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Abstract. We introduce and study a two-parameter family of symmetry reductions of the two-
dimensional Toda lattice hierarchy, which are characterized by a rational factorization of the Lax
operator into a product of an upper diagonal and the inverse of a lower diagonal formal differ-
ence operator. They subsume and generalize several classical 1+1 integrable hierarchies, such as
the bigraded Toda hierarchy, the Ablowitz–Ladik hierarchy and E. Frenkel’s q-deformed Gelfand–
Dickey hierarchy. We establish their characterization in terms of block Toeplitz matrices for the
associated factorization problem, and study their Hamiltonian structure. At the dispersionless level,
we show how the Takasaki–Takebe classical limit gives rise to a family of non-conformal Frobenius
manifolds with flat identity. We use this to generalize the relation of the Ablowitz–Ladik hierarchy
to Gromov–Witten theory by proving an analogous mirror theorem for the general rational reduc-
tion: in particular, we show that the dual-type Frobenius manifolds we obtain are isomorphic to the
equivariant quantum cohomology of a family of toric Calabi–Yau threefolds obtained from minimal
resolutions of the local orbifold line.

Keywords. Rational reductions, Gromov–Witten, integrable hierarchies, mirror symmetry, 2D-
Toda, Ablowitz–Ladik

1. Introduction

The two-dimensional Toda equation

(∂2
x − ∂

2
t )xn = exn+1 − 2exn + exn−1 , n ∈ Z, (1.1)

is among the archetypical examples in classical field theory of integrable non-linear dy-
namical systems in two space dimensions. Besides its intrinsic interest in the theory of
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integrable systems [18, 50, 66, 68], the hierarchy of commuting flows of (1.1)—the so-
called 2D-Toda hierarchy—has provided a unifying framework for a variety of problems
in various branches of mathematics and mathematical physics, ranging from the combi-
natorics of matrix integrals [3, 36] to enumerative geometry [45, 56] and applications to
classical and quantum physics [33, 54, 55].

The purpose of this paper is to construct and study an infinite family of symmetry re-
ductions of the two-dimensional Toda hierarchy, which we dub the rational reductions of
2D-Toda (henceforth, RR2T). Their defining feature is the following factorization prop-
erty of the 2D-Toda Lax operators:

La1 = AB
−1, Lb2 = BA

−1, (1.2)

where A and B are respectively a degree a ≥ 1 upper diagonal and a degree b ≥ 1 lower
diagonal difference operator; this property is preserved by the Toda flows. It turns out
that the resulting hierarchies enjoy remarkable properties both from the point of view of
the theory of integrable systems, as well as from the vantage of their applications to the
topology of moduli spaces of stable maps.

1.1. Main results

The RR2T, which are the natural counterpart in the 2D-Toda world of the “constrained
reductions” of the KP hierarchy of [4,6], are distinguished in a number of ways. First off,
the embedding into the Toda hierarchy recovers and ties together a host of known clas-
sical integrable hierarchies in 1+1 dimensions: notable examples include the Ablowitz–
Ladik system [1, 9], the bi-graded Toda hierarchy [17], and the q-deformed version of
the Gelfand–Dickey hierarchy [35]. Moreover, rational reductions have a natural char-
acterization in the associated factorization problem, where they correspond to the block
Toeplitz condition on the moment matrix; in the semi-infinite case this naturally gen-
eralizes the ordinary Toeplitz condition arising in the theory of unitary matrix models.
Thirdly, the analysis of the relation of the Hamiltonian structure on the reduced system
to the (second) Poisson structure of the parent 2+1 hierarchy reveals that the reduction
itself is remarkable in that it is a purely kinematical phenomenon, whose ultimate cause
is completely independent of the particular form of the Hamiltonians: the submanifold in
field space where the Lax operator factorizes comes along with an infinite-dimensional
degeneration of the Poisson tensor, whose pointwise kernel contains the conormal fibers
to the factorization locus. Fourthly, the semi-classical Lax–Sato formalism for the disper-
sionless limit of the hierarchy gives rise to a host of (old and new) solutions of WDVV
in the form of a family of semi-simple, non-conformal Frobenius dual-type structures on
a genus zero double Hurwitz space1 having covariantly constant identity. For b ≤ 1, they
are bona fide dual in the sense of Dubrovin [29] of conformal Frobenius manifolds of
charge d = 1, with possibly non-flat unit. The double Hurwitz space picture entails, on
the one hand, the existence of a bi-Hamiltonian structure of Dubrovin–Novikov type at
the dispersionless level for several subcases, as well as a tri-Hamiltonian structure as in

1 We borrow the terminology from [60].
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[58,60] for a = b; on the other, it furnishes for all (a, b) a one-dimensional B-model-type
Landau–Ginzburg description for the dual-type Frobenius structure. Generalizing a result
of [9], we show that the resulting non-conformal Frobenius manifolds are isomorphic
to the (C∗)2-equivariant orbifold cohomology of the local P1-orbifolds with two stacky
points of order a and b [46], or equivalently [22] of the (C∗)2-equivariant cohomology
of one of their toric minimal resolutions (the toric trees). This establishes a (novel) ver-
sion of equivariant mirror symmetry for these targets via one-dimensional logarithmic
Landau–Ginzburg models, which has various applications to the study of wall-crossings
in Gromov–Witten theory as anticipated in [10], and it leads us to conjecture that the
full descendent Gromov–Witten potential for these targets is a τ -function of the RR2T, a
statement that we verify in genus less than or equal to one.

The paper is organized as follows. In Section 2, after reviewing the Lax formalism
for the 2D-Toda hierarchy, we first construct the RR2T in the bi-infinite case, study the
reduction of the 2D-Toda flows, and discuss various examples. We then illustrate their re-
lation to biorthogonal ensembles on the unit circle and the factorization problem of block
Toeplitz matrices, and discuss the Hamiltonian structure of the hierarchy. Section 2.6 is
devoted to the study of the dispersionless limit of the flows. We analyze the Takasaki–
Takebe limit of the equations in the framework of Frobenius structures on double Hur-
witz spaces and determine explicitly the dual-type structures that arise, as well as the
extra flat structures that occur in special cases. Finally, Section 3 is devoted to the relation
to Gromov–Witten theory. We prove an equivariant mirror theorem for toric trees, and
outline the range of its implications. First of all, we verify up to genus one that the full
descendent Gromov–Witten potential is a τ -function of the RR2T, upon establishing a
Miura equivalence between the dispersive expansion of the RR2T to quadratic order and
the analogue of the Dubrovin–Zhang quasi-Miura formalism applied to the local theory of
the orbifold line. Moreover, we discuss in detail the properties of the A-model Dubrovin
connection in the light of its connection with RR2T, prove that its flat sections are multi-
variate hypergeometric functions of type FD , and discuss its implications for the Crepant
Resolution Conjecture at higher genus.

1.2. Relation to other work

Several instances of RR2T have made a more or less covert appearance in the literature.
In a prescient work [38], Gibbons and Kupershmidt2 constructed a Lax formalism for
a relativistic generalization of the one-dimensional Toda hierarchy which would corre-
spond in our language to the RR2T of bidegree (a, 1), where the dependent variable in
the denominator has been frozen to a parameter equal to the speed of light. More recent
examples include the Ablowitz–Ladik hierarchy treated by the authors [9], corresponding
to the case (a, b) = (1, 1), and the somewhat degenerate example of the lattice analogue
of KdV [1], to which RR2T boils down for b = 0. Dual-type structures for the disper-
sionless limit of the RR2T have been computed in the special case of the bigraded Toda
hierarchy [59] and the RR2T of bidegree (a, a) (see also [63, 72]). Closer to the discus-

2 Building on earlier work of Bruschi–Ragnisco [11]; see also [48, 61].
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sion of Section 3 is a recent paper of Takasaki [65], where the (full-dispersive) RR2T
of bidegree (b, b) with suitable initial data is considered in connection with the partition
function of the melting crystal model [57] for the so-called “generalized conifolds” de-
formed by shift symmetries [64]. As the generalized conifolds correspond precisely to
the toric Calabi–Yau threefolds of Section 3 for a = b, it would be intriguing to bridge
Takasaki’s approach with our own, and in particular to intepret the 2D-Toda evolution
in the crystal model as suitable gravitational deformations of our prepotentials. We will
leave this open for future work.

2. Rational reductions of 2D-Toda

2.1. The 2D-Toda hierarchy

Denote by A = {(aij ∈ C)i,j∈Z} the vector space of doubly-infinite matrices with com-
plex coefficients. Equivalently, this is the space of formal difference operators

∑
r∈Z ar3

r

where ar for every r is an element of the space F of C-valued functions on Z, and the
shift operator 3 acts on f ∈ F by 3kf (n) = f (n+ k). For 1 =

∑
r∈Z ar3

r
∈ A, the

C-linear projections

1+ =
∑
r∈Z+

ar3
r , (2.1)

1− =
∑
r∈Z−0

ar3
r (2.2)

define a canonical decomposition A = A+ ⊕A−, corresponding to the projections of 1
to its upper/strictly lower triangular part. We will denote by 1T its transpose

1T =
∑
r∈Z

3−rar (2.3)

and, whenever defined, we denote its positive/negative order ord±1 as the degree of its
projections to A± as formal difference operators,

ord±1 = deg3±1(1)±. (2.4)

Armed with these definitions, we construct an infinite-dimensional dynamical system
over an affine subspace of A⊕A, as follows. The 2-dimensional Toda lattice [68] is the
system (∂

s
(1)
r
, ∂
s
(2)
r
, r > 0) of commuting flows given by the Lax equations

∂
s
(1)
r
Li = [(L

r
1)+, Li], ∂

s
(2)
r
Li = [−(L

r
2)−, Li], i = 1, 2, (2.5)

where the 2D-Toda Lax operators are the formal difference operators

L1 = 3+
∑
j≥0

u
(1)
j 3−j , L2 =

∑
j≥−1

u
(2)
j 3j (2.6)
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with u(k)j ∈ F for all j ∈ N∪{−1}, k = 1, 2. Commutativity of these flows follows from
the (simplified form of) the zero-curvature equations

∂
s
(j)
q
Lri − ∂s(i)r

L
q
j + [(L

r
i )+, (L

q
j )+] − [(L

r
i )−, (L

q
j )−] = 0, (2.7)

which in turn is equivalent to a compatibility condition for the Zakharov–Shabat spectral
problem

L191 = w91, LT2 92 = w92, ∂
s
(1)
q
91 = (L

q

1)+91,

∂
s
(1)
q
92 = −(L

q

1)
T
+9
∗

2 , ∂
s
(2)
q
91 = (L

q

2)
T
−91, ∂

s
(2)
q
92 = −(L

q

2)
T
−9
∗

2 .
(2.8)

for wave vectors 9i ∈ C((w))⊗F , i = 1, 2 [68].
An equivalent formulation of the 2D-Toda hierarchy can be given in terms of the Sato

equations
∂
s
(i)
r
S1 = −(L

r
i )−S1, ∂

s
(i)
r
S2 = −(L

r
i )−S2 (2.9)

for the dressing operators

S1 = 1+ p(1)1 3−1
+ · · · , S2 = p

(2)
0 + p

(2)
1 3+ · · · . (2.10)

The Lax operators are expressed in terms of the dressing operators by

L1 = S13S
−1
1 , L2 = S23

−1S−1
2 , (2.11)

and the commutativity of the flows ∂(i)r on Si again follows from (2.7).
Under suitable assumptions, the initial value problem for the 2D-Toda equation can

be solved in terms of a factorization problem [62]. Let µ ∈ A be a matrix depending on
the times s(i)r according to

∂µ

∂s
(1)
r

= 3rµ, (2.12)

∂µ

∂s
(2)
r

= µ3−r , (2.13)

or equivalently
µ = exp

(∑
r≥1

s(1)r 3r
)
µ0 exp

(∑
r≥1

s(2)r 3−r
)
. (2.14)

Assume the factorization
µ = S−1

1 S2 (2.15)

exists and uniquely determines S1 and S2 as in (2.10). Differentiating this expression with
respect to s(i)r and projecting it onto A± we find that S1, S2 satisfy the Sato equations
(2.9), hence the associated Lax operators of (2.11) solve (2.5). In the semi-infinite case
the factorization problem can be directly solved using biorthogonal polynomials, as we
will show in Section 2.4.
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2.2. The rational reductions

Consider now the difference operators

A = 3a + αa−13
a−1
+ · · · + α0 ∈ A+, (2.16)

B = 1+ β13
−1
+ · · · + βb3

−b
∈ 1+A− (2.17)

for a, b > 0. We define two factorization maps Li : A+ ⊕A−→ A by

La1 = AB
−1, Lb2 = BA

−1
; (2.18)

notice that they give Lax operators in the form of (2.6). It is convenient to define also the
dual operators L̂1, L̂2 by

L̂a1 = B
−1A, L̂b2 = A

−1B. (2.19)

Theorem 2.1. For i = 1, 2, r > 0, the equations

∂
s
(i)
r
A = (Lri )+A− A(L̂

r
i )+, (2.20)

∂
s
(i)
r
B = (Lri )+B − B(L̂

r
i )+ (2.21)

define commutative flows on A, B that induce the 2D-Toda Lax equations (2.5).

Proof. We first check that these flows are well-defined. From

A−1L1A = ((A
−1L1A)

a)1/a = (A−1La1A)
1/a
= (B−1A)1/a = L̂1 (2.22)

we obtain
LriA = AL̂

r
i , (2.23)

and similarly
LriB = BL̂

r
i . (2.24)

With the aid of these identities we can rewrite (2.20) and (2.21) as

∂
s
(i)
r
A = −(Lri )−A+ A(L̂

r
i )−, (2.25)

∂
s
(i)
r
B = −(Lri )−B + B(L̂

r
i )−. (2.26)

The r.h.s. in both (2.20) and (2.25) is a difference operator in A+ of order ord+ = a − 1,
hence the flow given by (2.20) is well-defined on operators of the form (2.16). Similarly
(2.21) gives a well-defined flow on operators of the form (2.17). In general, if ∂tA =
WA− AŴ and ∂tB = WB − BŴ for some difference operators W , Ŵ , then

∂tLi = [W,Li], ∂t L̂i = [Ŵ , L̂i]. (2.27)
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Hence from (2.20), (2.21), (2.25) and (2.26) it follows that the operatorsLi satisfy the 2D-
Toda Lax equations (2.5). To prove commutativity, observe that if ∂tiA = W

iA − AŴ i

for some difference operators W i , Ŵ i , i = 1, 2, then

∂t1∂t2A− ∂t2∂t1A = (W
1
t2
−W 2

t1
+ [W 1,W 2

])A− A(Ŵ 1
t2
− Ŵ 2

t1
+ [Ŵ 1, Ŵ 2

]). (2.28)

Applying this formula to the flows defined by (2.20) and (2.21) we see that the right-hand
side vanishes because of (2.7), hence the flows commute. ut

Remark 2.2. Notice that the dual Lax operators also satisfy the Lax equations (2.5)
with L̂i instead of Li ,

∂
s
(1)
r
L̂i = [(L̂

r
1)+, L̂i], ∂

s
(2)
r
L̂i = [−(L̂

r
2)−, L̂i], i = 1, 2. (2.29)

Remark 2.3. The inverses of A and B appearing in (2.18) and (2.19) are defined as the
following upper (resp. lower) diagonal matrices:

A−1
=

∑
k≥0

(1− α−1
0 A)kα−1

0 , B−1
=

∑
k≥0

(1− B)k. (2.30)

The pairs of matrices of the rational form given by (2.18) form a submanifold of the 2D-
Toda phase space of pairs of Lax operators (2.6). The previous theorem shows that, on
such a submanifold, the 2D-Toda flows coincide with the push-forward under the factor-
ization map (2.18) of the vector fields defined by (2.20) and (2.21) on the space of pairs
{(A,B) ∈ A+ ⊕ A−}, where A and B are of the form given by (2.16) and (2.21). This
clearly implies that the submanifold of rational 2D-Toda Lax operators given by (2.18) is
invariant under the 2D-Toda flows.

Definition 2.4. A rational reduction of the 2D-Toda hierarchy (RR2T) of bidegree (a, b)
is the hierarchy of flows induced by the 2D-Toda flows on the invariant subset of matrices
of the form (2.18).

We may more generally consider Lax operators of the form

L1 = (3
mAB−1)1/(a+m), L2 = (BA

−13−m)1/(b+m). (2.31)

The same analysis of Theorem 2.1 carries through to this case as well. Notice that in this
case the flows in (2.25) should be defined in terms of the operator Â := 3mA, rather
than A.

Definition 2.5. Let (L1, L2) be as in (2.31). The associated reduction of the 2D-Toda
lattice hierarchy will be called the m-generalized RR2T of bidegree (a, b).

Remark 2.6. We can partially lift the condition that a, b > 0 by considering the case
when a = 0 (resp. b = 0) as the degenerate situation in which only one half of the flows
given by ∂

s
(2)
r

(resp. ∂
s
(1)
r

) is defined by (2.5) and (2.18). All of the above then carries
through to this setting.
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As it turns out, Theorem 2.1 gives rise to a variety of new reductions of the 2D-Toda hier-
archy, incorporating at the same time several known infinite-dimensional lattice integrable
systems.

Example 2.7 (The Ablowitz–Ladik hierarchy). The Ablowitz–Ladik system [1] is a dis-
cretization of the complexified non-linear Schrödinger equation given by the second order
system

iẋn = − 1
2 (1− xnyn)(xn+1 + xn−1)+ xn, (2.32)

iẏn = 1
2 (1− xnyn)(yn+1 + yn−1)− yn, (2.33)

for n ∈ Z. This system is Hamiltonian, and it possesses an infinite number of local con-
served currents in involution [1]. As shown in [9], after work of Adler–van Moerbeke [3]
and Cafasso [15] in the semi-infinite case, its integrability is bequeathed from a rational
embedding into the 2D-Toda hierarchy. Explicitly, introduce lattice variables α, β ∈ F
through

αn = −
yn

yn+1
, (2.34)

βn =
(1− xnyn)yn−1

yn
. (2.35)

Then [9] the Ablowitz–Ladik hierarchy is the pull-back under (2.34) and (2.35) of the
rational reduction of the 2D-Toda flows of bidegree (a, b) = (1, 1).

Example 2.8 (The q-deformed Gelfand–Dickey hierarchy). Denote by Dq the scaling
(q-difference) operator on the real line, Dqf (x) = f (xq), and write Q± for the projec-
tion of a q-difference operator Q onto its q-differential/strictly q-pseudodifferential part.
Lax equations in the form

∂tmL = [L, (L
m)+] (2.36)

for the q-pseudodifference operator

L , Dq +
∑
j≥0

uj (x)D
−j
q (2.37)

were proposed by E. Frenkel [35] as a q-analogue of the KP hierarchy. In particular, the
natural q-analogue of the Gelfand–Dickey (n-KdV) hierarchy,

Ln+1
= Dn+1

q +

n∑
j≥1

τj (x)D
j
q , (2.38)

give rise to a completely integrable bi-Hamiltonian system. By rewriting the q-difference
Lax equations (2.36) and (2.38) as ordinary Lax equations for a discrete operator L [2],
the system (2.36) can be recast in the form of a reduction of the 2D-Toda flows under the
constraint

(Ln+1)− = 0. (2.39)

This corresponds to the RR2T of bidigree (a, b) = (n+ 1, 0).



Rational reductions of the 2D-Toda hierarchy 843

Example 2.9 (The bigraded Toda hierarchy). The bigraded Toda lattice hierarchy
of [17] also enjoys a representation as a (generalized) RR2T. By (2.18) and (2.31), the
Lax operator for (N,M) bigraded Toda

L = 3N + uN−13
N−1
+ · · · + u−M3

−M (2.40)

indeed corresponds to the Lax operator LN+M1 for the−M-generalized RR2T of bidegree
(N +M, 0). Notice that in this formulation we can only recover as reductions of the 2D-
Toda flows the standard flows and not the extended or logarithmic ones.

2.3. Rational reductions and the factorization problem

It is illuminating to consider the form of the constraint leading to the RR2T at the level
of dressing operators. By Remark 2.2, the dual Lax operators L̂i satisfy the 2D-Toda Lax
equations, (2.29). By introducing the corresponding 2D-Toda dressing operators Ŝi as in
(2.9) and (2.10), which satisfy the Sato equations

∂
s
(i)
r
Ŝ1 = −(L̂

r
i )−Ŝ1, ∂

s
(i)
r
Ŝ2 = −(L̂

r
i )−Ŝ2, (2.41)

the RR2T of bidegree (a, b) can be translated into the pair of constraints

S13
a Ŝ−1

1 = S2Ŝ
−1
2 , A, (2.42a)

S1Ŝ
−1
1 = S23

−bŜ−1
2 , B. (2.42b)

Proposition 2.10. The constraints given by (2.42) are preserved by the Sato equations
for Si , Ŝi , hence define a reduction of 2D-Toda at the level of dressing operators that
corresponds to the rational reduction of bidegree (a, b).

Proof. Notice that in this case the operators A, B arise naturally as a combination of the
dressing operators of two copies of the 2D-Toda hierarchy. Clearly (2.42) implies that the
operators A, B are of the form (2.16), (2.17). The corresponding Lax operators Li , L̂i ,
defined through (2.11), factorize as in (2.18), (2.19), i.e.

La1 = S13
aS−1

1 = S13
a Ŝ−1

1 · Ŝ1S
−1
1 = AB

−1, etc. (2.43)

and the Sato equations induce the flows (2.20), (2.21). It follows that the constraints (2.42)
are preserved by the Sato equations. ut

As the simplest non-trivial rational reduction of the 2D-Toda hierarchy gives rise to the
Ablowitz–Ladik hierarchy [9], which is in turn related to a factorization problem for a
Toeplitz moment matrix, it is natural to ask whether the generic rational reduction may
be interpreted in the same way.

Definition 2.11. We say that µ ∈ A is a block Toeplitz operator of bidegree (a, b) if

3aµ3−b = µ. (2.44)
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Equivalently, its matrix entries satisfy µi+a,j+b = µij , which reduces to the usual
Toeplitz condition when a = b = 1. Clearly the property of being block Toeplitz of
bidegree (a, b) is preserved by the time evolution as in (2.14).

Let now (µij )i,j∈Z be a block Toeplitz matrix of bidegree (a, b) depending on the
times s(i)r as in (2.14) and such that the factorization problems

µ = S−1
1 S2, (2.45a)

µ3−b = Ŝ−1
1 Ŝ2 (2.45b)

admit solutions for Si , Ŝi of the form (2.10). We have the following

Proposition 2.12. The dressing matrices Si , Ŝi satisfy the Sato equations with the con-
straints in (2.42). The corresponding Lax operators (2.11) give a solution of the RR2T of
bidegree (a, b).

Proof. By substituting (2.45a) into (2.45b) we get

S−1
1 S23

−b
= Ŝ−1

1 Ŝ2. (2.46)

Left-multiplication by S1 and right-multiplication by Ŝ−1
2 give (2.42b). By the block

Toeplitz property, (2.44), we can rewrite (2.45b) as

3−aµ = Ŝ−1
1 Ŝ2. (2.47)

Performing the same substitution as before and rearranging terms we obtain (2.42a). ut

2.4. Semi-infinite block Toeplitz matrices and biorthogonal polynomials on the unit
circle

All statements of the previous sections can be transferred almost verbatim to the so-called
semi-infinite case, given by the algebra A

∞

2 = {(aij ∈ C)i,j∈Z≥0} of complex semi-
infinite matrices. In this case 3 and 3−1 denote the semi-infinite matrices

(3)ij := δi+1,j , (3−1)ij := (3
T )ij = δi,j+1. (2.48)

Here, with an abuse of notation, we denote by 3−1 the transpose of 3, which is in fact
only a right inverse of 3. We have

3−13 = 1− E11 (2.49)

where (E11)ij = δi,0δj,0.

2.4.1. The factorization problem for 2D-Toda and biorthogonal polynomials. In the
semi-infinite case and for generic initial data for the 2D-Toda flows, a sufficient con-
dition for the existence of the factorization (2.15) is given by Gauss’ elimination: if all
the leading principal minors of µ ∈ A

∞

2 are non-zero, this leads to the LU decomposi-
tion of (2.15). The factorization problem can then be interpreted as the construction of
biorthogonal polynomials with respect to the bilinear form 〈 , 〉µ associated to µ. More
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precisely, let µ ∈ A
∞

2 and let 〈 , 〉µ be the C-bilinear form on C[z] defined by

〈zi, zj 〉µ = µij . (2.50)

Let p(i)j (z), i = 1, 2, j ≥ 0, be monic polynomials in C[z] of degree j . The factorization

problem for µ is equivalent to the requirement that p(i)j (z) form a biorthogonal basis
in C[z] with respect to 〈 , 〉µ, i.e.

〈p
(1)
i , p

(2)
j 〉µ = δijhi . (2.51)

Indeed, the coefficients of the biorthogonal polynomials are related to the matrices S1, S2
by

p
(1)
i (z) =

i∑
k=0

(S1)ikz
k, (2.52a)

p
(2)
i (z) = hi

i∑
k=0

(S−1
2 )kiz

k. (2.52b)

The biorthogonality property (2.51) turns into

S1µS
−1
2 h = h, (2.53)

i.e. the factorization (2.15) of the moment matrix. Denote now by p(i) (resp. p̂(i)) the
semi-infinite vector having p(i)j (resp. p̂(i)j ) as its j th entry. By (2.11) and (2.15), the Lax
operators Li act on biorthogonal polynomials as

L1p
(1)(z) = zp(1)(z), (2.54)

hLT2 h
−1p(2)(z) = zp(2)(z). (2.55)

2.4.2. Semi-infinite block Toeplitz matrices. Let us now turn to the study of the (a, b)
RR2T in the semi-infinite case, or equivalently to the factorization problem for semi-
infinite block Toeplitz matrices. We start by defining two sets of biorthogonal polynomials
associated with the C-bilinear forms

〈zi, zj 〉µ = µij , (2.56)

〈zi, zj 〉µ̂ = µ̂ij = µi,j+b, (2.57)

where µ̂ = µ3−b. Both µ and µ̂ satisfy the Toeplitz property, which translates, at the
level of bilinear forms, into

〈zaf (z), zbg(b)〉• = 〈f (z), g(z)〉• (2.58)

for any f, g ∈ C[z]. The monic polynomials p(i)j and p̂(i)j satisfy the biorthogonality
conditions

〈p
(1)
i , p

(2)
j 〉µ = δijhi, (2.59a)

〈p̂
(1)
i , p̂

(2)
j 〉µ̂ = δij ĥi . (2.59b)
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The corresponding dressing matrices Si , Ŝi are defined through (2.52); such matrices
solve the factorization problems (2.45a) and (2.45b). If we assume that the moment matrix
µ depends on the times s(i)r as in (2.14), then, according to Proposition 2.12, (Si, Ŝi) give
a solution of the (a, b)-graded RR2T.

Proposition 2.13. The biorthogonal polynomials p(i)j and the dual biorthogonal polyno-
mials p̂(i)j are related by the identities

Ap̂(1) = zap(1), (2.60a)

ĥAT h−1p(2) = p̂(2), (2.60b)

Bp̂(1) = p(1), (2.60c)

ĥBT h−1p(2) = zbp̂(2). (2.60d)

Proof. Let us prove the first relation. Applying A to (2.52a) we get

(Ap̂(1))i =
∑
k≥0

(AŜ1)ikz
k, (2.61)

where we have used the fact that the sum in (2.52a) can be extended to ∞ due to the
triangular structure of S1. The first part of (2.42a) gives

AŜ1 = S13
a, (2.62)

which substituted above gives (2.60a). The remaining relations are proved in a similar
way. ut

As a straightforward consequence, we obtain recursion relations for the biorthogonal
polynomials p(2)j and p̂(1)j .

Corollary 2.14. The biorthogonal polynomials p(2)j , p̂(1)j satisfy the relations

Ap̂(1) = zaBp̂(1), (2.63a)

BT h−1p(2) = zbAT h−1p(2). (2.63b)

Remark 2.15. For a = b = 1 we get from (2.63a)

p̂
(1)
i+1 + α0(i)p̂

(1)
i = z(p̂

(1)
i + β1(i)p̂

(1)
i−1), (2.64)

and from (2.63b)

p
(2)
i h−1

i + p
(2)
i+1h

−1
i+1β1(i + 1) = z(p(2)i−1h

−1
i−1 + p

(2)
i h−1

i α0(i)) (2.65)

for i ≥ 0, and assuming p(i)j = p̂
(i)
j = 0 when j < 0. Notice that in the general (a, b)

case the recursions in (2.63) involve a + b + 2 terms.
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Remark 2.16. For the Ablowitz–Ladik lattice, (a, b) = (1, 1), the moment matrix can
be seen to arise from the scalar product on functions on the unit circle,

〈f, g〉µ =
1

2π i

∫
S1
f (z)g(z−1)e

∑
i>0(s

(1)
i zi−s

(2)
i z−1) dz

z
. (2.66)

Correspondingly, the associated 2D-Toda τ -function is the partition of the unitary matrix
model,

ZU(N) =

n−1∏
i=0

hn, (2.67)

and the recursion relations of (2.64) and (2.65) imply the three-term recursion relations
of [43, 48] for the unitary ensemble. The general (a, b) case corresponds to complex
integrals of the form

〈f, g〉µ =
1

2π i

∫
S1
f (zb)g(z−a)e

∑
i>0(s

(1)
i zi−s

(2)
i z−1) dz

z
. (2.68)

Notice that the bilinear form on C[z] thus defined is not symmetric anymore as soon as
a 6= b, and the unitary matrix model interpretation is correspondingly less obvious.

2.5. Hamiltonian structure

Since the 2D-Toda hierarchy admits a triplet of compatible Poisson structures [16], a nat-
ural question arises whether the RR2T flows admit a Hamiltonian formulation. Unlike the
case of the extended bigraded Toda hierarchy, the generic RR2T is not given by an affine
submanifold in field space, and correspondingly the Dirac reduction of the parent Pois-
son structures is not straightforward. Remarkably, however, at least one Poisson structure
can always be reduced to the locus defined by the factorization of the Lax operator as in
(2.18). The key to this is a degeneration property of the corresponding Poisson tensor, as
we now illustrate.

It is well-known that the 2D-Toda hierarchy can be formulated in terms of two Lax
operators of the form

L̄1 = 3
a
+

∑
j≥−a+1

ū
(1)
j 3−j , L̄2 =

∑
j≥−b

ū
(2)
j 3j , (2.69)

for two fixed integers a, b ≥ 1. They are related to the Lax operators defined in (2.6) by
L̄1 = L

a
1 and L̄2 = L

b
2. In the rest of this subsection we will always use the formulation

in terms of the Lax operators (2.69), and to keep the notation simple, we will drop the
bars and denote them by L1 and L2.

Denote by (L̇1, L̇2) an element in the tangent space TA2DT
={(L̇1=

∑
j≤a−1 u̇

(1)
j 3j ,

L̇2 =
∑
j≥−b u̇

(2)
j 3j )} of the 2D-Toda phase space and introduce the bilinear pairing

〈(L̇1, L̇2), (X, Y )〉 = Tr(L̇1X + L̇2Y ) (2.70)
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to induce differential forms in T ∗A2DT from operators (X, Y ) of the formX=
∑
k>n xk3

k

and Y =
∑
k<m yk3

k for some n,m ∈ Z. Similarly, we denote by (Ȧ, Ḃ) an element of
the tangent space TARR

= {(Ȧ = α̇a−13
a−1
+ · · · + α̇0, Ḃ = β̇13

−1
+ · · · + β̇b3

−b)}

to the phase space ARR of rational reductions. The same bilinear pairing described above
produces a differential form on ARR starting this time from an operator (X, Y ) of the
more general form X =

∑
k∈Z xk3

k and Y =
∑
k∈Z yk3

k .
It was shown in [16] that, for a = b = 1, A2DT can be endowed with three com-

patible Poisson structures with respect to which the 2D-Toda flows are Hamiltonian. The
construction of [16] can be easily extended to the general a, b ≥ 1 case. In particular,
what was referred to in [16] as the “second” Poisson tensor reads as follows. When ap-
plied to a differential form corresponding via the pairing to the operator (X1, X2), it gives
the vector

P(〈·, (X1, X2)〉) =
( 1

2 [L1, (L1X1 +X1L1)− − (L2X2 +X2L2)−]

+
1
2 [L1, (3

a
+ 1)(3a − 1)−1 Res([L1, X1] + [L2, X2])]

−
1
2L1([L1, X1] + [L2, X2])≤0 −

1
2 ([L1, X1] + [L2, X2])≤0L1,

1
2 [L2, (L2X2 +X2L2)+ − (L1X1 +X1L1)+]

+
1
2 [L2, (3

a
+ 1)(3a − 1)−1 Res([L1, X1] + [L2, X2])]

−
1
2L2([L1, X1] + [L2, X2])>0 −

1
2 ([L1, X1] + [L2, X2])>0L2

)
. (2.71)

This Poisson structure degenerates on the submanifold of A2DT given by the image
of ARR, as shown by the following lemma, hence it yields, simply by restriction, a well-
defined Poisson structure on that submanifold.

Lemma 2.17. For L1 = AB
−1, L2 = BA

−1, we have

P(〈·, (X1, X2)〉) =
(
(Ȧ− AB−1Ḃ)B−1, (Ḃ − BA−1Ȧ)A−1)

where (Ȧ, Ḃ) ∈ TARR is given by

Ȧ =
(
(X2BA

−1
− AB−1X1)− + (3

−a
− 1)−1ζ

)
A

− A
(
(A−1X2B − B

−1X1A)− + (1−3a)−1ζ
)
,

Ḃ = ((BA−1X2 −X1AB
−1)− + (1−3a)−1ζ )B

− B
(
(A−1X2B − B

−1X1A)− + (1−3a)−1ζ
)
,

and
ζ = Res([L1, X1] + [L2, X2]).

In other words, the vector given by the image by the Poisson tensor of the differential
form 〈·, (X1, X2)〉 is the push-forward of a vector in TARR, i.e., it is tangent to ARR.

For any functional f = f (L1, L2) on A2DT we denote by
( δf
δL1
,
δf
δL2

)
a pair of opera-

tors such that we can express the derivative of f along (L̇1, L̇2) as

ḟ =

〈(
δf

δL1
,
δf

δL2

)
, (L̇1, L̇2)

〉
. (2.72)
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In other words, the vector
( δf
δL1
,
δf
δL2

)
is a preimage of the differential df with respect to

the bilinear pairing above. The Poisson bracket of two functionals f , g on A2DT is

{f, g} =

〈(
δf

δL1
,
δf

δL2

)
, P

(〈
·,

(
δg

δL1
,
δg

δL2

)〉)〉
. (2.73)

From the lemma and skew-symmetry, it follows that {f, g}, when restricted on ARR, does
not depend on the choice of the functional f (resp. g) on A2DT as long as it restricts to
the same f|ARR (resp. g|ARR ). In other words, ARR is a Poisson submanifold of A2DT.

The explicit form of RR2T Poisson brackets for the coefficients α0, . . . , αa−1,

β1, . . . , βb of A and B can be computed starting from the 2D-Toda (second) Poisson
bracket for the first a and b coefficients u(1)0 , . . . , u

(1)
a−1, u

(2)
−1, . . . , u

(2)
b of L1 and L2 re-

spectively3 and applying the change of coordinates induced by the equationsLa1 = AB
−1,

Lb2 = BA
−1.

In case (a, b) = (1, 1), where A = 3+α and B = 1+ β3−1, one readily computes

{α(n), α(m)} = 0,
{logα(n), logβ(m)} = δ(n−m+ 1)− δ(n−m),
{logβ(n), logβ(m)} = δ(n−m+ 1)− δ(n−m− 1),

(2.74)

which coincides with the Poisson structure introduced by Adler–van Moerbeke [3] for the
Ablowitz–Ladik hierarchy.

Since the 2D-Toda flows are Hamiltonian with respect to (2.71), with Hamiltonian
functions given by

H
(j)
i = −

1
i

TrLij , j = 1, 2, (2.75)

the Ablowitz–Ladik flows are Hamiltonian with respect to (2.74), with the same Hamil-
tonian functions.

2.6. Long-wave limit and semi-classical Lax formalism

Starting from the 2D-Toda lattice hierarchy of Section 2.1, a continuous integrable sys-
tem of 2 + 1 evolutionary PDEs can be constructed by interpolation. For a fixed real
parameter ε > 0—the “lattice spacing”—introduce dependent variables U (i)j (x) such

that U (i)j (εn) = (u
(i)
j )n, and accordingly define a shift operator 3ε = eε∂x by one unit

of lattice spacing. Replacing the unit shift 31 by the ε-shift eε∂x and rescaling the time
variables by t (i)r , εs

(i)
r gives a system of evolutionary partial differential equations in

the time variables t (i)r in the form

∂
t
(p)
r
U
(i)
j (x) =

∑
g≥0

ε2gP [g],p,ri,j (U,Ux, . . . , U
(2g))

=

∑
k,l

P [0],p,rk,l,i,j (U)∂xU
(l)
k +O(ε

2), (2.76)

3 See [16] for explicit formulas.



850 Andrea Brini et al.

where P [g],p,ri,j (U,Ux, . . . , U
(2g)) is an element of the vector space Ig of differential

polynomials in U(x) homogeneous of degree 2g + 1 with respect to the independent
variable x. Following [19], we will call this the interpolated 2D-Toda lattice.

We will be particularly interested in the quasi-linear limit of the interpolated 2D-Toda
lattice, where the dispersion parameter ε is set to zero. As noticed in [66], the dispersion-
less limit ε → 0 of (2.76) can be formulated as the quasi-classical (Ehrenfest) limit of the
Lax equations (2.5), as follows. Write λi(z) , σ3(Li) ∈ C((z)) for the total symbol in
the variable z ∈ C of the difference operators Li in (2.6),

λ1(z) = z+
∑
j≥0

U
(1)
j z−j , λ2(z) =

∑
j≥−1

U
(2)
j zj . (2.77)

Furthermore, define the Orlov functions

B(1)n (z) , [(λ1)
n
]+, B(2)n (z) , [(λ2)

n
]−, (2.78)

where [f ]± denotes the projection to the analytic/purely principal part of f ∈ C((z)),
and for f, g ∈ C((x, z)) define the Poisson bracket

{f, g}Lax = z

(
∂f

∂x

∂g

∂z
−
∂g

∂x

∂f

∂z

)
. (2.79)

Then the semi-classical Lax equations

∂λi

∂t
(j)
r

, {B(j)r , λi}Lax, (2.80)

where the time-derivatives are understood to be taken at fixed z, induce the dispersionless
limit of the interpolated 2D-Toda flows of (2.76) on the coefficients U (l)k of λl ,

∂
t
(p)
r
U
(i)
j (x) =

∑
k,l

P [0],p,rk,l,i,j (U)∂xU
(l)
k . (2.81)

Consistency of the dispersionless Lax equations (2.80) requires the existence of a poten-
tial function F of the long-wave time variables t (j)r such that

B(i)n (z(λj )) = δijλ
sjn

j + δj2
∂2F

∂t
(1)
0 ∂t

(i)
n

−

∑
m>0

∂2F
∂t
(i)
n ∂t

(j)
m

1
mλ

sim
j

, (2.82)

where si = (−1)i+1. By the general dToda theory [66], the potential F yields the eikonal
limit of the logarithm of the long-wave limit of the 2D-Toda τ -function,

F = log τdToda. (2.83)

2.7. Rational reductions and Frobenius manifolds

The integration of the consistency conditions for F has a natural formulation in the lan-
guage of Frobenius manifolds [18]. An even more poignant picture emerges in the case
of RR2T: by [27, 60] the dispersionless limit (henceforth denoted as dRR2T) coincides
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with the Principal Hierarchy of the Frobenius manifold defined on a genus zero double
Hurwitz space, as we now show.

2.7.1. Flat structures and the Principal Hierarchy. We start by giving the following

Definition 2.18. Let M be a complex manifold, dimCM = n. A holomorphic Frobenius
structure M = (M, η, ·) on M is the datum of a holomorphic symmetric (0, 2)-tensor η,
which is non-degenerate and with flat Levi-Civita connection ∇, and a commutative, as-
sociative fiberwise product law X · Y with unit on vector fields X, Y ∈ X (M), which is
tensorial and satisfies

Compatibility:

η(X · Y,Z) = η(X, Y · Z) for all vector fields X, Y,Z; (2.84)

Flatness: the pencil of affine connections

∇
(ζ )
X Y , ∇XY + ζX · Y, ζ ∈ C, (2.85)

is identically flat for all ζ ∈ C.

Following the terminology introduced in [60], extra flat structures on M will be charac-
terized according to the following

Definition 2.19. Let M = (M, η, ·) be a holomorphic Frobenius manifold structure
on M , and let e ∈ X (M) be the unit of the ·-product. We will say that M is

• semi-simple if the product structure ·|p on TpM has no nilpotent elements for a generic
p ∈ M;
• of dual type if there exists d ∈ Z such that for all f ∈ OM ,

∇df = 0 ⇒
(
∂e +

d − 1
2

)
f = cf (2.86)

for some constant cf ∈ C;
• conformal if ∇e = 0 and there exists E ∈ X (M) such that ∇E ∈ 0(End(TM)) is

diagonalizable and horizontal with respect to ∇, and the pencil of affine connections
(2.85) extends to a flat meromorphic connection ∇(ζ ) on M × P1

ζ via

∇
(ζ ) ∂

∂ζ
= 0, (2.87)

∇
(ζ )
∂/∂ζX =

∂

∂ζ
X + E ·X −

1
ζ
µ̂X, (2.88)

where µ̂ is the traceless part of −∇E;
• tri-Hamiltonian if it is conformal, n is even and µ̂ has only two eigenvalues±d/2 with

multiplicity n/2, where d = 2(1− Tr(∇E)).
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A Frobenius manifold structure M on M embodies the existence of a Hamiltonian hier-
archy of quasi-linear commuting flows on its loop space [27]. Let t = {τα(ζ ) ∈ OM}

n
α=1

be the datum of a marked system of flat coordinates for ∇(ζ ) depending holomorphically
on ζ around ζ = 0; this is determined up to a C[[ζ ]]-valued affine transformation in gen-
eral, a freedom which reduces to a complex affine transformation when M is conformal
by virtue of (2.88). Write hα,p , ηαβ([ζ

p
]τα(ζ )) ∈ OM for the pth Taylor coefficient of

ηα,βτ
α
(ζ ) at ζ = 0. In terms of the flat metric η, we define [27] a hydrodynamic Poisson

structure { , }η on the loop space LM = Maps(S1,M) as

{τα(0)(X), τ
β

(0)(Y )}η = η
αβδ′(X − Y ), (2.89)

where X, Y ∈ S1 are coordinates on the base of the loop space, as well as an infinite set
of quasi-linear Hamiltonian flows via

∂τβ

∂tα,p
, {τβ , Hα,p}η = ∂X∂

βhα,p. (2.90)

These flows generate a commuting family of Hamiltonian conservation laws [27], which
is complete as long as M is semi-simple [67].

Definition 2.20. The hierarchy of hydrodynamic type equations (2.90) will be called the
Principal Hierarchy associated to (M, t).

2.7.2. Frobenius dual-type structures for the RR2T. Let a, b ∈ Z2
+ and m ∈ Z. In this

section we will construct a Frobenius dual-type structure [60] on the space of symbols of
the Lax operator La+m1 = L−b−m2 of the generalized RR2T of Definition 2.5.

Definition 2.21. Let v, q−a+1, . . . , qb−1 ∈ C, a, b ∈ Z+ and ν ∈ C∗. We define Ha,b,ν

to be the space of multivalued functions on P1 of the form

λ(z) = evzν+b
∏a−1
k=0(z− eq−k )∏b−1
l=0 (z− e−ql )

. (2.91)

Remark 2.22. Write

zk =


0 for k = 1,
eq2−k for k = 2, . . . , a + 1,
e−qk+2−a for k = a + 2, . . . , a + b + 1,
∞ for k = a + b + 2.

(2.92)

Then the meromorphic function z−νλ(z) has, for generic values of the parameters, a zero
of order b at z1, simple zeroes at zk+2, k = 0, . . . , a−1, a pole of order a at za+b+2 ,∞,
and simple poles at za+2+k , e−qk , k = 0, . . . , b − 1. When ν = m ∈ Z0, this func-
tion is the total symbol of the (a + m)th power of the Lax operator L1 (or equivalently
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the (b + m)th inverse power of L2) of the m-generalized RR2T of bidegree (a, b), up
to a trivial rescaling of the argument z. The space Ha,b,m is then a genus zero double
Hurwitz space, a moduli space of rational curves with a marked meromorphic function
λ : P1

→ P1 having specified ramification profile κ ∈ Za+b+2 at zero and infinity. In our
case, the latter reads

κ = (b +m, 1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
b

,−a −m). (2.93)

For ν = m ∈ Z, we define on the (a + b)-dimensional complex manifold Ha,b,ν a triplet
(η(1), η(2), η(3)), where η(i) ∈ 0(Sym2 T ∗Ha,b,m), det η(i) 6= 0, by the Landau–Ginzburg
formulas

η(1)(X, Y ) =

a+b+2∑
i=1

Reszi
X(λ)Y (λ)

dλ

(
dz
z

)2

, (2.94)

η(2)(X, Y ) =

a+b+2∑
i=1

Reszi
X(log λ)Y (log λ)

d log λ

(
dz
z

)2

, (2.95)

η(3)(X, Y ) =

a+b+2∑
i=1

Reszi
X(λ−1)Y (λ−1)

dλ−1

(
dz
z

)2

, (2.96)

for X, Y ∈ X (Ha,b,ν). We further equip TλHa,b,m with a triplet (•, ?, ∗) of commutative,
associative products defined by

η(1)(X • Y,Z) =

a+b+2∑
i=1

Reszi
X(λ)Y (λ)Z(λ)

dλ

(
dz
z

)2

, (2.97)

η(2)(X ? Y,Z) =

a+b+2∑
i=1

Reszi
X(log λ)Y (log λ)Z(log λ)

d log λ

(
dz
z

)2

, (2.98)

η(3)(X ∗ Y,Z) =

a+b+2∑
i=1

Reszi
X(λ−1)Y (λ−1)Z(λ−1)

dλ−1

(
dz
z

)2

, (2.99)

depending holomorphically on the base-point λ ∈ Ha,b,m. When ν /∈ Z, equations (2.94),
(2.96), (2.97) and (2.99) are ill-defined, but the definitions (2.95) and (2.98) of the met-
ric and product (η(2), ?) carry through unscathed. The main result of this section is the
following

Theorem 2.23. Let a, b ∈ Z+, ν ∈ C. Then

(i) Equations (2.95) and (2.98) define on Ha,b,ν a semi-simple Frobenius structure
M(2)

a,b,ν = (Ha,b,ν, η
(2), ?) of dual type of charge one.

(ii) Let ν = m ∈ Z and suppose that both b + m,−a − m are either equal to one or
negative. Then (2.94) and (2.97) define a conformal Frobenius structure M(1)

a,b,m =
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(Ha,b,m, η
(1), •) of charge one on Ha,b,m. The unit of this structure is flat iff m 6=

1− b and m 6= −a − 1, and we have

M(2)
a,b,m = D(M(1)

a,b,m), (2.100)

where D is Dubrovin’s duality morphism of Frobenius structures [29].
(iii) Let b = a and ν = 1 − a. Then (2.94)–(2.99) define a tri-Hamiltonian Frobenius

structure on Ha,a,1−a .

Proof. Theorem 2.23 is essentially a verbatim translation of [60, Theorem 2] to the set-
ting of RR2T. We sketch the main points of the proof below. For (i), flatness of the residue
pairing η(2) follows from checking, through a direct computation of (2.95), that the co-
ordinates v, q−a+1, . . . , qb−1 form in fact a flat coordinate frame for η(2). Further, by
the explicit form of (2.95) and (2.98), the ?-product structure is clearly compatible with
the metric η(2) in the sense that the two form a Frobenius algebra on the tangent spaces
of Ha,b,ν ; it is immediate to check that the algebra is unital, the identity being the flat
vector field e = ∂v . Moreover the a + b critical values of log λ,

ui , log λ(yi), yi ∈ P1 with λ′(yi) = 0, i = 1, . . . , a + b, (2.101)

are a set of local coordinates on Ha,b,ν \ 1a,b,ν , where the discriminant 1a,b,ν is
{λ ∈ Ha,b,ν | ui 6= uj ∀i 6= j}. In these coordinates, the product and the metric take
the form

∂ui ? ∂uj = δij∂ui ,

η(2)(∂ui , ∂uj ) = η
(2)
ii (u)δij (2.102)

for functions η(2)ii (u) ∈ O(Ha,b,ν \1a,b,ν), possibly singular on1a,b,ν . Moreover, thanks
to the flatness of η(2) and its compatibility with the product, we can write

η
(2)
ii (u) = η

(2)(∂ui , ∂ui ) = η
(2)(e, ∂ui ),

and by the flatness of e we get η(2)ii = ∂ui t1(u), where dt1(u) = η(2)(e, ·). This means that
η(2) is a Egoroff metric, which implies (see for instance [44]) that ∇Xη(2)(Y ? Z,K) is
symmetric in all four vector fields X, Y,Z,K .

The above proves that (2.95) and (2.98) endow Ha,b,ν with a semi-simple Frobenius
dual-type structure, which has charge one by the flatness of the unit vector field.

As for (ii), notice that if ν = m ∈ Z, then λ is single-valued and Ha,b,ν is a genus zero
double Hurwitz space. Under the further condition that the zeroes of λ be simple, Ha,b,m

becomes a Hurwitz space in a standard sense, with the only proviso that the divisor where
λ has multiple zeroes is removed. Then under the conditions of (ii) the existence of a
conformal Frobenius manifold structure is a direct corollary of [27, Theorem 5.1] for
m 6= 1−a, 1−b; whenm = 1−a or 1−b, the proof of the above theorem goes through
almost unscathed except for the covariant constancy of the unit vector field, which fails
to be satisfied in these cases. Furthermore, (2.100) follows from a standard argument
(see [30, Proposition 5.1]), which together with (i) above proves semi-simplicity and the
charge one condition.

Finally, (iii) is an immediate consequence of (ii) together with [60, Theorem 2]. ut
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Under the conditions of (ii), the statement of Theorem 2.23 implies that the metrics η(1)

and η(2) form a flat pencil, which is exact if and only if m 6= 1 − a, 1 − b: η(2) is
the (inverse) of the intersection form on M(1)

a,b,m. Moreover, when λ has only simple
zeroes and poles, this is enhanced to a triple of compatible flat metrics η(1), η(2), η(3).
And finally, if the unit of the first structure is flat, the resulting Frobenius structure is
tri-Hamiltonian.

By comparing the formulas for the flat coordinates for η(2) and η(1) one easily sees
when the pencil (η(2))−1

− ε(η(1))−1 is resonant, namely, when η(1) and η(2) have com-
mon flat coordinates. This happens if and only if λ has more than one pole; there is one
common flat coordinate for each pole after the first.

As an immediate consequence of Theorem 2.23, the semi-classical limit of the RR2T
with equations (2.80) and (2.81) has a neat description in terms of the Principal Hierarchy
of M(i)

a,b,ν , i = 1, 2.

Corollary 2.24. (1) For any (a, b) ∈ Z2
+, m ∈ Z and t ∈ Affa+b(C[[z]]), the Principal

Hierarchy of (M(2)
a,b,m, t) is a complete system of commuting Hamiltonian conserva-

tion laws of the m-generalized dRR2T of bidegree (a, b).
(2) Let −a −m < 0, b +m < 0 as in Theorem 2.23(ii), and fix t ∈ Affa+b(C) such that

hα,p = −Resz=∞
λ

α
m+a
+p(

α
m+a

)
1+p

dz
z
, α = 1, . . . , m+ a, (2.103)

hα+m+a,p = −Resz=0
λ

α
−b−m

+p(
α

−b−m

)
1+p

dz
z
, α = 1, . . . ,−m− b − 1, (2.104)

where (x)n , 0(x + n)/0(x). Then the Hamiltonian flows of the Principal Hierar-
chy (2.90) of M(1)

a,b,m associated to hα,p, α = 1, . . . , a − b − 1, coincide with the
semi-classical Lax flows (2.80) for the m-generalized dRR2T of bidegree (a, b) upon
identifying

tα,p 7→

(
α

m+a

)
1+p

α + p(m+ a)
t
(1)
α+p(m+a), α = 1, . . . , m+ a, (2.105)

tα+m+a,p 7→

(
α

−b−m

)
1+p

α − p(m+ b)
t
(2)
α−p(b+m), α = 1, . . . ,−m− b − 1. (2.106)

Proof. Point (2) is an immediate application of Proposition 6.3 and Theorem 6.5 in [27].
Notice in particular that Proposition 6.3 warrants the existence of a flat coordinate sys-
tem t for the deformed connection on Ha,b,m×C ((2.87) and (2.88)) which is compatible
with (2.103) and (2.104); the scaling factors in (2.105) and (2.106) are required for con-
sistency with the definition of the semiclassical Lax flows.4

To see why (1) holds, consider the Taylor expansion in the variable ζ of the deformed
flatness equations of M(1)

a,b,m in the tangent directions to Ha,b,m (see (2.85)). Then, from

4 See e.g. [20, Section 1].
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(2.94), (2.95), (2.97) and (2.98), writing the pth Taylor coefficient in flat coordinates for
the intersection form η(2) yields the deformed flatness equations of the dual Frobenius
structure M(2)

a,b,m with ζ = p [9, 29]. The first statement then follows immediately. ut

Remark 2.25. The dispersionless limit of the Poisson structure for RR2T obtained as
a reduction of the second Poisson bracket of the 2D-Toda hierarchy [16] corresponds
to the Poisson structure associated to the metric η(2) via (2.89), as one can promptly
check by computing the Poisson brackets for the coefficients of A and B, as described in
Section 2.5, and taking their quasi-classical limit.

Remark 2.26. Under the conditions of Corollary 2.24(2), it should be stressed that the
dToda Hamiltonian flows, (2.80), are generated by a strict subset of the flat coordinates of
the deformed connection, (2.87), (2.88). The remaining flows, which by semi-simplicity
of M(1)

a,b,m make the Principal Hierarchy a complete family of conservation laws [67], are
a genuine extension of the dRR2T, analogous to the extension of the ordinary 1D-Toda
hierarchy [19]. On the other hand, as soon as the conditions of (2) are not matched, it can
readily be checked in examples that the metric in (2.94) is typically curved if either of
b + m or −a − m is greater than one. The conditions on the range of m leave only two
possibilities form ≥ 0: b = 0, m = 1 or b = 1, m = 0. The casem < 0 displays instead
a wealth of flat structures: as long as −a − 1 ≤ m ≤ 1− b and m 6= −a,−b, the metric
η(1) in (2.94) is flat. Equivalently, for any fixed bidegree (a, b) there exist a+b+1 gener-
alized RR2T (see Definition 2.5) such that their semi-classical limit has a dispersionless
bi-Hamiltonian structure of Dubrovin–Novikov type. This structure is exact when both
b +m and −a −m are negative, and tri-Hamiltonian if a = b, m = −a + 1.

Remark 2.27 (Flat coordinates of η(1)). Flat coordinates for the first Frobenius structure
on Ha,b,m can be constructed using standard methods from [27, 60]. For definiteness,
consider the case when b = 1 and m = 0. By applying the change of variables z 7→
e−q0(z+ 1) we obtain

λ = ev−aq0(z+ 1)a
(

1−
e2q0 − 1

z

) a−1∏
k=1

(
1−

eq−k+q0

z+ 1

)
, φ =

dz
z+ 1

. (2.107)

We denote by z = z(λ, q) a local inverse of the function λ(z, q), and from the equation
∂q(λ(z(λ, q), q)) = 0 we obtain the “thermodynamic identity” ∂qλ = −(∂zλ)(∂qz), from
which we can rewrite the residue formula (2.94) as

η(X, Y ) =

a+3∑
i=1

Reszi X(log(z+ 1))Y (log(z+ 1))dλ. (2.108)

Now notice that we can expand the local solutions log(z(λ, q)+ 1) in the following way
as a series of λ:

log(z+1) = 1
a
[log λ− (v−aq0)−

∑a
k=1 τk/λ

k/a
]+O(1/λ1+1/a), z→∞,

log(z+1) = O(1/λ), z→ 0,
log(z+1) = log λ+ c0+O(λ), z→−1,
log(z+1) = cj +O(λ), z→ eq−j+q0 −1.

(2.109)
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This shows that the only contribution to the sum in (2.94) comes from z = ∞ and that
the coefficients

τ0 = v−aq0,

τk =
a

k
Resλ1/a=∞

[
λk/a

∂

∂λ1/a log(z+1)dλ1/a
]
=
a

k
Resz=∞

λk/a

z+1
dz, k = 1, . . . , a,

are flat coordinates for η(1).

Example 2.28 (Bi-Hamiltonian structure of q-deformed dispersionless 2-KdV). Let us
consider the dispersionless limit of the q-deformed Gelfand–Dickey hierarchy of Ex-
ample 2.8 for n = 2. The symbol of the Lax operator reads

λ(z) = z3
+ az2

+ bz+ c (2.110)

and a quick inspection of the semi-classical Lax equations reveals that c is invariant under
the flows of (2.80). When c = 0, the hierarchy manifestly reduces to the generalized
dRR2T of bidegree (a, b) = (2, 0) with ν = m = 1, v = 0.

By Theorem 2.23, the space of coefficients H2,0,1 is endowed with a conformal Frobe-
nius manifold structure M(1)

2,0,1 = (H2,0,1, η
(1), •) of charge one. The discussion of Re-

mark 2.27 shows that flat coordinates for the metric η(1) are given by

t1 = −a/3, t2 = b − a
2/6. (2.111)

In this chart, η(1) takes the off-diagonal form η
(1)
ij = δi+j,2, and the algebra structure

on M(1)
2,0,1 is induced by the polynomial prepotential

F (1)(t1, t2) =
12
5 t

6
1 − t2t

4
1 +

1
4 t

2
2 t

2
1 − t

3
2/144. (2.112)

As far as the dual-type Frobenius structure M(2)
2,0,1 = (H2,0,1, η

(2), ?) is concerned, from
the proof of Theorem 2.23(i) we know that the zeroes (eq0 , eq−1) of λ are exponentiated
flat coordinates of η(2). Then the Miura transformation

t1 =
1
3 (e

q0 + eq−1), (2.113)

t2 =
1
6 (4eq0+q−1 − e2q0 − e2q−1) (2.114)

and (2.95) yield η(2)ij = (3+ (−1)i+j )/2 in the chart (q0, q−1). Finally, the ?-product is
given by (2.98) by the dual prepotential

F (2)(q0, q−1) =
5
6q

3
0 +

1
2q−1q

2
0 + q

2
−1q0 +

2
3q

3
−1 − Li3(eq−1−q0), (2.115)

where Li3(x) =
∑
n>0 x

n/n3 is the polylogarithm function of order 3.
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Example 2.29 (Tri-Hamiltonian structure of dispersionless Ablowitz–Ladik). Let now
a = b = 1, m = 0. This case corresponds to the dispersionless limit of the Ablowitz–
Ladik hierarchy of Example 2.7. For this case, the Frobenius manifold structures M(1)

1,1,0

and M(2)
1,1,0 on H1,1,0 were constructed in [9]; we will review and expand on that in light

of the general result of Theorem 2.23. In this case, the symbol of the Lax operator reads

λ(z) = evz
z− eq0

z− e−q0
. (2.116)

By the proof of Theorem 2.23(i) we know that (v, q0) are flat coordinates for the met-
ric η(2) defined by (2.95). Furthermore, Theorem 2.23(ii) implies that the metric η(1) is
flat in this case. By the discussion of Remark 2.27, flat coordinates for η(1) are given by

v = 1
2 (log(t1 + et2)+ t2), (2.117)

q0 =
1
2 (log(t1 + et2)− t2). (2.118)

Notice that t2v−q0 is a flat coordinate for both η(1) and η(2), and the flat pencil is resonant
in this case. The Frobenius potentials in the respective flat frames are

F (1)(t1, t2) =
1
2 t2t

2
1 + et2s1 + 1

2 s
2
1 log(s1), (2.119)

F (2)(v, q0) = v
2q0 + 2vq2

0 +
7
3q

3
0 + Li3(e2q0). (2.120)

A further consequence of Theorem 2.23 is the existence of a third compatible flat met-
ric η(3), along with the corresponding Frobenius manifold structure M(3)

1,1,0. Introducing
a local chart (s1, s2) via

v = − 1
2 (s2 + 3 log(e−s2 − s1)), (2.121)

q0 =
1
2 (s2 + log(e−s2 − s1)) (2.122)

gives a flat coordinate system for η(3) as defined in (2.96), as indeed η(3)ij = δi+j,3; the
pencil (η(3))−1

− ε(η(2))−1 is again resonant, since s2 = v + 3q0. It follows from (2.99)
that the third product structure is induced by the prepotential

F (3)(s1, s2) =
1
2 s2s

2
1 − e−s2s1 − 1

2 s
2
1 log(s1), (2.123)

which shows that the first and third Frobenius structures are isomorphic,

M(1)
1,1,0 'M(3)

1,1,0. (2.124)

The isomorphism is non-trivial, in that η(1) and η(3) do not share a common flat system
and the associated Frobenius structures are not related by an affine change of flat coordi-
nates.
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3. Equivariant mirror symmetry of toric trees

LetX be a smooth quasi-projective variety over C with vanishing odd cohomology, and T
an algebraic torus action onX with projective fixed loci ij : XTj ↪→ X, j = 1, . . . , r ∈ N.
IfX is projective, the equivariant Gromov–Witten invariants of (X, T ) [39] are defined as

〈φα1 , . . . , φαn〉
X,T
g,n,β ,

∫
[Mg,n(X,β)]

vir
T

n∏
i=1

ev∗i (φαi ) ∈ HT (pt), (3.1)

where Mg,n(X, β) is the stable compactification [49] of the moduli space of degree
β ∈ H2(X,Z) morphisms from n-pointed, genus g curves to X, [Mg,n(X, β)]

vir
T is the

T -equivariant virtual fundamental class of Mg,n(X, β), φαi ∈ HT (X) are arbitrary equiv-
ariant cohomology classes of X, and evi :Mg,n(X, β)→ X is the evaluation map at the
ith marked point. Equation (3.1) still makes sense if X is non-compact as long as XTi is
for all i; in that case, we define invariants by their localization to the fixed locus by the
Graber–Pandharipande virtual localization formula [42, 49]. For T -equivariant cohomol-
ogy classes φ1, φ2 ∈ HT (X), write η for the non-degenerate inner product

η(φ1, φ2) ,
r∑

j=1

∫
XTj

i∗j (φ1 ∪ φ2)

e(NX/XT )
, (3.2)

where e(NX/XT ) is the T -equivariant Euler class of the normal bundle to the fixed lo-
cusXT . We will denote by the same symbol the flat non-degenerate pairing on T (HT (X))
obtained from (3.2) by identifying TτHT (X) ' HT (X) for all τ ∈ HT (X). For vector
vields ϕi ∈ X (HT (X)), i = 1, 2, the genus zero equivariant Gromov–Witten invariants
(3.1) define further a product structure ϕ1 ◦ ϕ2 on the tangent fiber at τ through

η(ϕ1, ϕ2 ◦ ϕ3) ,
∑
n≥0

∑
β∈H2(X,Z)

〈φ1, φ2, φ3, τ
⊗n
〉
X,T
0,n+3,β , (3.3)

which is commutative, associative, and compatible with η [39]. The corresponding Frobe-
nius manifold structureQHT (X) , (HT (X), η, ◦) on HT (X) is the T -equivariant quan-
tum cohomology of X.

Let µi = c1(OBTi (1)) be the hyperplane class on the classifying space BTi of
the ith factor of T = (C∗)l , and write K , C(µ1, . . . , µn) for the field of fractions
of H •(BT ). Then QHT (X) is a finite-dimensional dual-type Frobenius manifold over K
of charge one: it has a flat identity by the Fundamental Class Axiom of Gromov–Witten
theory, and it is generally non-conformal as a consequence of the non-trivial grading of the
ground field K. The purpose of this section is to exhibit an isomorphism of such Frobenius
dual-type structures with the second Frobenius structure on Ha,b,µ of Theorem 2.23 for a
suitable family of targets. When X is the total space of the bundle OP1(−1) ⊕ OP1(−1)
and T ' C∗ is the one-torus action that covers the trivial action on the base and scales
the fibers with opposite weights, it was already shown in [8, 9] that QHT (X) 'M(2)

1,1,0.
Moreover, it was proved in [10] that M(2)

a,0,ν is isomorphic to the T -equivariant orbifold
cohomology of the Aa−1-surface singularity, where T ' C∗ acts with generic weights
specified by ν. We will see how this correspondence with Gromov–Witten theory gener-
alizes to arbitrary (a, b, ν).
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3.1. Toric data

Let Sa,b = {vi ∈ Z3
}
a+b+2
i=1 be the set of three-dimensional integer vectors

vi =

{
(0, a + 1− i, 1), i = 1, . . . , a + 1,
(1, a + 2− i, 1), i = a + 2, . . . , a + b + 2.

(3.4)

Sa,b is the skeleton of the fan of a toric variety, given by the cone over a triangulation of
the rays vi (Figures 1 and 2). We can construct it as a GIT quotient Ca+b+2//(C∗)a+b−1

[23] by considering the exact sequence

0→ Za+b−1 M
−→ Za+b+2 N

−→ Z3
→ 0, (3.5)

where

MT
=



1 −2 1 0 0 0 . . . 0 . . . 0
0 1 −2 1 0 0 . . . 0 . . . 0

...
. . .

...
...

0 . . . 1 −2 1 0 0 0 . . . 0
0 . . . 0 1 −1 −1 1 0 . . . 0
0 . . . 0 0 0 1 −2 1 . . . 0

...
. . .

...

0 . . . 0 . . . 0 . . . 0 1 −2 1


, (3.6)

N =

 0 0 0 . . . 0 1 1 . . . 1
0 1 2 . . . a 0 −1 . . . −b

1 1 1 . . . 1 1 1 . . . 1

 . (3.7)

A triangulation of the fan corresponds to a choice of chamber in the GIT problem, as
in Figures 1 and 2. The picture in Figure 1 corresponds to the orbifold chamber in the
secondary fan of (3.6) and (3.7); we will denote by Xa,b the resulting singular variety. It
is obtained by deleting the unstable locus

Xus
a,b , V

(a−1∏
i=2

xi

b−1∏
j=2

xa+j

)
(3.8)

in Ca+b+2 and quotienting by the (C∗)a+b−1-action with weights specified byM in (3.6).
The picture in Figure 2 corresponds instead to the smooth (large volume) chamber: we
remove the Zariski-closed set Y us

a,b defined by

Y us
a,b , V

( ∏
j>i+1, j 6=a+1,a+2

〈xi, xj 〉

a−1∏
j=1

〈xa+1, xj 〉

a+b+2∏
j=a+4

〈xa+2, xj 〉
)

(3.9)

and then quotient by the (C∗)a+b−1-action with weights specified by M in (3.6). The
resulting variety, which we will denote by Ya,b, is a smooth quasi-projective Calabi–Yau
threefold, and the variation of GIT given by moving from Figure 1 to Figure 2 is a crepant
resolution of the singularities of Xa,b.
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Fig. 1. The toric diagram of the orbifold
Xa,b for a = 3, b = 2.

Fig. 2. The toric diagram of the minimal
resolution Ya,b for a = 3, b = 2.

3.1.1. T -equivariant cohomology. The resolution Ya,b can be visualized as a tree of two
chains {Li}a−1

i=1 and {Li}a+b−1
i=a+1 of P1 with normal bundle O + O(−2), which are then

connected along a (−1,−1) curve La . We will refer to the resulting geometry as a toric
tree, to reflect the shape of the corresponding web diagram (Figure 3). Explicitly, we have

Li ,


V (xi+1, xa+2), i < a,

V (xa+1, xa+2), i = a,

V (xa+1, xi+2), i > a.

(3.10)

The fundamental cycles [Lj ] ∈ H2(Ya,b,Z) of the links of the chain are a system of
generators for H2(Ya,b,Z) ' Za+b−1. Define ωj ∈ H 2(Ya,b,Z) to be their cohomol-
ogy duals, and O(ωj ) the corresponding line bundles; by definition, they restrict to O(1)
on Lj , and to the trivial bundle on Li , i 6= j . Consider now the following T ' (C∗)2-
action on Ca+b+2:

(xi; σ1, σ2)→


σ−1

1 xa, i = a,

σ2σ1xa+1, i = a + 1,
σ−1

2 xa+2, i = a + 2,
xi, else.

(3.11)

This descends to an effective torus action on Xa,b, which preserves KYa,b ' OYa,b . Let
{pi}

a+b
i=1 denote the fixed points of the torus action, so that pi and pi+1 correspond to the

poles of each P1 in the chain. Turning on a torus action as in (3.11) we obtain an action
on the bundles over the links of the chain, linearized as in (3.11); their equivariant first
Chern classes provide lifts of ωj to T -equivariant cohomology, which we will denote by
the same symbol ωj ∈ HT (Ya,b).
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p1

p2

p3

p4

p5

Fig. 3. The toric web diagram of Ya,b for a = 3, b = 2.

3.2. Mirror symmetry

Denote µi , c1(OBTi (1)) where C∗ ' Ti ↪→ T are the two cartesian projections of the
two-torus T acting on Ya,b. We have the following

Theorem 3.1. Let (a, b, ν) be as in Definition 2.21. Then

QHT (Ya,b) 'M(2)
a,b,ν (3.12)

upon identifying ν = µ1/µ2.

Proof. The proof is given by explicit calculation of both sides of (3.12). For the r.h.s.,
we will use the fact that in positive degree all genus zero Gromov–Witten invariants can
be computed by a combined use of the deformation invariance of GW invariants and the
Aspinwall–Morrison formula [5, 13, 70]. The result is [13, 47]

〈ωi1 , . . . , ωin〉
Ya,b,T

0,n,β

=



1/d3 if ij = a for some j, β = d([La] +
∑a−1
i=ka
[Li] +

∑a+b+1
j=a+kb

[Lj ]),

k• = min({ij }, •),
−1/d3 if k+ = max({ij }) < a or k− = min({ij }) > a,

β = d(Lk− + · · · + Lk+),

0 else.

(3.13)

When β = 0 and n = 3, Gromov–Witten invariants are defined as the equivariant triple
intersection numbers of Ya,b, which can be computed explicitly by localization to the
T -fixed points from (3.11). Explicitly, the restrictions of the Kähler classes to the fixed
loci read

ωi |pj =


(a − i)µ2 + µ1 for j ≤ i ≤ a − 1,
0 for i ≤ a − 1, j > i,

0 for i ≥ a, j ≤ i,
(a − i)µ2 − µ1 for j > i ≥ a,

(3.14)
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and the moving part contribution to the Euler class is computed as

eT (TM)|pi =

{
−µ2((a − i)µ2 + µ1)(µ1 + µ2(a − i + 1)) for i ≤ a,
µ2(µ1 + (i − a − 1)µ2)((i − a)µ2 + µ1) for i ≥ a + 1.

(3.15)

Then, denoting si,c ,
∑c
k=i(eT (TM))

−1
|pk , we get

si,c =


i − c − 1

µ2((a − c)µ2 + µ1)((a + 1− i)µ2 + µ1)
for i < c ≤ a,

c − i + 1
µ2((a − c)µ2 − µ1)((a + 1− i)µ2 − µ1)

for a < i ≤ c,

(3.16)

and therefore

〈13
〉
Ya,b,T

0,3,0 = s1,a+b = s1,a−b =
b − a

µ2(bµ2 + µ1)(aµ2 + µ1)
. (3.17)

Furthermore, for i ≤ j ≤ k < a,

〈12, ωi〉
Ya,b,T

0,3,0 = ((a − i)µ2 + µ1)s1,i = −
i

µ2(aµ2 + µ1)
, (3.18)

〈1, ωi, ωj 〉
Ya,b,T

0,3,0 =
−i((a − j)µ2 + µ1)

(aµ2 + µ1)
, (3.19)

〈ωi, ωj , ωk〉
Ya,b,T

0,3,0 =
i((a − j)µ2 + µ1)((a − k)µ2 + µ1)

µ2(aµ2 + µ1)
, (3.20)

and for i ≥ j ≥ k ≥ a,

〈12, ωi〉
Ya,b,T

0,3,0 = (−(i − a)µ2 − µ1)si+1,a+b =
i − a − b

µ2(bµ2 + µ1)
, (3.21)

〈1, ωi, ωj 〉
Ya,b,T

0,3,0 =
(i − a − b)((a − j)µ2 − µ1)

µ2(bµ2 + µ1)
, (3.22)

〈ωi, ωj , ωk〉
Ya,b,T

0,3,0 =
(i − a − b)((a − j)µ2 − µ1)((a − k)µ2 − µ1)

µ2(bµ2 + µ1)
. (3.23)

Write τ = τ01 +
∑a+b−1
i=1 τiωi for τ ∈ HT (Ya,b), where ω0 , 1Y . Then (3.13)–(3.23)

imply that the generating function F Ya,b,TGW of the genus zero Gromov–Witten invariants
of Ya,b takes the form

F
Ya,b,T

GW (τ ) ,
∑
n,β

〈
τ⊗n

n!

〉Ya,b,T
0,n,β

=

∑
i,j,k

〈ωi, ωj , ωk〉
Ya,b,T

0,3,0 τiτj τk +

a−1∑
l=0

b−1∑
k=0

Li3(eτa+τa−1+···+τa−l+τa+b−1+···+τa+b−k )

−

a−1∑
k≤l=1

Li3(eτk+···+τl )−
a+b−1∑
k≤l=a+1

Li3(eτk+···+τl ). (3.24)
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As far as the r.h.s. of (3.12) is concerned, the prepotential of M(2)
a,b,ν can be computed an-

alytically in closed form from (2.95) and (2.98). A rather tedious, but completely straight-
forward residue calculation shows that the prepotentials coincide,

F
M(2)

a,b,ν (v, q−i, qj ) = F
Ya,b,T

GW (τ ), (3.25)

upon identifying flat coordinates as

v= τ0/µ2 + (a − ν)τa/2+
a−1∑
j=1

jτj , (3.26)

q−k = −(τa/2+ τa−1 + · · · + τa−k), k = 0, . . . , a − 1, (3.27)
ql = −(τa/2+ τa+1 + · · · + τa+l), l = 1, . . . , b − 1. (3.28)

ut

Theorem 3.1 prompts the following immediate generalization of the conjectural corre-
spondence of [8] for the Ablowitz–Ladik hierarchy.

Conjecture 3.2. The full descendent all-genus Gromov–Witten potential of (Ya,b, T ) for
µ1 = mµ2 is the logarithm of a τ -function of the m-generalized RR2T of bidegree (a, b).

In other words, the parameter m in Definition 2.5 corresponds to a choice of weights
of a resonant subtorus C∗ ' T ′ ⊂ T . Its proof up to genus one will be the subject of
Section 3.4.

Remark 3.3. When b = 0, the GIT quotient in (3.5) yields Y a+1,0
' C × Aa , where

Aa is the canonical resolution of the Aa surface singularity. Conjecture 3.2 then suggests
that a suitable τ -function of the q-deformed a-KdV hierarchy should yield the total GW
potential of C × Aa . This has interesting implications already for the case a = 1 and
A0 = C2, where it would imply that the τ -function of the scalar hierarchy highlighted
in [7] to be underlying the generating functions of triple Hodge integrals on Mg,n should
be a τ -function of the q-deformed KdV hierarchy of [35].

3.3. Twisted periods and the Dubrovin connection

Information on the genus zero gravitational invariants of Ya,b is encoded into the pencil
of affine connections of (2.85), or the Dubrovin connection onQHT (Ya,b). An immediate
spin-off of Theorem 3.1 is an explicit characterization of its space of solutions.

Let ν = m ∈ Z and π : Ua,b,m → Ha,b,m be the universal curve over the genus zero
double Hurwitz space Ha,b,m. For λ ∈ Ha,b,m we write Cλ for the fiber of π at λ, and
C[λ] , Cλ \ {eq0 , e−q0 , {esgn(k)qk }b−1

k 6=0=1−a}. Let now p : C̃[λ] → C[λ] be the universal
covering map and, for ζ ∈ C, fix a choice of principal branch for λζ = exp(ζ log λ) as

λζ (z) = zζ(m+b)
0∏

i=1−a

|z− qi |
ζ eiζ argi,+(z)

b−1∏
j=0

|z− q−1
j |
−ζ e−iζ argj,−(z) (3.29)
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where argi,±(z) ∈ [0, 2π) is the angle formed by z − e±qi with Im(z) = 0. On the com-
plex line Lλ parametrized by λζ , we have a monodromy representation ρλ : π1(C[λ])→

Lλ ' C defined by local coefficients lqi around eqi resulting in multiplication by qi :=
ρλ(lqi ) = e2π iζσi , where σi = i+m+b+1 or i+m+b+a−1 for i > 0 or i < 0 respec-
tively, and we set q± = q0± . Then the sheaf of sections of C̃[λ]×π1(C[λ])Lλ→ C[λ] defines
a locally constant sheaf Lλ on C[λ], and we denote by H•(C[λ], Lλ) (resp. H •(C[λ], Lλ))
the homology (resp. cohomology) groups of C[λ] twisted by the set of local coefficients
determined by qi . Integrating λζφ ∈ H 1(C[λ], Lλ) over γ ∈ H1(C[λ], Lλ) defines the
twisted period mapping

5λ : H1(C[λ], Lλ)→ O(Ha,b,m), γ 7→

∫
γ

λζ dz/z. (3.30)

Let now Sola,b,ν,ζ be the (a+b)-dimensional C(ζ )-vector space of horizontal sections
for the Dubrovin connection,

Sola,b,ν,ζ = {s ∈ X (Ha,b,m) | ∇
(η(2),ζ )s = 0}. (3.31)

As for the ordinary periods of M(1)
a,b,m [28], twisted periods are an affine basis for the

space of flat coordinates of the deformed flat connection on M(2)
a,b,m.

Proposition 3.4 ([29]). The gradients with respect to η(2) of the twisted periods of
(3.30) generate over C(ζ ) the solution space of the horizontality condition (2.85) for
the Dubrovin connection on QHT (Ya,b),

Sola,b,m,ζ = spanC(ζ ){∇
η(2)5λ(γ )}γ∈H1(C[λ],Lλ). (3.32)

Remark 3.5. Except for the double Hurwitz space interpretation, all of the above gener-
alizes trivially to the case when ν ∈ C.

3.3.1. The twisted period mapping for M(2)
a,b,ν . For generic monodromy weights, the ho-

mology with local coefficients Lλ coincides with the integral homology of the Rieman-
nian covering [69] of C[λ],

H •(C[λ], Lλ) ' H
•(C̃[λ]/[π1(C[λ]), π1(C[λ])],Z). (3.33)

A basis of H1(C[λ], Lλ) can then be presented in the form of compact loops γk =
[l0, leqk sgn(k) ], γ± = [l0, le±q0 ] given by the commutator of simple oriented loops around
zero and each of the punctures of C[λ]. Then the twisted periods

�± ,
5λ(γk)

(1− e2π iζν)(1− e∓2π iζ )
, (3.34)

�k ,
5λ(γk)

(1− e2π iζν)(1− e−sgn(k)2π iζ )
, k 6= 0, (3.35)

give a C(ζ, ν)-basis of Sola,b,ν,ζ [10, 69, 71]. In turn, the period integrals of (3.34)
and (3.35) are hypergeometric functions in exponentiated flat variables for η(2).
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Proposition 3.6. The twisted periods of M(2)
a,b,ν,ζ are given by

�± =
0(ξ)0(1± ζ )
0(1+ ξ ± ζ ))

eζ(v+2q0)e±ξq0
b−1∏

j=1−a, j 6=0

eζqj

×8[a−θ(±1),b−θ(±1)](ξ, ζ,−ζ, 1+ ξ ± ζ ; {e±q0−qi }
−1
i=1−a, e±2q0 , {e±q0+qi }

b−1
i=1 ),

(3.36)

�k =
0(ξ)0(1+ sgn(k)ζ )
0(1+ ξ + sgn(k)ζ )

eζ(v+2q0)eξsgn(k)qk
b−1∏

j=1−a, j 6=0

eζqj

×8[a−θ(k),b−θ(k)](ξ, ζ,−ζ, 1+ξ+sgn(k)ζ ; {esgn(k)qk−qi }0i 6=k=1−a, {e
sgn(k)qk+qi }b−1

i 6=k=0),

(3.37)

where θ(x) is Heaviside’s step function and we define

8[M,N ](a, b1, b2, c, w1, . . . , wM+N )

, F
(M+N)
D (a;

M times︷ ︸︸ ︷
b1, . . . , b1,

N times︷ ︸︸ ︷
b2, . . . , b2; c;w1, . . . , wM+N ), (3.38)

and ξ , ζ(ν + b).

In (3.38), F (M)D (a; b1, . . . , bM ; c;w1, . . . , wM) is the Lauricella function of typeD [34]:

F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM) ,

∑
i1,...,iM

(a)∑
j ij

(c)∑
j ij

M∏
j=1

(bj )ijw
ij
j

ij !
, (3.39)

where we use the Pochhammer symbol (x)m , 0(x + m)/0(x). The proof is an im-
mediate consequence of (3.34) and (3.35) and the Euler integral representation of the
Lauricella function,

F
(M)
D (a; b1, . . . , bM ; c;w1, . . . , wM)

=
0(c)

0(a)0(c − a)

∫ 1

0
za−1(1− z)c−a−1

M∏
i=1

(1− wiz)−bi dz. (3.40)

3.4. Dispersive deformation and elliptic Gromov–Witten invariants

In this section we study the dispersive deformation of the m-generalized RR2T at order
O(ε2), and describe in detail the workflow of the proof of Conjecture 3.2 at the genus one
approximation. In order to do so, we first offer a reformulation of Conjecture 3.2 in the
language of the theory of formal loop spaces.
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3.4.1. Conjecture 3.2 as a Miura equivalence of dispersive hierarchies. Recall that the
Principal Hierarchy of Definition 2.20 can be thought of as a triplet (M, { , }[0],H[0])
where M is an n-dimensional complex Frobenius manifold, { , }[0] , { , }η in (2.89) is
a local Poisson structure on the loop space LM, and H[0] = (Hα,p)α,p is a family of
local functionals H [0]α,p =

∫
S1 h
[0]
α,p dx, h[0]α,p ∈ OM for α = 1, . . . , n and p ∈ Z+,

giving rise to commuting Hamiltonian vector fields on LM as in (2.90). When M =

QH •T (Ya,b) ' M(2)
a,b,ν , the isomorphism of Theorem 3.1 induces a Poisson morphism

LQH •T (Ya,b) ' LM(2)
a,b,ν

such that the dispersionless Toda densities hα,p pull back to the

expansion of the Hamiltonian densities of the Principal Hierarchy ofQH •T (Ya,b), proving
Conjecture 3.2 at the genus zero approximation.

For the higher genus theory, we have two, a priori inequivalent deformations of { , }[0]

and H[0], depending on a formal parameter ε. The first one is the spatial interpolation
of the Toda lattice of Section 2.6 applied to the 2D-Toda Hamiltonians (2.75) and to the
second 2D-Toda Poisson structure reduced on the factorization locus ARR (Section 2.5):
we call this the RR2T deformation. The second is the Buryak–Posthuma–Shadrin defor-
mation of the Poisson structure and Hamiltonians induced by Givental’s formula for the
higher genus Gromov–Witten potential [14, 41]; we will refer to this as the GW deforma-
tion. In either case, ({ , }[0], (H [0]α,p)α,p) deforms as

{τα(X), τβ(Y )}[0] 7→ {τα(X), τβ(Y )}[ε]

= {τα(X), τβ(Y )}[0] +

∞∑
g=1

εg
g+1∑
s=0

Pα,β
g,s (τ, τX, . . . , τ

(s))δ(s)(X − Y ),

(3.41)

h
[0]
α,p 7→ h[ε]α,p = h

[0]
α,p(τ )+

∞∑
g=1

h
[g]
α,p(τ, τX, . . . , τ

(g)).

where h[g]α,p, P
α,β
g,s are polynomials in the jet variables τ (i) = ∂ iXτ (i > 0), graded homo-

geneous of degrees g and g − s + 1 respectively; these vanish for the GW deformation
when g is odd.

Both deformations come with a canonical system of coordinates for the jet space
of M: the tau-symmetric coordinates τα for the Gromov–Witten deformation, and the
coefficients (α, β) of the Lax operators (2.16)–(2.18) in the deformation by lattice in-
terpolation. Conjecture 3.2 can then be stated as the existence of an ε-dependent Poisson
morphism which matches the Poisson structures and the Hamiltonian densities, up to total
derivatives, of the two deformations. Such a morphism, if it exists, should take the form
of an element of the polynomial Miura group of transformations of the form [32]

(α, β) 7→ τ(α, β)+
∑
g>0

εgF[g](α, β, αx, βx, . . . , α
(g), β(g)). (3.42)

The leading order in ε of the sought-for Miura transformation is just the change of vari-
ables to flat coordinates given by (2.16), (2.17), (2.91) and (3.26). We can then rephrase
Conjecture 3.2 as follows:
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Conjecture 3.2 (reloaded). There exists a polynomial Miura transformation (3.42) match-
ing the GW and the (a, b) RR2T deformations to all orders of the dispersive expansion.

3.4.2. The genus one case—strategy of the proof. On the RR2T side, we have all the
ingredients that are needed to compute the dispersive deformation of the Principal Hi-
erarchy: all we have to do is to take the spatial interpolation of (2.71) and (2.75). On
the other hand, closed-form expressions for the Gromov–Witten dispersive deformation
of the Poisson bracket and the Hamiltonians from Givental’s formula require control to
all orders of the steepest-descent asymptotics of the oscillating integrals of M, which is
typically out of computational reach.5 However, a workaround to this problem exists in
genus one, corresponding to the O(ε2) approximation. In this case, the rational Miura
transformation [31]

τα(x) 7→ τα(x)+
ε2

24
∂2

∂x∂tα,0
(log detM +G(τ)), (3.43)

where

Mα,β = cαβγ τ
γ
x , cαβγ = ∂

3
αβγF(τ), (3.44)

deforms the Principal Hierarchy associated to quantum cohomology to the O(ε2) trun-
cation of the full higher genus hierarchy; here F and G denote respectively the genus 0
and 1 primary Gromov–Witten potentials. Dubrovin–Zhang show [31,32] that the associ-
ated τ -function satisfies the genus one topological recursion relations, and it restricts (by
construction) on the small phase space to the primary Gromov–Witten potential.

As all the ingredients in (3.43) are explicitly known by localization in our case, the
proof of Conjecture 3.2 at orderO(ε2) becomes practically feasible. Our strategy to prove
it can be structured in the following four steps.

Step 1: Compute the deformation of the Poisson structure and the Hamiltonian densities
on the phase space of the Principal Hierarchy from the quasi-Miura transformation
(3.43).

Step 2: Compute the reduction of the second Poisson structure for the 2D-Toda lattice on
the phase space of the (a, b) RR2T, from (2.71), and the associated Toda Hamiltonian
densities, from (2.75). Interpolate and expand in the lattice spacing to O(ε2).

Step 3: Find a family of Miura transformations matching the deformed Poisson tensors
of Steps 1 and 2.

Step 4: Find a Miura group element such that the Hamiltonian densities agree after pull-
back, up to total derivatives.

5 An alternative approach, which would lead to a proof of Conjecture 3.2 sidestepping the issue
of the Hamiltonian structure, would be to derive the Hirota bilinear equations for the RR2T directly
from Givental’s formula—an approach successfully pioneered by Milanov and Tseng [51, 52] for
the extended bigraded Toda hierarchy. Unfortunately, the fact that we are dealing with the dual
Frobenius structure hampers a straightforward generalization to the case at hand.
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This method of proof can be automated for given (a, b) and verified symbolically; a para-
metric statement in (a, b) hinges on performing Step 1 (in particular the computation
of (2.71) on the factorization locus) parametrically in these two variables. The relevant
computer code is available upon request.

Remark 3.7. A priori there is no guarantee that a Miura group element satisfying
Steps 3–4 exists. However, solutions to Step 3 are guaranteed to exist by the vanish-
ing of the loop space Poisson cohomology in degree 1 and 2, as soon as M has trivial
topology [24, 32, 37]: in this case there are Miura group elements (FRR2T,FGW) such
that the deformed Poisson brackets are trivialized to their ε = 0 limit,

F ∗RR2T{ , }
[ε]
RR2T = { , }

[0]
= F ∗GW{ , }

[ε]
GW, (3.45)

to all orders in ε. Furthermore, such Miura group elements are far from unique: for any
formal ε-series K with values in graded-homogeneous differential polynomials,

K =
∑
g≥0

εgK[g](τ, . . . , τ
(g)), degK[g] = g, (3.46)

composing F ∗RR2T, F ∗GW on the left with the time-ε canonical transformation,

τα 7→ τα +
∑
g>0

εg

g!

g times︷ ︸︸ ︷{
K,
{
K, . . ., {K, τα}[0]

}[0]}[0] (3.47)

leaves { , }[0] invariant to all orders in ε. Proving Step 4 amounts then to showing that
there exists (at least) one such K up to O(ε2) such that the Toda-deformed Hamiltonians
pull back to the GW-deformed ones under composition.

Remark 3.8. In fact, when it comes to Step 4 it is sufficient to show that the two defor-
mations agree on a single Hamiltonian H̄ [ε]. Once this is done, the involutivity condition
with the perturbed Hamiltonian,

{H̄ [ε], H [ε]α,p} = 0, (3.48)

admits, order by order in ε, a unique solution for the dispersive deformation of the Hamil-
tonian densities in Section 3.4.1 [30]. The simplest choice is to pick H̄ [0] to be the dis-
persionless limit of the Toda Hamiltonian given by TrL1, i.e.,

H̄ [0] =

∫
S1

Resz=0 λ(z)
dz
z
, (3.49)

with the RR2T and GW perturbations computed from (2.16), (2.17) and (3.43) respec-
tively.

Remark 3.9. A further simplification in the computations comes from the fact that it is
sufficient to prove Conjecture 3.2 for the genus one deformation of the Principal Hierar-
chy withG = 0; switchingG—the elliptic GW potential—to an arbitrary function on the
small phase space amounts to composing the result with an explicit, polynomial Miura
group element. This simplifies the proof of Conjecture 3.2 considerably.
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3.4.3. Step 1. We start with the following technical

Lemma 3.10 ([31]). The genus 1 topological deformation of the Principal Hierar-
chy associated to a semi-simple Frobenius manifold with potential F , flat coordinates
τ 1, . . . , τN and flat metric η is Miura equivalent, up to higher genera, to the following
deformation of the Poisson structure:

{τα(x), τβ(y)}
[ε]
GW = η

αβδ′(x − y)+
ε2

24

(
cαβµµ (τ (x))+ cαβµµ (τ (y))

)
δ′′′(x − y)

−
ε2

24

(
∂x(c

αβµ
µ (τ (x)))+ ∂y(c

αβµ
µ (τ (y)))

)
δ′(x − y)+O(ε4) (3.50)

and to Hamiltonian densities

hGW
β,p = h

[0]
β,p+

ε2

24

(
∂h
[0]
β,p−1

∂uζ
(cζνγ c

µν
αµ− c

ζ
µναc

µν
γ )−

∂h
[0]
β,p−2

∂uζ
c
ζ
δσ c

σµ
µ cδαγ

)
ταx τ

γ
x +O(ε

4),

(3.51)

where cαβγ and cαβγ δ denote the third and fourth derivatives of F , respectively, and the
indices are raised and lowered by η.

As per Remark 3.9, the Miura equivalence appearing in the above theorem is a change of
coordinates of the form

τ̃α = τα + ε2(Aαµν(τ )τµx τ νx + Bαµ(τ )τµxx)+O(ε4), (3.52)

which can be explicitly computed in terms of the G-function of the Frobenius manifold.

Remark 3.11. Equation (3.51) expresses the dispersive deformation of the pth Taylor co-
efficient of the canonically normalized flat sections of the Dubrovin connection for Ya,b.
However, by Remark 3.8, we will be mainly interested in deforming the dToda flow gen-
erated by the residue of the Lax symbol at infinity: since we are dealing with the second
structure Ma,b,ν on M, this is equivalent to the twisted period around a Pochhammer
loop encircling 1 and∞ (see (3.30)), with the parameter ζ in (3.29) set equal to one. This
little twist in the story amounts to resumming ζphGW

β,p with respect to p in (3.51), and then
evaluating the result at ζ = 1, which gives

h
GW
= h
[0]
+
ε2

24
∂h
[0]

∂τρ
(cρνγ c

µν
αµ − c

ρ
µναc

µν
γ − c

ρ
δσ c

σµ
µ cδαγ )τ

α
x τ

γ
x +O(ε

4). (3.53)

Example 3.12 ((a, b,m) = (1, 1, 0)). This is the case of the Ablowitz–Ladik hierarchy.
Here, (3.24) and (3.50) together imply that the deformation of the Poisson bracket is
trivial at O(ε2),

{τα(x), τβ(y)}
[ε]
GW = −µ

−2
2 δα+β,1δ′(x − y)+O(ε4), (3.54)

whereas the first Hamiltonian density gets corrected as

h̄GW
= e−τ0/µ2(1− eτ1)+

ε2eτ1−τ0/µ2

24µ2(eτ1 − 1)

[
2µ2

(
(eτ1 − 1)(τ ′0(x))

2
+ eτ1(τ ′1(x))

2)
−
(
4(eτ1 − 1)τ ′0(x)− τ

′

1(x)
)
τ ′1(x)

]
+O(ε4). (3.55)
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Example 3.13 ((a, b) = (1, 2, 0)). In this case the dispersionless Poisson bracket does
get corrected from (3.50). Setting µ2 = 1 for notational simplicity, we find

{τα(x), τβ(y)}
[ε]
GW = {τ

α(x), τβ(y)}[0]+ε2T (τ, τx, τxx)


0, α = 0 or β = 0,
1, α = β = 1,
−2, (α, β) = (2, 1), (1, 2),
4, α = β = 2,

(3.56)
with

T (τ, τx, τxx) =
eτ2(x)

12(eτ2(x) − 1)4
[
(eτ2(x)−1)

(
2δ(3)(x−y)+3(eτ2(x)+1)τ ′2(x)δ

′′(x−y)
)

+
(
(4eτ2(x) + e2τ2(x) + 1)τ ′2(x)

2
− (e2τ2(x) − 1)τ ′′2 (x)

)
δ′(x − y)

]
. (3.57)

The first dToda density reads here

h̄[0] = eτ0(x)(eτ1(x) + eτ1(x)+τ2(x) − 1), (3.58)

and its full O(ε2) GW-deformation can be read off from (3.53).

3.4.4. Step 2. This step is a straightforward application of ε-interpolation to (2.71)
and (2.75). For the sake of readability, we exemplify it in the two instances considered
above.

Example 3.14 ((a, b,m) = (1, 1, 0)). As opposed to the GW-deformation, the RR2T-
deformed Poisson bracket receives in this case corrections to all (even and odd) orders
in ε, as is apparent from (2.74). The continuous interpolation leads to

{α(x), α(y)}
[ε]
RR2T = 0, (3.59)

{logα(x), logβ(y)}[ε]RR2T = ε
−1(δ(x − y + ε)− δ(x − y))

= δ′(x − y)+ 1
2εδ
′′(x − y)+ 1

6ε
2
+O(ε3), (3.60)

{logβ(x), logβ(y)}[ε]RR2T = ε
−1(δ(x − y + ε)− δ(x − y − ε))

= 2δ′(x − y)+ 1
3ε

2δ′′′(x − y)+O(ε4). (3.61)

In the same vein, (2.75) for i = 1 gives

h̄RR2T
= α(x)− β(x + ε) = α(x)− β(x)+ εβ ′(x)− 1

2ε
2β ′′(x)+O(ε3),

= α(x)− β(x)+ (total derivative). (3.62)
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Example 3.15 ((a, b,m) = (1, 2, 0)). Equation (2.71) computes the full-dispersive
Poisson bracket on the factorization locus as

{α1(x), α1(y)}
[ε]
RR2T = 0,

ε{α1(x), β1(y)}
[ε]
RR2T = β1(y)

(
α1(y − ε)δ(x − y + ε)− α1(y)δ(x − y)

)
,

ε{α1(x), β2(y)}
[ε]
RR2T = β2(y)

(
α1(y − 2ε)δ(x − y + 2ε)− α1(y)δ(x − y)

)
,

ε{β1(x), β1(y)}
[ε]
RR2T =

(
β2(y + ε)− β1(y)β1(y + ε)

)
δ(x − y − ε)

+
(
β1(y)β1(y − ε)− β2(y)

)
δ(x − y + ε),

ε{β1(x), β2(y)}
[ε]
RR2T = β2(y)

(
β1(y − 2ε)δ(x − y + 2ε)− α2(y + ε)δ(x − y − ε)

)
,

ε{β2(x), β2(y)}
[ε]
RR2T = β2(y)

[
(−β2(y + 2ε)δ(x − y − 2ε)− β2(y + ε)δ(x − y − ε)

+ α3(y − ε)δ(x − y + ε)+ β2(y − 2ε)δ(x − y + 2ε)
]
.

(3.63)

It should be noticed that the Poisson bracket is not logarithmically constant in these coor-
dinates. The full-dispersive deformation is given by Taylor-expanding the r.h.s. in ε. As
before, the full-dispersive first Hamiltonian is here given as

h̄RR2T
= α1(x)− β1(x + ε) = α1(x)− β1(x)+ (total derivative). (3.64)

3.4.5. Step 3. The next step is to match the Poisson structures { , }[ε]GW and { , }[ε]RR2T com-
puted in Steps 1–2. We will do this by explicitly computing the trivializing polynomial
Miura transformation that transforms them back to their undeformed expression. We start
from the GW-deformation.

Lemma 3.16. The Miura transformation

τα 7→ τα − 1
24ε

2(∂2
xc
αµ
µ )+O(ε4) (3.65)

transforms the Poisson bracket (3.50) to

{τα(x), τβ(y)} = ηαβδ′(x − y)+O(ε4) (3.66)

and the Hamiltonian densities (3.51) to

hβ,p = h
[0]
β,p −

1
24ε

2
(
∂h
[0]
β,p−1

∂τ ζ
cζµναc

µν
γ +

∂h
[0]
β,p−2

∂τ ζ
c
ζ
δσ c

σµ
µ cδαγ

)
ταx τ

γ
x +O(ε

4). (3.67)

Proof. The proof is an immediate consequence of the formula P̃ αβ = (L∗)αµ ◦ P
µν
◦ L

β
ν

for the transformation of the differential operator P αβ associated to the Poisson bracket,
where (L∗)αµ =

∑
s≥0

∂τ̃α

∂τ
µ
s
∂sx and Lβν =

∑
s≥0(−∂x)

s
◦
∂τ̃β

∂τ νs
, with ταs = ∂sxτ

α . For the
Hamiltonians one simply evaluates the functions at the shifted values and performs Tay-
lor’s expansion. ut

One by-product of the lemma is that the expression for the deformed Hamiltonian densi-
ties simplifies as well in this Miura deformed coordinates. On the RR2T side, we act in
the same way—by plugging an arbitrary Miura transformation that trivializes { , }[ε]RR2T to
O(ε2) and solving the ensuing overconstrained differential system.
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Example 3.17 ((a, b,m) = (1, 2, 0)). In this case, a trivialization of the RR2T-de-
formed Poisson bracket reads, at O(ε2),

α1(x) 7→ α1(x)−
1
2
εα′1(x)+ ε

2
(

5
24
α′′1 (x)−

α′1(x)
2

12α1(x)

)
+O(ε3), (3.68)

β1(x) 7→ β1(x)+
ε2

24(β1(x)2−4β2(x))2β2(x)2

[
2β1(x)

5β ′2(x)
2
−β2(x)

2β1(x)
3β ′1(x)

2

−14β2(x)β1(x)
3β ′2(x)

2
+16β2(x)

2β1(x)
2β ′1(x)β

′

2(x)−20β2(x)
3β1(x)β

′

1(x)
2

+ 32β2(x)
3β ′1(x)β

′

2(x)− 2β2(x)β1(x)
5β ′′2 (x)+ β2(x)

2β1(x)
4β ′′1 (x)

[2pt] + 10β2(x)
2β1(x)

3β ′′2 (x)+ 4β2(x)
3β1(x)

2β ′′1 (x)− 8β2(x)
3β1(x)β

′′

2 (x)

− 32β2(x)
4β ′′1 (x)

]
+O(ε3), (3.69)

β2(x) 7→ β2(x)+
1
2
εβ ′2(x)+ ε

2
(
β ′2(x)

2

4β2(x)
−

1
8
β ′′2 (x)

)
+O(ε3), (3.70)

so that in the new variables we have

{α1(x), α1(y)}
[0]
= 0,

{α1(x), β1(y)}
[0]
= α1(x)δ(x − y)β

′

1(x)+ α1(x)β1(x)δ
′(x − y),

{α1(x), β2(y)}
[0]
= 2α1(x)δ(x − y)β

′

2(x)+ 2α1(x)β2(x)δ
′(x − y),

{β1(x), β1(y)}
[0]
= (2β1(x)β

′

1(x)− β
′

2(x))δ(x − y)

+ 2(β1(x)
2
− β2(x))δ

′(x − y),

{β1(x), β2(y)}
[0]
= 3β1(x)δ(x − y)β

′

2(x)+ 3β1(x)β2(x)δ
′(x − y),

{β2(x), β2(y)}
[0]
= 6β2(x)δ(x − y)β

′

2(x)+ 6β2(x)
2δ′(x − y).

(3.71)

Relating now (α, β) to q as in (2.91) and composing with (3.26) to go to τ -variables
returns { , }[0] = { , }η, the dispersionless Poisson bracket in flat coordinates for the metric
η(2) of M(2)

1,2,0. The general Miura group element trivializing { , }RR2T is obtained by
composing (3.71) with (3.47), for an arbitrary K .

3.4.6. Step 4. All that is left to do at this stage is to find a canonical generatorK such that
h̄GW matches h̄RR2T in the resulting trivializing coordinate system, up to total derivatives.
The quickest way to do this is as follows: choose K such that the transformed h̄RR2T has
1) no linear term in ε and 2) no linear terms in ταxx at O(ε2): this amounts to the solution
of two inhomogeneous linear systems of rank a + b. Then compose h̄RR2T in the result-
ing coordinate system with a further canonical transformation generated by a differential
polynomial K̃ , with vanishing linear term in ε. Now imposing that the difference of the
transformed h̄RR2T with hGW is a total derivative is equivalent to a rank

(
a+b+1

2

)
linear

system in the derivatives of the components of K̃; checking compatibility of the solution
then concludes the proof.
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Example 3.18 ((a, b,m) = (1, 2, 0)). Let us see this explicitly at work in the case when
(a, b,m) = (1, 2, 0). The GW- and RR2T-deformed Hamiltonian density in the coordi-
nates for which the Poisson is in standard form (3.67) read here

h̄GW
= eτ0(eτ1 + eτ1+τ2 − 1)−

ε2

24(eτ1 − 1)(eτ2 − 1)2(eτ1+τ2 − 1)
×
[
eτ0+τ1+τ2(eτ1 − 1)(3eτ2 − e2τ2 + 5eτ1+τ2 − 5eτ1+2τ2 + 2eτ1+3τ2 − 4)(τ ′2)

2

− 2(eτ2 − 1)(eτ1+τ2 − 1)τ ′′2 )+ 2(eτ1 − 1)(eτ2 − 1)2(eτ2 + 1)(eτ1+τ2 − 1)(τ ′0)
2

+ 4(eτ1 − 1)(eτ2 − 1)(eτ1+τ2 − 1)((e2τ2 − 1)τ ′1 + eτ2(eτ2 − 2)τ ′2)τ
′

0

+ (eτ2 − 1)2(−2eτ1 + eτ2 − 2eτ1+τ2 + 2e2(τ1+τ2) + 2e2τ1+τ2 − 2eτ1+2τ2 + 1)(τ ′1)
2

+ 2eτ2(eτ1 − 1)(eτ2 − 1)(−eτ2 − 4eτ1+τ2 + 2eτ1+2τ2 + 3)τ ′1τ
′

2
]
+O(ε4), (3.72)

h̄Toda
= eτ0(eτ1 + eτ1+τ2 − 1)+ ε

2 eτ0
(
(3eτ1 + 3eτ1+τ2 − 2)τ ′0+ 3eτ1((eτ2 + 1)τ ′1+ eτ2τ ′2)

)
+

ε2eτ0

24(eτ2 − 1)2
[
(eτ2 − 1)2

(
3(9eτ1 + 9eτ1+τ2 − 4)(τ ′0)

2
+ 27eτ1(eτ2 + 1)(τ ′1)

2)
+ 54eτ1+τ2(eτ2 − 1)2τ ′1τ

′

2 + 54eτ1(eτ2 − 1)2τ ′0((e
τ2 + 1)τ ′1 + eτ2τ ′2)+ 30eτ1+τ2(τ ′2)

2

− 51eτ1+2τ2(τ ′2)
2
+ 27eτ1+3τ2(τ ′2)

2
+ 10(3eτ1 + 2eτ2 − e2τ2 − 3eτ1+τ2 − 3eτ1+2τ2

+ 3eτ1+3τ2 − 1)τ ′′0 + 10(3eτ1τ ′′1 − 3eτ1+τ2τ ′′1 − 3eτ1+2τ2τ ′′1 + 3eτ1+3τ2)τ ′′1

+ (2eτ1 + 30eτ1+τ2 − 60eτ1+2τ2 + 28eτ1+3τ2)τ ′′2
]
+O(ε3). (3.73)

Let us first get rid of the linear term in ε in h̄RR2T, as well as of the terms linear in the
second derivatives. This is accomplished by an O(ε2) transformation generated by

K1 = (−τ0 − τ1 − τ2/2)−
εe−τ2

24(eτ2 − 1)

[
(−26eτ2 + 26e2τ2 + e3τ2 − 1)τ ′0

− 10(eτ2 − e2τ2)τ ′1 + (−8eτ2 + 2e2τ2 − e3τ2 − 1)τ ′2
]
+O(ε2). (3.74)

Composing this with a canonical transformation generated by

K2 = ε
(
K
(0)
2 (τ )τ 0

x +K
(1)
2 (τ )τ 1

x +K
(2)
2 (τ )τ 2

x

)
(3.75)

such that hRR2T
− hGW

= ∂xf gives a system of six linear equations in the τ -derivatives
of K(i)

2 , which is solved by

∂τ 0K
(1)
2 = ∂τ 1K

(0)
2 −

eτ1 + eτ1+τ2 − 2
24(eτ1 − 1)(eτ1+τ2 − 1)

,

∂τ 0K
(2)
2 = ∂τ 2K

(0)
2 −

e−τ2(−eτ2 + e2τ2 − e3τ2 + eτ1+τ2 + eτ1+4τ2 − 1)
24(eτ2 − 1)(eτ1+τ2 − 1)

,

∂τ 1K
(2)
2 = ∂τ 2K

(1)
2 −

eτ1+τ2(eτ1 + eτ1+τ2 − 2)
24(eτ1 − 1)(eτ2 − 1)(eτ1+τ2 − 1)

,

(3.76)

which is immediately shown to be compatible.
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3.5. Further applications

Proposition 3.6 has a number of applications to the study of the gravitational quantum
cohomology of Ya,b as well as of its higher genus Gromov–Witten theory. When b = 0,
these were explored in detail in [10]; we highlight below the main features of their gen-
eralization to arbitrary (a, b).

3.5.1. Twisted periods and the J -function. A distinguished basis of flat coordinates for
the Dubrovin connection is given by the generating function of genus zero one-point
descendent invariants of Ya,b, or J -function [40],

J αYa,b (τ, ζ ) ,
δα,0

ζ
+ τα + ζ

∑
n≥0

∑
β∈Z

1
n!

〈
ωα

1− ζψ
, τ⊗n

〉Ya,b
0,n+1,β

, (3.77)

where ψ is a cotangent line class and the denominator is a formal geometric series ex-
pansion in ζψ . Write ij : pj ↪→ Ya,b for the embedding of the j th fixed point into
Ya,b, and define ucl

j 1j , i∗j (τ
αωα) ∈ HT ({pj }). The coefficients ucl

j are linear functions
ucl
j (τ ) =

∑
cjατ

α , and they are canonical coordinates for the classical equivariant coho-
mology algebra of Ya,b. By the Divisor Axiom of Gromov–Witten theory, the coefficients
cjα = ωα|pj are local exponents of (2.85) at the Fuchsian point LR = {τα = −∞}, and

the vector of the localized components J jYa,b1j = i
∗

j (J
α
Ya,b
ωα) of the J -function diagonal-

izes the monodromy around LR with weights cjα ∈ C,

J
j
Ya,b
∼ ζeζu

cl
j (1+O(eτ )). (3.78)

The asymptotic behavior (3.78) at LR characterizes uniquely the localized components
of the J -function as a flat coordinate system for (2.85). Knowledge of the monodromy
properties of the twisted periods of (3.36) and (3.37) at LR is then sufficient, by Proposi-
tion 3.6, to give a closed form expression for the J -functions as a hypergeometric function
in exponentiated flat variables. This can be achieved via an iterated use of the connection
formula at infinity for the Gauss function, as explained in [10, Appendix C]. In vector
notation, the final result in our case is

JYa,b = (A
(a)
⊕A(b))5, (3.79)

where

A(a)
ij =


eπ i iζ ζ0(1+ ζν − (i + 1)ζ )

0(1− ζ )0(ζν − iζ )
, i = −j,

e−iπ(ζν−ζ(2j+1)) ζ sin(πζ )0(1− ζν + ζ i)0(1+ ζν − ζ(i + 1))
π0(1− ζ )

, i > −j,

0, i < −j.

(3.80)
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A(b)
ij =



e−π ijζ ζ0(1+ ξ + (a + j + 1)ζ )
0(1+ ζ )0(ξ + (j + a)ζ )

, i = j + a,

e−iπ(ξ+ζ(2j+1+a)) ζ sin(πζ )0(1− ξ − ζ(j + a))0(1+ ξ + ζ(a + j + 1))
π0(1+ ζ )

,

j > i + a,

0, j < i + a.

(3.81)

In the same vein, let Horb,T (Xa,b) denote the T -equivariant Chen–Ruan cohomology
of [Xa,b]. This has two torus fixed orbi-points [p(a)] and [p(b)]—the North and South
pole of the base weighted projective line—with stackiness Za and Zb respectively. By the
Atiyah–Bott isomorphism, Horb,T (Xa,b) is then generated by the (Thom push-forwards)
of 1i/a , 1j/b, α = 0, . . . , a − 1, β = 0, . . . , b − 1. Write x ,

∑
c∈{a,b}, α∈Zc x

α,c1α/c for
a point x ∈ Horb,T (Xa,b). Then the orbifold J -function

J
γ,c

Xa,b
(x, ζ ) ,

δα,0

ζ
+ xα + ζ

∑
n≥0

∑
β∈Z

1
n!

〈
1γ /c

1− ζψ
, x⊗n

〉Xa,b
0,n+1,β

(3.82)

gives a system of flat coordinates for the Dubrovin connection on T (Horb,T (Xa,b)). As
Frobenius manifolds, the quantum cohomologies of Xa,b and Ya,b are isomorphic [21],
with the undeformed flat coordinates related as [12]

xα,a =

a−1∑
γ=0

ε
αγ
a τ a−1−γ

− εαa , xβ,b =

b−1∑
β=0

ε
βγ

b τ γ+a+1
− ε

β
b , (3.83)

where εc , e2π i/c, and by the Divisor Axiom the localized components of JXa,b are the
unique set of flat coordinates of the Dubrovin connection such that

J
γ,c

Xa,b
(x, ζ ) ' ζeζx

0,c
(1+O(x)). (3.84)

This can be compared with the behavior of the twisted periods at x = 0, where the
integrals appearing in (3.34)–(3.37) can be explicitly evaluated in terms of the Euler Beta
function. The result is

5 = (B(a) ⊕ B(b))JXa,b , (3.85)
where

B(a)jk = ε
(j−n/2)ζν
a

ε
−jk
a

a


−ε

k/2
a

0((ζν + k)/a)0(1− ζ )
0((ζν + k)/a − ζ )

for 1 ≤ k ≤ a − 1,

0(ζν/a)0(1− ζ )
ζ0(1+ ζ(1+ ν/a))

for k = 0,
(3.86)

B(b)jk = ε
(j−n/2)(ξ+a)
b

ε
−jk
b

b


−ε

k/2
b

0((ξ + a − k)/b + 1)0(1+ ζ )
0((ξ + a − k)/b − ζ + 1)

for 1 ≤ k ≤ b − 1,

0((a + ξ)/b)0(1+ ζ )
ζ0(1+ (ξ + a)/b − ζ )

for k = 0.

(3.87)

The composition U , A(a)B(a) ⊕ A(b)B(b) gives the transition matrix from the vector
form of the orbifold J -function to the one of the resolution. Closed-form knowledge of U
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has important applications to the Crepant Resolution Conjecture [22], as well as to its gen-
eralization to open Gromov–Witten theory [10]; in particular, by the block diagonal form
of (3.80), (3.81), (3.86) and (3.87), the genus zero results in [10] generalize immediately
to the case at hand. Similarly, Proposition 3.6 makes it an exercise in book-keeping to
generalize to arbitrary (a, b) the quantized Crepant Resolution Conjecture proven in [10]
for b = 0.

3.5.2. Pure braid group actions in quantum cohomology. A further application of Theo-
rem 3.1 and Proposition 3.6 is a complete characterization of the monodromy group of the
Dubrovin connection. By Theorems 2.23 and 3.1, the open set M(2),reg

a,b,ν , M(2)
a,b,ν \1a,b,ν

of regular points for the pencil of flat connections of (2.85) on M(2)
a,b,ν is the complement

of the arrangement of hyperplanes {qi = qj }i 6=j . Equivalently, it is isomorphic to the
configuration space of a + b distinct points in P1

\ {0, 1,∞},

M(2),reg
a,b,ν ' M0,a+b+3. (3.88)

Any simple loop σ in M(2),reg
a,b,ν then gives a monodromy action on Solλ,

Mσ : π1(M(2),reg
a,b,ν )→ Aut(Solλ), (3.89)

which is a representation of the colored braid group in a+b+2 strands, as π1(M0,a+b+3)

' PBa+b+2. Monodromy matrices in the twisted period basis can be computed explic-
itly [53]; the resulting representation is the Gassner representation [25], with weights
specified as in (2.91).

Remark 3.19. By the T -equivariant version of Iritani’s integral structures in quantum co-
homology, this pure braid group action carries through to an action on the T -equivariant
K-groups of Xa,b and Ya,b. Very recently, pure braid group actions on the derived cate-
gory of coherent sheaves were constructed in [26] for a family of toric Calabi–Yau ob-
tained from deformations of resolutions of type A surface singularities; when the variety
is a threefold, their examples coincide precisely with Ya,b. It would be interesting to es-
tablish a clear link between our D-module construction and theirs.
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