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Abstract. We present a mechanism for Arnold diffusion based on intertwining homoclinic orbits
to a normally hyperbolic invariant manifold, followed for long time intervals, with orbits of the
dynamics restricted to that manifold, followed for short time intervals. The resulting trajectories are
rather fast, and their construction is explicit, so they can be used in concrete applications.

The method to construct such orbits relies mainly on correctly aligned windows and does not
require the use of delicate analytical methods such as averaging or KAM, nor the convexity as-
sumptions of variational methods. It only requires control of the inner dynamics over short times,
and so it allows easy verification of the hypotheses with finite precision numerical calculations.

As an illustration of this mechanism, we consider a geodesic flow on a compact manifold with
a generic (Riemannian, Finsler or Lorentz) metric, subject to time-dependent perturbations via a
generic potential. The genericity conditions are given explicitly. The perturbation is driven by a
flow on an external manifold which satisfies some mild recurrence condition. Periodic and quasi-
periodic perturbations are included, and there are many others. We show the existence of trajectories
whose energy grows to infinity, as well as of trajectories that follow prescribed energy paths. The
trajectories can be constructed to diffuse at speeds that match upper bounds.

While the study of perturbations of the geodesic flow is a classical problem, we use it mainly to
showcase the main ingredients of the method in a simple way. Other results related to ours exist in
the literature, but the trajectories we obtain are different from the previously constructed ones. Our
approach is flexible enough to be widely applicable; some applications to the restricted three-body
problem involving also numerical calculations are in progress.
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1. Introduction

1.1. The Hamiltonian instability problem

The phenomenon of instability in nearly integrable Hamiltonian systems was discovered
in [4], which described a fundamental mechanism based on whiskered tori and verified
it in an example. Conceptually, this mechanism showed how to increase the energy of a
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conservative mechanical system by using small, time-periodic perturbations. See Subsec-
tion 1.4 for a brief overview of the problem.

The main idea of this paper is that we can show Hamiltonian instability for rather
general time-dependent perturbations. To establish instability we rely almost exclusively
on homoclinic excursions to a normally hyperbolic invariant manifold (NHIM), through
carefully choosing the times when to jump onto the homoclinics. By considering multiple
homoclinic intersections we can always choose to jump onto the homoclinic that yields a
larger energy growth. Between two consecutive jumps, we need to control the dynamics
on the manifold only for short time periods. Hence, we do not need to analyze the dynam-
ics on the manifold very much. We do not need to use either KAM theory or even first
order averaging theory.

To illustrate the approach we study a model consisting of a geodesic flow perturbed by
a time-dependent potential, sometimes known as the ‘Mather acceleration theorem’ [64].
As a departure from the original setting, we assume only some mild recurrence condition
on the time dependence. The main assumptions can be verified in concrete examples by
finite calculations. We do not need to assume that the perturbation is periodic or quasi-
periodic as in previous works (e.g., [11, 51, 72]). We note that time-dependent perturba-
tions that are not periodic or quasi-periodic are also considered in [43] through a different
mechanism that involves first order averaging.

As already mentioned, the main contribution of this paper lies in the method, which
has wider applicability. Indeed, we anticipate several other applications forthcoming
[15, 46].

In spite of the simplicity of the tools used, we show that the method can produce
very quantitative results, including optimal diffusion times, a result which has also been
obtained by a variety of other methods for periodic or quasi-periodic systems (but, of
course, leading to different orbits; see, for example, [72, 26, 43, 79]). Even if such a time
estimate has been proved in some cases (and we do not consider it a novelty of this paper),
we find it encouraging that one can use elementary tools to produce quantitative results
even in systems with no averaging theory.

Remark 1.1. Note that for the models considered in this paper we cannot apply classical
averaging theory in the extended system, as in [29, 30]; of course, averaging over fast
variables, as in [43], can be done, but even this is not necessary for our mechanism.
(Good expositions of classical averaging theory are in [60, 5].)

We do not know if the ergodic averaging theory [3] is enough to obtain geometric
results.

Also, we do not know whether variational methods can be applied to general time-
dependent systems. Some of the geometric features of minimizers well known for peri-
odic perturbations have counter-examples for quasi-periodically forced systems [57]. Of
course, variational methods work under the assumption that the system is convex (i.e.,
its Hessian matrix is positive definite), but this is not required by our method. In this pa-
per, we do not assume that the metric defining the geodesic flow is Riemannian, and the
arguments apply just as well to Finsler or Lorentz metrics.
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Remark 1.2. Even in the particular cases of periodic and quasi-periodic potentials, the
orbits constructed here seem to be different from previously constructed ones. The orbits
we construct are most of the time performing homoclinic excursions and do not spend
much time near the normally hyperbolic manifold. They are different from other orbits
in other mechanisms where the energy gain happens near hyperbolic periodic orbits or
where orbits spend a significant time near the NHIM.

1.2. Perturbed geodesic flow model

The explicit model that we treat in this paper is the following. We consider an (unper-
turbed) geodesic flow on the unit tangent bundle of a compact manifold. We assume that
this geodesic flow has a hyperbolic periodic orbit whose stable and unstable manifolds
intersect transversally. Via a potential, we couple the dynamics of the geodesic flow with
that of an external flow on some other compact manifold. We assume that the external
flow has a non-trivial uniformly recurrent point. We show that if the coupling between
the geodesic flow and the external flow satisfies some non-degeneracy conditions, which
we formulate explicitly, then the resulting system possesses some orbits along which the
energy grows to infinity linearly in time; such growth rate is optimal. Also, we show that
there exist orbits whose energy follows a prescribed energy path.

We point out that the explicit assumptions on the geodesic flow, on the external dy-
namics, and on the coupling, are very general. They hold generically and can be checked
in concrete examples by a finite precision calculation. Also, the construction of orbits
whose energy grows to infinity at an optimal rate, or of orbits whose energy behaves in
some prescribed way, is explicit, a fact which can be potentially exploited in concrete
applications, such as in celestial mechanics.

A particular class of systems that we refer to in this paper are quasi-periodic perturba-
tions of the geodesic flow, which have been considered in the literature [30]. Nevertheless,
the mechanisms we use are very different from those of the previous papers, and the orbits
produced are different as well. This is relevant for applications, when one is not only in-
terested in establishing the presence of the ‘diffusion’ phenomenon, but also in exploring
various diffusion mechanisms which can feature different characteristics [77].

An intuition to keep in mind is that the unperturbed geodesic flow describes the dy-
namics of a mechanical system with a Maupertuis metric. Its energy is conserved. The
external flow, which is governed by its own intrinsic dynamics, exerts a time-dependent
perturbation on the mechanical system. For the perturbed system, the energy conservation
law does not hold in general. If the external flow moves with some frequency, it seems
conceivable that by choosing trajectories of the geodesic flow that are in resonance with
that frequency one can obtain unbounded energy growth for the perturbed geodesic flow.

The striking conclusion of this paper is that one can achieve unbounded energy growth
even when the external flow has no frequency of motion. The only assumption we use is
recurrence. We can paraphrase this situation:

A little recurrence goes a long way.
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1.3. Contents of the paper

The set-up and main results appear in Section 2. The proofs of the main results are based
on a new mechanism combining geometric methods, perturbation theory, and topological
techniques. Since all the constructions are rather explicit, we anticipate that this can be
used in concrete applications, such as in celestial mechanics.

Section 3 describes the geometric method that is used in the paper. The perturbed
system is first expressed as a slow and small perturbation of an integrable Hamiltonian,
through some rescaling of the coordinates and of the time. Due to the assumptions on the
geodesic flow, the unperturbed system possesses a normally hyperbolic invariant manifold
whose stable and unstable manifolds intersect transversally, at various places. The trans-
verse homoclinic intersections are used to define different ‘scattering maps’. A scattering
map is defined on a subset of the normally hyperbolic invariant manifold, and encodes in-
formation on the homoclinic trajectories. For all sufficiently small perturbations—which
in our case amounts to all sufficiently large energies—the normally hyperbolic invariant
manifold from the unperturbed system survives to the perturbed system, and its stable and
unstable manifolds keep intersecting transversally. This allows us to continue the scatter-
ing maps from the unperturbed problem to the perturbed one. The effect of a scattering
map on the energy of the system can be computed very explicitly using the fact that the
energy is a slow variable.

In Section 4 we show that, by interspersing the ‘outer’ dynamics, given by a scatter-
ing map, with the ‘inner’ dynamics, given by the restriction of the flow to the normally
hyperbolic invariant manifold, we can arrange that the energy changes by arbitrarily large
quantities, and in particular grows to infinity.

At the first stage, we construct some elementary building blocks for the two-map
dynamics, each block consisting of one application of a scattering map followed by a
segment of a trajectory of the inner dynamics. We can compute explicitly the change of
energy along such an elementary building block.

At the second stage, we show that, under appropriate conditions, we can construct
sequences of elementary building blocks whose energy experiences the desired changes.
We also show that these effects do not happen with one scattering map, but it is crucial to
use at least two scattering maps. In particular, we show that we can arrange the choices of
the scattering maps and of the corresponding blocks so that we can consistently increase
the energy of the system, at an optimal rate.

These sequences of blocks determine pseudo-orbits, which are concatenations of or-
bits of the inner dynamics and of orbits of the outer dynamics. They do not immediately
yield true orbits for the perturbed geodesic flow.

To prove the existence of true orbits, in Section 5 we apply the topological method
of correctly aligned windows. Around the pseudo-orbits we construct windows that are
correctly aligned, i.e., sequences of multi-dimensional rectangles that successively cross
one another in a non-trivial way under the inner or the outer dynamics. A topological
version of the Shadowing Lemma implies the existence of true orbits near those pseudo-
orbits. We note that the main difficulty in carrying out the shadowing argument is that
the underlying dynamical system is not hyperbolic, as there are neutral directions along
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the normally hyperbolic invariant manifold. Hence the customary hyperbolic shadowing
methods do not apply.

The orbits constructed in our paper are very different from the orbits previously con-
sidered in the literature. The orbits we consider stay very little time near the unperturbed
periodic orbits between successive homoclinic excursions. This has several technical con-
sequences: we do not need to rely on the KAM theorem, on Aubry–Mather theory, or on
averaging, in order to control the behavior of the inner dynamics (the dynamics near the
closed orbits between homoclinic excursions). Avoiding the use of averaging theory al-
lows us to consider very general perturbations. Also, we do not need to study the geomet-
ric details on how the inner dynamics is affected by the perturbation. On the other hand,
we do have to rely more heavily on the scattering map, and to develop some sophisticated
shadowing mechanisms that are not based on hyperbolicity but rather on topological tools.

1.4. Some other related work

The Arnold mechanism of diffusion based on whiskered tori formed the basis of numer-
ous subsequent developments, including incorporating variational methods, e.g., in [19,
9, 40]. A remarkable surge of interest in the problem was stimulated by the unpublished
work [64], which led to several new approaches – variational, e.g., [64, 65, 66, 17, 18,
16], geometric, e.g., [11, 31, 51, 58, 43, 72, 26], or mixed, e.g., [7, 52, 53]. Instability
mechanisms in multi-dimensional settings have been studied in [86, 12, 33]. Proofs for
the Arnold conjecture for convex nearly integrable systems of two and a half and three
degrees of freedom were announced in [16, 53]. Due to its importance to practical ap-
plications, the instability phenomenon has also been studied by physicists using heuristic
and numerical methods, e.g., in [20, 84, 56, 77].

The geometric approach of [29, 30, 45, 47] does not only use whiskered tori but also
normally hyperbolic invariant manifolds whose stable and unstable manifolds intersect
(see, e.g., [29, 45, 47]). The method of [45] bypasses whiskered tori completely. The
mechanism is based on interleaving homoclinic excursions (conveniently quantified by
the scattering map) with the dynamics on the NHIM.

In the mechanisms discussed in the above papers [29, 30, 45, 47], there are two time
scales. The homoclinic excursions are fast while the dynamics in the NHIM has slow
components. If one assumes that the perturbations are periodic (or quasi-periodic), the
inner dynamics can be controlled using the classical averaging method. Other methods
based on normally hyperbolic manifolds, relying on the separatrix map rather than on the
scattering map, are in [79, 73].

Results related to the ones considered in this paper were also proved in [10, 8, 25, 24,
62, 59, 79, 72, 73]. See also [11, 80, 81]. The existence of orbits whose energy grows in
time at different rates, depending on the type of perturbation, was proved in [26, 79] for
general Hamiltonian systems that slowly depend on time.

A result related to ours has been obtained in [43], where the time-dependent perturba-
tion is also not assumed to be periodic or quasi-periodic, and not even recurrent. The main
difference is that their mechanism to gain energy relies on following certain hyperbolic
periodic orbits for a long time, while our mechanism does just the opposite, spending
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as little time as possible near hyperbolic periodic orbits and jumping between such or-
bits most of the time. Implicitly, the mechanism in [43] involves averaging near periodic
orbits while ours requires little control on the inner dynamics.

A general discussion on the speed of diffusion in a priori unstable Hamiltonian sys-
tems appears in [37]; in particular, that paper considers diffusion in the planar elliptic
restricted three-body problem. The diffusion phenomenon in the case of the spatial circu-
lar restricted three-body problem is considered in [27, 28].

2. Set-up and main results

2.1. The geodesic flow

In this subsection we review some well known facts on the geodesic flow, and we set up
the notation.

Let M be an n-dimensional Cr -smooth compact manifold and g be a Cr Riemannian
metric on M , where r ≥ r0. (Some non-optimal values of r0 are discussed in Subsection
5.7 at the end of the proofs of the main results.) The geodesic flow ξ : TM × R→ TM

is the flow on the tangent bundle TM (of dimension 2n), defined by

ξt (x, v) = (ξx,v(t), (dξx,v/dt)(t)),

where ξx,v is the unique geodesic with ξx,v(0) = x and (dξx,v/dt)(0) = v. To a geodesic
curve ξ on M corresponds a trajectory of the geodesic flow given by

t 7→ (ξ(t), (dξ/dt)(t)).

In this paper we do not distinguish between a geodesic curve and the corresponding tra-
jectory of the geodesic flow. Also, we do not distinguish between a parametrized curve
and its image.

Since the speed along a geodesic is constant, every geodesic can be reparametrized as
a unit speed geodesic. This way we reduce the study of the geodesic flow to its restriction
to the unit tangent bundle T 1M (of dimension 2n− 1).

Using the standard identification between TM and T ∗M given by g, we can interpret
the geodesic flow as the Hamiltonian flow for the Hamiltonian H0 : T

∗M → R given by

H0(x, y) =
1
2gx(y, y). (2.1)

On T ∗M we consider the standard symplectic form ω = dy ∧ dx.
SinceH0 is independent of time, it is a conserved quantity. The energy surfaces6E =

{H0 = E} are invariant under ξt . We will denote by ξE,t the flow restricted to the energy
surface 6E . The restriction ξ1/2,t of ξt to the energy manifold 61/2 = {H0 = 1/2}
corresponds to the geodesic flow on T 1M .

It is clear that the flow restrictions to different energy surfaces are equivalent to one
another and can be obtained just by a rescaling of time and momentum. The mapping
D√2E(x, y) = (x,

√
2E y)—dilation along the fibers of T ∗M , which is a well defined
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operation, because the fibers are linear spaces—gives a diffeomorphism between 61/2
and 6E . Furthermore

ξE,t ◦D
√

2E = D
√

2E ◦ ξ1/2,
√

2E t , ξt ◦D
√

2E = D
√

2E ◦ ξ
√

2E t . (2.2)

Explicitly, the trajectory of the geodesic flow ξE = (ξ
x
E, ξ

y
E) at energy E is related to the

trajectory of the geodesic flow ξ1/2 = (ξ
x
1/2, ξ

y

1/2) at energy 1/2 by the formula

(ξxE(t), ξ
y
E(t)) =

(
ξx1/2(
√

2E · t),
√

2E · ξy1/2(
√

2E · t)
)
. (2.3)

Below we will regard the geodesic flow as an unperturbed dynamical system, to which
we will apply an external perturbation.

2.2. Assumptions on the geodesic flow

We make the following assumptions on the geodesic flow.

A1. There exists a closed, unit speed geodesic λ, which is a hyperbolic periodic orbit for
the geodesic flow on T 1M .

A2. There exists a unit speed geodesic γ which is a transverse homoclinic orbit to λ for
the geodesic flow on T 1M .

Note that condition A1 means that λ has stable and unstable manifolds W s(λ) and
Wu(λ), of dimension n, in T 1M . The fact that a geodesic ξ is unit speed means that
g(dξ/dt, dξ/dt) = 1. Without loss of generality, we can assume that the period of the
geodesic λ from assumption A1 is 1.

The transversality condition A2 means that

TzW
s(λ)+ TzW

u(λ) = Tz(T
1M) for all z ∈ γ.

We note that there are many manifolds for which conditions A1 and A2 are satisfied
for an abundance of Riemannian metrics; a partial review of the existing results is pro-
vided in [30]. As an example, any surface of genus 2 or higher, with any C2+δ metric,
δ > 0, has hyperbolic geodesics with transverse homoclinic connections [54]. A very gen-
eral result was obtained in [22], showing that on any closed manifoldM with dim(M) ≥ 2
the set of C∞ Riemannian metrics whose geodesic flow contains a non-trivial hyperbolic
basic set is C2-open and C∞-dense. This implies that hypotheses A1 and A2 above hold
for a C2-open and C∞-dense set of Riemannian metrics.

Note that the energy H0 along both the hyperbolic orbit λ in A1 and the homoclinic
orbit γ in A2 equals 1/2, but similar orbits exist in all energy surfaces because of (2.3).

2.3. Coupling the geodesic flow with an external dynamical system

Next we will describe a class of perturbations of the geodesic flow for which we will
show the existence of orbits with unbounded growth of energy over time, as well as of
symbolic dynamics.
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We first describe an external dynamical system which we couple with the geodesic
flow through a time-dependent potential. Let X : N → TN be a C1-smooth vector field
on a compact d-dimensional manifold N . Let χt be the flow on N associated to X. Let
θ0 ∈ N and let χt (θ0) be an integral curve to X with the initial condition θ0 ∈ N .

Let

V = {V : M ×N → R | V is C1 in (x, θ) ∈ M ×N and Cr in x ∈ M}.

This is a Banach space with the norm

‖V ‖1;r =
∑
j=0,1

sup
(x,θ)

‖D
j

(x,θ)V (x, θ)‖ +
∑

j=2,...,r

sup
(x,θ)

‖D
j
xV (x, θ)‖, (2.4)

and we will refer to the induced topology on V as the C1;r -topology.
We think of V ∈ V as a potential depending on the parameter θ evolving in N .
For every V ∈ V we consider a parameter-dependent, time-dependent Hamiltonian

Hθ0 : T
∗M × R→ R given by

Hθ0(x, y, t) = H0(x, y)+ V (x, χt (θ0)). (2.5)

2.4. Assumptions on the external dynamical system

We now describe some conditions on the external dynamical system.
Given (N, χ), a point θ0 ∈ N is said to be uniformly recurrent (or syndetically recur-

rent, or almost periodic) if for every open neighborhood U of θ0 there exists T > 0 such
that, every interval (a, b) with b − a > T contains a time t with χt (θ0) ∈ U . That is, a
uniformly recurrent point is one which is recurrent with ‘bounded return times’.

The flow χ on N is said to be minimal if every orbit is dense in N .
SinceN is compact, if the flow is minimal then for every open setO ⊆ N there exists

T ≥ 0, depending on O, such that
⋃
t∈[0,T ] χt (O) = N .

Since N is compact, there always exists a point θ0 ∈ N that is uniformly recurrent for
(N, χ). This follows from the Poincaré Recurrence Theorem.

Moreover, if (N, χ) is minimal then every point θ ∈ N is uniformly recurrent.
Conversely, if θ0 ∈ N is uniformly recurrent then its orbit closure is a minimal set.
If every point θ ∈ N is uniformly recurrent then N is the disjoint union of its minimal

subsystems, in which case N is called semisimple (see [42]).
The following two alternative conditions will be used in the statements of the main

results. A3′ is clearly stronger than A3 but leads to stronger results.

A3. The flow χt has a uniformly recurrent point θ0 ∈ N with X(θ0) 6= 0.
A3′. The flow χt is minimal on N .

2.5. Statement of the results

The following result provides the existence of trajectories with unbounded growth of
energy for the system (2.5).
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Theorem 2.1. Let g be a Riemannian metric on M satisfying conditions A1, A2, and
let (N, χ) be an external dynamical system satisfying A3. Then there exist θ0 ∈ N , and
V ′, open and dense in V with respect to the C1;r -topology for r ≥ r0, such that, for
every V ∈ V ′, the system (2.5) has a solution with Hθ0(x(t), y(t), t) ≥ At + B for some
A,B ∈ R with A > 0, and for all t sufficiently large.

For example, condition A3 in Theorem 2.1 is automatically satisfied if X(θ) 6= 0 for
all θ . Note that in this case the only requirement on the flow χ on N is that it does not
have any fixed points. This condition is necessary, since as we shall see in the argument
in Subsection 4.4, we want the flow line χt (θ0) to leave some neighborhood of the point
θ0 before it returns again to that neighborhood.

Theorem 2.2. Let g be a Riemannian metric on M satisfying conditions A1, A2, and let
(N, χ) be an external dynamical system satisfying A3 ′. Then there exists a set V ′, open
and dense in V with respect to the C1;r -topology for r ≥ r0, such that, for every V ∈ V ′
and every θ0 ∈ N , the system (2.5) has a solution for which the energy Hθ0(x(t), y(t), t)

grows at least linearly to infinity as t → ∞, i.e. Hθ0(x(t), y(t), t) ≥ At + B for some
A,B ∈ R with A > 0, and for all t sufficiently large.

Hypothesis A3 in Theorem 2.1 requires choosing the parameter θ0 to be a non-trivial uni-
formly recurrent point, and yields an unstable trajectory corresponding to that particular
choice, while hypothesis A3 ′ in Theorem 2.2 allows the parameter θ0 to be arbitrary.

We also note that Theorem 2.2 remains valid under the weaker assumption that the
flow χt on N is semisimple.

The linear growth rate Hθ0(x(t), y(t), t) ≈ t in Theorems 2.1 and 2.2 is optimal.
Indeed, the energy Hθ0(x(t), y(t), t) cannot grow in time faster than linearly, as we can
easily show. By (2.5), we have

d

dt
Hθ0(x(t), y(t), t) =

∂V

∂x
(x(t), χt (θ0))X(χt (θ0)),

which is bounded due to the compactness of M and N .
In Subsection 4.3, we provide an explicit condition A4 that ensures V ∈ V ′, as in

Theorems 2.1 and 2.2. We emphasize here that this condition amounts to an explicit com-
putation (4.14) that is verifiable in concrete systems. The potentials V satisfying this
condition form an open and dense set in V relative to the C1;r -topology.

Condition A4 depends on a hyperbolic closed geodesic and on a pair of geometrically
distinct homoclinic orbits associated to it. A generic geodesic flow has infinitely many
homoclinic orbits associated to the same hyperbolic closed geodesic. Of course, for the
main results we only need to verify the condition for just a single pair of homoclinic
orbits.

Besides orbits whose energy grows unboundedly in time, there also exist orbits whose
energy makes chaotic excursions, i.e., they follow any prescribed energy path. In other
words, the system admits symbolic dynamics.
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Theorem 2.3. Assume the conditions of Theorem 2.1 hold, and let V ∈ V ′ with the set V ′
as in the statement of that theorem. Let E∗ be sufficiently large. There exists C > 0,
depending on the potential V , such that, for any differentiable function E : [0,∞) →
[E∗,∞) with |E ′| ≤ C, there exist θ0 ∈ N , a time reparametrization T : [0,∞) →
[0,∞), a solution (x(t), y(t)) of the system (2.5), and a constant D > 0 such that

|Hθ0(x(T (t)), y(T (t)))− E(t)| ≤ DE(t)−1/2.

Remark 2.4. A result similar to Theorem 2.2 appears in [43], where a more general class
of Hamiltonian systems than that in the present paper is considered. While [43] does not
require any recurrent property of the time-dependence, it requires some uniformity con-
ditions on the frozen system, more precisely, that for all sufficiently large, fixed values of
the time-dependent parameter, one is able to gain energy at a uniform rate. The difference
is merely technical; we essentially consider a situation when one is able to ensure an en-
ergy growth at a uniform rate only locally, in some open subset of the parameter space,
therefore we need recurrence to ensure that trajectories return to that subset infinitely of-
ten in a uniform way (see Subsection 4.3). Of course, if we choose to replace condition
A4 in Subsection 4.3 by a uniform, global condition, recurrence is no longer required.

Remark 2.5. It seems possible that Theorem 2.2 can be formulated in terms of a potential
V = V (x, t) that is an almost periodic function of time, rather than introducing the
time-dependence via a trajectory of the auxiliary dynamical system (N, χ). However,
Theorem 2.1 is formulated in terms of a local condition on the dynamics of the auxiliary
dynamical system, while asking V = V (x, t) being almost periodic is a global condition.

Remark 2.6. We note that Theorem 2.3 is similar in spirit to Theorem 1 in [14], which is
formulated in the general class of slow-fast Hamiltonian systems; that paper shows that,
under some assumptions, any continuous path in the slow phase space can be shadowed
(see also the related paper [13]). One significant difference is that in Theorem 2.3 we
shadow an energy path, not a path in the slow phase space; since we do not use averaging,
we may not be able to shadow a specific path in the slow phase space. A key point of our
paper is that we can drive the energy of the coupled system even without asking for much
control on the inner dynamics.

2.6. Some examples of applications

The conditions for the flow on N in Theorem 2.1 are very general. What makes the ex-
amples presented below more surprising is that the flow onN can have a very simple orbit
structure. The results include, as a particular case, quasi-periodic forcing, in which case
we have the presence of the KAM and Nekhoroshev phenomena, which prevent, or delay,
the onset of linear growth of energy, for a positive measure set of orbits. This is why we
single out some examples to showcase Theorem 2.2.

For forcing systems with a rich orbit structure (e.g., horseshoes giving rise to symbolic
dynamics), there are simpler arguments that show that one can get instability. Roughly,
if the forcing system has essentially arbitrary orbits, we can choose initial conditions in
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the forcing that lead to orbits that always increase the energy. Hence, for systems with
complicated orbit structure there are many results of instability. A representative paper of
this line of reasoning is [71]. Of course, even in the case when simpler mechanisms apply,
the orbits constructed here are different, since we rely on the homoclinic excursions and
not on riding the external forcing.

2.6.1. Perturbation of the geodesic flow by a quasi-periodic potential. We consider the
particular case when N = Td = Rd/Zd , and the flow on N is a linear flow of rationally
independent frequency vector ν, i.e. ν · k 6= 0 for all k ∈ Zd . Such a flow can be written
as χt (θ0) = θ0 + ν · t , for any initial point θ0 ∈ Td ; for simplicity, we let θ0 = 0. The
flow χt is minimal on N = Td .

The corresponding perturbed dynamical system is described by the time-dependent
Hamiltonian H : T ∗M × R→ R given by

H(x, y, t) = H0(x, y)+ V (x, νt). (2.6)

As a consequence of Theorem 2.1, we find that, for a set of potentials V : M×Td→R
that is generic relative to the C1;r -topology, the system (2.6) has solutions (x(t), y(t)) for
which the energy H(x(t), y(t), t) grows linearly to infinity as t → ∞. Note that the
frequency ν is not required to be Diophantine, as in [30]. In addition to recovering the
results from [30] under weaker conditions, we also obtain the existence of orbits whose
energy grows at an optimal speed. Again, we point out that the orbits constructed in this
paper are very different from those in [30], where the orbits stay near the closed geodesics
for a long time.

When d = 1, the flow χt describes a periodic motion on T1, thus we obtain, as a
particular case, the geodesic flow perturbed by a generic, periodic potential considered
in, e.g., [64, 11, 29, 51].

2.6.2. Flows on Lie groups. In this section, we describe some other examples of external
dynamical systems (N, χt ) that can be used in Theorem 2.2. These examples are mild
enough so that the mechanisms in [71] do not apply but nevertheless there is no averaging
theory for them.

Note that we can interpret the example in Subsection 2.6.1 as a flow on a Lie group
generated by a left-invariant vector field. Given a compact Lie group N , recall that a left
translation on N is a map Lg : N → N given by Lg(θ) = gθ for some g ∈ N . A vector
field X on N is called left-invariant if X is invariant with respect to all left translations,
i.e. (Lg)∗(X) = X for all g ∈ N . Let χt be the flow of X on N . It is well known that
each integral curve of χt is homeomorphic to the integral curve through the identity, that
is, χt (θ) = θ · χt (e). The flow χt is minimal if and only if N is Abelian. However, every
compact Abelian Lie group is a torus. Thus, our example in Subsection 2.6.1 has a natural
interpretation as a left-invariant flow on a compact Abelian Lie group.

2.6.3. Horocycle flows. Let P be a compact connected surface with a Riemannian met-
ric of negative curvature, and ξt be the geodesic flow restricted to the unit tangent
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bundle T 1P . The horocyle flow is the unit speed flow on T 1P whose orbits (referred
to as horocycles) are the strong stable manifolds W ss(z) of the geodesic flow,

W ss(z) =
{
z′ ∈ T 1M

∣∣∣ lim
t→∞

d(ξt (z
′), ξt (z)) = 0

}
.

As a particular case, assume that P is a surface of constant negative curvature. The
universal covering space is the Poincaré upper half-plane H with the Poincaré metric de-
noted ds. The geodesics in H are vertical lines and circles orthogonal to the real axis, and
the horocycles are horizontal lines and circles tangent to the boundary. The orientation-
preserving isometries of H are the linear fractional transformations, i.e., the elements of

PSL(2,R) =
{
z 7→

az+ b

cz+ d

∣∣∣∣ ad − bc = 1
}
.

We can identify P as PSL(2,R)/0 where 0 is a discrete cocompact subgroup1 of
PSL(2,R). The geodesic flow is given by

ξt (z) =

(
et 0
0 e−t

)
z0

and the horocyle flow by

χt (z) =

(
1 t

0 1

)
z0.

When the surface P has (variable) negative curvature, the universal Riemannian covering
surface is the upper half-plane with metric f 2ds where f is a non-zero function. Then P
can be regarded as the quotient of this space via a discrete cocompact group of isometries.

The geodesic flow on the unit tangent bundle is Anosov. Hence the unit tangent bundle
is foliated by stable and unstable manifolds. When P is a surface, the stable and unstable
manifolds are 1-dimensional. The horocycle flow is the motion at unit speed along the
stable/unstable manifolds.

Hedlund [48] proved that the horocycle flow on a compact surface of constant neg-
ative curvature is minimal. Furstenberg [41] showed that it is uniquely ergodic (i.e., it
admits a unique ergodic measure). B. Marcus [63] proved the same result for compact
surfaces of variable negative curvature. Results on the minimality of the horocycle flow
in higher dimensions were obtained by Eberlein (see e.g. [36]). We note that for surfaces
the horocycle foliation is C2−ε [44] but in general not C2. This is enough for our result,
as argued in Subsection 5.7.

Hence, an interesting class of examples of external dynamical systems (N, χ) that can
be used in Theorem 2.1 comes from horocycle flows on compact connected manifolds of
negative curvature. We remark that horocycle flows do not determine perturbations of a
fixed frequency (as in the quasi-periodic case).

1 0 is cocompact if PSL(2,R)/0 is compact.
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2.6.4. Flows on homogeneous spaces. Let G be a Lie group, 0 a discrete subgroup, g :
R→ 0 a one-parameter subgroup, and χ : R×G/0→ G/0 theG-induced flow, given
by χt (z0) = (g(t)z)0. Then G/0 with the G-induced flow is a homogeneous space. An
element g ∈ G is unipotent if the adjoint2 Ad(g) of g is a unipotent matrix, i.e., 1 is its
only eigenvalue. If χt is unipotent for each t , then the flow χ is called a unipotent flow.

Ratner’s classification theory [74] asserts that when 0 is cocompact and the flow χ

is unipotent, if χ is uniquely ergodic then it is minimal. If Vol(G/0) < ∞, where Vol
denotes the Haar measure induced by χ , then the properties of minimality and unique
ergodicity are equivalent.

Hence, another interesting class of examples of external dynamical systems (N, χ)
that can be used in Theorem 2.1 are unipotent flows on homogeneous spaces of finite
volume which are uniquely ergodic. Some specific examples appear in, e.g., [76, 68, 83].

2.6.5. Celestial mechanics and astrodynamics. We consider the Kepler problem, de-
scribed by the Hamiltonian H(y, x) = 1

2 |y|
2
− 1/|x|. The solutions are conic sections or

collision orbits. The regularized Keplerian motions for H < 0 can be lifted to trajecto-
ries of the geodesic flow on S2. Let us consider this problem as a model for the motion
of a satellite around the Earth. Following [23], the set of C∞ Riemannian metrics on S2

whose geodesic flow contains a non-trivial hyperbolic basic set is open and dense in the
C2-topology. Thus, we can choose a Riemannian metric that approximates the standard
S2-metric and for which there exists a hyperbolic closed geodesic with transverse homo-
clinic connection, satisfying conditions A1, A2. A closed geodesic will correspond to a
closed orbit around the Earth. The motion of the Moon and the Sun can be regarded as a
quasi-periodic forcing, as in A3. It seems possible that the method used to prove Theo-
rem 2.2, which is constructive, can be adapted to this example in order to design explicit
maneuvers on how to move, in specific ways, the satellite from one closed orbit to an-
other around the Earth, or to increase the size and shape of a satellite orbit. The fact that
an approximation to the metric on S2 is used in this argument will result in some errors
that can be corrected by low energy maneuvers. Satellite trajectory repositioning is very
useful in astrodynamics: see, e.g., [70]. Some papers of related interest are [2, 1].

We should point out that in the above model we treat the satellite as an infinitesi-
mal mass, that is, it moves under the gravitational influence of the other bodies (Earth,
Sun, Moon) without exerting a gravitational influence on them. This situation is usually
referred to in celestial mechanics as a restricted problem, and is an approximation of
the full problem, when all bodies are considered to have positive masses and exert mu-
tual gravitational influences. In a restricted problem, as is the case here, it is possible to
achieve an energy growth of the infinitesimal mass while the total energy of the remain-
ing bodies is conserved; of course, in the full problem, the energy growth of one mass is
accompanied by an equal energy loss of the rest of the system. While idealized models,
restricted problems are regarded as standard models in Hamiltonian dynamics, and they
are successfully used in applications to astrodynamics [67].

2 The adjoint Ad(g) of g is the derivative of the map 9g : G → G, z 7→ gzg−1, at e, i.e.,
Ad(g) = (d9g)e : TeG → TeG, where d is the differential and TeG is the tangent space at the
origin e.
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3. Geometric method

In this section we review briefly the geometric method to study perturbations of the
geodesic flow developed in [29]. This method is based on the theory of normally hy-
perbolic invariant manifolds and on the scattering map. We will take the general set-up
from [29] but we will make substantial modifications.

We consider the parameter-dependent Hamiltonian H : T ∗M × N → R given by
H(x, y, θ) = H0(x, y) + V (x, θ). The Hamilton equations and the parameter evolution
equation are

dx

dt
=
∂H0

∂y
,

dy

dt
= −

∂H0

∂x
−
∂V

∂x
,

dθ

dt
= X(θ).

(3.1)

We write the corresponding flow ψ : T ∗M ×N × R→ T ∗M ×N as

ψt (x, y, θ) = (ξt (x, y, θ), χt (θ)), (3.2)

where χt is the flow defined by the vector field X on N .

3.1. Normal hyperbolicity

First we consider the unperturbed system, which is described by the Hamiltonian H0
given by (2.1). Each energy manifold 6E = {(x, y) | H0(x, y) = E} is invariant under
the geodesic flow ξt (now viewed as the Hamiltonian flow of H0). We will denote by
ξE,t = (ξ

x
E,t , ξ

y
E,t ) a trajectory of the geodesic flow lying on6E . By the rescaling property

of the geodesic flow, assumptions A1 and A2 imply that for each energy level E there
exists a periodic orbit λE that is hyperbolic in 6E , and a transverse homoclinic orbit γE
to λE in 6E .

We consider a sufficiently large initial energy level E∗ ≥ 0 (to be specified later
in the argument), and we define the 2-dimensional cylinder 30 =

⋃
E≥E∗

λE in T ∗M .
Note that 30 is a manifold with boundary but the flow is tangent to the boundary. This
is a normally hyperbolic invariant manifold for the Hamiltonian flow on T ∗M , whose
stable and unstable manifolds are given by W s(30) =

⋃
E≥E∗

W s(λE) and Wu(30) =⋃
E≥E∗

Wu(λE), respectively. The stable and unstable manifolds of30 intersect transver-
sally along the 2-dimensional homoclinic manifold 00 =

⋃
E≥E∗

γE in T ∗M .

3.2. Scaled coordinates

We now rescale the coordinates (x, y) and the time t so that, for high energies, the flow
corresponding to the rescaled Hamiltonian is a small and slow perturbation of the geodesic
flow. For E∗ sufficiently large we introduce a new parameter ε = 1/

√
E∗; we note that

E∗→∞ if and only if ε→ 0.
The rescaled coordinates are (q, p) defined by q = x, p = εy, and the rescaled

time s is given by s = t/ε. The variable θ remains unchanged. The parameter-dependent
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Hamiltonian in these new variables is

Hε(q, p, θ) = H0(q, p)+ ε
2V (q, θ) = ε2H(x, y, θ). (3.3)

The corresponding Hamilton equations and the parameter evolution equation are

dq

ds
=
∂H0

∂p
,

dp

ds
= −

∂H0

∂q
− ε2 ∂V

∂q
,

dθ

ds
= εX(θ).

(3.4)

The corresponding flow ψεs is of the form ψεs = (ξ
ε
s (q, p, θ), χ

ε
s (θ)).

When ε → 0, the flow χεs approaches the constant flow idθ on N , and the flow ξ εs
approaches the flow ξs in the Cr−1-topology. The limiting flow

ψs = (ξs, idθ )

on the extended phase space T ∗M × N has a normally hyperbolic invariant mani-
fold 3̃0 =

⋃
E≥E∗

λE × N , since the exponential expansion rates of ξs are larger
than those of idθ . The stable and unstable manifolds of 3̃0 are given by W s(3̃0) =⋃
E≥E∗

W s(λE) × N and Wu(3̃0) =
⋃
E≥E∗

Wu(λE) × N , respectively. Obviously,
Wu(3̃0) and W s(3̃0) intersect transversally along the (2 + d)-dimensional homoclinic
manifold 0̃0 =

⋃
E≥E∗

γE ×N in T ∗M ×N .
Now we refer to the theory of normal hyperbolicity (see [50, 38, 6]) that shows that

the invariant manifolds, which were identified in the limiting system, survive as locally
invariant manifolds for the perturbed system. A very explicit proof of this can be found
in [30]. The locally invariant manifolds are exactly invariant for a modified system con-
structed explicitly in [30]. The modifications are supported on E ≤ E0. When we refer to
stable and unstable manifolds, we mean the stable and unstable manifolds of the extended
system. Since we will be considering orbits whose energy stays large enough (in particu-
lar in regions where the extended system agrees with the original system), the orbits we
construct will also be orbits of the original system.

Remark 3.1. When the system is differentiable enough and the perturbation is periodic
or Diophantine, it is easy to remark [29] that the invariant manifold will contain KAM tori
that act as boundaries, so that the manifold is in fact invariant. Of course, the argument in
this paper does not require any differentiability and works for general perturbations.

Since ε enters both the size of the perturbation parameter and the time reparametrization,
in order to apply the standard normally hyperbolicity theory one can rewrite the per-
turbed Hamiltonian as a two-parameter problem, with one parameter for the size of the
perturbation and the other for the time change, and prove the persistence of the normally
hyperbolic, locally invariant manifold from the unperturbed case to the perturbed case for
all small enough sizes of the perturbation and uniformly in the time change parameter
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(see [29, 30]). In the end, it follows that, for all sufficiently small ε (and implicitly for all
sufficiently large E∗) the manifold 3̃0 can be continued to a normally hyperbolic locally
invariant manifold 3̃ε = 3ε ×N for the flow ψεs .

Moreover, the manifold 3̃ε depends smoothly on the parameter ε, in the sense that
there exists a Cr−1-smooth parametrization k̃ε : 3̃0 → 3̃ε of 3̃ε, of the type k̃ε =
(kε, idθ ), which depends Cr−2-smoothly on the parameter, such that k̃ε(3̃0) = 3̃ε (and,
in particular, kε(30) = 3ε).

In addition, there exist stable and unstable manifolds Wu(3̃ε) and W s(3̃ε) that vary
Cr−1-smoothly with ε. Similarly, there exist Cr−1-smooth parametrizations k̃sε : W

s(3̃0)

→ W s(3̃ε), k̃uε : W
u(3̃0)→ Wu(3̃ε) of the local stable and unstable manifolds of 3̃ε,

which agree with k̃ε on 3̃0.
Since transversality is an open condition,Wu(3̃ε) andW s(3̃ε) intersect transversally

along a locally unique homoclinic manifold 0̃ε = 0ε×N for all ε sufficiently small (and
so for all sufficiently large E∗).

3.3. Action-angle coordinates

For the unperturbed system, on the normally hyperbolic invariant manifold30 we can put
a system of action-angle coordinates (J, φ), where the action coordinate is J =

√
2E,

and the angle coordinate φ ∈ T1 is symplectically conjugate to J , i.e., dJ ∧ dφ =
(dy∧dx)|30 . The unperturbed Hamiltonian is integrable on30, and it takes the following
form in the action-angle coordinates:

H0(φ, J ) =
1
2J

2. (3.5)

The unperturbed Hamiltonian flow on30 takes the form J (t) = J , φ(t) = φ0+J t . Thus
30 is foliated by invariant tori TE = {(J, φ) | J =

√
2E, φ ∈ T1

} corresponding to each
energy level H0 = E ≥ E∗.

For the perturbed system, the action-angle coordinate system (J, φ) on30 can be con-
tinued via kε to an action-angle coordinate system (Jε, φε) on 3ε. In these coordinates,
the perturbed Hamiltonian function restricted to 3ε takes the form

Hε(φε, Jε, θ) =
1
2J

2
ε + ε

2V (φε, Jε, θ), (3.6)

where V (φε, Jε, θ) is obtained by expressing V (φ, J, θ) in these coordinates. The Hamil-
ton equations and the parameter evolution equation are

dφε

ds
= Jε + ε

2 ∂V

∂Jε
,

dJε

ds
= −ε2 ∂V

∂φε
,

dθ

ds
= εX(θ).

(3.7)

Note that, in general, the foliation of 30 by invariant tori TE in the unperturbed case
does not survive to the perturbed case. For a perturbation driven by a general external
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flow χ on N we cannot apply the KAM theorem since the perturbation affecting the tori
is not necessarily periodic/quasi-periodic. For the same reason, we cannot apply averag-
ing theory as in [45], since we cannot obtain level sets of the action that remain almost
invariant for sufficiently long time.

3.4. The scattering map

A key tool to study the dynamics of a normally hyperbolic invariant manifold with a
transverse homoclinic manifold is the scattering map [29]. The role of the scattering map
is to relate the past asymptotic trajectory of an orbit in the homoclinic manifold to its
future asymptotic trajectory. An extended study of the scattering map and its geometric
properties can be found in [32].

Here we briefly recall the construction of the scattering map. We consider a flow on
some manifold P . Let 3 be a normally hyperbolic invariant manifold for the flow, with
the unstable and stable manifolds Wu(3) and W s(3) intersecting transversally along a
homoclinic manifold 0. This means that 0 ⊆ Wu(3) ∩W s(3) and, for each z ∈ 0,

TzP = TzW
u(3)+ TzW

s(3), Tz0 = TzW
u(3) ∩ TzW

s(3). (3.8)

By the normal hyperbolicity of 3, Wu(3) is foliated by 1-dimensional fibers Wu(z),
z ∈ 3, andW s(3) is foliated by 1-dimensional fibersW s(z), z ∈ 3. For each z ∈ Wu(3)

there exists a unique z− ∈ 3 such that z ∈ Wu(z−), and for each z ∈ W s(3) there exists
a unique z+ ∈ 3 such that z ∈ W s(z+). We define the wave maps

�+ : W s(3)→ 3, �+(z) = z+,

�− : Wu(3)→ 3, �−(z) = z−.
(3.9)

These maps are differentiable.
To define the scattering map, we make the additional assumption that for each z ∈ 0,

TzW
s(3) = TzW

s(z+)⊕ Tz(0), TzW
u(3) = TzW

u(z−)⊕ Tz(0). (3.10)

By restricting 0 to some open subset of it if necessary, we can ensure that the restric-
tions of�± to 0 are diffeomorphisms. We define the scattering map associated to 0 to be
the diffeomorphism S = �+ ◦ (�−)−1 from U− := �−(0) in 3 to U+ := �+(0) in 3.

As pointed out in [32], the scattering map can be defined in an analogous way in
the case of time-dependent systems. In this case, one considers a flow associated to a
skew product vector field (Y (z, θ),X(θ)) on a product manifold P ×N , where the skew
product vector field is assumed to be close to an autonomous vector field, i.e.,

‖Y (z, θ)− Y0(z)‖Cr � 1

for some vector field Y0(z) on P .
Assume that there exists a normally hyperbolic invariant manifold30 in P for the flow

of Y0(z). Let S0 be the scattering map associated to a homoclinic channel 00. Assuming
that the exponential rates of the flow on N are smaller than the exponential rates for
the flow on P , it follows that 30 × N is normally hyperbolic for the product flow of
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(Y0(z),X(θ)), that 00×N is a homoclinic channel, and that the corresponding scattering
map S̃0 is a product of the form S̃0(z, θ) = (S0(z), θ).

By the theory of normal hyperbolicity, there exists a normally hyperbolic invariant
manifold close to 30 × N in P × N for the flow of (Y (z, θ),X(θ)), provided Y (z, θ)
is sufficiently close to Y0(z) in the sense described above. There also exists a homoclinic
channel close to 0 × N . The corresponding scattering map takes the skew product form
S̃(z, θ) = (S(z, θ), θ).

3.5. The scattering map for the unperturbed geodesic flow

In the case of the unperturbed geodesic flow, described by the Hamiltonian H0, condition
(3.8) is satisfied in view of assumption A2, and (3.10) follows from the fact that 30 is
foliated by the invariant tori TE . The scattering map preserves each of these invariant tori
and it only changes the phase φ along each torus by an amount a that is independent of the
torus. The scattering map S0 : U

−

0 → U+0 is expressed relative to the (J, φ)-coordinates
on 30 by

S0(J
−, φ−) = (J+, φ+) = (J−, φ− + a), (3.11)

where J− = J+ and the phase shift a = φ+ − φ− is independent of the point z− =
z−(φ−, J−) in U−0 , as it only depends on the homoclinic manifold 00.

Remarkably, in this case the scattering map can be globally defined as a continuous
map on the whole of 30, as it has no monodromy (see [32]). The continuation, how-
ever, is rather subtle because when the base point moves along a non-contractible closed
curve in 3, the point of homoclinic intersection changes. As already observed in [29],
this causes that after perturbations, the global definition may be impossible. When we
continue the scattering map along a non-contractible closed curve, we may end up with a
different map.

3.6. The scattering map for the perturbed geodesic flow

We now describe the scattering map for the system (3.4). We stress that we use the nota-
tion ˜ to denote the variables in the extended system. That is, ˜ refers to adding the extra
variable θ ∈ N .

It is important to note that if the dynamics in N has a small growth rate—which
happens in our case for small enough ε because the dynamics is given by the vector
field εX—then we can apply the theory of scattering maps for non-autonomous systems
recalled in Subsection 3.4.

As described in Subsection 3.2, 3̃ε = 3ε × N is a normally hyperbolic invariant
manifold for the extended dynamics given by ψεs . Furthermore, W s(3̃ε) = W

s(3ε)×N

is the stable manifold of 3̃ε under the extended dynamics. We also have W s(z, θ) =

W s(z)× {θ}, and analogously for the unstable manifold.
Hence, if 0ε is a homoclinic manifold satisfying (3.8) and (3.10), we see that 0̃ε =

0ε × N will also satisfy (3.8) and (3.10) in the extended system. The wave maps (3.9)
associated to 0̃ε in the extended system can be written as

�̃±ε (z, θ) = (�
±
ε (z, θ), θ).
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Therefore, if we can associate a scattering map to 0ε, we can also associate a scatter-
ing map to 0̃ε and we have

S̃ε(z, θ) = (Sε(z, θ), θ).

Note that the scattering map is the identity in the N component. For θ fixed, let Sε,θ
denote the map given by Sε,θ (z) = Sε(z, θ).

We can think of the scattering map either as the mapping S̃ε, or as a family of map-
pings Sε,θ , indexed by the parameter θ . As proved in [32], the mappings S̃ε and Sε,θ are
smooth and depend smoothly on parameters.

It is proved in [32] that Sε,θ is symplectic as a mapping on a domain in 3ε if the flow
is a time-dependent symplectic flow. (It is also proved in [32] that 3ε is a symplectic
manifold.)

In our situation, one of the consequences of the smooth dependence on parameters
of 3̃ε and of its stable and unstable manifolds is that we can find regions U±0 ⊂ 30

which are independent of ε, for 0 < ε ≤ ε0 � 1, such that k̃ε(U±0 ×N) ⊆ Ũ
±
ε , where k̃ε

is the parametrization of 3̃ε described in Subsection 3.2.
Via the parametrization k̃ε, we can consider the scattering map Sε,θ as defined

from U−0 to U+0 , for θ ∈ N . That is, we can consider the scattering map as being defined
between domains that are of product type and are independent of ε (of size of orderO(1)).

4. Elementary building blocks for the dynamics

In this section we construct some elementary building blocks of the dynamics. Each build-
ing block is a pseudo-orbit determined by one application of the scattering map followed
by the application of the inner dynamics for some time. The repeated construction of such
elementary building blocks will produce a two-dynamics pseudo-orbit which intersperses
the scattering map dynamics with the inner dynamics.

In Section 5.3, given a sequence of elementary building blocks, we will construct a
sequence of windows which are correctly aligned by the dynamics. Afterwards, we will
use the shadowing property of correctly aligned windows from Subsection 5.1 to deduce
the existence of a true orbit following the sequence of elementary building blocks.

4.1. The effect of the scattering map on the scaled energy

The goal of this section is to compute the change of the energyHε by one of the scattering
maps when ε ∈ (0, ε0), for ε0 sufficiently small. Our goal will be to obtain estimates
uniform in ε. The main observation is that the energy is a slow variable.

4.1.1. Preliminaries. We will be working with the scaled flow (3.1) in a fixed bounded
range of scaled energies, which we choose to be Hε ∈ [1, 2]. This determines a compact
subset H−1

ε [1, 2] ∩ 3̃ε in 3̃ε. Of course, obtaining estimates for all ε ∈ (0, ε0) corre-
sponds to letting the physical variables (x, y) take values in a non-compact domain.

When we will say that some error term is bounded by a constant (or by O(εa)) it will
mean uniformly in that compact set.
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Denote by

ψεs (z̃ε) ≡ (ξ
ε,q
s (z̃ε), ξ

ε,p
s (z̃ε), χ

ε
s (θ))

the trajectory of the scaled Hamilton equations (3.4) with initial condition z̃ε = (zε, θ) ∈
T ∗M ×N . We have

d

ds
Hε(ψ

ε
s (z̃ε)) = ε

3
∇θV (ξ

ε,q
s (z̃ε), χ

ε
s (θ)) ·X(χ

ε
s (θ)) ≡ ε

3DXV (ξ
ε,q
s (z̃ε), χ

ε
s (θ)).

(4.1)

Here we regard d
ds
Hε as a functional acting on the solution curves of the Hamiltonian

equations (3.4) in the extended phase space.
We will compute the leading term in ε of the change in energy by a scattering map in

the perturbed equation (see Subsection 3.6).
In the rest of the subsection, we will consider a fixed homoclinic intersection 0̃ε, and

we will denote by S̃ε the corresponding scattering map.
The scattering map is defined from some domain to some range in 3̃ε. Since the

manifold 3̃ε depends on ε, it is convenient to reduce the scattering map to some manifold
which is independent of ε. We use the fact that the manifold 3̃ε is diffeomorphic to the
manifold 3̃0 via the parametrization k̃ε mentioned in Subsection 3.2. It is important to
note that k̃ε is ε-close to the identity relative to the Cr -topology for ε small. We will use
this fact below, when we compute the leading term in the expansion with respect to ε of
the change of energy by the scattering map; we will be able to approximate k̃ε by the
identity and incur only error terms which are subdominant. Moreover, k̃ε can be chosen
so that it is symplectic [30].

As 30 is foliated by geodesics λE , E ≥ E∗, we can parametrize 30 by the map
(E, s) 7→ λE(s), where E ≥ E∗ and the time s is considered mod (1/

√
2E), i.e. λE(s) =

λE(s
′) if s′ − s ∈ (1/

√
2E) · Z. Hence, we can parametrize 3ε by (E, s) 7→ kε(λE(s)).

Thus, each point zε ∈ 3ε can be written as zε = kε(λE(s)) for some unique E and s.
Note that E and s depend on both the point zε ∈ 3ε and the perturbation parameter ε.
Therefore, each point z̃ε ∈ 3̃ε with z̃ε = (zε, θ) can be written as z̃ε = k̃ε(λ̃E(s)), where
λ̃E(s) = (λE(s), θ).

Via the parametrization k̃ε, instead of S̃ε we consider the reduction S̃oε = k̃
−1
ε ◦S̃ε◦k̃ε :

k̃−1
ε (Ũ−ε )→ k̃−1

ε (Ũ+ε ); note that the domain and codomain of S̃oε are subsets of 3̃0. We
note that when ε → 0 the scattering map S̃oε approaches the unperturbed scattering map
S0 in the Cr−1-topology.

Since on 30 we consider two coordinate systems, (E, s) and (J, φ), we would like to
make explicit the unperturbed scattering map in both coordinates. Given S0(z

−) = z+,
in the action-angle coordinates, if z− = (J−, φ−), z+ = (J+, φ+), then J− = J+ and
φ− + a = φ+, and in the energy-time coordinates, if z− = (E−, s−), z+ = (E+, s+),
then E− = E+ and s− + a/

√
2E = s+.

4.1.2. The effect of the scattering map on the scaled energy. The first goal of this sub-
section is getting quantitative estimates on the change of scaled energy achieved by the



Perturbations of geodesic flows 925

scattering map:

1(z̃−ε ) := Hε(z̃
+
ε )−Hε(z̃

−
ε ) = Hε(S̃ε(z̃

−
ε ))−Hε(z̃

−
ε ). (4.2)

We will write each point z̃−ε as (kε(E, s), θ) for some E, s, θ . We will express the leading
term of the expansion of 1(z̃−ε ) with respect to ε in terms of the unperturbed system, and
specifically in terms of the variables (E, s, θ).

Proposition 4.1. Let z̃−ε = (kε(λE(s)), θ) ∈ Ũ
−
ε and z̃+ε = S̃ε(z̃

−
ε ). The change of the

scaled energy Hε by the scattering map from z̃−ε to z̃+ε is given by

1(z̃−ε ) = ε
311(E, s, θ)+O(ε

4
|ln ε|), (4.3)

where the leading term 11 in the expansion with respect to ε is given by

11(E, s, θ) = lim
T±→±∞

[∫ T+

T−

(DXV )(γ
q
E(σ ), θ) dσ

−

∫ T+

0
(DXV )

(
λ
q
E(σ + s + a/

√
2E), θ

)
dσ −

∫ 0

T−

(DXV )(λ
q
E(σ + s), θ) dσ

]
. (4.4)

Proof. Let z̃ε = (�̃−)−1(z̃−ε ) = (�̃+)−1(z̃+ε ) ∈ 0̃ε. We start by noting that the orbit
starting at z̃ε is asymptotic in the future to the orbit of z̃+ε and in the past to the orbit
of z̃−ε . We can write

1(z̃−ε ) = lim
T±→±∞

[Hε(ψ
ε
T+
(z̃ε))−Hε(ψ

ε
T−
(z̃ε))

−Hε(ψ
ε
T+
(z̃+ε ))+Hε(z̃

+
ε )+Hε(ψ

ε
T−
(z̃−ε ))−Hε(z̃

−
ε )]. (4.5)

By the fundamental theorem of calculus, we have

1(z̃−ε ) = lim
T+→∞
T−→−∞

[∫ T+

T−

(
d

dσ
Hε

)
(ψεσ (z̃ε)) dσ

−

∫ T+

0

(
d

dσ
Hε

)
(ψεσ (z̃

+
ε )) dσ −

∫ 0

T−

(
dHε

dσ

)
(ψεσ (z̃

−
ε )) dσ

]
= lim
T+→∞

∫ T+

0

[(
d

dσ
Hε

)
(ψεσ (z̃ε))−

(
d

dσ
Hε

)
(ψεσ (z̃

+
ε ))

]
dσ

+ lim
T−→−∞

∫ 0

T−

[(
d

dσ
Hε

)
(ψεσ (z̃ε))−

(
d

dσ
Hε

)
(ψεσ (z̃

−
ε ))

]
dσ. (4.6)

It is important to remark that the integrands in (4.6) converge exponentially fast. So
do their derivatives of low order with respect to the initial conditions. It is shown in [32]
that there is exponential convergence of the integrands in (4.6) for the derivatives of order
lower than the ratio of the Lyapunov exponents in the stable and unstable directions and
the Lyapunov exponents tangent to the manifold. In our case, since the directions tangent
to the manifold have zero exponent for ε = 0, one can deduce that the number of deriva-
tives of the integrands that converge exponentially fast is arbitrarily large for ε small. In
the arguments presented in this paper, we will need just a moderate number of derivatives.
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Our next goal is to prune (4.6) to extract a convenient expression for the leading term.
By the exponential convergence of the integrands, we see that for appropriately chosen

constant K > 0, if we take T+ = −T− = K|ln ε|, the integrals differ from the limit by
no more than O(ε4). Therefore,

1(z̃−ε ) =

∫ K|ln ε|

−K|ln ε|

(
d

dσ
Hε

)
(ψεσ (z̃ε)) dσ −

∫ K|ln ε|

0

(
d

dσ
Hε

)
(ψεσ (z̃

+
ε )) dσ

−

∫ 0

−K|ln ε|

(
d

dσ
Hε

)
(ψεσ (z̃

−
ε )) dσ +O(ε

4). (4.7)

We now express 1(z̃−ε ) in terms of the orbits of the unperturbed flow. By the
smooth dependence on parameters of solutions of ordinary differential equations, for
|σ | ≤ K|ln ε|, we have that the orbits of the perturbed system are O(ε|ln ε|)-close to
the corresponding orbits of the unperturbed flow. Notice that, because ε|ln ε| is small,
the separation between the orbits is still growing linearly and has not yet started to grow
exponentially fast with time [78, estimate (3.5.4)].

More precisely, the orbits ξ εσ (z̃
±
ε ) are O(ε|ln ε|)-close to the orbit (λE, χε) where λE

is a closed geodesic, and the orbit ξ εσ (z̃ε) is O(ε|ln ε|)-close to (γE, χε), where γE is a
homoclinic orbit to λE for the geodesic flow. Also, in these intervals of time, the variable
θ changes only by O(ε|ln ε|). Thus, for |σ | ≤ K|ln ε|, we have

d(ψεσ (z̃ε), γ̃E(σ )) ≤ Cε|ln ε|

d(ψεσ (z̃
−
ε ), λ̃E(σ + s)) ≤ Cε|ln ε|,

d
(
ψεσ (z̃

+
ε ), λ̃E(σ + s + a/

√
2E)

)
≤ Cε|ln ε|,

for some constant C > 0, where γ̃E(σ ) = (γE(σ ), θ) and λ̃E(σ ) = (λE(σ ), θ).
Therefore, substituting in the integral in (4.7) the orbits of the geodesic flow instead

of the orbits of the perturbed flow and keeping θ constant, we incur an error O(ε4
|ln ε|).

Using also the notation DXV introduced in (4.1), we obtain

1(z̃−ε ) =

∫ K|ln ε|

−K|ln ε|

(
d

dσ
Hε

)
(γ̃E(σ )) dσ −

∫ K|ln ε|

0

(
d

dσ
Hε

)
(λ̃E(σ +s+a/

√
2E)) dσ

−

∫ 0

−K|ln ε|

(
d

dσ
Hε

)
(λ̃E(σ +s)) dσ +O(ε

4
|ln ε|)

= ε3
∫ K|ln ε|

−K|ln ε|
(DXV )(γ

q
E(σ ), θ) dσ

−ε3
∫ K|ln ε|

0
(DXV )(λ

q
E(σ +s+a/

√
2E), θ) dσ

−ε3
∫ 0

−K|ln ε|
(DXV )(λ

q
E(σ +s), θ) dσ +O(ε

4
|ln ε|), (4.8)

where λqE, γ
q
E denote the q-components of λE, γE , respectively.



Perturbations of geodesic flows 927

Finally, because of the exponentially fast convergence we can change the integral over
O(ln ε) time interval as t →∞ incurring an error O(ε4), so we obtain:

1(z̃−ε ) = ε
3 lim
T+→∞
T−→∞

[∫ T+

T−

(DXV )(γ
q
E(σ ), θ) dσ

−

∫ T+

0
(DXV )(λ

q
E(σ + s + a/

√
2E), θ) dσ −

∫ 0

T−

(DXV )(λ
q
E(σ + s), θ) dσ

]
+O(ε4

|ln ε|)

= ε3
[

lim
T+→∞

∫ T+

0
[(DXV )(γ

q
E(σ ), θ)− (DXV )(λ

q
E(σ + s + a/

√
2E), θ)] dσ

+ lim
T−→−∞

∫ 0

T−

[(DXV )(γ
q
E(σ ), θ)− (DXV )(λ

q
E(σ + s), θ)] dσ

]
+O(ε4

|ln ε|)

= ε311(E, s, θ)+O(ε
4
|ln ε|). (4.9)

In the last line we have just defined11 = 11(E, s, θ) as the leading term of1 = 1(z̃−ε ),
where z̃−ε = (kε(λE(s)), θ) ∈ Ũ

−
ε . ut

Notice that in the above argument we used the exponential convergence of the integrands
to justify the change of the limits, which is often done in Melnikov theory.

It is important to realize that the expression for the leading term 11 is in terms of the
unperturbed trajectories and depends only on the perturbing potential. It can be consid-
ered as a global Melnikov function. In contrast with many standard treatments in which
the Melnikov function is only defined for periodic or quasi-periodic orbits, (4.9) is well
defined for all orbits in the domain of the scattering map independently of what is their
dynamics. Also, note that the function 11 can be viewed as an analogue of what was
called the reduced Poincaré function in [29, 30].

4.1.3. The effect of the scattering map on the action-angle coordinates. Using action-
angle coordinates, we write the geodesic λE(s) as λJ 2/2(s) and the homoclinic γE(s)
as γJ 2/2(s), where E = J 2/2. By the rescaling property of the geodesic flow (2.3) we
have λJ 2/2(s) = λ1(J s) and γJ 2/2(s) = γ1(J s). Note that for an energy E = 1 the
corresponding action is J =

√
2. By a change of variable we obtain

11(J, φ, θ) = lim
T+→∞

∫ T+

0
[(DXV )(γ

q

J 2/2(σ ), θ)− (DXV )(λ
q

J 2/2(σ + φ + a), θ)] dσ

+ lim
T−→−∞

∫ 0

T−

[(DXV )(γ
q

J 2/2(σ ), θ)− (DXV )(λ
q

J 2/2(σ + φ), θ)] dσ
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= lim
T+→∞

∫ T+

0
[(DXV )(γ

q

1 (Jσ ), θ)− (DXV )(λ
q

1(J (σ + φ + a)), θ)] dσ

+ lim
T−→−∞

∫ 0

T−

[(DXV )(γ
q

1 (Jσ ), θ)− (DXV )(λ
q

1(J (σ + φ)), θ)] dσ

=
1
J
11(
√

2, Jφ, θ).

Thus, we have the following rescaling property of11 relative to action-angle coordinates:

11(J, φ, θ) =
1
J
11(
√

2, Jφ, θ). (4.10)

4.2. Change of energy over an elementary building block of a pseudo-orbit

The goal of this section is to compute the change of energy over an elementary building
block of a pseudo-orbit, which consists in applying the scattering map followed by ap-
plying the inner dynamics for some prescribed time. Later we will also formulate some
conditions that ensure that the effect on the energy is non-trivial. Of course, this requires
some choices (e.g., the time we decide to follow the inner dynamics), and, given the
choices made, some non-degeneracy assumptions on the perturbations (e.g., a perturba-
tion that vanishes identically will not produce any effect).

We first compute the energy change over an elementary building block obtained by
starting at a point z̃−ε = (zε, θ), applying the scattering map, and then applying the inner
dynamics for some time. We specify the time for which we apply the inner dynamics
implicitly by requiring that the change of angle coordinate along the pseudo-orbit starting
from z̃−ε is some fixed numberL, chosen sufficiently large, to be specified later. We denote
such an elementary building block by B(z̃−ε ).

As specified before, we focus on a bounded energy range Hε ∈ [1, 2]. From Sub-
section 4.1, the leading term in the energy change (4.9) depends on the effect of the
perturbing potential on the unperturbed trajectories. Let z̃−ε = (kε(λE(s)), θ), with E in
the energy range. Assume that the angle-action coordinates of λE(s) ∈ 30 are (J, φ)with
J =
√

2E.
By (3.11) the effect of the unperturbed scattering map on30, taking a point z− to z+,

is to increase the angle coordinate φ by a. The scaled time s to follow the inner dynamics
starting from z+ and ending at a point of angle coordinate L is (L− a)/

√
2E. Hence, in

terms of the unperturbed system, one follows the geodesic flow trajectory λE(s) for the
time interval s ∈ [a/

√
2E,L/

√
2E].

In the perturbed system, we choose to follow the inner dynamics for the same time
interval, which is independent of ε. Since the energy is a slow variable and we are consid-
ering only scaled times of order 1, the change of energy during the time spent along the
inner dynamics can be computed, with a very small error, using the fundamental theorem
of calculus.

This implies that the change of energy along an orbit segment starting at some
point z̃+ε = (z+ε , θ

+), where θ+ = χε
a/
√

2E
(θ), and following it for a time interval
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s ∈ [a/
√

2E,L/
√

2E] is∫ L/
√

2E

a/
√

2E

d

dt
Hε(ξ

ε
σ (z
+
ε ), χ

ε
σ (θ)) dσ = ε

3
∫ L/

√
2E

a/
√

2E
(DXV )(λ

q
E(σ ), θ) dσ +O(ε

4
|ln ε|).

Proposition 4.2. Let z̃−ε = (kε(λE(s), θ), and S̃ε(z̃−ε ) = z̃+ε . Consider an elementary
building block consisting of one application of the scattering map S̃ε(z̃−ε ) = z̃+ε , and a
trajectory segment with initial point z̃+ε following the inner dynamics for a time interval
s ∈ [a/

√
2E,L/

√
2E]. The change G(z̃−ε ) of scaled energy Hε over the building block

is of the form
G(z̃−ε ) = ε

3G1(E, s, θ)+O(ε
4
|ln ε|), (4.11)

where G1, the leading term of G, is given by

G1(E, s, θ) = lim
T+→∞
T−→−∞

[∫ T+

T−

(DXV )(γ
q
E(s), θ) dσ

−

∫ T+

0
(DXV )(λ

q
E (σ + s + a/

√
2E), θ) dσ −

∫ 0

T−

(DXV )(λ
q
E(σ + s), θ) dσ

+

∫ L/
√

2E

a/
√

2E
(DXV )(λ

q
E(σ ), θ) dσ

]
. (4.12)

Proof. By the fundamental theorem of calculus, the change of energy along an orbit seg-
ment starting at z̃+ε and following it for a time interval s ∈ [a/

√
2E,L/

√
2E] is∫ L/

√
2E

a/
√

2E

d

dt
Hε(ξ

ε
s (z
+
ε ), χ

ε
s (θ)) ds = ε

3
∫ L/

√
2E

a/
√

2E
(DXV )(λ

q
E(s), θ) ds +O(ε

4
|ln ε|).

Combining this with (4.9), we see that, over an elementary building block, the energy has
changed by

G(z̃−ε ) = 1(z̃
−
ε )+

∫ L/
√

2E

a/
√

2E

d

dt
Hε(ξ

ε
s (z
+
ε ), χ

ε
s (θ)) ds

= ε3
[
11(z̃

−

0 )+

∫ L/
√

2E

a/
√

2E
(DXV )(λ

q
E(s), θ) ds

]
+O(ε4

|ln ε|).

In conclusion,
G(z̃−ε ) = ε

3G1(E, s, θ)+O(ε
4
|ln ε|). ut

Similarly to (4.10), we have the following rescaling property of G1 relative to action-
angle coordinates:

G1(J, φ, θ) =
1
J
G1(
√

2, Jφ, θ). (4.13)

We make two important remarks.
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Remark 4.3. For the scattering map S̃ε(z̃−ε ) = z̃+ε , there is no trajectory of the sys-
tem asymptotic to z̃−ε in the past and to z̃+ε in the future. Rather, ψεT−(z̃ε) will approach
ψεT−(z̃

−
ε ) as T− → −∞, and ψεT+(z̃ε) will approach ψεT+(z̃

+
ε ) as T+ → ∞. Here z̃ε =

(�̃−)−1(z̃−ε ) = (�̃+)−1(z̃+ε ). For −T− = T+ = K|ln ε|, the change of energy 1(z̃−ε )
along the homoclinic trajectory from ψεT−(z̃ε) to ψεT+(z̃ε) is the same as in (4.9), up to an
error term which is subdominant.

Remark 4.4. Similarly, if instead of fixing the angle shift to be a constant value L, we
allow choosing, for each elementary building block, a value of L which is constant plus
an O(ε)-term, the change of energy G(z̃−ε ) is the same as in (4.11), up to an error term
which is subdominant.

In Section 5.3 we will show that there is a trajectory of the dynamics that follows closely
the pseudo-orbit consisting of the segment of the homoclinic trajectory from ψεT−(z̃ε) to
ψεT+(z̃ε), followed by a segment of the trajectory of the inner flow (ψεs )|3̃ε

with initial
point ψεT+(z̃

+
ε ).

Based on these remarks, we will keep in mind that to an elementary building block
we can associate the following objects:

• one application of the scattering map S̃ε(z̃−ε ) = z̃
+
ε , plus one segment of the trajectory

of the inner flow (ψεs )|3̃ε
with initial point z̃+ε ;

• a pseudo-orbit, consisting of a segment of a homoclinic orbit from ψεT−(z̃ε) to ψεT+(z̃ε),
followed by a segment of the trajectory of the inner flow (ψεs )|3̃ε

with initial point
ψεT+(z̃

+
ε );

• a true orbit, which closely follows the pseudo-orbit described above.

The change of energy along either one of these objects is given by the estimate in Propo-
sition 4.2, up to a subdominant error term.

4.3. Generic set of potentials

In this section we specify the set V ′ of potentials claimed in Theorem 2.1. The potentials
V ∈ V ′ are required to satisfy a condition that ensures that one can achieve consis-
tent energy growth by applying the scattering map followed by the inner dynamics as in
Proposition 4.2.

A key observation is that since there exist a closed hyperbolic geodesic λE and a
corresponding transverse homoclinic orbit γE , by the Birkhoff–Smale Homoclinic Orbit
Theorem (see, e.g., [55]) there exist, in fact, at least two geometrically distinct homoclinic
orbits to the same geodesic. The existence of at least two homoclinic orbits can also be
deduced via variational methods. We shall denote a pair of such homoclinic orbits by
γ 1
E , γ 2

E , and the associated scattering maps S̃1
ε , S̃2

ε . We denote the corresponding leading
termsG1 from Proposition 4.2 byG1

1,G
2
1, respectively. The main idea is that, under some

generic condition on the potential V , utilizing one of the homoclinic orbits to grow energy
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will be more advantageous than utilizing the other, so one can select which one of the two
homoclinic orbits to use in a way to ensure a net gain of energy over time.

To express the generic condition on the potentials V ∈ V ′, we writeG1
1,G

2
1 in action-

angle coordinates. Indeed, the energy growth (4.11) along an elementary building block
depends only on the initial point z̃−ε = (kε(λJ 2/2(φ)), θ) ∈ 3̃ε of the block, and the
leading term G1 in (4.12) depends on the corresponding angle-action coordinates and
parameter value (J, φ, θ) corresponding to z̃−ε .

We define V ′ to be the set of potentials V for which the following non-degeneracy
condition holds:

A4. Fix J0 =
√

2 so the corresponding energy level of H0 is E0 = 1. Fix a non-trivial
uniformly recurrent point θ0 ∈ N . For the geodesic flow at this energy level there
exist two geometrically different homoclinic trajectories γ 1

E0
, γ 2
E0

to the same closed
geodesic λE0 , and a common domain Ũ for the corresponding scattering maps S̃1

ε , S̃
2
ε

such that
sup
φ1

G1
1(J0, φ1, θ0) 6= sup

φ2

G2
1(J0, φ2, θ0), (4.14)

where G1
1,G

2
1 are the leading terms of the energy gain, given by (4.12).

In the above, it is understood that the angles φ1, φ2 are restricted to some closed intervals
where (λJ 2

0 /2
(φ1), θ0) ∈ Ũ , (λJ 2

0 /2
(φ2), θ0) ∈ Ũ , where k̃ε(Ũ) is the domain (Ũ1

ε )
− of

S̃1
ε and also in the domain (Ũ2

ε )
− of S̃2

ε . Of course, a domain Ũ as in condition A4 is
not unique. The condition requires only the existence of at least one domain Ũ on which
(4.14) holds.

We notice that because we have assumed that the closed geodesics in the unit tangent
bundle have transverse homoclinic connections for the geodesic flow in the unit tangent
bundle, we can define the projections along each of the points on the orbit. Similarly, we
can lift for any value of the energy by the scaling invariance.

Therefore, we can always define locally two scattering maps and we can continue
them. The only obstruction to defining a scattering map in an arbitrary domain is that the
local continuation along a closed loop may have some monodromy. Each of the scattering
maps can be defined on any domain that does not contain essential circles, i.e., non-
contractible loops of the cylinder. Hence, the assumption in A4 that the two scattering
maps have a common domain is satisfied automatically.

Condition A4 is a condition on V along trajectories of the unperturbed system, as
shown by (4.12). This is an explicit condition, which can be verified for a given V along
a given closed geodesic and a given pair of homoclinic orbits to that closed geodesic.

Assuming condition A4, suppose, without loss of generality, that

sup
φ1

G1
1(J0, φ1, θ0) > sup

φ2

G2
1(J0, φ1, θ0).

Then there exists δ > 0, φ∗ and an open neighborhood P ⊆ N of θ0 such that

G1
1(J0, φ∗, θ)−G

2
1(J0, φ, θ) ≥ 2δ (4.15)
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for all θ ∈ P and all φ with k̃ε(λE0(φ), θ0) in the domain of S̃2
ε . Moreover, we can choose

the neighborhood P to be a flow box for the flow χε on N , i.e., a homeomorphic copy
in N of a d-dimensional open rectangle, of the form {χεs (θ) | θ ∈ 6, s ∈ (−ρ, ρ)},
where 6 is a (d − 1)-dimensional open disk transverse to the flow χεs , and ρ > 0 is
sufficiently small so that the flow χεs is transverse to each surface {χεs0(θ) | θ ∈ 6} for
each s0 ∈ (−ρ, ρ).

Condition A4 is formulated in terms of the geodesic and homoclinic orbits at some
fixed energy level E0 = 1, corresponding to J0 =

√
2. By the rescaling property of the

geodesic flow, and by the corresponding rescaling property (4.13), it follows that

G1
1

(
J,

1
J
φ∗, θ

)
−G2

1(J, φ
′, θ) ≥

2δ
J

(4.16)

for all θ ∈ P and all φ′ = 1
J
φ with φ restricted as before. Since we restrict to the interval

Hε ∈ [1, 2], we have
√

2 ≤ J ≤ 2, hence

G1
1

(
J,

1
J
φ∗, θ

)
−G2

1(J, φ
′, θ) ≥ δ

for all θ ∈ P and all φ′ as before.

Lemma 4.5. Given a geodesic flow, a closed geodesic λ and two geometrically distinct
homoclinic orbits γ 1

E0
, γ 2

E0
, at the energy level E0 = 1, the set V ′ of potentials V that

satisfy assumption A4 is open and dense in the C1;r -topology of the set of all potentials.

Proof. To reach a contradiction we assume that, for some domain Ũ , condition A4 does
not hold.

Let supφ1
G1

1(J0, φ1, θ0) = G
1
1(J0, φ

∗

1 , θ0) for some φ∗1 , and supφ2
G2

1(J0, φ2, θ0) =

G2
1(J0, φ

∗

2 , θ0) for some φ∗2 . Then we have

G1
1(J0, φ

∗

1 , θ0) = G
2
1(J0, φ

∗

2 , θ0). (4.17)

Since for fixed (J0, φ
∗

1 ) and (J0, φ
∗

2 ) the functionsG1
1(J0, φ

∗

1 , θ0) andG2
1(J0, φ

∗

2 , θ0),
respectively, considered as functionals of V , are continuous when the set V of potentials
is given the C0-topology, it is clear that (4.17) defines a C0-closed set (intersection of
closed sets), and therefore condition A4 holds in a C0-open set of potentials.

To complete the proof of Lemma 4.5, it suffices to show that, given a potential V
that satisfies (4.17), there is an arbitrarily small perturbation of V , relative to the C1;r -
topology, which does not satisfy (4.17).

The construction is very clear. We note that Gj1 , j ∈ {1, 2}, is a sum of integrals over
several trajectory segments of the geodesic flow: some are segments of closed geodesics
in 30, which are recurrent, and one of them is a segment of a homoclinic trajectory.

Because the two homoclinic orbits γ 1
E0
, γ 2
E0

are geometrically different, we can find
an s0 ∈ R and a small enough ball B ⊂ T ∗M centered at γ 1

E0
(s0) in such a way that
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B ∩ λE0 = B ∩ γ 2
E0
= ∅. Moreover, we can choose the ball B such that there exists a

small interval I around s0 such that γ 1(R) ∩ B = γ 1(I ). Choose a small ball B ′ in N
centered at θ0.

Now we choose a C1;r function W : M × N → R with support in B × B ′ so that
∇θW(γ

1
E0
(s), θ0)·X(θ0) ≥ ρ > 0 for all s ∈ I and θ ∈ B ′, and for some ρ > 0. It follows

from (4.4) that perturbing V to V +W yields G1
1(J0, φ

∗

1 , θ0) 6= G
2
1(J0, φ

∗

2 , θ0). ut

4.4. Gain of energy along sequences of elementary building blocks

We will estimate the gain of the scaled energy Hε in time, along some suitably chosen
sequences of elementary building blocks, for potentials V ∈ V ′. We will account for both
the scaled time s and the physical time t .

Assume that V satisfies condition A4 from the previous section. Then for given any
J0 with ‖J0‖ =

√
2 there exist φ∗ with k̃ε(λE0(φ∗), θ0) ∈ (Ũ

1
ε )
− and a flow box P ⊆ N ,

of size O(1), with the property that if θ ∈ P and k̃ε(λE0(φ), θ0) ∈ (Ũ
2
ε )
−, then

G1
1(J0, φ∗, θ)−G

2
1(J0, φ, θ) ≥ 2δ.

From the rescaling property of the geodesic flow, it follows that for any J ∈ [
√

2, 2]
(corresponding to the energy range E ∈ [1, 2] fixed in Subsection 4.2), there exists
φ∗(J ) = φ/J∗ such that

G1
1(J, φ∗(J ), θ)−G

2
1(J, φ, θ) ≥ δ (4.18)

for all θ ∈ P and all φ in the appropriate domain.
The flow χεs is slow, and so is its time-1 map. It takes a time O(1/ε) to travel a

distance O(1). The flow box P was chosen of the form {χεs (θ) | θ ∈ 6, s ∈ (−ρ, ρ)}
with 6 as in Subsection 4.3.

Assume that θ0 ∈ N is a uniformly recurrent point with X(θ0) 6= 0. Choosing
the neighborhood P small enough ensures that the trajectory of θ0 will successively
leave P and return to P . The lengths of the time intervals when the trajectory of θ0
moves through P are uniformly bounded above and below, and because of the uniform
recurrence hypothesis A3, so are the lengths of the time intervals when the trajectory of θ0
moves through N \ P . More precisely, there exist 0 < τ0 < τ ′0, independent of ε, such
that the trajectory of θ0 spends a scaled time between τ0/ε and τ ′0/ε in P , and there exist
0 < τ1 < τ ′1, independent of ε, such that the trajectory of θ0 spends a scaled time between
τ1/ε and τ ′1/ε in N \ P between successive returns to P .

Now we compute the growth of energy during a range of scaled time 1s = 1/ε2.
We follow a sequence of elementary building blocks of the type B1(J, φ, θ), B2(J, φ, θ),
where the superscripts correspond to the two choices of homoclinic orbits/scattering maps
γ 1
E, γ

2
E respectively, where the succession of blocks is chosen as follows. When θ ∈ P we

use blocks of the typeB1(J, φ∗(J ), θ), where φ∗(J ) is defined as before. When θ 6∈ cl(P)
we use blocks of the type B2(J, φ0, θ) for some φ0 fixed. Thus, the sequence is composed
of strings of the type B1(J, φ∗(J ), θ), alternating with strings of the type B2(J, φ0, θ);
the proportion of time when we switch from B1(J, φ∗(J ), θ) to B2(J, φ0, θ) or vice versa
is O(ε).
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We compute the growth of energy along such a sequence of building blocks spanning
a range of scaled time of 1/ε2. The initial condition for the dynamics on N is the point θ0
which is assumed to be uniformly recurrent. The J -coordinate along the pseudo-orbit
takes the successive values J (n), and the θ -coordinate along the pseudo-orbit takes the
successive values θ(n); the φ-coordinate is maintained fixed φ = φ0. We have

1Hε = ε
3
[ ∑

n∈[0,1/ε2
]

θ(n)∈P, θ((n+1)ε)∈P

G1
1(J (n), φ∗(J (n)), θ(n))

+

∑
n∈[0,1/ε2

]

θ(n)6∈P, θ((n+1)ε) 6∈P

G2
1(J (n), φ0, θ(n))

+

∑
n∈[0,1/ε2

]

θ(n)∈P, θ((n+1)ε) 6∈P

G2
1(J (n), φ0, θ(n))

+

∑
n∈[0,1/ε2

]

θ(n)6∈P, θ((n+1)ε)∈P

G2
1(J (n), φ0, θ(n))

]
+O(ε2

|ln ε|), (4.19)

where the above error term is due to the accumulation error term of O(ε4
|ln ε|) from

(4.12) over 1/ε2 time steps. The terms corresponding to the times n when θ(n) ∈ P ,
θ((n+ 1)ε) 6∈ P or θ(n) 6∈ P , θ((n+ 1)ε) ∈ P areO(ε · 1/ε2) = O(1/ε), and sinceG1

1,
G2

1 are bounded, they contribute to a combined error termO(ε3
· 1/ε) = O(ε2), which is

subdominant.
Thus we can write

1Hε ≥ ε
3
[ ∑

n∈[0,1/ε2
]

θ(n)∈P, θ((n+1)ε)∈P

G1
1(J (n), φ0, θ(n))

+

∑
n∈[0,1/ε2

]

θ(n) 6∈P, θ((n+1)ε) 6∈P

G2
1(J (n), φ0, θ(n))

]
+O(ε2

|ln ε|). (4.20)

Now we rearrange the summation above to estimate the total gain of energy while
θ ∈ P:

1Hε ≥ ε
3

∑
n∈[0,1/ε2

]

θ(n)∈P, θ((n+1)ε)∈P

[G1
1(J (n), φ0, θ(n))−G

2
1(J (n), φ0, θ(n))]

+ ε3
∑

n∈[0,1/ε2]

G2
1(J (n), φ0, θ(n))+O(ε

2
|ln ε|)

≥ ε3δ
τ0

ε2 + ε
3

∑
n∈[0,1/ε2]

G2
1(J (n), φ0, θ(n)))+O(ε

2
|ln ε|)

= ετ0δ + ε
3

∑
n∈[0,1/ε2]

G2
1(J (n), φ0, θ(n))+O(ε

2
|ln ε|). (4.21)
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Now we treat the remaining summation as a Riemann sum of mesh 1 and we approxi-
mate it by a Riemann integral. Since J (σ ) changes by at mostO(ε2) and θ(σ ) changes by
at most O(ε) over each interval [n, n+ 1], we have maxσ∈[n,n+1]

∣∣ d
dσ
G1(J (σ ), φ, θ(σ ))

∣∣
= O(ε) for all n. Hence the error in approximating the integral on a subdivision by a
term of the Riemann sum is less than O(ε), and since there are 1/ε2 terms in the Rie-
mann sum, the error in approximating the integral by the Riemann sum isO(1/ε). Taking
into account the ε3-leading factor we obtain

ε3
∑

n∈[0,1/ε2]

G2
1(J (n), φ0, θ(n)) ≤ ε

3
∫ 1/ε2

0
G2

1(J (σ ), φ0, θ(σ )) dσ +O

(
ε3 1
ε

)
≤ ε3
[A2

1(J (1/ε
2), φ0, θ(1/ε2))− A2

1(J (0), φ0, θ(0))] +O(ε2) = O(ε2), (4.22)

whereG2
1 = DXA

2
1, where the antiderivative A2

1 ofG2
1 is bounded by the compactness of

(30 ×N)∩H
−1
0 [1, 2]. (Here we have used the fact that d

dt
A2

1(J (t), φ0, θ(t)) =
dA2

1
dJ
J̇ +

DXA
2
1 = DXA

2
1 +O(ε

2) = G2
1 +O(ε

2).)
From (4.21) we conclude that, under the non-degeneracy assumption A4, the gain

of energy following a string of elementary building blocks of the type B1(J, φ0, θ),
B2(J, φ0, θ) over a range of scaled time 1/ε2 satisfies

1Hε ≥ ετ0δ +O(ε
2
|ln ε|). (4.23)

Note that during this time interval we do not leave the scaled energy interval E ∈
[1, 2] fixed at the beginning of the argument.

Thus, during a time period of 1/ε2, moving along the pseudo-orbits corresponding
to the elementary building blocks of the type B1(J, φ0, θ), B2(J, φ0, θ), in the specified
order, corresponds to a scaled energy growth ofO(ε). SinceHε = ε2H0 and1s = 1t/ε,
we obtain a physical energy growth of 1H = O(1/ε2) during a physical time interval
1t = O(1/ε2), that is, a linear growth rate of the physical energy in physical time.

Remark 4.6. If we construct a sequence of elementary building blocks corresponding to
a single homoclinic γ jE0

, j ∈ {1, 2}, for a time of O(1/ε), and if the variable φ0 in the
construction is fixed as above, a calculation as in (4.22) shows that the change of scaled
energy is O(ε3). This implies that Gj1 cannot be always positive or always negative for
all this time. Along any sequence of elementary building blocks for which the external
flow χε returns to a small neighborhood of its initial point θ0, there will always be regions
in 3̃0 where Gj1 is positive as well as regions where Gj1 is negative. For the same reason,
we cannot have G1

1 > G2
1 for all time. Hence, besides a flow box P ⊆ N such that

G1
1(J0, φ0, θ) − G

2
1(J0, φ0, θ) > 0 for all θ ∈ P , there should also exist another flow

box P ′ such that G2
1(J0, φ0, θ)−G

1
1(J0, φ0, θ) > 0 for all θ ∈ P ′.

4.5. Sequences of elementary building blocks achieving unbounded growth of energy

The above construction of pseudo-orbits can be continued for a time O(1/ε3) to achieve
an energy growth corresponding to the whole interval Hε ∈ [1, 2]. Since ε = 1/

√
E∗,

the corresponding growth of physical energy is H = ε−2Hε ∈ [E∗, 2E∗]. To grow the
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physical energy to infinity, we repeat the procedure, re-initializing the process starting
with ε = 1/

√
2E∗. For this new value of the small parameter ε in (3.3), growing the

physical energy H ∈ [2E∗, 4E∗] amounts to growing the scaled energy Hε ∈ [1, 2].
So all the estimates made in this subsection remain valid and carry through. Thus, this
construction of pseudo-orbits featuring energy growth can be repeated indefinitely.

In Section 5 we show the existence of true orbits ‘shadowing’ the pseudo-orbits con-
structed in this section.

4.6. Sequences of elementary building blocks achieving symbolic dynamics

In order to construct elementary building blocks along which the energy follows a pre-
scribed path E : [0,∞)→ R, we alternate elementary building blocks leading to energy
growth with blocks leading to energy loss. Choosing the proportions of the energy growth
and of the energy loss allows us to control the energy change. In particular, we can ob-
tain rates close to zero by alternating blocks which gain energy with blocks which loose
energy. The change of energy along an elementary building block is not more than ε3 in
the scaled variables, which corresponds to a change of energy of E−1/2 in the physical
variables. In this way, we can follow the prescribed energy path E up to E−1/2. Then,
once the sequence of elementary building blocks is constructed, in Section 5.3 we will
construct a sequence of correctly aligned windows along this sequence of blocks, and
apply the shadowing Theorem 5.3 to obtain an orbit that follows these windows.

Remark 4.7. We remark that in the present mechanism we do not achieve small rates of
growth by staying near a KAM torus, as in [29, 30], rather the orbits we construct are
performing homoclinic excursions most of the time. Thus, these orbits are very different
from the previously constructed orbits.

5. Existence of orbits following sequences of elementary building blocks

In this section, we show that we can concatenate infinitely many elementary building
blocks as above, and that there exists a true orbit that follows the pseudo-orbit underlying
those blocks, thus achieving infinite energy growth. Since our system is not hyperbolic,
the classical shadowing lemma for hyperbolic systems, saying that any pseudo-orbit can
be ‘shadowed’ by a true orbit, does not apply. We will show that, nevertheless, the pseudo-
orbits constructed in the previous section can be approximated by a true orbit. For this,
we use a topological argument based on correctly aligned windows. This argument is
constructive and robust, so it allows us to also estimate the energy growth rate along the
resulting orbit.

5.1. Topological method

In this section we briefly review the topological method of correctly aligned windows,
following [85, 45, 47]. Earlier versions of the method go back to [21, 35, 34].

A window is a triple consisting of a mapping, a set, and a partition of the boundary of
that set: the mapping is a homeomorphism from a multi-dimensional rectangle in some
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Euclidean space to a manifold, the set is the image of the multi-dimensional rectangle
through the homeomorphism, and the partition divides the boundary of the set into an
exit set and an entry set, which play a dynamical role.

Definition 5.1. An (n1, n2)-window in an m-dimensional manifold M , where n1 + n2
= m, is an ensemble (W,W exit,W entry, c) consisting of:
(1) a homeomorphism c : dom(c) → im(c), where dom(c) is an open neighborhood of
[0, 1]n1 × [0, 1]n2 ⊆ Rm, and im(c) is an open set in M ,

(2) a homeomorphic copy W := c ([0, 1]n1 × [0, 1]n2) ⊆ im(c) of [0, 1]n1 × [0, 1]n2

in M ,
(3) an ‘exit set’

W exit
:= c(∂[0, 1]n1 × [0, 1]n2)

and an ‘entry set’
W entry

:= c([0, 1]n1 × ∂[0, 1]n2).

We adopt the following notation: Wc = c−1(W) = [0, 1]n1 × [0, 1]n2 , (W exit)c =

c−1(W exit) = ∂[0, 1]n1 × [0, 1]n2 , and (W entry)c = c
−1(W entry) = [0, 1]n1 × ∂[0, 1]n2 .

When the coordinate system c is evident from context, we suppress the subscript c from
the notation.

Informally, two windows are correctly aligned under some map, provided that the
image of the first window under the map crosses the second window all the way through
and across its exit set. Below we present a version of the definition of correct alignment
that is sufficient for the purpose of this paper. More details can be found in [85]. Given
two windows (W1,W

exit
1 ,W

entry
1 , c1) and (W2,W

exit
2 ,W

entry
2 , c2) and a continuous map

f : M → M with f (im(c1)) ⊆ im(c2), we will denote fc1,c2 = c
−1
2 ◦ f ◦ c1.

Definition 5.2. The window W1 is correctly aligned with the window W2 under f if the
following conditions are satisfied:
(1) When n1, n2 6= 0, the conditions are:

(1.i) There exists a continuous homotopy h : [0, 1] × (W1)c1 → Rn1 × Rn2 with

h0 = fc1,c2 ,

h([0, 1], (W exit
1 )c1) ∩ (W2)c2 = ∅,

h([0, 1], (W1)c1) ∩ (W
entry
2 )c2 = ∅.

(1.ii) There exists a linear map A : Rn1 → Rn1 such that

(1.ii.a) h1(x, y) = (Ax, 0) for x ∈ [0, 1]n1 and y ∈ [0, 1]n2 ,
(1.ii.b) A(∂[0, 1]n1) ⊂ Rn1 \ [0, 1]n1 .

(2) When n2 = 0, the conditions are:

(2.i) (W exit
1 )c1 = (∂W1)c1 , (W exit

2 )c2 = (∂W2)c2 ,
(2.ii) (W2)c2 ⊆ int(fc1,c2((W1)c1)),

(3) When n1 = 0, the conditions are:

(3.i) (W exit
1 )c1 = ∅, (W

exit
2 )c2 = ∅,

(3.ii) int(W2)c2 ⊇ fc1,c2((W1)c1).
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The correct alignment of windows is robust, in the sense that if two windows are cor-
rectly aligned under a map, then they remain correctly aligned under a sufficiently small
C0-perturbation of the map. This allows one to verify the correct alignment of long, finite
sequences of windows by breaking them into shorter, finite sequences of windows whose
correct alignment can be easily controlled by perturbative arguments. This property will
not be used in this paper.

Also, the correct alignment satisfies a natural product property. Given two windows
and a map, if each window can be written as a product of window components, and if the
components of the first window are correctly aligned with the corresponding components
of the second window under the appropriate components of the map, then the first window
is correctly aligned with the second window under the given map. We refer to [45, 47] for
details.

The following result can be thought of as a topological version of the Shadowing
Lemma. Note that this result does not assume that the system is hyperbolic.

Theorem 5.3 ([85]). Assume that {Wi}i∈Z is a bi-infinite sequence of (n1, n2)-windows
in M , and {fi}i∈Z are continuous maps on M . If Wi is correctly aligned with Wi+1
under fi for every i ∈ Z, then there exists a point p ∈ W0 such that

(fi ◦ · · · ◦ f0)(p) ∈ Wi+1 for all i ∈ Z.

Assume now that {Wi}i∈{0,...,d} is a finite sequence of (n1, n2)-windows in M , and
{fi}i∈{0,...,d} are continuous maps on M . If Wi is correctly aligned with Wi+1 under fi
for every i = 0, . . . , d − 1, and Wd is correctly aligned with W0 under fd , then there
exists a point p ∈ W0 such that

(fd ◦ · · · ◦ f0)(p) = p.

A sequence {Wi}i of windows as above will be referred to as a sequence of correctly
aligned windows. Note that the verification of the correct alignment of the sequence
amounts to verifying correct alignment relations between successive pairs Wi , Wi+1.
A consequence of this fact, which is important for our applications, is that the concate-
nation of finite sequences of correctly aligned windows is a finite sequence of correctly
aligned windows. That is, if W0, . . . ,Wk is a sequence of correctly aligned windows and
Wk, . . . ,Wl is a sequence of correctly aligned windows, then so is W0, . . . ,Wl (for sim-
plification, we do not specify the mappings under which the correct alignment is realized).

In the context of this paper, the maps fi from Theorem 5.3 will be different powers of
the time-1 map associated to the flow.

We emphasize again the difference between hyperbolic dynamics and correct align-
ment of windows. To assert that an orbit is hyperbolic one needs to examine the expansion
and contraction rates of the derivative of the map along the whole orbit. The concatenation
of hyperbolic segments could fail to be hyperbolic (if the stable and unstable directions
do not match). In contrast, to assert that a sequence of windows is correctly aligned, one
only needs to verify that the image of one window under the map is correctly aligned
with the next window in the sequence. Also, concatenations of finite sequences of cor-
rectly aligned windows are correctly aligned.
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5.2. Reduction to a discrete dynamical system

We reduce the perturbed geodesic flow to a discrete dynamical system by considering the
time-1 map of the flow ψε—where the time refers to the rescaled time s in (3.3)—which
we denote Fε. Also, we denote by χε1 the time-1 map (relative to the rescaled time s)
associated to the flow χε on N . Since s = t/ε, the time-1 map relative to the rescaled
time s is the time-ε map relative to the physical time t .

The distinguished geometric objects for the perturbed geodesic flow, described in the
earlier sections, give rise to similar objects for the discrete dynamical system. We start by
listing these objects and summarizing their properties.

B1. The map Fε : T ∗M ×N → T ∗M ×N is a Cr−1-diffeomorphism.
B2. The manifold 3̃ε = 3ε×N ⊆ T ∗M×N is a normally hyperbolic invariant manifold

for Fε, of dimension d + 2; this manifold has stable and unstable manifoldsW s(3̃ε)

and Wu(3̃ε), of dimension d + n+ 1.
B3. There exist exponential rates 0 < λ− < λ+ < λ1 < 1 < µ1 < µ− < µ+ such that

λ− < ‖DFε |Esε,z‖ < λ+, µ− < ‖DFε |Euε,z‖ < µ+, λ1 < ‖DFε |Ecε,z‖ < µ1, where
Esε andEuε are the stable and unstable bundles in the decomposition Tz(T ∗M×N) =
Tz3̃ε ⊕ E

s
ε,z ⊕ E

u
ε,z. The above exponential rates can be chosen independently of ε.

B4. The stable and unstable manifolds W s(3̃ε) and Wu(3̃ε) have a transverse intersec-
tion along a (d + 2)-dimensional manifold 0̃ε.

B5. For the discrete dynamical system defined by Fε there exist two scattering maps
S̃
j
ε : Ũ

j,−
ε → Ũ

j,+
ε associated to two homoclinic channels 0̃jε , j = 1, 2, satisfy-

ing assumption A4. The set Ũ j,−ε is of size O(1) in the sense that there exist open
sets U j,− ⊆ 30 such that k̃ε(U j,− × N) ⊆ Ũ

j,−
ε for j = 1, 2, and for all ε suffi-

ciently small, where k̃ε : 3̃0 = 30 × N → 3̃ε is the parametrization of 3̃ε from
Subsection 3.2.

B6. Consider the action-angle coordinates (Jε, φε) on 3ε. The restriction of Fε to 3̃ε
has the form

Fε(Jε, φε, θ) =
(
Jε +O(ε

2), φε + Jε +O(ε
2), χε1 (θ)

)
.

There exists τ > 0, independent of ε, such that

∂(πφε ◦ Fε |3ε )

∂Jε
(Jε, φε) > τ for all (Jε, φε, θ) ∈ 3̃ε.

In particular Fε |3ε is an integrable twist map in the variables (Jε, φε), up to order
O(ε2), with the twist coefficient lower bounded by τ .

B7. Each scattering map S̃jε : Ũ
j,−
ε → Ũ

j,+
ε , associated to the homoclinic channel 0̃j ,

j ∈ {1, 2}, is of the form

S̃jε (J
−
ε , φ

−
ε , θ

−) = (J+ε , φ
+
ε , θ

+),

where

φ+ε = φ
−
ε + a +O(ε

2), |J+ε − J
−
ε | = O(ε

2), θ+ = θ−.



940 Marian Gidea, Rafael de la Llave

B8. There exists a sequence of elementary building blocks, of the type Bj (J, φ, θ), j =
1, 2, as in Subsection 4.4, along which the scaled energy Hε grows by O(ε) in a
scaled time interval 1s = O(1/ε2). Each building block consists of one application
of one of the scattering maps, S̃jε , j = 1, 2, succeeded by an orbit of the inner
dynamics followed for a scaled time ofO(1). The succession of elementary building
blocks is chosen as in Subsection 4.4.

The general strategy to prove Theorems 2.1–2.3 is the following. We will choose a se-
quence of elementary building blocks as before, and will fix a two-dynamics pseudo-orbit
determined by it. We will prove that there exists a true orbit that follows this pseudo-orbit.
Also, we will estimate the time it takes for such an orbit to perform the trip.

As explained in Subsection 4.2, an elementary building block consists of a segment of
a homoclinic orbit ψεs (z̃ε), s ∈ [T−, T+], followed by a trajectory segment (ψεs )3̃ε (z̃

+
ε ) of

the flow ψεs restricted to 3̃ε, during a time interval of orderO(1). Consider a sequence of
n1 + 1 successive elementary building blocks. For each of them, we denote by γ̃ εi (s) the
homoclinic segment of the elementary building block, and by λ̃εi (s) the trajectory segment
of the flow ψεs restricted to 3̃ε corresponding to that building block, where i = 0, . . . , n1.
Also, we denote by zεi−1,i the corresponding homoclinic point on γ̃ εi , with i ∈ {1, . . . , n1}.
We allow the homoclinic orbit segments under study to correspond to different homoclinic
manifolds 0̃jε , with j = 1, 2, but we do not make this distinction in the notation (for
typographical reasons), since all estimates are uniform.

Each trajectory segment that is a part of an elementary building block can be written
as γ̃ εi (s) = (γ εi (s), θ(s)), and λ̃εi (s) = (λεi (s), θ(s)), respectively. Since a trajectory
segment λ̃εi (s) is followed for a time O(1), the action Jε-coordinate along λεi (s) stays
constant up to an O(ε2) error. Thus, to the trajectory segment λεi (s) we can associate a
level set {Jε = J iε } of the Jε-coordinate in 3ε, which is almost invariant up to O(ε2).

For each i ∈ {0, . . . , n1}, denote Lεi = λ
ε
i ×N ; this is a (1+d)-dimensional manifold

in T ∗M×N . The stable and unstable manifolds of Lεi are (n+d)-dimensional manifolds
W s(Lεi ) =

⋃
z∈Lεi

W s(z) and Wu(Lεi ) =
⋃
z∈Lεi

Wu(z), respectively, where the stable

and unstable fibers of points are well defined due to the normal hyperbolicity of 3̃ε. Note
that these sets are not, in general, invariant, as their fibers are not invariant; we have
Fε(W

s(z)) ⊆ W s(Fε(z)) and F−1
ε (Wu(z)) ⊆ Wu(F−1

ε (z)). By construction, for each
i ∈ {1, . . . , n1}, Wu(Lεi−1) intersects W s(Lεi ) transversally along {zεi−1,i} ×N .

To show the existence of an orbit that follows the pseudo-orbit determined by the
given sequence of elementary building blocks, we will use the stable and unstable man-
ifolds to build a chain of sets Liε, with i = 0, . . . , n1, around which we will construct
windows that are correctly aligned. The construction will be done according to the fol-
lowing sequence of steps, which we first describe informally below.

At the first step, for each i = 1, . . . , n1, we construct a pair of windowsW−i−1 andW+i
about the heteroclinic intersection ({zεi−1,i} ×N) ∩ 0̃

j
ε ⊆ W

u(Lεi−1) ∩W
s(Lεi ) such that

W−i−1 is correctly aligned with W+i under the identity mapping. Here the homoclinic
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intersection 0̃jε is one of the two homoclinic intersections defined by the distinguished
homoclinic orbits γ j , j ∈ {1, 2}, described in assumption A4.

At the second step we iterate W+i forward in time along W s(Lεi ) until its image is
contained in some conveniently chosen neighborhood of Lεi in T ∗M , and we construct a
new window W̌i near Lεi such that W+i is correctly aligned with W̌i under some positive
iterate of Fε. Also, we iterate W−i−1 backwards in time along Wu(Lεi−1) until its image
is contained in some conveniently chosen neighborhood of Lεi−1, and we construct a new
window Ŵi−1 about Lεi−1 such that Ŵi−1 is correctly aligned withW−i−1 under some pos-
itive iterate of Fε. At this step, the neighborhoods of Lεi and Lεi−1 are chosen so that the
system of coordinates from Subsection 5.3.1, near the normally hyperbolic invariant man-
ifold 3̃ε, is well defined in those neighborhoods. The3ε-component of the window Ŵi−1
is close to the level set Jε = J i−1

ε of the action coordinate Jε, and the 3ε-component of
the window W̌i is close to the level set Jε = J iε of the action coordinate Jε on 3ε.

At the third step we align the window Ŵi corresponding to the heteroclinic connection
Wu(Lεi−1) ∩ W

s(Lεi ) to the window W̌i corresponding to the heteroclinic connection
Wu(Lεi ) ∩ W

s(Lεi+1). The 3ε-components of these two windows are close to the same
level set Jε = J iε of the action coordinate. The construction at the third step concatenates
the sequence of correctly aligned windows constructed about one heteroclinic connection
with the sequence of correctly aligned windows constructed about the next heteroclinic
connection.

At the fourth step we concatenate short sequences of correctly aligned windows con-
structed as above, obtaining a long sequence of correctly aligned windows that follows
the pseudo-orbit underlying the sequence of elementary building blocks that achieves the
desired energy growth.

The conclusion is that, once the windows have been constructed, the shadowing re-
sult (Theorem 5.3) will provide the existence of true orbits that visit the windows in the
prescribed order, hence these orbits will visit the prescribed level sets of the averaged
action.

The construction of windows is similar to that in [45]. Therefore we will describe
most steps of the construction succinctly. One step that is quite different is the third step,
in which we align two windows W̌i and Ŵi about Lεi under some iterate of the map Fε.
The difference is that in [45] the map is a twist map, while in our case, the map is a twist
map in one component and a time-1 map of some general flow in the other component.
We will explain this step of the construction in more detail.

Now we explain how the above strategy is used to prove the statements from Theo-
rems 2.1–2.3.

To prove that there exist trajectories along which the energy grows unboundedly we
proceed as follows. We fix a potential V ∈ V ′, i.e., satisfying condition A4. Under the
hypotheses of Theorem 2.1 we choose an initial condition (J 0

ε , φ0, θ0), where θ0 is chosen
to be a non-trivial uniformly recurrent point, and φ0 is fixed as in condition A4. Under
the hypotheses of Theorem 2.2 we choose the same initial condition with an arbitrary θ0.
Starting with this initial condition, we construct a finite sequence of elementary building
blocks as in Subsection 4.2, with the underlying pseudo-orbit
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γ̃ ε0 , λ̃
ε
0, . . . , γ̃

ε
n1
, λ̃εn1

for some n1 = O(1/ε3), along which the scaled energy grows from E = 1 to E = 2 in a
scaled time O(1/ε3).

This corresponds to a growth of the physical energy by O(1/ε2) in a physical time
O(1/ε2). This physical energy growth is linear in the physical time. If the initial energy
level of the physical energy is E∗, the physical energy at the end of this sequence of
elementary building blocks is 2E∗.

The windowing construction above provides a finite sequence of correctly aligned
windows whose 3ε-components are close to these level sets. Any shadowing orbit ob-
tained from Theorem 5.3 will result in an O(1) growth of the scaled energy in a scaled
time O(1/ε3).

Note that, as remarked before, segments of correctly aligned windows can be con-
catenated. Since the constructions are uniform for all ε < ε0, we can construct infinitely
many segments that make the energy grow to∞, and concatenate them.

More precisely, to obtain orbits whose scaled energy grows to infinity we proceed as in
Subsection 4.5. We reset ε to ε = 1/

√
2E∗ and we repeat the construction of a sequence of

elementary building blocks whose scaled energy grows from E = 1 to E = 2 in a scaled
timeO(1/ε3). The energy growth rate is still linear, and at least as large as in the previous
step. The physical energy grows from 2E∗ to 4E∗. Then we concatenate the segment
of correctly aligned windows that grows the physical energy from E∗ to 2E∗, with the
segment that grows the physical energy from 2E∗ to 4E∗. The concatenation of these
segments of correctly aligned windows constructed is also a segment of correctly aligned
windows. This construction of segments of elementary building blocks and corresponding
segments of correctly aligned windows can be repeated indefinitely. The shadowing orbit
that visits the resulting infinite sequence of correctly aligned windows yields an infinite
physical energy growth at a linear rate with respect to the physical time. In this way
we obtain the statement on the existence of orbits with unbounded energy growth from
Theorems 2.1 and 2.2.

To obtain an orbit whose scaled energy follows a prescribed energy path, we note that
a path E : [0,∞)→ R determines, via time-discretization, a sequence of Jε-action level
sets {

√
2E(k)}k∈N in 3ε. As in Subsection 4.6, we construct a sequence of elementary

building blocks whose corresponding Jε-values visit, in the prescribed order, the values
√

2E(k), k ∈ Z. Since, in general, one cannot move from one value
√

2E(k) to the next
√

2E(k + 1) via a single elementary building block, the construction yields a sequence
{J iε }i∈Z of action level sets such that successive elementary building blocks correspond
to successive values of J iε , and there exists a subsequence {ik}k∈Z of N such that J ikε =√

2E(k). Thus, we are in the same situation as described above, and we can proceed in
the same way.

5.3. Construction of windows

In this subsection we will work out the details of the construction of correctly aligned
windows described earlier.
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We consider a finite sequence of elementary building blocks as in Subsection 4.2, with
the corresponding pseudo-orbit

γ̃ ε0 , λ̃
ε
0, . . . , γ̃

ε
n1
, λ̃εn1

for some n1 = O(1/ε3). The corresponding action J level sets corresponding to the
curves λεi in 3ε, i = 0, . . . , n1, are

J 0
ε , J

1
ε , . . . , J

n1
ε .

5.3.1. A system of coordinates near a normally hyperbolic invariant manifold. The con-
struction of windows requires a coordinate systems relative to which the windows can be
defined.

We now describe a general construction of a system of coordinates near a normally
hyperbolic invariant manifold. Given a normally hyperbolic invariant manifold 3 ⊆ M

for F : M → M , the bundle Nx = Eux ⊕ E
s
x , x ∈ 3, gives a concrete realization of

the normal bundle N3. That is, Nx is the complementary subspace to Tx3, i.e., TxM =
Tx3⊕Nx for all x ∈ 3.

For any point p in a sufficiently small neighborhood N (3) of 3 in M , we can find
unique x ∈ 3, s ∈ Esx , and u ∈ Eux , with u, s small, such that p = expx(s + u).
Therefore, it is natural to use (x, s, u) as a system of coordinates in N (3). We denote
h(x, s, u) = expx(s + u), where exp : TM → M is the exponential map.

In general, this system of coordinates is as smooth as the bundles Es, Eu, whose
regularity is limited by the regularity of the map F and by the ratios of the exponential
rates.

In our case, because the exponential rate of Fε on the manifold 3̃ε is close to 0 for ε
small enough, the corresponding maps hε, h−1

ε are Cr . We also note that if we express Fε
in terms of the coordinate mapping, we have, for Fε ∈ C2,

h−1
ε ◦ Fε ◦ hε(x, s, u) =

(
Fε(x),DFε(x)s,DFε(x)u

)
+O(δ2),

where δ > 0 is the size of the neighborhood N (3ε). Furthermore

Dh−1
ε ◦ Fε ◦ h

−1
ε (x, s, u) = DFε(x)+O(δ).

If we express Fε relative to this system of coordinates, F̃ε = h−1
ε ◦ Fε ◦ hε is close to

the tangent map
T Fε(x, s, u) = (Fε(x),DFε(x)s,DFε(x)u).

Indeed, we have

‖F̃ε − T Fε‖C0 ≤ Cδ
2, ‖F̃ε − T Fε‖C1 ≤ Cδ,

for some C > 0, where δ is the size of the neighborhood N (3ε). The constants δ and C
can be chosen independent of ε.
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In particular, by considering a sufficiently small neighborhood N (3ε) we can ensure
that the map Fε is contracting in the s-components, expanding in the u-components, and
more or less neutral in x.

Since we can describe the manifold 3̃ε via the coordinates (J, φ, θ), the above con-
struction provides us with a C1-smooth coordinate system (J, φ, θ, s, u) in a neighbor-
hood N (3̃ε) of 3̃ε. Relative to this coordinate system the map Fε can be approximated
by a skew product of a map acting in the center directions of 3̃ε and a map acting in the
hyperbolic directions. To simplify notation, we will not make explicit the dependence on
ε of the coordinate systems. Also, from this point on we will denote Fε by F .

We will use this system of coordinates to construct windows near3ε, and in particular
about the sets Lεi .

We will also need to construct windows about the heteroclinic intersections ({zεi−1,i}×

N) ∩ 0̃ε of Wu(Lεi−1) with W s(Lεi ). For this, we propagate the above coordinate system
from a neighborhood of the set Lεi−1 in 3̃ε along the unstable manifold Wu(Lεi−1), giv-
ing rise to a C1-smooth coordinate system (J−, φ−, θ, s−, u−) in a neighborhood of
({zεi−1,i} × N) ∩ 0̃ε. Also, we propagate the same coordinate system from a neighbor-
hood of the leaf Lεi along the stable manifold W s(Lεi ) to a neighborhood of the het-
eroclinic intersection ({zεi−1,i} × N) ∩ 0̃ε, producing a C1-smooth coordinate system
(J+, φ+, θ, s+, u+) in the neighborhood of ({zεi−1,i} ×N) ∩ 0̃ε.

The two coordinate systems differ by order O(1), that is, if 8 denotes the coordinate
change from one system to the other then C−1

3 ≤ ‖D8‖ ≤ C3 uniformly in a compact
neighborhood of 0̃ε, for some C3 > 1. Since we obtain two coordinate systems around
({zi−1,i}×N)∩ 0̃ε, we can construct windows and verify their correct alignment in either
coordinate system. The sizes of the components of a window in one coordinate system
will differ from the sizes in the other coordinate system by some multiplicative constants
that are independent of ε and, by compactness, they can be chosen to be the same for all
heteroclinic intersections.

5.3.2. Choice of constants. We choose some constants that will be used throughout the
proof. Define

a± = sup
z∈H−1[1,2]∩0̃ε

d(z±, z),

where the distance is measured along the stable or unstable fiber through x, respectively.
Since H−1

[1, 2] ∩ 0̃ε and H−1
[1, 2] ∩ 3̃ε are compact, we have 0 < a± <∞.

First we choose some constant ε1 > 0, independent of ε, and then we choose positive
constants α−, α+, α̌, α̂ and β−, β+, β̌, β̂, independent of ε, such that

3ε1 < α− = α̂ = α̌ < C−1
3 α+, (5.1)

3ε1 < β+ = β̂ = β̌ < C−1
3 β−. (5.2)

Second, we choose positive integers N,M sufficiently large so that

λN+(a
+
+ α+) < 2ε1, β̌ + ε1 < µN−β

+, µ−M− (β− + a−) < 2ε1, (5.3)

FN (0̃ε) ⊆ N (3̃ε), F−M(0̃ε) ⊆ N (3̃ε), (5.4)
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where N (3̃ε) is the neighborhood of 3̃ε where the coordinate system described in Sub-
section 5.3.1 is defined. Note that there exist finite N,M as in (5.4) due to the definition
of 0̃ε. Since the dynamical system (3.3) tends to a product system when ε → 0, we can
choose N,M to be independent of ε for all ε sufficiently small.

Third, we choose a positive integer K satisfying

2γ̌ + γ̂ + 3ε1 < Kτδ̌, (5.5)

where τ is the twist constant from B6. Such a finite K exists for all small enough ε, since
the inner map F is a twist map in the (J, φ)-variables.

Fourth, we choose positive constants δ−, δ+, δ̌, δ̂, γ−, γ+, γ̌ , γ̂ such that

δ̌ < δ̌ + ε1 < δ+ < C−1
3 γ− < γ− < γ− +Mτδ− + ε1 < γ̂ , (5.6)

δ̌ < δ̌ + ε1 < δ̂ < δ̂ + ε1 < δ− < C3δ
− < γ+ < γ+ +Nτδ+ + ε1 < γ̌ . (5.7)

Additionally, we want these constants to be sufficiently small. We will explain later in the
argument how small they should be, but we emphasize here that the smallness condition
is independent of ε and can be made precise from the beginning of the argument.

Fifth, we make ε even smaller if necessary, as described below. Note that the estimates
on the inner map F

|3̃ε
and on the outer map Sε involve some error terms of order O(ε2),

as in B6 and B7. Due to the compactness of H−1
[1, 2] ∩ 3̃ε and H−1

[1, 2] ∩ 0̃ε, these
error terms can be bounded from above by C4ε

2 for some constant C4 > 0 independent
of ε. Now we choose ε sufficiently small so that

NC4ε
2 < ε1, MC4ε

2 < ε1, KC4ε
2 < ε1. (5.8)

Thus, when we estimate the error terms when iterating the inner map or the outer map up
to max{M,N,K} times, we will be able to conclude that the error terms are always less
than ε1.

From now on, ε is sufficiently small and fixed.

5.3.3. Step 1. Let us consider the heteroclinic intersection Wu(Lεi−1) with W s(Lεi ) at
{zεi−1,i} × N . As seen before, the normal hyperbolicity implies that there exist zε,−i−1,i ∈

Lεi−1 and zε,+i−1,i ∈ Lεi such that zεi−1,i ∈ W
u(z

ε,−
i−1,i)∩W

s(z
ε,+
i−1,i). Let a−i−1 be the distance

between zεi−1,i and zε,−i−1,i measured along Wu(Lεi−1), and let a+i be the distance between
zεi−1,i and zε,+i−1,i measured along W s(Lεi ). We have a+i < a+ and a−i < a−.

At this step we construct a pair of windowsW−i−1,W
+

i about ({zεi−1,i}×N)∩ 0̃ε such
that W−i−1 is correctly aligned with W+i under the identity mapping.

We define the window W−i−1 in the coordinates (s−, u−, φ−, J−, θ) of the type

W−i−1 = (R
s−

i−1 × R
u−

i−1)× (R
φ−

i−1 × R
J−

i−1)× R
θ
i−1,

where Rc denotes a rectangle in the coordinate c. We will think of W−i−1 as a product of
three window components: Rs

−

i−1 × R
u−

i−1, corresponding to the hyperbolic coordinates,
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R
φ−

i−1 × R
J−

i−1, corresponding to the angle-action coordinates, and Rθi−1, corresponding to
the external system on N .

We define the exit set (W−)exit
i−1 of W−i−1 by

(W−)exit
i−1 = (R

s−

i−1 × ∂R
u−

i−1)× (R
φ−

i−1 × R
J−

i−1)× R
θ
i−1

∪ (Rs
−

i−1 × R
u−

i−1)× (∂R
φ−

i−1 × R
J−

i−1)× R
θ
i−1

∪ (Rs
−

i−1 × R
u−

i−1)× (R
φ−

i−1 × R
J−

i−1)× ∂R
θ
i−1.

This means that the exit directions ofW−i−1 correspond to the unstable direction u− of the
hyperbolic window Rs

−

i−1 × R
u−

i−1, to the angle direction φ− of the action-angle window

R
φ−

i−1 × R
J−

i−1, and to all directions of the external-state window Rθi−1. This definition of
the exit set follows the construction of product of windows described in [45].

Similarly, we define the window W+i in the coordinates (s+, u+, φ+, J+, θ) to be
given by the product

W+i = (R
s+

i × R
u+

i )× (R
φ+

i × R
J+

i )× Rθi ,

and its exit set (W)exit
i by

(W+)exit
i = (R

s+

i × ∂R
u+

i )× (R
φ+

i × R
J+

i )× Rθi

∪ (Rs
+

i × R
u+

i )× (R
φ+

i × ∂R
J+

i )× Rθi

∪ (Rs
+

i × R
u+

i )× (R
φ+

i × R
J+

i )× ∂Rθi .

The exit directions of W+i correspond to the direction u+ of Rs
+

i ×R
u+

i , to the direc-

tion J+ of Rφ
+

i ×R
J+

i , and to all directions of Rθi . Note that the only difference in the exit
directions of W+i from W−i−1 is the switching from the direction φ− to the direction J+

in the angle-action components. Since we are not using any dynamics yet in constructing
these windows, this switching in the exit direction of the action-angle components may
seem arbitrary. The reason for this switching will become apparent later when we align
windows by the inner map: when an action-angle component is iterated under the inner
dynamics until it crosses another action-angle component, the twist property of the inner
map causes the first window to have its action direction stretched across the second win-
dow along its angle direction. Therefore we will have a switching of the exit directions
due to the alignment under the inner map. By having another switching of the exit direc-
tion at the heteroclinic intersection, we ensure the consistency of the correct alignment in
the two-step process. This will be explained in greater detail at Step 3.

We set the sizes of the rectangular components of the windows as follows:

‖Rs
−

i−1‖ = α
−, ‖Ru

−

i−1‖ = β
−, ‖R

φ−

i−1‖ = γ
−, ‖RJ

−

i−1‖ = δ
−. (5.9)

‖Rs
+

i ‖ = α
+, ‖Ru

+

i ‖ = β
+, ‖R

φ+

i ‖ = γ
+, ‖RJ

+

i ‖ = δ
+. (5.10)
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Above, by ‖Rc‖ we mean the diameter of the rectangle Rc of the projection onto the
coordinate c.

We want to ensure that W−i−1 is correctly aligned with W+i under the identity map-
ping. The two windows are defined in two different coordinate systems, so we need to
use the coordinate change8 to compare them relative to the same coordinate system. We
therefore require that 8(Rs

−

i−1) ⊆ int(Rs
+

i ), int(8(Ru
−

i−1)) ⊇ R
u+

i , int(8(Rφ
−

i−1)) ⊇ R
J+

i ,
8(RJ

−

i−1) ⊆ int(Rφ
+

i ), and Rθi ⊆ int(8(Rθi−1)). These conditions imply that W−i−1 is
correctly aligned with W+i under the identity mapping. These conditions are consis-
tent with the size specifications in (5.9) and (5.10), by the choice of the constants in
(5.1)–(5.4).

5.3.4. Step 2. At this step we take a forward iterate of the window W+i along the stable
manifold W s(Lεi ), and we align its image with a window W̌i near 3̃ε. Similarly, we take
a backward iterate of the window W−i along the unstable manifold Wu(Lεi−1), and we
align its image with a window Ŵi near 3̃ε.

First, we consider the positive iterate FN (W+i ) ofW+i , withN as in Subsection 5.3.2.
Since the window W+i has been defined in the coordinate system (s+, u+, φ+, J+, θ)

near 0̃ε, which was obtained by propagating the system near 3̃ε along the stable mani-
fold, and N as in (5.4), the image FN (W+i ) is naturally defined as a multi-dimensional
rectangle in the coordinate system (s, u, φ, J, θ) defined in N (Lεi ). The dynamics in
these coordinates is the skew product of the dynamics in the center directions with the
dynamics in the hyperbolic directions.

The twist condition satisfied by F in the (φ, J ) variables, described in B6, determines
a sheering of the φ-direction by a quantity of τJ per iterate along each level set of the
action variable J , modulo an error up to ε1; also, the J -coordinate is preserved up to ε1.
Since FN (W+i ) is in N (3̃ε), there exists a rectangle Řφi × Ř

J+

i in the (φ, J )-coordinate
such that the (φ, J )-component of W+i is correctly aligned under FN with Řφi × Ř

J+

i .
Since the size of the (φ, J ) component of W+i is γ− × δ−, we can choose Řφi × Ř

J+

i to
be of size ‖Řφi ‖ = γ̌ > γ++Nτδ++ ε1, and ‖ŘJ

+

i ‖ = δ̌ < δ+− ε1. These inequalities
are justified by (5.6) and (5.7).

In the θ -direction the map F acts as the time-ε map χ of the flow χ . To achieve
correct alignment of the windows in the θ -variable, it is sufficient to choose Řθi to be a
topological rectangle in the interior of χN (Rθ+i ).

The distance between the point FN (zεi−1,i) ∈ F
N (W+i ) and FN (zε,+i−1,i), measured

along the stable manifold W s(Lεi ), is less than λN+a
+.

The size of the projection of FN (W+i ) onto the s-coordinate is at most λN+α
+
+ε1. The

size of the u-component of FN (W+i ) is at least µN−β
+
− ε1. By the choice of the coordi-

nates in Subsection 5.3.1, the hyperbolic directions of FN (Rs
+

i ×R
u+

i ) coincide with the
hyperbolic directions in N (3̃ε). Since by (5.1) and (5.3) we have α̌ > λN (α++a+)+ε1,
and by (5.2) and (5.4) we have β̌ + ε1 < µN−β

+, we can construct a rectangle Řsi × Ř
u
i
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in the hyperbolic variables, of size α̌ × β̌, such that Řs
+

i × Ř
u+

i is correctly aligned with
Řsi × Ř

u
i under FN relative to the the hyperbolic variables.

Through these choices, we construct a new window W̌i about zε,+i−1,i , given by

W̌i = (Ř
s
i × Ř

u
i )× (Ř

φ
i × Ř

J
i )× Ř

θ
i

in the coordinates (s, u, φ, J, θ), such that FN (W+i ) is correctly aligned with W̌i under
the identity mapping, or equivalently W+i is correctly aligned with W̌i under FN . Its exit
set (W̌ )exit

i is given by

(W̌ )exit
i = (Ř

s
i × ∂Ř

u
i )× (Ř

φ
i × Ř

J
i )× Ř

θ
i

∪ (Řsi × Ř
u
i )× (Ř

φ
i × ∂Ř

J
i )× Ř

θ
i

∪ (Řsi × Ř
u
i )× (Ř

φ
i × Ř

J
i )× ∂Ř

θ
i .

We note that the correct alignment of W+i with W̌i under FN follows from the cor-
rect alignment of the window components, according to Definition 5.2, and the product
property from [45]. The time it takes to achieve this alignment isN , which is independent
of ε, and so is of order O(1).

In a similar fashion, we construct a new window Ŵi−1 near LεJi−1
such that FM(Ŵi−1)

is correctly aligned with W−i−1 under the identity mapping, or equivalently Ŵi−1 is cor-
rectly aligned with W−i−1 under FM for some M as in Subsection 5.3.2. For this purpose,
we take a negative iterate F−M(W−i−1) of W−i−1 and we construct a new window Ŵi−1

about zε,−i−1,i , of the type

Ŵi−1 = R̂
s
i−1 × R̂

u
i−1 × R̂

φ

i−1 × R̂
J
i−1 × R̂

θ
i−1

in the coordinates (s, u, φ, J, θ), with the exit set given by

(Ŵ )exit
i−1 = R̂

s
i−1 × ∂R̂

u
i−1 × R̂

φ

i−1 × R̂
J
i−1 × R̂

θ
i−1

∪ R̂si−1 × R̂
u
i−1 × ∂R̂

φ

i−1 × R̂
J
i−1 × R̂

θ
i−1

∪ R̂si−1 × R̂
u
i−1 × R̂

φ

i−1 × R̂
J
i−1 × ∂R̂

θ
i−1.

We choose the size of the window components to be ‖R̂si−1‖ = α̂, ‖R̂ui−1‖ = β̂,

‖R̂
φ

i−1‖ = γ̂ , and ‖R̂Ji−1‖ = δ̂. By the choice of the coordinates in Subsection 5.3.1, we
can choose R̂si−1 × R̂

u
i−1 so that it is correctly aligned with Rs−i−1 × R

u−
i−1 under FM . By

condition B6 we can choose R̂φi−1× R̂
J
i−1 so that it is correctly aligned with Rφ−i−1×R

J−
i−1

under FM . In the θ -variable we choose R̂θi−1 so that Rθ−i−1 ⊆ int(χM(R̂θi−1)).

We also require that (R̂φi−1 × R̂
J
i−1) × R̂

θ
i−1 is contained, via the parametrization k

described in Subsection 3.2, in U− ×N ⊆ k−1(Ũ−).
Now we verify that the choice of the sizes of the window components is compatible

with these correct alignment relations. Using (5.1), (5.2), (5.4), we can ensure that β̂ >
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µ−M− (β− + a−) + ε1 and α̂ + ε1 < λ−M+ α−. By (5.6) and (5.7) we can ensure that
δ̂ + ε1 < δ− and γ̂ > γ− +Mτδ− + ε1, where the term Mτδ− represents the effect of
the twist map on Rφ−i−1 × R

J−
i−1 under M negative iterates.

By the product property of correctly aligned windows, we find that FM(Ŵi−1) is
correctly aligned withW−i−1 under the identity mapping, or equivalently Ŵi−1 is correctly
aligned with W−i under FM .

We note that to achieve the correct alignment of the windows in Step 2 we do not
use the Lambda Lemma as in [39, 45]. The role of the Lambda Lemma in this paper is
taken over by the choice of coordinates near 3̃ε from Subsection 5.3.1, extended along
the stable and unstable manifolds to produce convenient coordinate systems about 0̃ε.

5.4. Step 3

We consider the heteroclinic intersection Wu(Lεi−1)∩W
s(Lεi ) and the heteroclinic inter-

section Wu(Lεi ) ∩W
s(Lεi+1).

By applying Step 2 for each heteroclinic connection we obtain a pair of windows Ŵi

and W̌i , both located about the set Lεi .
At this step we want to get W̌i correctly aligned with Ŵi under some iterate FK . We

pointed out earlier that the dynamics in the coordinates (φ, J, θ, u, s) is the skew product
of the dynamics in the center directions and the dynamics in the hyperbolic directions.

The first task is to ensure the correct alignment of the rectangle Řui × Ř
s
i , of exit set

∂Řui × Ř
s
i , with the rectangle R̂ui × R̂

s
i , of exit set ∂R̂ui × R̂

s
i . These rectangles are defined

in the same coordinate system on N (3̃ε). The correct alignment reduces to ensuring the
inclusions int(FK(Řui )) ⊇ R̂

u
i and FKi (Řsi ) ⊆ int(R̂si ). Since the unstable directions get

uniformly expanded and the stable directions get uniformly contracted, it is sufficient for
the correct alignment to have Řui × Ř

s
i and R̂ui × R̂

s
i of the same size α̌× β̌ = α̂× β̂ (see

(5.1) and (5.2)).
The second task is to correctly align (Řφi × Ř

J
i ) × Ř

θ
i with (R̂φi × R̂

J
i ) × R̂

θ
i . The

exit set of Řφi × Ř
J
i is given by Řφi × ∂Ř

J
i , while the exit set of R̂φi × R̂

J
i is given by

∂R̂
φ
i × R̂

J
i . Under FK , the rectangle Řφi × Ř

J
i is transformed into a topological rectangle

whose exit set components—‘top’ edge and ‘bottom’ edge—are shifted apart from one
another by at least Kτδ̌ − ε1 in the φ-direction, and they are separated by a distance of
at least δ̌ − ε1 in the J -direction. In order for FK(Řφi × Ř

J
i ) to be correctly aligned with

R̂
φ
i × R̂

J
i under the identity, the image FK(Řφi × Ř

J
i ) should stretch across R̂φi × R̂

J
i

in the direction of φ and its exit set components should come out through the exit set
components—left edge and right edge—of R̂φi × R̂

J
i . To ensure the stretching all the

way of the first window across the second, we need (Kτ‖ŘJ ‖ − ε1) − 2(‖Řφi ‖ + ε1),
representing the shearing in the φ direction of FK(Řφi × Ř

J
i ) minus the size of the top

and the bottom edge, to be bigger than ‖R̂φi ‖, representing the ‘width’ of R̂φi × R̂
J
i in

the φ-direction. Also, to ensure that the image of the first rectangle does not meet the
entry set of the second rectangle, we need ‖ŘJ ‖+ ε1, representing an upper bound of the
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‘height’ of FK(Řφi × Ř
J
i ) in the J -direction, to be smaller than ‖R̂J ‖, representing the

height of R̂φi × R̂
J
i in the J -direction. By construction ‖Řφi ‖ = γ̌ , ‖ŘJ ‖ = δ̌ ‖R̂φi ‖ = γ̂ ,

and ‖R̂J ‖ = δ̂. By (5.5) we have Kδ̌ > 2γ̌ + γ̂ + 3ε1, and by (5.7) we have δ̂ > δ̌ + ε1.
We also need to ensure the correct alignment of the d-dimensional rectangle Řθi , of

exit set ∂Řθi , with the d-dimensional rectangle R̂θi , of exit set R̂θi . The correct alignment
condition for windows that have exit sets consisting of their whole boundary means that
the image of the first window contains the second window in its interior. Thus, to make Řθi
correctly aligned with R̂θi under FK , we need to choose R̂θi so that R̂θi ⊂ int(χKε (Ř

θ
i )).

By the product property of correctly aligned windows, the outcome of this step is that
W̌i is correctly aligned with Ŵi under FK .

5.4.1. Step 4. To construct a long sequence of correctly aligned windows that visits
all the sets {Lεi }

n1
i=0, we start by constructing a pair of correctly aligned windows W−0

andW+1 , by the heteroclinic intersection ({z0,1}×N)∩ 0̃ε ofWu(Lε0) andW s(Lε1), as in
Step 1. Then, as in Step 2, we construct the window Ŵ0 near LεJ0

and W̌1 near Lε1. At this

initial step, for the uniformity of the notation, we set W̌0 = Ŵ0. Then, we continue the
construction recursively, following Steps 1–3, until we arrive at a window W̌n1 near Ln1 .
Hence, we obtain the sequence of correctly aligned windows

Ŵ0,W0,W1, W̌1, . . . , Ŵn1−1,Wn1−1,Wn1 , W̌n1

starting from Lε0 and ending with Lεn1
. We apply the Shadowing Lemma type Theorem

5.3, and conclude that there is an orbit {yi}
n1
i=0 with yi ∈ W̌i for all i, and yi+1 =

FK+M+N (yi) for i = 0, . . . , n1 − 1.

5.5. Proofs of Theorems 2.1 and 2.2

For Theorem 2.1 the initial condition θ0 is chosen to be a non-trivial uniformly recurrent
point. For Theorem 2.2 the initial condition θ0 can be any point in N . Then the con-
struction from the previous section is performed. The outcome is an orbit {yi}

n1
i=0 that is

O(1) close to the pseudo-orbit underlying the sequence of elementary building blocks
constructed in Subsection 4.4. We can estimate the time it takes for an orbit {yi} to move
from a window W̌0 to the window W̌n1 . The pseudo-orbit from Subsection 4.4 achieves a
growth of scaled energy1Hε = O(ε) in a scaled time1s = O(1/ε2). Each pseudo-orbit
corresponding to a single elementary building block gives rise to a sequence of windows
that are correctly aligned. The time required by the correct alignment of windows, and
the corresponding time it takes for the orbit to move along those windows, is O(1), with
the constants being the same for all windows in the sequence. Thus, the scaled time it
takes for the orbit {yi}

n1
i=0 to travel from y0 to yn1 is O(1/ε2), equal to the time along the

sequence of elementary building blocks multiplied by some constant independent of ε,
and hence on the energy. The gain of physical energy along this orbit is 1H = O(1/ε),
and the physical time spent is 1t = O(1/ε). Thus the change in the physical energy is
proportional to the time along the orbit, i.e. 1t ≈ 1H ≈ O(1/ε), as claimed.
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Since concatenations of correctly aligned windows are still correctly aligned, the
above construction of correctly aligned windows can be continued for a time O(1) to
achieve an O(1) change of the physical energy that covers the interval H = ε−2Hε ∈

[E∗, 2E∗], where E∗ was the choice of initial energy. To grow the physical energy to in-
finity, we re-initialize the process starting with ε = 1/

√
2E∗, and we construct a sequence

of correctly aligned windows as before. Again, the fact that concatenations of correctly
aligned windows are still correctly aligned yields a longer sequence of correctly aligned
windows. The construction can be repeated inductively, yielding an infinite sequence of
correctly aligned windows, and a corresponding shadowing orbit whose energy grows to
infinity in time. The estimate on the time does not get any worse since moving up along
the infinite chains corresponds to higher energy levels where the speed of diffusion is only
growing faster. Thus the energy growth is linear with respect to time.

Remark 5.4. In the above construction we should remark that the windows are of
size O(1), while the distance from Lεi to Lεi+1 is only of order O(ε3). Thus, for an or-
bit {yi}

n1
i=0 that goes from W̌i about Lεi to W̌i+1 about Lεi+1 the net energy change is

undetermined. However, the method of correctly aligned windows does detect an orbit
whose physical energy changes byO(1), from E = E∗ to E = 2E∗, within a scaled time
O(1). Hence, the topological argument is incapable of detecting the detailed changes of
the energy along the orbit; it can only detect significant changes.

We could get more control on the energy levels visited by choosing the windows
smaller, but then we would get worse estimates on the time. This phenomenon resembles
the ‘energy-time’ uncertainty principle of Heisenberg [49].

5.6. Proof of Theorem 2.3

The function E represents a prescribed energy path with upper bounded derivative; this
condition is necessary as the energy of the perturbed system cannot grow faster than
linearly. The function T represents a parametrization of the time. The argument is the
same as for Theorem 2.1, provided that we choose the infinite sequence {J iε }i∈N of level
sets to follow the energy path E , as described in Subsection 5.2.

5.7. Regularity

We note that if we assume that the metric and the potential are Cr , we conclude that the
flow is Cr−1 and so is the map F . The theory of normal hyperbolicity requires at least
C1-differentiability.

Since we are using a derivative with respect to parameters and even estimate the re-
mainders, we would like that r − 1 ≥ 2.

We note that the C1-differentiability of the flow χ on the external manifold N is
sufficient for the argument, since the estimates do not involve any derivatives along the
solution curves of χ .

Hence, in Section 2 it suffices to take r0 = 3.
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