(x, η)
)
= o(ε−1), (4.8)

and first complete the proof subject to (4.8). Since {A`(x, η) ∩B`(x, η)}`,η are disjoint
events, (4.7) and (4.8) show that∑

x, `∈[r−ε−1,r], η

P(A`(x, η) ∩B`(x, η)) ≥ Ep1 |B([r − ε
−1, r])| − o(ε−1) ≥ cε−1,

where the last inequality uses Lemma 4.3 and the fact that r � V 1/3 by (4.6) and ε �
V −1/3. From this the required result follows since

P(B`(x, η) | A`(x, η)) = (1+ ε)−`,

which implies that

Ep2 |B(r)| ≥
∑

x, `∈[r−ε−1,r], η

P(A`(x, η))

=

∑
x, `∈[r−ε−1,r], η

P(A`(x, η))P
(
B`(x, η) | A`(x, η)

)
(1+ ε)`

≥ (1+ ε)r−ε
−1 ∑
x, `∈[r−ε−1,r], η

P(A`(x, η) ∩B`(x, η)) ≥ (1+ ε)r−ε
−1
cε−1.

Thus, our main effort is to show (4.8) under the restriction of (4.5) and (4.6). Fix x
and assume that the event

{0
[r−ε−1,r]
←−−−−→ x in Gp1} \

⋃
`∈[r−ε−1,r], η

A`(x, η) ∩B`(x, η) (4.9)

occurs. In words, this event means that either the shortest p2-open path is shorter than the
shortest p1-path, or they have the same length but the lexicographically first shortest p2-
path contains an edge having value in [p1, p2]. This implies that the p2-path shortcuts the
p1-path. Formally, given vertices u, v and integers ` ∈ [r − ε−1, r], k ∈ [0, `], t ∈ [2, `]
with k+ t ≤ ` write T (u, v, x, `, k, t) for the event that there exist paths η1, η2, η3, γ in
the graph such that
(1) η1 is a shortest p1-open path of length k connecting 0 to u,
(2) η2 is a shortest p1-open path of length t connecting u to v,
(3) η3 is a shortest p1-open path of length `− t − k connecting v to x,
(4) Bx(`− k − t) ∩ B0(k) = ∅ in Gp1 ,
(5) γ is a p2-open path of length at most t connecting u to v and one of the edges of γ

receives value in [p1, p2], and
(6) η1, η2, η3 and γ are disjoint paths
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0

x

u

v

= k

= t

= ℓ− k − t
p2-open, |γ| ≤ t

η1

η3
γ

η2

Fig. 2. The event T (u, v, x, `, k, t)—an excursion.

(see Figure 2). The event (4.9) implies that T (u, v, x, `, k, t) occurs for some u, v, `, k, t
satisfying the conditions above. Our treatment of the case t ≥ tmix is easier than the case
t ≤ tmix, so let us perform the former first. When t ≥ tmix we forget about condition (4)
and the special edge with value [p1, p2] in (5) and take a union over `, k and t ∈ [tmix, r]

of the event T (u, v, x, `, k, t). This union implies the existence of vertices u, v such that
the following events occur disjointly:

• 0
r
←→ u in Gp1 ,

• u
P [tmix,r]
←−−−→ v in Gp1 ,

• v
r
←→ x in Gp1 ,

• u
r
←→ v in Gp2 .

Indeed, the witnesses to these (monotone) events are the paths η1, η2, η3, γ . We now
wish to use the BK inequality; however, as the astute reader may have already noticed,
our witnesses are not stated in an i.i.d. product measure. Let us expand briefly on how
we may still use the BK inequality. We may consider our simultaneous coupling measure
to be an i.i.d. product measure by putting on each edge a countable infinite sequence
of independent random bits receiving 0 with probability 1/2 and 1 otherwise such that
this sequence encodes the uniform [0, 1] random variable attached to each edge. In this
setting, a witness for an edge being p-open is the sequence of bits attached to the edge,
and similarly for the edge being p-closed. Similarly, we define events of the form “E1
in Gp1 occurs disjointly from E2 in Gp2”. With this definition of witnesses we may use
the BK inequality here to bound the probability of the union above and sum over x (as in
(4.8)). This gives an upper bound of∑

u,v,x

Pp1(0
r
←→ u)Pp1(u

P [tmix,r]
←−−−→ v)Pp1(v

r
←→ x)Pp2(u

r
←→ v).

We sum over x and get a factor of r by Theorem 2.1. We bound Pp1(u
P [tmix,r]
←−−−→ v) ≤

CrV −1 by Lemma 3.13 and Theorem 2.1. We then sum over v and get a factor of
Ep2 |B(r)|, and over u to get another factor of r . Altogether this gives an upper bound
of

Cr3Ep2 |B(r)|/V = O
(
ε−1(log(ε3V ))−1)

= o(ε−1),

by (4.5).
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We now treat the case t ∈ [2, tmix]. We claim that the event T (u, v, x, `, k, t) implies
that there exist disjoint paths η2, γ between u and v such that |η2| = t and |γ | ≤ t and
the intersection of the following events occurs:

(a) η2 is p1-open,
(b) γ is p2-open, and one of its edges receives value in [p1, p2],

(c) 0
=k
←→ u off η2 ∪ γ and v

=`−k−t
←−−−→ x off η2 ∪ γ ∪ B0(k) in Gp1 .

Indeed, let η1, η2, η3, γ be the disjoint paths guaranteed to exist in the definition of
T (u, v, x, `, k, t). The paths η2 and γ show that both (a) and (b) indeed occur (note
that we have relaxed the requirement that η2 is a shortest p1-open path). To see that (c)
occurs, first observe that for any vertices z, y and integer ` ≥ 0,

{z
=`
←→ y off A} =

⋃
β: |β|=`, β∩A=∅

(
{β is open} ∩

⋂
β ′: |β ′|<`, β ′∩A=∅

{β ′ has a closed edge}
)
,

where β, β ′ are simple paths in G and we slightly abuse notation and write β ∩A = ∅ to
denote that the edges of β are disjoint from the edges touching A. To see that (c) holds
we note that the event T (u, v, x, `, k, t) implies that η1 is of length k between 0 and u,
is disjoint from η2 ∪ γ , is p1-open, and any shorter path between 0 and u has a p1-closed

edge in it; in particular, 0
=k
←→ u off η2∪γ occurs inGp1 . Similarly, η3 is of length `−k−t

between v and x, is disjoint from η2∪γ ∪B0(k), is p1-open, and any shorter path between

v and x has a p1-closed edge in it; in particular v
=`−k−t
←−−−→ x off η2 ∪ γ ∪ B0(k) occurs

in Gp1 .
Now, the events (a), (b), (c) are independent since they are measurable with respect

to disjoint sets of edges (the edges of η2, γ and all the rest). The probability of their
intersection is hence

p
|η2|
1 p

|γ |

2 [1− (p1/p2)
|γ |
]Pp1

(
0
=k
←→ u off η2 ∪ γ and v

=`−k−t
←−−−→ x off η2 ∪ γ ∪ B0(k)

)
,

where the factor 1− (p1/p2)
|γ | is the probability that one edge of γ has value in [p1, p2]

conditioned on all edges being p2-open. We compute the probability on the right hand
side as usual by conditioning on B0(k), which gives

p
|η2|
1 p

|γ |

2 [1− (p1/p2)
|γ |
]

∑
A: 0

=k
←→ u

Pp1(B0(k) = A)Pp1(v
=`−k−t
←−−−→ x off A ∪ η2 ∪ γ ).

We now start summing all this over u, v, x, `, k, t, η2, γ . We first sum over x the last
probability, which gives a constant factor by Theorem 4.1. The sum over A gives a term

of Pp1(0
=k
←→ u off η2∪γ ) which we sum over k ∈ [0, r] and bound this by Pp1(0

r
←→ u).

Furthermore, the number of possible η2’s is at most m(m − 1)tpt (u, v), and if |γ | =
s ≤ t , then the number of such γ ’s is at most m(m − 1)s−1ps(u, v). We also bound
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1− (p1/p2)
s
≤ Csε. All this gives∑

u,v,x,`,k, t∈[2,tmix]

P(T (u, v, x, `, k, t))

≤ Cε
∑
u,v,`

t∈[2,tmix], s∈[1,t]

(m− 1)s+tpt1p
s
2sp

t (u, v)ps(u, v)Pp1(0
r
←→ u).

From (2) of Theorem 1.3 and tmix = o(ε
−1), we get (m− 1)s+tpt1p

s
2 = 1+ o(αG), so we

may bound the above sum by

Cε
∑
u,`

Pp1(0
r
←→ u)

∑
v, t∈[2,tmix], s∈[1,t]

spt (u, v)ps(u, v).

The sum over ` ∈ [r − ε−1, r] gives a factor of ε−1, and since G is transitive, the sec-
ond sum over v, t, s does not depend on u. Hence we may sum over u separately using
Theorem 2.1 to get a bound of

Cr
∑

v, t∈[2,tmix], s∈[1,t]

spt (u, v)ps(u, v).

For each s ≥ 1 and s1 ∈ {1, . . . , s}, we can bound

ps(0, v) ≤
m

m− 1

∑
w

ps1(0, w)ps−s1(w, v),

because the number of non-backtracking paths of length s from 0 to v is at most the
sum over w of the number of non-backtracking paths of length s1 from 0 to w times the
number of non-backtracking paths of length s − s1 from w to v (the factor m/(m − 1)
comes from properly normalizing these numbers). As a result,∑

v, t∈[2,tmix], s∈[1,t]

spt (0, v)ps(0, v)

≤
m

m− 1

∑
v,w

∑
t∈[2,tmix], s1∈[1,t], s2≤s1

pt (0, v)ps1(0, w)ps2(w, v) ≤
CαG

logV
,

by (3) in Theorem 1.3 and the fact that t + s1 + s2 ≥ 3. Altogether we get∑
u,v,x,`,k, t∈[2,tmix]

P(T (u, v, x, `, k, t)) ≤
CrαG

logV
= o(ε−1),

by our assumption (4.6) and since αG = o(1). This finishes the proof of (4.8) and con-
cludes the proof of the theorem. ut

The following are easy corollaries:
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Corollary 4.6. LetG be a graph satisfying the assumptions in Theorem 1.3 and consider
percolation on it with p = pc(1+ ε). Then, for any r satisfying

r ≤ ε−1
[log(ε3V )− 4 log log(ε3V )],

the following bound holds:

E|B(r)| = 2(ε−1(1+ ε)r).

In particular, for r0 defined in (2.8),

E|B(r0)| = 2(
√
αGεV ).

Proof. The upper bound follows from Lemma 4.4, and the lower bound from Theo-
rem 4.5. ut

Lemma 4.7. Let G be a graph satisfying the assumptions in Theorem 1.3 and consider
percolation on it with p ≤ pc(1 + ε). Let r be an integer satisfying the assumptions of
Theorem 4.5. Then

E|B(r)|2 ≤ Cε−1(E|B(r)|)2.
Proof. If 0

r
←→ x and 0

r
←→ y, then there exists a vertex z and an integer t ≤ r such that

the event
{0
=t
←→ z} ◦ {z

r−t
←→ x} ◦ {z

r−t
←→ y}

holds. Apply BK-Reimer and sum over x, y and then z to bound

E|B(r)|2 ≤
r∑
t=1

E|∂B(t)|E|B(r − t)|E|B(r − t)|.

We apply Lemma 4.4 and Theorem 4.1 to obtain

E|B(r)|2 ≤ Cε−3(1+ ε)2r ,

and Theorem 4.5 gives the required claim. ut

5. An intrinsic metric regularity theorem

For an increasing eventE and a vertex a, we say that a is pivotal for E wheneverE occurs
but does not occur in the modified configuration in which we close all the edges touch-
ing a. We write Piv(E) for the set of pivotal vertices for the event E. For vertices a, x,
radii r1, jx and A ⊂ V (G), we define

Gr1,jx (a, x;A)

= E
[
|{u : a

P [2tmix,r1]
←−−−−→ u off A \ {a} and a ∈ Piv({x

jx+r1
←−−→ u})}|

∣∣ Bx(jx) = A].
Definition 5.1 (Regenerative and fit vertices).
(a) Given vertices x, a, radii r1, jx ≥ tmix and a real number β > 0, we say that a is

(β, jx, r1)-regenerative if

• x
=jx
←→ a, and

• Gr1,jx (a, x;Bx(jx)) ≥ (1− β)E|B(r1)|,
and note that this event is determined by the status of the edges touching Bx(jx).
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We say that a is (β, jx, r1)-non-regenerative if x
=jx
←→ a but a is not (β, jx, r1)-

regenerative.
(b) Given an additional real number δ > 0, we say that x is (δ, β, jx, r1)-fit if

• ∂Bx(jx) 6= ∅, and
• the number of (β, jx, r1)-non-regenerative vertices is at most δε−1.

It will also be convenient to combine our error terms. For this, we define

ω = ω(m) = α
1/2
G + εtmix, (5.1)

so that ω = o(1). Our goal in this section is to prove that if ∂Bx(jx) 6= ∅, then x is fit with
high probability. This is the intrinsic metric regularity theorem discussed in Section 2.5.

Theorem 5.1 (Intrinsic regularity). Let G be a graph satisfying the assumptions of The-
orem 1.3. Let p = pc(1 + ε), r = r(m) = M/ε where M = M(m) is defined in (2.7),
and r1 ∈ [ε−1, r0], where r0 is defined in (2.8). For any δ, β ∈ (0, 1) there exist at least
(1−O(ω1/4))r radii jx ∈ [r, 2r] such that

P(x is (δ, β, jx, r1)-fit) ≥ (1−O(δ−1β−2e2Mω1/4)
)
P(∂Bx(jx) 6= ∅).

We start by proving some preparatory lemmas:

Lemma 5.2. Assume the setting of Theorem 5.1. Then

2r∑
jx=r

∑
a,u

P
(
x
=jx
←→a, a

P [2tmix,r1]
←−−−−→u off Bx(jx) \ {a}

)
≥(1−O(ω))E|B([r, 2r])|E|B(r1)|.

Proof. We condition on Bx(jx) = A for any admissible A (that is, A for which the event

x
=jx
←→ a occurs and P(Bx(jx) = A) > 0). Then

P
(
a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}

∣∣ Bx(jx) = A) = P(a
P [2tmix,r1]
←−−−−→ u off A \ {a}),

and

P(a
P [2tmix,r1]
←−−−−→ u off A \ {a}) = P(a

P [2tmix,r1]
←−−−−→ u)− P(a

P [2tmix,r1]
←−−−−→ u only on A \ {a}).

Summing over the first term gives∑
a,u, jx∈[r,2r]

P(x
=jx
←→ a)P(a

P [2tmix,r1]
←−−−−→ u) ≥ E|B([r, 2r])|

(
E|B(r1)| − E|B(2tmix)|

)
= (1−O(ω))E|B(r1)|E|B([r, 2r])|,

since E|B(2tmix)| ≤ Ctmix by Corollary 3.5 and E|B(r1)| ≥ cε−1 by Theorem 4.5 and
since r1 ≥ ε−1. It remains to bound the sum∑

a,u, jx∈[r,2r]

∑
A

P(Bx(jx) = A)P(a
P [2tmix,r1]
←−−−−→ u only on A \ {a}).
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As usual, if a
P [2tmix,r1]
←−−−−→ u only on A \ {a} occurs, then there exists z ∈ A such that

{a
r1
←→ z} ◦ {z

r1
←→ u}. The BK inequality now gives∑
a,u, jx∈[r,2r]

∑
A

P(Bx(jx) = A)
∑

z∈A\{a}

P(a
r1
←→ z)P(z

r1
←→ u). (5.2)

We sum over u and extract a factor of E|B(r1)|. We then change the order of summation,
so the sum simplifies to

E|B(r1)|
∑

a, z 6=a, jx∈[r,2r]

P(x
=jx
←→ a, x

jx
←→ z)P(a

r1
←→ z).

We sum over jx (noting that the events x
=jx
←→ a, x

jx
←→ z are disjoint as jx varies) and

bound this sum by

E|B(r1)|
∑
a, z 6=a

P(x 2r
←→ a, x

2r
←→ z)P(a

r1
←→ z).

As usual, if x
2r
←→ a and x

2r
←→ z, then there exists z′ such that the event

{x
2r
←→ z′} ◦ {z′

2r
←→ z} ◦ {z′

2r
←→ a}

occurs. By the BK inequality we bound the above sum by

E|B(r1)|
∑

a,z′, z 6=a

P(x 2r
←→ z′)P(z′ 2r

←→ z)P(z′ 2r
←→ a)P(a

r1
←→ z).

We may now sum over a and z 6= a using Corollary 3.18 and then sum over z′ to deduce
that this is bounded by

CE|B(r1)|E|B(2r)|
[
ω + E|B(r1)|(E|B(2r)|)2/V

]
.

This concludes our proof since the second term in brackets is of order at most
α

1/2
G e4M(ε3V )−1/2

≤ α
1/2
G by the upper bound on r1, our choice of r and M in (2.7),

and Corollary 4.6. ut

Lemma 5.3. Assume the setting of Theorem 5.1. There exists a C > 0 such that

2r∑
jx=r

∑
a,u

P
(
x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}, a ∈ Piv({x

jx+r1
←−−→ u})

)
≥ (1−O(ω))E|B([r, 2r])|E|B(r1)|.

Proof. Fix jx ∈ [r, 2r]. We rely on Lemma 5.2, and bound the difference in the probabil-
ities appearing in Lemma 5.2 and the one above. If the event{

x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}

}
(5.3)

occurs but a 6∈ Piv({x
jx+r1
←−−→ u}), then there exist z1, z2 and t ≤ jx and paths η1, η2, γ1,

γ2, γ3 such that
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(a) γ1 is an open path of length at most r1 connecting a to z2,
(b) γ2 is an open path of length at most r1 connecting z2 to u,
(c) γ3 is an open path of length at most r1+jx connecting z1 to z2,
(d) η1 is a shortest open path of length precisely t connecting x to z1,
(e) η2 is a shortest open path of length precisely jx − t connecting z1 to a,
(f) γ1, γ2, γ3, η1, η2 are disjoint

(see Figure 3). Indeed, assume that a is not pivotal for x
jx+r1
←−−→ u and (5.3) holds. Let

η be the lexicographically first shortest open path of length jx between x and a, and γ a
disjoint open path of length in [2tmix, r1] between a and u off Bx(jx) \ {a}, which exists
since (5.3) holds. Since a is not pivotal, we learn that there exist another open path β
between x and u of length at most jx+ r1 that does not visit a. Hence, β goes “around” a,
or in formal words, there exist vertices z1 and z2 on β appearing on it in that order such
that z1 ∈ η and z2 ∈ γ and the part of β between z1 and z2 is disjoint from η ∪ γ . We
take t < jx such that η(t) = z1 and set η1 = η[0, t] and η2 = η[t, jx]. We let γ3 be the
section of β between z1 and z2, and γ1, γ2 be the sections of γ from a to z2 and from z2
to u, respectively.

x

u

z1

a

z2

|η1| = t

|η2| = jx − t

|γ3| ≤ r1 + jx |γ1| ≤ r1

|γ2| ≤ r1

Fig. 3. a is not pivotal for the event x
jx+r1
←−−→ u.

For all jx, t ∈ [r, 2r] these events (that is, the existence of z1, z2 and of the disjoint
paths) are disjoint, since η1 and η2 are required to be shortest open paths. The union of
these events over jx, t implies that there exist z1, z2 such that

{x
2r
←→ z1} ◦ {z1

2r
←→ a} ◦ {a

r1
←→ z2} ◦ {z1

r1+2r
←−−→ z2} ◦ {z2

r1
←→ u},

since we can just take η1, η2, γ1, γ2, γ3 as our disjoint witnesses. Using the BK inequality
we bound the required sum from above by∑

a,u,z1,z2
z1 6=z2, z1 6=a, z2 6=a

P(x 2r
←→ z1)P(z1

2r
←→ a)P(a

r1
←→ z2)P(z1

r1+2r
←−−→ z2)P(z2

r1
←→ u).

Summing first over u extracts a factor of E|B(r1)|; we then sum over a and z2 using
Corollary 3.18, and lastly we sum over z1. This gives a bound of

CE|B(r1)|E|B(2r)|
[
ω + E|B(r1)|E|B(r1 + 2r)|E|B(2r)|/V

]
.
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We apply Lemma 5.2 to conclude the proof since the second term in brackets is of order
at most αGe4M

≤ α
1/2
G by the upper bound on r1, our choice of r and M in (2.7), and

Corollary 4.6. Also note that E|B([r, 2r])| ≥ E|B(2r)|/2 by Corollary 4.6 and our choice
of r and M . ut

Lemma 5.4. Assume the setting of Theorem 5.1. For any vertices x, a,
2r∑
jx=r

∑
u

P
(
x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}

)
≤ (1+O(ω))V −1E|B(r1)|E|B([r, 2r])|.

Proof. The event {x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}} implies that

{x
=jx
←→ a} ◦ {a

r1
←→ u},

the second witness is the open edges of an open path of length in [2tmix, r1] offBx(jx)\{a},
and the first witness is the lexicographically first shortest open path of length jx between
x and a together with all the closed edges of the graph. The BK-Reimer inequality gives

P
(
x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}

)
≤ P(x

=jx
←→ a)P(a

r1
←→ u).

We sum over u and jx ∈ [r, 2r] to find that the sum is bounded by

E|B(r1)|P(x
[r,2r]
←−→ a).

Lemma 3.14 gives

P(x [r,2r]←−→ a) ≤ (1+O(ω))V −1E|B([r − tmix, 2r − tmix])|.

We have

E|B([r − tmix, 2r − tmix])| ≤ E|B([r, 2r])| + E|B([r − tmix, r])|

≤ (1+O(εtmix))E|B([r, 2r])|

since E|B([r − tmix, r])| ≤ Ctmix(1 + ε)r by Theorem 4.1 and Corollary 3.5 and since
E|B([r, 2r])| ≥ cε−1(1+ ε)2r by Corollary 4.6 (we use the assumption r � ε−1). Hence

P(x [r,2r]←−→ a) ≤ (1+O(ω))V −1E|B([r, 2r])|, (5.4)

concluding our proof. ut

Proof of Theorem 5.1. By combining Lemmas 5.3 and 5.4 we deduce that for any x there
exist at least (1−O(ω1/2))V vertices a such that

2r∑
jx=r

∑
u

P
(
x
=jx
←→ a, a

P [2tmix,r1]
←−−−−→ u off Bx(jx) \ {a}, a ∈ Piv({x

jx+r1
←−−→ u})

)
= (1+O(ω1/2))V −1E|B(r1)|E|B([r, 2r])|.

Write G̃ for the variable

G̃ =

2r∑
jx=r

Gjx ,r1(a, x;Bx(jx))1
{x
=jx
←→ a}

.
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Note that G̃ is a random variable that is measurable with respect to Bx(2r) (that is, it
is determined by the status of the edges touching Bx(2r)) and that it equals 0 unless

x
[r,2r]
←−→ a. Furthermore, only one of the summands can be nonzero because the events in

the indicators are disjoint. Our previous approximate equality can be rewritten as

EG̃ = (1+O(ω1/2))V −1E|B(r1)|E|B([r, 2r])|.

Hence, for at least (1−O(ω1/2))V vertices a,

E[G̃ | x [r,2r]←−→ a] ≥ (1−O(ω1/2))E|B(r1)|, (5.5)

by Lemma 3.14. This gives the conditional first moment estimate. The second moment
calculation is somewhat easier. We have

EG̃2
=

2r∑
jx=r

∑
u1,u2

E
[
P
(
a

P [2tmix,r1]
←−−−−→ u1 off Bx(jx) \ {a}

∣∣ Bx(jx))
× P

(
a

P [2tmix,r1]
←−−−−→ u2 off Bx(jx) \ {a}

∣∣ Bx(jx))1
{x
=jx
←→ a}

]
.

We bound, almost surely in Bx(jx) and for i = 1, 2,

P
(
a

P [2tmix,r1]
←−−−−→ ui off Bx(jx) \ {a}

∣∣ Bx(jx)) ≤ P(a
r1
←→ ui),

and sum over u1 and u2 to get

EG̃21
{x
[r,2r]
←→ a}

≤ [E|B(r1)|]2P(x [r,2r]←−→ a),

so that
E[G̃2

| x
[r,2r]
←−→ a] ≤ [E|B(r1)|]2.

Combining this with (5.5), we obtain

Var
(
G̃| x

[r,2r]
←−→ a

)
= O

(
[E|B(r1)|]2ω1/2).

By Chebyshev’s inequality, for any β > 0,

P
(
G̃ ≤ (1− β)E|B(r1)|

∣∣ x [r,2r]←−→ a
)
= O(β−2ω1/2).

Recall that this holds for at least (1−O(ω1/2))V vertices a. Call these vertices valid. We
have ∑

a valid

P
(
x
[r,2r]
←−→ a, G̃ ≤ (1− β)E|B(r1)|

)
= O

(
E|B([r, 2r])|β−2ω1/2),

by our previous estimate. Also, since there are at most O(ω1/2V ) invalid a’s, we apply
(5.4) to bound the sum over all a by∑

a

P
(
x
[r,2r]
←−→ a, G̃ ≤ (1− β)E|B(r1)|

)
= O

(
E|B([r, 2r])|β−2ω1/2).
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Returning to our original notation, we rewrite this as

2r∑
jx=r

∑
a

P
(
x
=jx
←→ a, Gjx ,r1(a, x;Bx(jx)) ≤ (1− β)E|B(r1)|

)
= O

(
E|B([r, 2r])|β−2ω1/2).

Hence, there are at least (1−O(ω1/4))r radii jx ∈ [r, 2r] such that∑
a

P
(
x
=jx
←→ a, Gjx ,r1(a, x;Bx(jx)) ≤ (1− β)E|B(r1)|

)
= O

(
E|B([r, 2r])|r−1β−2ω1/4)

= O(e2Mβ−2ω1/4),

where the last inequality is by Lemma 4.4. Given such jx , write X(jx) for the random
variable

X(jx) =
∣∣{a : x =jx←→ a, Gjx ,r1(a, x;Bx(jx)) ≤ (1− β)E|B(r1)|

}∣∣,
so that EX(jx) ≤ Ce2Mβ−2ω1/4. The variable X(jx) equals the number of (β, jx, r1)-
non-regenerative vertices. By Markov’s inequality we deduce that for any δ > 0,

P(X(jx) ≥ δε−1) = O(εδ−1β−2e2Mω1/4),

and we conclude by Lemma 3.6 that at least (1−O(ω1/4))r radii jx ∈ [r, 2r] satisfy

P
(
∂Bx(jx) 6= ∅ and X(jx) ≤ δε−1)

≥
(
1−O(δ−1β−2e2Mω1/4)

)
P(∂Bx(jx) 6= ∅),

as required. ut

6. Large clusters are close

In this section, we prove Theorem 2.4 which shows that many closed edges exist between
most large clusters. This section involves all our notation from the previous sections and
in particular the parameters V,m, tmix, ε(m), αG. We define β, k, `, ζ, δ as

β = (logM)−2, k =
M

logM
, ` = (logM)1/4, ζ = (logM)−1/8, δ = ζ/2.

(6.1)
For notational convenience we also denote

{a
P [2tmix,r0],x
←−−−−−−→ u} = {a

P [2tmix,r0]
←−−−−→ u} ∩ {a ∈ Piv(x

jx+r0
←−−→ u)},

{b
P [2tmix,r0],y
←−−−−−−→ u′} = {b

P [2tmix,r0]
←−−−−→ u′} ∩ {b ∈ Piv(y

jy+r0
←−−→ u′)}.

Let Sjx ,jy ,r0(x, y) be the random variable counting the number of directed edges
(u, u′) such that there exist vertices a, b with

• A (x, y, jx, jy),

• x
=jx
←→ a and y

=jy
←→ b,
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• a
P [2tmix,r0],x
←−−−−−−→ u,

• b
P [2tmix,r0],y
←−−−−−−→ u′ off Bx(jx + r0).

Further define

Ŝ2r,2r,r0(x, y) =
∣∣{(u, u′) : {x 2r+r0

←−−→ u} ◦ {y
2r+r0
←−−→ u′},

|Bu(2r + r0)| · |Bu′(2r + r0)| ≥ e40Mε−2(E|B(r0)|)2
}∣∣.

We will use the fact that for any jx, jy ∈ {r, . . . , 2r}2,

S2r+r0(x, y) ≥ Sjx ,jy ,r0(x, y)− Ŝ2r,2r,r0(x, y), (6.2)

where S2r+r0(x, y) is the random variable defined prior to Theorem 2.4. Finally, write
A (x, y, jx, jy, r0, β, k) for the intersection of the events

(1) A (x, y, jx, jy),
(2) |Bx(jx)| ≤ ε−2(1+ε)3r and |By(jy)| ≤ ε−2(1+ε)3r and |∂Bx(jx)| ≤ ε−1(1+ε)3r ,
(3) |∂Bx(jx)| ≥ ek/4ε−1 and |∂By(jy)| ≥ ek/4ε−1,
(4) x is (1, β, jx, r0)-fit and y is (1, β, jy, r0)-fit,
(5)

E
[
Sjx ,jy ,r0(x, y)1

{∂Bx (jx )
2r0
←→ ∂By (jy )}

∣∣ Bx(jx), By(jy)] ≤ V −1mε−2(E|B(r0)|)2α
1/2
G .

This event is measurable with respect to Bx(jx), By(jy). The following three statements
will prove Theorem 2.4:

Lemma 6.1. Assume the setting of Theorem 2.4. Then

E
∣∣{(x, y) : A (x, y, 2r, 2r) and Ŝ2r,2r,r0(x, y)≥β

1/2V −1mε−2(E|B(r0)|)2
}∣∣=o(ε2V 2).

Theorem 6.2. Assume the setting of Theorem 2.4. Then there exist radii j1, . . . , j` ∈

[r, 2r] such that for at least (1− o(1))V 2 pairs (x, y),

P
(
A (x, y, 2r, 2r) and

⋂
jx ,jy∈{j1,...,j`}2

A (x, y, jx, jy, r0, β, k)
c
)
= o(ε2).

Theorem 6.3. Assume the setting of Theorem 2.4 and let (x, y) be a pair of vertices.
Then, for any radii jx, jy ∈ {r, . . . , 2r}2,

P
(
Sjx ,jy ,r0(x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2 and A (x, y, jx, jy, r0, β, k)

)
= O(β1/2ε2).

Proof of Theorem 2.4 subject to Lemma 6.1 and Theorems 6.2–6.3. Lemma 3.8 shows
that

|{(x, y) : A (x, y, 2r, 2r)}|
4ε2V 2

P
−→ 1.
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Thus, it suffices to prove that

|{(x, y) : A (x, y, 2r, 2r) and x, y are not (r, r0)-good}|
ε2V 2

P
−→ 0.

Lemma 3.10 shows that

|{(x, y) : A (x, y, 2r, 2r) and |C (x)| ≤ (ε3V )1/4ε−2 or |C (y)| ≤ (ε3V )1/4ε−2
}|

ε2V 2
P
−→ 0.

It remains to handle requirement (3) in the definition of (r, r0)-good. Let j1, . . . , j` be
the radii guaranteed to exist by Theorem 6.2 and let (x, y) be a pair of vertices for which
the assertion of Theorem 6.2 holds. Theorem 6.2 asserts that the number of such pairs is
(1− o(1))V 2, so the sum of P(A (x, y, 2r, 2r)) over pairs not counted is o(ε2V 2). Write
(J (x), J (y)) for the lexicographically first pair (jx, jy) ∈ {j1, . . . , j`}

2 for which the
event A (x, y, jx, jy, r0, β, k) occurs, or set J (x) = J (y) = ∞ if no such jx, jy exist.
Then for at least (1− o(1))V 2 pairs (x, y),

P
(
A (x, y, 2r, 2r), J (x) = ∞, J (y) = ∞

)
= o(ε2).

Theorem 6.3 together with the union bound implies that for any such pair (x, y),∑
jx ,jy∈{j1,...,j`}2

P
(
Sjx ,jy ,r0(x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2, J (x) = jx, J (y) = jy

)
= O(β1/2`2ε2),

which is o(ε2) by our choice of ` and β in (6.1). By these last two statements we deduce
that

E
∣∣{(x, y) : A (x, y, 2r, 2r) and ∀jx, jy Sjx ,jy ,r0(x, y) ≤ 2β1/2V −1mε−2(E|B(r0)|)2

}∣∣
= o(ε2V 2).

This together with (6.2) and Lemma 6.1 implies that

E
∣∣{(x, y) : A (x, y, 2r, 2r) and S2r+r0(x, y) ≤ β

1/2V −1mε−2(E|B(r0)|)2
}∣∣ = o(ε2V 2),

concluding our proof since β1/2
= (logM)−1. ut

6.1. Proof of Lemma 6.1: Bounding the error Ŝ2r,2r,r0 . We begin by providing some
useful estimates.

Lemma 6.4. Assume the setting of Theorem 2.4 and let p = pc(1 + ε). There exists
C > 0 such that for any positive integer n:

(1)
∑

x,y,(u,u′)

P({u n
←→x}◦{u′

n
←→y} and u

2n
←→u′)≤C[mε−5(1+ε)4n+αGVmε−2(1+ε)2n].

(2)
∑

x,y,(u,u′)

P({u n
←→x}◦{u′

n
←→y} and x

2n
←→y)≤C[mε−5(1+ε)4n+αGVmε−2(1+ε)2n].
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Proof. We begin by showing (1). If {u
n
←→ x} ◦ {u′

n
←→ y} and u

2n
←→ u′, then there exist

vertices z1, z2 and integers t1, t2 ≤ n such that the event

{u
=t1
←→ z1, u

′ =t2
←→ z2, dGp (u, u

′)≥ t1+ t2}◦{z1
2n−t1−t2
←−−−−→ z2}◦{x

n−t1
←−→ z1}◦{y

n−t2
←−→ z2}

or the event

{u
=t1
←→ z1, u

′ =t2
←→ z2, dGp (u, u

′)≥ t1+ t2}◦{z1
2n−t1−t2
←−−−−→ z2}◦{x

n−t1
←−→ z2}◦{y

n−t2
←−→ z1}

occurs (see Figure 4(a)). Indeed, let η be the shortest open path of length at most 2n be-
tween u and u′ and let γx,u, γy,u′ be two disjoint paths of length at most n connecting x
to u and y to u′, respectively. We let z1, z2 be the first vertices of γx,u and γy,u′ which be-
long to η. There are two possible orderings of z1, z2 on η, (u, z1, z2, u

′) or (u, z2, z1, u
′),

which give the two possible events. Assume the ordering on η is (u, z1, z2, u
′) (the two

orderings give rise to identical contributions to the sum in (1)); let t1, t2 be the distances
on η between u and z1 and between z2 and u′, respectively; and write η1, η2 for the cor-
responding sections of η, and η3 for the section of η between z1 and z2. The paths γ1
and γ2 are the sections of γx,u and γy,u′ from x to z1 and from y to z2, respectively. The
witness for the first event is η1, η2 together with all the closed edges of Gp (the closed
edges determine that η1, η2 are indeed shortest open paths, and that dGp (u, u

′) ≥ t1+ t2);
for the second, third and fourth events, the witnesses are just η3, γ1 and γ2, respectively.

x
y

z1 z2

(u, u′)

= t1 = t2

≤ 2n− t1 − t2

≤ n− t1 ≤ n− t2

x
y

z1 z2

(u, u′)

= t1 = t2

≤ 2n− t1 − t2

≤ n− t1 ≤ n− t2

(a) (b)

Fig. 4. The edge (u, u′) is counted in the first and second sum of Lemma 6.4.

We now apply the BK-Reimer inequality and bound the sum in (1) by

2
∑

x,y,z1,z2,(u,u′),t1≤n,t2≤n

P
(
u
=t1
←→ z1, u

′ =t2
←→ z2, dGp (u, u

′) ≥ t1 + t2
)
P(z1

2n−t1−t2
←−−−−→ z2)

× P(x
n−t1
←−→ z1)P(y

n−t2
←−→ z2).

We first sum over x, y and get a factor of Cε−2(1+ ε)2n−t1−t2 by Lemma 4.4. The event
{u

=t1
←→ z1, u

′
=t2
←→ z2, dGp (u, u

′) ≥ t1 + t2} implies that u
=t1
←→ z1 and u′

=t2
←→ z2
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off Bu(t1), hence we may bound its probability by∑
A: u

=t1
←→ z1

P(Bu(t1) = A)P(u′
=t2
←→ z2 off A),

and so we get an upper bound of

Cε−2
∑

z1,z2,(u,u′), t1≤n, t2≤n

(1+ ε)2n−t1−t2P(u
=t1
←→ z1)

×max
A

P(u′
=t2
←→ z2 off A)P(z1

2n−t1−t2
←−−−−→ z2). (6.3)

We bound this in two parts. If t2 ≥ tmix, then we use Lemma 3.15 together with
Lemma 4.4 to bound, uniformly in A, P(u′

=t2
←→ z2 off A) ≤ CV −1(1 + ε)t2 . We then

sum over z2 and z1 in that order using Lemma 4.4 and extract a Vm factor from summing
over (u, u′). If t2 ≤ tmix and t1 ≥ tmix, then we use Lemma 3.13 together with Lemma 4.4
to bound P(u

=t1
←→ z1) ≤ CV

−1(1 + ε)t1 . Further, we use condition (2) of Theorem 1.3
and ε = o(1/tmix) to bound, uniformly in A, P(u′

=t2
←→ z2 off A) ≤ Cpt2(u′, z2). We then

sum over z1 and z2 in that order using Lemma 4.4 and extract a Vm factor from summing
over (u, u′). All this gives an upper bound of

Cmε−3(1+ ε)4n
∑
t1,t2≤n

(1+ ε)−t1−t2 ≤ Cmε−5(1+ ε)4n,

as required. We next sum (6.3) over t1, t2 ≤ tmix. We first relax (1+ε)2n−t1−t2 ≤ (1+ε)2n

and P(z1
2n−t1−t2
←−−−−→ z2) ≤ P(z1

2n
←→ z2), and then sum over t1, t2 to get an upper bound of

Cε−2(1+ ε)2n
∑

z1,z2,(u,u′)

P(u
tmix
←→ z1)P(u′

tmix
←→ z2)P(z1

2n
←→ z2).

We now sum over z1, z2 using Corollary 3.18 and Lemma 4.4. We conclude that this is
bounded by

CVmε−2(1+ε)2n[t2mixε
−1(1+ ε)2n/V +αG] ≤ C[mε−5(1+ε)4n+αGVmε−2(1+ε)2n],

since tmix ≤ ε
−1, as required.

To prove (2) we proceed in a very similar fashion. If {u
n
←→ x} ◦ {u′

n
←→ y} and

x
2n
←→ y then there exist vertices z1, z2 and t1, t2 ≤ n such that the event

{x
=t1
←→ z1, y

=t2
←→ z2, dGp (x, y) ≥ t1+t2}◦{z1

2n−t1−t2
←−−−−→ z2}◦{u

n−t1
←−→ z1}◦{u

′ n−t2
←−→ z2}

or the event

{x
=t1
←→ z2, y

=t2
←→ z1, dGp (x, y) ≥ t1+t2}◦{z1

2n−t1−t2
←−−−−→ z2}◦{u

n−t1
←−→ z1}◦{u

′ n−t2
←−→ z2}

occurs, by the same reasoning as before (see Figure 4(b)). Let us handle the first case only
(the second leads to an identical contribution). We appeal to the BK-Reimer inequality
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and as before we condition on Bx(t1) and bound

P
(
x
=t1
←→ z1, y

=t2
←→ z2, dGp (x, y) ≥ t1 + t2

)
≤

∑
A: x

=t1
←→ z1

P(Bx(t1) = A)P(y
=t2
←→ z2 off A).

We sum over y then x using Lemma 4.4, which gives a bound of

C
∑

z1,z2,(u,u′),t1,t2≤n

(1+ ε)t1+t2P(u
n−t1
←−→ z1)P(z1

2n−t1−t2
←−−−−→ z2)P(u′

n−t2
←−→ z2).

An appeal to Corollary 3.18 and Lemma 4.4 to sum over z1, z2 gives a bound of

CVm
∑
t1,t2≤n

(1+ ε)t1+t2 [ε−3(1+ ε)4n−2(t1+t2)/V + αG]

≤ C[mε−5(1+ ε)4n + αGVmε−2(1+ ε)2n],

where the last inequality is a direct calculation. ut

Proof of Lemma 6.1. For convenience set n = 2r + r0. By Markov’s inequality, the
expectation we need to bound is at most

2β−1/2Vm−1ε2(E|B(r0)|)−2

×

∑
x,y,(u,u′)

P
(
{x

n
←→ u} ◦ {y

n
←→ u′}, |Bu(n)| ≥ e20Mε−1E|B(r0)|

)
. (6.4)

We split the sum into

S1 =∑
x,y,(u,u′)

P
(
{x

n
←→ u}◦ {y

n
←→ u′}, |Bu(n)| ≥ e20Mε−1E|B(r0)| and Bu(n)∩Bu′(n) = ∅

)
and

S2 =
∑

x,y,(u,u′)

P({x n
←→ u} ◦ {y

n
←→ u′}, u

2n
←→ u′).

We bound S1 using the BK inequality,

S1 ≤
∑

x,y,(u,u′)

P
(
x

n
←→ u, |Bu(n)| ≥ e20Mε−1E|B(r0)|

)
P(y n
←→ u′).

Summing over y and x and then over (u, u′) shows that this is at most

VmE|B(n)| · E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}|.

We use the Cauchy–Schwarz inequality to bound

E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}| ≤
[
E|B(n)|2P(|B(n)| ≥ e20Mε−1E|B(r0)|)

]1/2
.
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We bound this using Lemma 4.7 and the Markov inequality by:

E|B(n)|1{|B(n)|≥e20Mε−1E|B(r0)|}| ≤ Ce−10M(E|B(n)|)3/2(E|B(r0)|)−1/2,

and conclude that

S1 ≤ Ce−10MVm(E|B(n)|)5/2(E|B(r0)|)−1/2.

We bound S2 using Lemma 6.4(1) :

S2 ≤ C[mε
−5(1+ ε)4n + αGVmε−2(1+ ε)2n].

We put these two back into (6.4) and infer that we can bound this sum by

CV 2ε2(E|B(n)|)5/2

β1/2e10M(E|B(r0)|)5/2
+
CV ε−3(1+ ε)4n

β1/2(E|B(r0)|)2
+
CmαGV

2(1+ ε)2n

β1/2m(E|B(r0)|)2
= o(ε2V 2),

by our choice of r0 in (2.8), n = r0 + 2r , r = M/ε, β = (logM)−2 and using Corol-
lary 4.6. ut

6.2. Proof of Theorem 6.2: Finding good radii. Recall the choice of parameters
in (6.1).

Lemma 6.5. For any radius r ≥ ε−1 and any ζ > 0,

P
(
|∂B(r)| > 0 and ∃j ∈ [ε−1, r − ε−1

] with |∂B(j)| ≤ ζε−1)
≤ O(ζε).

Proof. Assume that the event holds, and let J be the first radius j with j ∈ [ε−1, r−ε−1
]

which has |∂B(j)| ≤ ζε−1. Conditioned on J and B(J ), for |∂B(r)| > 0 to occur, one of
the vertices on the boundary of B(J ) needs to reach level r . Since r− j ≥ ε−1, Corollary
3.5 and the union bound show that the probability of this is at most Cζ . As the probability
of |∂B(j)| > 0 is at most Cε by Corollary 3.5, this concludes the proof. ut

In the lemma below, we write PA(·) = P(· off A | Bx(jx) = A) and let EA be the
corresponding expectation.

Lemma 6.6. There exists c > 0 such that for any radius jx ∈ [r, 2r] the following
statement holds. Let the set A be such that x is (δ, β, jx, kε−1)-fit and |∂Bx(jx)| ≥ ζε−1

when Bx(jx) = A. Then

PA
(
|∂Bx(jx + kε

−1/2)| ≥ ε−1ek/4
)
≥ cζ.

Proof. We perform a second moment argument on |Bx([jx + kε−1/2, jx + kε−1
]| rather

than on the required random variable. Since x is (δ, β, jx, kε−1)-fit,

EA|Bx([jx, jx + kε−1
])| ≥ (|∂A| − δε−1)(1− β)E|B(kε−1)|.

Furthermore,
EA|Bx([jx, jx + kε−1/2])| ≤ |∂A|E|B(kε−1/2)|,
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by monotonicity. Since |∂A| ≥ 2δε−1 by our choice of ζ and δ, and β = o(1) (recall
(6.1)), Corollary 4.6 now gives a lower bound on the first moment,

EA|Bx([jx + kε−1/2, jx + kε−1
])| ≥ 1

4 |∂A|E|B(kε
−1)|.

To calculate the second moment, if u, v are counted in |B([jx, jx + kε−1
])|, then either

there exist two vertices a1, a2 in ∂A such that

{a1
kε−1
←−→ u off A} ◦ {a2

kε−1
←−→ v off A},

or there exists a ∈ ∂A, a vertex z and t ≤ kε−1 such that

{a
=t
←→ z off A} ◦ {z

kε−1
−t

←−−→ u off A} ◦ {z
kε−1
−t

←−−→ v off A}.

We apply the BK-Reimer inequality and sum over u, v to get

EA|Bx([jx, jx + kε−1
])|2 ≤ |∂A|2(E|B(kε−1)|)2

+

∑
a∈∂A, z, t≤kε−1

PA(a
=t
←→ z off A)(E|B(kε−1

− t)|)2.

We first sum over z using Lemma 4.4, then appeal again to Corollary 4.6 to get

EA|Bx([jx, jx + kε−1
])|2 ≤ C(E|B(kε−1)|)2[|∂A|2 + |∂A|ε−1

].

By (4.4),

PA
(
|Bx([jx + kε

−1/2, jx + kε−1
])| ≥ 1

8 |∂A|E|B(kε
−1)|

)
≥

c|∂A|2

|∂A|2 + |∂A|ε−1 ≥ cζ,

where the last inequality holds since |∂A| ≥ ζε−1. By Theorem 4.5, we can write this as

PA
(
|Bx([jx + kε

−1/2, jx + kε−1
])| ≥ cζε−2ek

)
≥ cζ (6.5)

for some constant c > 0. Now, if |Bx([jx + kε−1/2, jx + kε−1
])| ≥ cζε−2ek and

|∂Bx(jx + kε
−1/2)| ≤ ε−1ek/4 occurs, then

|∂Bx(jx + kε
−1/2)| ≤ ε−1ek/4 and

∑
v∈∂Bx (jx+kε−1/2)

|Bv(kε
−1/2;A)| ≥ cζε−2ek

both occur. By the Markov inequality and Lemma 4.4, the probability of this event is at
most

ε−2e3k/4

cζε−2ek
= O(ζ−1e−k/4) = o(ζ ),

by our choice of ζ and k in (6.1). Putting this together with (6.5) yields the assertion of
the lemma. ut
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Lemma 6.7 (Finding good radii). There exist radii k1, . . . , k` in [r, 2r] such that

ki+1 − ki ≥ kε
−1 for all i = 1, . . . , `,

and
P(x is (δ, β, ki, kε−1)-fit) = (1+O(ω1/5))P(∂Bx(ki) 6= ∅),

P(x is (1, β, ki, r0)-fit) = (1+O(ω1/5))P(∂Bx(ki) 6= ∅),
P(x is (δ, β, ki + kε−1/2, r0)-fit) = (1+O(ω1/5))P(∂Bx(ki + kε−1/2) 6= ∅).

Proof. This is the only place where we use Theorem 5.1. Indeed, say a radius j ∈ [r, 2r]
is good if it satisfies the three assertions of the statement with ki replaced by j . Three
appeals to Theorem 5.1 show that at least (1 − o(1))r radii j ∈ [r, 2r] are good by our
choice of δ and β. Now, since `k = o(M) and r = Mε−1, it is immediate that there exist
` good radii which are kε−1-separated from each other. ut

Lemma 6.8. For at least (1− o(1))V 2 pairs (x, y) and for any jx, jy ∈ [r, 2r],

E
[
Sjx ,jy ,r01

{x
2r0+4r
↔ y}

]
≤ V −1m(E|B(r0)|)2α

3/4
G .

Proof. Lemma 6.4(2) with n = r0 + 2r and a straightforward calculation with Theorem
4.5 and our choice of parameters shows that∑

x,y

E
[
Sjx ,jy ,r01

{x
2r0+jx+jy
↔ y}

]
≤ CVm(E|B(r0)|)2[αGe8M

+ αGe4M
],

which gives the result since CαGe8M
≤ α

3/4
G by our choice of M in (2.7). ut

Proof of Theorem 6.2. Recall the requirements (1)–(5) in the definition of A (x, y, jx, jy,

r0, β, k) (p. 771). We apply Lemma 6.7 and let k1, . . . , k` be the corresponding radii. We
prove the theorem with radii {j1, . . . , j`} defined by

ji = ki + kε
−1/2 for i = 1, . . . , `,

and assume x, y are such that the assertion of Lemma 6.8 holds. We will prove that for
such x, y,

P
(
A (x, y, 2r, 2r) and

⋂
jx ,jy∈{j1,...,j`}

{(q) does not hold for jx, jy}
)
= o(ε2) (6.6)

for q∈{1, 2, 3, 4, 5}. We do this in the order (1), (2), (4), (5) and (3). Since A (x, y, 2r, 2r)
⊆ A (x, y, jx, jy) when jx, jy ≤ 2r , (6.6) holds trivially for q = 1 and all x, y, jx, jy
≤ 2r .

For any jx ∈ {j1, . . . , j`},

P
(
A (x, y, jx, jy) and |Bx(jx)| ≥ ε−2(1+ ε)3r

)
≤ Cε2(1+ ε)−r = O(e−Mε2),

by the Markov inequality, Lemma 4.4, the BK-Reimer inequality and Corollary 3.5. This
implies that

P
(
A (x, y, 2r, 2r) and ∃jx ∈ {j1, . . . , j`} such that |Bx(jx)| ≥ ε−2(1+ ε)3r

)
= o(ε2),
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since ` = o(eM). Similarly,

P
(
A (x, y, jx, jy) and |∂Bx(jx)| ≥ ε−1(1+ ε)3r

)
≤ Cε2(1+ ε)−r = O(e−Mε2),

leading to the same bound. This proves (6.6) for q = 2.
Next, we wish to show that for any jx ∈ {j1, . . . , j`},

P
(
A (x, y, jx, jy) and x is not (1, β, jx, r0)-fit

)
= O(ε2ω1/5). (6.7)

It is tempting to use the BK-Reimer inequality here; however, we cannot claim that the
event that in (6.7) implies that ∂By(jy) 6= ∅ occurs disjointly from the event that x
is not (1, β, jx, r0)-fit, since they are both non-monotone events and the corresponding
witnesses may share closed edges. Instead, we condition on Bx(jx) = A to get

P
(
A (x, y, jx, jy) and x is not (1, β, jx, r0)-fit

)
=

∑
A : x is not (1,β,jx ,r0)-fit

P(Bx(jx) = A)P
(
∂By(jy) 6= ∅ off A

)
,

since (1, β, jx, r0)-fit is determined by the status of the edges touching Bx(jx). We use
Corollary 3.5 to bound P(∂By(jy) 6= ∅ off A) = O(ε) and

P
(
∂Bx(jx) 6= ∅ and x is not (1, β, jx, r0)-fit

)
= P(∂Bx(jx) 6= ∅)− P

(
∂Bx(jx) 6= ∅ and x is (1, β, jx, r0)-fit

)
≤ P(∂Bx(jx) 6= ∅)O(ω1/5),

by our choice of radii in Lemma 6.7, so Corollary 3.5 gives (6.7). Therefore,

P
(
A (x, y, 2r, 2r) and ∃jx ∈ {j1, . . . , j`} such that x is not (1, β, jx, r0)-fit

)
= O(`ε2ω1/5) = o(ε2),

by our choice of ` in (6.1), of M in (2.7), and of ω in (5.1). This proves (6.6) for q = 4.
Similarly, by Lemma 6.8 and Markov’s inequality, for any jx, jy ,

P(A (x, y, jx, jy) and (5) does not hold) ≤ Cε2α
1/4
G .

The union bound implies that

P
(
A (x, y, 2r, 2r) and ∃jx, jy ∈ {j1, . . . , j`} such that (5) does not hold

)
= O(`2α

1/4
G ε2) = o(ε2),

by our choice of `. Therefore, (6.6) holds for q = 5.
Thus, it remains to prove (6.6) for q = 3. This is a difficult requirement; we only

prove that one of the radii in {j1, . . . , j`} satisfies it (in fact, all radii do, but that is harder
to prove, and we refrain from doing so). As in the proof of (6.6) for q = 4, using Corollary
3.5 it is enough to show that

P
(
∂Bx(2r) 6= ∅ and |∂Bx(jx)| ≤ ek/4ε−1

∀jx ∈ {j1, . . . , j`}
)
= o(ε). (6.8)
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For i ∈ {1, . . . , `}, we write Ai for the event that x is (δ, β, ki, kε−1)-fit; Bi for the event
that |∂Bx(ji)| ≤ ε−1ek/4; and Di for the event

Di =
{
|∂Bx(kt )| ≥ ζε

−1
∀t ∈ {1, . . . , i}

}
,

so that

P(∂Bx(2r) 6= ∅ and |∂Bx(jx)|) ≤ P(D` ∩B1 ∩ · · · ∩B`)+ P({∂Bx(2r) 6= ∅} ∩Dc
` ).

Then we can split

P(D` ∩B1 ∩ · · · ∩B`) ≤ P(D` ∩A c
` )+ P(D` ∩B1 ∩ · · · ∩B` ∩A`).

By our choice of ki in Lemma 6.7 and Corollary 3.5 we have P(D` ∩A c
` ) ≤ εω

1/5, so

P(D` ∩B1 ∩ · · · ∩B`)

≤ εω1/5
+ P(B` | D` ∩B1 ∩ · · · ∩B`−1 ∩A`)P(D`−1 ∩B1 ∩ · · · ∩B`−1).

Thus, by Lemma 6.6,

P(D` ∩B1 ∩ · · · ∩B`) ≤ εω
1/5
+ (1− cζ )P(D`−1 ∩B1 ∩ · · · ∩B`−1).

By iterating we obtain

P(D` ∩B1 ∩ · · · ∩B`) ≤ ε`ω
1/5
+ Cε(1− cζ )` = o(ε),

since `ω1/5
= o(1) and ζ−1

= o(`) (recall (6.1)), and P(D1) ≤ Cε by Corollary 3.5.
Lastly, Lemma 6.5 shows that P({∂Bx(2r) 6= ∅} ∩ Dc

` ) = o(ε), proving (6.8) and thus
concluding the proof of (6.6) for q = 3 and the proof of Theorem 6.2. ut

6.3. Proof of Theorem 6.3: Conditional second moment. We now set the stage for the
proof of Theorem 6.3. We perform this by a conditional second moment argument on
Sjx ,jy ,r0(x, y). We will be conditioning on Bx(jx) = A and By(jy) = B where A and B
are such that the event A (x, y, jx, jy, r0, β, k) holds. We abuse notation, as before, and
treat A,B as sets of vertices but our conditioning is on the status of all edges touching
Bx(jx − 1) and By(jy − 1). Thus, while A and B are disjoint sets of vertices, they may
be sharing closed edges. With this in mind, we generalize the notation just before Lemma
6.6, and write PA, PB and PA,B for the measures

PA(·) = P(· off A | Bx(jx) = A),
PB(·) = P(· off B | By(jy) = B),

PA,B(·) = P(· off A ∪ B | Bx(jx) = A, By(jy) = B).

We start by proving five preparatory lemmas.
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Lemma 6.9. Assume that A and B are such that x, y are (1, β, jx, r0)-fit and
(1, β, jy, r0)-fit, respectively. Then

∑
a,b∈∂A×∂B

∑
(u,u′)

PA(a
P [2tmix,r0],x
←−−−−−−→ u)PB(b

P [2tmix,r0],y
←−−−−−−→ u′)

≥ (1− 8β1/2)V −1(E|B(r0)|)2m(|∂A| − ε−1)(|∂B| − ε−1).

Proof. Let a ∈ ∂A be a (β, jx, r0)-regenerative vertex. Then, by definition,∑
u

PA(a
P [2tmix,r0],x
←−−−−−−→ u) ≥ (1− β)E|B(r0)|.

Denote

U =
{
u : PA(a

P [2tmix,r0],x
←−−−−−−→ u) ≤ (1− β1/2)V −1E|B(r0)|

}
,

and recall that Lemma 3.15 guarantees that

PA(a
P [2tmix,r0],x
←−−−−−−→ u) ≤ (1+ o(β))E|B(r0)|/V ,

by our choice of β in (6.1), so that

(1− β)E|B(r0)| ≤
∑
u

PA(a
P [2tmix,r0],x
←−−−−−−→ u)

≤ |U |(1− β1/2)V −1E|B(r0)| + (V − |U |)(1+ o(β))V −1E|B(r0)|,

and we deduce that |U | ≤ 2β1/2V . In other words, for at least (1− 2β1/2)V vertices u,

PA(a
P [2tmix,r0],x
←−−−−−−→ u) ≥ (1− β1/2)E|B(r0)|/V .

Similarly, for any b ∈ ∂B which is (β, jy, r0)-regenerative, there are at least (1−2β1/2)V

vertices u such that

PB(b
P [2tmix,r0],y
←−−−−−−→ u) ≥ (1− β1/2)E|B(r0)|/V .

Thus, for such a and b, at least (1− 4β1/2)V vertices u satisfy both inequalities. WriteD
for this set of vertices, so that |Dc| ≤ 4β1/2V . Since the degree of each vertex is m,
the number of edges having at least one side in Dc is at most 4β1/2Vm. Thus, at least
(1 − 8β1/2)Vm directed edges (u, u′) are such that u and u′ both satisfy the above in-
equalities. Hence∑

(u,u′)

PA(a
P [2tmix,r0],x
←−−−−−−→ u)PB(b

P [2tmix,r0],y
←−−−−−−→ u′) ≥ (1− 8β1/2)(E|B(r0)|)2m/V .

Since x is (1, β, jx, r0)-fit and y is (1, β, jy, r0)-fit the number of such pairs a, b is at
least (|∂A| − ε−1)(|∂B| − ε−1), and the lemma follows. ut
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Lemma 6.10. The following bounds hold:∑
(a,b)∈∂A×∂B

(u,u′), z1, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u, a

r0
←→ z1)PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′)

≤ α
1/2
G |∂A| |∂B|V

−1m(E|B(r0)|)2,∑
(a,b)∈∂A×∂B

(u,u′), z1, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u, a

r0
←→ z1)PB(b

r0−t1
←−→ z1)PB(z1

=t1
←→ u′)

≤ α
1/2
G |∂A| |∂B|V

−1m(E|B(r0)|)2.

Proof. The proof of the second assertion is identical to the first, so we only prove the

first. If a
P [2tmix,r0]
←−−−−→ u and a

r0
←→ z1, then either there exist z2 and t2 ∈ [tmix, r0] such that

{a
=t2
←→ z2} ◦ {z2

r0−t2
←−→ u} ◦ {z2

r0−t2
←−→ z1},

or there exists z2 such that

{a
tmix
←→ z2} ◦ {z2

P [tmix,r0]
←−−−−→ u} ◦ {z2

P [tmix,r0]
←−−−−→ z1},

or there exists z2 such that

{a
P [tmix,r0]
←−−−−→ z2} ◦ {z2

tmix
←→ u} ◦ {z2

P [tmix,r0]
←−−−−→ z1}.

To see this, let η be the lexicographically first shortest open path between a and z1 with
|η| ≤ r0, and let γ be an open path between a and u such that |γ | ∈ [2tmix, r0]. Let z2 be
the last vertex (according to the ordering induced by γ ) on γ belonging to η (that is, the
part of γ after z2 is disjoint from η, and the part of η after z2 is disjoint from γ ). Let t2
be the distance between a and z2 along η. If t2 ≥ tmix, then the first event occurs: the first
witness is the first t2 open edges of η together with all the closed edges in the graph, the
second witness is the set of open edges of γ between z2 to u (note that there are no more
than r0 − t2 edges since the part of γ between a to z2 is of length at least t2), and the
third witness is the set of open edges of η between z2 and u. If t2 ≤ tmix and the part of
γ between z2 and u is longer than tmix, then the second event occurs by similar reasoning.
Finally, if t2 ≤ tmix occurs and the part of γ between z2 and u is of length at most tmix,
then the part of γ between a and z2 is longer than tmix and the third event occurs.

This leads to three different terms; the BK-Reimer inequality shows that the required
sum is at most S(a) + S(b)+S(c), where

S(a) =
∑

(a,b)∈∂A×∂B, (u,u′),
z1,z2, t1,t2∈[tmix,r0]

PA,B(a
=t2
←→ z2)PA,B(z2

r0−t2
←−→ u)PA,B(z2

r0−t2
←−→ z1)

× PB(b
=t1
←→ z1)PB(z1

r0−t1
←−→ u′),

S(b) =
∑

(a,b)∈∂A×∂B, (u,u′),
z1,z2, t1∈[tmix,r0]

PA,B(a
tmix
←→ z2)PA,B(z2

P [tmix,r0]
←−−−−→ u)PA,B(z2

P [tmix,r0]
←−−−−→ z1)

× PB(b
=t1
←→ z1)PB(z1

r0−t1
←−→ u′),
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S(c) =
∑

(a,b)∈∂A×∂B, (u,u′),
z1,z2, t1∈[tmix,r0]

PA,B(a
P [tmix,r0]
←−−−−→ z2)PA,B(z2

tmix
←→ u)PA,B(z2

P [tmix,r0]
←−−−−→ z1)

× PB(b
=t1
←→ z1)PB(z1

r0−t1
←−→ u′).

We use Lemma 3.15 together with Lemma 4.4 to bound the factors PA,B(a
=t2
←→ z2) and

PB(b
=t1
←→ z1) in S(a) by CV −1(1+ ε)t2 and CV −1(1+ ε)t1 , respectively. This gives

S(a) ≤ CV −2
∑

(a,b)∈∂A×∂B, (u,u′),
t1,t2∈[tmix,r0]

(1+ ε)t1+t2

×

∑
z1,z2

PA,B(z2
r0−t2
←−→ u)PA,B(z2

r0−t2
←−→ z1)PA,B(z1

r0−t1
←−→ u′).

We sum over z1, z2 using Corollary 3.18 together with Lemma 4.4 to get

S(a) ≤ CV −2
∑

(a,b)∈∂A×∂B, (u,u′),
t1,t2∈[tmix,r0]

(1+ ε)t1+t2 [αG + ε−3(1+ ε)3r0−t1−2t2/V ]

≤ CαGm|∂A| |∂B|V
−1ε−2(1+ ε)2r0 + C|∂A| |∂B|V −2mε−4(1+ ε)3r0r0,

where the last inequality is an immediate calculation. By Theorem 4.5 the first term is at
most

CαG|∂A| |∂B|V
−1m(E|B(r0)|)2,

and by our choice of r0 in (2.8), the second term is at most

α
1/2
G log(ε3V )
√
ε3V

|∂A| |∂B|V −1m(E|B(r0)|)2.

This gives an upper bound on S(a) fitting the error in the assertion of the lemma.

To estimate S(b) we use Lemma 3.13 to bound PA,B(z2
P [tmix,r0]
←−−−−→ u) and

PA,B(z2
P [tmix,r0]
←−−−−→ z1). This gives

S(b) ≤ C
(E|B(r0)|)2

V 2

∑
(a,b)∈∂A×∂B, (u,u′),
z1,z2, t1∈[tmix,r0]

PA,B(a
tmix
←→ z2)PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′).

We now sum over (u, u′), z1, z2 and t1 using Lemma 4.4 to get

S(b) ≤ C|∂A| |∂B|V −2m(E|B(r0)|)2r0tmixε
−1(1+ ε)r0

≤
Ctmixεα

1/2
G

√
ε3V

C|∂A| |∂B|V −1m(E|B(r0)|)2,

by Theorem 4.5 and (2.8). Since tmix = o(ε−1), this fits within the error estimate in the
assertion of the lemma. The estimate on S(c) is performed in precisely the same way as
for S(b), and gives the same error estimate, concluding the proof. ut
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Lemma 6.11. The following bounds hold:∑
(a,b)∈∂A×∂B, a′∈∂A
(u,u′), z1, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u)PA,B(a′

r0
←→ z1)PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′)

≤ α
1/2
G ε|∂A|2|∂B|V −1m(E|B(r0)|)2

and ∑
(a,b)∈∂A×∂B, a′∈∂A
(u,u′), z1, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u)PA,B(a′

r0
←→ z1)PB(b

r0−t1
←−→ z1)PB(z1

=t1
←→ u′)

≤ α
1/2
G ε|∂A|2|∂B|V −1m(E|B(r0)|)2.

Proof. The proof of the second assertion is identical to the first, so we only prove the first.

We use Lemma 3.15 to bound PA,B(a
P [2tmix,r0]
←−−−−→ u) ≤ CV −1E|B(r0)| and PB(b

=t1
←→ z1)

≤ CV −1(1 + ε)t1 . We then sum PB(z1
r0−t1
←−→ u′) over (u, u′) to obtain a factor of

Cmε−1(1 + ε)r0−t1 by Lemma 4.4. We now sum PA,B(a′
r0
←→ z1) over z1 and get an-

other E|B(r0)| factor and now sum all this over a, b, a′, t1. This gives a contribution of

C|∂A|2|∂B|V −2mr0(E|B(r0)|)3,

by Theorem 4.5. This is at most

Cε|∂A|α
1/2
G log(ε3V )
√
ε3V

|∂A| |∂B|V −1m(E|B(r0)|)2,

by our choice of r0 in (2.8) and Lemma 4.4, concluding our proof. ut

Lemma 6.12. The following bounds hold:∑
a,b∈∂A×∂B

(u,u′), z1∈B, t1∈[tmix,r0]

PA(a
=t1
←→ z1)PA(z1

r0−t1
←−→ u)PB(b

P [2tmix,r0]
←−−−−→ u′)

≤ C|∂A| |∂B| |B|V −2mr0(E|B(r0)|)2

and ∑
a,b∈∂A×∂B

(u,u′), z1∈B, t1∈[tmix,r0]

PA(a
r0−t1
←−→ z1)PA(z1

=t1
←→ u)PB(b

P [2tmix,r0]
←−−−−→ u′)

≤ C|∂A| |∂B| |B|V −2mr0(E|B(r0)|)2.
Proof. The proof of the second assertion is identical to the first so we only prove the first.
We use Lemma 3.13 to bound

PB(b
P [2tmix,r0]
←−−−−→ u′) ≤ (1+ o(1))V −1E|B(r0)|,

and, as before, we use Lemma 3.12 together with Lemma 4.4 to bound

PA(a
=t1
←→ z1) ≤ CV

−1(1+ ε)t1 ,

sum over u′ such that (u, u′) ∈ E(G), and finally use Lemma 4.4 to bound∑
u

PA(z1
r0−t1
←−→ u) ≤ Cε−1(1+ ε)r0−t1 .
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Altogether, after summing over a ∈ ∂A, b ∈ ∂B, z1 ∈ B, t1 ≤ r0, this gives the bound of

C|∂A| |∂B| |B|V −2mr0ε
−1(1+ ε)r0E|B(r0)| ≤ C|∂A| |∂B| |B|V −2mr0(E|B(r0)|)2,

where we have used Theorem 4.5. ut

Lemma 6.13. For any δ, β > 0,

EA,BSjx ,jy ,r0(x, y) ≥ (1− 8β1/2)V −1m(E|B(r0)|)2(|∂A| − ε−1)(|∂B| − ε−1)− Err,

where

Err ≤ C|∂A| |∂B|V −1m(E|B(r0)|)2[r0(|A| + |B|)V −1
+ α

1/2
G (1+ ε|∂A|)].

Proof. We have

EA,BSjx ,jy ,r0(x, y)

=

∑
(a,b)∈∂A×∂B

∑
(u,u′)

PA,B
(
{a

P [2tmix,r0],x
←−−−−−−→ u} and {b

P [2tmix,r0],y
←−−−−−−→ u′ off Bx(jx + r0)}

)
,

(6.9)

because the additional requirement that a and b are pivotal in the definitions of

{a
P [2tmix,r0],x
←−−−−−−→ u} and {b

P [2tmix,r0],y
←−−−−−−→ u′} implies that they are unique in ∂A× ∂B, so no

pair (a, b) is overcounted in the sum. We define B∂A(r0;A∪B) =
⋃
a′∈∂A Ba′(r0;A∪B).

We condition onB∂A(r0;A∪B) = H for an admissibleH (that is, anyH that has positive

probability and a
P [2tmix,r0],x
←−−−−−−→ u off B occurs in it). Each summand in (6.9) equals∑

H

PA,B
(
B∂A(r0;A ∪ B) = H

)
PA,B

(
b

P [2tmix,r0],y
←−−−−−−→ u′ off H

∣∣ B∂A(r0;A ∪ B) = H ),
and we have

PA,B
(
b

P [2tmix,r0],y
←−−−−−−→ u′ off H

∣∣ B∂A(r0;A∪B) = H ) = PB(b
P [2tmix,r0],y
←−−−−−−→ u′ off A∪H),

because on both sides the status of the edges touchingA∪H cannot change the occurrence
of the event. This gives

EA,BSjx ,jy ,r0(x, y)

=

∑
(a,b)∈∂A×∂B

∑
(u,u′)

∑
H

PA,B(B∂A(r0;A ∪ B) = H)PB(b
P [2tmix,r0],y
←−−−−−−→ u′ off A ∪H).

Now, by Claim 3.1,

PB(b
P [2tmix,r0],y
←−−−−−−→ u′ off A ∪H)

≥ PB(b
P [2tmix,r0],y
←−−−−−−→ u′)− PB(b

P [2tmix,r0]
←−−−−→ u′ only on A ∪H),

where in the last term we have dropped the requirement that y is pivotal (which only
increases the probability). Hence by summing on H we get
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EA,BSjx ,jy ,r0(x, y)

≥

∑
(a,b)∈∂A×∂B

∑
(u,u′)

PA,B(a
P [2tmix,r0],x
←−−−−−−→ u)PB(b

P [2tmix,r0],y
←−−−−−−→ u′)− S2,

where

S2=
∑

(a,b)∈∂A×∂B

∑
(u,u′)

∑
H

PA,B(B∂A(r0;A∪B)=H)PB(b
P [2tmix,r0]
←−−−−→ u′ only on A∪H).

(6.10)

As before, PA,B(a
P [2tmix,r0],x
←−−−−−−→ u) = PA(a

P [2tmix,r0],x
←−−−−−−→ u off B), since the status of the

edges touching A ∪ B in both sides does not matter. Claim 3.1 again gives

PA(a
P [2tmix,r0],x
←−−−−−−→ u off B) ≥ PA(a

P [2tmix,r0],x
←−−−−−−→ u)− PA(a

P [2tmix,r0]
←−−−−→ u only on B),

and so we may further expand EA,BSjx ,jy ,r0(x, y) ≥ S1 − S2 − S3 with

S1 =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA(a
P [2tmix,r0],x
←−−−−−−→ u)PB(b

P [2tmix,r0],y
←−−−−−−→ u′),

S3 =
∑

(a,b)∈∂A×∂B

∑
(u,u′)

PA(a
P [2tmix,r0]
←−−−−→ u only on B)PB(b

P [2tmix,r0]
←−−−−→ u′),

and S2 is defined in (6.10). Lemma 6.9 gives the required lower bound on S1, which yields
the positive contribution in the assertion of this lemma. We now bound S2 and S3 from

above, starting from S3. If a
P [2tmix,r0]
←−−−−→ u only on B, then either a

2tmix
←−→ u or there exist

z1 ∈ B and t1 ∈ [tmix, r0] such that

{a
=t1
←→ z1} ◦ {z1

r0−t1
←−→ u} or {a

r0−t1
←−→ z1} ◦ {z1

=t1
←→ u}.

Indeed, let γ be the lexicographically first shortest path between a and u. If |γ | ≤ 2tmix,

then a
2tmix
←−→ u, otherwise |γ | ∈ [2tmix, r0] and we take z1 to be the first vertex in B

visited by γ , and t is such that γ (t) = z1. If t ≥ tmix, then we set t1 = t and otherwise
t1 = |γ | − t . In any case t1 ∈ [tmix, r0]. When t ≥ tmix, the witness for a

=t1
←→ z1 is the

set of open edges of the path γ [0, t] together with all the closed edges of the graph, and

the witness for z1
r0−t1
←−→ u are the open edges of γ [t, |γ |]. The case t ≤ tmix is handled

similarly. We get

S3 ≤
∑

(a,b)∈∂A×∂B
(u,u′)

PA(a
2tmix
←−→ u)PB(b

P [2tmix,r0]
←−−−−→ u′)

+

∑
(a,b)∈∂A×∂B

(u,u′), z1∈B, t1∈[tmix,r0]

PA(a
=t1
←→ z1)PA(z1

r0−t1
←−→ u)PB(b

P [2tmix,r0]
←−−−−→ u′)

+

∑
(a,b)∈∂A×∂B

(u,u′), z1∈B, t1∈[tmix,r0]

PA(a
r0−t1
←−→ z1)PA(z1

=t1
←→ u)PB(b

P [2tmix,r0]
←−−−−→ u′).
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For the first term we bound PB(b
P [2tmix,r0]
←−−−−→ u′) ≤ CV −1E|B(r0)| by Lemma 3.13 and

sum over everything to get a contribution bounded by

C|∂A| |∂B|mV −1E|B(r0)|tmix ≤ C|∂A| |∂B|V
−1m(E|B(r0)|)2[tmix(E|B(r0)|)−1

]

≤ Cα
1/2
G |∂A| |∂B|V

−1m(E|B(r0)|)2, (6.11)

by our choice of r0 in (2.8), our assumptions αG ≥ (ε3V )−1/2 in (2.5) and tmix = o(ε
−1),

and Corollary 4.6. This fits in the second term of Err in the assertion of the lemma. We
bound the second and third terms using Lemma 6.12, giving an upper bound of

C|∂A| |∂B| |B|V −2mr0(E|B(r0)|)2,

which fits in the first term of Err in the assertion of the lemma.
We proceed to bound S2 in (6.10) from above. As before, if b

P [2tmix,r0]
←−−−−→ u′ only on

H ∪ A, then either b
2tmix
←−→ u′ or there exists z1 ∈ H ∪ A and t1 ∈ [tmix, r0] such that

{b
=t1
←→ z1} ◦ {z1

r0−t1
←−→ u′} or {b

r0−t1
←−→ z1} ◦ {z1

=t1
←→ u′}. (6.12)

The case where b
2tmix
←−→ u′ is handled as before and gives a contribution of

C|∂A| |∂B|mV −1E|B(r0)|tmix which by (6.11) again fits in the second term of Err. To
handle the other cases, let us first sum the contribution to S2 due to (6.12) over z1 ∈ H .
We use the BK-Reimer inequality and change the order of summation to bound this con-
tribution to S2 by∑

(a,b)∈∂A×∂B
(u,u′),z1, t1∈[tmix,r0]

PA,B
(
a

P [2tmix,r0]
←−−−−→ u, ∃ a′ ∈ ∂A such that a′

r0
←→ z1

)
PB(b

=t1
←→ z1)

× PB(z1
r0−t1
←−→ u′)

+

∑
(a,b)∈∂A×∂B
(u,u′),z1, t1≤r0

PA,B
(
a

P [2tmix,r0]
←−−−−→ u, ∃ a′ ∈ ∂A such that a′

r0
←→ z1

)
PB(b

r0−t1
←−→ z1)

× PB(z1
=t1
←→ u′).

Now, if a
P [2tmix,r0]
←−−−−→ u and there exists a′ ∈ ∂A with a′

r0
←→ z1, then either a

P [2tmix,r0]
←−−−−→ u

and a
r0
←→ z1, or there exists a′ ∈ ∂A such that {a

P [2tmix,r0]
←−−−−→ u} ◦ {a′

r0
←→ z1}. Hence we

may bound this from above by (I )+ (II ) where

(I ) =
∑

(a,b)∈∂A×∂B
(u,u′),z1, t1∈[tmix,r0]

PA,B
(
a

P [2tmix,r0]
←−−−−→ u, a

r0
←→ z1

)
PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′)

+

∑
(a,b)∈∂A×∂B
(u,u′),z1, t1≤r0

PA,B
(
a

P [2tmix,r0]
←−−−−→ u, a

r0
←→ z1

)
PB(b

r0−t1
←−→ z1)PB(z1

=t1
←→ u′),
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and

(II ) =∑
(a,b)∈∂A×∂B, a′∈∂A
(u,u′),z1, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u)PA,B(a′

r0
←→ z1)PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′)

+

∑
(a,b)∈∂A×∂B, a′∈∂A
(u,u′),z1, t1≤r0

PA,B(a
P [2tmix,r0]
←−−−−→ u)PA,B(a′

r0
←→ z1)PB(b

r0−t1
←−→ z1)PB(z1

=t1
←→ u′).

Lemma 6.10 readily gives (I ) ≤ α
1/2
G |∂A| |∂B|V

−1m(E|B(r0)|)2, which fits into the
second term of Err. Lemma 6.11 implies that (II ) ≤ α1/2

G ε|∂A|2|∂B|V −1m(E|B(r0)|)2,
which fits in the second term of Err. We sum the contribution to S2 due to (6.12) over
z1 ∈ A and bound it from above by∑

(a,b)∈∂A×∂B
(u,u′), z1∈A, t1∈[tmix,r0]

PA,B(a
P [2tmix,r0]
←−−−−→ u)PB(b

=t1
←→ z1)PB(z1

r0−t1
←−→ u′)

≤ C|∂A| |∂B| |A|V −2mr0(E|B(r0)|)2,

by an appeal to Lemma 6.12. This fits in the first term of Err and concludes our proof. ut

Lemma 6.14. The following bound holds:

EA,BSjx ,jy ,r0(x, y)
21
{∂A

2r0=∂B}
≤ Q1 +Q2 +Q3,

where

Q1 =
(
1+O(αG + εtmix)

)
V −2m2(E|B(r0)|)4|∂A|2|∂B|2,

Q2 = CV
−2m2ε−1(E|B(r0)|)4|∂A| |∂B|(|∂A| + |∂B|),

Q3 = CV
−2m2ε−2(E|B(r0)|)4|∂A| |∂B|.

Proof. Assume that (u1, u
′

1) and (u2, u
′

2) are two edges, and let a, a1, a2 be vertices in
∂A and b, b1, b2 vertices in ∂B. Define

T (u1, u2, a1, a2) = {a1
P [2tmix,r0]
←−−−−→ u1} ◦ {a2

P [2tmix,r0]
←−−−−→ u2},

T (u1, u2, a) = {a
P [2tmix,r0]
←−−−−→ u1} ∩ {a

P [2tmix,r0]
←−−−−→ u2}.

(6.13)

We define T (u′1, u
′

2, b1, b2) and T (u′1, u
′

2, b) in a similar fashion.
Now, if (u1, u

′

1) and (u2, u
′

2) are counted in Sjx ,jy ,r0(x, y)
21
{∂A

2r0=∂B}
, then one of the

following events must occur off A ∪ B:
(1) There exist a1, a2, b1, b2 such that T (u1, u2, a1, a2) ◦T (u′1, u

′

2, b1, b2) occurs.
(2) There exist a1, a2, b such that T (u1, u2, a1, a2) ◦ T (u′1, u

′

2, b) occurs, or the sym-
metric case T (u1, u2, a) ◦T (u′1, u

′

2, b1, b2) occurs.
(3) There exist a, b such that T (u1, u2, a) ◦T (u′1, u

′

2, b) occurs.
(See Figure 5.) Observe that the disjoint occurrence of the events is implied since

∂A
2r0= ∂B. We now sum the probability of these events over (u1, u

′

1), (u2, u
′

2); this gives
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(1) (2) (3)

a1 a1a2 a2b1 b2 b a b

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(1)(1) (2) (3)

a1 a1a2 a2b1 b2 b a b

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(2)(1) (2) (3)

a1 a1a2 a2b1 b2 b a b

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(u1, u
′
1)

(u2, u
′
2)

(3)

Fig. 5. The three contributions to the second moment of Sjx ,jy ,r0(x, y). The main contribution
comes from (1).

three terms which we will bound by Q1,Q2 and Q3, respectively. By Lemma 3.13 and
the BK inequality,

PA,B(T (u1, u2, a1, a2)) ≤
(
1+O(αG + εtmix)

)
(E|B(r0)|)2/V 2, (6.14)

whence ∑
a1,a2,b1,b2

(u1,u
′

1),(u2,u
′

2)

PA,B(T (u1, u2, a1, a2) ◦T (u′1, u
′

2, b1, b2))

≤
(
1+O(αG + εtmix)

)
V −2m2(E|B(r0)|)4|∂A|2|∂B|2,

which equals Q1. To bound the probability of (2), if T (u′1, u
′

2, b) occurs, then as before
either there exists a vertex z1 and t1 ∈ [tmix, r0] such that

{b
=t1
←→ z1} ◦ {z1

r0−t1
←−→ u′1} ◦ {z1

r0−t1
←−→ u′2},

or there exists z1 such that

{b
tmix
←→ z1} ◦ {z1

P [tmix,r0]
←−−−−→ u′1} ◦ {z1

P [tmix,r0]
←−−−−→ u′2},

or there exists z1 such that

{b
P [tmix,r0]
←−−−−→ z1} ◦ {z1

P [tmix,r0]
←−−−−→ u′1} ◦ {z1

tmix
←→ u′2}.

Hence, the BK-Reimer inequality gives∑
u′1,u

′

2

PA,B(T (u′1, u
′

2, b))

≤

∑
u′1,u

′

2,z1
t1∈[tmix,r0]

PA,B(b
=t1
←→ z1)PA,B(z1

r0−t1
←−→ u′1)PA,B(z1

r0−t1
←−→ u′2)

+

∑
u′1,u

′

2,z1

PA,B(b
tmix
←→ z1)PA,B(z1

P [tmix,r0]
←−−−−→ u′1)PA,B(z1

P [tmix,r0]
←−−−−→ u′2)

+

∑
u′1,u

′

2,z1

PA,B(b
P [tmix,r0]
←−−−−→ z1)PA,B(z1

P [tmix,r0]
←−−−−→ u′1)PA,B(z1

tmix
←→ u′2).
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We estimate the first sum by summing on u′2, u
′

1 then on z1, t1 using Lemma 4.4 to get a
bound of

Cε−3(1+ ε)2r0 ≤ Cε−1(E|B(r0)|)2,
by Theorem 4.5. The second and third sums are bounded by Ctmix(E|B(r0)|)2, which is
of lower order since εtmix = o(1) by (2.9). We use the BK inequality and (6.14) to bound
the contribution due to the first event in (2) by∑

a1,a2,b,(u1,u
′

1)

(u2,u
′

2)

PA,B(T (u1, u2, a1, a2))PA,B(T (u′1, u
′

2, b))

≤ CV −2m2ε−1(E|B(r0)|)4|∂A|2|∂B|.

The symmetric case in (2) obeys the same bound with the roles of |∂A| and |∂B| reversed.
This contribution equals Q2. To bound the contribution due to (3), we note that∑

a,b,(u1,u
′

1),(u2,u
′

2)

PA,B(T (u1, u2, a))PA,B(T (u′1, u
′

2, b))

is bounded using the BK-Reimer inequality by the three sums∑
a,b,(u1,u

′

1),(u2,u
′

2)
z1,z2,t1,t2∈[tmix,r0]

PA,B(a
=t1
←→ z1)PA,B(z1

r0−t1
←−→ u1)PA,B(z1

r0−t1
←−→ u2)PA,B(b

=t2
←→ z2)

PA,B(z2
r0−t2
←−→ u′1)PA,B(z2

r0−t2
←−→ u′2),∑

a,b,(u1,u
′

1),(u2,u
′

2)
z1,z2,t1∈[tmix,r0]

PA,B(a
=t1
←→ z1)PA,B(z1

r0−t1
←−→ u1)PA,B(z1

r0−t1
←−→ u2)PA,B(b

tmix
←→ z2)

PA,B(z2
P [tmix,r0]
←−−−−→ u′1)PA,B(z2

P [tmix,r0]
←−−−−→ u′2),∑

a,b,(u1,u
′

1)

(u2,u
′

2),z1,z2

PA,B(a
tmix
←→ z1)PA,B(z1

P [tmix,r0]
←−−−−→ u1)PA,B(z1

P [tmix,r0]
←−−−−→ u2)

PA,B(b
tmix
←→ z2)PA,B(z2

P [tmix,r0]
←−−−−→ u′1)PA,B(z2

P [tmix,r0]
←−−−−→ u′2).

To bound the first sum, we use Lemmas 3.12 and 4.4 to bound PA,B(a
=t1
←→ z1) ≤

CV −1(1 + ε)t1 and PA,B(b
=t2
←→ z2) ≤ CV −1(1 + ε)t2 . We then use Lemmas 3.19

and 4.4 to sum over z1, z2, (u1, u
′

1), (u2, u
′

2). This gives us an upper bound of

CV −2
|∂A| |∂B|m2ε−6(1+ ε)4r0 + C|∂A| |∂B|V −1m2tmixαG

∑
t1,t2∈[tmix,r0]

(1+ ε)t1+t2

≤ CV −2
|∂A| |∂B|m2ε−2(E|B(r0)|)4,

where the last inequality is due to Theorem 4.5 and our choice of r0 in (2.8). This is
contained inQ3. To bound the second sum, we use Lemma 3.15 to bound each of the last
two terms by CV −1E|B(r0)|. We then sum over (u1, u

′

1) and (u2, u
′

2) using Lemma 4.4.
Next we sum over z1, z2 using Lemma 4.4 and finally over a, b, t1 to conclude that this
sum is at most

C|∂A| |∂B|V −2m2(E|B(r0)|)4ε−1tmix,
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which is contained in Q3 since εtmix = o(1). For the third sum we use Lemma 3.15 four
times, and then sum over everything to get a bound of

C|∂A| |∂B|V −2m2(E|B(r0)|)4t2mix,

which is also contained in Q3, concluding our proof. ut

Proof of Theorem 6.3. We condition on the eventsBx(jx) = A andBy(jy) = B such that
the event A (x, y, jx, jy, r0, β, k) holds. By requirement (2) of A (x, y, jx, jy, r0, β, k)

(p. 771) and our choice of parameters,

r0(|A| + |B|)V
−1
≤ V −1ε−3 log(ε3V )e3M

≤ (log(ε3V ))−1,

and
α

1/2
G ε|∂A| ≤ e3Mα

1/2
G ≤ α

1/4
G .

Hence the error term in Lemma 6.13 is at most

Err ≤ C[(log(ε3V ))−1
+ α

1/4
G ]|∂A| |∂B|V

−1m(E|B(r0)|)2.

Lemma 6.13 together with requirement (5) in the definition of A (x, y, jx, jy, r0, β, k)

and our choice of β in (6.1) (in particular, β � α
1/4
G ∧ (log(ε3V ))−1 by (2.7)) give

EA,B
[
Sjx ,jy ,r0(x, y)1

{∂A
2r0=∂B}

]
≥ (1− Cβ1/2)V −1m(E|B(r0)|)2|∂A| |∂B|.

Since |∂A| and |∂B| are at least ek/4ε−1, we have

ε−1
|∂A|2|∂B| + ε−1

|∂A|2|∂B| + ε−2
|∂A| |∂B| ≤ Ce−k/4|∂A|2|∂B|2,

hence, by Lemma 6.14 and our choice of parameters,

EA,B
[
Sjx ,jy ,r0(x, y)

21
{∂A

2r0=∂B}

]
≤ (1+O(e−k/4))V −2m2(E|B(r0)|)4|∂A|2|∂B|2.

We conclude that

PA,B
(
Sjx ,jy ,r0(x, y) ≥ 2β1/2V −1m(E|B(r0)|)2|∂A| |∂B|

)
≥ 1−O(β1/2),

where we have used the fact that e−k/4 = o(β) and (4.4). This concludes our proof since
|∂A| and |∂B| are at least ε−1. ut

7. Proofs of main theorems

7.1. Proof of Theorem 1.3. In Section 2.4 we already proved Theorem 1.3(a), so we
may assume that the finite triangle condition (1.5) holds and focus on part (b). Since
|C1| ≤ k0 + Z≥k0 where k0 is from Theorem 2.2, Lemma 2.3 immediately gives |C1| ≤

(2 + o(1))εV whp, showing the required upper bound on |C1|—note that this argu-
ment only uses the finite triangle condition, hence it is valid for any ε(m) satisfying
ε(m) � V −1/3 and ε(m) = o(1). For the lower bound we will additionally assume,



792 Remco van der Hofstad, Asaf Nachmias

as part (b) requires, that ε(m) = o(1/tmix), and show that

Pp
(
|C1| ≥ (2− o(1))εV

)
= 1− o(1). (7.1)

This establishes (b) of Theorem 1.3. Recall that p = pc(1+ ε) is our percolation proba-
bility, let θ > 0 be an arbitrary small constant and let p2, p1 satisfy

p2 = θε/m, pc(1+ ε) = p1 + (1− p1)p2,

so that pc(1 + (1 − θ)ε) ≤ p1 ≤ pc(1 + ε) since pc ≥ 1/m. Denote by Gp1 and Gp2

two independent percolation instances ofG with parameters p1 and p2, respectively. The
sprinkling procedure relies on the fact that Gp is distributed as Gp1 ∪Gp2 . We first apply
Theorem 2.4 to Gp1 and deduce that for M, r defined in (2.7) and r0 defined in (2.8),

Pp1

(
Pr,r0 ≥ (1− 3θ)4ε2V 2)

≥ 1− o(1). (7.2)

Now we wish to show that if we “sprinkle” this configuration in Gp1 , that is, we add
independent p2-open edges, then most of these vertices join together to form one cluster
of size roughly 2εV . To make this formal, given Gp1 , we construct an auxiliary simple
graph H with vertex set

V (H) = {x ∈ Gp1 : |C (x)| ≥ (ε
3V )1/4ε−2

}

and edge set
E(H) = {(x, y) ∈ V (H)2 : x, y are (r, r0)-good}.

Thus, using Lemma 2.3 with k0 = ε−2(ε3V )1/4 and (7.2), with probability at least
1− o(1),

|V (H)| = (2+ o(1))εV, |E(H)| ≥ (1− 3θ)4ε2V 2. (7.3)

Denote v = |V (H)| and write x1, . . . , xv for the vertices in Gp1 corresponding to
those of H . Given Gp1 for which the event in (7.3) occurs, we will show that whp in
Gp1 ∪ Gp2 there is no way to partition the set of vertices into M1 ]M2 = {x1, . . . , xv}

with |M1| ≥ 3θv and |M2| ≥ 3θv so that there is no open path in Gp1 ∪Gp2 connecting
a vertex in M1 to a vertex in M2. This implies that whp the largest connected component
in Gp1 ∪Gp2 is of size at least (1− 3θ)v.

To show this, we first claim that the number of such partitions is at most 23(ε3V )3/4

since |C (xi)| ≥ (ε3V )1/4ε−2. Secondly, given such a partition, we claim that the number
of edges (u, u′) such that u ∈ M1 and u′ ∈ M2 (note that, by definition, these edges
must be p1-closed) is at least e−40M(logM)−1θε2Vm. To see this, we consider the set of
edges in H for which both endpoints of the edge lie in either M1 or M2 (more precisely,
the vertices of H corresponding to M1 and M2). This number is at most

|M1|
2
+ |M2|

2
≤ (3θv)2 + (1− 3θ)2v2

≤ (1− 5θ)v2,

where we have used the fact that θ > 0 is a small enough constant, |M1| + |M2| = v and
both |M1| and |M2| are in [3θv, (1− 3θ)v]. By (7.3), the number of edges in H such that
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one end is in M1 and the other in M2 is at least θε2V 2. In other words, there are at least
θε2V 2 pairs (x, y) ∈ M1×M2 such that S2r+r0(x, y) ≥ (logM)−1V −1mε−2(E|B(r0)|)2.
Note that is a large number due to our condition (2.8). In total, we counted at least
θε2V 2

· (logM)−1V −1mε−2(E|B(r0)|)2 edges (u, u′) and no edge is counted more than
|Bu(2r+r0)| · |Bu′(2r+r0)| times, which is at most e40Mε−2(E|B(r0)|)2 by the definition
of S2r+r0(x, y), and the second claim follows.

Hence, if |C1| ≤ (1−3θ)v, then there exists such a partition in which all of the above
edges (u, u′) are p2-closed. By the two claims above, the probability of this is at most

23(ε3V )3/4(1− p2)
e−40M (logM)−1θmε2V

≤ 23(ε3V )3/4e−e−40M (logM)−1θ2ε3V
= o(1),

since p2 = θε/m and by our choice of parameters in (2.7) and (2.9). This concludes the
proof of (7.1) since θ > 0 was arbitrary, and establishes the required estimate on |C1| of
Theorem 1.3(b).

We now use (7.1) to show the required bounds on E|C (0)| and |C2|. The upper bound
E|C (0)| ≤ (4+ o(1))ε2V is stated in Lemma 2.3, and the lower bound follows immedi-
ately from our estimate on C1. Indeed, write Cj for the j th largest component. Then

E|C (0)| = V −1
∑

v∈V (G)

E|C (v)| = V −1
∑
j≥1

E|Cj |2 ≥ V −1E|C1|
2
≥ (4− o(1))ε2V,

where the first equality is by transitivity, the second equality is because each compo-
nent Cj is counted |Cj | times in the sum on the left, and the last inequality is due to (7.1).
Furthermore, by this inequality and Lemma 2.3, we deduce that∑

j≥2

E|Cj |2 = o(ε2V 2),

and hence |C2| = o(εV ) whp. This concludes the proof of Theorem 1.3. ut

7.2. Proof of Theorem 1.1. In this section we restrict our attention to the hypercube
and prove Theorem 1.1. We begin by showing that tmix, defined in Theorem 1.3 with
αG = m−1 logm, satisfies tmix = O(m logm): see Lemma 7.1. The proof of Theorem
1.1 is then split into two cases. In the first case we assume that ε(m) ≤ 1/m2 so that
ε = o(1/tmix) and appeal to Theorem 1.3. In the second case we perform the classical
sprinkling argument for the case ε ≥ 1/m2, as done in [18].

Lemma 7.1 (NBW estimates). On the hypercube {0, 1}m,

Tmix(m
−1 logm) = O(m logm),

and for any integer L ≥ 1,

sup
x,y

∑
u,v

L∑
t1,t2,t3=0
t1+t2+t3≥3

pt1(x, u)pt2(u, v)pt3(v, y) ≤ O(1/m2)+O(L3/V ). (7.4)

Proof. We make use of the results in [25], as we explain now. The estimate
Tmix(m

−1 logm) = O(m logm) is [25, Theorem 3.5]. We next explain how to prove
(7.4), which will give condition (3) in Theorem 1.3 for L = Am logm and an appropriate
A > 0.
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Let D : {0, 1}m → [0, 1] be the simple random walk transition probability on the
hypercube, that is,D(v) = 1/mwhenever v is a neighbor of the all-zero vector. Our proof
of (7.4) relies on Fourier theory. For convenience, we take the Fourier dual of {0, 1}m to
be {0, 1}m. Then the Fourier transform f̂ of f : {0, 1}m→ R is given by

f̂ (k) =
∑

x∈{0,1}m
(−1)x·kf (x), (7.5)

with inverse Fourier transform

f (x) =
1
V

∑
k∈{0,1}m

(−1)x·kf̂ (k). (7.6)

For the hypercube, D̂(k) takes the appealingly simple form

D̂(k) = 1− 2a(k)/m, (7.7)

where a(k) is the number of non-zero coordinates of k.
In [25, Theorem 3.5] it is proved that for m ≥ 2 and t ≥ 1, with p̂t (k) denoting the

Fourier transform of x 7→ pt (0, x),

|p̂t (k)| ≤ max
(
|D̂(k)|, 1/

√
m− 1

)t−1
, (7.8)

and p̂0
(k) = 1. This gives us all the necessary bounds to prove the NBW triangle condi-

tion (7.4).
Denote the sum in (7.4) by S. The contribution to S of t1+t2+t3 = 3 equalsO(1/m2).

Thus, we are left to bound the contribution due to t1, t2, t3 with t1 + t2 + t3 ≥ 4. For any
t ≥ 1,

pt (x, y) ≤
m

m− 1
(D ∗ pt−1)(x, y), (7.9)

where, for f, g : {0, 1}m→ R, we define the convolution f ∗ g by

(f ∗ g)(x) =
∑

y∈{0,1}m
f (y)g(x − y). (7.10)

Therefore,

S ≤ C/m2
+ 34

(
m

m− 1

)4

sup
x,y

L∑
s1,s2,s3=0
s1+s2+s3≥0

(D∗4 ∗ ps1 ∗ ps2 ∗ ps3)(x, y), (7.11)

where 34 is an upper bound on the number of ways we can add 4 to the coordinates of
(s1, s2, s3) to get (t1, t2, t3) with t1 + t2 + t + 3 ≥ 4. The above can be bounded in terms
of Fourier transforms as

S ≤ C/m2
+
C

V
sup
x,y

∑
k∈{0,1}m

(−1)k·(y−x)
L∑

s1,s2,s3=0
s1+s2+s3≥0

D̂(k)4p̂s1(k)p̂s2(k)p̂s3(k)

≤ C/m2
+
C

V

∑
k∈{0,1}m

L∑
s1,s2,s3=0
s1+s2+s3≥0

D̂(k)4|p̂s1(k)| |p̂s2(k)| |p̂s3(k)|. (7.12)
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The contribution of k = 0 equals L3/V since D̂(0) = p̂t (0) = 1, and the contribution
due to k = 1 (where 1 denotes the all-1 vector) obeys the same bound. It is not hard to
adapt the proof of [17, Proposition 1.2] to show that the sum over k 6= 0, 1 is O(1/m2).
We give the details of this computation now.

Writing x+ = max(x, 0) for x ∈ R, and noting that there are at most two values of s
for which (s − 1)+ = t , we obtain

S ≤ C/m2
+ 2L3/V

+
C

V

∑
k∈{0,1}m : k 6=0,1

L∑
s1,s2,s3=0

D̂(k)4 max
(
|D̂(k)|, 1/

√
m− 1

)(s1−1)++(s2−1)++(s3−1)+

≤ C/m2
+ 2L3/V

+
C23

V

∑
k∈{0,1}m : k 6=0,1

D̂(k)4
∞∑

s1,s2,s3=0

max
(
|D̂(k)|, 1/

√
m− 1

)s1+s2+s3
= C/m2

+ 2L3/V +
C23

V

∑
k∈{0,1}m: k 6=0,1

D̂(k)4[
1−max

(
|D̂(k)|, 1/

√
m− 1

)]3 . (7.13)

We bound

1
V

∑
k∈{0,1}m: k 6=0,1

D̂(k)4[
1−max

(
|D̂(k)|, 1/

√
m− 1

)]3
≤

1
V

∑
k∈{0,1}m : k 6=0,1

D̂(k)4
[

1

[1− |D̂(k)|]3
+

1[
1− 1/

√
m− 1

]3 ]. (7.14)

We next use the fact that V −1∑
k∈{0,1}m D̂(k)

4 is the probability that a four-step simple
random walk on the hypercube returns to its starting point, which is O(1/m2). Alterna-
tively, and more useful for the proof that follows, we can write

1
V

∑
k∈{0,1}m

D̂(k)4 = 2−m
m∑
j=0

(
m

j

)
(1− 2j/m)4

= m−4E[(2X −m)4] = O(1/m2), (7.15)

where X has a binomial distribution with parameters 1/2 and m, and we use the fact that
E[(2X − m)4] = O(m2). We use similar ideas to deal with the contribution involving
[1− |D̂(k)|]−3, which we rewrite as

1
V

∑
k∈{0,1}m : k 6=0,1

D̂(k)4

[1− |D̂(k)|]3
= 2−m

m−1∑
j=1

(
m

j

)
(1− 2j/m)4

[(2j/m) ∧ (2− 2j/m)]3
. (7.16)

The sum 2−m
∑
j 6∈[m/4,3m/4]

(
m
j

)
is exponentially small in m by either Stirling’s formula

or large deviation bounds on the binomial distribution with parameters m and 1/2. When
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j ∈ [m/4, 3m/4], we can bound 1/[(2j/m) ∧ (2 − 2j/m)]3 ≤ 8 to estimate the above
sum by O(1/m2) in the same way as in (7.15). Together with (7.13), this completes the
proof of (7.4). ut

Proof of Theorem 1.1. We start by proving the theorem in the case ε(m) ≤ 1/m2. We
take αG = m−1 logm. Lemma 7.1 shows that tmix = O(m logm) and condition (3) of
Theorem 1.3 holds. Condition (2) of Theorem 1.3 holds by (1.2). Condition (1) is fulfilled
automatically, so in this case Theorem 1.1 follows from Theorem 1.3.

We now handle the case ε ≥ 1/m2 and ε = o(1). We start by proving (7.1) in this
case. In [18], it is proven that |C1| ≥ cεV whp in this case, and the argument used there
is based on isoperimetry together with Lemma 2.3 and suffices to prove the required 2εV
estimate in our setting as well, as we now show.

Let θ > 0 be a small arbitrary constant. As before, fix the sprinkling probability
p2 = θε/m and take p1 such that p = pc(1 + ε) = p1 + (1 − p1)p2 so that p1 =

pc(1+ (1− θ + o(1))ε). By Lemma 2.3, whp in Gp1 ,

2(1− 2θ)εV ≤ Z≥k0 ≤ 2(1+ θ)εV

for k0 = ε
−2(ε3V )1/4. As a result, there are at most 2(1+ θ)εV/k0 = 2(1+ θ)(ε3V )3/4

clusters of size at least k0. Denote these clusters by (Di)i∈I , so that |I |≤2(1+θ)(ε3V )3/4.
As before, we now perform sprinkling and add the edges of Gp2 . We bound the prob-

ability that after sprinkling there is a partition of the clusters (Di)i∈I into two sets S, T
both containing at least θεV vertices such that there is no path in Gp2 connecting them.
If there is no such partition, then the largest component in Gp1 ∪ Gp2 has size at least
(2− 3θ)εV and we conclude the proof. We follow [18, proof of Proposition 2.5].

Since |I | ≤ 2(1+θ)(ε3V )3/4, the number of such partitions is at most 22(1+θ)(ε3V )3/4 .
We estimate the probability that given such a partition there is no p2-open path connecting
them. By [18, Lemma 2.4], whenever 1 ≥ 1 satisfies

e−1
2/2m
≤ θε/2, (7.17)

there is a collection of at least 1
2θεm

−21V edge disjoint paths connecting S and T , each
of length at most 1. This is where the isoperimetric inequality on the hypercube is being
used. Note that 1 needs to be large, in fact, we set 1 = m2/3 and use the fact that
ε ≥ m−2 so that (7.17) holds. The probability that a path of length 1 has a p2-closed
edge in it is 1 − p12 . Since the paths are disjoint, these events are independent, and we
find that the probability that they all have a p2-closed edge in them is at most

(1− p12 )
1
2 θεm

−21V
≤ e−cp

1
2 θεm

−21V
= e−cθ

1ε1m−31V . (7.18)

Thus, the total probability that sprinkling fails is at most

22(1+θ)(ε3V )3/4e−cθ
1ε1m−31V

= e−c2
(1−o(1))m

, (7.19)

since ε ≥ m−2 (in fact, this argument works as long as ε ≥ e−cm
1/3

). The proof of (7.1)
when ε � V −1/3 and ε = o(1) is now completed.

The remaining estimations of |C1|, E|C (0)| and |C2| only rely on (7.1) and Lemma
2.3 and are performed exactly as in the conclusion of the proof of Theorem 1.3. This
completes the proof of Theorem 1.1. ut
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7.3. Proof of Theorem 1.4. The expansion and girth assumptions of the theorem allow
us to deduce some crude yet sufficient bounds on pt (·, ·), namely, that there exists some
constant q > 0 such that

pt (0, 0) ≤

{
V −q , t ≤ C logV,
CV −1, t ≥ C logV,

pt (x, y) ≤

{
(m− 1)−t , t ≤ (c logm−1 V )/2,
V −q , t ≥ (c logm−1 V )/2.

Indeed, the second bound on pt (0, 0) comes from the classical fact that Tmix(CV
−1) =

O(logV ) (see e.g. [5, below (19)]). The first bound on pt (0, 0) comes from the girth
assumption. Indeed, the graph induced on the vertices of graph distance at most bg/2c,
where g is the girth, is a tree. Hence, in order for the walker to return to 0 at time t , he
must be at distance t − bg/2c from 0 and then take the unique path of length bg/2c to 0
so that q can be taken to be any number smaller than c/2. The bounds on pt (x, y) are
proved similarly.

We take αG = C(logV )−1 (which is at least 1/m by our assumption thatm ≥ c logV )
and prove that conditions (2) and (3) of Theorem 1.3 hold. Note that tmix = O(logV ). To
prove condition (2) we show that percolation with p = (m − 1)−1(1 + αG/logV ) has
Ep|C (0)| � V 1/3 so that pc ≤ p. To get this lower bound on Ep|C (0)| in this regime
of p one could use a classical sprinkling argument. However, it is quicker to apply [47,
Theorem 4] and verify that

ε−1r

2r∑
t=1

[(1+ ε)t∧r − 1]pt (0, 0) = o(1), (7.20)

where ε = αG/logV and r = ε−1
[log(ε3V ) − 3 log log(ε3V )]. Theorem 4 of [47] then

yields P(|C1| ≥ bεV/(log(ε3V ))3) = 1−o(1) for some b > 0, which immediately gives
a lower bound on E|C (0)| since

E|C (0)| ≥ V −1E|C1|
2
≥ (1+ o(1))b2ε2V/(log(ε3V ))6 � V 1/3,

by our choice of ε. We use our bounds on pt (0, 0) above and sum (7.20) separately for
t ≤ C logV and t ≥ C logV . For t ≤ C logV we have (1 + ε)t − 1 = O(εt) and use
our first bound pt (0, 0) ≤ V −q to get

ε−1r

C logV∑
t=1

[(1+ ε)t∧r − 1]pt (0, 0) ≤ r
C logV∑
t=1

tV −q = o(1).

When t ≥ C logV we obtain

(1+ ε)t∧r − 1 ≤ (1+ ε)r = ε3V (log(ε3V ))−3
= O(ε3V (logV )−3),

by our choice of ε. We use our second bound pt (0, 0) ≤ CV −1 to deduce that

ε−1r

2r∑
t=C logV

[(1+ ε)t∧r − 1]pt (0, 0) = O(r2ε2(logV )−3) = o(1),

since r ≤ C(logV )2. This concludes the verification of condition (2) of Theorem 1.3.



798 Remco van der Hofstad, Asaf Nachmias

To verify condition (3) we need to prove the bound

∑
u,v

C logV∑
t1,t2,t3 : t1+t2+t3≥3

pt1(x, u)pt2(u, v)pt3(v, y) = O((logV )−2). (7.21)

We first handle the special case of (t1, t2, t3) = (1, 1, 1). An immediate calculation with
Lemma 3.11 shows that (on any regular graph of degree m)∑

u,v

p1(x, u)p1(u, v)p1(v, y) = O(1/m2).

In all other cases of (t1, t2, t3) we use our bound on pti (x, y) for i ∈ 1, 2, 3 such that ti is
the largest of t1, t2, t3 (which must be at least 2). We pull this bound out of the sum, and
sum the other two terms over u and v to get a multiplicative contribution of precisely 1.
The sum over (t1, t2, t3) such that 3 ≤ t1+ t2+ t3 < 15 is bounded by C(logV )−2, since
the number of such triplets is bounded, and each contributes at most C(logV )−2 because
one of the ti’s is at least 2, so that our bounds on pt (x, y) guarantee that for this ti we have
pti (·, ·) ≤ O(1/m2) ≤ O(1/(logV )2) by the assumption thatm ≥ c logV . Similarly, the
sum over triplets (t1, t2, t3) such that t1 + t2 + t3 ≥ 15 and ti ≤ tmix is also bounded by
C(logV )−2 since the number of such triplets is at most C(logV )3, and each contributes
at most C(logV )−5 because at least one of the ti’s is at least 5 and for this ti we have
pti (·, ·) ≤ C(logV )−5, again by our assumption that m ≥ c logV . This completes the
verification of conditions (2) and (3) of Theorem 1.3 and concludes the proof. ut

8. Open problems

(1) In this paper we prove a law of large numbers for |C1| above the critical window for
percolation on the hypercube. Show that |C1| satisfies a central limit theorem in this
regime. In G(n, p), this and much more was established by Pittel and Wormald [52].

(2) Show that |C2| = (2 + o(1))ε−2 log(ε32m) when p = pc(1 + ε) and that |C1| =

(2+o(1))ε−2 log(ε32m)when p = pc(1−ε) for ε � V −1/3 and ε = o(1). This is the
content of [18, Conjectures 3.1 and 3.3]. In [15] this is proved for ε ≥ 60(log n)3/n
in the supercritical regime, and for ε ≥ (log n)2/(n1/2 log log n) in the subcritical
regime. In G(n, p), these results are proved in [52] and [39, Theorem 5.6].

(3) Show that (|Cj |2−2m/3)j≥1 converges in distribution when p = pc(1 + t2−m/3) and
t ∈ R is fixed and identify the limit distribution. Up to a time change, this should
be the limiting distribution of (|Cj |n−2/3)j≥1 in G(n, p) with p = (1 + tn−1/3)/n

identified by Aldous [4].

(4) Consider percolation on the nearest-neighbor torus Zdn where d is a large fixed con-
stant and n → ∞ with p = pc(1 + ε) such that ε � n−d/3 and ε = o(1). Show
that |C1|/(εn

d) converges to a constant. Does this constant equal the limit as ε ↓ 0 of
ε−1θZd (pc(1+ ε))? Here θZd (p) denotes the probability that the cluster of the origin
is infinite at p-bond percolation on the infinite lattice Zd . The techniques of this paper
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are not sufficient to show this, mainly because condition (2) of Theorem 1.3 does not
hold in Zdn (in fact, it is easy to see that pc − (2d − 1)−1

≥ c > 0 for some positive
constant c = c(d)—this is always the case when our underlying transitive graph has
constant degree and short cycles). The critical regime of this graph is well understood
thanks to [16, 17, 29, 30].

(5) Show that the finite triangle condition (1.5) holds on any family of expander graphs.

(6) Let δ > 0 be a fixed constant and consider the giant component C1 obtained by
performing percolation on the hypercube with p = (1 + δ)/m. Show that whp the
mixing time of the simple random walk on C1 is polynomial inm. Is this mixing time
of orderm2? This is what one expects by the analogous question onG(n, p) (see [10,
26]). Further analogy with the near-critical G(n, p) (see [22]) suggests that whp the
mixing time on C1 when p = pc(1+ ε) with the usual condition that ε � 2−m/3 and
ε = o(1) is of order ε−3 log(ε32m).

Appendix. Asymptotics of the supercritical cluster tail

Our goal in this section is to prove Theorem 2.2. In [16], Theorem 2.2 is proved without
the precise constant 2. Here we sharpen this proof to get this constant. We assume that G
is a general transitive graph having degree m and volume V satisfying the finite triangle
condition (1.5). In order to stay close to the notation in [16], we define

∇
max
p = sup

x 6=y

∇p(x, y)

and
τp(x) = Pp(0↔ x). (A.1)

Proposition A.1 (Upper bound on the cluster tail). Let G be a finite transitive graph
of degree m on V vertices such that the finite triangle condition (1.5) holds, and set
p = pc(1 + ε) where ε = o(1) and ε � V −1/3. Then, for every k = kε satisfying
kε ≥ ε

−2,

Pp(|C (0)| ≥ k) ≤ 2ε
[
1+O

(
ε + (ε3V )−1

+ (ε2k)−1/4
+ αG

)]
. (A.2)

Proposition A.2 (Lower bound on the cluster tail). Let G be a finite transitive graph of
degree m on V vertices such that (1.5) holds, and set p = pc(1+ ε) where ε = o(1) and
ε � V −1/3. Then, for every α ∈ (0, 1/3), there exists a c = c(α) > 0 such that

Pp
(
|C (0)| ≥ ε−2(ε3V )α

)
≥ 2ε

[
1+O

(
ε + (ε3V )−c + αG

)]
. (A.3)

Remark. The above propositions also apply to infinite transitive graphs (where (ε3V )−c

is replaced by 0), assuming that (1.5) holds with χ(p)3/V replaced by 0.

Proof of Theorem 2.2. Follows immediately from the above propositions. ut
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A.1. Differential inequalities. We follow [16, Section 5]. For p, γ ∈ [0, 1], we define
the magnetization by

M(p, γ ) =

V∑
k=1

[1− (1− γ )k]Pp(|C (0)| = k). (A.4)

For fixed p, the function γ 7→ M(p, γ ) is strictly increasing, with M(p, 0) = 0 and
M(p, 1) = 1. When we color all vertices independently green with probability γ , and we
let G denote the set of green vertices, then (A.4) has the appealing probabilistic interpre-
tation of

M(p, γ ) = Pp,γ (0↔ G ), (A.5)

where Pp,γ is the probability measure of the joint bond and site percolation model, where
bonds and sites have an independent status. This representation is important for the deriva-
tion of useful differential inequalities involving the magnetization.

Lemma A.3 (Differential inequalities for the magnetization). LetG be a finite transitive
graph on V vertices and degree m. Then for any p, γ ∈ (0, 1),

(1− p)
∂M

∂p
≤ m(1− γ )M

∂M

∂γ
, (A.6)

M ≤ γ
∂M

∂γ
+
[ 1

2mpM
2
+ γM

]
+
[ 1

2mpM + γ
]
p
∂M

∂p
, (A.7)

M ≥ mp
[
γ + (1− γ ) 1

2m(m− 1)p2α(p)M2]∂M
∂γ

, (A.8)

where

α(p) = (1− 2p)2 − (1+mp + 2(mp)2)∇max
p −mpM − (mp)2M2. (A.9)

The inequality (A.6) is proved in [1], where it was used to prove the sharpness of the
percolation phase transition on Zd , and was first stated in the context of finite graphs in
[16, (5.14)]. The differential inequality in (A.7) is an adaptation of another differential in-
equality proved and used in [1], which is improved here in order to obtain sharp constants
in our bounds. The bound in (A.8) is an adaptation of [16, (5.16)], which was used there
to prove an upper bound on M(p, γ ). Again, the inequality is adapted in order to obtain
the optimal constants. We will first use Lemma A.3 to obtain Propositions A.1 and A.2.

A.2. The magnetization for subcritical p. We take p = pc(1 − ε) with ε = o(1)
and ε3V � 1, and we take γ = o(1). Then [16, Lemma 5.3] shows that M(p, γ ) =
O(
√
γ ). The main aim of this section is to improve upon this bound, using the improved

differential inequality in (A.8).
We have M(p, γ ) = O(

√
γ ) and χ(p) = O(1/ε) by [16, Theorem 1.5]. Further-

more, assumption (1.5) gives ∇max
p = O(αG + (ε

3V )−1), and [16, (1.30)] then implies
that mp ≤ 1+O(αG). Putting all this into (A.9) yields

α(p) ≥ 1+O
(√
γ + (ε3V )−1

+ αG
)
. (A.10)
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Substituting (A.10) into (A.8) in turn gives

M ≥
[
1+O

(√
γ + (ε3V )−1

+ αG
)][
γ + 1

2M
2]∂M
∂γ

. (A.11)

We now use this to prove the following lemma:

Lemma A.4 (Upper bound on the slightly subcritical magnetization). Let G be a finite
transitive graph of degree m on V vertices such that (1.5) holds. Let γ = o(1) and set
p = pc(1− ε) with ε = o(1) and ε3V � 1. Then

M(p, γ ) ≤
√

2γ
[
1+O

(√
γ + (ε3V )−1

+ αG
)]
. (A.12)

A similar bound was proved in [16, Lemma 5.3], whose proof we adapt here, with
√

2γ
replaced with

√
12γ , and a less precise error bound. The precise constant

√
2 is important

for us here as it relates to the constant 2 for the 2ε(1+ o(1)) survival probability.

Proof of Lemma A.4. We note that (A.11) implies that

M ≥
B

2
M2 ∂M

∂γ
, (A.13)

where we abbreviate B = 1+O(
√
γ + (ε3V )−1

+ αG). Therefore,

∂[M2
]

∂γ
≤ 4/B. (A.14)

Integrating between 0 and γ , and using M(p, 0) = 0, yields

M2
≤ 4γ /B, (A.15)

so that M ≤
√
γ (2/
√
B). Now, when we have this inequality, we can further bound

γ ≥ (B/4)M2, (A.16)

so that by (A.11) we get

M ≥ B[1/2+ B/4]M2 ∂M

∂γ
. (A.17)

Performing the same integration steps, we arrive at

M2
≤

2
B/2+ B2/4

γ. (A.18)

Therefore, the constant has become a little better (recall that B is close to 1). Iterating
these steps yields, for every k ≥ 1,

M2
≤

2∑k
j=1(B/2)j

γ. (A.19)
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We prove (A.19) by induction on k, the initialization for k = 1, 2 having been proved
above. Suppose that (A.19) holds for some k ≥ 1. Define

Ak =

k∑
j=1

(B/2)j , (A.20)

so that (A.19) is equivalent to M2
≤ 2γ /Ak . In turn, this yields γ ≥ AkM2/2, so that

M ≥ B[Ak/2+ 1/2]M2 ∂M

∂γ
, (A.21)

which in turn yields

M2
≤

2
B[1+ Ak]/2

γ. (A.22)

Note that
B[1+ Ak]/2 = Ak+1, (A.23)

which proves the induction step. By (A.19), we obtain

M2
≤

2∑
∞

j=1(B/2)j
γ = 2[2− B]γ /B. (A.24)

Finally, the fact that

[2− B]/B = 1+O
(√
γ + (ε3V )−1

+ αG
)

(A.25)

completes the proof. ut

A.3. The magnetization for supercritical p. In this section, we use extrapolation in-
equalities to obtain a bound on the supercritical magnetization from the subcritical one
derived in Lemma A.4. Our precise result is the following:

Lemma A.5 (Upper bound on the slightly supercritical magnetization). LetG be a finite
transitive graph of degree m on V vertices such that (1.5) holds, and set p = pc(1 + ε)
where ε = o(1) and ε � V −1/3. Then, for any c ∈ (0, 1/3),

M(p, γ ) ≤
(
ε +

√
2γ + ε2

)[
1+O

(
ε +
√
γ + (ε3V )−c + αG

)]
. (A.26)

Proof. We follow the proof in [16, Section 5.3], paying special attention to the con-
stants and error terms. Indeed, we use (A.6) and the chain rule to deduce that, with
A = (1− 2pc)−1 and M̃(p, h) = M(p, 1− e−h),

∂M̃

∂p
≤ mAM̃

∂M̃

∂h
. (A.27)

Take P1 = (pc(1+ ε), h) and write m1 = M̃(P1). Further, take η = ε(ε3V )−c for some
c ∈ (0, 1/3), so that η = o(ε) and η3V →∞, and let P2 = (pc(1− η),Am1ε

′), where

ε′ = ε + η +
h

Am1
. (A.28)
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Then, with m2 = M̃(P2), we have m2 ≥ m1 (see e.g. [16, (5.46)]). Therefore, by Lemma
A.4 and again writing B = 1+O(

√
γ + (ε3V )−1

+ αG) with γ = 1− e−h, we obtain

M(p, 1− e−h) = m1 ≤ m2 ≤
√

2B(1− e−Am1ε′)

= (1+O(m1ε
′))
√

2ABm1ε′

= (1+O(m1ε))
√

2ABm1(ε + η)+ 2Bh

=
(
1+O(ε + (ε3V )−c)

)√
2ABm1ε + 2Bh, (A.29)

where in the last inequality we use η = ε(ε3V )−c � ε and m1 ≤ 1. The inequality

m1 ≤
√

2ABm1ε + 2Bh

has roots
m± = ABε ±

√
2Bh+ (ABε)2. (A.30)

Since m1 ≥ 0 and m+ ≥ 0 while m− ≤ 0, we deduce that

M(pc+ε/m, 1−e−h) = m1 ≤
(
1+O(ε+(ε3V )−c)

)(
ABε+

√
2Bh+ (ABε)2

)
. (A.31)

We have γ = 1 − e−h = h(1 + O(h)) and A = 1 + O(αG) (by [16, (1.30)]) and
B = 1+O(

√
γ +(ε3V )−1

+αG). Putting all this together in the last inequality completes
the proof. ut

Proof of Proposition A.1. We note that, for any l ≥ k ≥ 1 and a > 0,

1− (1− a/k)l ≥ 1− e−a . (A.32)

Therefore, by (A.4),

Pp(|C (0)| ≥ k) ≤ [1− e−a]−1M(p, a/k). (A.33)

Recall that k � ε−2 and take a = (ε2k)1/2 so that a/k = ε2(ε2k)−1/2
= o(ε2). We note

that for γ = ε2(ε2k)−1/2, (A.26) reduces to

M(p, γ ) ≤ 2ε
[
1+O

(
ε + (ε3V )−1

+ (ε2k)−1/4
+ αG

)]
. (A.34)

Then, by (A.34) and the fact that 1− e−a = 1+ o((ε2k)−1/4),

M(p, a/k) ≤ 2ε
[
1+O

(
ε + (ε3V )−1

+ (ε2k)−1/4
+ αG

)]
. (A.35)

This completes the proof of Proposition A.1. ut

A.4. Lower bound on tail probabilities. In the remainder of this section, we shall prove
Proposition A.2. Throughout this proof, we will take p = pc(1+ ε).
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We shall assume that with k0 = ε−2(ε3V )α � ε−2 and α ∈ (0, 1/3), there exists
b10 = b10(α) such that

Pp
(
|C (v)| ≥ ε−2(ε3V )α

)
≥ b10ε. (A.36)

The bound in (A.36) is proved for finite graphs in [16, Theorem 1.6(i)] and in [9], in
conjunction with [28], on infinite lattices satisfying the triangle condition. The proof of
(A.36) is similar to the argument we shall give for the improved bound, and will be omit-
ted here. In turn, (A.36) implies that, for γ = 1/k0 = ε

2(ε3V )−α = o(ε2), there exists a
constant b̃10 such that

M(p, γ ) ≥ [1− [1− γ ]k0 ]Pp(|C (v)| ≥ k0) ≥ b̃10ε. (A.37)

Inequality (A.37) will be an essential ingredient in our proof. We start by proving the
following lemma:

Lemma A.6 (Lower bound on the magnetization). Let G be a finite transitive graph of
degree m on V vertices such that (1.5) holds, and set p = pc(1+ ε) where ε = o(1) and
ε � V −1/3. Then, for γ = ε2(ε3V )−α with α ∈ (0, 1/3) and any c < 1,

M(p, γ ) ≥ 2ε
[
1+O

(
ε + (ε3V )−c + αG

)]
. (A.38)

Proof. Throughout the proof, we fix α ∈ (0, 1/3). We recall the differential inequality
(A.7),

M ≤ γ
∂M

∂γ
+
[ 1

2mpM
2
+ γM

]
+
[ 1

2mpM + γ
]
p
∂M

∂p
. (A.39)

By (A.37), and the fact that γ 7→ M(p, γ ) is increasing, for any γ = ε2(ε3V )−α we
have γ = O(Mε). Further, mp ≤ 1 + O(ε + αG), so that, for some A > 1 with A =
1+O(ε + αG),

M ≤ γ
∂M

∂γ
+
A

2
M2
+
A

2
Mp

∂M

∂p
. (A.40)

We rewrite (A.40) as

0 ≤
1
M

∂M

∂γ
+

1
γ

∂

∂p

[
A

2
pM − p

]
, (A.41)

and integrate for γ ∈ [γ0, γ1] and p ∈ [p0, p1], where γ0 = (δε)
2(δ3ε3V )−α . We note

that (A.37) holds for p0 = pc(1+ εδ) for any δ = o(1) and γ = γ0. We further take

p0 = pc(1+ δε), p1 = pc(1+ ε), γ1 = e(log (1/δ))aγ0, (A.42)

where a > 1 is chosen below.
Then, as in [27, (5.57) and the argument below it], since p 7→ M(p, γ ) and γ 7→

M(p, γ ) are non-decreasing,

0 ≤ (p1 − p0) log
M(p1, γ1)

M(p0, γ0)
+ log(γ1/γ0)

[
A

2
p1M(p1, γ1)− (p1 − p0)

]
. (A.43)
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Now,
log(γ1/γ0) = (log (1/δ))a, (A.44)

while, by Lemma A.5 and (A.37),

M(p1, γ1) ≤ 2ε
[
1+O

(
ε + (ε3V )−1)], M(p0, γ0) ≥ b̃10δε, (A.45)

so that, for δ > 0 sufficiently small,

log
M(p1, γ1)

M(p0, γ0)
≤ log(2ε/(b̃10δε)) ≤ 2 log(1/δ). (A.46)

Dividing (A.43) through by (log (1/δ))a , we arrive at

A

2
p1M(p1, γ1) ≥ pc(1− δ)ε

[
1− 2(log (1/δ))1−a

]
. (A.47)

Recalling that p1 = pc(1+ ε) and a > 1, as well as A = 1+O(ε + αG), this yields

M(p, γ1) ≥ 2ε
[
1+O

(
ε + (log (1/δ))1−a + αG

)]
. (A.48)

Finally, note that

γ1 = e(log (1/δ))aγ0 = e(log (1/δ))a (δε)2(δ3ε3V )−α

= ε2(ε3V )−α(e(log (1/δ))aδ2−3α) ≥ ε2(ε3V )−α, (A.49)

when we take δ = e−(ε
3V )1/a for any a > 1. Indeed, then e(log (1/δ))aδ2−3α

→ ∞ as
δ→ 0. Since γ 7→ M(p, γ ) is increasing, this implies that

M(p, γ ) ≥ M(p, γ1) ≥ 2ε
[
1+O

(
ε + (log (1/δ))1−a + αG

)]
= 2ε

[
1+O

(
ε + (ε3V )1/a−1

+ αG
)]
, (A.50)

which proves the claim with c = 1− 1/a. ut

Proof of Proposition A.2. We use [16, (6.5)], which states that, for any 0 ≤ γ0, γ1 ≤ 1,

Pp(|C (0)| ≥ k) ≥ M(p, γ1)−
γ1

γ0
eγ0kM(p, γ0). (A.51)

Now we take γ1 = ε2(ε3V )−α
′

with α′ ∈ (0, 1/3) taken as in Lemma A.6, γ0 =

ε2(ε3V )−α with α < α′, and k = 1/γ0. Then eγ0k = e, while from Lemma A.5 and
γ0 = o(ε

2) we obtain
M(p, γ0) ≤ 2ε(1+ o(1)). (A.52)

Therefore, by Lemma A.6 and (A.51), taking c = 1/2 in Lemma A.6 yields

Pp(|C (0)| ≥ k) ≥ 2ε
[
1+O

(
ε + (ε3V )−1/2

+ αG
)]
− (ε3V )α

′
−αO(ε). (A.53)

We deduce that

Pp(|C (0)| ≥ ε−2(ε3V )α) ≥ 2ε
[
1+O

(
ε + (ε3V )−1/2

+ (ε3V )α−α
′

+ αG
)]
. (A.54)

This proves the claim in Proposition A.2 with c = α − α′ ∈ (0, 1/3). ut
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A.5. Derivation of (A.8). We follow the proof in [16, Appendix A.2] as closely as pos-
sible, deviating in one essential inequality. Indeed, in [16, (A.23)–(A.32)], it is proved
that

M(p, γ ) ≥ pm
∂M

∂γ
(p, γ )Pp,γ (0⇔ G )−X2 −X3, (A.55)

where X2 and X3 are defined in [16, (A.32)] and the event 0 ⇔ G means that there are
x, y ∈ G with x 6= y such that 0 ↔ x and 0 ↔ y disjointly. We copy the bounds on X2
and X3 in [16, (A.46)] and [16, (A.53)] respectively, which prove that

X2 ≤ p
2mM(p, γ )2

∂M

∂γ
(p, γ ), X3 ≤ ∇

max
p pmM(p, γ )2

∂M

∂γ
(p, γ ), (A.56)

and we improve upon the lower bound on Pp,γ (0 ⇔ G ) only. Our precise result is con-
tained in the following lemma:

Lemma A.7 (Improved lower bound on the double connection). For all p, γ ∈ [0, 1],

Pp,γ (0⇔ G ) ≥ γ + (1− γ ) 1
2m(m− 1)p2α(p)M(p, γ )2, (A.57)

where

α(p) = (1− 2p)2 − (1+mp + 2(mp)2)∇max
p −mpM(p, γ )− (mp)2M(p, γ )2.

Proof. Note that if 0 ∈ G , then 0⇔ G occurs. Therefore,

Pp,γ (0⇔ G ) = γ + (1− γ )Pp,γ (0⇔ G | 0 6∈ G ). (A.58)

Thus, it remains to obtain a lower bound on Pp,γ (0 ⇔ G | 0 6∈ G ). For this, we follow
the original argument in [16, Section A.2], adapting it when necessary.

For a directed bond b = (x, y), we write b = x and b = y for its top and bottom. Let
e, f be two distinct bonds with e = f = 0, and let Ee,f be the event that the bonds e and
f are occupied, and that in the reduced graphG− = (V −, E−) obtained by removing the
bonds e and f , the following three events occur: e↔ G , f ↔ G , and C (e)∩C (f ) = ∅.

Let P−p,γ denote the joint bond/vertex measure on G−. We note that the event 0⇔ G
contains the event

⋃
e,f Ee,f , where the (non-disjoint) union is over unordered pairs of

bonds e, f incident to the origin. Then, by Bonferroni’s inequality and since Ee,f is
independent of 0 6∈ G , we get

Pp,γ (0⇔ G | 0 6∈ G ) ≥ Pp,γ
(⋃
e,f

Ee,f

∣∣∣ 0 6∈ G
)
≥

∑
{e,f }

Pp,γ (Ee,f )− Y1

= p2
∑
e,f

P−p,γ (e↔ G , f ↔ G , C (e) ∩ C (f ) = ∅)− Y1, (A.59)

where
Y1 =

1
2

∑
{e1,f1}6={e2,f2}

Pp,γ (Ee1,f1 ∩ Ee2,f2 | 0 6∈ G ). (A.60)
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We first bound Y1. For this, we note that there are two contributions to Y1, depending
on the number of distinct elements in {e1, f1, e2, f2}, which can be 3 or 4, and whose
contributions we denote by Y1,3 and Y1,4, respectively.

We start by bounding Y1,3. The number of pairs of pairs of edges {e1, f1} 6= {e2, f2}

such that |{e1, f1, e2, f2}| = 3 is m(m− 1)(m− 2). For such a pair, let x1, x2, x3 denote
the distinct elements of {e1, f 1, e2, f 2} such that x1 corresponds to the end of the edge
that appears twice in {e1, f1, e2, f2}. If Ee1,f1 ∩ Ee2,f2 occurs, then either

{(0, x1) occ.} ◦ {(0, x2) occ.} ◦ {(0, x3) occ.} ◦ {x1 ↔ G } ◦ {x2 ↔ G } ◦ {x3 ↔ G }

occurs, or there exists a z such that

{(0, x1) occ.}◦ {(0, x2) occ.}◦ {(0, x3) occ.}◦ {x1 ↔ G }◦ {x2 ↔ z}◦ {x3 ↔ z}◦ {z↔ G }

occurs. Therefore,

Y1,3 ≤ (1− γ ) 1
2m(m− 1)(m− 2)p3M(p, γ )2[M(p, γ )+∇max

p ], (A.61)

where we have estimated∑
z

Pp(x2 ↔ z)Pp(x3 ↔ z) ≤ ∇max
p ,

which is wasteful, but sufficient for our purposes.
For Y1,4, we sum over {e1, f1} 6= {e2, f2} with the constraint that all these edges are

distinct. The number of such pairs of pairs ism(m− 1)(m− 2)(m− 3)/4. Then, a similar
computation to that for Y1,3 yields

Y1,4 ≤ (1− γ ) 1
8m(m− 1)(m− 2)(m− 3)p4M(p, γ )2[M(p, γ )2 + 8∇max

p ]. (A.62)

We continue to estimate the sum over {e, f } in (A.59) from below. Let

W = We,f = {e↔ G , f ↔ G , C (e) ∩ C (f ) = ∅} (A.63)

denote the event whose probability appears on the right side of (A.59). Conditioning on
the set C (e) = A ⊂ V −, we see that

P−p,γ (W) =
∑
A: f 6∈A

P−p,γ
(
C (e) = A, e↔ G , f ↔ G , C (e) ∩ C (f ) = ∅

)
. (A.64)

This can be rewritten as

P−p,γ (W) =
∑
A: f 6∈A

P−p,γ
(
C (e) = A, e↔ G , f ↔ G in V − \ A

)
, (A.65)

where {f ↔ G in V − \A} is the event that there exists x ∈ G such that f ↔ x in V − \A.
The intersection of the first two events on the right hand side of (A.65) is independent of
the third event, and hence

P−p,γ (W) =
∑
A: e 6∈A

P−p,γ (C (e) = A, e↔ G )P−p,γ (f ↔ G in V − \ A). (A.66)
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Let M−(x) = P−p,γ (x ↔ G ) for x ∈ V −. Then, by the BK inequality and the fact that
the two-point function on G− is bounded above by the two-point function on G,

P−p,γ (f ↔ G in V − \ A) = M−(f )− P−p,γ (f ↔ G only on A) (A.67)

≥ M−(f )−
∑
y∈A

τp(f , y)M
−(y).

By definition and the BK inequality,

M−(x) = M(p, γ )− Pp,γ (e or f is occ. and piv. for x ↔ G )

≥ M(p, γ )(1− 2p). (A.68)

It follows from (A.66)–(A.68) and the upper bound M−(x) ≤ M(p, γ ) that

P−p,γ (W) ≥ M(p, γ )
∑
A: e 6∈A

P−p,γ (C (e) = A, e↔ G )
[
(1− 2p)−

∑
y∈A

τp(f , y)
]

= M(p, γ )
[
M−(e)(1−2p)−

∑
y∈V−

τp(f , y)P−p,γ (e↔ y, e↔ G )
]
. (A.69)

It is not difficult to show, using the BK inequality, that

P−p,γ (e↔ y, e↔ G ) ≤
∑
w∈V−

τp(e, w)τp(w, y)M
−(w), (A.70)

and hence, by (A.68)–(A.5),

P−p,γ (W) ≥ M(p, γ )
[
M−(e)(1− 2p)−

∑
y,w∈V−

τp(f , y)τp(e, w)τp(w, y)M
−(w)

]
≥ M(p, γ )2[(1− 2p)2 −∇max

p ].

This completes the proof of (A.57). ut

A.6. Derivation of (A.7). In this section, we prove (A.7), which is an adaptation of the
proof of the related inequality

M ≤ γ
∂M

∂γ
+M2

+ pM
∂M

∂p
, (A.71)

proved in [1] (see also [27, Lemma (5.53)]). The main difference between (A.71) and
(A.7) is in the precise constants. Indeed, we have pm ≈ 1 and M � γ , so that (A.7) is
morally equivalent to

M ≤ γ
∂M

∂γ
+

1
2
M2
+

1
2
pM

∂M

∂p
, (A.72)

i.e., in the inequality of (A.71) the last two terms are multiplied by 1/2.
We follow the proof of [27, Lemma (5.53)] as closely as possible, deviating only when

necessary. Indeed,

M(p, γ ) = Pp,γ (C (0) ∩ G 6= ∅)

= Pp,γ (|C (0) ∩ G | = 1)+ Pp,γ (|C (0) ∩ G | ≥ 2). (A.73)



Hypercube percolation 809

The first term on the right hand side of (A.73) equals γ ∂M
∂γ

, as derived in [27, (5.69)]. For
the second term, we define Ax to be the event that either x ∈ G , or x is connected by an
occupied path to a vertex g ∈ G . Then

Pp,γ (|C (0) ∩ G | ≥ 2) = Pp,γ (A0 ◦ A0)

+ Pp,γ (|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur). (A.74)

In the derivation of (A.71), we simply apply the BK inequality to obtain

Pp,γ (A0 ◦ A0) ≤ Pp,γ (A0)
2
= M(p, γ )2, (A.75)

leading to the second term in (A.71). Instead, we split depending on whether 0 ∈ G or
not. If 0 ∈ G , then 0 ∈ G occurs disjointly from A0, so that the BK inequality yields

Pp,γ (A0 ◦ A0, 0 ∈ G ) ≤ Pp,γ (A0 ◦ {0 ∈ G }) ≤ γP(A0) = γM(p, γ ). (A.76)

When, instead, 0 6∈ G , there must be at least two neighbors e of the origin for which the
event

Ae ◦ A0 ◦ {(0, e) occ.} (A.77)

occurs. Therefore, we can bound, with N denoting the number of neighbors e for which
the event in (A.77) occurs, so that N ≥ 2 a.s. and Markov’s inequality yields

Pp,γ (A0 ◦ A0, 0 6∈ G ) ≤
∑
e∼0

Ep,γ
[

1
N

1{Ae◦A0◦{(0,e) occ.}

]
≤

1
2

∑
e∼0

Pp,γ (Ae ◦ A0 ◦ {(0, e) occ.}). (A.78)

Therefore, again by the BK inequality,

Pp,γ (A0 ◦ A0, 0 6∈ G ) ≤ 1
2

∑
e

Pp,γ (Ae)Pp,γ (A0)p =
1
2pmM(p, γ )

2,

so that
Pp,γ (A0 ◦ A0) ≤

1
2pmM(p, γ )

2
+ γM(p, γ ), (A.79)

which yields the second term in (A.7).
We move on to the bound on the probability of the event that |C (0) ∩ G | ≥ 2, but

A0 ◦ A0 does not occur. This event is equivalent to the existence of an edge b = (x, y)
for which the following occurs:

(i) the edge b is occupied; and
(ii) in the subgraph of G obtained by deleting b, the following events occur:

(a) no vertex of G is joined to the origin by an open path;
(b) x is joined to 0 by an occupied path;
(c) the event Ay ◦ Ay occurs.
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The events in (ii) are independent of the occupation status of the edge b = (x, y) so
that

Pp,γ
(
|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur

)
=

p

1− p

∑
x∼y

Pp,γ
(
(x, y) closed, x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay

)
≤

p

1− p

∑
x∼y

Pp,γ
(
x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay

)
, (A.80)

where we write x ∼ y to denote that (x, y) is a bond. We condition on C (0) to obtain

Pp,γ (C (0) ∩ G = ∅, Ay ◦ Ay)

=
p

1− p

∑
x∼y

∑
A

Pp(C (0) = A)Pp,γ
(
C (0) ∩ G = ∅, Ay ◦ Ay

∣∣ C (0) = A
)
, (A.81)

where the sum over A is over all sets of vertices which contain 0 and x but not y. Con-
ditionally on C (0) = A, the events C (0) ∩ G = ∅ and Ay ◦ Ay are independent, since
C (0) ∩ G = ∅ is defined on the vertices in A, while Ay ◦ Ay depends on the vertices in
Ac and the edges between them. Thus,

Pp,γ
(
C (0) ∩ G = ∅, Ay ◦ Ay

∣∣ C (0) = A
)

= Pp,γ (C (0) ∩ G = ∅ | C (0) = A)Pp,γ (Ay ◦ Ay off A), (A.82)

where we write {Ay ◦ Ay off A} for the event that Ay ◦ Ay occurs in the graph where all
edges with at least one endpoint in the set A are removed. So far, the derivation follows
the proof of [27, Lemma (5.53)]. Now we shall deviate from it. We split, depending on
whether y ∈ G or not, to obtain

Pp,γ (Ay ◦ Ay off A) = Pp,γ (Ay ◦ Ay off A, y ∈ G )+ Pp,γ (Ay ◦ Ay off A, y 6∈ G ).

When y ∈ G ,

{Ay ◦ Ay off A, y ∈ G } =
{
({y ∈ G } ◦ Ay) off A

}
, (A.83)

so that, by the BK inequality,

Pp,γ (Ay ◦ Ay off A, y ∈ G ) ≤ γPp,γ (Ay off A). (A.84)

As a result,
p

1− p

∑
x∼y

Pp,γ
(
x ∈ C (0), C (0) ∩ G = ∅, Ay ◦ Ay, y ∈ G

)
≤

γp

1− p

∑
x∼y

∑
A

Pp(C (0) = A)Pp,γ
(
C (0) ∩ G = ∅

∣∣ C (0) = A
)
Pp,γ (Ay off A)

=
γp

1− p

∑
x∼y

∑
A

Pp(C (0) = A)Pp,γ
(
C (0) ∩ G = ∅, Ay

∣∣ C (0) = A
)

=
γp

1− p

∑
x∼y

Pp,γ
(
x ∈ C (0),C (0) ∩ G = ∅, C (y) ∩ G 6= ∅

)
= γp

∂M

∂p
, (A.85)
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where the first equality follows again by conditional independence, and the last equality
from the fact that (see [27, (5.67)])

(1− p)
∂M

∂p
=

∑
x∼y

Pp,γ
(
x ∈ C (0), C (0) ∩ G = ∅, C (y) ∩ G 6= ∅

)
. (A.86)

It remains to bound the contribution from y 6∈ G . For this, we note that if Ay ◦ Ay
occurs off A and y 6∈ G , then there must be at least two neighbors z of y for which the
event {

(Az ◦ Ay ◦ {(y, z) occ.}) off A
}

(A.87)

occurs. Therefore, by a similar argument to (A.78),

Pp,γ (Ay ◦ Ay off A, y 6∈ G ) ≤ 1
2

∑
z∼y

Pp,γ
(
(Az ◦ Ay ◦ {(y, z) occ.}) off A

)
. (A.88)

By the BK inequality,

Pp,γ
(
(Az ◦ Ay ◦ {(y, z) occ.}) off A

)
≤ pPp,γ (Az off A)Pp,γ (Ay off A)
≤ pM(p, γ )Pp,γ (Ay off A).

Repeating the steps in (A.85), we thus arrive at
p

1− p

∑
x∼y

Pp,γ
(
x ∈ C (0),C (0) ∩ G = ∅, Ay ◦ Ay, y 6∈ G

)
≤

1
2mp

2M(p, γ )
∂M

∂p
.

(A.89)

Therefore, summing the two bounds in (A.85) and (A.89), we arrive at

Pp,γ (|C (0) ∩ G | ≥ 2, A0 ◦ A0 does not occur) ≤
[ 1

2mpM(p, γ )+ γ
]
p
∂M

∂p
,

which is the third term in (A.7). This completes the proof of (A.7). ut
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